WO2007086402A1 - Plant stomatal regulatory factor - Google Patents

Plant stomatal regulatory factor Download PDF

Info

Publication number
WO2007086402A1
WO2007086402A1 PCT/JP2007/051049 JP2007051049W WO2007086402A1 WO 2007086402 A1 WO2007086402 A1 WO 2007086402A1 JP 2007051049 W JP2007051049 W JP 2007051049W WO 2007086402 A1 WO2007086402 A1 WO 2007086402A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
plant
amino acid
stomatal
sequence
Prior art date
Application number
PCT/JP2007/051049
Other languages
French (fr)
Japanese (ja)
Inventor
Tatuo Kakimoto
Ryoko Kajita
Kenta Hara
Original Assignee
Osaka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University filed Critical Osaka University
Publication of WO2007086402A1 publication Critical patent/WO2007086402A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • the present invention relates to a plant stomatal regulator.
  • pores in the epidermis of all higher terrestrial plants These plants open and close the pores according to the situation, and adjust the amount of oxygen and carbon dioxide necessary for respiration and carbon dioxide assimilation and the amount of water in the plant body.
  • the pores are two lens-like guard cells that open and close due to inflation pressure.
  • the number and density of pores vary depending on intrinsic (genetic) factors and extrinsic (environmental) factors. For example, it is generally known that the pores are present at high density on the back side of the leaf, and the density of the pores decreases under a growing environment where the carbon dioxide concentration in the atmosphere is increased. However, in any case, the pores are uniformly distributed without concentrating on one leaf. This is because the pattern formation control system that creates pores uniformly in the plant epidermis is working.
  • Patent Document 1 Japanese Translation of Special Publication 2002-527070
  • Non-Patent Document 1 Schluter U, Muschak M, Berger D, Altmann T. Pheoto synthetic performance of an Arabidopsis mutant with elevated stomatal density (sadl— 1) under different light regimes. J Exp B ot. 2003 Feb; 54 (383 ): 867- 74.PMID: 12554730
  • Non-Patent Document 2 Shpak ED, McAbee JM, Pillitteri LJ, Torii KU.Sto matal patterning and differentiation by synergistic interactions of receptor kinases. Science. 2005 Jul 8; 309 (5732): 290-3 PMID:
  • an object of the present invention is to provide a plant stomatal regulator.
  • the stomatal regulator of the plant of the present invention comprises an amino acid sequence selected from the group force consisting of the following (1) to (3) or an amino acid sequence derived therefrom, and the plant It has a function of suppressing the pore formation density.
  • the present inventors paid attention to the fact that there is no known gene that increases the number of cells per individual due to suppression of gene function in plants, and conducted extensive research to identify the gene.
  • two Arabidopsis genes Atlg34245 and At2g20875 which encode a secretory peptide and increase the number of epidermal cells and stomata of leaves by destroying the gene, were identified and reached the present invention.
  • the plant stomatal regulator of the present invention has a function of suppressing plant pore-forming density. Therefore, for example, preferably, the formation density of pores can be adjusted using the pore regulating factor of the present invention. That is, for example, if the expression of the stomatal regulator of the present invention is inhibited, for example, preferably the number of epidermal cells and the number of pores in the leaves without affecting the growth, size, shape and reproduction of the plant are increased. be able to. In addition, for example, if the expression of the stomatal regulator of the present invention is promoted, the leaf stomatal density can be preferably reduced.
  • Plants can be modified to accommodate the environment.
  • FIG. 1 Panels A, B, C and D in FIG. 1 are microscopic photographs of the leaves of the wild strain, Atlg34245 disruption mutant, At2g20875 disruption mutant and double disruption, respectively. An example is shown.
  • FIG. 2 is an example of a phylogenetic tree of the Arabidopsis Atlg34245 gene family.
  • FIG. 3 shows the first leaf (primary leaf) and cotyledon in the At2g20875 expression vector transformation ⁇ 3 ⁇ 4 (X), the Atlg34245 expression vector transformation strain ( ⁇ ), and the vector transformation strain ( ⁇ ). It is an example of the scatter diagram of the pore density.
  • FIG. 4 shows an example of the results of Northern blotting in which At2g20875 expression vector transformation and expression of At2g20875 mRNA in the vector transformation were confirmed.
  • 18S rRNA is an internal standard.
  • FIG. 5 shows an example of photographs taken on Day 20 of a control strain into which only a vector was introduced and an overexpression strain of Atlg34245.
  • the stomatal regulator of the present invention preferably further has, for example, a function of suppressing epidermal cell density.
  • the plant production method of the present invention is a plant production method including a step of promoting or suppressing the expression of the stomatal regulator of the present invention.
  • the plant breeding method of the present invention comprises the nucleotide base sequence according to any one of (4) to (7) below: Alternatively, a plant breeding method comprising a step of detecting the presence of a gene of the stomatal regulatory factor of the present invention or a substitution, deletion or addition in the gene using a polynucleotide having a complementary sequence ability or a part thereof. .
  • a nucleotide base sequence from the 158th to 517th positions of SEQ ID NO: 1 or SEQ ID NO: 1 in the sequence listing, or from the 102nd to 413th positions of SEQ ID NO: 3 or SEQ ID NO: 3.
  • nucleotide base sequence homologous to the nucleotide base sequence of (4) or (5) above, wherein at least one nucleotide is substituted, deleted or added.
  • the “plant” is not particularly limited, but is preferably a higher terrestrial plant having pores, and is used for, for example, food, feed, ornamental, environmental, experimental, and resource use. Includes plants.
  • the “plant” in the present invention is, for example, a seed plant, which may be a gymnosperm plant, an angiosperm plant, a monocotyledonous plant, or a dicotyledonous plant.
  • the “plant” in the present invention may be a woody plant or a plant plant.
  • plants for food and feed include monocotyledonous plants such as wheat, barley, sorghum, millet, rye, triticale, corn, rice (rice), oats and sugar cane, rapeseed, pepper, Arabidopsis, cabbage or canola Brassicaceae, Soybean, Alfalfa, Endo, Kidney Bean or Legume, etc., Potato, Tobacco, Tomato, Eggplant or Pepper, etc. Includes dicotyledonous plants such as cucurbitaceae and celeryaceae such as carrots.
  • Ornamental plants include roses such as roses, rhododendrons such as rhododendrons and azaleas; Genus, spinach, etc., orchids such as orchids, gladiolus, freesia containing Aya, crocuses, etc. Includes cucumbers such as figs.
  • Environmental and resource plants include various trees and experiments Examples of plants for use include Arabidopsis thaliana, rice, corn, Miyakogusa and the like.
  • the nucleotide base sequence of SEQ ID NO: 1 or 3 in the sequence listing is an mRNA (cDNA) sequence encoded by the Arabidopsis gene Atlg34245 and At2g20875, respectively, Technology Information Center) Nucleotide nucleotide sequences with Nucleotide database registration numbers NM-103147 and NM-127657, respectively.
  • the “mRNA sequence” includes a non-translated sequence and a coding sequence (CDS; Coding Sequence), one of them, or a partial force sequence thereof. For example, a sequence obtained by removing the stop codon from CDS is also included.
  • sequence from the 158th to the 517th sequence of SEQ ID NO: 1 refers to the sequence obtained by removing the stop codon from the CDS of the Atlg34245 gene.
  • sequence refers to a sequence obtained by removing the stop codon from the CDS of the At2g20875 gene.
  • amino acid sequence of SEQ ID NO: 2 or 4 in the sequence listing is the amino acid sequence encoded by the Arabidopsis gene Atlg34245 and At2g20875, respectively, and NCBI (US Biotechnology Information) Center)
  • the amino acid sequences whose protein database registration numbers are NP-564442 and NP-179684, respectively.
  • the Arabidopsis Atlg34245 gene and At2g20875 gene refer to genes whose NCBI (National Center for Biotechnology Information) Nucleotide database registration numbers are NC-003070 and NC-003071, respectively.
  • orthologous gene refers to a corresponding gene in a different species.
  • the orthologous gene or protein is also simply referred to as an ortholog.
  • Orthologues in different species corresponding to a certain protein can be determined using, for example, homology with the amino acid sequence or nucleotide base sequence of the protein as an index. That is, the gene showing the highest homology among the genes of the different species can be determined as the orthologous gene.
  • homology means identity or similarity between two or more sequences.
  • proteins include peptides, oligopeptides, and polypeptides.
  • Examples of orthologous genes of 20875 include rice (Orvza sativa) OSJNBa0036B21.12 and soybean (Glycine max) (BU550776jf).
  • the phylogeny of this figure was created by analyzing the amino acid sequence of the protein encoded by the described gene using analysis software (ClustalW), as shown in the phylogenetic tree of the figure.
  • the genes may include Sarasuko, maize BI43667 gene, and rice (rice) OSJNBb0034I13.14 gene.
  • the stomatal regulator of the present invention includes the cDNA sequences of At4gl4723 and At3g22820 (NM—001036564 (SEQ ID NO: 5) and NM—113181 (SEQ ID NO: 7)), a part thereof, a complementary sequence thereof, Or an amino acid sequence encoded by the At4gl4723 and At3g22820 genes (NP — 001031641 (SEQ ID NO: 6) and NP — 188921 (SEQ ID NO: 8)), a part thereof, or a portion thereof. Includes proteins consisting of these homologous sequences.
  • Gene A and gene B in Fig. 2 are unregistered genes of Arabidopsis thaliana and have the sequences of SEQ ID NOs: 9 and 10, respectively.
  • whether or not a factor has a function of suppressing pore formation density is measured by, for example, whether or not the number of pores per unit area of the leaf increases or decreases when the factor gene is disrupted. It can be said that if it breaks and the density increases, it has a suppression function.
  • whether a factor has a function of suppressing epidermal cell density depends on whether, for example, the number of epidermal cells per leaf unit area increases or decreases when the gene of the factor is destroyed. It can be measured, and if it breaks and the density increases, it can be said that there is a suppression function.
  • the stomatal regulatory factor of the present invention is suitable using, for example, the polynucleotide of SEQ ID NO: 1 or 3 in the sequence listing, preferably using the stomatal regulatory factor expression vector of the present invention described later. It can be obtained by expressing in cells.
