WO2007087759A2 - Composición farmacéutica de microesferas para prevenir la amputación del pie diabético - Google Patents

Composición farmacéutica de microesferas para prevenir la amputación del pie diabético Download PDF

Info

Publication number
WO2007087759A2
WO2007087759A2 PCT/CU2007/000002 CU2007000002W WO2007087759A2 WO 2007087759 A2 WO2007087759 A2 WO 2007087759A2 CU 2007000002 W CU2007000002 W CU 2007000002W WO 2007087759 A2 WO2007087759 A2 WO 2007087759A2
Authority
WO
WIPO (PCT)
Prior art keywords
pharmaceutical composition
microspheres
fce
composition according
growth factor
Prior art date
Application number
PCT/CU2007/000002
Other languages
English (en)
French (fr)
Other versions
WO2007087759A3 (es
Inventor
Vivian María SÁEZ MARTÍNEZ
Rolando PÁEZ MEIRELES
Jorge Amador Berlanga Acosta
Blas Yamir Betancourt Rodriguez
José Ángel RAMÓN HERNÁNDEZ
Original Assignee
Centro De Ingeniería Genética Y Biotecnología
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38185604&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007087759(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to AU2007211753A priority Critical patent/AU2007211753B2/en
Priority to DK07702319T priority patent/DK1987817T3/da
Priority to US12/162,505 priority patent/US8741848B2/en
Priority to PL07702319T priority patent/PL1987817T3/pl
Priority to DE602007001786T priority patent/DE602007001786D1/de
Application filed by Centro De Ingeniería Genética Y Biotecnología filed Critical Centro De Ingeniería Genética Y Biotecnología
Priority to CA2640743A priority patent/CA2640743C/en
Priority to AT07702319T priority patent/ATE437631T1/de
Priority to BRPI0707395-0A priority patent/BRPI0707395A2/pt
Priority to KR1020087021210A priority patent/KR101401273B1/ko
Priority to EP07702319A priority patent/EP1987817B1/en
Priority to JP2008552668A priority patent/JP5219841B2/ja
Publication of WO2007087759A2 publication Critical patent/WO2007087759A2/es
Publication of WO2007087759A3 publication Critical patent/WO2007087759A3/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • A61K9/1647Polyesters, e.g. poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • A61K38/1808Epidermal growth factor [EGF] urogastrone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0021Intradermal administration, e.g. through microneedle arrays, needleless injectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/14Vasoprotectives; Antihaemorrhoidals; Drugs for varicose therapy; Capillary stabilisers

