WO2007087912A1 - Verfahren zum elektrischen kontaktieren eines elektronischen bauelements - Google Patents

Verfahren zum elektrischen kontaktieren eines elektronischen bauelements Download PDF

Info

Publication number
WO2007087912A1
WO2007087912A1 PCT/EP2006/068947 EP2006068947W WO2007087912A1 WO 2007087912 A1 WO2007087912 A1 WO 2007087912A1 EP 2006068947 W EP2006068947 W EP 2006068947W WO 2007087912 A1 WO2007087912 A1 WO 2007087912A1
Authority
WO
WIPO (PCT)
Prior art keywords
layers
electrode layers
stack
contact holes
insulating layers
Prior art date
Application number
PCT/EP2006/068947
Other languages
English (en)
French (fr)
Inventor
Willibald SCHÜRZ
Andreas Mantovan
Martin Simmet
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Publication of WO2007087912A1 publication Critical patent/WO2007087912A1/de

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • H10N30/063Forming interconnections, e.g. connection electrodes of multilayered piezoelectric or electrostrictive parts

Definitions

  • the present invention relates to a method for electrically contacting an electronic component having a plurality of reacting on applying an electric field material layers and a plurality of electrode layers and in which the individual material layers are each arranged between two adjacent electrode layers.
  • a stack Such a component of layers of material layer and electrode layer stacked one above the other and alternately with one another is frequently referred to generally as a stack.
  • the most well-known electronic component of this type today is a stack commonly referred to as a piezoactuator, which is increasingly being used as an actuating element in injection valves of a wide variety of engine types for motor vehicles.
  • the material layers are ceramic layers in this piezoelectric actuator.
  • such a stack viewed in plan view, has a rectangular or square cross-section. It is electrically contacted on two opposite circumferential sides.
  • the electrode layers were geometrically designed in the past so that only every second electrode layer extends laterally to one of the two peripheral sides, while the respective other electrode layers do not extend to this one peripheral side , The same applies analogously to the other circumferential side of the stack.
  • FIG. 1 wherein the reference signs have the following meaning: 1: stack, 2: material layer (eg ceramic), 3.4: electrode layers of different polarity (in operation), E1, E2: collecting electrodes.
  • a piezoelectric actuator with insulation-zone-free electrical contacting as well as a method for its production are known as electronic component in the sense of this invention.
  • electrode surfaces are guided on all sides to the side edge of the stack, which is partially shown in Figure 2 here.
  • This has great advantages in terms of operation, space stress and, as a result, performance of the device.
  • the electrical contacting of the electrode layer presented there is disadvantageous: every other (3) of the electrode layers 3, 4 is connected to a metallization Ml, for example, made of wire, for one of the two side surfaces of the stack intended for contacting.
  • the respective other electrode layers 4 are provided on the other of the two for contacting
  • the object of the present invention is therefore to provide a method for electrically contacting a stacked component.
  • FIGS. 1 and 2 already described above, known electronic components
  • FIG. 3 shows an electronic component corresponding to D1 199 45933 C1
  • FIGS. 4 to 6 show the electronic component to be produced by the method according to the invention after carrying out corresponding method steps.
  • FIG. 3 shows the component corresponding to FIG. 2, the stack 1, in abstract form, but without the electrical system shown in FIG. 2 and briefly described above
  • a stack 1 consisting (at least) of a layer sequence of material layers 2 (such as a piezoelectrically active ceramic layer) and electrode layers 3 and 4 is first attached to two geometrically non-contiguous stack peripheral regions Ia and Ib with a respective insulation layer IS1 or IS2 in each case partially, but especially also over the entire surface covered.
  • insulation layer IS1, IS2 layers of glass, ceramic or made of a temperature-resistant plastic can be applied. Under temperature-resistant is to be understood that the plastic is resistant to those temperatures to which the electronic component to be manufactured will be exposed in its later operation.
