WO2007085150A1 - Pile à combustible à membrane échangeuse de protons - Google Patents

Pile à combustible à membrane échangeuse de protons Download PDF

Info

Publication number
WO2007085150A1
WO2007085150A1 PCT/CN2006/002385 CN2006002385W WO2007085150A1 WO 2007085150 A1 WO2007085150 A1 WO 2007085150A1 CN 2006002385 W CN2006002385 W CN 2006002385W WO 2007085150 A1 WO2007085150 A1 WO 2007085150A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
proton exchange
liquid
exchange membrane
hydrogen
Prior art date
Application number
PCT/CN2006/002385
Other languages
English (en)
French (fr)
Inventor
Zhongde Zheng
Jinliang Wang
Original Assignee
Golden Energy Fuel Cell Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CNU2006200019757U external-priority patent/CN2863238Y/zh
Priority claimed from CN 200620007750 external-priority patent/CN2889476Y/zh
Application filed by Golden Energy Fuel Cell Co., Ltd. filed Critical Golden Energy Fuel Cell Co., Ltd.
Publication of WO2007085150A1 publication Critical patent/WO2007085150A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J7/00Apparatus for generating gases
    • B01J7/02Apparatus for generating gases by wet methods
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/185Details relating to the spatial orientation of the reactor vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/192Details relating to the geometry of the reactor polygonal
    • B01J2219/1921Details relating to the geometry of the reactor polygonal triangular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/192Details relating to the geometry of the reactor polygonal
    • B01J2219/1923Details relating to the geometry of the reactor polygonal square or square-derived
    • B01J2219/1926Details relating to the geometry of the reactor polygonal square or square-derived pyramidal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a proton exchange membrane fuel cell, and more particularly to a proton exchange membrane fuel cell in which a reaction liquid is brought into contact with a reaction solid to generate hydrogen as a fuel.
  • a proton exchange membrane fuel cell is a highly efficient clean electricity generation system that directly converts the chemical energy of hydrogen and oxygen into electrical energy through an electrochemical reaction, and has an extremely broad application prospect.
  • the proton exchange membrane fuel cell is composed of a proton exchange membrane, a positive and negative electrode catalytic layer, a positive and negative diffusion layer, a positive and negative electrode baffle, a hydrogen source, etc., and a proton exchange membrane is located between the positive and negative catalytic layers, and the negative and negative electrodes are diffused.
  • the layers are respectively located outside the positive and negative catalytic layers, and the positive and negative baffles are respectively located outside the positive and negative diffusion layers.
  • the hydrogen molecules from the hydrogen source are dissociated into protons and electrons through the negative electrode diffusion plate and the negative diffusion layer to the negative electrode catalytic layer; the protons pass through the proton exchange membrane to reach the positive catalytic layer; electrons pass through the negative diffusion layer, the negative electrode baffle, the load, and the positive electrode.
  • the deflector and the positive diffusion layer reach the positive catalytic layer; the oxygen molecules from the oxygen source such as air pass through the positive electrode baffle and the positive diffusion layer to reach the positive catalytic layer; the protons, electrons, and oxygen molecules are combined into a water molecule in the positive catalytic layer.
  • Electrode reaction and battery reaction are:
  • proton exchange membrane fuel cells usually use hydrogen source such as high-pressure gas storage hydrogen storage, low-temperature liquid hydrogen storage, metal hydride solid-state hydrogen storage, organic matter reforming hydrogen production, etc., which have low specific energy, complicated structure, poor safety, inconvenient use, etc. defect.
  • hydrogen source such as high-pressure gas storage hydrogen storage, low-temperature liquid hydrogen storage, metal hydride solid-state hydrogen storage, organic matter reforming hydrogen production, etc., which have low specific energy, complicated structure, poor safety, inconvenient use, etc. defect.
  • a proton exchange membrane fuel cell comprising a proton exchange membrane, a positive and negative electrode catalytic layer, a positive and negative diffusion layer, a positive and negative electrode baffle, a hydrogen generator, and a proton exchange membrane is located in the positive Between the anode catalytic layers, the positive and negative diffusion layers are respectively located outside the positive and negative catalytic layers, and the positive and negative diffusion plates are respectively located outside the positive and negative diffusion layers, wherein: the hydrogen generator has a reaction chamber.
  • the reaction chamber is filled with a reaction liquid and a reaction solid.
  • the reaction solid is directed toward the reaction liquid. When the reaction solid contacts the reaction liquid, hydrogen is generated.
  • the reaction chamber has a flexible chamber wall, and one side surface of the flexible chamber wall is connected to the reaction liquid or the reaction solid.
  • the other side surface is connected to the atmosphere, and the hydrogen pressure and the atmospheric pressure act on the two sides of the flexible chamber wall respectively, so that the flexible chamber wall is deformed, thereby driving the reaction liquid to move relative to the reaction solid - when the hydrogen pressure is small,
  • the flexible chamber wall is deformed by atmospheric pressure, the volume of the reaction chamber is reduced, and the contact area between the reaction liquid and the reaction solid is increased, thereby accelerating hydrogen generation;
  • the flexible chamber wall is an elastic chamber wall.
  • the housing of the hydrogen generator is provided with an elastic bag
  • the reaction chamber is composed of an elastic bag
  • the wall of the elastic bag constitutes a flexible chamber wall of the reaction chamber, the inner surface of which is connected with the reaction liquid, and the outer surface is
  • the vent hole at the bottom of the housing is connected to the atmosphere
  • the top cover of the housing has an air guiding tube
  • the reaction solid is fixed at the lower end of the air guiding tube
  • the air guiding hole of the lower part of the air guiding tube communicates with the reaction chamber
  • the upper part of the air guiding tube and the air supply tube Connected, the connection is equipped with a gas-liquid separation membrane, and the air-conditioning pipe is equipped with a safety valve.
  • the housing of the hydrogen generator is provided with an elastic bag, the reaction chamber is surrounded by a casing and an elastic bag, and the wall of the elastic bag constitutes a flexible chamber wall of the reaction chamber, and the bottom end of the outer surface is reacted