Definitions

  • the present invention is related to a pharmaceutical composition containing Epidermal Growth Factor encapsulated in microspheres to be administered parenterally in the lower limbs of diabetic patients suffering from chronic cutaneous ischemic lesions, with the aim of preventing amputation of those members.
  • Diabetes mellitus is the main nontraumatic risk factor for lower limb amputation. Foot ulceration is a significant complication of diabetes with an annual incidence slightly higher than 2% (Abbott CA, et al (2002) The North-West Diabetes Foot Care Study: incidence of, and risk factors for, new diabetic foot ulceration in a community-based patient cohort, Diabet, Med. 19 (5): 377-84). It is estimated that 15% of patients with diabetes will develop ulcers at some time in their lives (Reiber GE (1996) The epidemiology of diabetic foot problems. Diabet. Med. 13 Suppl 1: S6-11) and that about 10 % - 30% of those with ulcers will progress to amputation (Lipsky BA (2004) Medical treatment of diabetic foot infections. Clin.
  • debridement is the most important step for the healing of diabetic ulcers and it is necessary to perform it before any other modality of local treatment. This consists in the removal of everything the non-viable and infected tissue (including bones) of the injured region, as well as the surrounding corpus callosum.
  • Dermagraft is produced by sowing fibroblasts of human dermis on a synthetic scaffold of bioabsorbable material and has been shown to be effective in low-grade ulcers with a greater proportion of healing in a shorter time (Marston WA, et al. (2003) Dermagraft Diabetic Foot Ulcer Study Group. The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial. Diabetes Care 26: 1701-5).
  • Apligraf consists of a dermal layer composed of human fibroblasts in a matrix of bovine type I collagen and an epidermis layer formed of human keratinocytes.
  • PDGF Platelet Derived Growth Factor
  • FCE Epidermal Growth Factor
  • the present invention comprises a pharmaceutical composition containing microspheres loaded with Epidermal Growth Factor, to be administered parenterally in the lower limbs of diabetic patients suffering from chronic cutaneous ischemic lesions, in order to prevent the amputation of said members.
  • microspheres includes microspheres and nanospheres.
  • microspheres of the FCE allows: (i) a controlled release of the drug and (i ⁇ ) a protection against degradative processes such as digestion with the proteases existing at the site of action.
  • the microspheres can be described as spheres of the polymeric matrix with the active ingredient dispersed homogeneously throughout its volume, which is released in a controlled manner.
  • controlled release comprises the release of the drug continuously, discontinuously, linearly or nonlinearly.
  • This is accompanied by the use of different compositions of the polymer matrix, including excipients that modify the release profiles and / or agents promoting degradation or other modifications, which performed individually or in combination, produce the desired effect on the properties of the composition.
  • the microspheres are obtained by the double solvent emulsion / evaporation method described by Okada et al. (US 4,652,441).
  • Preferred polymers for the development of this invention are those that by their properties are biocompatible and biodegradable. This last condition is of the utmost importance since it allows the parenteral application of the formulation by infiltration of the lesion.
  • Especially preferred are homopolymers of glycolic acid and lactic acid and the family of copolymers derived therefrom (in English poly (lactide-co-glycolide), abbreviated PLGA). These polymers have characteristics that have made them excellent biomaterials for the manufacture of sutures, orthopedic fixation elements and components of Modified Drug Release Systems (Ashammakhi N., et al (2001) Developments in Craniomaxillofacial Surgery: Use of Self-Reinforced Bioabsorbable Osteofixation Devices.
  • the microspheres of the pharmaceutical composition have a diameter that is in the range between 1 and 100 ⁇ m and the FCE constitutes 1.6-2.4% of the total mass of the microspheres.
  • the FCE encapsulated in the microspheres is released at a rate from the first day of infiltration in amounts between 5 and 10 ⁇ g per day and retains its physicochemical and biological properties for 14 days.
  • Another aspect of the present invention relates to the treatment of ischemic lesions of a diabetic patient, through administration by means of local infiltration into the tissue comprising the edges and bottom of the lesion of the pharmaceutical composition mentioned above.
  • the microencapsulation of active ingredients of a protein nature requires special attention in what refers to the activity of said biomolecules after the microencapsulation process. This is because proteins are mostly sensitive to the high temperatures that are frequently generated in the encapsulation processes and to the organic solvents used to dissolve the polymers. On the other hand, each protein exhibits its own behavior against microencapsulation processes.
  • the pharmaceutical composition may contain the FCE obtained naturally, by means of chemical synthesis or via the repombinant DNA pathway.
  • the pharmaceutical composition may also contain, as part of the vehicle, some drug from the following groups: antimicrobials (penicillins, cephalosporins, quinolones, metronidazole, clindamycin, vancomycin, macrolides, tretracyclines, aztreonam and imipenem), anesthetics, analgesics of the non-inflammatory group steroidal drugs with angiogenic action (vascular endothelial growth factor, fibroblast growth factor), other growth factors (granulocyte colony stimulating factor) or erythropoietin.
  • antimicrobials penicillins, cephalosporins, quinolones, metronidazole, clindamycin, vancomycin, macrolides, tretracyclines, aztreonam and imipenem
  • anesthetics analgesics of the non-inflammatory group steroidal drugs with angiogenic action (vascular endothelial growth factor, fibroblast growth factor), other growth factors (granul
  • the pathology treated with the pharmaceutical composition object of this invention is the chronic cutaneous ischemic lesion in lower limbs of diabetic patients.
  • the microspheres present in the pharmaceutical composition may contain more than one encapsulated molecule.
  • additional therapeutic agents belong to the group of antimicrobials, anesthetics, analgesics of the group of non-steroidal anitinflammatory drugs, drugs with angiogenic action, other growth factors.
  • the pharmaceutical composition should be administered to patients resuspended in an appropriate vehicle, which may be in a first incorporation a saline solution with viscous agents such as carboxymethyl cellulose, hydroxypropyl methylcellulose and detergents such as polysorbates or in a second incorporation a thermo-sensitive hydrogel of the PEG type -PLGA-PEG or derivative of chitosan or dextran.
  • the pharmaceutical composition object of this invention allowed to reduce the frequency of administration during the treatment and unexpectedly increased the therapeutic benefit by reducing the total time of the treatment since the healing of the lesions was faster compared to what was obtained by using equivalent amounts of FCE without microencapsular
  • the superior therapeutic effect of our formulation was not expected because the slow release profile it possesses produces low concentrations of FCE.
  • another formulation in which excipients were used so that the release of the FCE was faster and thus achieve higher concentrations of the drug did not have the therapeutic effects of the formulation of this invention. Brief description of the figures.
  • Figure 1 Scheme representing the location of induced ulcers in the animal model.
  • Figure 2 Diagram of obtaining the microspheres loaded with FCE by the double emulsion method - solvent evaporation.
  • FIG. 3 Photomicrograph of a microsphere loaded with FCE.
  • Figure 4 Release profile of the FCE encapsulated in PLGA microspheres. On the X-axis, the time in days and on the Y-axis are shown the amount of FCE released expressed as a percentage of the total amount contained in the microspheres used in the test, (4) rapid release formulation and (•) release formulation slow.
  • FIG. 5 Analysis by reverse phase chromatography of the FCE digested with trypsin under different conditions.
  • Example 1 Obtaining the pharmaceutical composition of FCE encapsulated in PLGA microspheres. Preparation of microspheres loaded with FCE.
  • a solution of copolymer of lactic acid and glycolic acid 50:50 at 10% (w / v) was prepared by dissolving 1g of the polymer in dichloromethane (DCM). 1 ml of the polymer solution was deposited in a glass container and 200 ⁇ l of an aqueous solution of FCE was added at 20 mg / ml. This mixture was sonicated for 30 seconds by means of an IKASONIC U 200 S control probe ultrasound (IKA Labortechnik, Germany).
  • the resulting emulsion was poured into 40 ml of 1% polyvinyl alcohol and the second emulsion (w / o / w) was obtained, by stirring the two phases, at 14,000 rpm, in an Ultraturrax T8 (IKA Labortechnik, Germany) .
  • the double emulsion was poured into 140 ml of 30,000-70,000 polyvinyl alcohol (Sigma, St. Louis, Missouri, USA) at 0.1% and stirred in a homogenizer (IKA Labortechnik, Germany) at 300 rpm for 1 h to evaporate dichloromethane.
  • microspheres were collected by filtration, washed 5 times with 50 ml of distilled water each time and dried by freeze-dehydration in a lyophilizer (Edwards, UK). The dried microspheres were stored at 4 0 C until they were used ( Figure 2).
  • the FCE microspheres with excipients were obtained in a manner similar to that described but with the addition of Pluronic F-127 (10 mg) and NaCI (0.5 mg) in the internal aqueous phase.
  • the encapsulation efficiency of the process and the particle load were calculated, by determining the concentration of FCE by the microBCA test, in the solution resulting from the digestion of the particles with 1 N NaOH
  • the particles had a load between 1.6 and 2.4%.
  • the size of the microparticles was less than 25 ⁇ m.
  • Fifty mg of_FCE-loaded microspheres were resuspended in 1 ml of defluted receptor (0.001% Tween 80 and 0.1% sodium azide, in PBS pH 7.2). The suspension was incubated at 37 0 C with moderate agitation. The samples, at certain time intervals (0.25 (6h), 0.5 (12h), 1, 3, 7 and 14 days), are centrifuged for 5 min at 5000 rpm in a Hettich microliter centrifuge (Tuttlingen, Germany), the supernatant was collected and the same volume of fresh receptor fluid was added. The concentration of FCE in each sample extracted was determined by the microBCA assay.
  • the release profile of the FCE contained in the microspheres is composed of a rapid release stage, which occurred during the first day and another stage in which the release occurs continuously until 14 days.
  • the first stage approximately 20% of the total encapsulated protein for the two preparations was released, while in the rest of the period evaluated up to 65% of the FCE present in the particles with excipients was released (in an approximate ratio of 28 ⁇ g per day) and up to 30% in particles without excipients (at an approximate rate of 7 ⁇ g per day) (Figure 4). Characterization of the FCE released in vitro.
  • This experiment aims to demonstrate that the encapsulated FCE retains its physical-chemical and biological properties. Specifically, the properties of the FCE released during the evaluation period (14 days) were studied. The FCE released during the first day, until 7 and 14 days was characterized by the use of several analytical techniques: reverse phase high resolution liquid chromatography (RP-HPLC), polyacrylamide flat gel electrophoresis (SDS-PAGE), immunoenzymatic assay (ELISA) and biological activity. The results appear in table 2.
  • RP-HPLC reverse phase high resolution liquid chromatography
  • SDS-PAGE polyacrylamide flat gel electrophoresis
  • ELISA immunoenzymatic assay
  • FCE 1 mg was prepared separately under three different conditions: (i) dissolved in 1 ml of 4% sodium hydrogen carbonate (NaHCOs), (H) encapsulated in PLGA microspheres (2% by weight) and resuspended in 1 ml of 4% NaHCO 3 and (Hi) mixed with 50 mg of empty PLGA microspheres and resuspended in 1 ml 4% NaHCO 3 . To each preparation, 100 ⁇ l of a 200 ⁇ g / ml trypsin solution in 4% NaHCO 3 was added and allowed to incubate at 37 ° C for 4 hours with moderate agitation.
  • NaHCOs sodium hydrogen carbonate
  • H encapsulated in PLGA microspheres
  • Hi 50 mg of empty PLGA microspheres and resuspended in 1 ml 4% NaHCO 3
  • 100 ⁇ l of a 200 ⁇ g / ml trypsin solution in 4% NaHCO 3 was added and allowed
  • Example 2 Effect in vivo (in an animal model) of encapsulated FCE vs free FCE. Model of controlled acute experimental lesions.
  • the experiment described below was carried out with the objective of evaluating the healing effect of the new pharmaceutical formulation for infiltrative or parenteral use, to be injected into the edges and bottoms of the wounds, based on microspheres containing FCE in acute lesions of Satisfactory forecast Experimental biomodel: male Wistar rats of body weight between 225-250 grams. The animals were kept in controlled areas of the BIGerio del CIGB and under a stable lighting regime of 12 x 12 hours, cycles of air changes, as well as free access to the diet. Individual rats were housed in T3 boxes with bed replacement every 48 hours after sterilization.
  • Induction of ulcers the animals were anesthetized with the combination of ketamine / xylazine intraperitoneally. The mechanical and chemical depilation of the area of the back from the retro-scapular space to the height of the sacrum was performed. The region was aseptized with a solution of iodine-povidone and isopropyl alcohol. The territory of the skin to induce the ulcers was delimited with Chinese ink, to be able to induce lesions of total thickness, circular with disposable biomes of 9 mm in diameter (AcuDrem, Fl, USA).
  • Group I it's not about anything. It constitutes a control of spontaneous evolution.
  • Il-placebo group given by the vehicle of the microsphere formulation: 0.3% carboxymethylcellulose solution, 0.1% Tween 20 and 0.9% infiltrated sodium chloride (orally).
  • Infiltrative treatments were performed daily in animals treated with preparations that did not contain microspheres, inserting the needle (271/2) at the edges and bottom of the wounds, after sedation with diazepam intra-peritoneally of the animals. Animals treated with the microencapsulated FCE formulations and with the microsphere vehicle infiltrated only once.
  • Table 4 Percentage of granulated territory at time 4 in each experimental group. Study of 60 wounds per group using positive reactions to collagen fibers.
  • the effect of the treatments was also studied on the process of epithelialization of the lesions.
  • the microscopic aspect of the epithelium was assessed considering the total re-epithelialization of the ulcer, the presence of a stratified epithelium, and the existence of a keratin stratum.
  • the lesions were subjected to a central longitudinal hemisection and included in the same paraffin block.
  • a total of 120 histological sections were studied per group, which essentially represent 60 lesions. The results are expressed in Table 5.
  • Table 5 Effect of the treatment on the epithelialization process.
  • Group III treated with the formulation based on slow-profile FCE microspheres (without excipients), surprisingly showed the best indicators of epithelial response, given by total re-epithelialization and maturity of the epithelium. Model of Chronic Skin Ulcers.
  • Experimental biomodel male Wistar rats of body weight between 225-250 grams. The animals were kept in controlled areas of the BIGerio of the CIGB and under a stable lighting regime of 12 x 12 hours, cycles of air changes, as well as free access to the diet. Individual rats were housed in T3 boxes with bed replacement every 48 hours after sterilization.
  • Induction of ulcers The animals were anesthetized with the combination of ketamine / xylazine intraperitoneally. The mechanical and chemical depilation of the area of the back from the retro-scapular space to the height of the sacrum was performed. The region was aseptized with a solution of iodine-povidone and isopropyl alcohol. The territory of the skin to induce the ulcers was delimited with Chinese ink, to be able to induce lesions of total thickness, circular with disposable biomes of 9 mm in diameter (AcuDrem, Fl, USA). 6 symmetrical and equidistant lesions were created in each animal as it was done for the previous study.
  • Group Il - placebo given by the vehicle of the microsphere formulation: 0.3% carboxymethylcellulose solution, 0.1% Tween 20 and 0.9% sodium chloride locally infiltrated.
  • Group V simple formulation of FCE in 0.9% physiological saline solution, containing 75 ⁇ g of FCE / ml.
  • mice Ten rats were included for each of the groups, so that 60 wounds were studied per group.
  • the treatments were performed daily in animals treated with preparations that did not contain microspheres, after sedation with diazepam intra-peritoneally of the animals.
  • the animals were sacrificed by overdose of sodium pentobarbital (250 mg / kg) intra-peritoneally.
  • the lesions were resected from the fleshy panicle and fixed in 10% neutral formalin for later inclusion in paraffin. Hematoxylin / eosin, van Giesson and Masson's trichrome stains were used.
  • the number of animals in each group with 100% epithelialization of the lesion, with stratified and differentiated epidermis was considered for each group.
  • the results of the wound contraction kinetics appear in table 6. Table 6. Wound contraction during the evaluation time
  • the formulation based on FCE microspheres with a slower release profile exerted the most potent of the contraction effects of the wound edges, which in other words means that it exerts the most favorable effect on the acceleration of the total healing , while the contraction represents the convergence of several consolidated events that approximate the wound to the remodeling phase.
  • these wounds simulate the biochemical micro-environment of the diabetic wound in which the contraction mechanism is partially or totally abolished pathologically.
  • Table 7 Percentage of granulated territory in Time 5 in each experimental group. Study of 60 wounds per group using positive reactions to collagen fibers.
  • the effect of the treatments was also studied on the process of epithelialization of the lesions.
  • the microscopic aspect of the epithelium was assessed considering the total re-epithelialization of the ulcer, the presence of a stratified epithelium, and the existence of a keratin stratum.
  • the lesions were subjected to a central longitudinal hemisection and included in the same paraffin block.
  • a total of 120 histological sections were studied per group, which essentially represent 60 lesions. There was no need to eliminate any of the bacterial contamination lesions. The results are expressed in table 8.
  • Group III treated with the formulation of the slow release profile FCE microspheres, unexpectedly showed the best indicators of epithelial response, given by the total re-epithelialization and the maturity of the epithelium.
  • Example 3 Effect in vivo (in patients with advanced diabetic foot ulcers) of encapsulated FCE vs free FCE.
  • the formulation with microspheres that release the FCE more slowly (without excipients) was administered in patients with diabetic foot ulcers and risk of major amputation.
  • a 58-year-old diabetic female patient with an ulcerative lesion of the right foot of an area of 30.5 cm 2 and evidence of ischemic involvement of the affected limb was treated with the formulation object of the present invention.
  • the formulation was administered with FCE microspheres with a slower release profile, once every 15 days for a month by infiltration of the edges and bottom of the ulcerative lesion.
  • the rapid formation of useful granulation tissue was observed from the first week of starting the treatment, reaching 100% of the affected area in the third week.
  • the product was well tolerated and no adverse events occurred.
  • the perilesional and intralesional administration of this formulation favored the formation of granulation tissue and the closure of the lesion, with which the healing process was unexpectedly shortened with respect to previous treatments and the need for amputation was prevented.
  • This treatment modality turned out to have a better tolerance given the reduction in the number of administrations.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Diabetes (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Emergency Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Endocrinology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)

Abstract

Una composición farmacéutica que contiene microesferas cargadas con Factor de Crecimiento Epidérmico para ser administrada por via parenteral en los miembros inferiores de pacientes diabéticos aquejados de lesiones isquémicas cutáneas crónicas. La composición de la presente invención, en contraste al estado de la tecnica anterior, es ùtil porque reduce la frecuencia de administración durante el tratamiento y permite que la cicatrización de las lesiones sea más rápida comparada con la administraciÌn de cantidades equivalentes del Factor libre en solución.