  • the application of the Insulating layers IS1, IS2 can be effected by means of customary screen-printing or injection-molding processes, which are then followed by at least one baking process.
  • Vias KL1, KL2 are produced through the insulation layers IS1, IS2 to the respective electrode layers 3, 4 such that the one contact holes KL1 lead to the one electrode layers 4 and that the other contact holes KL2 lead to the other electrode layers 3.
  • the exact position of each individual one of the electrode layers 3, 4, based on the height of the stack 1, is first determined. This is necessary because the individual material layers 2 never exactly exactly one and the same layer thickness, but because this
  • Layer thicknesses are different from each other within a given tolerance measure. Since a finished electronic component usually has between 300 and 450 material layers 2, the exact positions of the electrode layers 3, 4 can not be calculated, but only determined. However, knowledge of the exact positions is therefore important so that the contact holes KL1, KL2 on the end faces of the electrode layers 3, 4 can be generated exactly centered with respect to the thickness of the respective electrode layer 3 or 4. These positions can be determined, for example, by means of generally customary optical measuring methods.
  • first contact holes KL1 are produced through the one insulation layer IS1 to the one electrode layers 4, the positions of the one
  • Electrode layers 4 are already known, as explained above. Furthermore, second contact holes KL2 are generated through the other insulation layer IS2 toward the other electrode layers 3. Their positions are already known.
  • the contact holes KLl, KL2 are advantageously dimensioned in their diameter so that this diameter corresponds to a maximum of a quarter of the thickness of a material layer 2.
  • the contact holes KLl, KL2 are generated for example by means of laser structuring. However, they can also be produced by means of generally customary chemical or electrochemical processes. When structuring by means of laser, it is advantageous to carry this out by means of so-called ultraviolet short-pulse lasers, which are known to be operated in the time range of femtoseconds to picoseconds, where appropriate also nanoseconds.
  • the resulting heat acts only on those regions of the insulating layers IS1, IS2, in which the contact holes KL1, KL2 are to be generated, but not on corresponding adjacent regions.
  • the resulting contact holes KLl, KL2 are then correspondingly sharp-edged on their surface edges.
  • both insulation layers IS1, IS2 are preferably wholly covered with an electrically conductive material EL, e.g. a metal layer, in particular a solder layer, or an electrically conductive adhesive coated.
  • an electrically conductive material EL e.g. a metal layer, in particular a solder layer, or an electrically conductive adhesive coated.
  • the contact holes KLl, KL2 are filled with the electrically conductive material EL, so that the electrode layers 3, 4 are electrically contacted.
  • the electrically conductive material EL is then available for electrical connection of the electronic component to an electrical voltage in the form of two collector electrodes El and E2 which are electrically insulated from one another.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum elektrischen Kontaktieren eines als Stapel (1) ausgebildeten elektronischen Bauelements, welches aus einer Mehrzahl von auf Anlegen eines elektrischen Feldes reagierenden Werkstoffschichten (2) und einer Mehrzahl von Elektrodenschichten (3, 4) gebildet ist, wobei jede Werkstoffschicht (2) zwischen zwei der Elektrodenschichten (3, 4) angeordnet ist. Zunächst wird eine jeweilige Isolationsschicht (IS1, IS2) auf einen jeweiligen (1a, 1b) von zwei geometrisch nicht zusammenhängenden Stapelumfangsbereichen (1a, 1b) des Stapels (1), aufgebracht. Dann wird die genaue Position einer jeweiligen der Elektrodenschichten (3, 4) entlang der Stapelumfangsbereiche (1a, 1b) ermittelt. Anschließend werden mittels Laserstrukturieren erste Kontaktlöcher (KL1) durch die erste Isolationsschicht (IS1) der Isolationsschichten (IS1, IS2) hin zu jeder zweiten (4) der Elektrodenschichten (3, 4) erzeugt sowie zweite Kontaktlöcher (KL2) durch die zweite (IS2) der Isolationsschichten (IS1, IS2) hin zu den verbleibenden (3) der Elektrodenschichten (3, 4). Abschließend werden die Isolationsschichten (IS1, IS2) im Wesentlichen ganzflächig mit einem elektrisch leitenden Material (EL) bedeckt, wobei die Kontaktlöcher (KL1, KL2) ebenfalls mit dem elektrisch leitenden Material (EL) gefüllt werden.

