WO2007088627A1 - Wheel engine for vehicle - Google Patents

Wheel engine for vehicle Download PDF

Info

Publication number
WO2007088627A1
WO2007088627A1 PCT/JP2006/301825 JP2006301825W WO2007088627A1 WO 2007088627 A1 WO2007088627 A1 WO 2007088627A1 JP 2006301825 W JP2006301825 W JP 2006301825W WO 2007088627 A1 WO2007088627 A1 WO 2007088627A1
Authority
WO
WIPO (PCT)
Prior art keywords
connecting rod
wheel
tire
vehicle
crank
Prior art date
Application number
PCT/JP2006/301825
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiteru Imamura
Original Assignee
Yoshiteru Imamura
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshiteru Imamura filed Critical Yoshiteru Imamura
Priority to PCT/JP2006/301825 priority Critical patent/WO2007088627A1/en
Priority to JP2007556913A priority patent/JPWO2007088933A1/en
Priority to PCT/JP2007/051707 priority patent/WO2007088933A1/en
Publication of WO2007088627A1 publication Critical patent/WO2007088627A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/08Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for recovering energy derived from swinging, rolling, pitching or like movements, e.g. from the vibrations of a machine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B19/00Wheels not otherwise provided for or having characteristics specified in one of the subgroups of this group

Definitions

  • the present invention relates to a vehicle wheel engine improved so that a vertical fluctuation component generated in a wheel due to the total weight can be converted into a power source during traveling.
  • a planetary gear mechanism is arranged in the power transmission path between the engine and the wheels and in the power transmission path between the motor / generator and the wheels. At least one power of the engine and the electric motor / generator is transmitted to the wheels via the planetary gear mechanism. When the power from the motor / generator is transmitted to the wheels, control is performed to switch the transmission to a low position or a high position according to the required torque. As a result, it is expected to improve fuel efficiency and reduce noise and exhaust gas, and become an effective means for environmental measures.
  • Patent Document 1 JP 2004-255901 A
  • the hybrid vehicle of Patent Document 1 has a hybrid structure of an engine and a motor / generator, all of them are driven by a power source in which fossil fuel is burned.
  • the total weight of about 1000 kg is shared by four wheels. Running. For this reason, at a ground contact position where a predetermined part of the wheel is in pressure contact with the traveling surface, the tire is compressed and deformed due to the total weight, and at a non-contact position where the predetermined part of the wheel is away from the traveling surface, the tire is released from the total weight force. Restores its original shape. The vertical movement of the wheel caused by this has been released to the outside as vibration energy without being used.
  • the present invention has been made in view of the above circumstances, and can be utilized for auxiliary power, charging of an in-vehicle battery, and the like by effectively using the vertical fluctuation of the wheel generated during traveling as a power source.
  • the object is to provide a vehicle wheel engine.
  • a vehicle wheel engine includes a crank that is provided with a rotatable crank shaft at the center of a tire wheel of a wheel.
  • the first connecting rod is connected to the crank in the tire wheel.
  • the support shaft is stretched between the left and right side walls of the tire wheel so as to be parallel to the crankshaft.
  • the second connecting rod is rotatably provided on the support shaft, one end is rotatably connected to the first connecting rod, and the other end is directed to the inner peripheral surface of the tire.
  • a portion of the shoe is pivotally connected to the other end of the second connecting rod so that it can slide on the inner peripheral surface of the tire.
  • the part of the wheel that contacts the running surface compresses and deforms, and a portion of the shoe is pressed against the inner circumferential surface of the tire, causing the second conduit to rotate around the support shaft.
  • the moment is received and transmitted to the first connecting rod to rotate the crank and use it as a power source.
  • the second connecting rod Since a part of the shoe receives a pressing force from the inner peripheral surface of the tire due to the vertical fluctuation of the wheel, the second connecting rod functions as an insulator having the support shaft as a fulcrum. In this case, considering the total weight of the vehicle, it can be seen that a large rotational moment is generated in the second connecting rod. Because of this large rotational moment, the crank is rotated via the first connecting rod, so that a large power source can be obtained and used effectively for auxiliary power for vehicles and charging of in-vehicle batteries. Since the vertical movement of the wheel is generally released to the outside as vibration energy, the power source is generated without supplying any new energy. As a result, it is also suitable for environmental conservation and energy saving measures.
  • the second connecting rod is made up of a short arm portion and a long arm portion that extend in a square shape at a predetermined angle from the branch portion. For this reason, the rotation angle ratio between the short arm portion and the long arm portion can be determined as desired by setting the length dimension ratio between the short arm portion and the long arm portion to a predetermined value.
  • the first connecting rod and the second connecting rod are arranged adjacent to each other as a pair of upper and lower pairs. For this reason, every time the wheel makes one revolution, the power source can be generated continuously at two locations on the tire, and the power source can be doubled to make the rotation smooth and stable.
  • the first connecting rod and the second connecting rod are arranged adjacent to each other at predetermined angular intervals in two pairs on the left and right as a pair of upper and lower yarns. For this reason, every time the tire makes one revolution, the power source can be continuously generated at four locations of the tire, and the power source can be quadruple to make the rotation smooth and more stable.
  • a portion of the shoe has a pair of upper and lower leaf springs whose opposing end portions are coupled to each other, and a compression coil spring provided between the leaf springs. For this reason, when a part of the shoe is also subjected to the pressing force of the inner peripheral surface of the tire, the compression coil spring moves the leaf spring up and down while expanding and contracting, absorbing the pressing force and applying an impact to the second connecting rod. ease. As a result, the second connecting rod can smoothly transmit the rotational moment to the first connecting rod, and these members can be prevented from being damaged or damaged, thereby contributing to improvement in durability.
  • a portion of the shoe is a rubber body having a hard rubber piece that is in sliding contact with the inner peripheral surface of the tire at the tip. For this reason, when a portion of the shoe receives the pressure of the inner circumferential surface of the tire, the rubber portion of the portion of the shoe is elastically deformed to reduce the impact on the second connecting rod, and the same effect as in claim 4 is achieved.
  • the return control unit has a cylinder part and a piston part slidably provided in the cylinder part, and the piston part is oriented in the direction of the support shaft by a tension coil spring. Is being energized.
  • the crank is connected to a torque converter that facilitates rotation of the tire wheel. For this reason, the vertical fluctuation of the wheel can be added to the rotation of the tire wheel and used as auxiliary power for the wheel.
  • the crank is connected to a generator that charges the in-vehicle battery. For this reason, the vertical movement of the wheel functions as auxiliary power for the generator that charges the in-vehicle battery.
  • the second connecting rod functions as an insulator with the support shaft as a fulcrum. Due to the total weight of the vehicle, a large rotational moment is generated in the second connecting rod. As a result, a large power source can be obtained by rotating the crank via the first connecting rod, which can be fully utilized for auxiliary power for vehicles and charging of on-vehicle batteries.
  • FIG. 1 is a cross-sectional view of a vehicle wheel engine (Example 1).
  • FIG. 2 is a longitudinal sectional view of a vehicle wheel engine (Example 1).
  • FIG. 3 is a longitudinal sectional view of a rubber cover that hermetically covers a second connecting rod (Example 2).
  • FIG. 4 is a plan view of a second connecting rod provided with a return control unit (Example 3).
  • FIG. 5 (a) is an enlarged plan view showing a shoe part (Example 4), and (b) is an enlarged plan view showing a shoe part (Example 5).
  • FIG. 6 is a cross-sectional view of a vehicle wheel engine connected to a torque converter (Example)
  • FIG. 7 is a cross-sectional view of a vehicle wheel engine connected to a generator for charging an in-vehicle battery (Example 7).
  • FIG. 8 is a cross-sectional view of a vehicle wheel engine (Example 8).
  • FIG. 9 is a longitudinal sectional view of a vehicle wheel engine (Example 9).
  • Example 1 of the present invention will be described with reference to FIGS. 1 and 2.
  • cranks 3 and 4 are attached to a tire wheel 2 as shown in FIG.
  • a crank 3 is rotatably supported in the tire wheel 2 via a crankshaft 3a at the center of the side wall 2a.
  • a crank 4 is rotatably supported in the tire wheel 2 via a crankshaft 4a at the center of the side wall 2b.
  • An intermediate crank 5 is disposed between the cranks 3 and 4.
  • a first connecting rod 7 is provided between the crank 3 and the intermediate crank 5, and one end of the first connecting rod 7 is rotatably connected to the crank 3 and the intermediate crank 5 via a pin 6.
  • support shafts 8 and 9 that are opposed in the radial direction are stretched in parallel with the crankshafts 3a and 4a.
  • the support shaft 8 is attached so as to be rotatable around the second connecting rod 10-shaped force branching portion 10a having a U-shape.
  • the second connecting rod 10 is composed of a short arm portion 10b and a long arm portion 10c extending in a dogleg shape at a predetermined angle from the branch portion 10a.
  • the length dimension ratio between the short arm portion 10b and the long arm portion 10c is set to a predetermined value in consideration of the diameter size of the tire 14, the diameter size of the crank 3, and the like.
  • the long arm portion 10c of the second connecting rod 10 is rotatably connected to the first connecting rod 7 via a pin 11, and the short arm portion 10b is rotatable to a short leg portion 13 via a pin 12. It is connected to. At the tip of the short leg 13, a shoe part 15 that is in sliding contact with the inner peripheral surface of the tire 14 is attached.
  • Another first connecting rod 16 is provided between the crank 4 and the intermediate crank 5, and one end thereof is rotatably connected to the crank 4 and the intermediate crank 5 via a pin 17.
  • a second U-shaped connecting rod 18 is attached to the support shaft 9 so as to be rotatable about a branching portion 18a.
  • the second connecting rod 18 is composed of a short arm portion 18b and a long arm portion 18c extending from the branching portion 10a in a dogleg shape at a predetermined angle.
  • the length dimension ratio between the short arm portion 18b and the long arm portion 18c is set to the same value as that of the second connecting rod 10 in consideration of the diameter size of the tire 14 and the diameter size of the crank 4. .