Description

COMPOSICIÓN FARMACÉUTICA DE MICROESFERAS PARA PREVENIR LA
AMPUTACIÓN DEL PIE DIABÉTICO.
Campo de Ia técnica La presente invención está relacionada con una composición farmacéutica que contiene Factor de Crecimiento Epidérmico encapsulado en microesferas para ser administrada por vía parenteral en los miembros inferiores de pacientes diabéticos aquejados de lesiones isquémicas cutáneas crónicas, con el objetivo de prevenir Ia amputación de dichos miembros.
Estado de Ia técnica anterior
La diabetes mellitus es el principal factor de riesgo no traumático para Ia amputación de miembros inferiores. La ulceración del pie es una complicación significativa de Ia diabetes con una incidencia anual ligeramente superior al 2% (Abbott C.A., et al (2002) The North-West Diabetes Foot Care Study: incidence of, and risk factors for, new diabetic foot ulceration in a community-based patient cohort. Diabet. Med. 19(5):377-84). Se estima que un 15% de los pacientes con diabetes desarrollarán úlceras en algún momento de su vida (Reiber G. E. (1996) The epidemiology of diabetic foot problems. Diabet. Med. 13 Suppl 1 :S6-11) y que alrededor de un 10%- 30% de los que presenten úlceras progresarán a amputación (Lipsky B.A. (2004) Medical treatment of diabetic foot infections. Clin. Infecí Dis. 39 Suppl 2:S104-14). La mortalidad a los 5 años de los pacientes a los que se les practica una amputación de miembros inferiores es de 50-60% (Reiber G. E. (1996) The epidemiology of diabetic foot problems. Diabet. Med. 13 Suppl 1 :S6-11). Se han utilizado diversos métodos para el tratamiento del paciente con pie diabético que incluyen el control metabólico estricto, profilaxis de los factores de riesgo modificables, debridamiento, empleo de apositos, tratamiento antimicrobiano de las infecciones, eliminación de Ia presión del área lesionada, uso de injertos de piel, factores de crecimiento y el empleo de métodos de revascularización en caso de existir indicación.
Luego del control metabólico estricto, el debridameinto es el paso más importante para Ia curación de las úlceras del diabético y es necesario realizarlo antes de cualquier otra modalidad de tratamiento local. Este consiste en Ia remoción de todo el tejido no viable e infectado (incluyendo huesos) de Ia región lesionada, así como el tejido calloso circundante.
El empleo de apositos en las úlceras del pie diabético está bien establecido y aunque se han estudiado diversos tipos de apositos, se desconoce Ia superioridad de uno sobre otro. Además los estudios han sido pocos y más bien se han dirigido a úlceras de bajo grado por Io que se requieren más evidencias a partir de ensayos clínicos para demostrar Ia eficacia de estos métodos. Entre los nuevos tipos de apositos estudiados en ensayos clínicos controlados se encuentran los apositos que se basan en membrana polimérica semipermeable, promogran (matriz de colágeno), alginato, carboximetilcelulosa, hialuronan y presión subatmosférica (Eldor R. Y col. (2004) New and experimental approaches to treatment of diabetic foot ulcers: a comprehensive review of emerging treatment strategies. Diahet. Med. 21(11):1161- 73). Se han desarrollado métodos para crear sustitutos de piel que son colocados sobre Ia lesión ulcerosa. El Dermagraft se produce sembrando fibroblastos de dermis humana sobre un andamio sintético de material bioabsorbible y ha mostrado ser eficaz en las úlceras de bajo grado con una mayor proporción de curación en un menor tiempo (Marston W.A., et al. (2003) Dermagraft Diabetic Foot Ulcer Study Group. The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial. Diabetes Care 26:1701-5). El Apligraf consta de una capa de dermis compuesta de fibroblastos humanos en una matriz de colágeno tipo I bovino y una capa de epidermis formada de queratinocitos humanos. De manera similar, este sustituto de piel ha mostrado asociarse significativamente a una mayor y más rápida curación de lesiones cuando se aplica en úlceras neuropáticas de bajo grado y no infectadas (Veves A., et al (2001) Graftskin, a human skin equivalent, is effective in the management of noninfected neuropathic diabetic foot ulcers: a prospective randomized multicenter clinical trial. Diabetes Care 24:290-5). En un ensayo clínico fase III, aleatorizado, a doble ciegas y controlado con placebo, el Factor de Crecimiento Derivado de Plaquetas (en inglés Platelet Derived Growth Factor, abreviado PDGF) en forma de gel mostró ser eficaz y seguro para el tratamiento de pacientes diabéticos que presentaban úlceras neuropáticas con buena perfusión sanguínea (Wieman TJ. , et al (1998) Clinical efficacy of beclapermin (rh PDGF-BB) gel. Diabetes Care 21 (5):822-7). La mayoría de los pacientes (95%) incluidos en este estudio tenían úlceras con un área < 10 cm2 según Ia evaluación por planimetría. El gel de becaplermin 100 μg/g, en comparación con placebo, aumentó significativamente Ia proporción de cierre completo de Ia lesión en un 43% (50 vs. 35%, p = 0.007) y redujo el tiempo para lograr dicho efecto en un 32% (86 vs. 127 días, p = 0.013). Los resultados satisfactorios con el PDGF o becaplermin (Regranex) llevaron a su aprobación para el tratamiento de las úlceras neuropáticas en las extremidades inferiores del diabético que se extienden hasta el tejido subcutáneo o más profundamente y tienen un adecuado flujo sanguíneo (Brem H., Sheehan P., Boulton AJ. (2004) Protocol for treatment of diabetic foot ulcers. Am. J. Surg. 187(5A): 1 S-1 OS).
Recientemente fue publicado un método de administración de un agente cicatrizante como el Factor de Crecimiento Epidérmico (FCE), el cual consiste en Ia infiltración de una solución de Ia biomolécula en Ia lesión mediante varias inyecciones (WO 03/053458). Este tratamiento ha mostrado tener efectividad en Ia prevención de Ia amputación del pie diabético pero tiene el inconveniente de que resulta traumático para el paciente ya que Ia aplicación de inyecciones en Ia lesión es muy dolorosa. En cada tratamiento deben aplicarse varias inyecciones y el paciente debe recibir el tratamiento en días alternos durante varias semanas. Teniendo en cuenta los inconvenientes de este método, el empleo de una formulación que libere de forma sostenida el FCE pudiera reducir Ia frecuencia de administración del fármaco Io cual beneficiaría considerablemente al paciente.
Existe una patente (US 6,086,863) en que factores reguladores y de crecimiento (ejemplo el Factor de Crecimiento Epidérmico) pueden ser incluidos en composiciones profilácticas o terapéuticas de microesferas de poliestireno u otros polímeros no degradables, para mejorar el proceso de reparación de heridas como las úlceras del pie diabético, mediante Ia aplicación local de una suspensión de estas microesferas en un vehículo apropiado. La aplicación tópica tiene Ia limitante de tener un menor control de Ia dosis que alcanza el sitio de acción dado que existen diversos factores que pueden interferir en Ia absorción, entre los que se encuentran: Ia presencia de tejido necrótico y exudado local, compromiso del flujo sanguíneo, presencia de enzimas que degradan el FCE.
Por lo tanto, un importante problema en el tratamiento de úlceras del pie diabético es conseguir Ia dosis efectiva de un medicamento, que logre Ia regeneración del tejido isquémico y prevenga Ia amputación del pie diabético. Muchas otras patentes se han enfocado sobre otros métodos de acelerar el rango de cicatrización. Sin embargo, ninguno de estos métodos ha probado ser ampliamente eficaz.
Explicación de Ia invención
De forma general, Ia presente invención comprende una composición farmacéutica que contiene microesferas cargadas con Factor de Crecimiento Epidérmico, para ser administradas por vía parenteral en los miembros inferiores de pacientes diabéticos aquejados de lesiones isquémicas cutáneas crónicas, con el objetivo de prevenir Ia amputación de dichos miembros. Relacionado con esta invención, el término microesferas incluye microesferas y nanoesferas.
La encapsulación en microesferas del FCE permite: (i) una liberación controlada del fármaco y (i¡) una protección contra procesos degradativos como Ia digestión con las proteasas existentes en el sitio de acción. En esta invención, las microesferas pueden ser descritas como esferas de Ia matriz polimérica con el principio activo dispersado homogéneamente en todo su volumen, el cual es liberado de forma controlada.
En el contexto de esta invención, el término "liberación controlada" comprende Ia liberación del fármaco de forma continua, discontinua, lineal o no lineal. Esto está acompañado del empleo de diferentes composiciones de Ia matriz polimérica, inclusión de excipientes que modifican los perfiles de liberación y/o de agentes promotores de Ia degradación u otras modificaciones, las cuales realizadas de forma individual o combinadas, producen el efecto deseado en las propiedades de Ia composición. Las microesferas se obtienen por el método de doble emulsión / evaporación de solvente descrito por Okada y col. (US 4,652,441).
Los polímeros preferidos para el desarrollo de esta invención son aquellos que por sus propiedades resultan biocompatibles y biodegradables. Esta última condición es de suma importancia ya que permite Ia aplicación parenteral de Ia formulación por infiltración de Ia lesión. Especialmente se prefieren los homopolímeros del ácido glicólico y del ácido láctico y Ia familia de copolímeros que de ellos se deriva (en inglés poly (lactide-co-glycolide), abreviado PLGA). Estos polímeros presentan características que los han convertido en excelentes biomateriales para Ia fabricación de suturas, de elementos de fijación ortopédicos y componentes de sistemas de liberación modificada de fármacos (Ashammakhi N., et al (2001) Developments in Craniomaxillofacial Surgery: Use of Self-Reinforced Bioabsorbable Osteofixation Devices. Plast. Reconstr. Surg. Special Topic: 167-80; Eppley B. L. (2005) Use of resorbable plates and screws in pediatric facial fractures. J. Oral Maxillofac. Surg. 63(3):385-91). Entre sus propiedades se encuentra que son biocompatibles y biodegradables; además de brindar Ia posibilidad de variar los perfiles de liberación del principio activo en función de Ia composición de Ia matriz polimérica, del peso del polímero y de Ia adición de otros excipientes a las partículas. Además de Ia familia de polímeros del ácido láctico y glicólico, otros polímeros con propiedades similares en cuanto a biocompatibilidad y biodegradabilidad, pueden ser empleados. Ellos incluyen policaprolactona, copolímeros de hidroxibutirato e hidroxivalerato, copolímeros de ácido láctico y caprolactona, poliortoésteres y polianhidridos. En una realización preferida, las microesferas de Ia composición farmacéutica tienen un diámetro que se encuentra en el rango entre 1 y 100 μm y el FCE constituye el 1.6-2.4% de Ia masa total de las microesferas.