Description

Beschreibung
Verfahren zum elektrischen Kontaktieren eines elektronischen Bauelements
Die vorliegende Erfindung betrifft ein Verfahren zum elektrischen Kontaktieren eines elektronischen Bauelements, das eine Mehrzahl von auf Anlegen eines elektrischen Feldes reagierenden Werkstoffschichten sowie eine Mehrzahl von Elektroden- schichten aufweist und bei dem die einzelnen Werkstoffschichten jeweils zwischen zwei einander benachbarten Elektrodenschichten angeordnet sind. Ein solches Bauelement aus übereinander und alternierend zueinander gestapelten Schichten von WerkstoffSchicht und Elektrodenschicht wird häufig allge- mein als Stapel bezeichnet. Das heutzutage wohl bekannteste elektronische Bauelement dieser Art ist ein allgemein als Piezoaktor bezeichneter Stapel, der zunehmend mehr als Beta- tigungselement in Einspritzventilen der verschiedensten Motortypen für Kraftfahrzeuge zur Anwendung kommt. Die Werk- stoffschichten sind bei diesem Piezoaktor Keramikschichten.
Üblicherweise weist ein solcher Stapel, in Draufsicht betrachtet, einen rechteckigen oder quadratischen Querschnitt auf. Er wird an zwei sich gegenüberliegenden Umfangsseiten elektrisch kontaktiert. Um dies technologisch sorgfaltig durchfuhren zu können, wurden die Elektrodenschichten in der Vergangenheit geometrisch so ausgelegt, dass sich nur jede zweite Elektrodenschicht seitlich bis zur einen der beiden Umfangsseiten erstrecken, wahrend sich die jeweils anderen Elektrodenschichten nicht bis hin zu dieser einen Umfangssei- te hin erstrecken. Entsprechendes gilt für die andere Um- fangsseite des Stapels analog. Diese Situation ist in Figur 1 dargestellt, wobei die Bezugszeichen folgende Bedeutung haben: 1: Stapel, 2: WerkstoffSchicht (z.B. Keramik), 3,4: E- lektrodenschichten verschiedener Polarität (im Betrieb), El, E2 : Sammelelektroden. Aus der DE 199 45 933 Cl sind als elektronisches Bauelement im Sinne dieser Erfindung ein Piezoaktor mit isolationszonen- freier elektrischer Kontaktierung sowie ein Verfahren zu dessen Herstellung bekannt. Bei diesem bekannten Piezoaktor sind Elektrodenflächen allseitig bis an den seitlichen Rand des Stapels geführt, was vorliegend in Figur 2 ausschnittsweise dargestellt ist. Dies hat große Vorteile hinsichtlich Betätigung, Raumbeanspruchung und, daraus resultierend Betriebsverhalten des Bauelements. Nachteilig ist jedoch die dort vorge- stellte elektrische Kontaktierung des Elektrodenschicht: jede zweite (3) der Elektrodenschichten 3, 4 ist bezüglich einer der beiden zur Kontaktierung vorgesehenen Seitenflächen des Stapels mit einer z.B. als Draht ausgeführten Metallisierung Ml verbunden. Die jeweils anderen Elektrodenschichten 4 sind auf der anderen der beiden zur Kontaktierung vorgesehenen
Seitenflächen des Stapels mit einer weiteren Metallisierung M2 verbunden. So vorteilhaft diese Ausgestaltung der Elektrodenschichten als solche auch ist (gleichmäßiger Verlauf der elektrischen Feldlinien auch am seitlichen Rand des Stapels, höhere elektronische Wirksamkeit dank größerer elektrisch wirksamer Flächen gegenüber älteren Stapeln bei gleicher Querschnittsfläche), so weist sie jedoch auch einen gravierenden Nachteil auf: die Metallisierungen Ml, M2 in Form von Drähten sind sehr empfindlich bereits bei deren Herstellung und auch gegenüber Beschädigungen im weiteren Einsatz. Für einen Großserieneinsatz ist sie also nur, wenn überhaupt, bedingt tauglich.