  • the stomatal regulator of the present invention ! , And (1) to (3) an amino group in which a group force is also selected
  • An amino acid sequence derived from an acid sequence refers to an amino acid sequence after being processed by proteolysis in a plant. Examples of the processing include cleavage of a signal sequence and protein degradation by SDD1 protease and its ortholog.
  • the amino acid sequence of the stomatal regulator of the present invention includes (1) the amino acid sequence of SEQ ID NO: 2 or 4 in the sequence listing, and (2) the atologue gas of at least one of the Arabidopsis Atlg34245 gene and the Arabidopsis At2g20875 gene. In addition to the amino acid sequence encoded by the gene, it further comprises an amino acid sequence that is homologous to the amino acid sequences of (1) and (2) above.
  • the term "homologous" in the amino acid sequence of proteins means that they are sufficiently similar to maintain their functions. For example, even if there are differences in amino acid sequences due to substitutions, deletions, or attachments, they can be said to be “homologous” if they do not affect the function of the protein.
  • the number of amino acid residues to be substituted, deleted or added is, for example, 1 to 40, 1 to 20, 1 to 15, 1 to: LO, 1 to 5, 1 to 3, One or two or one.
  • a nucleotide base sequence that is “homologous” means that it is sufficiently similar to maintain its function.
  • the stringent conditions are not particularly limited.
  • Tm denatured salmon sperm nucleic acid
  • Tm 81. 5- 16. 6 (log [Na + ]) +0.41 (% G + C)-(600 / N)
  • N is the chain length of the polynucleotide
  • % G + C is the content of guanine and cytosine residues in the polynucleotide.
  • the stomatal regulator of the present invention can be used, for example, by promoting expression in plant cells in order to reduce the stomatal density.
  • the stomatal regulator of the present invention can also be used as a target for destruction or inhibition in the plant genome, for example, to increase stomatal density or cell epidermal density.
  • One embodiment of the use of the stomatal regulator of the present invention includes the method for producing the plant of the present invention including the step of promoting or suppressing the expression of the stomatal regulator of the present invention.
  • plants produced by the production method of the plant of the present invention include plant individuals, their progeny and clones, and propagation materials (for example, seeds, fruits, cuttings, tubers, tuberous roots, strains, Callus, protoplast, etc.).
  • Such a plant production method of the present invention can be used, for example, for production of a plant having an increased pore density or epidermal cell density or a plant having a decreased pore density.
  • the step of promoting or suppressing the expression of the stomatal regulator of the present invention is not particularly limited, and examples thereof include a method for producing a transgenic plant and a method for molecular breeding.
  • transgenic plant in which the expression of the stomatal regulator of the present invention is promoted or suppressed will be described.
  • the term “transgenic plant” refers to a plant cell, plant tissue, or plant individual that retains a foreign gene that has been incorporated into the genome of the plant by gene transfer. As well as propagation materials (eg, seeds, fruits, cuttings, tubers, tuberous roots, strains, callus, protoplasts, etc.) obtained from these forces.
  • propagation materials eg, seeds, fruits, cuttings, tubers, tuberous roots, strains, callus, protoplasts, etc.
  • the stomatal regulator of the present invention whose expression is promoted or suppressed may be one or two or more when the plant has two or more types.
  • the method for producing a transgenic plant in which the expression of the stomatal regulator of the present invention is promoted is not particularly limited.
  • the aforementioned Introducing a foreign gene into which a polynucleotide having the sequence of 4) to (7) is transcribed in a transcribable manner into a plant, and as a second step, selecting a host cell into which the foreign gene has been introduced and redifferentiating it into an individual.
  • the method containing is mentioned.
  • Examples of methods for introducing foreign genes into plants include the particle gun method, the polyethylene glycol method (PEG method), A direct physical method, such as the electroporation method, which directly punctures a part of a plant cell and introduces a gene into the plant cell from this hole, such as the agrobacterium method, virus Examples include indirect and biological methods that utilize the gene transfer ability of microorganisms and viruses, such as the vector method.
  • the expression vector used for introduction into the plant is not particularly limited, but can be expressed in a plant cell, for example, a plasmid having a T-DNA region used in the agrobacterium method, or a virus vector.
  • TMV Tobacco Mosaic Virus
  • BM Bromo Mosaic Virus
  • CMV cucumber mosaic virus
  • the method for producing the transgenic plant in which the expression of the stomatal regulator of the present invention is suppressed is not particularly limited.
  • the Atlg34245 gene and the Z or At 2g20875 gene, or the gene for these orthologous genes are not particularly limited.
  • RNA interference method examples include methods using antisense RNA, short inhibitory RNA (siRNA), microRNA (miRNA) and the like.
  • Examples of the method of molecular breeding a plant in which the expression of the stomatal regulator of the present invention is promoted or suppressed include a reverse genetic method that does not perform genetic recombination such as a tilling method.
  • the polynucleotides (4) to (7) and a part thereof may include the presence or absence of the gene of the stomatal regulatory factor of the present invention, substitution, deletion, addition, etc. It can be used as a primer or a probe in screening for detecting mutations.
  • These double disruption strains were prepared from the Atlg34245 disruption mutant (SALK-047918; Arabidopsis BBiological Resource Center) and the At2g20875 disruption mutant (SALK-137549; the same as above). Specifically, seeds were obtained by self-pollination of a plant (F1) of a generation in which the Atlg34245 disruption mutant and the At2g20875 disruption mutant were crossed. Next, plant power DNA cultivated with these seed strengths was obtained, and those in which both genes were disrupted as homozygotes were selected as double disruption strains.
  • the density of epidermal cells (individual Zmm 2 ) on the back side of the dorsal axis of the first leaf was measured 20 days after sowing.
  • Table 1 examples of microscopic photographs of wild strains, Atlg34245 disruption mutants, At2g20875 disruption mutants and double disruption strains are shown in panels A, B, C and D in Fig. 1, respectively. Show.
  • the porosity density increased when either Atlg34245 or At2g20875 gene was disrupted (panels B and C in Fig. 1).
  • a binary vector pTKO 16 having a cauliflower mosaic virus (CaMV) -derived 35S promoter in the T-DNA region was prepared as described in the literature (WO02Z07 2818). That is, an omega sequence, which is a translation promoting sequence, is ligated downstream of the 35SRNA gene promoter that is engineered so that the enhancer of the cauliflower mosaic virus 35SRNA gene is duplicated twice, and a multicloning site and a transcription termination sequence are downstream of it.
  • the cassette was prepared and the pGPTV—Bar (Becker R et al., Plant
  • Atlg34245 and At2g 20875 CDS were linked to this multi-cleaning site of pTK016 to allow expression, and expression vectors pTK016—Atlg34245 and pTK016—At2g 20875 were prepared respectively .
  • the expression vectors PTK016-Atlg34245 and pTK016-At2g20875 and the control vector pTK016 were transfected into callus of Arabidopsis thaliana by a conventional agrobacterium method to obtain a transformed strain.
  • the agrobacterium method followed the method of Akama et al. (Akama, K. et al. 1992 Plant Cell Rep. 12, 7-11). After culturing the obtained transformant for 15 days, the pore density (individual Zmm 2 ) of the pores behind the cotyledons and the first leaves (primary leaves) was measured. The results are shown in Fig. 3.
  • the stomatal density of A tlg34245 and At2g20875 transformants tended to be low in both the cotyledons and the first leaves.
  • the effect of suppressing the stomatal density due to overexpression was significant at p ⁇ 0.01.
  • the results of Northern blotting for V2 and At2g20875 mRNA and 18S rRNA are shown below.
  • the 18S rRNA is an internal standard.
  • the pore density of the samples Nos. 5, 8, and 21 in which the expression level of At2g20875 mRNA was particularly high was significantly reduced as shown in Table 2 below.
  • No. 9, 16, and 18 samples with low expression levels of At2g20875 mRNA showed high pore density close to that of the control strain (FIG. 4 and Table 2 below). Thus, it was confirmed that the degree of decrease in the pore density depends on the expression level of At2g20875.
  • the drought tolerance of the overexpressing strain of Atlg34245 was confirmed.
  • the pTK016-Atlg34245 transformed T2 generation was used as an overexpressing strain of Atlg34245, and the T2 generation of a vector (pTD016) -introduced strain was used as a control.
  • the drying resistance experiment was performed under the following conditions.
  • GM plate seeds absorbed for about 30 minutes were sterilized with 70% ethanol, washed, and seeded on a GM plate.
  • the composition of the GM plate is MURASHIGE & SKOOG MEDIUM Basal Salt Mixture (DUCHIHEFA BIOCHEMIE No. M0221.0010) 4.3 g, 1% sucrose, 0.05% MES-KOH (pH 5.7), 500 X Vitamin stock solution (500ml, inositol 5g, thiamine hydrochloride lg, pyridoxine hydrochloride 50mg, nicotinic acid 50mg) 2ml, phytagel 3g.
  • the plate was stored in a low temperature room for 2 days, and then the GM plate was transferred to a vertically-lighted vertical incubator and incubated at 23 ° C for 8 days. Then replanted to vermulite (50ml), 1Z2MS (2.15g of MURAS HIGE & SKOOG MEDIUM Basal Salt Mixture (same as above) was added to 800ml of deionized water and completely dissolved, adjusted to pH 5.7 with KOH. After that, 25 ml of 1 L) was added, and the plant was placed in a vat and covered with saran wrap, and incubated at 23 ° C under constant light on a room incubator. After this, water was not added to the plant. Moved to a room type incubator and removed Saran Wrap on the second day (Day 0).
  • Atlg34245-overexpressing strain significantly increased the survival rate under dry conditions (50%) compared to the control (5.3%). Furthermore, when focusing on the survival rate according to the phenotype (number of stomatal density) of the overexpressing strain, the survival rate increased to 60% in individuals with overexpression of Atlg34245 and the number of pores was about half that of the wild strain, In individuals with few pores, survival increased to 85.7%.
  • a plant is modified so that it can cope with various water environments and CO environments.
  • the present invention is useful in the fields of agriculture, forestry, and environmental conservation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