  • the solid surface is fixed, and the inner surface is connected to the atmosphere through a vent tube.
  • the top cover of the shell has an air guiding tube, and the top end of the elastic bag is fixed at the lower end of the air guiding tube, and the lower part of the air guiding tube has an air guiding hole communicating with the reaction chamber, and the air guiding tube It is not connected to the vent pipe.
  • the upper part of the air pipe is connected to the air supply pipe.
  • the connection is equipped with a gas-liquid separation membrane.
  • the air pipe is equipped with a safety valve.
  • the lower part of the casing of the hydrogen generator is provided with an elastic diaphragm, and the reaction chamber is surrounded by a side wall of the casing and an elastic diaphragm.
  • the elastic diaphragm forms a flexible chamber wall of the reaction chamber, and the upper surface thereof is in contact with the reaction liquid. Connected, the lower surface is connected to the atmosphere through the vent hole at the bottom of the casing, the reaction solid is a porous reaction solid, the reaction solid is fixed above the reaction liquid, and the gas-liquid separation membrane is disposed above the reaction solid, and the side wall of the casing Safety on Valve.
  • the reaction chamber is provided with a porous flexible absorbing liquid.
  • the inner cavity of the elastic bag is filled with an elastic body.
  • the invention has the following positive and beneficial effects:
  • the proton exchange membrane fuel cell has high specific energy, simple structure, hydrogen generation on demand, automatic flow regulation, and automatic pressure control, thereby ensuring safe and reliable operation of the proton exchange membrane fuel cell.
  • the reaction chamber can be provided with a porous flexible liquid absorption liquid capable of absorbing the reaction liquid, and the reaction liquid is discharged when being squeezed, so that the proton exchange membrane fuel cell can be placed in any direction and is convenient to use.
  • Fig. 1 is a schematic view showing the structure of a first embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a second embodiment of the present invention.
  • FIG 3 is a schematic structural view of a third embodiment of the present invention.
  • Embodiment 4 is a schematic structural view of Embodiment 4 of the present invention.
  • Figure 5 is a schematic structural view of Embodiment 5 of the present invention.
  • Fig. 6 is a schematic structural view of a sixth embodiment of the present invention.
  • Embodiment of the present invention Embodiment 1
  • the present invention is a proton exchange membrane fuel cell comprising a proton exchange membrane, a positive and negative electrode catalytic layer, a positive and negative diffusion layer, a positive and negative electrode baffle, a hydrogen generator, and a proton exchange membrane 10 at the positive electrode.
  • the positive electrode diffusion layer 13 and the negative electrode diffusion layer 14 are respectively located outside the positive electrode catalyst layer 1 1 and the negative electrode catalyst layer 12, and the positive electrode baffle plate 15 and the negative electrode baffle plate 16 are respectively located at the positive electrode plate.
  • the diffusion layer 13 and the outside of the negative diffusion layer 14 are provided.
  • the oxygen molecules required for the positive electrode reaction are obtained by breathing oxygen in the air through the positive baffle, and the hydrogen molecules required for the negative electrode reaction are connected to the hydrogen generator through the negative electrode baffle 16.
  • the housing of the hydrogen generator is provided with an elastic bag 103.
  • the reaction chamber 1 is composed of an elastic bag 103.
  • the elastic bag 103 can be made of silicone rubber, fluororubber or polyurethane, and the wall of the elastic bag 103 reacts.
  • the flexible chamber wall of the chamber 1 is connected to the reaction liquid 101 by the inner surface of the bladder wall of the elastic bag 103.
  • the outer surface of the bladder wall of the elastic bag 103 is connected to the atmosphere through the vent 301 at the bottom of the casing 3.
  • the reaction chamber 1 contains a reaction liquid 101 and a reaction solid 2, and the reaction liquid 101 is an aqueous sodium borohydride solution.
  • the top cover 4 of the casing 3 has an air guiding tube 401.
  • the reaction solid 2 is fixed to the lower end of the air guiding tube 401.
  • the lower portion of the air guiding tube 401 has an air guiding hole 402 communicating with the reaction chamber 1.
  • the upper portion of the air guiding tube 401 is connected to the air supply tube 5.
  • the junction is provided with a gas-liquid separation membrane 6, which may be composed of microporous polytetrafluoroethylene, which functions to separate hydrogen from the reaction liquid.
  • the air guiding pipe 401 is provided with a safety valve 8, and the safety valve 8 can adopt a one-way pressure relief valve, which is used to prevent the pressure in the proton exchange membrane fuel cell from being excessively large, and automatically relieve pressure when the pressure exceeds the defined pressure.
  • the proton exchange membrane fuel cell has high specific energy, simple structure, safety and reliability, and is convenient to use.
  • the present invention is a proton exchange membrane fuel cell.
  • the reaction chamber 1 is provided with a porous flexible liquid absorbing liquid 102 capable of absorbing a reaction liquid, such as a sponge, which is released when squeezed. liquid.
  • the proton exchange membrane fuel cell can be placed in any direction, has higher specific energy, simple structure, safety and reliability, and is convenient to use.
  • the working principle is the same as that of the first embodiment, and will not be repeated.
  • the present invention is a proton exchange membrane fuel cell comprising a proton exchange membrane, a positive and negative electrode catalytic layer, a positive and negative diffusion layer, a positive and negative electrode baffle, a hydrogen generator, and a proton exchange membrane 10 located at the positive electrode.
  • the positive electrode diffusion layer 13 and the negative electrode diffusion layer 14 are respectively located outside the positive electrode catalyst layer 11 and the negative electrode catalyst layer 12, and the positive electrode baffle plate 15 and the negative electrode baffle plate 16 are respectively located at the positive electrode diffusion layer.
  • 06 002385 The outer layer of the diffusion layer 14 and the diffusion layer 14.
  • the oxygen molecules required for the positive electrode reaction are obtained by breathing the oxygen in the air through the positive electrode baffle 15, and the hydrogen molecules required for the negative electrode reaction are obtained by connecting the hydrogen gas generator through the negative electrode baffle 16.
  • the housing 3 of the hydrogen generator is provided with an elastic bag 104, and the reaction chamber 1 is surrounded by a housing 3 and an elastic bag 104.