  • the long arm portion 18c of the second connecting rod 18 is rotatably connected to the first connecting rod 16 via the pin 19, and the short arm portion 18b is rotatable to the short leg portion 21 via the pin 20. It is connected to.
  • a shoe portion 22 that is in sliding contact with the inner peripheral surface of the tire 14 is attached to the distal end portion of the short leg portion 21.
  • the first connecting rods 7 and 16, the second connecting rods 10 and 18, and the cranks 3 and 4 are arranged adjacent to each other on the left and right, and these constitute the wheel engine 1A as a whole. That is, in the wheel engine 1A, the first connecting rod 16 (7) and the second connecting rod 18 (10) are adjacently arranged in a pair on the left and right as an upper and lower combination pair.
  • the second connecting rod 18 acts as a lever and rotates in the direction opposite to the clockwise direction, and the first connecting rod 16 is rotated in the direction of arrow B via the pin 19.
  • an external force in the direction of arrow C is generated on the pin 17.
  • the crank 3 is rotated together with the intermediate crank 5 and the crank 4 by an angle of 180 degrees in the direction of arrow D while allowing the first connecting rod 7 to be freely rotated and displaced.
  • the compression displacement ⁇ of the tire 14 with respect to the running surface 23 is known in advance, and the link length dimension ratio between the second connecting rod 18 (including the short arm portion 18b and the long arm portion 18c) and the first connecting rod 16 is determined. Decide.
  • the compression displacement ⁇ of the tire 14 transmitted to the second connecting rod 18 is set so that the crank 3 can be rotated by a half circumference (approximately 2 XR in terms of radial distance) via the first connecting rod 16. .
  • the second connecting rod 18 receives the centrifugal force of the wheel 1 and rotates in the direction opposite to the arrow ⁇ . Return to the original position. Along with this, the first connecting rod 16 freely rotates in the direction opposite to the arrow B around the pin 17 that does not affect the rotation of the crank 3.
  • the second connecting rod 10 when the non-grounding position force of the specific part of the tire 14 away from the running surface 23 also rotates to the grounding position, the second connecting rod 10, the first connecting rod 16, the short leg 21 and the shoe The part 22 operates in the same way as the second connecting rod 18.
  • crankshaft 3a (4a) rotates 10 times each together with the crank 3 (4), making a total of 20 rotations.
  • FIG. 3 shows a second embodiment of the present invention.
  • a cap-shaped rubber cover 24 that secures airtightness between the tire 14 and the tire wheel 2 is provided near the support shaft 9 (8).
  • the rubber cover 24 has a central portion 24a passing through the second connecting rod 18 (10) and an opening peripheral portion 24b fixed to the tire wheel 2.
  • the central portion 24a is hermetically bonded to the second connecting rod 18 (10) by an adhesive 25.
  • the opening peripheral portion 24b of the rubber cover 24 is hermetically bonded to the tire wheel 2 by the same adhesive 25.
  • the shoe portion 15 (22) receives a pressing force from the inner peripheral surface 14a of the tire 14, and the second connecting rod 18 (10 ) Rotates around the pivot 9 (8).
  • the second connecting rod 18 (10) is released from the pressing force, the second connecting rod 18 (10) is rotated back by centrifugal force.
  • the rubber cover 24 is elastically deformed according to the rotational displacement of the second connecting rod 18 (10), so that the airtightness in the tire 14 is maintained without loss.
  • FIG. 4 shows a third embodiment of the present invention.
  • a return control unit 26 is provided around the support shaft 9 (8) of the second connecting rod 18 (10).
  • the return control unit 26 extends to the opposite side of the shoe portion 22 (15).
  • the return control unit 26 includes a cylinder portion 27 and a piston portion 28 that is slidable in the cylinder portion 27.
  • Piston part 28 has a tension coil as shown by arrow S in FIG.
  • the spring 29 is urged in the direction of the support shaft 9 (8).
  • FIG. 5 (a) shows Example 4 of the present invention.
  • the shoe part 30 includes a pair of upper and lower leaf springs 31 and 32 and a compression coil spring 33 provided between the leaf springs 31 and 32.
  • the leaf springs 31 and 32 are opposed to each other at opposite ends corresponding to each other by spherical bodies 34 and 35.
  • the compression coil spring 33 fluctuates the leaf springs 31 and 32 up and down with the expansion and contraction, thereby absorbing the pressing force.
  • the second connecting rod 18 (10) can smoothly transmit the rotational moment to the first connecting rod 7 (16), which prevents damage and damage to these parts and contributes to improved durability.
  • FIG. 5 (b) shows Example 5 of the present invention.
  • the sh part 36 is a rubber body 38 having a hard rubber piece 37 slidably in contact with the inner peripheral surface 14a of the tire 14 at the tip.
  • the rubber body 38 has a corner portion 38a bonded to the tip of the second connecting rod 18 (10) as a hinge with an adhesive or the like. For this reason, when the shoe portion 36 receives a pressing force from the inner peripheral surface 14a of the tire 14, the rubber body 38 of the shoe portion 36 is elastically deformed to reduce the impact on the second connecting rod 18 (10). The same effect as Example 4 is achieved.
  • FIG. 6 shows a sixth embodiment of the present invention.
  • the crankshaft 3a of the crank 3 is a tire It is connected to a torque converter 39 that promotes the rotation of the wheel 2.
  • the vertical movement of wheel 1 is added to the rotation of tire wheel 2 and used as auxiliary power for wheel 1.
  • the casing 40 containing the fluid F therein is attached to the side wall 2a of the tire wheel 2 in a liquid-tight manner.
  • the crankshaft 3a is connected to a drive shaft 42 in which a rotating blade 41 is fitted at the tip in the casing 40.
  • a driving blade 43 facing the rotary blade 41 is fixed to the side wall 2a.
  • the crankshaft 4 a is connected to a drive shaft 46 of the vehicle via a bearing 45.
  • the rotational force of the crank 3 generated by the displacement of the second connecting rod 18 (10) and the first connecting rod 16 (7) is rotated via the crankshaft 3a and the drive shaft 42.
  • Rotate blade 41 see arrow J
  • the rotation of the rotary vane 41 is transmitted to the drive vane 43 via the fluid F and directly added to the wheel 1 via the side wall 2a (see arrow K).
  • the rotation of the wheel 1 is greatly promoted, and it is possible to realize a vehicle that is excellent in acceleration and power and capable of powerful driving.
  • FIG. 7 shows Embodiment 7 of the present invention.
  • the torque converter 39 of the sixth embodiment is omitted, and the crank 4 is connected to the generator 47.
  • the up-and-down fluctuation of wheel 1 is used as auxiliary power for generator 47 to charge an in-vehicle battery (not shown).
  • the rotational force of the crank 4 generated by the displacement of the second connecting rod 18 (10) and the first connecting rod 16 (7) is the crankshaft 4a, the bearing 45, the drive The shaft 46 and the power transmission path 49 of the differential gear mechanism 48 are connected to the rotating shaft 47a of the generator 47.
  • the rotational force of the crank 4 generated by the displacement of the second connecting rod 18 (10) and the first connecting rod 16 (7) is transmitted to the rotating shaft 47a via the power transmission path 49.
  • FIG. 8 shows Embodiment 8 of the present invention.
  • the difference between Example 8 and Example 1 is that the first connecting rod 16 (7), the second connecting rod 18 (10), the short leg 21 (13), and the short part 22 (15) One addition.
  • cranks 3 and 4 three intermediate cranks 5 are provided in a parallel state on the left and right.
  • a pair consisting of a first connecting rod 16, a second connecting rod 18, a short leg portion 21, and a shoe portion 22 is disposed between the adjacent left intermediate crank 5 and central intermediate crank 5.
  • a pair consisting of a first connecting rod 7, a second connecting rod 10, a short leg portion 13 and a shoe portion 15 is arranged between the adjacent middle intermediate crank 5 and right intermediate crank 5.
  • FIG. 9 shows Embodiment 9 of the present invention.
  • Example 9 differs from Example 8 in that the first connecting rod 16 (7), the second connecting rod 18 (10), the short leg 21 (13) and the shrunk part 22 (15) are combined with each other. They are arranged at equiangular intervals of approximately 90 degrees.
  • four first connecting rods 16 (7) and two second connecting rods 18 (10) are arranged adjacent to each other on the left and right, and two second connecting rods 16 (7) are arranged in the radial direction.
  • the first connecting rod 16 (7) and the second connecting rod 18 (10) are arranged adjacent to each other at a predetermined angular interval of 90 degrees in two pairs of left and right as an upper and lower combination pair.
  • the shoe parts 22 (15) receive the pressing force alternately from the inner peripheral surface 14a of the tire 14, and the second connecting rods 18 (10) individually receive the first connecting rod 16 Transmit the rotation moment to (7) and drive cranks 3 and 4 to rotate.
  • the power source can be continuously generated at the four locations of the tire 14, the power source has a large output of four times multiplication, and the rotation is smooth and more stable. Can be made.
  • cranks 3 and 4 and the intermediate crank 5 are usually disk-shaped in order to obtain smooth rotation, but they may be oval or bowl-shaped as long as they can perform the crank function. Yo Yes.
  • the length dimension ratio between the short arm portion 10b (18b) and the long arm portion 10c (18c) in the second connecting rod 16 (7) can be changed as desired. The same applies to the length dimension ratio between the first connecting rod 16 (7) and the second connecting rod 18 (10) and the short leg 21 (13).
  • the angle formed by the short arm portion 10b (18b) and the long arm portion 10c (18c) can also be set as desired according to the use situation.
  • the second connecting rod 16 (7) is not limited to the U-shape, but may be V-shaped, W-shaped, M-shaped, hemi-shaped or L-shaped! /.
  • the torque converter 39 may be provided at a position where the suspension 44 exists on the side opposite to the side wall 2a.
  • the torque converter 39 may be provided inside the tire wheel 2 in a compact manner between the crank 3 and the side wall 2a, or between the crank 4 and the side wall 2b.
  • the vehicle wheel engine 1A may be used as a power source for driving an air conditioning compressor in the vehicle interior, instead of charging the in-vehicle battery.
  • the name of the second connecting rod arm 22 (15) may be used as an arm hand.
  • the second connecting rod acts as a lever with the support shaft as a fulcrum because a part of the shoe receives the pressing force of the inner peripheral surface force of the tire due to the vertical fluctuation of the wheel.
  • the crank rotates through the first connecting rod due to the large rotational moment generated in the second connecting rod.
  • a large power source is obtained and can be used effectively for auxiliary power for vehicles and charging of on-board batteries, etc., so it will stimulate demand in the automobile industry and widely apply to the machinery industry through the distribution of related parts. can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Transmission Devices (AREA)