En otra realización preferida, el FCE encapsulado en las microesferas se libera a una velocidad a partir del primer día de infiltrado en cantidades entre 5 y 10 μg por día y conserva sus propiedades físico-químicas y biológicas durantes 14 días.
Otro aspecto de Ia presente invención se refiere al tratamiento de lesiones isquémicas de un paciente diabético, a través de Ia administración por medio de Ia infiltración local en el tejido que comprende los bordes y fondo de Ia lesión de Ia composición farmacéutica antes mencionada. La microencapsulación de principios activos de naturaleza proteica requiere especial atención en Io que se refiere a Ia actividad de dichas biomoléculas luego del proceso de microencapsulación. Esto se debe a que las proteínas son, en su mayoría, sensibles a las altas temperaturas que con frecuencia se generan en los procesos de encapsulación y a los solventes orgánicos empleados para disolver los polímeros. Por otra parte cada proteína exhibe un comportamiento propio frente a los procesos de microencapsulación. Teniendo en cuenta estos aspectos, el establecimiento de una metodología para Ia elaboración de microesferas cargadas con proteínas con actividad biológica conservada, requiere de un estudio detallado en cuanto a selección del método a emplear, polímeros, solventes, aditivos, etc. Como agente activo, Ia composición farmacéutica puede contener al FCE obtenido de forma natural, por medio de Ia síntesis química o por Ia vía del ADN repombinante.
La. composición farmacéutica puede contener también, como parte del vehículo, algún fármaco de los siguientes grupos: antimicrobianos (penicilinas, cefalosporinas, quinolonas, metronidazol, clindamicina, vancomicina, macrólidos, tretraciclinas, aztreonam e imipenem), anestésicos, analgésicos del grupo de los antinflamatorios no esteroidales, fármacos con acción angiogénica (factor de crecimiento del endotelio vascular, factor de crecimiento de fibroblastos), otros factores de crecimiento (factor estimulante de colonias de granulocitos) o Ia eritropoyetina.
La patología tratada con Ia composición farmacéutica objeto de esta invención es Ia lesión isquémica cutánea crónica en miembros inferiores de pacientes diabéticos. Dependiendo de las condiciones de Ia lesión y de las características del paciente a ser tratado, puede ser necesario que las microesferas presentes en Ia composición farmacéutica contengan más de una molécula encapsulada. Estos agentes terapéuticos adicionales pertenecen al grupo de antimicrobianos, anestésicos, analgésicos del grupo de los anitinflamatorios no esteroidales, fármacos con acción angiogénica, otros factores de crecimiento. La composición farmacéutica debe ser administrada a los pacientes resuspendida en un vehículo apropiado, que puede ser en una primera incorporación una solución salina con agentes viscosantes tales como carboximetilcelulosa, hidroxipropilmetilcelulosa y detergentes tales como los polisorbatos o en una segunda incorporación un hidrogel termosensible del tipo PEG-PLGA-PEG o derivado de Ia quitosana o de Ia dextrana. La composición farmacéutica objeto de esta invención permitió reducir Ia frecuencia de administración durante el tratamiento e inesperadamente aumentó el beneficio terapéutico al reducir el tiempo total del tratamiento ya que Ia cicatrización de las lesiones fue más rápida comparada con Io obtenido al emplear cantidades equivalentes de FCE sin microencapsular. El efecto terapéutico superior de nuestra formulación no se esperaba porque el lento perfil de liberación que posee produce bajas concentraciones de FCE. De forma inesperada también, otra formulación en Ia que se utilizaron excipientes para que Ia liberación del FCE fuera más rápida y así lograr mayores concentraciones del fármaco no tuvo los efectos terapéuticos de Ia formulación de esta invención. Breve descripción de las figuras.
Figura 1. Esquema que representa Ia localización de las úlceras inducidas en el modelo animal.
Figura 2. Diagrama de obtención de las microesferas cargadas con FCE por el método de doble emulsión - evaporación de solvente.
Figura 3. Microfotografía de una microesfera cargada con FCE. Figura 4. Perfil de liberación del FCE encapsulado en microesferas de PLGA. En el eje X se muestra el tiempo en días y en el eje Y Ia cantidad de FCE liberado expresado en porciento de Ia cantidad total contenida en las microesferas empleadas en el ensayo, (4) formulación de liberación rápida y (•) formulación de liberación lenta.
Figura 5. Análisis por cromatografía en fase de reversa del FCE digerido con tripsina en distintas condiciones. A: Control, B: FCE libre, C: FCE encapsulado en micropartículas de PLGA, D: FCE mezclado con micropartículas de PLGA vacías.
Exposición detallada de modos de realización / Ejemplos.
Para brindar una descripción más completa de Ia invención se describen los siguientes ejemplos.
Ejemplo 1. Obtención de Ia composición farmacéutica de FCE encapsulado en microesferas de PLGA. Preparación de las microesferas cargadas con FCE.
Se preparó una solución de copolímero de ácido láctico y ácido glicólico 50:50 al 10% (w/v) (Sigma, St. Louis, Missouri, USA) mediante Ia disolución de 1g del polímero en diclorometano (DCM). En un recipiente de vidrio se depositó 1 mi de Ia solución polimérica y se añadió 200 μl de una solución acuosa de FCE a 20 mg/ml. Esta mezcla fue sonicada durante 30 segundos por medio de un ultrasonido de sonda IKASONIC U 200 S control (IKA Labortechnik, Alemania). La emulsión resultante se vertió en 40 mi de alcohol polivinílico al 1% y se obtuvo Ia segunda emulsión (w/o/w), mediante agitación de las dos fases, a 14 000 rpm, en un Ultraturrax T8 (IKA Labortechnik, Alemania). La doble emulsión se vertió en 140 mi de alcohol polivinílico 30 000-70 000 (Sigma, St. Louis, Missouri, USA) al 0.1% y se agitó en un homogeneizador (IKA Labortechnik, Alemania) a 300 rpm durante 1 h para evaporar el diclorometano. Finalmente, las microesferas se colectaron por filtración, se lavaron 5 veces con 50 mi de agua destilada cada vez y se secaron por congelación-deshidratación en una liofilizadora (Edwards, UK). Las microesferas secas se almacenaron a 40C hasta el momento de su utilización (Figura 2).
Las microesferas de FCE con excipientes se obtuvieron de forma similar a Ia descrita pero con Ia adición de Pluronic F-127 (10 mg) y NaCI (0.5mg) en Ia fase acuosa interna.
Caracterización de las microesferas de FCE.
La eficiencia de encapsulación del proceso y Ia carga de las partículas fueron calculadas, mediante Ia determinación de Ia concentración de FCE por el ensayo de microBCA, en Ia solución resultante de Ia digestión de las partículas con NaOH 1 N
Ia cual se neutralizó con HCI 1N antes de Ia determinación.
Como resultado del proceso de micoencapsulación se obtuvieron micropartículas de forma esférica, con superficie regular y presencia de poros (Figura 3). Dichas microesferas con FCE encapsulado se obtuvieron con un rendimiento promedio de
85%. Se logró incorporar en las microesferas entre el 40-60% de la proteína introducida inicialmente en el proceso de fabricación. Las partículas tuvieron una carga entre 1.6 y 2.4%. El tamaño de las micropartículas fue menor de 25 μm.
Tabla 1. Características de las microesferas cargadas con FCE.
Figure imgf000009_0001
La utilización de excipientes no varió de forma significativa las características de las microesferas cargadas de FCE obtenidas. Liberación in vitro del FCE encapsulado.
Cincuenta mg de_ microesferas cargadas con FCE se resuspendieron en 1 mi defluido receptor (Tween 80 al 0.001% y azida sódica al 0.1%, en PBS pH 7.2). La suspensión se incubó a 370C con agitación moderada. Las muestras, a determinados intervalos de tiempo (0.25 (6h), 0.5 (12h), 1 , 3, 7 y 14 días), se centrifugaron durante 5 min a 5000 rpm en una centrífuga Hettich microliter (Tuttlingen, Alemania), se colectó el sobrenadante y se adicionó igual volumen de fluido receptor fresco. La concentración de FCE en cada muestra extraída se determinó mediante el ensayo de microBCA.
El perfil de liberación del FCE contenido en las microesferas está compuesto por una etapa de liberación rápida, Ia cual ocurrió durante el primer día y otra etapa en Ia cual Ia liberación ocurre de forma continua hasta los 14 días. Durante Ia primera etapa se liberó aproximadamente el 20% del total de Ia proteína encapsulada para las dos preparaciones, mientras que en el resto del período evaluado se liberó hasta el 65% del FCE presente en las partículas con excipientes (en una razón aproximada de 28 μg por día) y hasta 30% en las partículas sin excipientes (en una razón aproximada de 7 μg por día) (Figura 4). Caracterización del FCE liberado in vitro.
Este experimento tiene el objetivo de demostrar que el FCE encapsulado conserva sus propiedades físico-químicas y biológicas. Concretamente se estudiaron las propiedades del FCE liberado durante el período de evaluación (14 días). El FCE liberado durante el primer día, hasta los 7 y 14 días fue caracterizado mediante el empleo de varias técnicas analíticas: cromatografía líquida de alta resolución en fase inversa (RP-HPLC), electroforesis en gel plano de poliacrilamida (SDS-PAGE), ensayo inmunoenzimático (ELISA) y actividad biológica. Los resultados aparecen en Ia tabla 2.