  • the elastic bag 104 can be made of silicone rubber, fluororubber or polyurethane, and the elastic bag 104
  • the wall of the capsule constitutes the flexible chamber wall of the reaction chamber 1, and the bottom end of the outer surface of the capsule wall of the elastic bag 104 is fixed to the reaction solid 2, and the inner surface of the wall of the elastic bag 104 is connected to the atmosphere through the vent tube 7.
  • the reaction chamber 1 is filled with a reaction liquid 101, the reaction liquid 101 is an aqueous sodium borohydride solution, the reaction solid 2 is a porous ruthenium, the reaction solid 2 is directed toward the reaction liquid 101, and the reaction solid 2 is brought into contact with the reaction liquid 101 to generate hydrogen gas, and the reaction formula is -
  • the top cover 4 of the housing 3 has an air guiding tube 401.
  • the top end of the elastic bag 104 is fixed to the lower end of the air guiding tube 401.
  • the lower part of the air guiding tube 401 has an air guiding hole 402 communicating with the reaction chamber 1, and the air guiding tube 401 and the air tube 7 are provided.
  • the upper portion of the air guiding tube 401 is connected to the air supply tube 5, and the connection portion is provided with a gas-liquid separation membrane 6, which may be composed of microporous polytetrafluoroethylene, which functions to separate the hydrogen gas from the reaction liquid.
  • the air guiding pipe 401 is equipped with a safety valve 8, and the safety valve 8 can adopt a one-way pressure relief valve, which is used to prevent the pressure in the proton exchange membrane fuel cell from being excessively large, and automatically relieve pressure when the pressure exceeds the limited pressure.
  • the top cover 4 is opened, an appropriate amount of the reaction liquid 101 is added to the reaction chamber 1, and then the top cover 4 is closed, and the reaction solid 2 is brought into contact with the reaction liquid 101 to generate hydrogen gas.
  • the hydrogen gas passes through the air guide hole 402 and the air guide tube 401.
  • the gas-liquid separation membrane 6 and the gas supply pipe 5 supply gas to the negative electrode baffle 16.
  • the proton exchange membrane fuel cell has high specific energy, simple structure, safety and reliability, and is convenient to use.
  • the present invention is a proton exchange membrane fuel cell.
  • the elastic bag 104 is provided with an elastic body 9, and the elastic body 9 may be a bullet.
  • Springs, rubber, sponges, etc., elastomer 9 can increase the supply pressure of hydrogen.
  • the reaction chamber 1 is provided with a porous flexible liquid absorbing liquid 102 capable of absorbing a reaction liquid, such as a sponge, which releases a reaction liquid upon being squeezed.
  • the proton exchange membrane fuel cell can be placed in any direction, has higher specific energy, simple structure, safety and reliability, and is convenient to use.
  • the working principle is the same as that of the third embodiment, and is not redundant.
  • the present invention is a proton exchange membrane fuel cell comprising a proton exchange membrane, a positive and negative electrode catalytic layer, a positive and negative diffusion layer, a positive and negative electrode baffle, a hydrogen generator, and a proton exchange membrane 10 at the positive electrode.
  • the positive electrode diffusion layer 13 and the negative electrode diffusion layer 14 are respectively located outside the positive electrode catalyst layer 11 and the negative electrode catalyst layer 12, and the positive electrode baffle plate 15 and the negative electrode baffle plate 16 are respectively located at the positive electrode diffusion layer.
  • the oxygen molecules required for the positive electrode reaction are obtained by breathing oxygen in the air through the positive baffle 15, and the hydrogen molecules required for the negative electrode reaction are connected to the hydrogen generator through the negative electrode baffle 16.
  • the lower part of the casing 3 of the hydrogen generator is provided with an elastic diaphragm 105.
  • the reaction chamber 1 is surrounded by the side wall of the casing 3 and the elastic diaphragm 105.
  • the elastic diaphragm 105 can be made of silicone rubber, fluororubber or polyurethane, and is elastic.
  • the diaphragm 105 constitutes a flexible chamber wall of the reaction chamber 1, and the upper surface of the elastic diaphragm 105 is in contact with the reaction liquid 101, and the lower surface of the elastic diaphragm 105 is connected to the atmosphere through the vent hole 301 at the bottom of the casing 3.
  • the reaction chamber 1 contains a reaction liquid 101 and a reaction solid 2, the reaction liquid 101 is an aqueous sodium borohydride solution, the reaction solid 2 is a porous ruthenium, the reaction solid 2 is fixed above the reaction liquid 101, and the reaction solid 2 is directed toward the reaction liquid 101.
  • the reaction formula is:
  • a gas-liquid separation membrane 6 which may be composed of microporous polytetrafluoroethylene, which functions to separate hydrogen from the reaction liquid.
  • the side wall of the casing 3 is provided with a safety valve 8.
  • the safety valve 8 can adopt a one-way pressure relief valve, which prevents the pressure in the proton exchange membrane fuel cell from being excessively large, and automatically relieves pressure when the pressure exceeds the defined pressure.
  • the safety valve 8 is removed, an appropriate amount of the reaction liquid 101 is added to the reaction chamber 1, and then the safety valve 8 is installed, and the reaction solid 2 is brought into contact with the reaction liquid 101 to generate hydrogen gas, which passes through the pores of the reaction solid 2 itself.
  • the gas-liquid separation membrane 6 supplies gas to the anode baffle 16.
  • the elastic diaphragm 105 When the hydrogen pressure is small, the elastic diaphragm 105 is upwardly convex by the atmospheric pressure, the volume of the reaction chamber 1 is decreased, and the contact area of the reaction liquid 101 and the reaction solid 2 is increased, thereby accelerating hydrogen generation; When the hydrogen pressure is large, the elastic diaphragm 105 is recessed downward against the atmospheric pressure, the volume of the reaction chamber 1 is increased, and the contact area of the reaction liquid 101 with the reaction solid 2 is reduced, thereby slowing the generation of hydrogen.
  • the proton exchange membrane fuel cell has high specific energy, simple structure, safety and reliability, and is convenient to use.
  • the present invention is a proton exchange membrane fuel cell.
  • the reaction chamber 1 is provided with a porous flexible liquid absorption liquid 102 capable of absorbing a reaction liquid, such as sponge, which is released when squeezed. Reaction liquid.
  • the proton exchange membrane fuel cell can be placed in any direction, has higher specific energy, simple structure, safety and reliability, and is convenient to use.
  • the working principle is the same as that in the fifth embodiment, and will not be described again.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Fuel Cell (AREA)