It is intended to provide a plant stomatal regulatory factor. The plant stomatal regulatory factor of the invention comprises an amino acid sequence selected from the group consisting of the following (1) to (3) or an amino acid sequence derived therefrom and has a function to inhibit the plant stomatal formation density. (1) An amino acid sequence represented by SEQ ID NO: 2 or 4 in the sequence listing. (2) An amino acid sequence encoded by an orthologous gene of at least one of At1g34245 gene of Arabidopsis thaliana and At2g20875 gene of Arabidopsis thaliana. (3) An amino acid sequence in which one or several amino acids have been substituted, deleted or added in the amino acid sequence of (1) or (2).

Description

明 細 書  Specification
植物の気孔調節因子  Plant stomatal regulator
技術分野  Technical field
[0001] 本発明は、植物の気孔調節因子に関する。  [0001] The present invention relates to a plant stomatal regulator.
背景技術  Background art
[0002] 全ての高等陸生植物の表皮には気孔が存在する。これらの植物は、気孔を状況に 応じて開閉することにより、呼吸や炭酸同化に必要な酸素及び炭酸ガスのガス交換 や、植物体内の水分量を調節している。気孔は 2つのレンズ状の孔辺細胞力 なり、 膨圧によって開閉する。気孔の数や密度は、内因性 (遺伝的)因子及び外因性 (環 境)因子で変動する。例えば、一般的に、気孔は葉の裏側に高密度に存在し、また、 大気中の炭酸ガス濃度が上昇した生育環境下では気孔の密度が減少することが知 られている。しかしながら、いずれの場合であっても、気孔は、葉の一ヶ所に集中する ことはなぐ均一に分布する。これは、植物表皮に均一に気孔をつくるパターン形成 制御システムが働 、て 、るからである。  [0002] There are pores in the epidermis of all higher terrestrial plants. These plants open and close the pores according to the situation, and adjust the amount of oxygen and carbon dioxide necessary for respiration and carbon dioxide assimilation and the amount of water in the plant body. The pores are two lens-like guard cells that open and close due to inflation pressure. The number and density of pores vary depending on intrinsic (genetic) factors and extrinsic (environmental) factors. For example, it is generally known that the pores are present at high density on the back side of the leaf, and the density of the pores decreases under a growing environment where the carbon dioxide concentration in the atmosphere is increased. However, in any case, the pores are uniformly distributed without concentrating on one leaf. This is because the pattern formation control system that creates pores uniformly in the plant epidermis is working.
[0003] 気孔パターン形成制御システムについては、次のメカニズムが知られている。すな わち、気孔形成系列の幹細胞 (メリステモイド)から分泌される分泌シグナル分子が S DDIプロテアーゼによりプロセッシングされ、これが、 TMM受容体キナーゼ及び ER ECTAファミリー受容体キナーゼファミリーより認識されるというものである(特許文献 1並びに非特許文献 1及び 2参照)。し力しながら、前記分泌シグナル分子が何であ るのかがわ力つていない。よって、気孔の密度と分布のバランスを調節する気孔パタ ーン形成制御システムの理解には、前記分泌シグナルの解明が必要である。  [0003] Regarding the pore pattern formation control system, the following mechanism is known. In other words, secretory signal molecules secreted from stomatogenic stem cells (meristemoids) are processed by SDDI protease, which is recognized by TMM receptor kinase and ER ECTA family receptor kinase family (See Patent Document 1 and Non-Patent Documents 1 and 2). However, it is not clear what the secretory signal molecule is. Therefore, understanding the stomatal pattern formation control system that regulates the balance between stomatal density and distribution requires the elucidation of the secretory signal.
[0004] 一方で、葉の気孔や表皮細胞の密度の調節は、農業や林業の分野で大きな意味 を持つ。例えば、気孔密度や表皮細胞密度を増加させることで、炭酸同化速度の上 昇、糖及びタンパク質の蓄積量の増力 tl、すなわち、バイオマスの増加が期待できる( 例えば、特許文献 1)。また、例えば、気孔密度を減少させることで耐乾燥性の向上 が期待できる。  [0004] On the other hand, regulation of the density of leaf stomata and epidermal cells has great significance in the fields of agriculture and forestry. For example, increasing the stomatal density or epidermal cell density can be expected to increase the carbon dioxide assimilation rate, increase tl of the accumulated amount of sugar and protein, that is, increase the biomass (for example, Patent Document 1). In addition, for example, improvement in drying resistance can be expected by reducing the pore density.
特許文献 1:特表 2002— 527070号公報 非特許文献 1 : Schluter U, Muschak M, Berger D, Altmann T. Ph oto synthetic performance of an Arabidopsis mutant with elevated stomatal density (sadl— 1) under different light regimes. J Exp B ot. 2003 Feb ; 54 (383) : 867- 74. PMID : 12554730 Patent Document 1: Japanese Translation of Special Publication 2002-527070 Non-Patent Document 1: Schluter U, Muschak M, Berger D, Altmann T. Pheoto synthetic performance of an Arabidopsis mutant with elevated stomatal density (sadl— 1) under different light regimes. J Exp B ot. 2003 Feb; 54 (383 ): 867- 74.PMID: 12554730
非特許文献 2 : Shpak ED, McAbee JM, Pillitteri LJ, Torii KU. Sto matal patterning and differentiation by synergistic interactions of r eceptor kinases. Science. 2005 Jul 8 ; 309 (5732) : 290- 3. PMID :  Non-Patent Document 2: Shpak ED, McAbee JM, Pillitteri LJ, Torii KU.Sto matal patterning and differentiation by synergistic interactions of receptor kinases. Science. 2005 Jul 8; 309 (5732): 290-3 PMID:
16002616  16002616
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] そこで、本発明は、植物の気孔調節因子の提供を目的とする。 [0005] Accordingly, an object of the present invention is to provide a plant stomatal regulator.
課題を解決するための手段  Means for solving the problem
[0006] 前記目的を達成するために、本発明の植物の気孔調節因子は、下記(1)〜(3)か らなる群力 選択されるアミノ酸配列又はそれに由来するアミノ酸配列からなり、前記 植物の気孔形成密度を抑制する機能を有することを特徴とする。 [0006] In order to achieve the above object, the stomatal regulator of the plant of the present invention comprises an amino acid sequence selected from the group force consisting of the following (1) to (3) or an amino acid sequence derived therefrom, and the plant It has a function of suppressing the pore formation density.
(1)配列表の配列番号 2又は 4のアミノ酸配列。  (1) The amino acid sequence of SEQ ID NO: 2 or 4 in the sequence listing.
(2)シロイヌナズナ Atlg34245遺伝子及びシロイヌナズナ At2g20875遺伝子の少 なくとも一方のォーソロガス遺伝子がコードするアミノ酸配列。  (2) Amino acid sequence encoded by at least one orthologous gene of Arabidopsis Atlg34245 gene and Arabidopsis At2g20875 gene.
(3)前記(1)又は(2)のアミノ酸配列において、 1個若しくは数個のアミノ酸が、置換、 欠失又は付加されたアミノ酸配列。  (3) An amino acid sequence in which one or several amino acids are substituted, deleted or added in the amino acid sequence of (1) or (2).
発明の効果  The invention's effect
[0007] 本発明者らは、植物において遺伝子機能の抑制により個体あたりの細胞数が増加 する遺伝子が知られていないことに着目し、その遺伝子を同定するために鋭意研究 を重ねた。その結果、分泌型ペプチドをコードし、その遺伝子を破壊することにより葉 の表皮細胞数及び気孔数が上昇する 2つのシロイヌナズナ遺伝子 Atlg34245及び At2g20875を同定し、本発明に到達した。  [0007] The present inventors paid attention to the fact that there is no known gene that increases the number of cells per individual due to suppression of gene function in plants, and conducted extensive research to identify the gene. As a result, two Arabidopsis genes Atlg34245 and At2g20875, which encode a secretory peptide and increase the number of epidermal cells and stomata of leaves by destroying the gene, were identified and reached the present invention.
[0008] 本発明の植物の気孔調節因子は、植物の気孔形成密度を抑制する機能を有する から、例えば、好ましくは、本発明の気孔調節因子を利用して気孔の形成密度を調 節できる。すなわち、例えば、本発明の気孔調節因子の発現を阻害すれば、例えば 、好ましくは、その植物の成長、大きさ、形、生殖に影響を及ぼすことなぐ葉の表皮 細胞数及び気孔数を増加させることができる。また、例えば、本発明の気孔調節因子 の発現を促進すれば、好ましくは、葉の気孔密度を減少させることができる。 [0008] The plant stomatal regulator of the present invention has a function of suppressing plant pore-forming density. Therefore, for example, preferably, the formation density of pores can be adjusted using the pore regulating factor of the present invention. That is, for example, if the expression of the stomatal regulator of the present invention is inhibited, for example, preferably the number of epidermal cells and the number of pores in the leaves without affecting the growth, size, shape and reproduction of the plant are increased. be able to. In addition, for example, if the expression of the stomatal regulator of the present invention is promoted, the leaf stomatal density can be preferably reduced.
[0009] 上述したとおり、気孔密度や表皮細胞密度を増加させることで、例えば、炭酸同化 速度の上昇や糖及びタンパク質の蓄積量の増加が期待でき、気孔密度を減少させ ることで耐乾燥性の向上が期待できるから、本発明によれば、様々な水環境や CO  [0009] As described above, by increasing the pore density and epidermal cell density, for example, an increase in the carbon assimilation rate and an increase in the amount of sugar and protein accumulated can be expected, and by reducing the pore density, drought resistance can be expected. Therefore, according to the present invention, various water environments and CO
2 環境に対応できるように植物を改変することが可能となる。  2 Plants can be modified to accommodate the environment.
図面の簡単な説明  Brief Description of Drawings
[0010] [図 1]図 1のパネル A、 B、 C及び Dは、それぞれ、野生株、 Atlg34245破壊変異株 、 At2g20875破壊変異株及び二重破壊株の葉の表皮を観察した顕微鏡観察写真 の一例を示す。  [0010] [FIG. 1] Panels A, B, C and D in FIG. 1 are microscopic photographs of the leaves of the wild strain, Atlg34245 disruption mutant, At2g20875 disruption mutant and double disruption, respectively. An example is shown.
[図 2]図 2は、シロイヌナズナ Atlg34245遺伝子ファミリーの系統樹の一例である。  FIG. 2 is an example of a phylogenetic tree of the Arabidopsis Atlg34245 gene family.
[図 3]図 3は、 At2g20875発現ベクター形質転^ ¾ ( X )、 Atlg34245発現べクタ 一形質転換株 (參)、及びベクター形質転換株 (〇)における第一葉 (初生葉)及び子 葉の気孔密度の散布図の一例である。  [FIG. 3] FIG. 3 shows the first leaf (primary leaf) and cotyledon in the At2g20875 expression vector transformation ^ ¾ (X), the Atlg34245 expression vector transformation strain (參), and the vector transformation strain (〇). It is an example of the scatter diagram of the pore density.