Abstract

A wheel engine for a vehicle, which effectively uses vertical wheel movement, occurring during traveling of the vehicle, as a power source. The wheel engine can be used as a source for auxiliary power, a power source for charging a vehicle-mounted battery, etc. That portion of a tire (14) which engages the ground is elastically deformed by the total weight of the vehicle as the wheel (1) moved up and down, and a shoe section (15) receives pressing force from an inner peripheral surface (14a) of the tire (14). This causes a second connecting rod (10) to work as a lever with a support shaft (8) working as the support point. Large rotational moment on the second connecting rod (10) rotates a crank (3) via a first connecting rod (7). The construction provides a source of large power and can be effectively used for auxiliary power for the vehicle and for power for charging a vehicle-mounted battery.

Description

明 細 書  Specification
車両用ホイ一ノレエンジン  Hoiinore engine for vehicles
技術分野  Technical field
[0001] 本発明は、走行時、総重量により車輪に生じる上下方向の変動成分を動力源に 変換できるように改良した車両用ホイールエンジンに関する。  TECHNICAL FIELD [0001] The present invention relates to a vehicle wheel engine improved so that a vertical fluctuation component generated in a wheel due to the total weight can be converted into a power source during traveling.
背景技術  Background art
[0002] 近年のハイブリッド車では、燃料燃焼形のエンジンと電力供給形の電動機 '発電機 とを搭載し、走行条件によってエンジンと電動機'発電機とからの動力を選択的に車 輪に伝達するようにしている(例えば、特許文献 1参照)。  [0002] In recent hybrid vehicles, a fuel combustion type engine and a power supply type electric motor 'generator' are mounted, and the power from the engine and electric motor 'generator is selectively transmitted to the wheel according to driving conditions. (For example, refer to Patent Document 1).
[0003] すなわち、エンジンと車輪との動力伝達路、ならびに電動機 ·発電機と車輪との動 力伝達路には、遊星歯車機構が配置されている。エンジンと電動機'発電機とのうち 少なくとも一方の動力が遊星歯車機構を介して車輪に伝達される。電動機'発電機 の動力が車輪に伝達される場合、要求トルクに応じて変速機をロー位置あるいはハ ィ位置に切換える制御が行われる。これにより、燃費の向上をはじめ騒音および排気 ガスを低減し、環境対策の有力手段となることが期待されている。  [0003] That is, a planetary gear mechanism is arranged in the power transmission path between the engine and the wheels and in the power transmission path between the motor / generator and the wheels. At least one power of the engine and the electric motor / generator is transmitted to the wheels via the planetary gear mechanism. When the power from the motor / generator is transmitted to the wheels, control is performed to switch the transmission to a low position or a high position according to the required torque. As a result, it is expected to improve fuel efficiency and reduce noise and exhaust gas, and become an effective means for environmental measures.
特許文献 1 :特開 2004— 255901号公報  Patent Document 1: JP 2004-255901 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 特許文献 1のハイブリッド車は、エンジンと電動機'発電機との混成構造ではあるも のの、いずれも化石燃料を燃焼させた動力源で走行することに変わりはないものであ る。 [0004] Although the hybrid vehicle of Patent Document 1 has a hybrid structure of an engine and a motor / generator, all of them are driven by a power source in which fossil fuel is burned.
本発明では、地球上に働く自然エネルギーのうち、クリーンな重力(引力)を利用す ることに着目した。重力の利用法としては、高低差を活用した水力発電や降坂時のェ ンジンブレーキを利用して車載バッテリーを充電する例がある。し力しながら、高低差 がなくなったり、降坂路線を終えれば、重力の利用ができなくなり、高低差や降坂路 線を連続的に利用するには限界があった。  In the present invention, attention has been paid to the use of clean gravity (attraction) among the natural energy working on the earth. Examples of gravity usage include charging a vehicle-mounted battery using hydroelectric power generation using elevation differences and an engine brake on downhill. However, if the height difference disappears or the downhill route is finished, the gravity can no longer be used, and there is a limit to the continuous use of the height difference and the downhill route.
[0005] この点、四輪自動車に着目すれば、約 1000kgの総重量を四個の車輪に分担して 走行している。このため、車輪の所定部が走行面に圧接する接地位置では、総重量 によりタイヤが圧縮変形し、車輪の所定部が走行面から離れた非接地位置では、タイ ャが総重量力 解放されて元の形状に回復する。これに起因して生じる車輪の上下 変動は、利用されることなく振動エネルギーとして外部に放出されてしまっている。 [0005] In this regard, when focusing on a four-wheeled vehicle, the total weight of about 1000 kg is shared by four wheels. Running. For this reason, at a ground contact position where a predetermined part of the wheel is in pressure contact with the traveling surface, the tire is compressed and deformed due to the total weight, and at a non-contact position where the predetermined part of the wheel is away from the traveling surface, the tire is released from the total weight force. Restores its original shape. The vertical movement of the wheel caused by this has been released to the outside as vibration energy without being used.
[0006] 本発明は、上記事情に鑑みてなされたもので、走行時に発生する車輪の上下変動 を動力源として有効利用して、補助動力や車載バッテリーの充電用などに活用する ことが可能な車両用ホイールエンジンを提供することにある。  [0006] The present invention has been made in view of the above circumstances, and can be utilized for auxiliary power, charging of an in-vehicle battery, and the like by effectively using the vertical fluctuation of the wheel generated during traveling as a power source. The object is to provide a vehicle wheel engine.
課題を解決するための手段  Means for solving the problem
[0007] (請求項 1について) [0007] (About claim 1)
車両用ホイールエンジンでは、車輪のタイヤホイールの中心部に回転可能なクラン ク軸を有するように設けられたクランクを備えている。このクランクには、タイヤホイ一 ル内で第 1コンロッドが連結されている。支軸は、クランク軸と平行となるように、タイヤ ホイールの左右の側壁間に掛け渡されている。第 2コンロッドは、支軸に回動可能に 設けられ、一端が第 1コンロッドに回動可能に連結され、他端がタイヤの内周面に指 向している。シュ一部は、第 2コンロッドの他端に回動可能に連結されてタイヤの内周 面に摺動可能になっている。走行時に車輪が上下変動するに伴い、車輪の走行面 に接地する部分が圧縮変形し、シュ一部がタイヤの内周面に押圧されて、第 2コンロ ッドが支軸を中心とする回転モーメントを受け、第 1コンロッドに伝えてクランクを回転 させて動力源とする。  A vehicle wheel engine includes a crank that is provided with a rotatable crank shaft at the center of a tire wheel of a wheel. The first connecting rod is connected to the crank in the tire wheel. The support shaft is stretched between the left and right side walls of the tire wheel so as to be parallel to the crankshaft. The second connecting rod is rotatably provided on the support shaft, one end is rotatably connected to the first connecting rod, and the other end is directed to the inner peripheral surface of the tire. A portion of the shoe is pivotally connected to the other end of the second connecting rod so that it can slide on the inner peripheral surface of the tire. As the wheel fluctuates up and down during running, the part of the wheel that contacts the running surface compresses and deforms, and a portion of the shoe is pressed against the inner circumferential surface of the tire, causing the second conduit to rotate around the support shaft. The moment is received and transmitted to the first connecting rod to rotate the crank and use it as a power source.
[0008] 車輪の上下変動により、シュ一部がタイヤの内周面からの押圧力を受けるため、第 2コンロッドが支軸を支点とする梃子として働く。この場合、車両の総重量を考慮する と、第 2コンロッドに大きな回転モーメントが生じることが分かる。この大きな回転モーメ ントにより、第 1コンロッドを介してクランクを回転させるので、大きな動力源が得られて 車両用の補助動力や車載バッテリーの充電用などに有効利用することができる。 車輪の上下変動は、一般に振動エネルギーとして外部に放出されるものであるた め、何ら新たなエネルギーを供給することなく動力源を発生させている。この結果、環 境保全および省エネルギー対策として好適でもある。  [0008] Since a part of the shoe receives a pressing force from the inner peripheral surface of the tire due to the vertical fluctuation of the wheel, the second connecting rod functions as an insulator having the support shaft as a fulcrum. In this case, considering the total weight of the vehicle, it can be seen that a large rotational moment is generated in the second connecting rod. Because of this large rotational moment, the crank is rotated via the first connecting rod, so that a large power source can be obtained and used effectively for auxiliary power for vehicles and charging of in-vehicle batteries. Since the vertical movement of the wheel is generally released to the outside as vibration energy, the power source is generated without supplying any new energy. As a result, it is also suitable for environmental conservation and energy saving measures.
[0009] (請求項 2について) 第 2コンロッドは、分岐部から所定の角度でくの字状に延出する短腕部と長腕部と 力 なっている。このため、短腕部と長腕部との長さ寸法比を所定に設定することによ り、短腕部と長腕部の回動角度比を所望に決めることができる。 [0009] (About claim 2) The second connecting rod is made up of a short arm portion and a long arm portion that extend in a square shape at a predetermined angle from the branch portion. For this reason, the rotation angle ratio between the short arm portion and the long arm portion can be determined as desired by setting the length dimension ratio between the short arm portion and the long arm portion to a predetermined value.
[0010] (請求項 3について) [0010] (About claim 3)
第 1コンロッドと第 2コンロッドとは、上下の組合せ対として左右に一対づっ隣接配 置されている。このため、車輪が一回転する毎に、タイヤの二箇所で動力源を連続的 に発生させることができ、動力源が倍増して回転を円滑にして安定させることができる  The first connecting rod and the second connecting rod are arranged adjacent to each other as a pair of upper and lower pairs. For this reason, every time the wheel makes one revolution, the power source can be generated continuously at two locations on the tire, and the power source can be doubled to make the rotation smooth and stable.
[0011] (請求項 4について) [0011] (About claim 4)