Description

质子交换膜燃料电池 技术领域 本发明涉及质子交换膜燃料电池, 特别涉及反应液体与反应 固体接触产生氢气作为燃料的质子交换膜燃料电池。 背景技术 质子交换膜燃料电池是将氢和氧的化学能通过电化学反应直 接转化为电能的高效洁静发电系统, 具有极其广阔的应用前景。 质子交换膜燃料电池由质子交换膜、 正负极催化层、 正负极扩散 层、 正负极导流板、 氢源等构成, 质子交换膜位于正、 负极催化 层之间, 正、 负极扩散层分别位于正、 负极催化层的外侧, 正、 负极导流板分别位于正、 负极扩散层的外侧, 其工作原理是:
来自氢源的氢分子通过负极导流板、 负极扩散层到达负极催 化层解离成质子和电子; 质子通过质子交换膜到达正极催化层; 电子通过负极扩散层、 负极导流板、 负载、 正极导流板、 正极扩 散层到达正极催化层;来自空气等氧源的氧分子通过正极导流板、 正极扩散层到达正极催化层; 上述质子、 电子、 氧分子在正极催 化层复合成水分子。 电极反应和电池反应为:
负极反应: H2 = 2H+ + 2e
正极反应: 2H+ + 2e + 0.5O2 = H20
电池反应: H2 + 0.5O2 = H2O
目前质子交换膜燃料电池通常采用高压气态储氢、 低温液态 储氢、 金属氢化物固态储氢、 有机物重整制氢等氢源供氢, 存在 比能量低、 结构复杂、 安全性差、 使用不便等缺陷。 发明内容 本发明的目的在于克服上述缺陷, 提供一种质子交换膜燃料 电池, 它比能量高、 结构简单、 安全可靠、 使用方便。
本发明的目的是这样实现的:
一种质子交换膜燃料电池, 包括质子交换膜、 正负极催化层、 正负极扩散层、 正负极导流板、 氢气发生器, 质子交换膜位于正、 负极催化层之间, 正、 负极扩散层分别位于正、 负极催化层的外 侧, 正、 负极导流板分别位于正、 负极扩散层的外侧, 其特征在 于: 所述氢气发生器具有反应室, 反应室中装有反应液体和反应 固体, 反应固体朝向反应液体, 反应固体与反应液体接触时产生 氢气, 反应室具有柔性室壁, 柔性室壁的一侧表面与反应液体或 反应固体相接, 另一侧表面与大气相接, 氢气压力与大气压力分 别作用于柔性室壁的两侧表面上, 使柔性室壁发生形变, 从而带 动反应液体与反应固体作相对运动- 当氢气压力较小时, 柔性室壁受大气压力作用变形, 反应室 的容积减小, 反应液体与反应固体的接触面积加大, 从而加快氢 气产生;
当氢气压力较大时, 柔性室壁克服大气压力作用变形, 反应 室的容积增大, 反应液体与反应固体的接触面积减少, 从而减慢 氢气产生。
由此实现氢气按需产生, 流量自动调节, 压力自动控制, 从 而保证质子交换膜燃料电池稳定可靠工作。
所述柔性室壁是弹性室壁。
所述氢气发生器的壳体内装有弹性袋囊, 所述反应室由弹性 袋囊构成, 弹性袋囊的囊壁构成反应室的柔性室壁, 其内侧表面 与反应液体相接, 外侧表面经壳体底部的通气孔与大气相接, 壳 体的顶盖上有导气管, 反应固体固接在导气管的下端, 导气管的 下部有导气孔与反应室连通, 导气管的上部与供气管连接, 其连 接处装有气液分离膜, 导气管上装有安全阀。
所述氢气发生器的壳体内装有弹性袋囊, 所述反应室由壳体 和弹性袋囊围成, 弹性袋囊的囊壁构成反应室的柔性室壁, 其外 侧表面的底端与反应固体固接,内侧表面通过通气管与大气相接, 壳体的顶盖上有导气管, 弹性袋囊顶端固接在导气管的下端, 导 气管的下部有导气孔与反应室连通, 导气管与通气管不连通, 导 气管的上部与供气管连接, 其连接处装有气液分离膜, 导气管上 装有安全阀。
所述氢气发生器的壳体下部装有弹性膜片, 所述反应室由壳 体侧壁和弹性膜片围成, 弹性膜片构成反应室的柔性室壁, 其上 侧表面与反应液体相接, 下侧表面通过壳体底部的通气孔与大气 相接, 所述反应固体为多孔反应固体, 反应固体固定在反应液体 上方, 反应固体上方装有气液分离膜, 所述壳体侧壁上装有安全 阀。
所述反应室内装有多孔柔性吸液体。
所述弹性袋囊的内腔中装有弹性体。
本发明主要有以下积极有益的效果: 该质子交换膜燃料电池 比能量高, 结构简单, 氢气按需产生, 流量自动调节, 压力自动 控制, 从而保证质子交换膜燃料电池安全可靠工作。 反应室内可 装有能吸收反应液体的多孔柔性吸液体,受挤压时放出反应液体, 使该质子交换膜燃料电池可任意方向放置, 使用方便。 附图概述 图 1是本发明实施例一的结构示意图。
图 2是本发明实施例二的结构示意图。
图 3是本发明实施例三的结构示意图。
图 4是本发明实施例四的结构示意图。
图 5是本发明实施例五的结构示意图。
图 6是本发明实施例六的结构示意图。 本发明的实施例 实施例一