[図 4]図 4は、 At2g20875発現ベクター形質転^ ¾及びベクター形質転^ ¾におけ る At2g20875mRNAの発現を確認したノザンブロットの結果の一例を示す。 18Sr RNAは内部標準である。  [FIG. 4] FIG. 4 shows an example of the results of Northern blotting in which At2g20875 expression vector transformation and expression of At2g20875 mRNA in the vector transformation were confirmed. 18S rRNA is an internal standard.
[図 5]図 5は、ベクターのみを導入したコントロール株及び Atlg34245の過剰発現株 の Day20における状態を撮影した写真の一例を示す。  [FIG. 5] FIG. 5 shows an example of photographs taken on Day 20 of a control strain into which only a vector was introduced and an overexpression strain of Atlg34245.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 本発明の気孔調節因子は、例えば、さらに、表皮細胞密度を抑制する機能を有す ることが好ましい。 [0011] The stomatal regulator of the present invention preferably further has, for example, a function of suppressing epidermal cell density.
[0012] 本発明の植物の生産方法は、本発明の気孔調節因子の発現を促進又は抑制する 工程を含む植物の生産方法である。  [0012] The plant production method of the present invention is a plant production method including a step of promoting or suppressing the expression of the stomatal regulator of the present invention.
[0013] 本発明の植物の育種方法は、下記 (4)から(7)のいずれかのヌクレオチド塩基配列 若しくはその相補配列力もなるポリヌクレオチド又はその一部を用いて、本発明の気 孔調節因子の遺伝子の存在又は前記遺伝子における置換、欠失若しくは付加を検 出する工程を含む植物の育種方法である。 [0013] The plant breeding method of the present invention comprises the nucleotide base sequence according to any one of (4) to (7) below: Alternatively, a plant breeding method comprising a step of detecting the presence of a gene of the stomatal regulatory factor of the present invention or a substitution, deletion or addition in the gene using a polynucleotide having a complementary sequence ability or a part thereof. .
(4)配列表の配列番号 1若しくは配列番号 1の第 158から 517番目、又は、配列番号 3若しくは配列番号 3の第 102から 413番目のヌクレオチド塩基配列。  (4) A nucleotide base sequence from the 158th to 517th positions of SEQ ID NO: 1 or SEQ ID NO: 1 in the sequence listing, or from the 102nd to 413th positions of SEQ ID NO: 3 or SEQ ID NO: 3.
(5)シロイヌナズナ Atlg34245遺伝子及びシロイヌナズナ At2g20875遺伝子の少 なくとも一方のォーソロガス遺伝子又はその mRNAのヌクレオチド塩基配列。  (5) The nucleotide base sequence of at least one orthologous gene of Arabidopsis Atlg34245 gene and Arabidopsis At2g20875 gene or mRNA thereof.
(6)前記 (4)又は(5)のヌクレオチド塩基配列と相同なヌクレオチド塩基配列であって 、少なくとも 1個のヌクレオチドが、置換、欠失又は付加されたヌクレオチド塩基配列。 (6) A nucleotide base sequence homologous to the nucleotide base sequence of (4) or (5) above, wherein at least one nucleotide is substituted, deleted or added.
(7)前記 (4)又は(5)のヌクレオチド塩基配列の相補配列とストリンジ ントな条件下 でノヽイブリダィズするヌクレオチド塩基配列。 (7) A nucleotide base sequence that is hybridized under stringent conditions with a complementary sequence of the nucleotide base sequence of (4) or (5) above.
本発明において、「植物」は、特に制限されないが、好ましくは、気孔を備える高等 陸生植物であって、例えば、食糧用、飼料用、観賞用、環境用、実験用および資源 用等に用いられる植物を含む。また、本発明における「植物」は、例えば、種子植物 であって、裸子植物であっても被子植物であってもよぐ単子葉植物であっても双子 葉植物であってもよい。さらに、本発明における「植物」は、木本植物であってもよぐ 草木植物であってもよい。食糧用、飼料用植物としては、例えば、コムギ、ォォムギ、 モロコシ、キビ、ライムギ、ライコムギ、トウモロコシ、コメ(イネ)、オートムギ、サトウキビ 等の単子葉植物、ナタネ、コショウソゥ、シロイヌナズナ、キャベツ又はキャノーラ等の アブラナ科、ダイズ、アルファルファ、エンドゥ、インゲンマメ又は落花生等のマメ科、 ジャガイモ、タバコ、トマト、ナス又はコショウ等のナス科、ヒマヮリ、レタス又はキンセン カ属等のキク科、メロン、カボチヤ又はズッキーニ等のゥリ科、及び、ニンジン等のセリ 科等の双子葉植物を含む。観賞用植物としては、バラ等のバラ科、シャクナゲ、ァザ レア等のッッジ科、ショウジヨウソゥ及びクロトン等のトウダイダサ科、セキチク等のナ デシコ科、ペチュニア等のナス科、アフリカスミレ等のゲスネリァ属、ホウセン力等のッ リフネソゥ科、ラン等のラン科、グラジオラス、アヤ入フリージア、クロッカス等のアヤメ 科、マリーゴールド等のキク科、ゼラ -ゥム等のフゥロソゥ科、ドラセナ等のユリ科、ィ チジク等のクヮ科を含む。環境用 ·資源用植物としては、各種樹木が挙げられ、実験 用植物としては、シロイヌナズナ、イネ、トウモロコシ、ミヤコグサ等が挙げられる。 In the present invention, the “plant” is not particularly limited, but is preferably a higher terrestrial plant having pores, and is used for, for example, food, feed, ornamental, environmental, experimental, and resource use. Includes plants. The “plant” in the present invention is, for example, a seed plant, which may be a gymnosperm plant, an angiosperm plant, a monocotyledonous plant, or a dicotyledonous plant. Furthermore, the “plant” in the present invention may be a woody plant or a plant plant. Examples of plants for food and feed include monocotyledonous plants such as wheat, barley, sorghum, millet, rye, triticale, corn, rice (rice), oats and sugar cane, rapeseed, pepper, Arabidopsis, cabbage or canola Brassicaceae, Soybean, Alfalfa, Endo, Kidney Bean or Legume, etc., Potato, Tobacco, Tomato, Eggplant or Pepper, etc. Includes dicotyledonous plants such as cucurbitaceae and celeryaceae such as carrots. Ornamental plants include roses such as roses, rhododendrons such as rhododendrons and azaleas; Genus, spinach, etc., orchids such as orchids, gladiolus, freesia containing Aya, crocuses, etc. Includes cucumbers such as figs. Environmental and resource plants include various trees and experiments Examples of plants for use include Arabidopsis thaliana, rice, corn, Miyakogusa and the like.
[0015] 本発明において、「配列表の配列番号 1又は 3のヌクレオチド塩基配列」とは、それ ぞれ、シロイヌナズナの遺伝子 Atlg34245及び At2g20875がコードする mRNA ( cDNA)配列であって、 NCBI (米国バイオテクノロジー情報センター) Nucleotideデ ータベースの登録番号が、それぞれ、 NM— 103147及び NM— 127657であるヌ クレオチド塩基配列をいう。また、本発明において、「mRNA配列」は、非翻訳配列 及びコード配列(CDS; Coding Sequence)を含むもの、いずれか一方からなるも の、又は、それらの一部分力 なる配列を含む。たとえば、 CDSから終止コドンを除 いた配列も含まれる。「配列表の配列番号 1の第 158から 517番目の配列」とは、 At lg34245遺伝子の CDSから終止コドンを除 、た配列を指し、「配列表の配列番号 3 の第 102力ら 413番目の配列」とは、 At2g20875遺伝子の CDSから終止コドンを除 いた配列を指す。  In the present invention, “the nucleotide base sequence of SEQ ID NO: 1 or 3 in the sequence listing” is an mRNA (cDNA) sequence encoded by the Arabidopsis gene Atlg34245 and At2g20875, respectively, Technology Information Center) Nucleotide nucleotide sequences with Nucleotide database registration numbers NM-103147 and NM-127657, respectively. In the present invention, the “mRNA sequence” includes a non-translated sequence and a coding sequence (CDS; Coding Sequence), one of them, or a partial force sequence thereof. For example, a sequence obtained by removing the stop codon from CDS is also included. “The sequence from the 158th to the 517th sequence of SEQ ID NO: 1” refers to the sequence obtained by removing the stop codon from the CDS of the Atlg34245 gene. “Sequence” refers to a sequence obtained by removing the stop codon from the CDS of the At2g20875 gene.
[0016] 本発明にお 、て、「配列表の配列番号 2又は 4のアミノ酸配列」とは、それぞれ、シ ロイヌナズナの遺伝子 Atlg34245及び At2g20875がコードするアミノ酸配列であ つて、 NCBI (米国バイオテクノロジー情報センター) Proteinデータベースの登録番 号が、それぞれ、 NP— 564442及び NP— 179684であるアミノ酸配列をいう。  In the present invention, the “amino acid sequence of SEQ ID NO: 2 or 4 in the sequence listing” is the amino acid sequence encoded by the Arabidopsis gene Atlg34245 and At2g20875, respectively, and NCBI (US Biotechnology Information) Center) The amino acid sequences whose protein database registration numbers are NP-564442 and NP-179684, respectively.
[0017] 本発明において、シロイヌナズナの Atlg34245遺伝子及び At2g20875遺伝子と は、 NCBI (米国バイオテクノロジー情報センター) Nucleotideデータベースの登録 番号が、それぞれ、 NC— 003070及び NC— 003071である遺伝子をいう。  [0017] In the present invention, the Arabidopsis Atlg34245 gene and At2g20875 gene refer to genes whose NCBI (National Center for Biotechnology Information) Nucleotide database registration numbers are NC-003070 and NC-003071, respectively.
[0018] 本発明において、「ォーソロガス遺伝子」とは、異なる種における対応する遺伝子を いう。また、ォーソロガス遺伝子又はタンパク質を、単にォーソログともいう。あるタン ノ ク質に対応する異なる種におけるォーソログは、例えば、前記タンパク質のアミノ酸 配列やヌクレオチド塩基配列との相同性を指標に決定することができる。すなわち、 前記異なる種の遺伝子のうち、最も高い相同性を示す遺伝子を、ォーソロガス遺伝 子として決定できる。ここで、相同性とは、 2本以上の配列間の同一性又は類似性の ことをいう。なお、本発明において、タンパク質は、ペプチド、オリゴペプチド、ポリべ プチドを含む。  [0018] In the present invention, "orthologous gene" refers to a corresponding gene in a different species. The orthologous gene or protein is also simply referred to as an ortholog. Orthologues in different species corresponding to a certain protein can be determined using, for example, homology with the amino acid sequence or nucleotide base sequence of the protein as an index. That is, the gene showing the highest homology among the genes of the different species can be determined as the orthologous gene. Here, homology means identity or similarity between two or more sequences. In the present invention, proteins include peptides, oligopeptides, and polypeptides.
[0019] 前記(2)におけるシロイヌナズナ Atlg34245遺伝子、及び、シロイヌナズナ At2g 20875遺伝子のォーソロガス遺伝子としては、それぞれ、コメ(イネ: Orvza sativa) の OSJNBa0036B21. 12遣伝子、及び、ダイズ(Glycine max) ( BU550776jf 伝子が挙げられる。これらの遺伝子の系統榭を図 2に示す。同図の系統図は、記載さ れた遺伝子がコードするタンパク質のアミノ酸配列を解析ソフトウェア(ClustalW)で 解析することにより作成したものである。同図の系統樹に示すとおり、前記ォーソロガ ス遺伝子としては、さら〖こ、トウモロコシ の BI43667遺伝子、及び、コメ (イネ)の OSJNBb0034I13. 14遺伝子を含んでもよい。 [0019] The Arabidopsis Atlg34245 gene and the Arabidopsis At2g in (2) above Examples of orthologous genes of 20875 include rice (Orvza sativa) OSJNBa0036B21.12 and soybean (Glycine max) (BU550776jf). The phylogeny of this figure was created by analyzing the amino acid sequence of the protein encoded by the described gene using analysis software (ClustalW), as shown in the phylogenetic tree of the figure. The genes may include Sarasuko, maize BI43667 gene, and rice (rice) OSJNBb0034I13.14 gene.