第 1コンロッドと第 2コンロッドとは、上下の糸且合せ対として左右に二対づっ所定の角 度間隔で隣接配置されている。このため、タイヤが一回転する毎に、タイヤの四箇所 で動力源を連続的に発生させることができ、動力源が四増倍になって回転を円滑に して一層安定させることができる。  The first connecting rod and the second connecting rod are arranged adjacent to each other at predetermined angular intervals in two pairs on the left and right as a pair of upper and lower yarns. For this reason, every time the tire makes one revolution, the power source can be continuously generated at four locations of the tire, and the power source can be quadruple to make the rotation smooth and more stable.
[0012] (請求項 5について)  [0012] (About claim 5)
シュ一部は、対向端部同士が結合された上下一対の板ばねと、板ばねの間に設け られた圧縮コイルスプリングとを有する。このため、シュ一部がタイヤの内周面力も押 圧力を受ける際、圧縮コイルスプリングが伸縮変位を伴いながら板ばねを上下に変 動させ、押圧力を吸収して第 2コンロッドに与える衝撃を緩和する。これにより、第 2コ ンロッドが回転モーメントを第 1コンロッドに円滑に伝達することができ、これら部材の 破損や損傷を防いで耐久性の向上に寄与させることができる。  A portion of the shoe has a pair of upper and lower leaf springs whose opposing end portions are coupled to each other, and a compression coil spring provided between the leaf springs. For this reason, when a part of the shoe is also subjected to the pressing force of the inner peripheral surface of the tire, the compression coil spring moves the leaf spring up and down while expanding and contracting, absorbing the pressing force and applying an impact to the second connecting rod. ease. As a result, the second connecting rod can smoothly transmit the rotational moment to the first connecting rod, and these members can be prevented from being damaged or damaged, thereby contributing to improvement in durability.
[0013] (請求項 6について)  [0013] (About claim 6)
シュ一部は、先端にタイヤの内周面に摺接させる硬質ゴム片を有するゴム体である 。このため、シュ一部がタイヤの内周面力 押圧力を受ける際、シュ一部のゴム体が 弾性変形して第 2コンロッドに与える衝撃を緩和し、請求項 4と同様な効果を奏する。  A portion of the shoe is a rubber body having a hard rubber piece that is in sliding contact with the inner peripheral surface of the tire at the tip. For this reason, when a portion of the shoe receives the pressure of the inner circumferential surface of the tire, the rubber portion of the portion of the shoe is elastically deformed to reduce the impact on the second connecting rod, and the same effect as in claim 4 is achieved.
[0014] (請求項 7について)  [0014] (About claim 7)
第 2コンロッドの支軸の周辺部には、遠心力によりシュ一部とは反対側に延出する 戻り制御部を有する。この戻り制御部は、シリンダー部とシリンダー部内で摺動可能 に設けられたピストン部とを有し、引張コイルスプリングによりピストン部が支軸の方向 に付勢されている。 In the periphery of the spindle of the second connecting rod, there is a return control section that extends to the opposite side of the shoe part by centrifugal force. The return control unit has a cylinder part and a piston part slidably provided in the cylinder part, and the piston part is oriented in the direction of the support shaft by a tension coil spring. Is being energized.
この場合、車両の速度が増加するに伴い、車輪の回転が速くなり大きな遠心力が 第 2コンロッドに働く。遠心力によりピストン部が引張コイルスプリングの付勢力に抗し In this case, as the vehicle speed increases, the wheel rotates faster and a large centrifugal force acts on the second connecting rod. The piston part resists the urging force of the tension coil spring by centrifugal force.
、支軸とは反対方向に摺動して延びる。このため、戻り制御部の慣性力が大きくなり、 第 2コンロッドがタイヤの内周面の方向に戻る復帰回動速度を緩和し、第 1コンロッド のタイヤの内周面に対する衝撃を減少させることができる。 , Sliding and extending in the opposite direction to the spindle. For this reason, the inertial force of the return control unit increases, the return rotation speed at which the second connecting rod returns toward the inner peripheral surface of the tire is reduced, and the impact of the first connecting rod on the inner peripheral surface of the tire is reduced. it can.
[0015] (請求項 8について) [0015] (About claim 8)
クランクは、タイヤホイールの回転を助長させるトルクコンバータに連結されて 、る。 このため、車輪の上下変動をタイヤホイールの回転に付加して車輪の補助動力とし て活用することができる。  The crank is connected to a torque converter that facilitates rotation of the tire wheel. For this reason, the vertical fluctuation of the wheel can be added to the rotation of the tire wheel and used as auxiliary power for the wheel.
[0016] (請求項 9について) [0016] (About claim 9)
クランクは、車載バッテリーを充電する発電機に連結されている。このため、車輪の 上下変動が車載バッテリーを充電する発電機の補助動力として機能する。  The crank is connected to a generator that charges the in-vehicle battery. For this reason, the vertical movement of the wheel functions as auxiliary power for the generator that charges the in-vehicle battery.
発明の効果  The invention's effect
[0017] 本発明の車両用ホイールエンジンでは、車輪の上下変動により、シュ一部がタイヤ の内周面力 の押圧力を受けて第 2コンロッドが支軸を支点とする梃子として働く。車 両の総重量により、第 2コンロッドに大きな回転モーメントを生じさせる。これにより、第 1コンロッドを介してクランクを回転させて大きな動力源が得られて、車両用の補助動 力や車載バッテリーの充電用などに十分活用することができる。  In the vehicle wheel engine of the present invention, due to vertical fluctuation of the wheel, a part of the shoe receives a pressing force of the inner peripheral surface force of the tire, and the second connecting rod functions as an insulator with the support shaft as a fulcrum. Due to the total weight of the vehicle, a large rotational moment is generated in the second connecting rod. As a result, a large power source can be obtained by rotating the crank via the first connecting rod, which can be fully utilized for auxiliary power for vehicles and charging of on-vehicle batteries.
図面の簡単な説明  Brief Description of Drawings
[0018] [図 1]車両用ホイールエンジンの横断面図である(実施例 1)。 FIG. 1 is a cross-sectional view of a vehicle wheel engine (Example 1).
[図 2]車両用ホイールエンジンの縦断面図である(実施例 1)。  FIG. 2 is a longitudinal sectional view of a vehicle wheel engine (Example 1).
[図 3]第 2コンロッドを気密に被覆するゴムカバーの縦断面図である(実施例 2)。  FIG. 3 is a longitudinal sectional view of a rubber cover that hermetically covers a second connecting rod (Example 2).
[図 4]戻り制御部を設けた第 2コンロッドの平面図である(実施例 3)。  FIG. 4 is a plan view of a second connecting rod provided with a return control unit (Example 3).
[図 5] (a)はシユー部を示す拡大平面図(実施例 4)、 (b)はシユー部を示す拡大平面 図である(実施例 5)。  FIG. 5 (a) is an enlarged plan view showing a shoe part (Example 4), and (b) is an enlarged plan view showing a shoe part (Example 5).
[図 6]トルクコンバータに連結した車両用ホイールエンジンの横断面図である(実施例 [図 7]車載バッテリーを充電する発電機に連結した車両用ホイールエンジンの横断面 図である(実施例 7)。 FIG. 6 is a cross-sectional view of a vehicle wheel engine connected to a torque converter (Example) FIG. 7 is a cross-sectional view of a vehicle wheel engine connected to a generator for charging an in-vehicle battery (Example 7).
[図 8]車両用ホイールエンジンの横断面図である(実施例 8)。  FIG. 8 is a cross-sectional view of a vehicle wheel engine (Example 8).
[図 9]車両用ホイールエンジンの縦断面図である(実施例 9)。 FIG. 9 is a longitudinal sectional view of a vehicle wheel engine (Example 9).
符号の説明 Explanation of symbols
1 車輪  1 wheel
1A 車両用ホイールエンジン  1A Vehicle wheel engine
2 タイヤホイール  2 Tire wheel
2a, 2b 側壁  2a, 2b sidewall
3、 4 クランク  3, 4 crank
3a, 4a クランク軸  3a, 4a crankshaft
5 中間クランク  5 Intermediate crank
7、 16 第 1コンロッド  7, 16 1st connecting rod
8、 9 支軸  8, 9 Spindle
10、 18 第 2コンロッド  10, 18 2nd connecting rod
10a、 18a 分岐部  10a, 18a bifurcation
10b、 18b 短腕部  10b, 18b Short arm
10c、 18c 長腕部  10c, 18c long arm
14 タイヤ  14 tires
14a タイヤの内周面  14a Tire inner surface
15、 22、 30、 36 シュ一部  15, 22, 30, 36
23 走行面  23 Running surface
24 ゴムカノく一  24 Rubber Kano Kuichi
26 戻り制御部  26 Return control section
27 シリンダー部  27 Cylinder part
28 ピストン部  28 Piston part
29 引張コイルスプリング  29 Tension coil spring
31、 32 板ばね 33 圧縮コイルスプリング 31, 32 leaf spring 33 Compression coil spring
37 硬質ゴム  37 Hard rubber
38 ゴム体  38 Rubber body
39 トルクコンバータ  39 Torque converter
47 発電機  47 Generator
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 車両の走行時に生じる車輪の上下変動により、シュ一部がタイヤの内周面力 の押 圧力を受けて第 2コンロッドが支軸を支点とする梃子として働く。第 2コンロッドに大き な回転モーメントを生じ、クランクを回転させて補助動力として十分な出力の動力源 を確保する。 [0020] Due to the vertical movement of the wheel that occurs when the vehicle is running, a part of the shoe receives the pressing force of the inner peripheral surface force of the tire, and the second connecting rod acts as an insulator with the support shaft as a fulcrum. A large rotational moment is generated in the second connecting rod, and the crank is rotated to secure a power source with sufficient output as auxiliary power.
実施例 1  Example 1
[0021] 本発明の実施例 1を図 1および図 2に基づ 、て説明する。  Example 1 of the present invention will be described with reference to FIGS. 1 and 2.
車両(図示せず)に設けられた車輪 1において、図 1に示すようにタイヤホイール 2に は、左右の側壁 2a、 2bが取付けられている。側壁 2aの中心部には、タイヤホイール 2 内でクランク 3がクランク軸 3aを介して回転可能に支持されている。側壁 2bの中心部 には、タイヤホイール 2内でクランク 4がクランク軸 4aを介して回転可能に支持されて いる。クランク 3、 4の間には、中間クランク 5が配置されている。  In a wheel 1 provided in a vehicle (not shown), left and right side walls 2a and 2b are attached to a tire wheel 2 as shown in FIG. A crank 3 is rotatably supported in the tire wheel 2 via a crankshaft 3a at the center of the side wall 2a. A crank 4 is rotatably supported in the tire wheel 2 via a crankshaft 4a at the center of the side wall 2b. An intermediate crank 5 is disposed between the cranks 3 and 4.
[0022] クランク 3と中間クランク 5との間には、第 1コンロッド 7が設けられ、その一端部がピ ン 6を介してクランク 3および中間クランク 5に回動可能に連結されている。側壁 2a、 2 bの間には、径方向に対向する支軸 8、 9がクランク軸 3a、 4aと平行に掛け渡されてい る。支軸 8には、くの字状の第 2コンロッド 10力 分岐部 10aを中心に回動可能に取 付けられている。第 2コンロッド 10は、分岐部 10aから所定の角度でくの字状に延出 する短腕部 10bと長腕部 10cとからなっている。短腕部 10bと長腕部 10cとの長さ寸 法比は、タイヤ 14の径寸法やクランク 3の径寸法などを考慮して所定の値に設定され ている。  A first connecting rod 7 is provided between the crank 3 and the intermediate crank 5, and one end of the first connecting rod 7 is rotatably connected to the crank 3 and the intermediate crank 5 via a pin 6. Between the side walls 2a and 2b, support shafts 8 and 9 that are opposed in the radial direction are stretched in parallel with the crankshafts 3a and 4a. The support shaft 8 is attached so as to be rotatable around the second connecting rod 10-shaped force branching portion 10a having a U-shape. The second connecting rod 10 is composed of a short arm portion 10b and a long arm portion 10c extending in a dogleg shape at a predetermined angle from the branch portion 10a. The length dimension ratio between the short arm portion 10b and the long arm portion 10c is set to a predetermined value in consideration of the diameter size of the tire 14, the diameter size of the crank 3, and the like.