请参照图 1, 本发明是一种质子交换膜燃料电池, 包括质子 交换膜、 正负极催化层、 正负极扩散层、 正负极导流板、 氢气发 生器, 质子交换膜 10位于正极催化层 1 1、 负极催化层 12之间, 正极扩散层 13、 负极扩散层 14分别位于正极催化层 1 1、 负极催 化层 12的外侧, 正极导流板 15、 负极导流板 16分别位于正极扩 散层 13、 负极扩散层 14 的外侧。 正极反应所需的氧分子通过正 极导流板 1 5呼吸空气中氧气获得,负极反应所需的氢分子通过负 极导流板 16连接氢气发生器获得。
氢气发生器的壳体内装有弹性袋囊 103, 所述反应室 1 由弹 性袋囊 103构成, 弹性袋囊 103可由硅橡胶、 氟橡胶或聚氨酯等 制成, 弹性袋囊 103 的囊壁构成反应室 1 的柔性室壁, 弹性袋囊 103 的囊壁内侧表面与反应液体 101 相接, 弹性袋囊 103 的囊壁 外侧表面经壳体 3底部的通气孔 301与大气相接。 反应室 1 中装 有反应液体 101和反应固体 2, 反应液体 101为硼氢化钠水溶液, 反应固体 2为多孔钌, 反应固体 2朝向反应液体 101, 反应固体 2 与反应液体 101接触时产生氢气, 反应式为- NaBH4 + 2H20 + Ru = NaB02 + 4H2 + Ru
壳体 3 的顶盖 4上有导气管 401, 反应固体 2固接在导气管 401 的下端, 导气管 401 的下部有导气孔 402与反应室 1连通, 导气管 401 的上部与供气管 5连接, 其连接处装有气液分离膜 6, 它可由微孔的聚四氟乙烯构成,其作用是将氢气和反应液体分离。 导气管 401 上装有安全阀 8, 安全阀 8可采用单向的泄压阀, 其 作用是防止质子交换膜燃料电池内压力过大, 当压力超过限定压 力时, 自动泄压。
使用情况: 首先, 打开顶盖 4, 在反应室 1 内加入适量反应 液体 101, 然后关好顶盖 4, 反应固体 2与反应液体 101接触进行 反应产生氢气, 氢气经由反应固体 2 自身的孔隙及导气孔 402、 导气管 401、 气液分离膜 6、 供气管 5向负极导流板 16供气。
当氢气压力较小时, 弹性袋囊 103 的囊壁受大气压力作用收 缩, 反应室 1 的容积减小, 反应液体 101与反应固体 2的接触面 积加大, 从而加快氢气产生;
当氢气压力较大时, 弹性袋囊 103 的囊壁克服大气压力作用 膨胀, 反应室 1 的容积增大, 反应液体 101与反应固体 2的接触 面积减少, 从而减慢氢气产生。
由此实现氢气按需产生, 流量自动调节, 压力自动控制, 从 而保证质子交换膜燃料电池稳定可靠工作。 该质子交换膜燃料电 池比能量高、 结构简单、 安全可靠、 使用方便。
实施例二
请参照图 2, 本发明是一种质子交换膜燃料电池, 与实施例 一不同的是: 反应室 1 内装有能吸收反应液体的多孔柔性吸液体 102, 如海绵, 受挤压时释放出反应液体。 该质子交换膜燃料电池 可任意方向放置, 比能量高、 结构简单、 安全可靠、 使用方便。 工作原理与实施例一相同, 不复述。
实施例三
请参照图 3, 本发明是一种质子交换膜燃料电池, 包括质子 交换膜、 正负极催化层、 正负极扩散层、 正负极导流板、 氢气发 生器, 质子交换膜 10位于正极催化层 11、 负极催化层 12之间, 正极扩散层 13、 负极扩散层 14分别位于正极催化层 11、 负极催 化层 12的外侧, 正极导流板 15、 负极导流板 16分别位于正极扩 06 002385 散层 13、 负极扩散层 14 的外侧。 正极反应所需的氧分子通过正 极导流板 15呼吸空气中氧气获得,负极反应所需的氢分子通过负 极导流板 16连接氢气发生器获得。
氢气发生器的壳体 3 内装有弹性袋囊 104,反应室 1 由壳体 3 和弹性袋囊 104围成, 弹性袋囊 104可由硅橡胶、 氟橡胶或聚氨 酯等制成, 弹性袋囊 104的囊壁构成反应室 1 的柔性室壁, 弹性 袋囊 104的囊壁外侧表面的底端与反应固体 2固接,弹性袋囊 104 的囊壁内侧表面通过通气管 7与大气相接。 反应室 1 中装有反应 液体 101, 反应液体 101 为硼氢化钠水溶液, 反应固体 2为多孔 钌, 反应固体 2朝向反应液体 101 , 反应固体 2 与反应液体 101 接触时产生氢气, 反应式为-
NaBH4 + 2H20 + Ru = NaB02 + 4H2 + Ru