Tabla 2. Características físico-químicas y biológicas del FCE liberado in vitro.
Figure imgf000010_0001
a Porciento de FCE inmunoidentificado con respecto a Ia masa liberada Ia cual fue determinada por el ensayo de microBCA. b Porciento correspondiente a Ia banda mayoritaπa detectada a 6000 Da
0 Porciento correspondiente a las especies principales d FCE empleado para obtener las microesferas Los resultados mostrados permiten afirmar que el FCE liberado posee características físico-químicas y biológicas similares al FCE empleado para obtener las microesferas.
Efecto de Ia microencapsulación en Ia estabilidad del FCE frente a Ia acción de las proteasas.
Se preparó por separado un 1 mg de FCE en tres condiciones distintas: (i) disuelto en 1 mi de hidrogenocarbonato de sodio (NaHCOs) al 4%, (H) encapsulado en microesferas de PLGA (2% en peso) y resuspendido en 1 mi de NaHCO3 al 4% y (Hi) mezclado con 50 mg de microesferas de PLGA vacías y resuspendido en 1 mi NaHCO3 al 4%. A cada preparación se Ie añadieron 100 μl de una solución de tripsina a 200 μg/ml en NaHCO3 al 4% y se dejó incubar a 37°C durante 4 horas con agitación moderada. Como control se utilizó un miligramo de FCE en 1.1 mi de NaHCO3 al 4%. Pasado este tiempo se detuvo Ia reacción con 10 μl de ácido trifluoracético. Las muestras que contenían microesferas se centrifugaron por 10 minutos a 6000 g y se separará el sobrenadante del precipitado. El FCE microencapsulado o adsorbido en las microesferas fue separado del polímero por el método de extracción con diclorometano/ácido acético (Ruiz J. M., et al (1989) Microencapsulation peptide: a study of the phase separation of poly (D,L-lactic acid- co-glycol¡c acid) copolymers 50/50 by silicone oil. J. Pham. Sci. 49:69-77). Todas las fracciones fueron analizadas por RP-HPLC según el procedimiento descrito por Han y colaboradores (Han K., et al. (1998) Site-specific degradation and transport of recombinant human epidemial growth factor (rhEGF) in the rat gastrointestinal mucosa. Int. J. Pharm. 168:189-197). Los resultados (Figura 5) muestran que tanto el FCE sin encapsular como el mezclado con microesferas vacías fue completamente degradado. El FCE microencapsulado, en cambio, fue protegido de Ia proteólisis obteniéndose un perfil cromatográfico semejante al del control.
Ejemplo 2. Efecto in vivo (en un modelo animal) del FCE encapsulado vs FCE libre. Modelo de lesiones experimentales agudas controladas.
El experimento que a continuación se describe se realizó con el objetivo de evaluar el efecto cicatrizante de Ia nueva formulación farmacéutica de uso infiltrativo o parenteral, para ser inyectada en los bordes y fondos de las heridas, basada en microesferas que contienen FCE en lesiones agudas de pronóstico satisfactorio. Biomodelo experimental: ratas Wistar machos de peso corporal entre 225-250 gramos. Los animales fueron mantenidos en áreas controladas del Bioterio del CIGB y bajo régimen estable de iluminación de 12 x 12 horas, ciclos de cambios de aire, así como libre acceso a Ia dieta. Se realizó alojamiento individual de las ratas en cajas T3 con reemplazo del encamado cada 48 horas previa esterilización.
Inducción de las úlceras: los animales fueron anestesiados con Ia combinación de ketamina/xylazina por vía intraperitoneal. Se realizó Ia depilación mecánica y química de Ia zona de Ia espalda desde el espacio retro-escapular hasta Ia altura del sacro. La región fue aseptizada con una solución de yodo-povidona y alcohol isopropílico. El territorio de Ia piel para inducir las úlceras fue delimitado con tinta china, para poder inducir lesiones de grosor total, circulares con biótomos desechables de 9 mm de diámetro (AcuDrem, Fl, USA).
Como se indica en Ia Figura 1 , se crearon 6 lesiones simétricas y equidistantes en cada animal. Luego de creadas, se lavaron con solución salina estéril y su borde interno fue delineado con tinta indeleble para el cálculo del área de Ia herida en tiempo cero. Las lesiones de todos los animales de cada grupo se higienizaron diariamente con etanol al 70% y salina estéril antes de aplicar el tratamiento en caso que correspondiese. Grupos experimentales: Luego de creadas las úlceras los animales fueron asignados aleatoriamente mediante una tabla de cruzamiento orden de entrada/grupo a los siguientes grupos experimentales:
Grupo I - no se trata con nada. Constituye un control de evolución espontánea. Grupo Il - placebo (dado por el vehículo de Ia formulación de microesferas: solución de carboximetilcelulosa 0.3%, Tween 20 al 0.1% y cloruro de sodio 0.9% infiltrada (ocalmente).
Grupo III - tratamiento mediante infiltración de Ia solución de microesferas (sin excipientes), conteniendo 675 μg de FCE, en un mililitro del vehículo para esta formulación. Las infiltraciones se realizaron sobre los bordes y fondo de Ia herida. Grupo IV - tratamiento mediante infiltración de Ia solución de microesferas (con excipientes), conteniendo 675 μg de FCE, en un mililitro del vehículo para esta formulación. Las infiltraciones se realizaron sobre los bordes y fondo de Ia herida. Grupo V - formulación simple de FCE en solución salina fisiológica al 0.9%, conteniendo 75 μg FCE/ml. Se incluyeron 10 ratas por cada uno de los grupos, de modo tal que se estudiaron 60 heridas por grupo. Los tratamientos infiltrativos se realizaron diariamente en los animales tratados con las preparaciones que no contenían microesferas, insertando Ia aguja (271/2) en los bordes y fondo de las heridas, previa sedación con diazepam por vía intra-peritoneal de los animales. Los animales tratados con las formulaciones de FCE microencapsulado y con el vehículo de las microesferas se infiltraron sólo una vez.
Determinación del nivel de cierre de las heridas. Procesamiento histológico: Las lesiones fueron calcadas en láminas transparentes de acetato para el cálculo cinético de Ia contracción en los siguientes tiempos: Tiempo 0 - representa el 100% del área de lesión abierta y el 0% de contracción, Tiempo 1 - a las 72 horas de inducidas, Tiempo 2 - al 5to día de inducidas, Tiempo 3 - al 7mo día de inducidas, Tiempo 4 - al 9no día de inducidas. Se toma este día como final del estudio y para el sacrificio de los animales de acuerdo a Ia experiencia previa de Ia cinética espontánea de cicatrización de estas lesiones. Las imágenes de los bordes de las lesiones fueron digitalizadas. El área y el porciento de contracción fueron calculados mediante el programa de análisis de imágenes DIGIPAT. Los cálculos estadísticos de cada parámetro se realizaron mediante el paquete SPSS empleando Ia prueba no paramétrica de Mann Whitney U, estableciendo un nivel de significación de p<0.05.
Los animales fueron sacrificados mediante sobre-dosis de pentobarbital sódico (250 mg/kg) vía intra-peritoneal. Las lesiones fueron resecadas desde el panículo carnoso y fijadas en formalina neutra al 10% para su posterior inclusión en parafina. Se utilizaron las coloraciones de hematoxilina/eosina, van Giesson y tricrómica de Masson. El número de animales de cada grupo con un 100% de epitelización de Ia lesión, con epidermis estratificada y diferenciada fue considerado para cada grupo. Los resultados de Ia cinética de contracción de las heridas se muestran en Ia tabla 3 (los valores de contracción en mm se expresan en porciento sobre el calculo de máxima dilatación en Tiempo 0). Tabla 3. Valores de contracción de las úlceras
Valores cinéticos de contracción de úlceras controladas agudas (%)
Grupo exptal Tiempo 0 Tiempo 1 Tiempo 2 Tiempo 3 Tiempo 4
Grupo I 0 6.1 ± 2.1 9. 3 + 2.2 37.6 ± 3.3 56.7 + 3.8
Grupo Il 0 8.3 + 2.2 11 .4 : t 2.4 41.5 ± 2.7 67.4 ± 4.5
Grupo III 0 11.4 ± 3.3* 22 5 d : 3.8* 69.8 ± 4.8* 86.8 ± 3.5*
Grupo IV 0 9.9 ± 1.1 12 .8 : t 1.4 52.4 ± 3.1 69.6 + 4.9
Grupo V 0 9.6 ± 1.2 11 .6 : fc 1.5 51.5 ± 2.7 67.4 + 4.5
(*) Significa diferencia estadística de p<0.05 con el resto de los grupos. Prueba de Mann-Whitney U. Inesperadamente Ia formulación que contiene microesferas de FCE con perfil de liberación más lento (sin excipientes), ejerció el más potente de los efectos de contracción de los bordes de las heridas Io que en otras palabras significa que ejerce el más favorable efecto en Ia aceleración de Ia cicatrización total. La contracción representa Ia convergencia de varios eventos consolidados que aproximan Ia herida a Ia fase de remodelación.
En Ia tabla 4, puede observarse el porciento de territorio ocupado por tejido de granulación maduro y organizado de las úlceras en cada grupo experimental. Los cálculos se realizaron sobre las muestras colectadas en el Tiempo 4 cuantificando el número de campos microscópicos positivos coincidentemente a las reacciones de van Giesson y Tricrómica de Masson en cada muestra. Las valoraciones se realizaron por dos patólogos de forma independiente y a ciegas.
Tabla 4. Porciento de territorio granulado en tiempo 4 en cada grupo experimental. Estudio de 60 heridas por grupo empleando las reacciones positivas a fibras colágenas.
Figure imgf000015_0001
De manera inesperada Ia formulación basada en microesferas de FCE con perfil de liberación más lento (sin excipientes) ejerció el más potente de los efectos sobre el proceso de establecimiento y maduración del tejido de granulación, Io que viene a corresponderse con Io descrito para el proceso de contracción de las heridas antes explicado.
El efecto de los tratamientos fue también estudiado sobre el proceso de epitelización de las lesiones. Se valoró el aspecto microscópico del epitelio considerando Ia re- epitelización total de Ia úlcera, Ia presencia de un epitelio estratificado, y Ia existencia de un estrato de queratina. Para el estudio microscópico las lesiones fueron sometidas a una hemisección longitudinal central e incluidas en el mismo bloque de parafina. Se estudiaron un total de 120 cortes histológicos por grupo, que en esencia representan 60 lesiones. Los resultados se expresan en Ia tabla 5. Tabla 5. Efecto del tratamiento sobre el proceso de epitelización.
Figure imgf000015_0002
* significa p<0.05. Prueba de Mann Whitney U.