[0020] ここで、前記図 2に記載のシロイヌナズナ At4gl4723遺伝子及び At3g22820遺 伝子は、過剰発現することにより、気孔密度を減少させることができる。したがって、 本発明の気孔調節因子は、その他の態様において、 At4gl4723及び At3g22820 の cDNA配列(NM— 001036564 (配列番号 5)及び NM— 113181 (配列番号 7) )、その一部、それらの相補配列、又はそれらの相同配列力 なるポリヌクレオチドを 含み、また、 At4gl4723及び At3g22820遺伝子にコードされるアミノ酸配列(NP — 001031641 (配列番号 6)及び NP— 188921 (配列番号 8) )、その一部、又はそ れらの相同配列からなるタンパク質を含む。  Here, the Arabidopsis thaliana At4gl4723 gene and At3g22820 gene shown in FIG. 2 can reduce the stomatal density by overexpression. Therefore, the stomatal regulator of the present invention, in other embodiments, includes the cDNA sequences of At4gl4723 and At3g22820 (NM—001036564 (SEQ ID NO: 5) and NM—113181 (SEQ ID NO: 7)), a part thereof, a complementary sequence thereof, Or an amino acid sequence encoded by the At4gl4723 and At3g22820 genes (NP — 001031641 (SEQ ID NO: 6) and NP — 188921 (SEQ ID NO: 8)), a part thereof, or a portion thereof. Includes proteins consisting of these homologous sequences.
[0021] なお、前記図 2の遺伝子 A及び遺伝子 Bは、シロイヌナズナの未登録遺伝子であつ て、それぞれ、配列番号 9及び 10の配列を有するものである。  [0021] Gene A and gene B in Fig. 2 are unregistered genes of Arabidopsis thaliana and have the sequences of SEQ ID NOs: 9 and 10, respectively.
[0022] 本発明において、ある因子が気孔形成密度を抑制する機能があるかどうかは、例え ば、その因子の遺伝子を破壊した場合に葉の単位面積当たりの気孔数が増減する 力どうかで測ることができ、破壊して密度が増加すれば、抑制機能があるといえる。同 様に、本発明において、ある因子が表皮細胞密度を抑制する機能があるかどうかは、 例えば、その因子の遺伝子を破壊した場合に葉の単位面積当たりの表皮細胞数が 増減するかどうかで測ることができ、破壊して密度が増加すれば、抑制機能があると いえる。  [0022] In the present invention, whether or not a factor has a function of suppressing pore formation density is measured by, for example, whether or not the number of pores per unit area of the leaf increases or decreases when the factor gene is disrupted. It can be said that if it breaks and the density increases, it has a suppression function. Similarly, in the present invention, whether a factor has a function of suppressing epidermal cell density depends on whether, for example, the number of epidermal cells per leaf unit area increases or decreases when the gene of the factor is destroyed. It can be measured, and if it breaks and the density increases, it can be said that there is a suppression function.
[0023] 本発明の気孔調節因子は、例えば、配列表の配列番号 1又は 3のポリヌクレオチド を利用して、好ましくは、後述する本発明の気孔調節因子発現ベクターなどを利用し て、適切な細胞内で発現させることで得ることができる。  [0023] The stomatal regulatory factor of the present invention is suitable using, for example, the polynucleotide of SEQ ID NO: 1 or 3 in the sequence listing, preferably using the stomatal regulatory factor expression vector of the present invention described later. It can be obtained by expressing in cells.
[0024] 本発明の気孔調節因子にお!、て、前記(1)〜(3)力もなる群力も選択されるァミノ 酸配列に由来するアミノ酸配列とは、植物内におけるタンパク質分解などによるプロ セッシングを受けた後のアミノ酸配列をいう。前記プロセッシングとしては、例えば、シ グナル配列の切断や、 SDD1プロテアーゼ及びそのォーソログによるタンパク質分 解が挙げられる。 [0024] The stomatal regulator of the present invention! , And (1) to (3) an amino group in which a group force is also selected An amino acid sequence derived from an acid sequence refers to an amino acid sequence after being processed by proteolysis in a plant. Examples of the processing include cleavage of a signal sequence and protein degradation by SDD1 protease and its ortholog.
[0025] 本発明の気孔調節因子のアミノ酸配列としては、前記(1)配列表の配列番号 2又は 4のアミノ酸配列、及び、前記(2)シロイヌナズナ Atlg34245遺伝子及びシロイヌナ ズナ At2g20875遺伝子の少なくとも一方のォーソロガス遺伝子がコードするアミノ酸 配列に加えて、さらに、前記(1)及び(2)のアミノ酸配列と相同なアミノ酸配列を含む  [0025] The amino acid sequence of the stomatal regulator of the present invention includes (1) the amino acid sequence of SEQ ID NO: 2 or 4 in the sequence listing, and (2) the atologue gas of at least one of the Arabidopsis Atlg34245 gene and the Arabidopsis At2g20875 gene. In addition to the amino acid sequence encoded by the gene, it further comprises an amino acid sequence that is homologous to the amino acid sequences of (1) and (2) above.
[0026] 本発明において、タンパク質のアミノ酸配列が「相同」であるとは、その機能を維持 できるほど十分に類似していることをいう。例えば、アミノ酸配列に、置換、欠失又は 付カ卩による相違があるとしても、これらが前記タンパク質の機能に影響を与えないなら ば、両者は「相同」であるといえる。この場合、置換、欠失又は付加されるアミノ酸残 基数としては、例えば、 1〜40個、 1〜20個、 1〜15個、 1〜: LO個、 1〜5個、 1〜3個 、 1〜2個又は 1個である。同様に、本発明において、ヌクレオチド塩基配列が「相同」 であるとは、その機能を維持できるほど十分に類似していることをいう。例えば、ヌクレ ォチド塩基配列に、点変異、欠失又は付加による相違があるとしても、これらが前記 遺伝子の機能に影響を与えないならば、両者は「相同」であるといえる。相違する塩 基数としては、例えば、 1〜60個、 1〜40個、 1〜20個、 1〜15個、 1〜: LO個、 1〜5 個、 1〜4個、 1〜3個、 1〜2個又は 1個である。また、 2つのポリヌクレオチド力 ストリ ンジェントな条件でノヽイブリダィズする場合には、両者は相同といえる。本発明にお いて、ストリンジェントな条件とは、特に限定されないが、例えば、 6 X SSC、 0. 5%S DS、 5 Xデンハルト、 0. 01%変性サケ精子核酸を含む溶液中、〔Tm—25°C〕の温 度で一晩保温する条件等が挙げられる。前記 Tmは、例えば、下記式により求められ る。 [0026] In the present invention, the term "homologous" in the amino acid sequence of proteins means that they are sufficiently similar to maintain their functions. For example, even if there are differences in amino acid sequences due to substitutions, deletions, or attachments, they can be said to be “homologous” if they do not affect the function of the protein. In this case, the number of amino acid residues to be substituted, deleted or added is, for example, 1 to 40, 1 to 20, 1 to 15, 1 to: LO, 1 to 5, 1 to 3, One or two or one. Similarly, in the present invention, a nucleotide base sequence that is “homologous” means that it is sufficiently similar to maintain its function. For example, even if there are differences due to point mutations, deletions or additions in the nucleotide base sequence, they can be said to be “homologous” if they do not affect the function of the gene. As the number of different bases, for example, 1 to 60, 1 to 40, 1 to 20, 1 to 15, 1 to: LO, 1 to 5, 1 to 4, 1 to 3, One or two or one. In addition, when hybridizing with two polynucleotide force stringent conditions, both can be said to be homologous. In the present invention, the stringent conditions are not particularly limited. For example, in a solution containing 6 X SSC, 0.5% SDS, 5 X Denhardt, 0.01% denatured salmon sperm nucleic acid [Tm -25 ° C], and other conditions for overnight incubation. The Tm can be obtained by the following equation, for example.
Tm=81. 5- 16. 6 (log [Na+]) +0. 41 (%G + C) - (600/N) Tm = 81. 5- 16. 6 (log [Na + ]) +0.41 (% G + C)-(600 / N)
10  Ten
上記式中、 Nはポリヌクレオチドの鎖長であり、%G + Cはポリヌクレオチド中のグァ- ン及びシトシン残基の含有量である。 [0027] 本発明の気孔調節因子は、例えば、気孔密度を低減させるために、植物細胞内で 発現促進するなどして使用できる。また、本発明の気孔調節因子は、例えば、気孔密 度や細胞表皮密度を増加させるために、植物ゲノムにおける破壊や阻害の標的とし て使用できる。 In the above formula, N is the chain length of the polynucleotide, and% G + C is the content of guanine and cytosine residues in the polynucleotide. [0027] The stomatal regulator of the present invention can be used, for example, by promoting expression in plant cells in order to reduce the stomatal density. The stomatal regulator of the present invention can also be used as a target for destruction or inhibition in the plant genome, for example, to increase stomatal density or cell epidermal density.
[0028] 本発明の気孔調節因子の使用の一態様として、本発明の気孔調節因子の発現を 促進又は抑制する工程を含む本発明の植物の生産方法が挙げられる。ここで、本発 明の植物の生産方法により生産される植物は、植物個体、その子孫及びクローン、 並びに、これら力 得られる繁殖材料 (例えば、種子、果実、切穂、塊茎、塊根、株、 カルス、プロトプラスト等)を含む。このような本発明の植物の生産方法は、例えば、気 孔密度や表皮細胞密度が増大した植物の生産や、気孔密度が減少した植物の生産 に使用できる。  [0028] One embodiment of the use of the stomatal regulator of the present invention includes the method for producing the plant of the present invention including the step of promoting or suppressing the expression of the stomatal regulator of the present invention. Here, plants produced by the production method of the plant of the present invention include plant individuals, their progeny and clones, and propagation materials (for example, seeds, fruits, cuttings, tubers, tuberous roots, strains, Callus, protoplast, etc.). Such a plant production method of the present invention can be used, for example, for production of a plant having an increased pore density or epidermal cell density or a plant having a decreased pore density.
[0029] 本発明の気孔調節因子の発現を促進又は抑制する工程は、特に制限されないが 、例えば、トランスジ ニック植物を製造する方法や分子育種をする方法が挙げられ る。  [0029] The step of promoting or suppressing the expression of the stomatal regulator of the present invention is not particularly limited, and examples thereof include a method for producing a transgenic plant and a method for molecular breeding.
[0030] 本発明の気孔調節因子の発現が促進又は抑制されたトランスジヱニック植物につ いて説明する。本発明において、「トランスジエニック植物」とは、遺伝子導入により植 物のゲノムに組み込まれた外来遺伝子を保持する植物細胞、植物組織又は植物個 体をいい、そのトランスジエニック植物の子孫、クローン、並びに、これら力 得られる 繁殖材料 (例えば、種子、果実、切穂、塊茎、塊根、株、カルス、プロトプラスト等)を 含む。本発明のトランスジエニック植物において、発現が促進又は抑制される本発明 の気孔調節因子は、その植物に 2種類以上ある場合、 1種類であってもよぐ 2種類 以上であってもよい。  [0030] The transgenic plant in which the expression of the stomatal regulator of the present invention is promoted or suppressed will be described. In the present invention, the term “transgenic plant” refers to a plant cell, plant tissue, or plant individual that retains a foreign gene that has been incorporated into the genome of the plant by gene transfer. As well as propagation materials (eg, seeds, fruits, cuttings, tubers, tuberous roots, strains, callus, protoplasts, etc.) obtained from these forces. In the transgenic plant of the present invention, the stomatal regulator of the present invention whose expression is promoted or suppressed may be one or two or more when the plant has two or more types.