壳体 3 的顶盖 4上有导气管 401, 弹性袋囊 104的顶端固接 在导气管 401 的下端, 导气管 401 的下部有导气孔 402与反应室 1连通, 导气管 401 与通气管 7不连通, 导气管 401 的上部与供 气管 5 连接, 其连接处装有气液分离膜 6, 它可由微孔的聚四氟 乙烯构成, 其作用是将氢气和反应液体分离。 导气管 401 上装有 安全阀 8, 安全阀 8 可采用单向的泄压阀, 其作用是防止质子交 换膜燃料电池内压力过大, 当压力超过限定压力时, 自动泄压。
使用情况: 首先, 打开顶盖 4, 在反应室 1 内加入适量反应 液体 101, 然后关好顶盖 4, 反应固体 2与反应液体 101接触进行 反应产生氢气, 氢气经由导气孔 402、 导气管 401、 气液分离膜 6、 供气管 5向负极导流板 16供气。
当氢气压力较小时, 弹性袋囊 104的囊壁受大气压力作用膨 胀, 反应室 1 的容积减小, 反应液体 101与反应固体 2的接触面 积加大, 从而加快氢气产生;
当氢气压力较大时, 弹性袋囊 104的囊壁克服大气压力作用 收缩, 反应室 1 的容积增大, 反应液体 101与反应固体 2的接触 面积减少, 从而减慢氢气产生。
由此实现氢气按需产生, 流量自动调节, 压力自动控制, 从 而保证质子交换膜燃料电池稳定可靠工作。 该质子交换膜燃料电 池比能量高、 结构简单、 安全可靠、 使用方便。
实施例四
请参照图 4, 本发明是一种质子交换膜燃料电池, 与实施例 三不同的是: 弹性袋囊 104 中装有弹性体 9, 弹性体 9可以是弹 簧、 橡胶、 海棉等, 弹性体 9可增加氢气的供气压力。 弹性体 9 的弹力越大, 氢气的供气压力越大。 反应室 1 内装有能吸收反应 液体的多孔柔性吸液体 102, 如海棉, 受挤压时释放出反应液体。 该质子交换膜燃料电池可任意方向放置, 比能量高、 结构简单、 安全可靠、 使用方便。 工作原理与实施例三相同, 不冗述。
实施例五
请参照图 5, 本发明是一种质子交换膜燃料电池, 包括质子 交换膜、 正负极催化层、 正负极扩散层、 正负极导流板、 氢气发 生器, 质子交换膜 10位于正极催化层 1 1、 负极催化层 12之间, 正极扩散层 13、 负极扩散层 14分别位于正极催化层 11、 负极催 化层 12的外侧, 正极导流板 15、 负极导流板 16分别位于正极扩 散层 13、 负极扩散层 14 的外侧。 正极反应所需的氧分子通过正 极导流板 15呼吸空气中氧气获得,负极反应所需的氢分子通过负 极导流板 16连接氢气发生器获得。
氢气发生器的壳体 3 下部装有弹性膜片 105, 反应室 1 由壳 体 3的侧壁和弹性膜片 105围成, 弹性膜片 105可由硅橡胶、 氟 橡胶或聚氨酯等制成, 弹性膜片 105构成反应室 1 的柔性室壁, 弹性膜片 105的上侧表面与反应液体 101相接, 弹性膜片 105的 下侧表面通过壳体 3底部的通气孔 301与大气相接。 反应室 1 中 装有反应液体 101 和反应固体 2, 反应液体 101 为硼氢化钠水溶 液, 反应固体 2为多孔钌, 反应固体 2固定在反应液体 101 的上 方, 反应固体 2朝向反应液体 101 , 反应固体 2与反应液体 101 接触时产生氢气, 反应式为:
NaBH4 + 2H20 + Ru = NaB02 + 4H2 + Ru
反应固体 2 的上方装有气液分离膜 6, 它可由微孔的聚四氟 乙烯构成, 其作用是将氢气和反应液体分离。 壳体 3 的侧壁上装 有安全阀 8, 安全阀 8 可采用单向的泄压阀, 其作用是防止质子 交换膜燃料电池内压力过大, 当压力超过限定压力时, 自动泄压。
使用情况: 首先, 取下安全阀 8, 向反应室 1 内加入适量反 应液体 101, 然后装上安全阀 8, 反应固体 2与反应液体 101接触 进行反应产生氢气, 氢气经由反应固体 2 自身的孔隙、 气液分离 膜 6向负极导流板 16供气。
当氢气压力较小时,弹性膜片 105受大气压力作用向上凸起, 反应室 1 的容积减小, 反应液体 101与反应固体 2的接触面积加 大, 从而加快氢气产生; 当氢气压力较大时, 弹性膜片 105克服大气压力作用向下凹 陷, 反应室 1 的容积增大, 反应液体 101与反应固体 2的接触面 积减少, 从而减慢氢气产生。
由此实现氢气按需产生, 流量自动调节, 压力自动控制, 从 而保证质子交换膜燃料电池稳定可靠工作。 该质子交换膜燃料电 池比能量高、 结构简单、 安全可靠、 使用方便。
实施例六
请参照图 6, 本发明是一种质子交换膜燃料电池, 与实施例 五不同的是: 反应室 1 内装有能吸收反应液体的多孔柔性吸液体 102 , 如海棉, 受挤压时释放出反应液体。 该质子交换膜燃料电池 可任意方向放置, 比能量高、 结构简单、 安全可靠、 使用方便。 工作原理与实施例五相同, 不赘述。