El grupo III, tratado con Ia formulación basada en microesferas de FCE de perfil lento (sin excipientes), mostró sorprendentemente los mejores indicadores de respuesta epitelial, dados por Ia re-epitelización total y por Ia madurez del epitelio. Modelo de Úlceras Cutáneas Crónicas.
El experimento que a continuación se describe se realizó con el objetivo de evaluar el efecto cicatrizante de Ia nueva formulación farmacéutica de uso infiltrativo, basada en microesferas que contienen FCE, en un modelo de lesiones crónicas de pronóstico sombrío que simulan aquellas frecuentes en los pacientes diabéticos. Biomodelo experimental: ratas Wistar machos de peso corporal entre 225-250 gramos. Los animales fueron mantenidos en áreas controladas del Bioterio del CIGB y bajo régimen estable de iluminación de 12 x 12 horas, ciclos de cambios de aire, así como libre acceso a Ia dieta. Se realizó alojamiento individual de las ratas en cajas T3 con reemplazo del encamado cada 48 horas previa esterilización. Los animales habían sido previamente tratados durante dos meses con una solución de metilglioxal al 0.01% para crear un ambiente de glicosilación comparable con el que ocurre en un paciente diabético de larga evolución. Entre otros daños orgánicos se describe el enlentecimiento del proceso de granulación y remodelación de las heridas (Berlanga J., et al (2005) Methylglyoxal administration induces diabetes-like microvascular changes and perturbs the healing process of cutaneous wounds. Clin. Sci. (Lond) 109(1):83-95)
Inducción de las úlceras: Los animales fueron anestesiados con Ia combinación de ketamina/xylazina por vía ¡ntraperitoneal. Se realizó Ia depilación mecánica y química de Ia zona de Ia espalda desde el espacio retro-escapular hasta Ia altura del sacro. La región fue aseptizada con una solución de yodo-povidona y alcohol isopropílico. El territorio de Ia piel para inducir las úlceras fue delimitado con tinta china, para poder inducir lesiones de grosor total, circulares con biótomos desechables de 9 mm de diámetro (AcuDrem, Fl, USA). Se crearon 6 lesiones simétricas y equidistantes en cada animal tal y como se efectuó para el estudio previo. Luego de creadas, se lavaron con solución salina estéril y su borde interno fue delineado con tinta indeleble para el calculo del área de Ia herida eή tiempo cero. Las lesiones de todos los animales de cada grupo se higienizaron diariamente con etanol al 70% y salina estéril antes de aplicar el tratamiento en caso que correspondiese. Grupos experimentales:
Luego de creadas las úlceras los animales fueron asignados aleatoriamente mediante una tabla de cruzamiento orden de entrada/tratamiento a los siguientes grupos experimentales: Grupo I - no se trata con nada. Constituye un control de evolución espontánea.
Grupo Il - placebo, dado por el vehículo de Ia formulación de microesferas: solución de carboximetilcelulosa 0.3%, Tween 20 al 0.1% y cloruro de sodio.0.9% infiltrada localmente.
Grupo III - tratamiento mediante infiltración de Ia solución de microesferas (sin excipientes), conteniendo 1 mg de FCE, en un mililitro del vehículo para esta formulación. Las infiltraciones se realizaron sobre los bordes y fondo de Ia herida. Grupo IV - tratamiento mediante infiltración de Ia solución de microesferas (con excipientes), conteniendo 1 mg de FCE, en un mililitro del vehículo para esta formulación. Las infiltraciones se realizaron sobre los bordes y fondo de Ia herida. Grupo V - formulación simple de FCE en solución salina fisiológica al 0.9%, conteniendo 75 μg de FCE/ml.
Se incluyeron 10 ratas para cada uno de los grupos, de modo tal que se estudiaron 60 heridas por grupo. Los tratamientos se realizaron diariamente en los animales tratados con las preparaciones que no contenían microesferas, previa sedación con diazepam por vía intra-peritoneal de los animales. Los animales tratados con Ia formulación de FCE microencapsulado y con el vehículo de las microesferas se infiltraron sólo una vez.
Determinación del nivel de cierre de las heridas. Procesamiento histológico: Las lesiones fueron calcadas en láminas transparentes de acetato para el cálculo cinético de Ia contracción en los siguientes tiempos: Tiempo 0 - representa el 100% del área de lesión abierta y el 0% de contracción, Tiempo 1 - a las 72 horas de inducidas, Tiempo 2 - al 5t0 día de inducidas, Tiempo 3 - al 7mo día de inducidas, Tiempo 4 - al 9no día de inducidas, Tiempo 5 - a los 14 días de creadas. Se toma este día como final del estudio y para el sacrificio de los animales de acuerdo a Ia experiencia previa de Ia cinética espontánea de cicatrización de estas lesiones. Las imágenes de los bordes de las lesiones fueron digitalizadas. El área y el porciento de contracción fueron calculados mediante el programa de análisis de imágenes DIGIPAT. Los cálculos estadísticos de cada parámetro se realizaron mediante el paquete SPSS empleando Ia prueba no paramétrica de Mann Whitney U1 con un nivel de significación de p<0.05.
Los animales fueron sacrificados mediante sobre-dosis de pentobarbital sódico (250 mg/kg) vía intra-peritoneal. Las lesiones fueron resecadas desde el panículo carnoso y fijadas en formalina neutra al 10% para su posterior inclusión en parafina. Se utilizaron las coloraciones de hematoxilina/eosina, van Giesson y tricrómica de Masson. El número de animales de cada grupo con un 100% de epitelización de Ia lesión, con epidermis estratificada y diferenciada fue considerado para cada grupo. Los resultados de Ia cinética de contracción de las heridas aparecen en Ia tabla 6. Tabla 6. Contracción de las heridas durante el tiempo de evaluación
Figure imgf000018_0001
(*) Significa diferencia estadística de p<0.05 con el resto de los grupos. (**) Significa diferencia estadística de p<0.01 con el resto de los grupos. Prueba de Mann-Whitney U.
Los valores de contracción en mm se expresan en porciento sobre el cálculo de máxima dilatación en Tiempo 0.
Inesperadamente Ia formulación basada en microesferas de FCE con perfil de liberación más lento, ejerció el más potente de los efectos de contracción de los bordes de las heridas, Io que en otras palabras significa que ejerce el mas favorable efecto en Ia aceleración de Ia cicatrización total, en tanto que Ia contracción representa Ia convergencia de varios eventos consolidados que aproximan Ia herida a Ia fase de remodelación. Nótese que estas heridas simulan el micro-ambiente bioquímico de Ia herida diabética en los que el mecanismo de contracción se encuentra de forma patológica parcial o totalmente abolido.
En Ia tabla 7, puede observarse el porciento de territorio ocupado por tejido de granulación maduro y organizado de las úlceras crónicas en cada grupo experimental. Los cálculos se realizaron sobre las muestras colectadas en Tiempo 5, cuantificando el número de campos microscópicos positivos coincidentemente a las reacciones de van Giesson y Tricrómica de Masson en cada muestra. Las valoraciones se realizaron por varios patólogos y un consultante de forma independiente y a ciegas.
Tabla 7. Porciento de territorio granulado en Tiempo 5 en cada grupo experimental. Estudio de 60 heridas por grupo empleando las reacciones positivas a fibras colágenas.
Figure imgf000019_0001
** Significa diferencia de p<0.01 con el resto de los grupos. Prueba de U Mann Whitney. De manera inesperada el tratamiento con Ia formulación basada en microesferas de FCE con perfil de liberación más lento, ejerció el más potente de los efectos sobre el proceso de establecimiento y maduración del tejido de granulación, Io que viene a corresponderse con Io descrito para el proceso de contracción de las heridas antes descrito.
El efecto de los tratamientos fue también estudiado sobre el proceso de epitelización de las lesiones. Se valoró el aspecto microscópico del epitelio considerando Ia re- epitelización total de Ia úlcera, Ia presencia de un epitelio estratificado, y Ia existencia de un estrato de queratina. Para el estudio microscópico las lesiones fueron sometidas a una hemisección longitudinal central e incluidas en el mismo bloque de parafina. Se estudiaron un total de 120 cortes histológicos por grupo, que en esencia representan 60 lesiones. No hubo necesidad de eliminar ninguna de las lesiones por contaminación bacteriana. Los resultados se expresan en Ia tabla 8. Tabla 8. Efecto del tratamiento sobre el proceso de epitelización.
Figure imgf000020_0001
El grupo III, tratado con Ia formulación de las microesferas de FCE de perfil de liberación lento, inesperadamente mostró los mejores indicadores de respuesta epitelial, dados por Ia re-epitelización total y por Ia madurez del epitelio.
Ejemplo 3. Efecto in vivo (en pacientes con úlceras avanzadas del pie diabético) del FCE encapsulado vs FCE libre.
La formulación con microesferas que liberan el FCE de forma más lenta (sin excipientes) fue administrada en pacientes con úlceras del pie diabético y riesgo de amputación mayor. Una paciente femenina diabética de 58 años de edad con una lesión ulcerosa del pie derecho de un área de 30.5 cm2 y evidencias de compromiso isquémico del miembro afectado fue tratada con Ia formulación objeto de Ia presente invención. Luego de realizar debridamiento de Ia lesión, se administró Ia formulación con microesferas de FCE con perfil de liberación más lento, una vez cada 15 días durante un mes mediante infiltración de los bordes y fondo de Ia lesión ulcerosa. Se observó Ia formación rápida de tejido de granulación útil desde Ia primera semana de iniciado el tratamiento, alcanzando en Ia tercera semana cubrir el 100% del área afectada. La paciente evolucionó satisfactoriamente con cierre completo de Ia lesión y evitándose Ia necesidad de indicar amputación. El producto fue bien tolerado y no se presentaron eventos adversos. La administración perilesional e intralesional de esta formulación favoreció Ia formación de tejido de granulación y el cierre de Ia lesión, con Io cual se acortó inesperadamente el proceso de cicatrización con respecto a tratamientos previos y se previno Ia necesidad de amputación. Esta modalidad de tratamiento resultó tener mejor tolerancia dada Ia reducción del número de administraciones.