[0031] 本発明の気孔調節因子の発現が促進されたトランスジエニック植物を製造する方法 としては、特に制限されないが、例えば、まず、第 1段階として、公知の転写調節配列 の下流に前記 (4)〜(7)の配列のポリヌクレオチドを転写可能に連結した外来遺伝 子を植物に導入し、第 2段階として、前記外来遺伝子が導入された宿主細胞を選別 し、個体へ再分化させることを含む方法が挙げられる。植物に外来遺伝子を導入す る方法としては、例えば、パーティクルガン法、ポリエチレングリコール法 (PEG法)、 エレクト口ポレーシヨン法などのような物理的に植物細胞の一部に穴を空け、この穴か ら植物細胞に遺伝子を導入する直接的 ·物理的方法や、例えば、ァグロパクテリゥム 法、ウィルスベクター法などのような微生物やウィルスの遺伝子導入能力を利用した 間接的 ·生物的方法が挙げられる。前記植物への導入に使用する発現ベクターとし ては、特に制限されないが、植物細胞内で発現可能なものであって、例えば、ァグロ バタテリゥム法において使用する T—DNA領域を有するプラスミドや、ウィルスベクタ 一法にお 、て使用するタバコモザイクウィルス (TMV)、ブロモモザイクウィルス (BM[0031] The method for producing a transgenic plant in which the expression of the stomatal regulator of the present invention is promoted is not particularly limited. For example, first, as a first step, the aforementioned ( Introducing a foreign gene into which a polynucleotide having the sequence of 4) to (7) is transcribed in a transcribable manner into a plant, and as a second step, selecting a host cell into which the foreign gene has been introduced and redifferentiating it into an individual. The method containing is mentioned. Examples of methods for introducing foreign genes into plants include the particle gun method, the polyethylene glycol method (PEG method), A direct physical method, such as the electroporation method, which directly punctures a part of a plant cell and introduces a gene into the plant cell from this hole, such as the agrobacterium method, virus Examples include indirect and biological methods that utilize the gene transfer ability of microorganisms and viruses, such as the vector method. The expression vector used for introduction into the plant is not particularly limited, but can be expressed in a plant cell, for example, a plasmid having a T-DNA region used in the agrobacterium method, or a virus vector. Tobacco Mosaic Virus (TMV), Bromo Mosaic Virus (BM)
V)、キユウリモザイクウィルス (CMV)などの植物 RNAウィルスを改変して作製され たベクターなどが挙げられる。 V) and vectors produced by modifying plant RNA viruses such as cucumber mosaic virus (CMV).
[0032] 本発明の気孔調節因子の発現が抑制されたトランスジ ニック植物を製造する方法 としては、特に制限されないが、例えば、前記 Atlg34245遺伝子及び Z若しくは At 2g20875遺伝子、又は、それらのォーソロガス遺伝子の遺伝子配列に置換'欠失' 付加等の変異を導入して完全なタンパク質の合成を阻害する方法、転写促進因子を 阻害若しくは転写抑制因子を活性化することで前記遺伝子の転写を阻害する方法、 RNA干渉を利用してタンパク質の合成を阻害する方法、前記遺伝子産物のドミナン トネガティブ変異体を過剰発現させる方法等が挙げられる。前記遺伝子配列に変異 を導入する方法としては、例えば、宿主植物に T DNAやトランスポゾンが挿入され たトランスジヱニック植物ライブラリーを作製し、あるいは、既存の変異体ライブラリー をスクリーニングし、目的とする遺伝子座に前記 T—DNAやトランスポゾンが挿入さ れた変異体をスクリーニングする方法、又は、塩基置換、塩基挿入、塩基決失による 変異体を tilling (targeting induced local lesions m genomes)法でスクリ ~~ ユングする方法が挙げられる。前記 RNA干渉の方法としては、例えば、アンチセンス RNA、短い阻害 RNA(siRNA)、マイクロ RNA(miRNA)等を利用する方法が挙げ られる。 [0032] The method for producing the transgenic plant in which the expression of the stomatal regulator of the present invention is suppressed is not particularly limited. For example, the Atlg34245 gene and the Z or At 2g20875 gene, or the gene for these orthologous genes. A method of inhibiting the synthesis of a complete protein by introducing a mutation such as substitution 'deletion' or addition to the sequence, a method of inhibiting transcription of the gene by inhibiting a transcription promoting factor or activating a transcription repressing factor, RNA Examples thereof include a method of inhibiting protein synthesis using interference and a method of overexpressing a dominant negative mutant of the gene product. As a method for introducing mutation into the gene sequence, for example, a transgenic plant library in which T DNA or transposon is inserted into a host plant is prepared, or an existing mutant library is screened, Screening for mutants in which the T-DNA or transposon is inserted at the locus to be detected, or by using the tilling (targeting induced local lesions m genomes) method ~ How to jung is mentioned. Examples of the RNA interference method include methods using antisense RNA, short inhibitory RNA (siRNA), microRNA (miRNA) and the like.
[0033] 本発明の気孔調節因子の発現が促進又は抑制された植物を分子育種する方法と しては、例えば、 tilling法などの遺伝子組み換えを行わない逆遺伝学的方法が挙げ られる。このような分子育種方法において、前記 (4)〜(7)のポリヌクレオチド及びそ の一部は、本発明の気孔調節因子の遺伝子の有無や、その置換、欠失、付加など の変異を検出するスクリーニングにおいて、プライマーやプローブとして利用できる。 [0033] Examples of the method of molecular breeding a plant in which the expression of the stomatal regulator of the present invention is promoted or suppressed include a reverse genetic method that does not perform genetic recombination such as a tilling method. In such a molecular breeding method, the polynucleotides (4) to (7) and a part thereof may include the presence or absence of the gene of the stomatal regulatory factor of the present invention, substitution, deletion, addition, etc. It can be used as a primer or a probe in screening for detecting mutations.
[0034] 以下の実施例を用いて本発明をさらに説明するが、本発明はこれらに限定されな い。  [0034] The present invention will be further described with reference to the following examples, but the present invention is not limited thereto.
実施例 1  Example 1
[0035] Atlg34245破璩株、 At2g20875破璩株、二重破璩株の表現型解析 [0035] Phenotypic analysis of Atlg34245 strain, At2 g 20875 strain, and double strain
Atlg34245破壊変異株(SALK— 047918 ;Arabidopsis BBiological Reso urce Center)及び At2g20875破壊変異株(SALK— 137549 ;同前)からこれら の二重破壊株を作成した。すなわち、まず、 Atlg34245破壊変異株と At2g20875 破壊変異株とを掛け合わせた世代の植物 (F1)を自家受粉させ種子を得た。次に、 これらの種子力 栽培した植物力 DNAを得て、 2つの遺伝子がともにホモ接合体と して破壊されたものを二重破壊株として選択した。  These double disruption strains were prepared from the Atlg34245 disruption mutant (SALK-047918; Arabidopsis BBiological Resource Center) and the At2g20875 disruption mutant (SALK-137549; the same as above). Specifically, seeds were obtained by self-pollination of a plant (F1) of a generation in which the Atlg34245 disruption mutant and the At2g20875 disruption mutant were crossed. Next, plant power DNA cultivated with these seed strengths was obtained, and those in which both genes were disrupted as homozygotes were selected as double disruption strains.
[0036] 次に、得られた変異体について、播種後 20日目に第 1葉の背軸の裏側の表皮細 胞密度 (個 Zmm2)を計測した。その結果を下記表 1に示し、野生株、 Atlg34245 破壊変異株、 At2g20875破壊変異株及び二重破壊株の顕微鏡観察写真の結果 の一例を、それぞれ、図 1のパネル A、 B、 C及び Dに示す。同表及び同図に記載の とおり、 Atlg34245及び At2g20875のいずれの遺伝子を破壊した場合にも、気孔 密度が増加した(図 1のパネル B及び C)。特に、 Atlg34245破壊変異株では、気孔 密度の増力 tlにカ卩えて、気孔以外の表皮細胞がより顕著に増加していた(図 1のパネ ル C)。さらに、 Atlg34245及び At2g20875の二重破壊株の場合は、気孔密度及 び表皮細胞密度のいずれもが、非常に増加した(図 1のパネル D)。なお、 Atlg342 45及び At2g20875の過剰発現株にぉ ヽては、気孔密度が減少した (実施例 2参照[0036] Next, for the obtained mutant, the density of epidermal cells (individual Zmm 2 ) on the back side of the dorsal axis of the first leaf was measured 20 days after sowing. The results are shown in Table 1 below, and examples of microscopic photographs of wild strains, Atlg34245 disruption mutants, At2g20875 disruption mutants and double disruption strains are shown in panels A, B, C and D in Fig. 1, respectively. Show. As shown in the table and figure, the porosity density increased when either Atlg34245 or At2g20875 gene was disrupted (panels B and C in Fig. 1). In particular, in the Atlg34245 disruption mutant, epidermal cells other than the pores increased more markedly than the increase in pore density tl (Panel C in Fig. 1). Furthermore, in the case of the double disrupted strains of Atlg34245 and At2g20875, both stomatal density and epidermal cell density were greatly increased (Panel D in FIG. 1). It should be noted that the pore density decreased compared to the overexpressing strains of Atlg34245 and At2g20875 (see Example 2).
) o ) o
[0037] 図 1のパネル Bに示すとおり、 Atlg34245破壊変異株では、特に、気孔密度は増 加する力 気孔が互いに離れて均一に分布されるというパターン形成制御は正常で ある。これに対し、従来知られる TMMや SDD1の変異株では、気孔密度の増加に 併せて気孔が隣接し、偏った分布で形成される。空気やガスが葉の内部に行き渡る 効率は、気孔の形成分布が均一であったほうが優れるから、この点において、 Atlg 34245遺伝子の制御による気孔形成の調節は、従来の TMMや SDD1などの抑制 による気孔形成制御よりも優れる。 [0037] As shown in panel B of Fig. 1, in the Atlg34245 disruption mutant, the pattern formation control in which the pores are increased and the pores are evenly distributed apart from each other is normal. On the other hand, in the conventionally known mutants of TMM and SDD1, the pores are adjacent and formed in an uneven distribution as the pore density increases. The efficiency of air and gas reaching the inside of the leaves is better when the pore formation distribution is uniform. In this respect, the regulation of pore formation by controlling the Atlg 34245 gene is the suppression of conventional TMM, SDD1, etc. It is superior to the pore formation control by.
[0038] [表 1]  [0038] [Table 1]
( 1 ) (1)
Figure imgf000013_0001
Figure imgf000013_0001
実施例 2  Example 2
[0039] Atig34245及び At2g20875の発現ベクターの作製  [0039] Preparation of expression vectors for Atig34245 and At2g20875
まず、 T—DNA領域内にカリフラワーモザイクウィルス(CaMV)由来 35Sプロモー タを備えるバイナリ一ベクター pTKO 16を文献に記載のように作製した (WO02Z07 2818)。すなわち、カリフラワーモザイクウィルス 35SRNA遺伝子のェンハンサ一が 2回反複するように操作した 35SRNA遺伝子プロモータの下流に翻訳促進配列であ るオメガ配列を連結し、その下流にマルチクローユングサイトと転写終結配列を持た せたカセットを作製し、このカセットを、 pGPTV— Bar (Becker R et al. , Plant First, a binary vector pTKO 16 having a cauliflower mosaic virus (CaMV) -derived 35S promoter in the T-DNA region was prepared as described in the literature (WO02Z07 2818). That is, an omega sequence, which is a translation promoting sequence, is ligated downstream of the 35SRNA gene promoter that is engineered so that the enhancer of the cauliflower mosaic virus 35SRNA gene is duplicated twice, and a multicloning site and a transcription termination sequence are downstream of it. The cassette was prepared and the pGPTV—Bar (Becker R et al., Plant