Claims

权 利 要 求 书
1 . 一种质子交换膜燃料电池, 包括质子交换膜、 正负极催化 层、 正负极扩散层、 正负极导流板、 氢气发生器, 质子交换膜位 于正、 负极催化层之间, 正、 负极扩散层分别位于正、 负极催化 层的外侧, 正、 负极导流板分别位于正、 负极扩散层的外侧, 其 特征在于: 所述氢气发生器具有反应室, 反应室中装有反应液体 和反应固体, 反应固体朝向反应液体, 反应固体与反应液体接触 时产生氢气, 反应室具有柔性室壁, 柔性室壁的一侧表面与反应 液体或反应固体相接, 另一侧表面与大气相接, 氢气压力与大气 压力分别作用于柔性室壁的两侧表面上, 使柔性室壁发生形变, 从而带动反应液体与反应固体作相对运动:
当氢气压力较小时, 柔性室壁受大气压力作用变形, 反应室 的容积减小, 反应液体与反应固体的接触面积加大, 从而加快氢 气产生;
当氢气压力较大时, 柔性室壁克服大气压力作用变形, 反应 室的容积增大, 反应液体与反应固体的接触面积减少, 从而减慢 氢气产生。
2. 如权利要求 1所述的质子交换膜燃料电池, 其特征在于: 所述柔性室壁是弹性室壁。
3 . 如权利要求 1所述的质子交换膜燃料电池, 其特征在于: 所述氢气发生器的壳体内装有弹性袋囊, 所述反应室由弹性袋囊 构成, 弹性袋囊的囊壁构成反应室的柔性室壁, 其内侧表面与反 应液体相接, 外侧表面经壳体底部的通气孔与大气相接, 壳体的 顶盖上有导气管, 反应固体固接在导气管的下端, 导气管的下部 有导气孔与反应室连通, 导气管的上部与供气管连接, 其连接处 装有气液分离膜, 导气管上装有安全阀。
4. 如权利要求 1所述的质子交换膜燃料电池, 其特征在于: 所述氢气发生器的壳体内装有弹性袋囊, 所述反应室由壳体和弹 性袋囊围成, 弹性袋囊的囊壁构成反应室的柔性室壁, 其外侧表 面的底端与反应固体固接, 内侧表面通过通气管与大气相接, 壳 体的顶盖上有导气管, 弹性袋囊顶端固接在导气管的下端, 导气 管的下部有导气孔与反应室连通, 导气管与通气管不连通, 导气 管的上部与供气管连接, 其连接处装有气液分离膜, 导气管上装 有安全阀。
5 . 如权利要求 1所述的质子交换膜燃料电池, 其特征在于: 所述氢气发生器的壳体下部装有弹性膜片, 所述反应室由壳体侧 壁和弹性膜片围成, 弹性膜片构成反应室的柔性室壁, 其上侧表 面与反应液体相接,下侧表面通过壳体底部的通气孔与大气相接, 所述反应固体为多孔反应固体, 反应固体固定在反应液体上方, . 反应固体上方装有气液分离膜, 所述壳体侧壁上装有安全阀。
6. 如权利要求 1所述的质子交换膜燃料电池, 其特征在于: 所述反应室内装有多孔柔性吸液体。
7 . 如权利要求 4所述的质子交换膜燃料电池, 其特征在于: 所述弹性袋囊的内腔中装有弹性体。
PCT/CN2006/002385 2006-01-27 2006-09-14 Pile à combustible à membrane échangeuse de protons WO2007085150A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200620001975.7 2006-01-27
CNU2006200019757U CN2863238Y (zh) 2006-01-27 2006-01-27 气体发生器
CN200620007750.2 2006-03-10
CN 200620007750 CN2889476Y (zh) 2006-03-10 2006-03-10 气体发生器