Claims

REIVINDICACIONES
1. Una composición farmacéutica que contiene microesferas de Factor de Crecimiento Epidérmico para ser administrada por vía parenteral en las lesiones isquémicas cutáneas crónicas de los miembros inferiores de pacientes diabéticos y prevenir Ia amputación de dichos miembros.
2. Una composición farmacéutica según Ia reivindicación 1 , donde el factor de crecimiento epidérmico se encuentra encapsulado en microesferas o nanoesferas poliméricas.
3. Una composición farmacéutica según Ia reivindicación 2, donde las microesferas se fabrican de un material polimérico del grupo integrado por copolímeros de ácido láctico y ácido glicólico, homopolímeros de ácido láctico, homopolímeros de ácido glicólico, policaprolactona, copolímeros de hidroxibutirato e hidroxivalerato, copolímeros de ácido láctico y caprolactona, poliortoésteres y polianhidridos.
4. Una composición farmacéutica según Ia reivindicación 2, donde dichas microesferas tienen un diámetro que se encuentra en el rango entre 1 y 100 μm.
5. Una composición farmacéutica según reivindicación 2, donde el factor de crecimiento epidérmico constituye el 1.6-2.4% de Ia masa total de las microesferas.
6. Una composición farmacéutica según Ia reivindicación 1 , donde Ia velocidad de liberación del factor de crecimiento epidérmico a partir del primer día esté entre 5 y 10 μg/día.
7. Una composición farmacéutica según Ia reivindicación 1 , donde el factor de crecimiento epidérmico liberado durante 14 días conserve sus propiedades físico-químicas y biológicas.
8. La composición farmacéutica según las reivindicaciones de Ia 1 a Ia 7, Ia cual es empleada en el tratamiento de lesiones isquémicas de un paciente diabético.
9. La composición farmacéutica según las reivindicaciones de Ia 1 a Ia 7, Ia cual es administrada por medio de Ia infiltración local en el tejido que comprende los bordes. y fondo de Ia lesión.
10. La composición farmacéutica según las reivindicaciones de Ia 1 a Ia 7, Ia cual es resuspendida en un hidrogel termosensible del tipo PEG-PLGA-PEG o un derivado de Ia quitosana o de Ia dextrana.
PCT/CU2007/000002 2006-01-31 2007-01-29 Composición farmacéutica de microesferas para prevenir la amputación del pie diabético WO2007087759A2 (es)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2008552668A JP5219841B2 (ja) 2006-01-31 2007-01-29 糖尿病の足切断を防止するためのマイクロスフェア医薬組成物
AT07702319T ATE437631T1 (de) 2006-01-31 2007-01-29 Pharmazeutische zusammensetzung von mikrokügelchen zur verhinderung einer amputation eines diabetischen fusses
US12/162,505 US8741848B2 (en) 2006-01-31 2007-01-29 Pharmaceutical composition of microspheres for preventing diabetic foot amputation
PL07702319T PL1987817T3 (pl) 2006-01-31 2007-01-29 Kompozycja farmaceutyczna mikrosfer do zapobiegania amputacji stopy cukrzycowej
DE602007001786T DE602007001786D1 (de) 2006-01-31 2007-01-29 Pharmazeutische zusammensetzung von mikrokügelchen zur verhinderung einer amputation eines diabetischen fusses
AU2007211753A AU2007211753B2 (en) 2006-01-31 2007-01-29 Pharmaceutical composition of microspheres for preventing diabetic foot amputation
CA2640743A CA2640743C (en) 2006-01-31 2007-01-29 Pharmaceutical composition of microspheres for preventing diabetic limb amputation
DK07702319T DK1987817T3 (da) 2006-01-31 2007-01-29 Farmaceutisk sammensætning til mikrosfærer til forebyggelse af diabetisk fodamputation
BRPI0707395-0A BRPI0707395A2 (pt) 2006-01-31 2007-01-29 uso de uma composição farmacêutica que contém microesferas de fator de crescimento epidérmico
KR1020087021210A KR101401273B1 (ko) 2006-01-31 2007-01-29 당뇨병성 발 절단을 예방하기 위한 마이크로스피어의 약학적 조성물
EP07702319A EP1987817B1 (en) 2006-01-31 2007-01-29 Pharmaceutical composition of microspheres for preventing diabetic foot amputation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CU20060021A CU23388B6 (es) 2006-01-31 2006-01-31 Composición farmacéutica de microesferas para prevenir la amputación del pie diabético
CU2006-0021 2006-01-31

Publications (2)

Publication Number Publication Date
WO2007087759A2 true WO2007087759A2 (es) 2007-08-09
WO2007087759A3 WO2007087759A3 (es) 2007-09-20

Family

ID=38185604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CU2007/000002 WO2007087759A2 (es) 2006-01-31 2007-01-29 Composición farmacéutica de microesferas para prevenir la amputación del pie diabético

Country Status (24)

Country Link
US (1) US8741848B2 (es)
EP (1) EP1987817B1 (es)
JP (1) JP5219841B2 (es)
KR (1) KR101401273B1 (es)
CN (2) CN101400338A (es)
AR (1) AR059234A1 (es)
AT (1) ATE437631T1 (es)
AU (1) AU2007211753B2 (es)
BR (1) BRPI0707395A2 (es)
CA (1) CA2640743C (es)
CU (1) CU23388B6 (es)
CY (1) CY1109513T1 (es)
DE (1) DE602007001786D1 (es)
DK (1) DK1987817T3 (es)
ES (1) ES2330688T3 (es)
HK (1) HK1198743A1 (es)
MY (1) MY143742A (es)
PL (1) PL1987817T3 (es)
PT (1) PT1987817E (es)
RU (1) RU2426528C2 (es)
SG (1) SG169366A1 (es)
SI (1) SI1987817T1 (es)
WO (1) WO2007087759A2 (es)
ZA (1) ZA200806648B (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010000904A1 (es) 2008-07-01 2010-01-07 Laboratorios Farmaceuticos Rovi, S.A. Composición farmacéutica con glicosaminoglicanos y su uso en tratamiento de úlceras crónicas
WO2012101310A1 (es) 2011-01-26 2012-08-02 Laboratorios Farmacéuticos Rovi, S.A. Procedimiento de preparación de derivados de glicosaminoglicanos donadores de óxido nítrico, nitroderivados obtenidos y su uso en tratamiento de úlceras crónicas
EP2737895A1 (en) 2012-11-30 2014-06-04 Praxis Pharmaceutical, S.A. Microparticles with EGF, method of preparation and use

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CU23411B6 (es) * 2005-12-29 2009-09-08 Ct Ingenieria Genetica Biotech Uso tópico del factor de crecimiento epidérmico en liposomas para prevenir la amputación del pie diabético
GB0814302D0 (en) 2008-08-05 2008-10-01 Coretherapix Slu Compounds and methods
KR101156094B1 (ko) * 2010-02-22 2012-06-20 경상대학교산학협력단 약물송달을 위한 양친성 PHA-mPEG 공중합 나노 컨테이너
EP2821077A1 (en) 2013-07-04 2015-01-07 Praxis Biopharma Research Institute Lipid nanoparticles for wound healing
EP3097922A1 (fr) 2015-05-28 2016-11-30 Denis Barritault Composition pour le traitement des lesions tissulaires
CN106267163A (zh) * 2015-06-09 2017-01-04 济南博创医药科技有限公司 一种治疗皮肤创伤的药物组合物及其药物制剂
MX2016016339A (es) * 2016-12-09 2018-06-08 Desarrolladora Y Com De Tecnologias Biomedicas Decotecbio S A S De C V Composicion coadyuvante de un factor de crecimiento y un neuropeptido para acelerar la cicatrizacion de heridas y la repitelizacion de organos.
KR102218427B1 (ko) * 2017-09-20 2021-02-22 차의과학대학교 산학협력단 단백질 약물을 포함하는 코아세르베이트 조성물 및 이를 포함하는 창상 치료제
CU20190022A7 (es) * 2019-03-18 2020-10-20 Centro De Ingenieria Genetica Y Biotecnologia Biocubafarma Composición farmacéutica para el tratamiento de la úlcera del pie diabético

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4652441A (en) 1983-11-04 1987-03-24 Takeda Chemical Industries, Ltd. Prolonged release microcapsule and its production
US6086863A (en) 1997-06-04 2000-07-11 Polyheal Ltd. Compositions of microspheres for wound healing
WO2003053458A1 (es) 2001-12-20 2003-07-03 Centro De Ingenieria Genetica Y Biotecnologia Uso de una composición farmacéutica que contiene factor de crecimiento epidérmico (egf) para la prevención de la amputación del pie diabético