Molecular Biology 20, 1195— 1197, 1992)を Hindlllと EcoRIで制限 酵素処理して得られる 2つの断片のうち長い方の断片とライゲーシヨンすることにより p TK016を得た。この pTK016のマルチクリーニングサイトに Atlg34245及び At2g 20875の CDS (配列表の配列番号 1及び 3参照)を発現可能に連結し、 Atlg3424 5及び At2g20875の発現ベクター pTK016— Atlg34245及び pTK016— At2g 20875をそれぞれ作製した。 Molecular biology 20, 1195-1197, 1992) was ligated with the longer fragment of two fragments obtained by restriction enzyme treatment with Hindlll and EcoRI to obtain pTK016. Atlg34245 and At2g 20875 CDS (see SEQ ID NOS: 1 and 3 in the sequence listing) were linked to this multi-cleaning site of pTK016 to allow expression, and expression vectors pTK016—Atlg34245 and pTK016—At2g 20875 were prepared respectively .
[0040] 渦剰発現株の表現型解析 [0040] Phenotypic analysis of eddy surplus strains
前記発現ベクター PTK016— Atlg34245及び pTK016— At2g20875並びにコ ントロールベクター pTK016を、シロイヌナズナのカルスに定法のァグロパクテリゥム 法により遺伝子導入して形質転換株を得た。前記ァグロパクテリゥム法は、 Akamaら の方法に従った(Akama, K. et al. 1992 Plant Cell Rep. 12, 7—11)。 得られた形質転換株を 15日間培養した後、子葉及び第一葉 (初生葉)の裏側の気 孔の気孔密度 (個 Zmm2)を計測した。その結果を図 3に示す。同図に示すとおり、 A tlg34245及び At2g20875形質転赚の気孔密度は、子葉及び第一葉の双方に おいて低くなる傾向があった。この結果を Student t—検定したところ、 Atlg3424 5及び At2g20875のいずれの場合も、過剰発現による気孔密度の抑制効果は、 p < 0. 01で有意であった。 The expression vectors PTK016-Atlg34245 and pTK016-At2g20875 and the control vector pTK016 were transfected into callus of Arabidopsis thaliana by a conventional agrobacterium method to obtain a transformed strain. The agrobacterium method followed the method of Akama et al. (Akama, K. et al. 1992 Plant Cell Rep. 12, 7-11). After culturing the obtained transformant for 15 days, the pore density (individual Zmm 2 ) of the pores behind the cotyledons and the first leaves (primary leaves) was measured. The results are shown in Fig. 3. As shown in the figure, the stomatal density of A tlg34245 and At2g20875 transformants tended to be low in both the cotyledons and the first leaves. When this result was Student t-tested, in both cases of Atlg34245 and At2g20875, the effect of suppressing the stomatal density due to overexpression was significant at p <0.01.
[0041] さらに、 pTK016—At2g20875形質転^ ¾について、気孔密度の減少が At2g2 0875遺伝子の発現レベルと相関することを確認した。すなわち、 15日目の個体サン プルの地上部(子葉と第一葉を除く)からトータル RNAを調製して At2g2— 8075遺 伝子の mRNA発現をノザンブロットで確認すると共に、各個体サンプルの子葉裏側 の気孔密度を計測した。その結果を図 4及び下記表 2に示す。図 4は、 pTK016-A t2g20875形質転赚のサンプル番号 5、 8、 21、 9、 16及び 18力も調製したトータ ル RNAと、コントロール株サンプル番号 1、 2及び 3から調製したトータル RNAとを用 V、て At2g20875mRNA及び 18SrRNAにつ!/、てのノザンブロットした結果を示す。 前記 18SrRNAは内部標準である。同図に示すとおり、 At2g20875mRNAの発現 量が特に高い番号 5、 8及び 21のサンプルは、下記表 2に示すとおり気孔密度が著し く低下していた。一方、 At2g20875mRNAの発現量が低い番号 9、 16、 18サンプ ルでは、コントロール株に近い高い気孔密度を示した(図 4及び下記表 2)。このように 、気孔密度の減少の程度は、 At2g20875の発現レベルに依存することが確認され た。 [0041] Further, for pTK016-At2g20875 transformation, it was confirmed that the decrease in stomatal density correlated with the expression level of At2g20875 gene. In other words, total RNA was prepared from the above-ground part of the 15 day individual sample (excluding cotyledons and first leaves), and the mRNA expression of At2g2-8075 gene was confirmed by Northern blotting. The pore density was measured. The results are shown in Fig. 4 and Table 2 below. Figure 4 shows total RNA prepared from pTK016-A t2 g 20875 transformed sample numbers 5, 8, 21, 9, 16, and 18 and total RNA prepared from control strain sample numbers 1, 2, and 3. The results of Northern blotting for V2 and At2g20875 mRNA and 18S rRNA are shown below. The 18S rRNA is an internal standard. As shown in the figure, the pore density of the samples Nos. 5, 8, and 21 in which the expression level of At2g20875 mRNA was particularly high was significantly reduced as shown in Table 2 below. On the other hand, No. 9, 16, and 18 samples with low expression levels of At2g20875 mRNA showed high pore density close to that of the control strain (FIG. 4 and Table 2 below). Thus, it was confirmed that the degree of decrease in the pore density depends on the expression level of At2g20875.
[0042] [表 2]  [0042] [Table 2]
Figure imgf000014_0001
実施例 3
Figure imgf000014_0001
Example 3
[0043] Atlg34245の渦剰発現株における乾燥耐性  [0043] Drought tolerance in eddy-expressing strains of Atlg34245
次に、 Atlg34245の過剰発現株の乾燥耐性を確認した。 Atlg34245の過剰発 現株として、前記 pTK016— Atlg34245形質転^ ¾の T2世代を使用し、コント口 ールとして、ベクター (pTD016)導入株の T2世代を使用した。乾燥耐性実験は、以 下のような条件で行った。  Next, the drought tolerance of the overexpressing strain of Atlg34245 was confirmed. The pTK016-Atlg34245 transformed T2 generation was used as an overexpressing strain of Atlg34245, and the T2 generation of a vector (pTD016) -introduced strain was used as a control. The drying resistance experiment was performed under the following conditions.
[0044] まず、 30分ほど吸水させた種を 70%エタノールで滅菌したのちに洗浄し、 GMプレ ートに播種した。 GMプレートの組成は、 1Lあたり、 MURASHIGE & SKOOG MEDIUM Basal Salt Mixture (DUCHIHEFA BIOCHEMIE社製 No. M0221. 0010) 4. 3g、 1% sucrose, 0. 05% MES -KOH (pH5. 7)、 500 Xビタミンストック液(500mlあたり、イノシトール 5g、チアミン塩酸塩 lg、ピリドキシ ン塩酸塩 50mg、ニコチン酸 50mg) 2ml、 phytagel 3gである。プレートは直径 90 mm,深さ 20 mmのものを使用した。播種後に 2日間低温室で保存した後、 G Mプレートをライト常時点灯縦型インキュベータに移し、 23°Cで 8日間インキュベーシ ヨンした。その後、バーミュライト(50ml)に植え替え、 1Z2MS (2. 15gの MURAS HIGE & SKOOG MEDIUM Basal Salt Mixture (同上)を 800mlの脱ィ オン水に加え完全に溶解し、 KOHで pH5. 7に調整した後、 1Lとしたもの)を 25ml 加え、植物をバットにいれサランラップをかけた状態で、室型インキュベータを用いて 23°C、ライト常時点灯下でインキュベーションした。これ以後、植物に水を加えなかつ た。室型インキュベータに移して 2日目にサランラップをはずした (Day0)。  [0044] First, seeds absorbed for about 30 minutes were sterilized with 70% ethanol, washed, and seeded on a GM plate. The composition of the GM plate is MURASHIGE & SKOOG MEDIUM Basal Salt Mixture (DUCHIHEFA BIOCHEMIE No. M0221.0010) 4.3 g, 1% sucrose, 0.05% MES-KOH (pH 5.7), 500 X Vitamin stock solution (500ml, inositol 5g, thiamine hydrochloride lg, pyridoxine hydrochloride 50mg, nicotinic acid 50mg) 2ml, phytagel 3g. A plate with a diameter of 90 mm and a depth of 20 mm was used. After seeding, the plate was stored in a low temperature room for 2 days, and then the GM plate was transferred to a vertically-lighted vertical incubator and incubated at 23 ° C for 8 days. Then replanted to vermulite (50ml), 1Z2MS (2.15g of MURAS HIGE & SKOOG MEDIUM Basal Salt Mixture (same as above) was added to 800ml of deionized water and completely dissolved, adjusted to pH 5.7 with KOH. After that, 25 ml of 1 L) was added, and the plant was placed in a vat and covered with saran wrap, and incubated at 23 ° C under constant light on a room incubator. After this, water was not added to the plant. Moved to a room type incubator and removed Saran Wrap on the second day (Day 0).
[0045] Day4、 Day7、 Dayl0、 Dayl5、 Day20に植物を観察して撮景した。 Day7に ίま、 ほぼ水がなくなつていた。また、 Day 15に本葉第 3葉をサンプリングし、固定液(90% エタノール、 10%酢酸)で一晩以上固定し、その後、固定した葉を水に戻し、葉の裏 側の気孔密度を顕微鏡で観察'測定した。その結果を、下記表 3及び図 5に示す。下 記表 3は、 Day20における個体の生存数、枯死数から生存率を算出した表であり、 図 5は、ベクターのみを導入したコントロール株及び Atlg34245の過剰発現株の D ay20における状態を撮影した写真の一例を示す。  [0045] Plants were observed and photographed on Day4, Day7, Dayl0, Dayl5, and Day20. On Day 7, it was almost dry. Also, sample the third leaf of the main leaf on Day 15 and fix it with fixative (90% ethanol, 10% acetic acid) for more than one night. Then, return the fixed leaf to water, and adjust the stomatal density on the back side of the leaf. Observed and measured with a microscope. The results are shown in Table 3 below and FIG. Table 3 below shows the survival rate calculated from the number of individuals alive and dead on Day 20, and Figure 5 shows the state of Day 20 in the control strain into which only the vector was introduced and the overexpressed strain of Atlg34245. An example of a photograph is shown.
[0046] [表 3] (表 3)
Figure imgf000016_0001
[0046] [Table 3] (Table 3)
Figure imgf000016_0001
[0047] 上記表 3に示すとおり、コントロール(5. 3%)に比べて Atlg34245過剰発現株は 、乾燥条件下の生存率が著しく増加することが確認された (50%)。さらに、過剰発現 株の表現形 (気孔密度の数)に応じた生存率に着目すると、 Atlg34245の過剰発 現で気孔数が野生株の半分以下程度個体では、生存率が 60%に上昇し、気孔がほ とんど無い個体では、生存率が 85. 7%に上昇した。 [0047] As shown in Table 3 above, it was confirmed that the Atlg34245-overexpressing strain significantly increased the survival rate under dry conditions (50%) compared to the control (5.3%). Furthermore, when focusing on the survival rate according to the phenotype (number of stomatal density) of the overexpressing strain, the survival rate increased to 60% in individuals with overexpression of Atlg34245 and the number of pores was about half that of the wild strain, In individuals with few pores, survival increased to 85.7%.
産業上の利用可能性  Industrial applicability
[0048] 以上、説明したとおり、本発明によれば、人為的に植物の気孔数や表皮細胞数を 調節できるから、例えば、バイオマスの増加ゃ耐乾燥性の向上が期待できる。したが つて、本発明によれば、様々な水環境や CO環境に対応できるように植物を改変す [0048] As described above, according to the present invention, since the number of pores and epidermal cells of a plant can be artificially adjusted, for example, an increase in biomass can be expected to improve drought resistance. Therefore, according to the present invention, a plant is modified so that it can cope with various water environments and CO environments.
2  2
ることが可能となり、本発明は、例えば、農業、林業、環境保全の分野で有用である。  For example, the present invention is useful in the fields of agriculture, forestry, and environmental conservation.