Publications (1)

Publication Number Publication Date
WO2007085150A1 true WO2007085150A1 (fr) 2007-08-02

Family

ID=38308839

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2006/001292 WO2007085144A1 (fr) 2006-01-27 2006-06-13 Générateur de gaz
PCT/CN2006/002385 WO2007085150A1 (fr) 2006-01-27 2006-09-14 Pile à combustible à membrane échangeuse de protons

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/001292 WO2007085144A1 (fr) 2006-01-27 2006-06-13 Générateur de gaz

Country Status (1)

Country Link
WO (2) WO2007085144A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9540237B2 (en) * 2014-12-19 2017-01-10 Intelligent Energy Limited Gas generator with buoyant catalyst carrier

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030235724A1 (en) * 2002-06-21 2003-12-25 Ord Jason S. Hydrogen generating apparatus
WO2004082041A2 (en) * 2003-03-07 2004-09-23 Entegris, Inc. Fuel storage container for a fuel cell
WO2004085307A1 (en) * 2003-03-28 2004-10-07 Temco Co., Limited Hydrogen gas generator
CN1617377A (zh) * 2004-12-03 2005-05-18 哈尔滨工业大学 微型液体燃料电池燃料贮存装置
CN1650457A (zh) * 2002-01-08 2005-08-03 吉列公司 用于液体进料燃料电池系统的燃料容器和输送装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1233525A (zh) * 1999-03-25 1999-11-03 王卫平 自动控压气体发生器
US7048897B1 (en) * 2000-08-28 2006-05-23 Motorola, Inc. Hydrogen generator utilizing ceramic technology
US6932847B2 (en) * 2001-07-06 2005-08-23 Millennium Cell, Inc. Portable hydrogen generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1650457A (zh) * 2002-01-08 2005-08-03 吉列公司 用于液体进料燃料电池系统的燃料容器和输送装置
US20030235724A1 (en) * 2002-06-21 2003-12-25 Ord Jason S. Hydrogen generating apparatus
WO2004082041A2 (en) * 2003-03-07 2004-09-23 Entegris, Inc. Fuel storage container for a fuel cell
WO2004085307A1 (en) * 2003-03-28 2004-10-07 Temco Co., Limited Hydrogen gas generator
CN1617377A (zh) * 2004-12-03 2005-05-18 哈尔滨工业大学 微型液体燃料电池燃料贮存装置

Also Published As

Publication number Publication date
WO2007085144A1 (fr) 2007-08-02

Similar Documents

Publication Publication Date Title
CA2530504C (en) Fuel cartridge with flexible liner
KR101386444B1 (ko) 수소발생 연료전지 카트리지
KR101145125B1 (ko) 연료전지용 연료 카트리지
CA2814946C (en) Relief valves for fuel cell systems
KR20080050603A (ko) 연료전지용 연료 카트리지
KR20080104162A (ko) 연료 카트리지용 밸브
KR20080014870A (ko) 수소발생 연료전지 카트리지
JP2005032598A (ja) 燃料タンク及びこれを用いた燃料電池システム
CN100590921C (zh) 质子交换膜燃料电池
WO2007085150A1 (fr) Pile à combustible à membrane échangeuse de protons
JP2007012319A (ja) 燃料電池システム
TWI384679B (zh) 電源供應裝置
RU2444817C2 (ru) Топливный баллончик для топливных элементов
JP5142176B2 (ja) 固体高分子型燃料電池システム
JP2007059327A (ja) 電子機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680044117.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06790988

Country of ref document: EP

Kind code of ref document: A1