[0023] 第 2コンロッド 10の長腕部 10cは、ピン 11を介して第 1コンロッド 7に回動可能に連 結され、短腕部 10bはピン 12を介して短脚部 13に回動可能に連結されている。短脚 部 13の先端部には、タイヤ 14の内周面に摺接するシュ一部 15が取付けられている [0024] クランク 4と中間クランク 5との間には、別の第 1コンロッド 16が設けられ、その一端部 がピン 17を介してクランク 4および中間クランク 5に回動可能に連結されている。支軸 9には、くの字状の第 2コンロッド 18が分岐部 18aを中心に回動可能に取付けられて いる。第 2コンロッド 18は、分岐部 10aから所定の角度でくの字状に延出する短腕部 18bと長腕部 18cとからなっている。短腕部 18bと長腕部 18cとの長さ寸法比は、タイ ャ 14の径寸法やクランク 4の径寸法などを考慮して、第 2コンロッド 10の場合と同様 の値に設定されている。 [0023] The long arm portion 10c of the second connecting rod 10 is rotatably connected to the first connecting rod 7 via a pin 11, and the short arm portion 10b is rotatable to a short leg portion 13 via a pin 12. It is connected to. At the tip of the short leg 13, a shoe part 15 that is in sliding contact with the inner peripheral surface of the tire 14 is attached. Another first connecting rod 16 is provided between the crank 4 and the intermediate crank 5, and one end thereof is rotatably connected to the crank 4 and the intermediate crank 5 via a pin 17. A second U-shaped connecting rod 18 is attached to the support shaft 9 so as to be rotatable about a branching portion 18a. The second connecting rod 18 is composed of a short arm portion 18b and a long arm portion 18c extending from the branching portion 10a in a dogleg shape at a predetermined angle. The length dimension ratio between the short arm portion 18b and the long arm portion 18c is set to the same value as that of the second connecting rod 10 in consideration of the diameter size of the tire 14 and the diameter size of the crank 4. .
[0025] 第 2コンロッド 18の長腕部 18cは、ピン 19を介して第 1コンロッド 16に回動可能に連 結され、短腕部 18bはピン 20を介して短脚部 21に回動可能に連結されている。短脚 部 21の先端部には、タイヤ 14の内周面に摺接するシュ一部 22が取付けられている 。この状態では、第 1コンロッド 7、 16、第 2コンロッド 10、 18およびクランク 3、 4は、左 右に二個隣接状態に配置されており、これら全体がホイールエンジン 1Aを構成する 。すなわち、このホイールエンジン 1Aでは、第 1コンロッド 16 (7)と第 2コンロッド 18 (1 0)とは、上下の組合せ対として左右に一対づっ隣接配置されている。  [0025] The long arm portion 18c of the second connecting rod 18 is rotatably connected to the first connecting rod 16 via the pin 19, and the short arm portion 18b is rotatable to the short leg portion 21 via the pin 20. It is connected to. A shoe portion 22 that is in sliding contact with the inner peripheral surface of the tire 14 is attached to the distal end portion of the short leg portion 21. In this state, the first connecting rods 7 and 16, the second connecting rods 10 and 18, and the cranks 3 and 4 are arranged adjacent to each other on the left and right, and these constitute the wheel engine 1A as a whole. That is, in the wheel engine 1A, the first connecting rod 16 (7) and the second connecting rod 18 (10) are adjacently arranged in a pair on the left and right as an upper and lower combination pair.
[0026] 上記構成において、走行時、車両が図 2に矢印 Mで示す方向に進行する場合、車 輪 1は矢印 Nの方向に回転する。これに伴い、車両が走行面 23で上下方向の変動 力を受けるため、タイヤ 14の所定部が走行面 23と圧接する接地位置では、車輪 1の タイヤ 14が車両の総重量を受けて弾性変形により圧縮方向に橈む。タイヤ 14の圧 縮変形に伴って、シュ一部 22がタイヤ 14の内周面 14aから押圧力を受け、短脚部 2 1およびピン 20を介して第 2コンロッド 18に支軸 9を中心とする回転モーメントを与え る(図 2の矢印 A参照)。  [0026] In the above configuration, when the vehicle travels in the direction indicated by the arrow M in Fig. 2, the wheel 1 rotates in the direction of the arrow N. As a result, the vehicle receives a vertical fluctuation force on the running surface 23, so that the tire 14 of the wheel 1 receives the total weight of the vehicle and elastically deforms at a contact position where a predetermined portion of the tire 14 is in pressure contact with the running surface 23. To hold in the compression direction. As the tire 14 is compressed and deformed, the shoe portion 22 receives a pressing force from the inner peripheral surface 14a of the tire 14, and the second connecting rod 18 is centered on the support shaft 9 via the short leg portion 21 and the pin 20. (See arrow A in Fig. 2).
[0027] この回転モーメントにより、第 2コンロッド 18が梃子となって、時計回り方向とは反対 に回動し、ピン 19を介して第 1コンロッド 16を矢印 B方向に回動させる。第 1コンロッド 16の回動により、ピン 17に矢印 C方向の外力を生じさせる。この外力により、第 1コン ロッド 7の自由な回動変位を許しながら、クランク 3を中間クランク 5およびクランク 4と 一緒に矢印 D方向に 180度の角度だけ回転させる。  Due to this rotational moment, the second connecting rod 18 acts as a lever and rotates in the direction opposite to the clockwise direction, and the first connecting rod 16 is rotated in the direction of arrow B via the pin 19. By rotating the first connecting rod 16, an external force in the direction of arrow C is generated on the pin 17. With this external force, the crank 3 is rotated together with the intermediate crank 5 and the crank 4 by an angle of 180 degrees in the direction of arrow D while allowing the first connecting rod 7 to be freely rotated and displaced.
この回転動作は、第 2コンロッド 18が車輪 1と一緒に位置 P力も位置 Qまでの 90度 の角度だけ回転した時に生じる。このため、車輪 1が 90度回転する毎に、クランク 4が 中間クランク 5およびクランク 3と一緒に車輪 1の 2倍である 180度の回転を生じること になる。 This rotational movement is achieved when the second connecting rod 18 and the wheel 1 are at 90 degrees from the position P force to the position Q. Occurs when rotated by an angle of. For this reason, every time wheel 1 rotates 90 degrees, crank 4 together with intermediate crank 5 and crank 3 will rotate 180 degrees, which is twice that of wheel 1.
この場合、走行面 23に対するタイヤ 14の圧縮変位 δを予め把握しておき、第 2コン ロッド 18 (短腕部 18bおよび長腕部 18cを含む)と第 1コンロッド 16とのリンク長さ寸法 比を決めておく。第 2コンロッド 18に伝わったタイヤ 14の圧縮変位 δが第 1コンロッド 16を介してクランク 3を半周(径方向の距離に換算して略 2 XR)だけ回転できるよう に設定しておくものである。  In this case, the compression displacement δ of the tire 14 with respect to the running surface 23 is known in advance, and the link length dimension ratio between the second connecting rod 18 (including the short arm portion 18b and the long arm portion 18c) and the first connecting rod 16 is determined. Decide. The compression displacement δ of the tire 14 transmitted to the second connecting rod 18 is set so that the crank 3 can be rotated by a half circumference (approximately 2 XR in terms of radial distance) via the first connecting rod 16. .
[0028] タイヤ 14の所定部が接地位置から走行面 23から離れた非接地位置に回動すると、 第 2コンロッド 18は車輪 1の遠心力を受けて、矢印 Αとは反対方向に回動し、元の位 置に復帰する。これに伴い、第 1コンロッド 16が、クランク 3の回転に影響を与えること なぐピン 17を中心にして矢印 Bとは反対方向に自由回動する。 [0028] When the predetermined portion of the tire 14 is rotated from the ground contact position to the non-ground position away from the running surface 23, the second connecting rod 18 receives the centrifugal force of the wheel 1 and rotates in the direction opposite to the arrow Α. Return to the original position. Along with this, the first connecting rod 16 freely rotates in the direction opposite to the arrow B around the pin 17 that does not affect the rotation of the crank 3.
[0029] 第 2コンロッド 10についても、タイヤ 14の特定部分が走行面 23から離れた非接地 位置力も接地位置に回転すると、第 2コンロッド 10、第 1コンロッド 16、短脚部 21およ びシユー部 22は、第 2コンロッド 18の場合と同様に作動する。 [0029] Also for the second connecting rod 10, when the non-grounding position force of the specific part of the tire 14 away from the running surface 23 also rotates to the grounding position, the second connecting rod 10, the first connecting rod 16, the short leg 21 and the shoe The part 22 operates in the same way as the second connecting rod 18.
このため、第 2コンロッド 10の回転モーメントを受けた第 1コンロッド 7の回動により、 ピン 6に外力を生じさせて、クランク 4を中間クランク 5およびクランク 3と一緒に 180度 の角度だけ回転させる。車輪 1が 90度回転する毎に、クランク 4が中間クランク 5およ びクランク 3と一緒に車輪 1の 2倍である 180度の回転を生じることになる。  Therefore, the rotation of the first connecting rod 7 that receives the rotational moment of the second connecting rod 10 generates an external force on the pin 6 and rotates the crank 4 together with the intermediate crank 5 and the crank 3 by an angle of 180 degrees. . Each time wheel 1 rotates 90 degrees, crank 4 together with intermediate crank 5 and crank 3 will produce a 180 degree rotation that is twice that of wheel 1.
[0030] ちなみに、大衆乗用車で 13インチホイールを有し、車両の総重量が約 1000kgで、 クランク軸 3a (4a)とピン 6 (16)との間の偏心距離 Rとする場合を想定する。車両用ホ ィールエンジン 1Aを四輪に設けた場合、車輪 1の各々には約 250kgの荷重が加わ るとすると、各車輪 1がー回転する毎にクランク 3 (4)の回転トルク Tは次のようである。 偏'、距離 R力 S 15cmでは、回転トノレク T= 250kg X 0. 15m X 9. 8 X 2 [0030] Incidentally, it is assumed that a passenger car has a 13-inch wheel, the total weight of the vehicle is about 1000 kg, and an eccentric distance R between the crankshaft 3a (4a) and the pin 6 (16). When the vehicle wheel engine 1A is installed on four wheels, if a load of approximately 250 kg is applied to each wheel 1, the rotational torque T of the crank 3 (4) is It seems to be. Unbalanced, distance R force S 15cm, rotation Tonlek T = 250kg X 0.15m X 9. 8 X 2
= 735Ν·πιとなる。  = 735Ν · πι.
偏心距離 Rが 10cmでも、回転トルク T= 250kg X O. 10mX 9. 8 X 2  Even if eccentric distance R is 10cm, rotational torque T = 250kg X O. 10mX 9.8 X 2
=490Ν·πιとなる。  = 490Ν · πι.