Claims

請求の範囲 [1] 植物の気孔調節因子であって、下記(1)〜(3)力 なる群力 選択されるアミノ酸配 列又はそれに由来するアミノ酸配列からなり、前記植物の気孔形成密度を抑制する 機能を有することを特徴とする気孔調節因子。 Claims [1] A stomatal regulator of a plant, comprising the following group powers (1) to (3): a selected amino acid sequence or an amino acid sequence derived therefrom, which suppresses the pore formation density of the plant A stomatal regulator characterized by having a function.
(1)配列表の配列番号 2又は 4のアミノ酸配列。  (1) The amino acid sequence of SEQ ID NO: 2 or 4 in the sequence listing.
(2)シロイヌナズナ Atlg34245遺伝子及びシロイヌナズナ At2g20875遺伝子の少 なくとも一方のォーソロガス遺伝子がコードするアミノ酸配列。  (2) Amino acid sequence encoded by at least one orthologous gene of Arabidopsis Atlg34245 gene and Arabidopsis At2g20875 gene.
(3)前記(1)又は(2)のアミノ酸配列において、 1個若しくは数個のアミノ酸が、置換、 欠失又は付加されたアミノ酸配列。  (3) An amino acid sequence in which one or several amino acids are substituted, deleted or added in the amino acid sequence of (1) or (2).
[2] さらに、表皮細胞密度を抑制する機能を有する請求項 1記載の気孔調節因子。  [2] The stomatal regulator according to claim 1, which further has a function of suppressing epidermal cell density.
[3] 植物の生産方法であって、請求項 1又は 2に記載の気孔調節因子の発現を促進又 は抑制する工程を含む植物の生産方法。 [3] A method for producing a plant, comprising the step of promoting or suppressing the expression of a stomatal regulator according to claim 1 or 2.
[4] 植物の育種方法であって、下記 (4)から(7)の 、ずれかのヌクレオチド塩基配列若 しくはその相補配列力もなるポリヌクレオチド又はその一部を用いて、請求項 1又は 2 に記載の気孔調節因子の遺伝子の存在又は前記遺伝子における置換、欠失若しく は付加を検出する工程を含む植物の育種方法。 [4] A plant breeding method according to any one of the following (4) to (7), wherein any one of the nucleotide base sequences or a polynucleotide having a complementary sequence ability thereof or a part thereof is used. A plant breeding method comprising a step of detecting the presence or substitution, deletion or addition of the gene of the stomatal regulatory factor described in 1.
(4)配列表の配列番号 1若しくは配列番号 1の第 158から 517番目、又は、配列番号 3若しくは配列番号 3の第 102から 413番目のヌクレオチド塩基配列。  (4) A nucleotide base sequence from the 158th to 517th positions of SEQ ID NO: 1 or SEQ ID NO: 1 in the sequence listing, or from the 102nd to 413th positions of SEQ ID NO: 3 or SEQ ID NO: 3.
(5)シロイヌナズナ Atlg34245遺伝子及びシロイヌナズナ At2g20875遺伝子の少 なくとも一方のォーソロガス遺伝子又はその mRNAのヌクレオチド塩基配列。  (5) The nucleotide base sequence of at least one orthologous gene of Arabidopsis Atlg34245 gene and Arabidopsis At2g20875 gene or mRNA thereof.
(6)前記 (4)又は(5)のヌクレオチド塩基配列にぉ 、て、 1個若しくは数個のヌクレオ チドが、置換、欠失又は付加されたヌクレオチド塩基配列。  (6) A nucleotide base sequence in which one or several nucleotides are substituted, deleted or added to the nucleotide base sequence of (4) or (5).
(7)前記 (4)又は(5)のヌクレオチド塩基配列の相補配列とストリンジ ントな条件下 でノヽイブリダィズするヌクレオチド塩基配列。  (7) A nucleotide base sequence that is hybridized under stringent conditions with a complementary sequence of the nucleotide base sequence of (4) or (5) above.
PCT/JP2007/051049 2006-01-25 2007-01-24 Plant stomatal regulatory factor WO2007086402A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006016936 2006-01-25
JP2006-016936 2006-01-25

Publications (1)

Publication Number Publication Date
WO2007086402A1 true WO2007086402A1 (en) 2007-08-02

Family

ID=38309191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051049 WO2007086402A1 (en) 2006-01-25 2007-01-24 Plant stomatal regulatory factor

Country Status (1)

Country Link
WO (1) WO2007086402A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018197878A1 (en) * 2017-04-27 2018-11-01 The University Of Sheffield Controlling stomatal density in plants

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1033405A2 (en) * 1999-02-25 2000-09-06 Ceres Incorporated Sequence-determined DNA fragments and corresponding polypeptides encoded thereby
JP2002512035A (en) * 1998-04-20 2002-04-23 シンジェンタ リミテッド Polynucleotide sequences and methods for producing plants with increased numbers of porosity and uses thereof
JP2002527070A (en) * 1998-10-12 2002-08-27 マックス−プランク−ゲゼルシャフト ツール フォルデルング デル ヴィッセンシャフテン エー.ファウ. Means and methods for regulating stomatal characteristics in plants

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002512035A (en) * 1998-04-20 2002-04-23 シンジェンタ リミテッド Polynucleotide sequences and methods for producing plants with increased numbers of porosity and uses thereof
JP2002527070A (en) * 1998-10-12 2002-08-27 マックス−プランク−ゲゼルシャフト ツール フォルデルング デル ヴィッセンシャフテン エー.ファウ. Means and methods for regulating stomatal characteristics in plants
EP1033405A2 (en) * 1999-02-25 2000-09-06 Ceres Incorporated Sequence-determined DNA fragments and corresponding polypeptides encoded thereby

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHLUTER U. ET AL.: "Photosynthetic performance of an Arabidopsis mutant with elevated stomatal density (sdd1-1) under different light regimes", J. EXP. BOT., vol. 54, no. 383, 2003, pages 867 - 874, XP003016051 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018197878A1 (en) * 2017-04-27 2018-11-01 The University Of Sheffield Controlling stomatal density in plants
US11535859B1 (en) 2017-04-27 2022-12-27 The University Of Sheffield Controlling stomatal density in plants
AU2018258016B2 (en) * 2017-04-27 2023-01-19 The University Of Sheffield Controlling stomatal density in plants

Similar Documents

Publication Publication Date Title
Shi et al. Over-expression of rice OsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit
CN102803291B (en) There is the plant of the Correlated Yield Characters of enhancing and/or the abiotic stress tolerance of enhancing and prepare its method
CN101421295A (en) Genes for enhancing nitrogen utilization efficiency in crop plants
US20200354735A1 (en) Plants with increased seed size
CN105683213B (en) BG1 compositions and methods for improving agronomic performance of plants
JP2009515522A (en) DOF (DNABINDINGWITHONEFINGER) sequence and method of use
US20200255846A1 (en) Methods for increasing grain yield
CN111032684A (en) Method for increasing grain productivity
WO2017013439A1 (en) Drought tolerant maize
BRPI0709801B1 (en) ISOLATED POLYNUCLEOTYDE, EXPRESSION CASSETTE, METHOD FOR MODULAR SIZE OF PLANTS WITHOUT PLANTS, METHOD OF MODULAR ANY PLANT OR ORGAN SIZE IN A PLANT, PRODUCT
CN101589147A (en) The maize ERECTA genes for improving plant growth, transpiration efficiency and drought tolerance in crop plants
WO2010101818A1 (en) Nac transcriptional activators involved in abiotic stress tolerance
US20110113499A1 (en) Altering Root Structure During Plant Development
CN102471779A (en) The use of dimerization domain component stacks to modulate plant architecture
KR102130550B1 (en) CYP90D2 gene derived from rice controlling plant seed size, low temperature germinability and tolerance to abiotic stresses and uses thereof
WO2007086402A1 (en) Plant stomatal regulatory factor
JP4189636B2 (en) Plants with increased amino acid content, plants with increased nitrogen content, plants with deregulated growth under nitrogen limitation, and methods for producing them
Kocábek et al. Isolation and characterization of a novel semi-lethal Arabidopsis thaliana mutant of gene for pentatricopeptide (PPR) repeat-containing protein
JPWO2008120410A1 (en) Gene with end-reduplication promoting activity
US20050188435A1 (en) Method of increasing the GGT activity in plants, plants with increased GGT activity, and a method of producing such plants
US8153860B2 (en) Alteration of embryo/endosperm size during seed development
KR101825596B1 (en) CaLOP gene from Capsicum annuum regulating growth, development and disease resistance of plant and uses thereof
Jung et al. Transgenic Tomato Plants Expressing BrOAT1 gene from Brassica rapa var. SUN-3061 Show Enhanced Tolerance to Salt Stress
WO2013077419A1 (en) Gene having function of increasing fruit size for plants, and use thereof
KR101261511B1 (en) IbEF1 gene from sweet potato and uses thereof

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07707300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)