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IE52535B1 (en) 1981-02-16 1987-12-09 Ici Plc Continuous release pharmaceutical compositions
NZ226171A (en) 1987-09-18 1990-06-26 Ethicon Inc Gel formulation containing polypeptide growth factor
JP2670680B2 (ja) * 1988-02-24 1997-10-29 株式会社ビーエムジー 生理活性物質含有ポリ乳酸系微小球およびその製造法
US5034375A (en) 1988-08-10 1991-07-23 Institute Of Molecular Biology, Inc. Process of wound healing using PDGF and EGF
US4944948A (en) 1989-02-24 1990-07-31 Liposome Technology, Inc. EGF/Liposome gel composition and method
AU633078B2 (en) 1989-04-04 1993-01-21 Alcon Laboratories, Inc. The use of liposomes for the delivery of therapeutic agents to wounds, cuts and abrasions
US5130298A (en) 1989-05-16 1992-07-14 Ethicon, Inc. Stabilized compositions containing epidermal growth factor
JPH04501123A (ja) 1989-08-01 1992-02-27 ザ ユニヴァーシティ オブ ミシガン 脱水/水補給リポソームに被嚢されたペプチド/タンパク質の局所送達
AU629316B2 (en) 1990-04-11 1992-10-01 Flora Inc. Periodontal disease treatment system
US6902743B1 (en) * 1995-05-22 2005-06-07 The United States Of America As Represented By The Secretary Of The Army Therapeutic treatment and prevention of infections with a bioactive material(s) encapuslated within a biodegradable-bio-compatable polymeric matrix
WO1997041899A1 (en) * 1996-05-03 1997-11-13 Innogenetics N.V. New medicaments containing gelatin cross-linked with oxidized polysaccharides
ATE537845T1 (de) * 2000-10-31 2012-01-15 Pr Pharmaceuticals Inc Verfahren zur herstellung von formulierungen zur verbesserten abgabe von bioaktiven molekülen
WO2003075949A1 (en) 2002-03-12 2003-09-18 Bio-Click Technologies Ltd. Method and composition for treating skin wounds with epidermal growth factor
CN1720989A (zh) * 2004-07-15 2006-01-18 深圳市清华源兴生物医药科技有限公司 一种表皮生长因子缓释微球及其制备方法与应用
CU23411B6 (es) 2005-12-29 2009-09-08 Ct Ingenieria Genetica Biotech Uso tópico del factor de crecimiento epidérmico en liposomas para prevenir la amputación del pie diabético

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4652441A (en) 1983-11-04 1987-03-24 Takeda Chemical Industries, Ltd. Prolonged release microcapsule and its production
US6086863A (en) 1997-06-04 2000-07-11 Polyheal Ltd. Compositions of microspheres for wound healing
WO2003053458A1 (es) 2001-12-20 2003-07-03 Centro De Ingenieria Genetica Y Biotecnologia Uso de una composición farmacéutica que contiene factor de crecimiento epidérmico (egf) para la prevención de la amputación del pie diabético

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
ABBOTT C.A. ET AL.: "The North-West Diabetes Foot Care Study: incidence of, and risk factors for, new diabetic foot ulceration in a community-based patient cohort", DIABET. MED., vol. 19, no. 5, 2002, pages 377 - 84
ASHAMMAKHI N. ET AL.: "Developments in Craniomaxillofacial Surgery: Use of Self-Reinforced Bioabsorbable Osteofixation Devices", PLAST. RECONSTR. SURG. SPECIAL TOPIC, 2001, pages 167 - 80
BERLANGA J.; CIBRIAN D. ET AL.: "Methylglyoxal administration induces diabetes-like microvascular changes and perturbs the healing process of cutaneous wounds", CLIN SCI (LOND)., vol. 109, no. 1, 2005, pages 83 - 95
BREM H.; SHEEHAN P.; BOULTON A.J.: "Protocol for treatment of diabetic foot ulcers", AM. J. SURG., vol. 187, no. 5A, 2004, pages 1S - 10S
ELDOR R. ET AL.: "New and experimental approaches to treatment of diabetic foot ulcers: a comprehensive review of emerging treatment strategies", DIABET MED., vol. 21, no. 11, 2004, pages 1161 - 73
EPPLEY B.L: "Use of resorbable plates and screws in pediatric facial fractures", J. ORAL MAXILLOFAC. SURG., vol. 63, no. 3, 2005, pages 385 - 91
HAN K. ET AL.: "Site-specific degradation and transport of recombinant human epidermal growth factor (rhEGF) in the rat gastrointestinal mucosa", INT J. PHARM., vol. 168, 1998, pages 189 - 197
LIPSKY B.A.: "Medical treatment of diabetic foot infections", CLIN. INFECT. DIS., vol. 39, no. 2, 2004, pages 104 - 14
MARSTON W.A.: "Dermagraft Diabetic Foot Ulcer Study Group. The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial", DIABETES CARE, vol. 26, 2003, pages 1701 - 5
REIBER G.E.: "The epidemiology of diabetic foot problems", DIABET. MED., vol. 13, no. 1, 1996, pages 56 - 11
REIBER G.E.: "The epidemiology of diabetic foot problems", DIABET. MED., vol. 13, no. 1, 1996, pages 6 - 11
RUIZ J. M. ET AL.: "Microencapsulation peptide: a study of the phase separation of poly (D,L-lactic acid-co-glycolic acid) copolymers 50/50 by silicone oil", J. PHAM. SCI., vol. 49, 1989, pages 69 - 77
VEVES A. ET AL.: "Graftskin, a human skin equivalent, is effective in the management of non-infected neuropathic diabetic foot ulcers: a prospective randomized multicenter clinical trial", DIABETES CARE, vol. 24, 2001, pages 290 - 5
WIEMAN T.J. ET AL.: "Clinical efficacy of beclapermin (rh PDGF-BB) gel", DIABETES CARE, vol. 21, no. 5, 1998, pages 822 - 7

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010000904A1 (es) 2008-07-01 2010-01-07 Laboratorios Farmaceuticos Rovi, S.A. Composición farmacéutica con glicosaminoglicanos y su uso en tratamiento de úlceras crónicas
WO2012101310A1 (es) 2011-01-26 2012-08-02 Laboratorios Farmacéuticos Rovi, S.A. Procedimiento de preparación de derivados de glicosaminoglicanos donadores de óxido nítrico, nitroderivados obtenidos y su uso en tratamiento de úlceras crónicas
EP2737895A1 (en) 2012-11-30 2014-06-04 Praxis Pharmaceutical, S.A. Microparticles with EGF, method of preparation and use
WO2014083233A1 (es) 2012-11-30 2014-06-05 Praxis Pharmaceutical, S.A. Micropartículas con egf, procedimiento de preparación y uso

Also Published As

Publication number Publication date
CU23388B6 (es) 2009-07-16
CA2640743A1 (en) 2007-08-09
PT1987817E (pt) 2009-10-26
MY143742A (en) 2011-07-15
PL1987817T3 (pl) 2010-01-29
SI1987817T1 (sl) 2009-12-31
HK1198743A1 (en) 2015-06-05
RU2426528C2 (ru) 2011-08-20
WO2007087759A3 (es) 2007-09-20
EP1987817B1 (en) 2009-07-29
BRPI0707395A2 (pt) 2011-05-03
CA2640743C (en) 2012-05-15
CN101400338A (zh) 2009-04-01
US8741848B2 (en) 2014-06-03
JP2009525288A (ja) 2009-07-09
AU2007211753A1 (en) 2007-08-09
DE602007001786D1 (de) 2009-09-10
SG169366A1 (en) 2011-03-30
ZA200806648B (en) 2009-05-27
AR059234A1 (es) 2008-03-19
CY1109513T1 (el) 2014-08-13
ES2330688T3 (es) 2009-12-14
EP1987817A2 (en) 2008-11-05
KR101401273B1 (ko) 2014-05-29
ATE437631T1 (de) 2009-08-15
RU2008135354A (ru) 2010-03-10
AU2007211753B2 (en) 2012-03-01
JP5219841B2 (ja) 2013-06-26
CN103933552A (zh) 2014-07-23
KR20080096804A (ko) 2008-11-03
US20090220608A1 (en) 2009-09-03
DK1987817T3 (da) 2009-11-30

Similar Documents

Publication Publication Date Title
WO2007087759A2 (es) Composición farmacéutica de microesferas para prevenir la amputación del pie diabético
Kong et al. Biomimetic hydrogel for rapid and scar-free healing of skin wounds inspired by the healing process of oral mucosa
JP5127449B2 (ja) 流体デポ製剤
Peng et al. Injectable and biodegradable thermosensitive hydrogels loaded with PHBHHx nanoparticles for the sustained and controlled release of insulin
US5736152A (en) Non-polymeric sustained release delivery system
Xu et al. Sustained-release of PDGF from PLGA microsphere embedded thermo-sensitive hydrogel promoting wound healing by inhibiting autophagy
JP6816015B2 (ja) タンパク質またはペプチド伝達用の溶解性マイクロニドル
JP2009538307A (ja) ネイルユニットの状態を治療するための組成物および方法
JP2008523101A (ja) 爪ユニットの状態を治療するための組成物および方法
CN104519834B (zh) 用于治疗骨空隙和开放性骨折的组合物和方法
WO2007073704A1 (es) Uso tópico del factor de crecimiento epidermico en liposomas para prevenir la amputacion del pie diabético
Aghazadeh et al. Vancomycin prolonged release via PLGA system loaded with drug-containing chitosan nanoparticles as a novel in situ forming drug delivery system
CN114401716A (zh) 持续释放的曲前列环素-化合物微粒组合物
TWI767886B (zh) 蛋白質或肽傳遞用的可溶性微針及其製造方法
MX2008009943A (es) Composicion farmaceutica de microesferas para prevenir la amputacion del pie diabetico
WO2014083233A1 (es) Micropartículas con egf, procedimiento de preparación y uso
US20220211683A1 (en) Novel material for skin wound closure and scar prevention
Garcia Villen Aplicaciones farmacéuticas de aluminosilicatos mesoporosos: estudio de arcillas fibrosas (sepiolita y palygorskita) en geles con agua mineromedicinal
Yaseen et al. Local Rosuvastatin Loaded by Thiolated Hyaluronan Hydrogel for Post orthodontic Relapse Reduction. In Vitro Preparation and In Vivo Assessment in Rabbit
ES2568517B1 (es) Composición para liberación controlada de compuestos
Hrynyk Enhanced burn wound healing through controlled and sustained delivery of bioactive insulin from alginate sponge dressings
Salmon et al. Thermosensitive Hydrogels in Dermatology: A Multidisciplinary Overview
Salmon et al. Thermosensitive Hydrogels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2640743

Country of ref document: CA

Ref document number: 2008552668

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007211753

Country of ref document: AU

Ref document number: MX/a/2008/009943

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2007211753

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1866/MUMNP/2008

Country of ref document: IN

Ref document number: 1020087021210

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2008135354

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007702319

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200780009034.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12162505

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0707395

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080731

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)