[0031] 例えば、 13インチホイールの車両で、 16mを 2秒の割合で走行する時、車輪は 5回 転する。クランク軸 3a (4a)はクランク 3 (4)と一緒にそれぞれ 10回転し、合計で 20回 転すること〖こなる。 [0031] For example, when a vehicle with 13-inch wheels travels at a rate of 2 seconds at 16 m, the wheel will rotate 5 times. Roll. The crankshaft 3a (4a) rotates 10 times each together with the crank 3 (4), making a total of 20 rotations.
この場合のクランク 3 (4)は、毎秒当たり 10回転となるので、偏心距離 Rが 15cmの クランクでは、毎秒当たりの仕事量(U)は、 735N'm X 10 (lZs) = 7350N'm' (l /s) = 7. 4kWとなる。  In this case, crank 3 (4) is 10 revolutions per second, so for a crank with an eccentric distance R of 15 cm, the work per second (U) is 735 N'm X 10 (lZs) = 7350 N'm ' (l / s) = 7.4 4kW.
偏心距離 Rが 10cmのクランクでも、毎秒当たりの仕事量(U)は、 490N'mX 10 (1 Zs) =4900N-m- (1/s) = 5. OkWとなる。  Even with an eccentric distance R of 10cm, the work per second (U) is 490N'mX 10 (1 Zs) = 4900N-m- (1 / s) = 5. OkW.
実施例 2  Example 2
[0032] 図 3は本発明の実施例 2を示す。実施例 2では、支軸 9 (8)の付近でタイヤ 14とタイ ャホイール 2との間の気密性を確保するキャップ状のゴムカバー 24を設けている。 このゴムカバー 24は、その中央部 24aを第 2コンロッド 18 (10)に貫通させて開口周 辺部 24bをタイヤホイール 2に固着している。中央部 24aは、第 2コンロッド 18 (10)に 対して接着剤 25により気密に結合されている。ゴムカバー 24の開口周辺部 24bは、 タイヤホイール 2に対して同様の接着剤 25により気密に結合されている。  FIG. 3 shows a second embodiment of the present invention. In the second embodiment, a cap-shaped rubber cover 24 that secures airtightness between the tire 14 and the tire wheel 2 is provided near the support shaft 9 (8). The rubber cover 24 has a central portion 24a passing through the second connecting rod 18 (10) and an opening peripheral portion 24b fixed to the tire wheel 2. The central portion 24a is hermetically bonded to the second connecting rod 18 (10) by an adhesive 25. The opening peripheral portion 24b of the rubber cover 24 is hermetically bonded to the tire wheel 2 by the same adhesive 25.
[0033] このため、第 2コンロッド 18 (10)力 支軸 9 (8)の周辺部で、タイヤ 14の内部に嵌入 状態に突き出ていても、ゴムカバー 24力 タイヤホイール 2に対する第 2コンロッド 18 (10)の嵌入部を気密にシールする。 [0033] For this reason, even if the second connecting rod 18 (10) force is protruded into the tire 14 at the periphery of the support shaft 9 (8), the second connecting rod 18 against the tire wheel 2 has a rubber cover 24 force. Seal the insertion part of (10) in an airtight manner.
第 2コンロッド 18 (10)が回転モーメントを受ける際、実施例 1で示したように、シユー 部 15 (22)がタイヤ 14の内周面 14aから押圧力を受けて、第 2コンロッド 18 (10)が支 軸 9 (8)を中心に回動する。第 2コンロッド 18 (10)が押圧力から解放されると、第 2コ ンロッド 18 (10)は遠心力により復帰回動する。  When the second connecting rod 18 (10) receives a rotational moment, as shown in the first embodiment, the shoe portion 15 (22) receives a pressing force from the inner peripheral surface 14a of the tire 14, and the second connecting rod 18 (10 ) Rotates around the pivot 9 (8). When the second connecting rod 18 (10) is released from the pressing force, the second connecting rod 18 (10) is rotated back by centrifugal force.
この際、第 2コンロッド 18 (10)の回動変位に応じて、ゴムカバー 24が弾性変形によ り橈むため、タイヤ 14内の気密性が失われることなく良好に保持される。  At this time, the rubber cover 24 is elastically deformed according to the rotational displacement of the second connecting rod 18 (10), so that the airtightness in the tire 14 is maintained without loss.
実施例 3  Example 3
[0034] 図 4は本発明の実施例 3を示す。実施例 3では、第 2コンロッド 18 (10)の支軸 9 (8) の周辺部には、シュ一部 22 (15)とは反対側に延出する戻り制御部 26を設けている 。この戻り制御部 26は、シリンダー部 27とシリンダー部 27内で摺動可能に設けられ たピストン部 28とを有している。ピストン部 28は、図 4に矢印 Sで示すように、引張コィ ルスプリング 29により支軸 9 (8)の方向に付勢されて 、る。 FIG. 4 shows a third embodiment of the present invention. In the third embodiment, a return control unit 26 is provided around the support shaft 9 (8) of the second connecting rod 18 (10). The return control unit 26 extends to the opposite side of the shoe portion 22 (15). The return control unit 26 includes a cylinder portion 27 and a piston portion 28 that is slidable in the cylinder portion 27. Piston part 28 has a tension coil as shown by arrow S in FIG. The spring 29 is urged in the direction of the support shaft 9 (8).
[0035] この場合、車両の速度が増加するに伴い、車輪 1の回転が速くなり大きな遠心力が 第 2コンロッド 18 (10)に働く。遠心力によりピストン部 28が引張コイルスプリング 29の 付勢力に抗し、図 4に二点鎖線で示すように、支軸 9 (8)とは反対方向に摺動し、遠 心力に応じた長さまで延びる。 In this case, as the speed of the vehicle increases, the rotation of the wheel 1 becomes faster and a large centrifugal force acts on the second connecting rod 18 (10). The piston part 28 resists the urging force of the tension coil spring 29 due to the centrifugal force, and slides in the opposite direction to the support shaft 9 (8) as shown by the two-dot chain line in FIG. It extends to.
これにより、戻り制御部 26の慣性力が大きくなり、第 2コンロッド 18 (10)が支軸 9 (8 )を中心として、図 4の矢印 Aとは反対方向であるタイヤ 14の内周面 14aの方向に戻 る復帰回動速度を緩和する。この結果、第 2コンロッド 18 (10)のタイヤ 14の内周面 1 4aに対する衝撃を減少させて、これら部材への損傷や破損を防ぐことができる。 実施例 4  As a result, the inertial force of the return control unit 26 increases, and the second connecting rod 18 (10) is centered on the support shaft 9 (8), and the inner peripheral surface 14a of the tire 14 is in the direction opposite to the arrow A in FIG. The return rotation speed to return to the direction is reduced. As a result, the impact of the second connecting rod 18 (10) on the inner peripheral surface 14a of the tire 14 can be reduced, and damage or breakage to these members can be prevented. Example 4
[0036] 図 5の(a)は本発明の実施例 4を示す。実施例 4では、シュ一部 30を上下一対の板 ばね 31、 32と、板ばね 31、 32の間に設けた圧縮コイルスプリング 33とにより構成し ている。板ばね 31、 32は、上下に対応する対向端部同士が球状体 34、 35により結 合されている。  FIG. 5 (a) shows Example 4 of the present invention. In the fourth embodiment, the shoe part 30 includes a pair of upper and lower leaf springs 31 and 32 and a compression coil spring 33 provided between the leaf springs 31 and 32. The leaf springs 31 and 32 are opposed to each other at opposite ends corresponding to each other by spherical bodies 34 and 35.
[0037] このため、シュ一部 30がタイヤ 14の内周面 14aから押圧力を受ける際、圧縮コイル スプリング 33が伸縮変位を伴いながら板ばね 31、 32を上下に変動させ、押圧力を吸 収して第 2コンロッド 18 (10)に与える衝撃を緩和する。これにより、第 2コンロッド 18 ( 10)が回転モーメントを第 1コンロッド 7 (16)に円滑に伝達することができ、これら部 材の破損や損傷を防いで耐久性の向上に寄与する。  [0037] For this reason, when the shoe portion 30 receives a pressing force from the inner peripheral surface 14a of the tire 14, the compression coil spring 33 fluctuates the leaf springs 31 and 32 up and down with the expansion and contraction, thereby absorbing the pressing force. To reduce the impact on the second connecting rod 18 (10). As a result, the second connecting rod 18 (10) can smoothly transmit the rotational moment to the first connecting rod 7 (16), which prevents damage and damage to these parts and contributes to improved durability.
実施例 5  Example 5
[0038] 図 5の (b)は本発明の実施例 5を示す。実施例 5では、シュ一部 36は、先端にタイ ャ 14の内周面 14aに摺接させる硬質ゴム片 37を有するゴム体 38である。ゴム体 38 は、一角部 38aを第 2コンロッド 18 (10)の先端部にヒンジとして接着剤などで結合さ せている。このため、シュ一部 36がタイヤ 14の内周面 14aから押圧力を受ける際、シ ユー部 36のゴム体 38が弾性変形して第 2コンロッド 18 (10)に与える衝撃を緩和し、 実施例 4と同様な効果を奏する。  FIG. 5 (b) shows Example 5 of the present invention. In the fifth embodiment, the sh part 36 is a rubber body 38 having a hard rubber piece 37 slidably in contact with the inner peripheral surface 14a of the tire 14 at the tip. The rubber body 38 has a corner portion 38a bonded to the tip of the second connecting rod 18 (10) as a hinge with an adhesive or the like. For this reason, when the shoe portion 36 receives a pressing force from the inner peripheral surface 14a of the tire 14, the rubber body 38 of the shoe portion 36 is elastically deformed to reduce the impact on the second connecting rod 18 (10). The same effect as Example 4 is achieved.
実施例 6  Example 6
[0039] 図 6は本発明の実施例 6を示す。実施例 6では、クランク 3のクランク軸 3aが、タイヤ ホイール 2の回転を助長させるトルクコンバータ 39に連結されている。車輪 1の上下 変動をタイヤホイール 2の回転に付加して車輪 1の補助動力として活用するというもの である。 FIG. 6 shows a sixth embodiment of the present invention. In Example 6, the crankshaft 3a of the crank 3 is a tire It is connected to a torque converter 39 that promotes the rotation of the wheel 2. The vertical movement of wheel 1 is added to the rotation of tire wheel 2 and used as auxiliary power for wheel 1.
[0040] この場合、トルクコンバータ 39において、内部に流体 Fを収容したケーシング 40は 、タイヤホイール 2の側壁 2aに液密に取付けられている。クランク軸 3aは、ケーシング 40内で先端に回転羽根 41を嵌着した駆動軸 42に連結されている。回転羽根 41に 対向する駆動羽根 43が側壁 2aに固定されている。車輪 1のサスペンション 44が位置 する側では、クランク軸 4aが軸受 45を介して車両のドライブシャフト 46に連結されて いる。  In this case, in the torque converter 39, the casing 40 containing the fluid F therein is attached to the side wall 2a of the tire wheel 2 in a liquid-tight manner. The crankshaft 3a is connected to a drive shaft 42 in which a rotating blade 41 is fitted at the tip in the casing 40. A driving blade 43 facing the rotary blade 41 is fixed to the side wall 2a. On the side where the suspension 44 of the wheel 1 is located, the crankshaft 4 a is connected to a drive shaft 46 of the vehicle via a bearing 45.
[0041] 実施例 1のように、第 2コンロッド 18 (10)および第 1コンロッド 16 (7)の変位により発 生させたクランク 3の回転力は、クランク軸 3aおよび駆動軸 42を介して回転羽根 41を 回転駆動させる(矢印 J参照)。回転羽根 41の回転は、流体 Fを介して駆動羽根 43に 伝わり、側壁 2aを介して車輪 1に直接付加される(矢印 K参照)。このため、車輪 1の 回転が大幅に助長され、加速性および動力性に優れて、力強い走行が可能な車両 を実現させることができる。  [0041] As in the first embodiment, the rotational force of the crank 3 generated by the displacement of the second connecting rod 18 (10) and the first connecting rod 16 (7) is rotated via the crankshaft 3a and the drive shaft 42. Rotate blade 41 (see arrow J). The rotation of the rotary vane 41 is transmitted to the drive vane 43 via the fluid F and directly added to the wheel 1 via the side wall 2a (see arrow K). For this reason, the rotation of the wheel 1 is greatly promoted, and it is possible to realize a vehicle that is excellent in acceleration and power and capable of powerful driving.