Aufgabe der vorliegenden Erfindung ist es deshalb, ein Ver- fahren anzugeben zum elektrischen Kontaktieren eines als Stapel ausgebildeten Bauelements.
Diese Aufgabe wird mit den Merkmalen des Patentanspruchs 1 gelöst, vorteilhafte Aus- und Weiterbildungen sind in Unter- ansprüchen gekennzeichnet.
Die Erfindung wird nachstehend anhand einer Zeichnung näher erläutert. Dabei zeigen: die Figuren 1 und 2 vorstehend bereits beschriebene, bekannte elektronische Bauelemente, die Figur 3 ein der Dl 199 45933 Cl entsprechendes elektronisches Bauelement, abs- trakt dargestellt, die Figuren 4 bis 6 das mit dem erfindungsgemäßen Verfahren herzustellende elektronische Bauelement nach Ausführung entsprechender Verfahrensschritte.
Die bereits bekannten Bauelemente, die in den Figuren 1 und 2 dargestellt sind, wurden vorstehend bereits beschrieben. Die Figur 3 zeigt das der Figur 2 entsprechende Bauelement, den Stapel 1, in abstrakter Form, allerdings ohne die in Figur 2 dargestellte und vorstehend kurz beschriebene elektrische
Kontaktierung. Dargestellt ist lediglich die Schichtenfolge aus Werkstoffschichten 2 und Elektrodenschichten 3, 4. Bei diesem Stapel 1 sind die Elektrodenschichten 4 beidseitig bis an die jeweiligen Ränder des Stapels 1 geführt; er dient als Basis für das nachstehend beschriebene erfindungsgemäße Verfahren. Das nachstehend anhand der Figuren 4 bis 6 beschriebene Verfahren könnte jedoch auch auf die (zeitlich ältere) Ausführungsform eines Stapels 1 gemäß Figur 1 angewandt werden .
Wie in Figur 4 dargestellt, wird ein Stapel 1, bestehend (zumindest) aus einer Schichtenfolge von Werkstoffschichten 2 (wie z.B. einer piezoelektrisch aktiven Keramikschicht) und Elektrodenschichten 3 bzw. 4 zunächst an zwei geometrisch nicht zusammenhängenden Stapelumfangsbereichen Ia und Ib mit einer jeweiligen Isolationsschicht ISl bzw. IS2 jeweils teilweise, insbesondere aber auch ganzflächig überzogen. Als Isolationsschicht ISl, IS2 können Schichten aus Glas, Keramik oder aus einem temperaturbeständigen Kunststoff aufgebracht werden. Unter temperaturbeständig ist dabei zu verstehen, dass der Kunststoff gegenüber solchen Temperaturen beständig ist, denen das zu fertigende elektronische Bauelement in seinem späteren Betrieb ausgesetzt sein wird. Das Aufbringen der Isolationsschichten ISl, IS2 kann dabei mittels üblicher Siebdruck- oder Spritzgussprozesse erfolgen, denen sich dann wenigstens ein Einbrennprozess anschließt.
Im weiteren Verfahren sollen, wie aus Figur 5 ersichtlich,
Kontaktlöcher KLl, KL2 durch die Isolationsschichten ISl, IS2 hindurch zu den jeweiligen Elektrodenschichten 3, 4 erzeugt werden derart, dass die einen Kontaktlöcher KLl zu den einen Elektrodenschichten 4 führen und dass die anderen Kontaktlö- eher KL2 zu den anderen Elektrodenschichten 3 führen. Als vorbereitende Maßnahme dafür wird zunächst die genaue Position jeder einzelnen der Elektrodenschichten 3, 4, bezogen auf die Höhe des Stapels 1, ermittelt. Dies ist deshalb notwendig, weil die einzelnen Werkstoffschichten 2 nie exakt genau ein und dieselbe Schichtdicke aufweisen, sondern weil diese
Schichtdicken innerhalb eines vorgegebenen Toleranzmaßes voneinander verschieden sind. Da nun ein fertiges elektronisches Bauelement in der Regel zwischen 300 und 450 Werkstoffschichten 2 aufweist, lassen sich die exakten Positionen der Elektrodenschichten 3, 4 nicht berechnen, sondern nur ermitteln. Die Kenntnis der exakten Positionen ist jedoch deshalb wichtig, damit sich die Kontaktlöcher KLl, KL2 an den Stirnflächen der Elektrodenschichten 3, 4 exakt mittig bezüglich der Dicke der jeweiligen Elektrodenschicht 3 bzw. 4 erzeugen lassen. Diese Positionen können beispielsweise mittels allgemein üblicher optischer Messverfahren ermittelt werden.
Daran anschließend werden erste Kontaktlöcher KLl durch die eine Isolationsschicht ISl hindurch zu den einen Elektroden- schichten 4 hin erzeugt, wobei die Positionen der einen
Elektrodenschichten 4 ja bereits bekannt sind, wie vorstehend erläutert. Weiterhin werden zweite Kontaktlöcher KL2 durch die andere Isolationsschicht IS2 hindurch zu den anderen Elektrodenschichten 3 hin erzeugt. Auch deren Positionen sind ja bereits bekannt. Die Kontaktlöcher KLl, KL2 werden in ihrem Durchmesser vorteilhafter Weise so dimensioniert, dass dieser Durchmesser maximal einem Viertel der Dicke einer WerkstoffSchicht 2 entspricht. Die Kontaktlöcher KLl, KL2 werden z.B. mittels Laserstrukturieren erzeugt. Sie können aber auch mittels allgemein üblicher chemischer oder elektrochemischer Verfahren erzeugt werden. Beim Strukturieren mittels Laser ist es vorteilhaft, dies mittels so genannter UIt- rakurzpulslasern durchzuführen, die bekanntlich im Zeitbereich von Femtosekunden bis Pikosekunden, gegebenenfalls auch Nanosekunden, betrieben werden. Dabei wirkt die entstehende Wärme lediglich auf diejenigen Bereiche der Isolationsschichten ISl, IS2 ein, in denen die Kontaktlöcher KLl, KL2 erzeugt werden sollen, nicht jedoch auf entsprechende benachbarte Bereiche. Die entstehenden Kontaktlöcher KLl, KL2 sind dann an ihren Oberflächenkanten auch entsprechend scharfkantig. Dabei ist auch vorteilhaft, solche Arten von Laserstrahlen zu verwenden, die beim abzutragenden Material der Isolationsschich- ten ISl, IS2 eine deutlich höhere Strukturierungsrate aufweisen als beim Material der Elektrodenschichten 3, 4 und/oder beim Material der Werkstoffschichten 2. Damit lässt sich weitgehend vermeiden, dass die Elektrodenschichten 3, 4 und/oder die Werkstoffschichten 2 beim Strukturieren der Iso- lationsschichten ISl, IS2 angegriffen werden.
Abschließend werden beide Isolationsschichten ISl, IS2 vorzugsweise ganzflächig mit einem elektrisch leitenden Material EL wie z.B. einer Metallschicht, insbesondere einer Lot- Schicht, oder einem elektrisch leitenden Kleber überzogen. Dabei werden auch die Kontaktlöcher KLl, KL2 mit dem elektrisch leitenden Material EL gefüllt, so dass die Elektrodenschichten 3, 4 elektrisch kontaktiert sind. Das elektrisch leitende Material EL steht dann für einen elektrischen An- Schluss des elektronischen Bauteils an eine elektrische Spannung in Form von zwei elektrisch voneinander isolierten Sammelelektroden El und E2 zur Verfügung.

Claims

Patentansprüche
1. Verfahren zum elektrischen Kontaktieren eines als Stapel
(1) ausgebildeten elektronischen Bauelements, welches aus einer Mehrzahl von auf Anlegen eines elektrischen Feldes reagierenden Werkstoffschichten (2) und einer Mehrzahl von Elektrodenschichten (3, 4) gebildet ist, wobei jede WerkstoffSchicht (2) zwischen zwei der Elektrodenschichten (3, 4) angeordnet ist, gekennzeichnet durch folgende Verfahrensschritte:
- Aufbringen einer jeweiligen Isolationsschicht (ISl, IS2) auf einen jeweiligen (Ia, Ib) von zwei geometrisch nicht zusammenhängenden Stapelumfangsberei- chen (Ia, Ib) des Stapels (1), - Ermitteln der genauen Position einer jeweiligen der
Elektrodenschichten (3, 4) entlang der Stapelum- fangsbereiche (1 a, 1 b)
- Erzeugen von ersten Kontaktlöchern (KLl) durch die erste Isolationsschicht (IS) der Isolationsschich- ten (ISl, IS2) hin zu jeder zweiten (4) der Elektrodenschichten (3, 4) mittels Laserstrukturieren,
- Erzeugen von zweiten Kontaktlöchern (KL2) durch die zweite (IS2) der Isolationsschichten (ISl, IS2) hin zu den verbleibenden (3) der Elektrodenschichten (3, 4) ebenfalls mit Laserstrukturieren, und
- Zumindest im Wesentlichen ganzflächiges Bedecken der Isolationsschichten (ISl, IS2) mit einem elektrisch leitenden Material (EL) , wobei die Kontaktlöcher (KLl, KL2) ebenfalls mit dem elektrisch lei- tenden Material (EL) gefüllt werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Isolationsschichten (ISl, IS2) Schichten aus Glas, Keramik oder temperaturbeständigem Kunststoff aufgebracht werden .
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Aufbringen der Isolationsschichten (ISl, IS2) mittels eines Siebdruckprozesses oder eines Spritzgussprozesses erfolgt, dem sich dann wenigstens ein Einbrennprozess anschließt .
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Positionen der jeweiligen Elektrodenschichten (3, 4) bezüglich der Höhe des Stapels (1) mittels eines optischen Messverfahrens ermittelt werden.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Laserstrukturieren mittels Ultrakurzpulslasern derart erfolgt, dass das Abtragen von Material ausschließlich auf den Bereich beschränkt ist, in dem die Kontaktlöcher (KLl, KL2) zu erzeugen sind.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass beim Laserstrukturieren die Laserbestrahlung so einge- stellt wird, dass sich bezüglich der Isolationsschichten (ISl, IS2) eine deutlich höhere Strukturierungsrate einstellt als bezüglich der unter den Isolationsschichten (ISl, IS2) befindlichen Werkstoffschichten (2) und oder Elektrodenschichten (3, 4).
7. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Kontaktlöcher (KLl, KL2) anstelle durch Laserstrukturieren chemisch oder elektrochemisch erzeugt werden.
PCT/EP2006/068947 2006-01-20 2006-11-27 Verfahren zum elektrischen kontaktieren eines elektronischen bauelements WO2007087912A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006003070.2 2006-01-20
DE102006003070A DE102006003070B3 (de) 2006-01-20 2006-01-20 Verfahren zum elektrischen Kontakieren eines elektronischen Bauelements

Publications (1)

Publication Number Publication Date
WO2007087912A1 true WO2007087912A1 (de) 2007-08-09

Family

ID=37708436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/068947 WO2007087912A1 (de) 2006-01-20 2006-11-27 Verfahren zum elektrischen kontaktieren eines elektronischen bauelements

Country Status (2)

Country Link
DE (1) DE102006003070B3 (de)
WO (1) WO2007087912A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007058873A1 (de) * 2007-12-06 2009-06-10 Siemens Ag Piezoelektrisches Bauteil mit Außenkontaktierung, die eine Gasphasen-Abscheidung aufweist, Verfahren zum Herstellen des Bauteils und Verwendung des Bauteils
KR20180025929A (ko) * 2015-08-03 2018-03-09 콘티넨탈 오토모티브 게엠베하 전기 기계 액추에이터를 제조하기 위한 제조 방법 및 전기 기계 액추에이터
KR20180038039A (ko) * 2015-08-10 2018-04-13 콘티넨탈 오토모티브 게엠베하 전기기계 작동기를 제조하기 위한 제조 방법 및 전기기계 작동기

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008027115A1 (de) 2008-06-06 2009-12-24 Continental Automotive Gmbh Kontaktstruktur, elektronisches Bauelement mit einer Kontaktstruktur und Verfahren zu deren Herstellung
DE102009013652A1 (de) 2009-03-17 2010-07-15 Continental Automotive Gmbh Verfahren zum elektrischen Kontaktieren eines elektronischen Bauelements als Stapel
DE102009014993B4 (de) 2009-03-26 2011-07-14 Continental Automotive GmbH, 30165 Verfahren zum elektrischen Kontaktieren eines elektronischen Bauelements
DE102009017434A1 (de) 2009-04-15 2010-10-28 Continental Automotive Gmbh Elektronisches Bauelement und Verfahren zum elektrischen Kontaktieren eines elektronischen Bauelements als Stapel
DE102009039647A1 (de) 2009-09-01 2011-03-24 Continental Automotive Gmbh Kraftstoffinjektor und Kraftstoff-Einspritzsystem
US10090454B2 (en) 2012-02-24 2018-10-02 Epcos Ag Method for producing an electric contact connection of a multilayer component
DE102012207598A1 (de) 2012-05-08 2013-11-14 Continental Automotive Gmbh Verfahren zum elektrischen Kontaktieren eines elektronischen Bauelements als Stapel und elektronisches Bauelement mit einer Kontaktierungsstruktur
DE102012104830A1 (de) 2012-06-04 2013-12-05 Epcos Ag Vielschichtbauelement und Verfahren zum Herstellen eines Vielschichtbauelements
DE102012105318A1 (de) 2012-06-19 2013-12-19 Epcos Ag Verfahren zur Herstellung eines keramischen Bauelements und ein keramisches Bauelement
DE102012218767A1 (de) * 2012-10-15 2014-06-12 Continental Automotive Gmbh Verfahren zum Herstellen eines elektronischen Bauelements als Stapel
DE102015215530B4 (de) 2015-08-14 2018-11-22 Continental Automotive Gmbh Herstellungsverfahren zum Herstellen eines elektromechanischen Aktors und elektromechanischer Aktor
DE102015217334B3 (de) 2015-09-10 2016-12-01 Continental Automotive Gmbh Verfahren zum Herstellen eines als Stapel ausgebildeten Vielschichtaktors
DE102015218701A1 (de) 2015-09-29 2016-12-01 Continental Automotive Gmbh Elektrokeramisches Bauelement, insbesondere Vielschichtpiezoaktor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19535666A1 (de) * 1994-09-28 1996-04-25 Sumitomo Electric Industries Verfahren zur Erzeugung einer Feinkeramikstruktur
DE19542365A1 (de) * 1995-11-14 1997-05-15 Philips Patentverwaltung Verfahren zur Herstellung eines vielschichtigen keramischen Elektronikbauteils
WO2000002265A1 (de) * 1998-06-30 2000-01-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Elektromechanischer wandler und verfahren zur herstellung
DE19945933C1 (de) * 1999-09-24 2001-05-17 Epcos Ag Piezoaktor mit isolationszonenfreier elektrischer Kontaktierung und Verfahren zu dessen Herstellung
DE10153770A1 (de) * 2000-11-06 2002-06-20 Denso Corp Gestapelte piezoelektrische Vorrichtung und Verfahren zu deren Herstellung
US20040155017A1 (en) * 2003-01-29 2004-08-12 Hunt Alan J. Method for forming nanoscale features

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354876A (ja) * 1989-07-22 1991-03-08 Hitachi Metals Ltd 積層型変位素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19535666A1 (de) * 1994-09-28 1996-04-25 Sumitomo Electric Industries Verfahren zur Erzeugung einer Feinkeramikstruktur
DE19542365A1 (de) * 1995-11-14 1997-05-15 Philips Patentverwaltung Verfahren zur Herstellung eines vielschichtigen keramischen Elektronikbauteils
WO2000002265A1 (de) * 1998-06-30 2000-01-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Elektromechanischer wandler und verfahren zur herstellung
DE19945933C1 (de) * 1999-09-24 2001-05-17 Epcos Ag Piezoaktor mit isolationszonenfreier elektrischer Kontaktierung und Verfahren zu dessen Herstellung
DE10153770A1 (de) * 2000-11-06 2002-06-20 Denso Corp Gestapelte piezoelektrische Vorrichtung und Verfahren zu deren Herstellung
US20040155017A1 (en) * 2003-01-29 2004-08-12 Hunt Alan J. Method for forming nanoscale features

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007058873A1 (de) * 2007-12-06 2009-06-10 Siemens Ag Piezoelektrisches Bauteil mit Außenkontaktierung, die eine Gasphasen-Abscheidung aufweist, Verfahren zum Herstellen des Bauteils und Verwendung des Bauteils
KR20180025929A (ko) * 2015-08-03 2018-03-09 콘티넨탈 오토모티브 게엠베하 전기 기계 액추에이터를 제조하기 위한 제조 방법 및 전기 기계 액추에이터
CN107851708A (zh) * 2015-08-03 2018-03-27 大陆汽车有限公司 用于制造机电执行器的制造方法以及机电执行器
KR20180038039A (ko) * 2015-08-10 2018-04-13 콘티넨탈 오토모티브 게엠베하 전기기계 작동기를 제조하기 위한 제조 방법 및 전기기계 작동기

Also Published As

Publication number Publication date
DE102006003070B3 (de) 2007-03-08

Similar Documents

Publication Publication Date Title
DE102006003070B3 (de) Verfahren zum elektrischen Kontakieren eines elektronischen Bauelements
EP2777083B1 (de) Verfahren zum elektrischen kontaktieren eines elektronischen bauelements als stapel und elektronisches bauelement mit einer kontaktierungsstruktur
EP2862185B1 (de) Verfahren zur herstellung eines elektrischen bauelements
EP2297797B1 (de) Piezoelektrisches bauelement und verfahren zur herstellung eines elektrischen kontaktes
EP2865027B1 (de) Verfahren zum herstellen eines elektronischen bauelements als stapel
EP1384272B1 (de) Weiterkontaktierung für ein elektrisches bauteil sowie piezoelektrisches bauteil in vielschichtbauweise
EP1405372B1 (de) Weiterkontaktierung für ein piezoelektrisches bauteil in vielschichtbauweise
DE102008027115A1 (de) Kontaktstruktur, elektronisches Bauelement mit einer Kontaktstruktur und Verfahren zu deren Herstellung
EP2054951B1 (de) Piezoelektrisches bauelement
DE10112588C1 (de) Piezoaktor sowie Verfahren zur Herstellung eines Piezoaktors
DE102009017434A1 (de) Elektronisches Bauelement und Verfahren zum elektrischen Kontaktieren eines elektronischen Bauelements als Stapel
EP2798679B1 (de) Piezostack mit passivierung und verfahren zur passivierung eines piezostacks
DE102013100764B4 (de) Verfahren zur Herstellung von durch physikalische Gasphasenabscheidung erzeugten Elektroden sowie ein Verfahren zur Herstellung von Piezoelementen mit durch physikalische Gasphasenabscheidung erzeugten Elektroden
DE112010002244T5 (de) Piezoelektrische gestapelte Stellanordnung
DE102015217334B3 (de) Verfahren zum Herstellen eines als Stapel ausgebildeten Vielschichtaktors
DE102009020238B4 (de) Piezoaktor mit elektrischen Kontaktierungsstiften und Verfahren zum Kontaktieren eines Piezoaktors
DE102011120595A1 (de) Piezoelement
DE10107794A1 (de) Kontaktiereinrichtung für elektronische Bauteile
DE102010002818A1 (de) Mikromechanisches Bauelement und Verfahren zur Herstellung eines mikromechanischen Bauelementes
DE102008031641B4 (de) Piezoaktor in Vielschichtbauweise
DE102012105517A1 (de) Vielschichtbauelement mit einer Außenkontaktierung und Verfahren zur Herstellung eines Vielschichtbauelements mit einer Außenkontaktierung
WO2001078159A1 (de) Piezoelektrischer vielschichtaktuator und verfahren zu seiner herstellung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06819776

Country of ref document: EP

Kind code of ref document: A1