実施例 7  Example 7
[0042] 図 7は本発明の実施例 7を示す。実施例 7では、実施例 6のトルクコンバータ 39を省 略し、クランク 4を発電機 47に連結している。車輪 1の上下変動を発電機 47の補助動 力として活用し、車載バッテリー(図示せず)を充電しょうとするものである。  FIG. 7 shows Embodiment 7 of the present invention. In the seventh embodiment, the torque converter 39 of the sixth embodiment is omitted, and the crank 4 is connected to the generator 47. The up-and-down fluctuation of wheel 1 is used as auxiliary power for generator 47 to charge an in-vehicle battery (not shown).
[0043] この場合、実施例 1のように、第 2コンロッド 18 (10)および第 1コンロッド 16 (7)の変 位により発生させたクランク 4の回転力は、クランク軸 4a、軸受 45、ドライブシャフト 46 および差動歯車機構 48の動力伝達路 49を介して発電機 47の回転軸 47aに連結さ れている。  In this case, as in Example 1, the rotational force of the crank 4 generated by the displacement of the second connecting rod 18 (10) and the first connecting rod 16 (7) is the crankshaft 4a, the bearing 45, the drive The shaft 46 and the power transmission path 49 of the differential gear mechanism 48 are connected to the rotating shaft 47a of the generator 47.
実施例 1のように、第 2コンロッド 18 (10)および第 1コンロッド 16 (7)の変位により発 生させたクランク 4の回転力は、動力伝達路 49を介して回転軸 47aに伝達されて発 電機 47を駆動する。このため、車載エンジンで発電機を駆動する通常のものに比べ て、燃料消費量が低減し燃費性能が大幅に向上する。  As in the first embodiment, the rotational force of the crank 4 generated by the displacement of the second connecting rod 18 (10) and the first connecting rod 16 (7) is transmitted to the rotating shaft 47a via the power transmission path 49. Drives generator 47. For this reason, fuel consumption is reduced and fuel consumption performance is greatly improved compared to a normal system in which a generator is driven by an in-vehicle engine.
実施例 8 [0044] 図 8本発明の実施例 8を示す。実施例 8が実施例 1と異なるところは、第 1コンロッド 16 (7)、第 2コンロッド 18 (10)、短脚部 21 (13)およびシュ一部 22 (15)力もなる組 合せ対をもう一つ加えたことである。 Example 8 FIG. 8 shows Embodiment 8 of the present invention. The difference between Example 8 and Example 1 is that the first connecting rod 16 (7), the second connecting rod 18 (10), the short leg 21 (13), and the short part 22 (15) One addition.
[0045] すなわち、クランク 3、 4との間には、三個の中間クランク 5を左右に並列状態に設け ている。隣接する左側の中間クランク 5と中央の中間クランク 5間には、第 1コンロッド 1 6、第 2コンロッド 18、短脚部 21およびシュ一部 22からなる対を配置している。隣接 する中央の中間クランク 5と右側の中間クランク 5間には、第 1コンロッド 7、第 2コンロ ッド 10、短脚部 13およびシュ一部 15からなる対を配置している。  That is, between the cranks 3 and 4, three intermediate cranks 5 are provided in a parallel state on the left and right. A pair consisting of a first connecting rod 16, a second connecting rod 18, a short leg portion 21, and a shoe portion 22 is disposed between the adjacent left intermediate crank 5 and central intermediate crank 5. A pair consisting of a first connecting rod 7, a second connecting rod 10, a short leg portion 13 and a shoe portion 15 is arranged between the adjacent middle intermediate crank 5 and right intermediate crank 5.
[0046] このため、シュ一部 22 (15)がタイヤ 14の内周面 14aから押圧力を受ける際、二個 づつの第 2コンロッド 18 (10)が交互に回転モーメントを受けて二個づっ第 1コンロッ ド 16 (7)を回動させ、中間クランク 5をクランク 3、 4と一緒に回転駆動する。これにより 、中間クランク 5およびクランク 3、 4の回転が円滑になつて安定する。  [0046] For this reason, when the shoe portion 22 (15) receives a pressing force from the inner peripheral surface 14a of the tire 14, the two second connecting rods 18 (10) alternately receive the rotational moment to generate two. The first rod 16 (7) is rotated and the intermediate crank 5 is rotated together with the cranks 3 and 4. As a result, the rotation of the intermediate crank 5 and the cranks 3 and 4 becomes smooth and stable.
実施例 9  Example 9
[0047] 図 9本発明の実施例 9を示す。実施例 9が実施例 8と異なるところは、第 1コンロッド 16 (7)、第 2コンロッド 18 (10)、短脚部 21 (13)およびシュ一部 22 (15)力もなる組 合せ対を互いに略 90度の等角度間隔で配置したことである。この状態では、第 1コン ロッド 16 (7)および第 2コンロッド 18 (10)は、左右に四個が隣接する状態に配置され ており、第 2コンロッド 16 (7)は二個づっ互いに径方向に対向している。すなわち、第 1コンロッド 16 (7)と第 2コンロッド 18 (10)とは、上下の組合せ対として左右にニ対づ つ 90度の所定の角度間隔で隣接配置された形態となっている。  FIG. 9 shows Embodiment 9 of the present invention. Example 9 differs from Example 8 in that the first connecting rod 16 (7), the second connecting rod 18 (10), the short leg 21 (13) and the shrunk part 22 (15) are combined with each other. They are arranged at equiangular intervals of approximately 90 degrees. In this state, four first connecting rods 16 (7) and two second connecting rods 18 (10) are arranged adjacent to each other on the left and right, and two second connecting rods 16 (7) are arranged in the radial direction. Opposite to. In other words, the first connecting rod 16 (7) and the second connecting rod 18 (10) are arranged adjacent to each other at a predetermined angular interval of 90 degrees in two pairs of left and right as an upper and lower combination pair.
[0048] このため、シュ一部 22 (15)がー個づっ交互にタイヤ 14の内周面 14aから押圧力 を受けるようになり、第 2コンロッド 18 (10)がー個づっ第 1コンロッド 16 (7)に回転モ 一メントを伝えてクランク 3、 4を回転駆動する。この結果、タイヤ 14がー回転する毎に 、タイヤ 14の四箇所で動力源を連続的に発生させることができ、動力源が四増倍の 大出力になって、回転を円滑にして一層安定させることができる。  [0048] For this reason, the shoe parts 22 (15) receive the pressing force alternately from the inner peripheral surface 14a of the tire 14, and the second connecting rods 18 (10) individually receive the first connecting rod 16 Transmit the rotation moment to (7) and drive cranks 3 and 4 to rotate. As a result, every time the tire 14 rotates, the power source can be continuously generated at the four locations of the tire 14, the power source has a large output of four times multiplication, and the rotation is smooth and more stable. Can be made.
[0049] (変形例)  [0049] (Modification)
(a)クランク 3、 4および中間クランク 5は、円滑な回転を得るため通常では円盤状であ るが、楕円板状や瓢箪状であってもよぐ要はクランク機能を果たせるものであればよ い。 (a) The cranks 3 and 4 and the intermediate crank 5 are usually disk-shaped in order to obtain smooth rotation, but they may be oval or bowl-shaped as long as they can perform the crank function. Yo Yes.
(b)第 2コンロッド 16 (7)における短腕部 10b (18b)と長腕部 10c (18c)との長さ寸法 比は必要に応じて所望に変更することができる。第 1コンロッド 16 (7)、第 2コンロッド 18 (10)と短脚部 21 (13)との間の長さ寸法比についても同様である。短腕部 10b (1 8b)と長腕部 10c (18c)とがなす角度についても、使用状況などに応じて所望に設 定することができる。  (b) The length dimension ratio between the short arm portion 10b (18b) and the long arm portion 10c (18c) in the second connecting rod 16 (7) can be changed as desired. The same applies to the length dimension ratio between the first connecting rod 16 (7) and the second connecting rod 18 (10) and the short leg 21 (13). The angle formed by the short arm portion 10b (18b) and the long arm portion 10c (18c) can also be set as desired according to the use situation.
(c)第 2コンロッド 16 (7)は、くの字状に限らず、 V字状、 W字状、 M字状、への字状 あるいは L字状であってもよ!/、。  (c) The second connecting rod 16 (7) is not limited to the U-shape, but may be V-shaped, W-shaped, M-shaped, hemi-shaped or L-shaped! /.
[0050] (d)シュ一部 15、 22については、ローラーをはじめ旋回可能に設けられた球体ゃス ライダーであってもよい。  [0050] (d) Regarding the sh parts 15 and 22, a ball or a slider provided so as to be turnable including a roller may be used.
(e)実施例 6におけるトルクコンバータ 39とクランク 3との間には、クラッチを設けて必 要な場合のみにクラッチを作動させることにより、トルクコンバータ 39の駆動を選択的 に行うようにしてもよい。  (e) It is possible to selectively drive the torque converter 39 by providing a clutch between the torque converter 39 and the crank 3 in Embodiment 6 and operating the clutch only when necessary. Good.
(f)トルクコンバータ 39は、側壁 2aとは反対側でサスペンション 44の存する箇所に設 けるようにしてもよい。トルクコンバータ 39は、タイヤホイール 2の内部で、コンパクトィ匕 してクランク 3と側壁 2aとの間、あるいはクランク 4と側壁 2bとの間に設けるようにしても よい。  (f) The torque converter 39 may be provided at a position where the suspension 44 exists on the side opposite to the side wall 2a. The torque converter 39 may be provided inside the tire wheel 2 in a compact manner between the crank 3 and the side wall 2a, or between the crank 4 and the side wall 2b.
(g)車両用ホイールエンジン 1Aは、車載バッテリーの充電に代わって、車室内の空 調用のコンプレッサーを駆動する動力源として用いてもよい。  (g) The vehicle wheel engine 1A may be used as a power source for driving an air conditioning compressor in the vehicle interior, instead of charging the in-vehicle battery.
(h)第 2コンロッド 18 (10)の名称については、第 2コンロッドアームとしてもよぐシュ 一部 22 (15)の名称については、アームハンドとしてもよい。  (h) As for the name of the second connecting rod 18 (10), the name of the second connecting rod arm 22 (15) may be used as an arm hand.
産業上の利用可能性  Industrial applicability
[0051] 本発明の車両用ホイールエンジンでは、車輪の上下変動により、シュ一部がタイヤ の内周面力 の押圧力を受けるため、第 2コンロッドが支軸を支点とする梃子として働 く。これに伴い、第 2コンロッドに生じる大きな回転モーメントにより第 1コンロッドを介し てクランクを回転させる。大きな動力源が得られて車両用の補助動力や車載バッテリ 一の充電用などに有効利用することができるため、車産業界の需要を促し、関連部 品の流通を介して機械業界に広く適用することができる。 [0051] In the vehicle wheel engine of the present invention, the second connecting rod acts as a lever with the support shaft as a fulcrum because a part of the shoe receives the pressing force of the inner peripheral surface force of the tire due to the vertical fluctuation of the wheel. Along with this, the crank rotates through the first connecting rod due to the large rotational moment generated in the second connecting rod. A large power source is obtained and can be used effectively for auxiliary power for vehicles and charging of on-board batteries, etc., so it will stimulate demand in the automobile industry and widely apply to the machinery industry through the distribution of related parts. can do.

Claims

請求の範囲 The scope of the claims
[1] 車輪のタイヤホイールの中心部に回転可能なクランク軸を有するように設けられた クランクと、  [1] a crank provided with a rotatable crankshaft in the center of the tire wheel of the wheel;
前記タイヤホイール内で前記クランクに連結された第 1コンロッドと、  A first connecting rod connected to the crank in the tire wheel;
前記クランク軸と平行となるように、前記タイヤホイールの左右の側壁間に掛け渡さ れた支軸と、  A spindle spanned between the left and right side walls of the tire wheel so as to be parallel to the crankshaft;
この支軸に回動可能に設けられ、一端が前記第 1コンロッドに回動可能に連結され 、他端がタイヤの内周面に指向する第 2コンロッドと、  A second connecting rod that is rotatably provided on the support shaft, one end of which is rotatably connected to the first connecting rod, and the other end of which is directed to the inner peripheral surface of the tire;
この第 2コンロッドの前記他端に回動可能に連結されて前記タイヤの内周面に摺動 可能なシュ一部とを備え、  A shoe part that is rotatably connected to the other end of the second connecting rod and is slidable on the inner peripheral surface of the tire,
走行時に前記車輪が上下変動するに伴い、前記車輪の走行面に接地する部分が 圧縮変形し、前記シュ一部が前記タイヤの内周面に押圧されて、前記第 2コンロッド が前記支軸を中心とする回転モーメントを受け、前記第 1コンロッドに伝えて前記クラ ンクを回転させて動力源とすることを特徴とする車両用ホイールエンジン。  As the wheel fluctuates up and down during traveling, the portion of the wheel that contacts the traveling surface compresses and deforms, and the shoe part is pressed against the inner peripheral surface of the tire, so that the second connecting rod contacts the support shaft. A vehicle wheel engine characterized by receiving a rotational moment at the center and transmitting the torque to the first connecting rod to rotate the crank as a power source.
[2] 前記第 2コンロッドは、分岐部から所定の角度でくの字状に延出する短腕部と長腕 部と力もなつていることを特徴とする請求項 1に記載の車両用ホイールエンジン。 [2] The vehicle wheel according to claim 1, wherein the second connecting rod has a force with a short arm portion and a long arm portion extending in a square shape at a predetermined angle from the branch portion. engine.
[3] 前記第 1コンロッドと前記第 2コンロッドとは、上下の組合せ対として左右に一対づ つ隣接配置されて 、ることを特徴とする請求項 1に記載の車両用ホイールエンジン。 [3] The vehicle wheel engine according to claim 1, wherein the first connecting rod and the second connecting rod are disposed adjacent to each other as a pair of upper and lower left and right pairs.
[4] 前記第 1コンロッドと前記第 2コンロッドとは、上下の糸且合せ対として左右にニ対づ つ所定の角度間隔で隣接配置されていることを特徴とする請求項 1に記載の車両用 ホイ一ノレエンジン。 [4] The vehicle according to claim 1, wherein the first connecting rod and the second connecting rod are arranged adjacent to each other at predetermined angular intervals in two pairs of left and right as a pair of upper and lower yarns. For Hoi-no-re engine.
[5] 前記シュ一部は、対向端部同士が結合された上下一対の板ばねと、前記板ばねの 間に設けられた圧縮コイルスプリングとを有することを特徴とする請求項 1に記載の車 両用ホイールエンジン。  5. The shoe part according to claim 1, wherein the sh part includes a pair of upper and lower leaf springs whose opposite ends are coupled to each other, and a compression coil spring provided between the leaf springs. Vehicle wheel engine.
[6] 前記シュ一部は、先端に前記タイヤの内周面に圧接させる硬質ゴム片を有するゴ ム体であるとを特徴とする請求項 1に記載の車両用ホイールエンジン。 6. The vehicle wheel engine according to claim 1, wherein the shoe part is a rubber body having a hard rubber piece pressed against an inner peripheral surface of the tire at a tip.
[7] 前記第 2コンロッドの前記支軸の周辺部には、遠心力により前記シュ一部とは反対 側に延出する戻り制御部を有し、この戻り制御部をシリンダー部と前記シリンダー内 で摺動可能に設けられたピストン部と、前記ピストン部を前記支軸の方向に付勢する 引張コイルスプリングとにより構成したことを特徴とする請求項 1に記載の車両用ホイ 一ノレエンジン。 [7] A peripheral portion of the support shaft of the second connecting rod has a return control portion that extends to the opposite side of the shoe portion by centrifugal force, and the return control portion is connected to the cylinder portion and the inside of the cylinder. 2. The vehicle hoisting engine according to claim 1, comprising: a piston portion slidably provided on the first portion; and a tension coil spring that biases the piston portion in the direction of the support shaft.
[8] 前記クランクは、前記タイヤホイールの回転を助長させるトルクコンバータに連結さ れて 、ることを特徴とする請求項 1に記載の車両用ホイールエンジン。  8. The vehicle wheel engine according to claim 1, wherein the crank is connected to a torque converter that promotes rotation of the tire wheel.
[9] 前記クランクは、車載バッテリーを充電する発電機に連結されていることを特徴とす る請求項 1に記載の車両用ホイールエンジン。  9. The vehicle wheel engine according to claim 1, wherein the crank is connected to a generator that charges an in-vehicle battery.
PCT/JP2006/301825 2006-02-03 2006-02-03 Wheel engine for vehicle WO2007088627A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2006/301825 WO2007088627A1 (en) 2006-02-03 2006-02-03 Wheel engine for vehicle
JP2007556913A JPWO2007088933A1 (en) 2006-02-03 2007-02-01 Vehicle wheel engine
PCT/JP2007/051707 WO2007088933A1 (en) 2006-02-03 2007-02-01 Vehicle-use wheel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/301825 WO2007088627A1 (en) 2006-02-03 2006-02-03 Wheel engine for vehicle

Publications (1)

Publication Number Publication Date
WO2007088627A1 true WO2007088627A1 (en) 2007-08-09

Family

ID=38327216

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2006/301825 WO2007088627A1 (en) 2006-02-03 2006-02-03 Wheel engine for vehicle
PCT/JP2007/051707 WO2007088933A1 (en) 2006-02-03 2007-02-01 Vehicle-use wheel engine

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051707 WO2007088933A1 (en) 2006-02-03 2007-02-01 Vehicle-use wheel engine

Country Status (2)

Country Link
JP (1) JPWO2007088933A1 (en)
WO (2) WO2007088627A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018065678A1 (en) * 2016-10-06 2018-04-12 LABARRE, Nathalie Motor vehicle with unlimited autonomy & zero pollution
JP2018532643A (en) * 2015-07-30 2018-11-08 エッセエエッレ.チア. ソシエタ ア レスポンサビリタ リミタータSer.Ca. S.R.L. Improved wheel to recover energy, especially in electric propulsion vehicles or hybrid propulsion vehicles
JP2021500270A (en) * 2017-10-26 2021-01-07 スーパー ホイール システム リミテッド Energy transfer system
EP4039974A1 (en) * 2021-02-03 2022-08-10 KES-Tech-Group GmbH Wheel generator
WO2022167214A1 (en) * 2021-02-03 2022-08-11 Kes-Tech-Group Gmbh Wheel generator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013062254A1 (en) * 2011-10-27 2013-05-02 Lee Seung-Wook Power generating apparatus for vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494039A (en) * 1972-04-24 1974-01-14
JPS5675978A (en) * 1979-11-27 1981-06-23 Kunio Harada Power generating method by utilizing rotation of tire
JPH0958297A (en) * 1995-08-23 1997-03-04 Teruo Arai Automobile travelling generator using automotive body load on grounded wheel
JP2004225729A (en) * 2003-01-20 2004-08-12 Nissan Motor Co Ltd Slide member, crankshaft, and variable compression ratio engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001088515A (en) * 1999-09-22 2001-04-03 Yoshiki Ochiai Wheel with auxiliary power unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494039A (en) * 1972-04-24 1974-01-14
JPS5675978A (en) * 1979-11-27 1981-06-23 Kunio Harada Power generating method by utilizing rotation of tire
JPH0958297A (en) * 1995-08-23 1997-03-04 Teruo Arai Automobile travelling generator using automotive body load on grounded wheel
JP2004225729A (en) * 2003-01-20 2004-08-12 Nissan Motor Co Ltd Slide member, crankshaft, and variable compression ratio engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018532643A (en) * 2015-07-30 2018-11-08 エッセエエッレ.チア. ソシエタ ア レスポンサビリタ リミタータSer.Ca. S.R.L. Improved wheel to recover energy, especially in electric propulsion vehicles or hybrid propulsion vehicles
WO2018065678A1 (en) * 2016-10-06 2018-04-12 LABARRE, Nathalie Motor vehicle with unlimited autonomy & zero pollution
CN110382279A (en) * 2016-10-06 2019-10-25 安德烈·拉巴尔 The motor vehicles & no pollution of unlimited mileage
JP2021500270A (en) * 2017-10-26 2021-01-07 スーパー ホイール システム リミテッド Energy transfer system
JP7274229B2 (en) 2017-10-26 2023-05-16 スーパー ホイール システム リミテッド energy transfer system
EP4039974A1 (en) * 2021-02-03 2022-08-10 KES-Tech-Group GmbH Wheel generator
WO2022167214A1 (en) * 2021-02-03 2022-08-11 Kes-Tech-Group Gmbh Wheel generator

Also Published As

Publication number Publication date
WO2007088933A1 (en) 2007-08-09
JPWO2007088933A1 (en) 2009-06-25

Similar Documents

Publication Publication Date Title
WO2007088627A1 (en) Wheel engine for vehicle
US9090142B2 (en) Device for driving rear wheel of electric vehicle
JP6179401B2 (en) Tire / wheel assembly
KR101483747B1 (en) A Generation System using Tire Deflection
US8556012B2 (en) In-wheel motor vehicle
US8862298B2 (en) Drive control device of hybrid vehicle
WO2007069567A1 (en) In-wheel motor system
US20090084345A1 (en) Reciprocating Rotation Type Engine and Power Transferring Device and Hybrid System Using the Same
US20100319345A1 (en) Multifunctional Vehicle Wheel System
CN105189169A (en) Vehicle drive device
JP6145246B2 (en) Tire / wheel assembly
KR101060081B1 (en) Wheel assembly having in-wheel motor for electric vehicle
JP6536854B2 (en) Power generation system using tire deformation
US20230382214A1 (en) Driving apparatus
KR101980156B1 (en) A power plant and a fuel saving device for a automobile
KR101530216B1 (en) power generation device by vibration of railway vehicle
JP3821028B2 (en) Rotational compressor for vehicles
CN101915124A (en) Molecular energy engine and energy thereof
KR101805109B1 (en) The two-speed transmission using differential gear assembly
KR101294122B1 (en) Vehicle having wheel-in motor
KR20090057653A (en) In-wheel type driving system
CN110654495B (en) Driving motor and electric vehicle
JP6674166B1 (en) Layout and driving method of in-wheel motor
JP2012187983A (en) Tire/wheel assembly
KR200292339Y1 (en) Compressor to be used load of the traveling a car

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06712968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP