WO2007084499A2 - Disease control in shrimp - Google Patents

Disease control in shrimp Download PDF

Info

Publication number
WO2007084499A2
WO2007084499A2 PCT/US2007/001125 US2007001125W WO2007084499A2 WO 2007084499 A2 WO2007084499 A2 WO 2007084499A2 US 2007001125 W US2007001125 W US 2007001125W WO 2007084499 A2 WO2007084499 A2 WO 2007084499A2
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
clone
shrimp
acid sequence
protein
Prior art date
Application number
PCT/US2007/001125
Other languages
French (fr)
Other versions
WO2007084499A8 (en
Inventor
Arun K. Dhar
Original Assignee
San Diego State University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by San Diego State University filed Critical San Diego State University
Publication of WO2007084499A2 publication Critical patent/WO2007084499A2/en
Publication of WO2007084499A8 publication Critical patent/WO2007084499A8/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43509Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from crustaceans
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/18011Nimaviridae
    • C12N2710/18034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/04Screening involving studying the effect of compounds C directly on molecule A (e.g. C are potential ligands for a receptor A, or potential substrates for an enzyme A)

Definitions

  • the invention pertains to the identification, monitoring, and treatment of infection in crustaceans, particularly Penaeus sp. (shrimp).
  • the compositions and methods using nucleic acids and polypeptides of the invention e.g., sequences identified by differentially expression in non-infected and infected crustaceans, in therapeutics, diagnostics, and screening reagents, particularly for viral infection in Penaeus sp..
  • white spot disease of shrimp caused by the white spot syndrome virus (WSSV) is considered to be the most important viral disease of cultured shrimp worldwide (Office International de Epizooties, 2002). Since the initial report of WSSV in East Asia during 1992 to 1993 (Inouye et al. 1994), WSSV has spread to much of Asia and the Americas causing catastrophic losses to shrimp farmers (Krishna et al. 1997; Jory and Dixon 1999). The cumulative loss due to WSSV in the Asia since 1992 is estimated to be $4-6 billion. The losses due to WSSV in the Americas have been estimated to $1-2 billion.
  • WSSV virions are ellipsoid to bacilliform in shape, enveloped with a tail- like appendage at one end of the particle.
  • the genome of WSSV contains a circular double-stranded DNA of -300 kb in length (van Hulten et al. 2001; Yang et al. 2001).
  • the WSSV has a morphological similarity with baculovirus, sequence analysis revealed that WSSV shares very little similarity with any known viruses (van Hulten et al, 2001 ; Yang et al , 2001).
  • WSSV has been placed in a new family, the Nimaviridae, and a new genus, Whispovirus.
  • WSSV infects all commercially important species of penaeid shrimp and a number of other crustaceans, including crabs and crayfish (Flegel 1997). Since the initial report of WSSV in East Asia during 1992 to 1993 (Inouye et al 1994), a number of WSSV-encoded genes, such as the capsid genes (van Hulten et al 2000a; van Hulten et al. 2000b; Zhang et al 2001 ; Chen et al 2002; Marks et al 2003), a ribonucleotide reductase gene (Tsai et al.
  • LGBP a pattern recognition protein
  • proPO prophenoloxidase
  • WSSV-infected animals prophenoloxidase gene expression
  • proPO gene expression is downregulated as the WSSV infection progresses, suggesting that WSSV infection regulates the activation and / or activity of the prophenoloxidase cascade in a novel way (Roux et al, 2002).
  • a syntenin-like protein (TE8) with a post-synaptic density protein (PDZ) domain has been isolated from Penaeus monodon shrimp and was upregulation during WSSV- infection (Bangrak et al, 2002).
  • the shrimp syntenin-like protein may function as an adapter that couples the PDZ-binding protein to cell-to-cell signal transduction during WSSV pathogenesis (Bangrak et al , 2002).
  • Antiviral substances capable of binding to a variety of DNA and RNA viruses (Sindbis virus, vaccinia virus, vesicular somatitis virus, mengo virus, banzi virus and poliomyelitis virus) have been isolated from shrimp ⁇ Penaeus setiferus), although the genes representing these proteins have not yet been cloned (Pan et al, 2000). These antiviral proteins probably represent a component of the innate immune response in shrimp (Pan et al, 2000).
  • This invention has identified cellular genes that play a critical role in viral, specifically white spot syndrome virus (WSSV), pathogenesis in Penaeus sp. (shrimp), and viral pathogenesis in invertebrates in general.
  • WSSV white spot syndrome virus
  • shmp pathogenesis in Penaeus sp.
  • viral pathogenesis in invertebrates in general.
  • Several immune genes in shrimp have been isolated that showed differential expression between healthy and WSSV- infected shrimp.
  • the nucleic acids comprising these genes, or fragments thereof can used as potential targets for developing therapeutics against white spot disease and other viral, bacterial, and fungal diseases in shrimp. Accordingly, the invention provides methods for screening for compounds for treating or diagnosing WSSV using the nucleic acids of the invention or the polypeptides they encode.
  • compositions comprising, or consisting of, sets of differentially expressed genes selected by their differential expression on viral infection as compared to healthy Penaeus sp. (shrimp) expression profiles.
  • the viral infection is white spot syndrome virus, Taura syndrome virus, infectious hypodermal and hematopoietic virus, yellowhead virus or baculovirus penae.
  • the genes are selected from expressed sequence tag libraries designed by differential selection of genes that are up- or down-regulated during viral infection.
  • the viral infection is white spot syndrome virus.
  • the genes can the genes described herein, e.g., the nucleic acids as set forth in Table 2 and the appendices.
  • the viral infection is selected from white spot syndrome virus, Tarua syndrome virus, infectious hypodermal and hematopoietic virus, yellowhead virus and baculovirus penae.
  • the genes can be selected from the shrimp expressed sequence tag differential library used for the treatment of disease.
  • the disease can be selected from white spot syndrome virus, Tarua syndrome virus, infectious hypodermal and hematopoietic virus, yellowhead virus and baculovirus penae.
  • the differential library can be produced from shrimp infected with WSSV, or, from shrimp infected with viruses selected from white spot syndrome virus, Tarua syndrome virus, infectious hypodermal and hematopoietic virus, yellowhead virus and baculovirus penae.
  • the invention also provides methods of determining the metabolic or disease state of shrimp using the compositions described herein, including the polypeptides of the invention and the nucleic acids of the invention.
  • the invention provides isolated or recombinant nucleic acids having at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more sequence identity, when compared and aligned for maximum correspondence, as measured using one any known sequence comparison algorithm, as discussed in detail below, or by visual inspection, to an exemplary nucleic acid of the invention, which include all nucleic acids sequences described herein, e.g., as set forth in Appendix A.
  • the invention provides isolated or recombinant polypeptides having at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more sequence identity, when compared and aligned for maximum correspondence, as measured using one any known sequence comparison algorithm, as discussed in detail below, or by visual inspection, to an exemplary polypeptides of the invention, which include all polypeptides described herein, and include all polypeptides encoded by nucleic acids of the invention, which include all nucleic acids sequence
  • the invention provides nucleic acid and polypeptide sequences having substantial identity to an exemplary sequence of the invention over a region of at least about 10, 20, 30, 40, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 or more residues.
  • ESTs expressed sequence tags
  • the invention provides nucleic acids, e.g., probes or expressed sequence tags (ESTs), some isolated from Penaeid shrimp tissue; that specifically correspond to the onset of viral disease.
  • these nucleic acids, e.g., probes or expressed sequence tags comprise subsequences of sequences of the invention, including the exemplary sequences set forth herein, e.g., as set forth in Appendix A.
  • the invention provides nucleic acids, e.g., probes or expressed sequence tags (ESTs), comprising subsequences of sequences of the invention, including the exemplary sequences set forth herein, the specifically correspond to the onset of viral disease.
  • these nucleic acids have been isolated from shrimp (Penaeus vannamei) tissue.
  • the invention provides compositions for use in protecting Penaeus sp. (shrimp) from viral infection and methods of protecting Penaeus sp. (shrimp) from viral infection using recombinant or isolated protein or nucleic acids comprising sequences of the invention, including the exemplary sequences set forth herein, e.g., as set forth in Appendix A; which in various aspects are derived from the full-length gene or recombinant truncated protein or nucleic acids derived from the functional domain of the gene identified using the EST differential libraries of the instant invention.
  • the invention provides compositions and methods for use in protecting Penaeus sp. (shrimp) from viral infection and methods of protecting Penaeus sp. (shrimp) from viral infection using recombinant or isolated protein or nucleic acids comprising sequences of the invention, including the exemplary sequences set forth herein, e.g., as set forth in Appendix A; which in various aspects are derived from the full-length gene or recomb
  • Penaeus sp. (shrimp) from WSSV infection or other viral infection using recombinant or isolated protein or nucleic acids comprising sequences of the invention, including the exemplary sequences set forth herein, e.g., as set forth in Appendix A; which in various aspects are derived from the full-length gene or recombinant truncated protein or nucleic acids derived from the functional domain of the gene.
  • the invention provides feeds and/or feed supplements which comprise recombinant or isolated protein or nucleic acids comprising sequences of the invention, including the exemplary sequences set forth herein, e.g., as set forth in Appendix A; which in various aspects incorporate recombinant or isolated protein or nucleic acids identified using the EST differential libraries of the instant invention and providing same to the animal to inhibit the deleterious effects of the virus on the host.
  • the invention provides compositions and methods for treatments comprising use of recombinant or isolated protein or nucleic acids comprising sequences of the invention, including the exemplary sequences set forth herein, e.g., as set forth in Appendix A; which in various aspects incorporate recombinant or isolated protein or nucleic acids identified using the WSSV infected and healthy EST differential libraries of the instant invention and providing it to the animal to inhibit or suppress the deleterious effects of the WSSV on the host.
  • the invention provides therapeutics, a feed, or feed supplement that incorporates recombinant or isolated protein or nucleic acids identified using the WSSV infected and healthy EST differential libraries of the instant invention and providing it to the animal to inhibit or suppress the deleterious effect of the WSSV on the host.
  • the invention provides methods of treatment for white spot viral disease in
  • Penaeus sp. (shrimp) based on the genes identified through differential expression libraries, including protein or nucleic acids comprising sequences of the invention, including the exemplary sequences set forth herein, e.g., as set forth in Appendix A.
  • the method comprises the steps including the production of recombinant or isolated protein using bacterial, yeast, plant, and/or algal expression systems, then mixing the recombinant or isolated protein with feed and delivering the recombinant or isolated protein in sufficient quantity to prevent action of the virus on Penaeus sp. (shrimp). This approach can also be applied to diseases in Penaeus sp.
  • the invention provides a method for treatment of both acute and chronic diseases via delivery of therapeutic recombinant or isolated protein(s) and/or nucleic acids.
  • sequences of the invention including the exemplary sequences set forth herein, e.g., as set forth in Appendix A, including ESTs differentially expressed on viral infection, as a biopesticide.
  • the invention provides arrays comprising sequences of the invention, including the exemplary sequences set forth herein, e.g., as set forth in Appendix A.
  • the invention provides both compositions that can be used for prevention of disease and methods of prevention of disease, and diagnostic tools for evaluation of the health of the animals affected by disease.
  • FIG. 1 is a graphical representation of the function classes of genes isolated from hepatopancreas cDNA libraries of healthy and WSSV infected shrimp (P. vannamei) that showed similarities with the GenBank database entries;
  • FIG. 2 is a graphical representation of the differential expression of expressed sequence tags (ESTs) in white spot syndrome virus (WSSV) infected shrimp (Penaeus vannamei) compared to healthy shrimp (P. vannamei). Bars above the X-axis indicate up-regulation, and bar below the X-axis indicates down-regulation of the gene in WSSV-infected compared to healthy shrimp; and
  • ESTs expressed sequence tags
  • FIG. 3 is a graphical representation of the quantification of differently expressed immune genes in WSSV infected shrimp (P. vannemef) by SYBR Green real-time PCR. Bars above the axis represent up-regulated genes and bars below the axis represent down-regulated genes.
  • GILT gamma interferon inducible lysosomal thiol reductase
  • Interleukin enhancer-binding factor 3 3) tetraspanin-2
  • NF- kappa ⁇ essential modulator 5) Chitinase; 6) prophenoloxidase-activating proteinase 2; 7) p-selectin; 8) T-cell activation protein; 9) O.-sialoglycoprotein endopeptidase; 10) ubiquitin; 11) anti-lipopolysaccharide factor.
  • nucleic acid sequence comprising a nucleic acid sequence of at least 65% identity to a nucleic acid sequence as set forth in as set forth in Appendix A.
  • the nucleic acid sequence has at least 95% identity. In another embodiment, the nucleic acid sequence has 100% identity.
  • the invention also provides the polypeptide encoded by the nucleic acid sequences disclosed herein.
  • a vector comprising the nucleic acid sequence provided herein, and a cell comprising said vector.
  • a feed or feed supplement comprising sequences of the invention, including the exemplary sequences set forth herein, e.g., as set forth in Appendix A; including recombinant or isolated proteins or biologically active fragments thereof encoded by a nucleic acid sequence of the invention, e.g., having at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%,
  • the shrimp gene is selected from a group of shrimp genes consisting of tetraspanin-2, P-selectin precursor, T-cell activation protein, anti-lipopolysaccharide factor, and heat shock protein STIl .
  • the shrimp gene is in clone PvWl 1A5, clone PvW4E03, clone PvW5G04, clone PvHBl 1, or clone PvWl 0D06.
  • the protein or biologically active fragment thereof is encoded by a nucleic acid listed in Appendix A. The protein can provided within a cell or provided as a disrupted cell.
  • a feed or feed supplement comprising a nucleic acid sequence of at least 65% sequence identity to a shrimp gene or biologically active portion thereof in a set of genes up-regulated by infection with a virus.
  • the nucleic acid sequence can be a nucleic acid sequence listed in Appendix A.
  • the shrimp gene is selected from a group of shrimp genes consisting of tetraspanin-2, P-selectin precursor, T-cell activation protein, anti-lipopoly saccharide factor, and heat shock protein STIl .
  • the shrimp gene is contained in clone PvWl 1 A5, clone PvW4E03, clone PvW5G04, clone PvHBl 1, or clone PvWl 0D06.
  • the nucleic acid sequence can be contained or provided within a cell or provided as a disrupted cell. In some embodiments, the nucleic acid sequence is produced synthetically.
  • a feed or feed supplement comprising a recombinant or isolated protein or biologically active fragment thereof encoded by a nucleic acid sequence with at least 65% or sequence identity to a nucleic acid sequence found in the set of shrimp genes down-regulated with viral infection.
  • the protein is gamma-interferon inducible lysosomal thiol reductase precursor, interleukin enhancer-binding factor 3 5 NF-kappaB essential modulator, chitinase, prophenoloxidase-activating proteinase 2, O-sialoglycoprotein endopeptidase, ubiquitin, or lysozyme.
  • the protein is encoded by a nucleic acid sequence selected from the group of shrimp nucleic acid sequence contained in clonePvHlA02, clone PvW8B06, clone PvW8E09, clone PvW9El l, clone PvW4F07, clone PvHC06, clone PvW04C06, and clone PvWl 0F4.
  • the protein or biologically active fragment thereof is encoded by a nucleic acid sequence listed in Appendix A.
  • the protein can be provided within a cell or provided as a disrupted cell.
  • a feed or feed supplement comprising a nucleic acid sequence with at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more sequence identity to a nucleic acid of the invention, e.g., a shrimp gene or biologically active fragment thereof, wherein said nucleic acid sequence encodes a shrimp gene down-regulated at or during viral infection.
  • a nucleic acid of the invention e.g., a shrimp gene or biologically active fragment thereof, wherein said nucleic
  • the shrimp gene is gamma-interferon inducible lysosomal thiol reductase precursor, interleukin enhancer-binding factor 3, NF-kappaB essential modulator, chitinase, prophenoloxidase-activating proteinase 2, O-sialoglycoprotein endopeptidase, ubiquitin, and lysozyme.
  • the shrimp nucleic acid sequence is contained in clonePvHl A02, clone PvW8B06, clone PvW8E09, clone PvW9El I 5 clone PvW4F07, clone PvHC06, clone PvW04C06, and clone PvWl 0F4.
  • the nucleic acid sequence can be provided within a cell or provided as a disrupted cell. In some embodiments, the nucleic acid sequence is produced synthetically.
  • a therapeutic comprising a recombinant or isolated protein or biologically active portion thereof having at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more sequence identity to a nucleic acid of the invention, e.g., including a shrimp protein encoded by a shrimp gene up-regulated during viral infection.
  • a nucleic acid of the invention e.g., including a shrimp protein encoded by a shrimp gene up-regulated during viral infection.
  • the shrimp gene is a nucleic acid sequence listed in Appendix A.
  • the shrimp gene can be tetraspanin-2, P-selectin precursor, T-cell activation protein, anti-lipopolysaccharide factor, and heat shock protein STI 1.
  • the shrimp gene is contained in clone PvWl 1 A5, clone PvW4E03, clone PvW5G04, clone PvHBl 1, and clone PvWl 0D06.
  • the protein or biologically active portion thereof can be delivered orally, by immersion, by injection, or any suitable method.
  • a therapeutic comprising a nucleic acid sequence of at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more sequence identity to a nucleic acid of the invention, e.g., to a shrimp gene or biologically active fragment thereof that is up- regulated by infection with a virus.
  • the shrimp gene can be selected from those listed in Appendix A.
  • the shrimp gene is tetraspanin-2, P-selectin precursor, T-cell activation protein, anti-lipopolysaccharide factor, and heat shock protein STIl.
  • the shrimp gene is contained in clone PvWl 1A5, clone PvW4E03, clone PvW5G04, clone PvHBl 1, and clone PvWl 0D06.
  • the nucleic acid sequence can be delivered orally, by immersion, by injection, or any suitable method that permits expression.
  • a therapeutic comprising a recombinant or isolated protein or biologically active fragment thereof encoded by a nucleic acid sequence with at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more sequence identity to a nucleic acid of the invention, e.g., to a shrimp protein down-regulated by infection with a virus.
  • the protein or biologically active fragement thereof can be encoded by a nucleic acid sequence listed in Appendix A.
  • the protein or biologically active fragment thereof is gamma-interferon inducible lysosomal thiol reductase precursor, interleukin enhancer-binding factor 3, NF-kappaB essential modulator, chitinase, prophenoloxidase-activating proteinase 2, O-sialoglycoprotein endopeptidase, ubiquitin, or lysozyme.
  • the protein or biologically active fragment thereof is contained in clonePvHlA02, clone PvW8B06, clone PvW8E09, clone PvW9El 1, clone PvW4F07, clone PvHC06, clone PvW04C06, or clone PvWl 0F4.
  • the protein or biologically active portion thereof can be delivered orally, by immersion, by injection, or any suitable method.
  • a therapeutic comprising a nucleic acid sequence of at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more sequence identity to a nucleic acid of the invention, e.g., including a shrimp gene or faction thereof down-regulated by infection with a virus.
  • a nucleic acid of the invention e.g., including a shrimp gene or faction thereof down-regulated by infection with a virus.
  • the nucleic acid sequence can be one listed in Appendix A.
  • the nucleic acid sequence is gamma-interferon inducible lysosomal thiol reductase precursor, interleukin enhancer-binding factor 3, NF-kappaB essential modulator, chitinase, prophenoloxidase-activating proteinase 2, O-sialoglycoprotein endopeptidase, ubiquitin, and lysozyme.
  • the nucleic acid sequence is contained in clone PvHl A02, clone PvW8B06, clone PvW8E09, clone PvW9El 1, clone PvW4F07, clone PvHC06, clone PvW04C06, or clone PvWl 0F4.
  • the nucleic acid sequence can be delivered orally, by immersion, by injection, or any suitable method that permits expression.
  • a screening method for identifying a substrate of a protein that is up-regulated following infection by a pathogen comprising: (a) providing a polypeptide of the invention; or a polypeptide encoded by a nucleic acid of the invention; (b) providing a test substrate; and (c) contacting the polypeptide of step (a) with the test substrate of step (b) and detecting a decrease in the amount of substrate or an increase in the amount of reaction product, wherein a decrease in the amount of the substrate or an increase in the amount of a reaction product identifies the test substrate as the polypeptide substrate.
  • the protein can be encoded by a nucleic acid sequence selected from Appendix A.
  • the protein is tetraspanin-2, P-selectin precursor, T-cell activation protein, anti-lipopolysaccharide factor, or heat shock protein STIl.
  • the protein is encoded by the nucleic acid seqeunce contained in clone PvWl 1 A5, clone PvW4E03, clone PvW5G04, clone PvHBl 1, or clone PvWl 0D06.
  • a screening method cfor identifying a substrate of a protein that is down-regulated following infection by a pathogen comprising: (a) providing a polypeptide of the invention; or a polypeptide encoded by a nucleic acid of the invention; (b) providing a test substrate; and (c) contacting the polypeptide of step (a) with the test substrate of step (b) and detecting a decrease in the amount of substrate or an increase in the amount of reaction product, wherein a decrease in the amount of the substrate or an increase in the amount of a reaction product identifies the test substrate as the polypeptide substrate.
  • the protein can be encoded by a nucleic acid sequenced selected from Appendix A.
  • the protein is gamma- interferon inducible lysosomal thiol reductase precursor, interleukin enhancer-binding factor 3, NF-kappaB essential modulator, chitinase, prophenoloxidase-activating proteinase 2, O-sialoglycoprotein endopeptidase, ubiquitin, or lysozyme.
  • the protein is encoded by the nucleic acid sequence contained in clonePvHlA02, clone PvW8B06, clone PvW8E09, clone PvW9El 1, clone PvW4F07, clone PvHC06, clone PvW04C06, or clone PvWl 0F4.
  • hererin is a diagnostic kit for evaluation of infection in crustaceans in aquaculture and food processing comprising at least one differentially expressed gene as a nucleic acid or recombinant polypeptide, wherein the gene can be used to identify a crustacean as being infected or non-infected with the pathogen of interest; and optionally instructions for use of the kit.
  • the gene can be one selected from Appendix A.
  • a method for treating or preventing infection by a pathogen in an aquatic animal comprising providing at least one differentially expressed gene as a nucleic acid or recombinant polypeptide, wherein the gene is up-regulated with infection by the pathogen.
  • the gene can be one selected from Appendix A.
  • the gene is tetraspanin-2, P-selectin precursor, T-cell activation protein, a ⁇ ti-lipopoly saccharide factor, or heat shock protein STIl.
  • the gene is contained in clone PvWl 1 A5, clone PvW4E03, clone PvW5G04, clone PvHBl 1, or clone PvWlODOo.
  • a method for treating or preventing infection by a pathogen in an aquatic animal comprising providing at least one differentially expressed gene as a nucleic acid or recombinant polypeptide, wherein the gene is down-regulated with infection by the pathogen.
  • the gene can be one selected from Appendix A.
  • the gene is gamma-interferon inducible lysosomal thiol reductase precursor, interleukin enhancer-binding factor 3, NF-kappaB essential modulator, chitinase, prophenoloxidase-activating proteinase 2, O- sialoglycoprotein endopeptidase, ubiquitin, or lysozyme:
  • the gene is the nucleic acid sequence contained clonePvHlA02, clone PvW8B06, clone PvW8E09, clone PvW9El 1, clone PvW4F07, clone PvHC06, clone PvW04C06, or clone PvWl 0F4.
  • the aquatic animal is a crustacean, preferably a shrimp.
  • an inhibitory RNA molecule comprising a nucleic acid sequence comprising a nucleic acid sequence or fragment thereof, or complementary sequence, of the nucleic acid sequence listed in Appendix A.
  • the inhibitory RNA molecule can be used in a method of preventing or treating infection of an aquatic animal comprising administering the inhibitory RNA molecule to the animal.
  • the inhibitory RNA molecule can be used in a feed or feed supplement.
  • the inhibitory RNA molecule can be provided in a cell or as a disrupted cell.
  • the cell can be a bacterial, yeast, insect, fish, crustacean, or mammalian cell.
  • a method of identifying shrimp lines that are resistant to viral, bacterial, or fungal diseases comprising identifying at least one differentially expressed gene as a nucleic acid or protein, wherein the gene comprises a nucleic acid sequence provided in Appendix A, or a subsequence thereof.
  • a method of screening for a therapeutic that modulates infectious disease in an aquatic animal comprising identifying a compound which modulates the expression of the gene as a nucleic acid sequence or protein in an infected animal, wherein the gene comprises a nucleic acid sequence listed in Appendix A, or a subsequence thereof, whereby the compound is identified as a modulator of infectious disease when said modulation results in the ameriolation or prevention of one or more symptoms caused by the infection.
  • a microsatellite marker comprising at least one nucleic acid sequence listed in Appendix A, or a subsequence thereof.
  • microsatellite markers employing at least one nucleic acid sequence listed in Appendix A, or a subsequence thereof.
  • a microarry comprising at least one nucleic acid sequence or biologically active fragment thereof listed in Appendix A, or a subsequence thereof.
  • biopesticide comprising at least one nucleic acid sequence or biologically active fragment thereof listed in Appendix A, or a subsequence thereof.
  • a method for developing a biopesticide employing at least one nucleic acid sequence or biologically active fragment thereof listed in Appendix A, or a subsequence thereof.
  • transgenic plant expressing a protein or biologically active fragment thereof encoded by a nucleic acid sequence disclosed in Appendix A, or a subsequence thereof.
  • aquaculture refers to the cultivation of aquatic organisms under controlled conditions.
  • An "aquatic organism” is an organism grown in water, either fresh- or saltwater.
  • Aquatic organisms include, but are not limited to, fish, e.g., bass, striped bass, tilapia, catfish, sea bream, rainbow trout, zebrafish, red drum, and carp; crustaceans, e.g., penaeid shrimp, brine shrimp, freshwater shrimp, and Artemia; and rotifers.
  • a "coding sequence” is an in-frame sequence of codons that (in view of the genetic code) correspond to or encode a protein or peptide sequence. Two coding sequences show similarity or homology to each other if the sequences or their complementary sequences encode the same or similar amino acids.
  • An "EST” or “expressed sequence tag” is a piece of nucleic acid that is found under specific conditions and is derived from a cDNA library. A unique DNA sequence derived from a cDNA library (therefore from a sequence which has been transcribed in some tissue or at some stage of development). The EST can be mapped, by a combination of genetic mapping procedures, to a unique locus in the genome and serves to identify that genetic locus.
  • a "feed” refers to a preparation providing nutritional value to an aquatic animals including, but not limited to fish, shrimp, lobsters, crawfish, mollusks, sponges, and jellyfish.
  • a "feed additive” is any substance added to feed, regardless of nutritional or therapeutic value.
  • shmp refers to any of the group of crustaceans that are commonly cultured for aquaculture or captured in the wild fisheries.
  • the term “shrimp” includes shrimp eggs, shrimp larvae, shrimp post-larvae and adult shrimp.
  • the term “shrimp” and “prawn” will be used interchangeably throughout the specification.
  • Contig refers to a continuous sequence of DNA that has been assembled from overlapping nucleotide sequence of cDNA clones.
  • Spher refers to a single EST sequence representing a particular gene.
  • Unigene set refers to non-redundent set of gene-oriented clusters.
  • antibody includes a peptide or polypeptide derived from, modeled after or substantially encoded by an immunoglobulin gene or immunoglobulin genes, or fragments thereof, capable of specifically binding an antigen or epitope, see, e.g. FUNDAMENTAL IMMUNOLOGY, Third Edition, W.E. Paxil, ed., Raven Press, N. Y. (1993); Wilson (1994) J. Immunol. Methods 175:267-273; Yarmush (1992) J. Biochem. Biophys. Methods 25:85-97.
  • antibody includes antigen-binding portions, i.e., "antigen binding sites,” (e.g., fragments, subsequences, complementarity determining regions (CDRs)) that retain capacity to bind antigen, including (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CHl domains; (ii) a F(ab')2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CHl domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) a dAb fragment (Ward et al. , (1989) Nature 341 :544-546), which consists of a VH domain; and (vi) an isolated complementarity determining region (CDR).
  • Antigen binding sites e.g., fragments,
  • array or “microarray” or “biochip” or “chip” as used herein is a plurality of target elements, each target element comprising a defined amount of one or more polypeptides (including antibodies) or nucleic acids immobilized onto a defined area of a substrate surface, as discussed in further detail, below.
  • expression cassette refers to a nucleotide sequence which is capable of affecting expression of a structural gene (i.e., a protein coding sequence, such as an recombinant or isolated protein encoded by a nucleic acid of the invention) in a host compatible with such sequences.
  • Expression cassettes include at least a promoter operably linked with the polypeptide coding sequence; and, optionally, with other sequences, e.g., transcription termination signals. Additional factors necessary or helpful in effecting expression may also be used, e.g., enhancers.
  • expression cassettes also include plasmids, expression vectors, recombinant viruses, any form of recombinant "naked DNA" vector, and the like.
  • operably linked refers to a functional relationship between two or more nucleic acid (e.g., DNA) segments. Typically, it refers to the functional relationship of transcriptional regulatory sequence to a transcribed sequence.
  • a promoter is operably linked to a coding sequence, such as a nucleic acid of the invention, if it stimulates or modulates the transcription of the coding sequence in an appropriate host cell or other expression system.
  • promoter transcriptional regulatory sequences that are operably linked to a transcribed sequence are physically contiguous to the transcribed sequence, i.e., they are cis-ac ⁇ ng.
  • some transcriptional regulatory sequences, such as enhancers need not be physically contiguous or located in close proximity to the coding sequences whose transcription they enhance.
  • a "vector” comprises a nucleic acid which can infect, transfect, transiently or permanently transduce a cell. It will be recognized that a vector can be a naked nucleic acid, or a nucleic acid complexed with protein or lipid.
  • the vector optionally comprises viral or bacterial nucleic acids and/or proteins, and/or membranes (e.g., a cell membrane, a viral lipid envelope, etc.).
  • Vectors include, but are not limited to replicons (e.g., RNA replicons, bacteriophages) to which fragments of DNA may be attached and become replicated.
  • Vectors thus include, but are not limited to RNA, autonomous self-replicating circular or linear DNA or RNA (e.g., plasmids, viruses, and the like, see, e.g., U.S. Patent No. 5,217,879), and include both the expression and non-expression plasmids.
  • RNA autonomous self-replicating circular or linear DNA or RNA
  • plasmids viruses, and the like, see, e.g., U.S. Patent No. 5,217,879
  • promoter includes all sequences capable of driving transcription of a coding sequence in a cell, e.g., a plant cell.
  • promoters used in the constructs of the invention include cw-acting transcriptional control elements and regulatory sequences that are involved in regulating or modulating the timing and/or rate of transcription of a gene.
  • a promoter can be a cis- acting transcriptional control element, including an enhancer, a promoter, a transcription terminator, an origin of replication, a chromosomal integration sequence, 5' and 3' untranslated regions, or an intronic sequence, which are involved in transcriptional regulation.
  • cis-acting sequences typically interact with proteins or other biomolecules to carry out (turn on/off, regulate, modulate, etc.) transcription.
  • Constutive promoters are those that drive expression continuously under most environmental conditions and states of development or cell differentiation.
  • Inducible or “regulatable” promoters direct expression of the nucleic acid of the invention under the influence of environmental conditions or developmental conditions. Examples of environmental conditions that may affect transcription by inducible promoters include anaerobic conditions, elevated temperature, drought, or the presence of light.
  • “Plasmids” can be commercially available, publicly available on an unrestricted basis, or can be constructed from available plasmids in accord with published procedures. Equivalent plasmids to those described herein are known in the art and will be apparent to the ordinarily skilled artisan.
  • the term “gene” includes a nucleic acid sequence comprising a segment of
  • DNA involved in producing a transcription product e.g., a message
  • Genes can include regions preceding and following the coding region, such as leader and trailer, promoters and enhancers, as well as, where applicable, intervening sequences (introns) between individual coding segments (exons).
  • nucleic acid or “nucleic acid sequence” includes oligonucleotide, nucleotide, polynucleotide, or to a fragment of any of these, to DNA or RNA (e.g., mRNA, rRNA. tRNA) of genomic or synthetic origin which may be single- stranded or double-stranded and may represent a sense or antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material, natural or synthetic in origin, including, e.g., iRNA, ribonucleoproteins (e.g., iRNPs).
  • DNA or RNA e.g., mRNA, rRNA. tRNA
  • PNA peptide nucleic acid
  • DNA-like or RNA-like material natural or synthetic in origin, including, e.g., iRNA, ribonucleoproteins (e.g., iRNPs).
  • nucleic acids i.e., oligonucleotides, containing known analogues of natural nucleotides.
  • the term also encompasses nucleic-acid-like structures with synthetic backbones, see e.g., Mata (1997) Toxicol. Appl. Pharmacol. 144:189-197; Strauss-Soukup (1997) Biochemistry 36:8692-8698; Straussense Nucleic Acid Drug Dev 6: 153- 156.
  • amino acid or “amino acid sequence” include an oligopeptide, peptide, polypeptide, or protein sequence, or to a fragment, portion, or subunit of any of these, and to naturally occurring or synthetic molecules.
  • polypeptide and “protein” include amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres, and may contain modified amino acids other than the 20 gene-encoded amino acids.
  • polypeptide also includes peptides and polypeptide fragments, motifs and the like. The term also includes glycosylated polypeptides.
  • the peptides and polypeptides of the invention also include all “mimetic” and “peptidomimetic” forms, as described in further detail, below.
  • biologically active fragment thereof thereof refers to a fragment of the protein or nucleic acid that retains at least one biological activity of the whole sequence. In one embodiment, the fragment retains all of the relevant biological activities of the protein or nucleic acid sequence.
  • the biologically active fragment of a protein is one that protects the organism growing in aquaculture from one or more deleterious effects of a pathogen, preferably a virus.
  • isolated includes a material removed from its original environment, e.g., the natural environment if it is naturally occurring.
  • a naturally occurring polynucleotide or polypeptide present in a living animal is not isolated, but the same polynucleotide or polypeptide, separated from some or all of the coexisting materials in the natural system, is isolated.
  • Such polynucleotides could be part of a vector and/or such polynucleotides or polypeptides could be part of a composition, and still be isolated in that such vector or composition is not part of its natural environment.
  • an isolated material or composition can also be a "purified" composition, i.e., it does not require absolute purity; rather, it is intended as a relative definition.
  • Individual nucleic acids obtained from a library can be conventionally purified to electrophoretic homogeneity.
  • the invention provides nucleic acids which have been purified from genomic DNA or from other sequences in a library or other environment by at least one, two, three, four, five or more orders of magnitude.
  • nucleic acids can include nucleic acids adjacent to a “backbone” nucleic acid to which it is not adjacent in its natural environment.
  • nucleic acids represent 5% or more of the number of nucleic acid inserts in a population of nucleic acid "backbone molecules.”
  • Backbone molecules include nucleic acids such as expression vectors, self-replicating nucleic acids, viruses, integrating nucleic acids, and other vectors or nucleic acids used to maintain or manipulate a nucleic acid insert of interest.
  • the (isolated, recombinant, enriched) nucleic acids represent 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more of the number of nucleic acid inserts in the population of recombinant backbone molecules.
  • Recombinant polypeptides or proteins refer to polypeptides or proteins produced by recombinant DNA techniques; e.g., produced from cells transformed by an exogenous DNA construct encoding the desired polypeptide or protein.
  • synthetic polypeptides or protein are those prepared by chemical synthesis, as described in further detail, below.
  • a promoter sequence can be "operably linked to" a coding sequence when RNA polymerase which initiates transcription at the promoter will transcribe the coding sequence into mRNA, as discussed further, below.
  • Oligonucleotide includes either a single stranded polydeoxynucleotide or two complementary polydeoxynucleotide strands which may be chemically synthesized. Such synthetic oligonucleotides have no 5' phosphate and thus will not ligate to another oligonucleotide without adding a phosphate with an ATP in the presence of a kinase. A synthetic oligonucleotide can ligate to a fragment that has not been dephosphorylated.
  • nucleic acids or polypeptides can refer to two or more sequences that have, e.g., at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more nucleotide or amino acid residue (sequence) identity, when compared and aligned for maximum correspondence, as measured using one any known sequence comparison algorithm, as discussed in detail below, or by visual inspection.
  • the invention provides nucleic acid and polypeptide sequences having substantial identity to an exemplary sequence of the invention over a region of at least about 10, 20, 30, 40, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 or more residues, or a region ranging from between about 50 residues to the full length of the nucleic acid or polypeptide.
  • Nucleic acid sequences of the invention can be substantially identical over the entire length of a polypeptide coding region.
  • a "substantially identical" amino acid sequence also can include a sequence that differs from a reference sequence by one or more conservative or non-conservative amino acid substitutions, deletions, or insertions, particularly when such a substitution occurs at a site that is not the active site of the molecule, and provided that the polypeptide essentially retains its functional properties.
  • a conservative amino acid substitution for example, substitutes one amino acid for another of the same class (e.g., substitution of one hydrophobic amino acid, such as isoleucine, valine, leucine, or methionine, for another, or substitution of one polar amino acid for another, such as substitution of arginine for lysine, glutamic acid for aspartic acid or glutamine for asparagine).
  • One or more amino acids can be deleted, for example, from a recombinant or isolated protein encoded by a nucleic acid of the invention, resulting in modification of the structure of the polypeptide, without significantly altering its biological activity. For example, amino- or carboxyl-terminal amino acids that are not required for the protein's activity can be removed.
  • Hybridization includes the process by which a nucleic acid strand joins with a complementary strand through base pairing- Hybridization reactions can be sensitive and selective so that a particular sequence of interest can be identified even in samples in which it is present at low concentrations.
  • Stringent conditions can be defined by, for example, the concentrations of salt or formamide in the prehybridization and hybridization solutions, or by the hybridization temperature, and are well known in the art.
  • stringency can be increased by reducing the concentration of salt, increasing the concentration of formamide, or raising the hybridization temperature, altering the time of hybridization, as described in detail, below.
  • nucleic acids of the invention are defined by their ability to hybridize under various stringency conditions (e.g., high, medium, and low), as set forth herein.
  • “Variant” includes polynucleotides or polypeptides of the invention modified at one or more base pairs, codons, introns, exons, or amino acid residues (respectively) yet still retain the biological activity of the recombinant polypeptide of the invention.
  • the term "therapeutic” refers to a protein or biologically active fragment thereof, or a nucleic acid sequence encoding the protein or fragment thereof that can heal, or provide a remedial, palliative, or preventive effect on a pathologic process. Therapeutic substances and compounds can be used to treat medical diseases, disorders, conditions, or syndromes.
  • macroalgae refers to algae that form structures easily discernable with the naked eye in at least one life stage. Usually these organisms have secondary vascularization and organs. Examples of different groups containing macroalgae include, but are not limited to, the chlorophyta, rhodophyta, and phaeophyta.
  • microalgae include both prokaryotic and eukaryotic algae that are classed in many different genera. Prokaryotic algae are typically referred to as cyanobacteria or bluegreen algae.
  • Eukaryotic microalgae come from many different genera, some of which overlap with the macroalgae, but can be generally differentiated by their size and lack of defined organs. Microalgae can have specialized cell types. Examples of different groups containing microalgae include, but are not limited to the chlorophyta, rhodophyta, phaeophyta, dinophyta, euglenophyta, cyanophyta, prochlorophyta, and cryptophyta.
  • up-regulated refers to an increase of mRNA or protein expression in a crustacean infected with a pathogen, preferably a virus, when compared to an uninfected crustacean.
  • down-regulated refers to a decrease of mRNA or protein expression in a crustacean infected with a pathogen, preferably a virus, when compared to an uninfected crustacean.
  • compositions consisting of, or comprising, a set of differentially expressed gene selected by their differential expression in viral-infected shrimp relative to non-virally-infected, or healthy shrimp, e.g., a set of genes comprising sequences of the invention.
  • Expressed sequence tag (EST) analysis is an effective, comprehensive, and relatively straightforward method of examining gene expression. This method is particularly useful for species where no or limited information is available regarding the genome of the species.
  • An EST approach was used to examine gene expression in different tissues (cephalothorax, eyestalks, and pleopod) in black tiger shrimp, P. monodon (Lehnert et ah, 1999). The putative identities of many of these ESTs revealed the occurrence of tissue-specific expression that includes novel genes.
  • a number of immune genes have also been isolated from the hemocyte and hepatopancreas cDNA libraries from cultured specific pathogen free (SPF) Penaeus (Litopenaeus) vannamei shrimp and wild P.
  • SPF pathogen free
  • Immune genes isolated by EST analysis from a hemocyte cDNA library of P. monodon include genes that are involved in the clotting system and the prophenoloxidase-activating system, as well as antioxidative enzymes, antimicrobial peptides, and serine protease inhibitors (Supungul et al. , 2002). Recently, Rojtinnakorn et al.
  • Hemocytes and hepatopancreas tissue represent the core of the primitive immune system found in shrimp and most other invertebrates. Humoral immune responses are initiated in the shrimp hepatopancreas while both humoral and cellular components of the immune system are found in the hemocyte population. Applicants are unaware of any prior analysis of hematopancreatic gene expression in the presence or absence of viral infection in shrimp.
  • one aspect of the present invention is a composition of ESTs representing differentially expressed genes and substantially identical nucleic acids in the presence and absence of infection in crustaceans.
  • Any suitable crustacean can be analyzed.
  • the crustacean is a shrimp.
  • the shrimp is a P. vannamei shrimp.
  • Any suitable type of infection can be analyzed.
  • the infection is a viral infection.
  • the virus can be white spot syndrome virus, Taura syndrome virus, infectious hypodermal and hematopoietic virus, yellowhead virus or baculovirus penae.
  • the virus is a member of the genus Whispovirus.
  • the virus is white spot syndrome virus (WSSV).
  • differential gene expression of genes include, but are not limited to genes that are up or down regulated relative to the genes expressed in a non-infected crustacean.
  • differential gene expression is determined using ESTs isolated from cDNA libraries of virally-infected shrimp and non-virally infected shrimp. The gene expression can be determined using the hepatopancreas tissue or the hemocyte population. Preferrably, the hepatopancreas tissue is the source of the ESTs. Any suitable numbers of ESTs may be considered.
  • Gene expression can be analyzed at any time during infection, including but not limited to time periods representing the onset of infection or the resolving of infection as well as during acute and chronic infections. In one embodiment, the EST isolated specifically correspond to the onset of infection, particularly that of viral disease. It is contemplated that gene expression analysis may also be performed if the crustacean has more than one infective entity.
  • the ESTs are isolated from shrimp that non- infected or infected with WSSV at the onset of viral infection. [0095] Therefore, the invention provides isolated and recombinant nucleic acids, including ESTs. The invention further provides probes comprising or consisting of nucleic acids, e.g., ESTs 3 of the invention.
  • the invention provides isolated or recombinant nucleic acids comprising a nucleic acid sequence having at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more, or complete (100%) sequence identity to an exemplary nucleic acid of the invention over a region of at least about 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650
  • the nucleic acid encodes at least one polypeptide having a biologic activity, and the sequence identities are determined by analysis with a sequence comparison algorithm or by a visual inspection.
  • the invention provides nucleic acids for use as probes, inhibitory molecules ⁇ e.g., antisense, iRNAs), transcriptional or translational regulation, and the like.
  • nucleic acids of the invention include isolated or recombinant nucleic acids comprising a nucleic acid sequence as set forth in Appendix A, and subsequences thereof, e.g., at least about 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200, 1250, 1300,
  • Another aspect of the invention is an isolated or recombinant nucleic acid including at least 10 consecutive bases of a nucleic acid sequence of the invention, sequences substantially identical thereto, and the sequences complementary thereto.
  • the invention provides isolated or recombinant nucleic acids comprising a sequence that hybridizes under stringent conditions to a nucleic acid of the invention, e.g., any one of the sequences in Appendix A.
  • the nucleic acid can be at least about 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050,- 1100, 1150, 1200, 1250, 1300, 1350, 1400, 1450, 1500 or more residues in length or the full length of the gene or transcript.
  • the stringent conditions include a wash step comprising a wash in 0.1X SSC at a temperature of about 65°C for about 15 minutes.
  • the gene of interest is a lectin gene. Lectin are known to plays a critical role in the innate immunity in vertebrates by activating complement factor after binding to the carbohydrate moieties on the surfaces of viral capsid proteins (Vorup- Jensen et al, 2000). In humans, the C-type lectin exhibits CD4-independent binding of the envelope glycoprotein, gpl20, of human immunodefficiency virus (HIV) (Curtis et al, 1992).
  • HIV human immunodefficiency virus
  • Human MBL was also shown to bind to the envelope proteins of the influenza A virus, neutralizing the virus by inhibiting the spread of the virus and simultaneously activating the complement cascade (Kase et al, 1999; Malhotra et al, 1994). Replacement of MBL to MBL- deficient human has shown encouraging results in enhancing complement activation ability and opsonic activity towards Saccharomyces cerevisae in the treated individuals (reviewed in Kilpatric, 2002). In invertebrates (tunicate Clavelina picta), the binding of MBL to microbial ligands activates the complement component C3, through an MBL- associated serine proteinase.
  • lectins with such activity are suitable for use in the prevention and treatment of infection in invertebrates.
  • nucleic acids of the invention can be made, isolated and/or manipulated by, e.g., cloning and expression of cDNA libraries, amplification of message or genomic DNA by PCR, and the like.
  • Techniques for the manipulation of nucleic acids such as, e.g., subcloning, labeling probes (e.g., random-primer labeling using Klenow polymerase, nick translation, amplification), sequencing, hybridization and the like are well described in the scientific and patent literature, see, e.g., Sambrook, ed., MOLECULAR CLONING: A LABORATORY MANUAL (2ND ED.), VoIs.
  • the invention provides isolated or recombinant nucleic acids that hybridize under stringent conditions to an exemplary sequence of the invention, or a nucleic acid that encodes a polypeptide of the invention.
  • the stringent conditions can be highly stringent conditions, medium stringent conditions, low stringent conditions, including the high and reduced stringency conditions described herein. In one aspect, it is the stringency of the wash conditions that set forth the conditions which determine whether a nucleic acid is within the scope of the invention, as discussed below.
  • nucleic acids of the invention as defined by their ability to hybridize under stringent conditions can be between about five residues and the full length of nucleic acid of the invention; e.g., they can be at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 55, 60, 65, 70, 75, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, or more, residues in length. Nucleic acids shorter than full length are also included.
  • nucleic acids can be useful as, e.g., hybridization probes, labeling probes, PCR oligonucleotide probes, iRNA, antisense or sequences encoding antibody binding peptides (epitopes), motifs, active sites and the like.
  • nucleic acids of the invention are defined by their ability to hybridize under high stringency comprises conditions of about 50% formamide at about 37°C to 42°C. In one aspect, nucleic acids of the invention are defined by their ability to hybridize under reduced stringency comprising conditions in about 35% to 25% formamide at about 30°C to 35°C.
  • nucleic acids of the invention are defined by their ability to hybridize under high stringency comprising conditions at 42°C in 50% formamide, 5X SSPE, 0.3% SDS, and a repetitive sequence blocking nucleic acid, such as cot-1 or salmon sperm DNA (e.g., 200 n/ml sheared and denatured salmon sperm DNA).
  • nucleic acids of the invention are defined by their ability to hybridize under reduced stringency conditions comprising 35% formamide at a reduced temperature of 35°C.
  • the filter may be washed with 6X SSC, 0.5% SDS at 5O 0 C. These conditions are considered to be “moderate” conditions above 25% formamide and “low” conditions below 25% formamide.
  • a specific example of “moderate” hybridization conditions is when the above hybridization is conducted at 30% formamide.
  • a specific example of “low stringency” hybridization conditions is when the above hybridization is conducted at 10% formamide.
  • the temperature range corresponding to a particular level of stringency can be further narrowed by calculating the purine to pyrimidine ratio of the nucleic acid of interest and adjusting the temperature accordingly.
  • Nucleic acids of the invention are also defined by their ability to hybridize under high, medium, and low stringency conditions as set forth in Ausubel and Sambrook. Variations on the above ranges and conditions are well known in the art. Hybridization conditions are discussed further, below.
  • the above procedure may be modified to identify nucleic acids having decreasing levels of homology to the probe sequence.
  • less stringent conditions may be used.
  • the hybridization temperature may be decreased in increments of 5°C from 68°C to 42°C in a hybridization buffer having a Na + concentration of approximately IM.
  • the filter may be washed with 2X SSC, 0.5% SDS at the temperature of hybridization.
  • These conditions are considered to be "moderate” conditions above 50 0 C and "low” conditions below 50 0 C.
  • a specific example of “moderate” hybridization conditions is when the above hybridization is conducted at 55°C.
  • a specific example of "low stringency" hybridization conditions is when the above hybridization is conducted at 45°C.
  • the invention also provides nucleic acid probes that can be used, e.g., for identifying nucleic acids encoding a polypeptide with a biologic activity or fragments thereof or for identifying genes.
  • the probe comprises at least 10 consecutive bases of a nucleic acid of the invention.
  • a probe of the invention can be at least about 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 110, 120, 130, 150 or about 10 to 50, about 20 to 60 about 30 to 70, consecutive bases of a sequence as set forth in a nucleic acid of the invention.
  • the probes identify a nucleic acid by binding and/or hybridization.
  • the probes can be used in arrays of the invention, see discussion below, including, e.g., capillary arrays.
  • the probes of the invention can also be used to isolate other nucleic acids or polypeptides.
  • the invention provides expression vectors and cloning vehicles comprising nucleic acids of the invention, e.g., sequences encoding the recombinant or isolated proteins encoded by the nucleic acids of the invention.
  • Expression vectors and cloning vehicles of the invention can comprise viral particles, baculo virus, phage, plasmids, phagemids, cosmids, fosmids, bacterial artificial chromosomes, viral DNA (e.g., vaccinia, adenovirus, foul pox virus, pseudorabies and derivatives of SV40), Pl -based artificial chromosomes, yeast plasmids, yeast artificial chromosomes, and any other vectors specific for specific hosts of interest (such as bacillus, Aspergillus and yeast).
  • the expression vectors and cloning vehicle comprise yeast plasmids.
  • Vectors of the invention can include chromosomal, non-chromosomal and synthetic DNA sequences. Large numbers of suitable vectors are known to those of ⁇ skill in the art, and are commercially available.
  • the vector is a baculovirus.
  • the baculovirus is Autographica californica nuclear polyhedrosis virus (AcNPV).
  • AcNPV Autographica californica nuclear polyhedrosis virus
  • the expression vector can comprise a promoter, a ribosome binding site for translation initiation and a transcription terminator.
  • the vector may also include appropriate sequences for amplifying expression.
  • Mammalian expression vectors can comprise an origin of replication, any necessary ribosome binding sites, a polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking non-transcribed sequences.
  • DNA sequences derived from the SV40 splice and polyadenylation sites may be used to provide the required non-transcribed genetic elements.
  • the expression vectors contain one or more selectable marker genes to permit selection of host cells containing the vector.
  • Vectors for expressing the polypeptide or fragment thereof in eukaryotic cells can also contain enhancers to increase expression levels.
  • Enhancers are cis-acting elements of DNA, usually from about 10 to about 300 bp in length that act on a promoter to increase its transcription.
  • the invention provides cloning vehicles comprising an expression cassette
  • the cloning vehicle can be a viral vector, a baculovirus, a plasmid, a phage, a phagemid, a cosmid, a fosmid, a bacteriophage or an artificial chromosome.
  • the viral vector can comprise an adenovirus vector, a retroviral vector or an adeno-associated viral vector.
  • the cloning vehicle can comprise a bacterial artificial chromosome (BAC), a plasmid, a bacteriophage Pl -derived vector (PAC), a yeast artificial chromosome (YAC), or a mammalian artificial chromosome (MAC).
  • the invention provides transformed cell comprising a nucleic acid of the invention or an expression cassette (e.g., a vector) of the invention, or a cloning vehicle of the invention.
  • the transformed cell can be a bacterial cell, a mammalian cell, a fungal cell, a yeast cell, an insect cell or a plant cell.
  • the identified ESTs of interest can be used to clone full length cDNAs using methods known in the art. See e.g., U.S. Patent No. 6,265,165.
  • Recombinant polypeptides generated from these nucleic acids can be individually isolated or cloned and tested for a desired activity. Any recombinant expression system can be used, including bacterial, mammalian, yeast, insect or plant cell expression systems.
  • Recombinant truncated proteins of interest are those that retain at least a detectable amount of the desired biologic activity.
  • the invention provides fusion proteins and nucleic acids encoding them.
  • a polypeptide of the invention can be fused to a heterologous peptide or polypeptide, such as N-terminal identification peptides which impart desired characteristics, such as increased stability or simplified purification.
  • Peptides and polypeptides of the invention can also be synthesized and expressed as fusion proteins with one or more additional domains linked thereto for, e.g., producing a more protective peptide, to more readily isolate a recombinantly synthesized peptide, to identify and isolate antibodies and antibody-expressing B cells, and the like.
  • nucleic acids of the invention and nucleic acids encoding the polypeptides of the invention, or modified nucleic acids of the invention can be reproduced by amplification.
  • Amplification can also be used to clone or modify the nucleic acids of the invention.
  • the invention provides amplification primer sequence pairs for amplifying nucleic acids of the invention.
  • One of skill in the art can design amplification primer sequence pairs for any part of or the full length of these sequences.
  • the invention provides methods of producing a recombinant polypeptide comprising the steps of: (a) providing a nucleic acid of the invention operably linked to a promoter; and (b) expressing the nucleic acid of step (a) under conditions that allow expression of the polypeptide, thereby producing a recombinant polypeptide.
  • the method can further comprise transforming a host cell with the nucleic acid of step (a) followed by expressing the nucleic acid of step (a), thereby producing a recombinant polypeptide in a transformed cell.
  • Any suitable host cell can be used for the production of the recombinant or isolated protein or biologically active fragment thereof.
  • the invention provides isolated or recombinant antibodies that specifically bind to the recombinant polypeptides of the invention. These antibodies can be used to isolate, identify or quantify the recombinant polypeptides of the invention or related polypeptides. These antibodies can be used to isolate other polypeptides within the scope the invention.
  • the antibodies can be designed to bind to an active site of a recombinant polypeptide. Thus, the invention provides methods of inhibiting polypeptides using the antibodies of the invention.
  • the antibodies can be used in immunoprecipitation, staining, immunoaffinity columns, and the like.
  • nucleic acid sequences encoding for specific antigens can be generated by immunization followed by isolation of polypeptide or nucleic acid, amplification or cloning and immobilization of polypeptide onto an array of the invention.
  • the methods of the invention can be used to modify the structure of an antibody produced by a cell to be modified, e.g., an antibody's affinity can be increased or decreased.
  • the ability to make or modify antibodies can be a phenotype engineered into a cell by the methods of the invention.
  • Antibodies also can be generated in vitro, e.g., using recombinant antibody binding site expressing phage display libraries, in addition to the traditional in vivo methods using animals. See, e.g., Hoogenboom (1997) Trends Biotechnol. 15:62-70; Katz (1997) Annu. Rev. Biophys. Biomol. Struct. 26:27-45. [0124] Polyclonal antibodies generated against the polypeptides of the invention can be obtained by direct injection of the polypeptides into an animal or by administering the polypeptides to a non-human animal. The antibody so obtained will then bind the polypeptide itself. In this manner, even a sequence encoding only a fragment of the polypeptide can be used to generate antibodies which may bind to the whole native polypeptide. Such antibodies can then be used to isolate the polypeptide from cells expressing that polypeptide.
  • any technique which provides antibodies produced by continuous cell line cultures can be used. Examples include the hybridoma technique, the trioma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique (see, e.g., Cole (1985) in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96).
  • Another aspect of the invention is a method of protecting crustacean from infection using sequence of the invention, e.g., recombinant or isolated protein or nucleic acids derived from the full-length gene or recombinant truncated protein or nucleic acids derived from the functional domain of the gene identified using the EST differential libraries of the instant invention.
  • the infection is a viral infection.
  • the viral infection is WSSV.
  • the infection can also be one caused by bacteria, fungi, and the like.
  • the crustacean is a shrimp.
  • the recombinant or isolated protein or nucleic acid, or biologically active fragment thereof can be administered in any suitable manner in a single dose or repeatedly.
  • the recombinant or isolated protein or nucleic acid can be administered alone or in combination with other treatment modalities for the infection.
  • a therapeutically effective amount of recombinant polypeptide or biolgically active fragment thereof is an amount that reduces or eliminates at least one symptom of the infection. In one embodiment, a therapeutically effective amount prevents infection or cures established infection.
  • the invention provides nucleic acids complementary to (e.g., antisense sequences to, including ribozymes and siRNA, in addition to "traditional" antisense sequences) the nucleic acids of the invention, e.g., as in Appendix A, for therapeutic (antiviral) and diagnostic purposes.
  • sequences of the invention are used as double-stranded inhibitory RNA (RNAi, or RNA interference) molecules (including small interfering RNA, or siRNAs, for inhibiting transcription, and microRNAs, or miRNAs, for inhibiting translation) comprising a sequence of the invention (e.g., as set forth in Appendix A, below) or a subsequence of a sequence of the invention.
  • RNAi double-stranded inhibitory RNA
  • siRNAs small interfering RNA, or siRNAs, for inhibiting transcription, and microRNAs, or miRNAs, for inhibiting translation
  • RNA RNA
  • RNA interference RNA interference
  • plasmids expressing inhibitory sequences
  • DNA vaccines for oral delivery based on dendrimer complexed into nanoparticles, e.g., as described in Bodnar et al 2005 Biomacromol 6:2521-27.
  • the protein or biologically active fragment thereof can be one that is upregulated or downregulated following infection with a pathogen.
  • the up-regulation can be mediated by any mechanism including, but not limited to increased transcription, increased mRNA stability, decreased mRNA degradation, or increased translation.
  • the down-regulation can be mediated by any mechanism known in the art. Expression can be determined using routine methods. Exemplary methods include those disclosed in CURRENT PROTOCOLS IN MOLECULAR BIOLOGY (Ausubel et al., John Wiley & Sons, most recent edition).
  • Infection with pathogen is readily determined using routine methods that include but are not limited to bioassays using indicator hosts, monitoring clinical signs, histopathology, dot blot and in situ hybridization using a virus specific probe, and PCR. See, e.g., Dhar et al., J. Clin. Microbiol. 39:2835-45 (2001).
  • the protein or biologically active fragment is one that enhances the innate, non-adaptive immunity of the organism.
  • immunity consists of a humoral and a cellular response.
  • Cellular responses involve phagocytosis, nodule formation and encapsulation.
  • Humoral responses involve the prophenoloxidase-activating cascade and immune-related proteins such as lysozymes, lectins, and anti-microbial peptides. See, e.g., Soderhall, Dev. Comp. Immunol. 23:263- 6 (1999).
  • This method is particularly suitable for crustaceans in aquaculture.
  • the crustaceans are Pacific white shrimp (Penaeus vannamei) and the baculovirus is Autographa californica nuclear polyhedrosis virus (AcNPV).
  • the crustacean can be infected either by injection or orally by incorporating the virus into the crustacean's food.
  • the baculovirus can be engineered to express green fluorescent protein (GFP) for monitoring infection.
  • GFP green fluorescent protein
  • the therapeutic proteins can inhibit the growth or replication of bacteria (e.g., Vibrio) or viruses (e.g., Taura or White Spot virus).
  • the crustacean can be provided a feed or feed additive which incorporates recombinant or isolated protein or nucleic acids identified using the EST differential libraries of the instant invention as a prophylactic or therapeutic treatment for the deleterious effects of the virus on the host.
  • the present invention provides for a composition comprising at least one recombinant or isolated protein or nucleic acid, or biologically active fragment thereof, in a food source for the crustacean.
  • the invention provides edible enzyme delivery matrices comprising a polypeptide of the invention, e.g., a polypeptide encoded by the nucleic acid of the invention.
  • the protein or biologically active fragment thereof can be provided in a cell or in a disrupted cell. Any suitable cell can be employed including, but not limited to microalgae and macroalgae cells. The cells can be disrupted using any suitable methods.
  • the bioactive food complex can be preserved without drying as a semi-solid, moist paste, not a liquid, composed of microcapsules or beads, or as moist noodles, pellets, sheets or other forms, or can be stored frozen by employing cry ⁇ preservatives. See, e.g., U.S. Patent No. 5,698,246; 4,741,904.
  • the bioactive food complex can be added directly to aquaculture animal containment systems to be eaten by aquatic animals.
  • the bioactive food complex or the primary emulsion of the bioactive food complex can be added to pelleted or extruded aquatic feeds as a top-dress coating or enrobing of the pelleted or extruded aquatic feed.
  • the foodstuffs incorporated into the particulate fish foods of this invention may be those which are normally used for other particulate fish foods. Frequently fish meal will provide at least 30% of the formulation and often it will provide at least 50% of the formulation. [0134] Particulate fish foods are customarily manufactured by three routes, all of which involve some form of extrusion through a die. The methods are normally classified as compressed pelleting (also known as steam pelleting),/extruded pelleting and moist pelleting.
  • the feed of the invention may be adjusted for the requirements of the marine animal being fed as is known.
  • the feed comprises animal protein, brine shrimp, egg product, betaine, alanine, isoleucine, leucine, serine, valine, glycine, astaxanthin, vitamin A supplement, vitamin B 12 supplement, riboflavin supplement, calcium pantothenate, niacin supplement, vitamin D3 supplement, vitamin E supplement, menadione sodium bisulfite complex, folic acid, biotin, thiamine, pyridoxine hydrochloride, inositol and choline chloride.
  • the particulate feed may also include medicaments.
  • an edible oil is employed.
  • Typical oils include fish oil, peanut oil, olive oil, corn oil, sunflowerseed oil, cotton seed oil, soybean oil, rapeseed oil, coconut oil, and palm oil.
  • the oil may provide the omega-3 HUFA (highly unsaturated fatty acid) dietary requirements of marine shrimp and fish by providing EPA (eicosapentaenoic acid) and DHA (docosahexenoic acid).
  • amplified cDNA can be cloned into bacterial expression vector (such as pETlOO Directional TOPO Expression vector, Invitrogen Inc.) and used to transform BL 21 Star (DE3) One Shot Chemically Competent Escherichia coli (Invitrogen, Inc.) following the manufacturer's protocol.
  • Escherichia coli strain BL21 cells carrying IPTG inducible gene can be grown in LB medium containing ampicillin, and subsequently induced with IPTG to elicit expression of recombinant or isolated protein.
  • the expression of the recombinant or isolated protein will be empirically optimized to obtain maximum induction using routine methods.
  • Bacterial biomass containing cells which express the shrimp recombinant or isolated protein, are then added to shrimp feed in a free or microbound format (in beads composed of alginate and starch in a polymeric form). Attractants can optionally be added to make the feed or beads more palatable to the target species.
  • krill meal is employed as the attractant.
  • the invention provides an RNA inhibitory molecule, a so-called "RNAi" molecule, comprising a recombinant or isolated protein or nucleic acid sequence of the invention to be administered as a prophylactic or therapeutic regimen for infection.
  • the RNAi molecule comprises a double-stranded RNA (dsRNA) molecule.
  • dsRNA double-stranded RNA
  • the RNAi can inhibit expression of a gene encoding a nucleic acid of the invention.
  • the RNAi is about 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or more duplex nucleotides in length.
  • RNAi can enter a cell and cause the degradation of a single- stranded RNA (ssRNA) of similar or identical sequences, including endogenous mRNAs.
  • ssRNA single-stranded RNA
  • dsRNA double-stranded RNA
  • mRNA from the homologous gene is selectively degraded by a process called RNA interference (RNAi).
  • RNAi RNA interference
  • a possible basic mechanism behind RNAi is the breaking of a double-stranded RNA (dsRNA) matching a specific gene sequence into short pieces called short interfering RNA, which trigger the degradation of mRNA that matches its sequence.
  • the RNAi's of the invention are used in gene-silencing therapeutics, see, e.g., Shuey (2002) Drug Discov. Today 7:1040-1046.
  • the invention provides methods to selectively degrade RNA using the RNAi's of the invention. The process may be practiced in vitro, ex vivo or in vivo.
  • the RNAi molecules of the invention can be used to generate a loss-of-function mutation in a cell, an organ or an animal. Methods for making and using RNAi molecules for selectively degrade RNA are well known ⁇ n the art, see, e.g., U.S. Patent No. 6,506,559; 6,511,824; 6,515,109; 6,489,127.
  • a library of ESTs as well as cDNAs are provided for use in functional genomic analysis.
  • a variety of apparatus and methodologies can be used to in conjunction with the polypeptides and nucleic acids of the invention, e.g., to screen polypeptides for biologic activity, to screen compounds as potential modulators, e.g., activators or inhibitors, of an activity of a recombinant polypeptide encoded by a nucleic acid of the invention, for antibodies that bind to a polypeptide of the invention, for nucleic acids that hybridize to a nucleic acid of the invention, to screen for cells expressing a polypeptide of the invention and the like.
  • Nucleic acids or polypeptides of the invention can be immobilized to or applied to an array.
  • Arrays can be used to screen for or monitor libraries of compositions (e.g., small molecules, antibodies, nucleic acids, etc.) for their ability to bind to or modulate the activity of a nucleic acid or a polypeptide of the invention.
  • a monitored parameter is transcript expression of a gene.
  • One or more, or, all the transcripts of a cell can be measured by hybridization of a sample comprising transcripts of the cell, or, nucleic acids representative of or complementary to transcripts of a cell, by hybridization to immobilized nucleic acids on an array, or "biochip.”
  • array By using an “array” of nucleic acids on a microchip, some or all of the transcripts of a cell can be simultaneously quantified.
  • arrays comprising genomic nucleic acid can also be used to determine the genotype of a newly engineered strain made by the methods of the invention.
  • Polypeptide arrays can also be used to simultaneously quantify a plurality of proteins.
  • arrays are genetically a plurality of “spots” or “target elements,” each target element comprising a defined amount of one or more biological molecules, e.g., oligonucleotides, immobilized onto a defined area of a substrate surface for specific binding to a sample molecule, e.g., mRNA transcripts.
  • biological molecules e.g., oligonucleotides
  • any known array and/or method of making and using arrays can be incorporated in whole or in part, or variations thereof, as described, for example, in U.S. Patent Nos. 6,277,628; 6,277,489; 6,261,776; 6,258,606; 6,054,270; 6,048,695; 6,045,996; 6,022,963; 6,013,440; 5,965,452; 5,959,098; 5,856,174; 5,830,645; 5,770,456; 5,632,957; 5,556,752; 5,143,854; 5,807,522; 5,800,992; 5,744,305; 5,700,637; 5,556,752; 5,434,049; see also, e.g., WO 99/51773; WO 99/09217; WO 97/46313; WO 96/17958; see also, e.g., Johnston (1998) Curr.
  • the differentially expressed ESTs differentially with viral infection are useful as a biopesticide.
  • baculovirus expressing shrimp chitinase gene can be used as a biological agent to infect and kill lepidopteran insects that infect agricultural crops.
  • Baculoviruses have been widely used as a biological control agent in agricultural crop pest management Further effectiveness can be achieved by co-expressing shrimp chitinase gene with the recombinant polypeptide or biologically active fragment thereof, and then spraying this recombinant baculovirus on crop fields infected by an insect pest.
  • the invention provides methods for identifying a substrate of a recombinant polypeptide of interest, comprising the following steps: (a) providing a polypeptide of the invention; or a polypeptide encoded by a nucleic acid of the invention; (b) providing a test substrate; and (c) contacting the polypeptide of step (a) with the test substrate of step (b) and detecting a decrease in the amount of substrate or an increase in the amount of reaction product, wherein a decrease in the amount of the substrate or an increase in the amount of a reaction product identifies the test substrate as the polypeptide substrate.
  • the invention also provides methods of determining whether a test compound specifically hinds to a polypeptide comprising the following steps: (a) expressing a nucleic acid or a vector comprising the nucleic acid under conditions permissive for translation of the nucleic acid to a polypeptide, wherein the nucleic acid comprises a nucleic acid of the invention, or, providing a polypeptide of the invention; (b) providing a test compound; (c) contacting the polypeptide with the test compound; and (d) determining whether the test compound of step (b) specifically binds to the polypeptide.
  • the invention provides methods for identifying a modulator of a recombinant polypeptide's activity comprising the following steps: (a) providing a polypeptide of the invention or a polypeptide encoded by a nucleic acid of the invention; (b) providing a test compound; (c) contacting the polypeptide of step (a) with the test compound of step (b) and measuring an activity of the recombinant polypeptide, wherein a change in the recombinant polypeptide activity measured in the presence of the test compound compared to the activity in the absence of the test compound provides a determination that the test compound modulates the recombinant polypeptide activity.
  • the recombinant polypeptide activity can be measured by providing an recombinant polypeptide substrate and detecting a decrease in the amount of the substrate or an increase in the amount of a reaction product, or, an increase in the amount of the substrate or a decrease in the amount of a reaction product.
  • a decrease in the amount of the substrate or an increase in the amount of the reaction product with the test compound as compared to the amount of substrate or reaction product without the test compound identifies the test compound as an activator of recombinant polypeptide activity.
  • An increase in the amount of the substrate or a decrease in the amount of the reaction product with the test compound as compared to the amount of substrate or reaction product without the test compound identifies the test compound as an inhibitor of recombinant polypeptide activity.
  • kits comprising at least one differentially expressed- gene as a nucleic acid or recombinant polypeptide, wherein the kit can be used to positively identify a crustacean as being infected or non-infected with the pathogen of interest. Such kits are also useful for monitoring the course of infection.
  • the kit comprises at least one antibody or antigen binding fragment thereof that binds the polypeptide encoded by the EST of interest.
  • the kit can be in any suitable format, and in some embodiments includes instructions for use.
  • Complementary DNA sequences consisting of contigs and singletons obtained from healthy shrimp hepatopancreas library are provided in Appendix A, and the cDNA sequences (consisting of contigs and singletons) from the white spot syndrome virus affected library in Appendix A.
  • the unigene sets obtained by combining the sequences from the two libraries are provided in Appendix A.
  • BLAST search analysis using the cDNA sequences from the healthy (Appendix A) or WSSV- infected (Appendix A) shrimp libraries against the combined unigene set (Appendix A) will enable to determine which genes are present only in the healthy, only WSSV- infected and both healthy and WSSV-infected shrimp. These genes may represent unique for the health status (healthy or virus infected) of shrimp.
  • ESTs have been isolated from cDNA libraries of healthy and WSSV-infected shrimp hepatopancreas tissue.
  • Two cDNA libraries were constructed from hepatopancreas tissues of healthy (PvH) and WSSV-infected (PvW) P. vannamei shrimp using SMART cDNA amplification method (BD Bioscience, California) and cloned into a plasmid vector (pAL16, Evrogen, Inc., Moscow, Russia). Randomly selected recombinant clones were sequenced using vector-derived primers (SP6 and T7). A total of 1248 clones from PvH and 1152 clones from PvW library were sequenced.
  • PvH clones represented 269 singletons and 124 contigs (each contig contains between 2-20 clones), whereas the PvW clones represented 281 singletons and 211 contigs (each contig contains 2-20 clones).
  • the PvH clones 38.7% of the singletons (105/269) and 71.4% of the contigs (90/ 124), showed significant similarity to known genes from other organisms by BLAST search (e>10 "3 ).
  • For the PvW clones 44.0% of the singletons (123/281) and 54.5% of the contigs (115/211) showed similarity to GenBank entries by BLAST search (e>10 '3 ).
  • PvW library contained a significantly higher number of cell defense genes compared to the PvH library (19.4% vs. 8.1 %), whereas the PvH library contained a significantly higher number of metabolic genes (37.5% vs. 25.6%) (Fig.l).
  • a total of 40 immune genes were identified from both libraries (Table 2).
  • Table 2 A list of these immune genes, along with their frequencies in the healthy and WSSV-infected libraries and similarities with the GenBank database entries, is provided in Table 2.
  • the expression profile indicates a differential expression of these genes in healthy and WSSV-infected shrimp.
  • Table 1 Functional classes of genes isolated from hepatopancreas cDNA libraries of healthy and WSSV infected shrimp (P. vannamei) that showed homology with existing GenBank database entries.
  • Table 2 Summary of immune genes isolated from healthy and WSS V-infected shrimp hepatopancreas cDNA libraries.
  • the real-time RT-PCR assay showed that shrimp ⁇ interferon inducible lysosomal thiol reductase (GILT) , P-selectin, and the chitinase genes showed differential expression between healthy and WSSV-infected shrimp.
  • the mRNA expression of ⁇ interferon inducible lysosomal thiol reductase (GILT) gene was down- regulated, where as the expression of chitinase and P-selectin was up-regulated in WSSV-infected shrimp.
  • the real-time PCR assay was performed using 5 healthy and 5 WSSV-infected laboratory challenged shrimp. The summary of the real-time RT-PCR assay for each of the three genes is provided below (Tables 7-9).
  • Table 7 Relative quantification of ⁇ interferon inducible lysosomal thiol reductase (GILT) mRNA expression in healthy and white spot syndrome virus-infected shrimp (JPenaeus vannamei) by real-time RT- PCR.
  • GILT interferon inducible lysosomal thiol reductase
  • Hl to H5 represents healthy animals
  • Wl to W5 represents WSSV-infected animals
  • CT represents threshold PCR cycle number
  • ⁇ CT represents the normalized Ct value. Normalized Ct value is obtained by subtracting the CT value of RT-PCR internal control gene, shrimp elongation factor- 1 alpha, from the CT value of the target gene.
  • ⁇ CT obtained by subtracting the ⁇ CT of healthy from the ⁇ CT value for the WSSV-infected sample. Fold changes indicates the changes in target gene expression in the WSSV-infected compared to the healthy animals.
  • Table 8 Relative quantification of chitinase mRNA expression in healthy and white spot syndrome virus-infected shrimp ⁇ Penaeus vannamei) by real-time RT-PCR.
  • Hl to H5 represents healthy animals
  • Wl to W5 represents WSSV-infected animals
  • CT represents threshold PCR cycle number
  • ⁇ CT represents the normalized Ct value. Normalized Ct value is obtained by subtracting the CT value of RT-PCR internal control gene, shrimp elongation factor- 1 alpha, from the CT value of the target gene.
  • ⁇ CT obtained by subtracting the ⁇ CT of healthy from the ⁇ CT value for the WSSV-infected sample. Fold changes indicates the changes in target gene expression in the WSSV-infected compared to the healthy animals.
  • Hl to H5 represents healthy animals
  • Wl to W5 represents WSSV-infected animals
  • CT represents threshold PCR cycle number
  • ⁇ CT represents the normalized Ct value. Normalized Ct value is obtained by subtracting the CT value of RT-PCR internal control gene, shrimp elongation factor- 1 alpha, from the CT value of the target gene. ⁇ CT obtained by subtracting the ⁇ CT of healthy from the ⁇ CT value for the WSSV-infected sample. Fold changes indicates the changes in target gene expression in the WSSV-infected compared to the healthy animals.
  • primers will be designed using primer express software (Applied Biosystems, Inc.). Primers will also be designed to amplify a truncated version of the gene (representing the functional domain only). Amplified cDNA will be cloned into bacterial expression vector (such as pETlOO Directional TOPO Expression vector, Invitrogen Inc.) and used to transform BL 21 Star (DE3) One Shot Chemically Competent Escherichia coli (Invitrogen, Inc.) following manufacturer's protocol.
  • bacterial expression vector such as pETlOO Directional TOPO Expression vector, Invitrogen Inc.
  • Example 4 Bacterial expression of shrimp recombinant or isolated protein and formulation into feed.
  • the expression of the recombinant protein will be either constitutive or under an induction system (e.g., induced by IPTG) and empirically optimized to obtain maximum protein expression.
  • Escherichia coli strain BL21 cells carrying IPTG inducible gene will be grown in LB medium containing ampicillin, and then will be induced with IPTG for the expression of recombinant protein.
  • Bacterial biomass containing cells, which express the shrimp recombinant protein will be added to shrimp feed in a free or microbound format (e.g., in beads composed of alginate and starch in a polymeric form). Attractants are added to make the feed or beads more palatable to the target species (in the case of shrimp, krill meal would be a good attractant).
  • Example 5 Method for protection of shrimp from WSSV infection.
  • Shrimp are fed either a control diet or a diet containing bacterial biomass expressing recombinant protein (Example 4).
  • Animals are challenged with WSSV 5 and their survivability in response to viral infection will be measured.
  • the WSSV load in the control and treatment samples is measured by real-time PCR following published protocol (Dhar et al. 2001).
  • the mRNA expression of the target gene will be measured in the treated and control animals using real-time RT-PCR to determine the difference in expression in two treatment groups following the published method (Dhar et al. 2003). Protection from viral challenge will be determined by an increased survival versus a control not fed the diet containing the WSSV recombinant protein.
  • Example 6 DNA method for protection of shrimp from WSSV infection.
  • DNA will be designed to express proteins that are upregulated during infection by WSSV as determined from the differential EST libraries.
  • the DNA is then absorbed through the gills or through gut lining and will then expressing the proteins in the tissues that absorb the DNA and thus providing protection against WSSV.
  • Example 7 RNAi method for protection of shrimp from WSSV infection.
  • a portion of a gene or genes identified using a differential expression library from shrimp (healthy versus WSSV-infected) as described in the specification are used to model a small interfering RNA as described by Timmons et al (2001). This DNA is then fed to the shrimp via incorporation in a feed or feed supplement. As shown for C. elegans in previous research (Timmons et al. 2001), this can interfere with expression of specific genes. Genes that are up-regulated in the EST differential library that have no defense function maybe important to viral infection and will be down regulated using this RNAi and this will suppress or inhibit WSSV infection.
  • Example 8 Diagnostic for WSSV infection.
  • the differentially expressed genes that are tied directly to WSSV infection, or general viral infection, will be used in a multiplexed assay to determine the metabolic health of a cultured shrimp population. Compared to WSSV titer determination, which tell the relative amount of virus in the population, this diagnostic will determine the effect of the infection on the metabolic health of the population (progress of the disease compared to the growth of the pathogen).
  • Metabolic genes will be chosen from the EST library that are most influenced in the early, mid, and late stage infection.
  • Defense genes will be chosen from the EST libraries that are the best indicators of early, mid, and late stage infection.
  • genes will be synthesized with a fluorescent tag on one end and a quencher on the other end as previously described for the molecular beacon system (Cantor 1996; Tyagi and Kramer 1996; Little and Vonk 2000; Livak et al 2000; Tyagi et al. 2000). These will be printed on a chip and then a crude DNA preparation from the infected shrimp used for hybridization of the chip. The detection will be carried out on a chip reader and monitored for the appearance of fluorescence and quantity of fluorescence relative to total DNA. This will be correlated empirically to disease progression and used as a way to monitor the disease status of the animals. This will be particularly important as disease resistant lines of shrimp are developed.
  • Example 9 Method for protection of shrimp from Taura syndrome virus (TSV”) infection.
  • TSV Taura syndrome virus
  • ESTs isolated from the healthy and WSSV-infected shrimp can be used for developing therapeutics for not only WSSV but also for other viral diseases such as Taura syndrome disease caused by the Taura syndrome virus (TSV).
  • Taura disease caused by the TSV, has caused catastrophic losses in the Western Hemisphere, and more recently in Taiwan (Dhar et al , 2004).
  • the cDNA libraries described in Example 1 contained immune genes such as the low-density lipoprotein receptor (LDLr) gene (Table 2) that could be for developing therapeutics against the TSV.
  • LDLr low-density lipoprotein receptor
  • Hepatitis C virus has been shown to complex with LDL and interacts with the LDL receptor (Wunschmann et al. , 2000).
  • Type 2 rhinovirus was shown to up-regulate LDL receptor expression on human tracheal epithelial cells (Suzuki etal, 2001) and binding of the HIV-transactivator protein is mediated by LDL-related protein (Liu et al., 2000).
  • Primers will be designed to amplify the full-length open reading frame (ORF) of shrimp LDLr using primer express software (Applied Biosystems, Inc.).
  • Primers will also be designed to amplify a truncated version of the gene (representing the functional domain only).
  • Amplified cDNA will be cloned into bacterial expression vector (such as pETlOO Directional TOPO Expression vector, Invitrogen Inc.) and used to transform BL 21 Star (DE3) One Shot Chemically Competent Escherichia coli (Invitrogen, Inc.) following manufacturer's protocol.
  • Escherichia coli strain BL21 cells carrying IPTG inducible gene will be grown in LB medium containing ampicillin, and then will be induced with IPTG for the expression of recombinant protein. The expression of the recombinant protein will be empirically optimized to obtain maximum induction.
  • Bacterial biomass containing cells, which express the shrimp recombinant protein, will be added to shrimp feed in a free or microbound format (in beads composed of alginate and starch in a polymeric form). Attractants are added to make the feed or beads more palatable to the target species (in the case of shrimp, krill meal would be a good attractant).
  • Animals will be challenged with TSV, and their survivability in response to viral infection will be measured. The TSV load in the control and treatment samples is measured by real-time PCR following published protocol (Dhar et al. 2002).
  • the mRNA expression of the target gene will be measured in the treated and control animals using real-time RT-PCR to determine the difference in expression in two treatment groups following published method (Dhar et al. 2003). Protection from viral challenge will be determined by an increased survival versus a control not fed the diet containing the TSV recombinant protein.
  • Example 10 Use of recombinant lectins for controlling viral and bacterial diseases of shrimp and other aquaculture species.
  • the differentially expressed genes in shrimp included a number of lectin genes (see Table 2, Gene ID# PvH09A06, PvHl 3 C04, and PvW04E03. Primers will be designed to amplify the full-length open reading frame (ORF) of shrimp lectins using primer express software (Applied Biosystems, Inc.). Primers will also be designed to amplify a truncated version of the gene (representing the functional domain only).
  • Amplified cDNA will be cloned into bacterial expression vector (such as pETlOO Directional TOPO Expression vector, Invitrogen Inc.) and used to transform BL 21 Star (DE3) One Shot Chemically Competent Escherichia coli (Invitrogen, Inc.) following manufacturer's protocol.
  • Escherichia coli strain BL21 cells carrying IPTG inducible gene will be grown in LB medium containing ampicillin, and then will be induced with IPTG for the expression of recombinant protein. The expression of the recombinant protein will be empirically optimized to obtain maximum induction.
  • Bacterial biomass containing cells which express the shrimp recombinant protein, will be added to shrimp feed in a free or microbound format (in beads composed of alginate and starch in a polymeric form). Attractants are added to make the feed or beads more palatable to the target species (in the case of shrimp, krill meal would be a good attractant).
  • Animals will be challenged with WSSV, TSV, yellohead virus (YHV), and infectious hypodermal and hematopoietic virus (IHHNV) and bacterial pathogens such as Vibrio sp. including V. penaeicida, an important bacterial pathogen of shrimp.
  • the survivability of shrimp after viral and bacterial challenge will be recorded.
  • the viral load (WSSV, TSV, YHV and IHHNV) will be measured by real-time PCR following published protocol (Dhar et ⁇ l, 2001, 2002).
  • the mRNA expression of the lectin gene in the virus and bacterial-challenged animals will be measured in the treated and control animals using real-time RT-PCR to determine the difference in expression in two treatment groups following published method (Dhar et al. 2003). Protection from viral challenge will be determined by an increased survival versus a control not fed the diet containing recombinant lectin. [0166] In addition, by using homology modeling the tertiary structure of shrimp lectin genes will be determined.
  • Example 11 Method for protection of shrimp and other aquaculture species from bacterial diseases using recombinant anti-lipopolysaccharide protein.
  • Anti-LPS anti- lipopolysaccharide
  • Table 2 EST ID #PvHBl 1
  • Anti-LPS gene encodes for small a basic protein that binds and neutralizes LPS, and thus possesses a strong antibacterial effect on the growth of Gram-negative bacteria (Iwanaga et al., 1992; Ried et al., 1996).
  • Primers will be designed to amplify the full-length open reading frame (ORF) of shrimp anti-LPS gene using primer express software (Applied Biosystems, Inc.). Primers will also be designed to amplify a truncated version of the gene (representing the functional domain only).
  • Amplified cDNA will be cloned into bacterial expression vector (such as pETlOO Directional TOPO Expression vector, Invitrogen Inc.) and used to transform BL 21 Star (DE3) One Shot Chemically Competent Escherichia coli (Invitrogen, Inc.) following manufacturer's protocol.
  • Escherichia coli strain BL21 cells carrying IPTG .inducible gene will be grown in LB medium containing ampicillin, and then will be induced with IPTG for the expression of recombinant protein. The expression of the recombinant protein will be empirically optimized to obtain maximum induction.
  • Anti-LPS recombinant protein will be purified from the recombinant cells and its Gram-negative bacterial neutralizing activity will be assayed against a number of Gram-negative bacterial pathogens of shrimp, fish and terrestrial agricultural species e. g. Vibrio penaeicida, Vibrio anguillarium, Virio parahemolyticus, Lactococcus garviae, Pasteur ella piscicida.
  • Bacterial biomass containing cells, which express the shrimp recombinant anti-LPS protein, will be added to shrimp feed in a free or microbound format (in beads composed of alginate and starch in a polymeric form). Attractants are added to make the feed or beads more palatable to the target species (in the case of shrimp, krill meal would be a good attractant).
  • Shrimp will be challenges with the bacterial pathogen and mortality will be compared to control treatment where the animals will be fed pellet without containing any anti-LPS recombinant protein.
  • Taura syndrome (TS) disease caused by the Taura syndrome virus (TSV) pose a major threat to shrimp mariculture in both hemispheres.
  • TSV Taura syndrome virus
  • a cDNA clone from a healthy Penaeus vannamei (clone ID#PvH04G08) showed similarity with the low-density lipoprotein receptor (LDLr) gene of human, mouse, Drosophila and Caenorhabditis elegans.
  • LDLr low-density lipoprotein receptor
  • the LDLr gene is a member of an evolutionarily conserved family of multifunctional receptors that binds to rhinoviruses 0 (Family Picornaviridae) and a variety of ligands. Upon binding to the ligands, LDLr transports the macromolecules through receptor- mediated endocytosis.
  • the LDLr gene expression was measured in both healthy and TSV-infected (acute and chronically infected) shrimp by real-time RT-PCR. LDLr mRNA expression was almost 4-fold higher in the healthy TSV-resistant SPR shrimp compared to the healthy FG TSV- 5 susceptible line. In the SPR animals, LDLr expression increased upon TSV challenge (3.3 to 6.6-fold higher expression depending on the TSV load). In the FG TSV- susceptible acute phase animals, there was no increase in the LDLr expression. However, in the FG TSV-susceptible chronic phase animals, LDLr expression was 5- fold lower compared to the healthy control animals. These data indicate that LDLr 0 expression is differentially modulated in the TSV-resistant and susceptible animals.
  • LDLr gene could be used as a potential target for developing therapeutics against Taura syndrome disease in shrimp.
  • SPR animals showed higher expression of LDLr compared to the TSV-susceptible line making LDLr gene as a candidate genetic marker for marker-assisted selection in developing TSV-resistant line 5 of shrimp.
  • Table 10 List of primers used for measuring the expression of immune genes in healthy and white spot syndrome virus (WSSV) infected shrimp ⁇ Penaeus vannamei) by real-time RT-PCR.
  • WSSV white spot syndrome virus
  • Interleukin enhancer-binding factor 3 7.093 + 0.392 7.120 ⁇ 0.491 -0.027 -1.0
  • Tetraspanin-2 6.320 ⁇ 0.336 5.867 ⁇ 0.572 +0.460 +1.4
  • Prophenoloxidase-activating PvW4F07 proteinase 2 13.320 ⁇ 0.291 14.127 + 0.683 -0.807 -1.8
  • T-cell activation protein 12.587 ⁇ 0.280 11.925 ⁇ 0.375 +0.662 +1.6
  • Lysozyme 2 2.883 ⁇ 0.390 3.157 ⁇ -0.048 -0.274 -1.2
  • TLR Toll-like receptor
  • PRRs pattern recognition receptors
  • PAMPs pathogen-associated molecular patterns
  • TLRs are present in mammalian immune cells as well as in numerous other animals (including human, mice, goldfish and chickens). They have even been found in plants and are thus believed to have an ancient evolutionary origin; after the defensins, they may be the oldest components of the immune system. This is the first description of a TLR in shrimp.
  • TLRs toll-like receptors
  • invasive stimuli e.g. bacteria
  • TLRs pattern-recognition receptors
  • These TLRs are critical signalling proteins for bacterial lipopolysaccharides, bacterial LPS/lipoproteins and bacterial DNA.
  • Other members of the same receptor superfamily are involved in the regulation of ThI /2 T-cell function. Stimulation of TLR signalling pathways in tissues result in the rapid generation of an inflammatory response and the production of proinflammatory cytokines, such as IL-I, tumor necrosis factor-w and the chemokines.
  • Leukocytes also express TLRs, which be involved in the regulation of their function.
  • Invertebrates are known to rely on innate immunity, since they have not developed an elaborate acquired immunity (Arala-Chaves and Sequeirab 2000; Bachere 2000; Smith et al. 2003; Liu et al. 2004).
  • This invention's identification of a putative TLR provides a key to understanding the shrimp innate immune response and development of drugs targeted to either enhance the effect, therefore stimulate a rapid innate immune protection, or to inhibit the effect, preventing a drain on the production of the organism for diseases such as the currently prevailing strains of a shrimp virus, infectious hypodermal and hematopoietic necrosis virus, IHHNV that do not cause mortality but long-term chronic infections.
  • Shrimp TLR cDNA clone represents partial sequence of the full-length gene.
  • the sequence is used to design primers for cloning the 5'-and the 3'-end of the gene using standard 5'- and 3'- rapid amplification of cDNA ends method (RACE, such as First Choice RLM-RACR kit sold by Ambion, texas, (Sambrook et al. 1989; Jurecic et al. 1998)). This will allow the recovery of the complete gene from total mRNA.
  • the full-length shrimp TLR gene is then cloned into a bacterial expression vector such as pET28a+ (Novagen) using the manufacturer's instructions.
  • the protein is then expressed during log phase growth under induction with IPTG (an inducer of the lac operon promoter). Proteins are purified using nickel columns that react with the his- tag labeled recombinant proteins expressed in this method using standard methods (Sambrook et al. 1989).
  • the recombinant, tagged fusion protein is then used as a tool to investigate binding to either combinatorial libraries or to natural product libraries to determine if compounds that specifically bind this receptor are available.
  • libraries are available at large pharmaceutical companies and have been previously described.
  • receptor-binding chemicals are identified, in vivo testing can be attempted using antibodies made to the TLRs identified in this invention.
  • Such antibodies can be made as either polyclonals (to peptide or whole protein) or monoclonals by a number of different contract laboratories by standard methods (e.g., Sigma Genosys, Spring Valley Labs, BioResource Intl).
  • Shrimp are treated with the TLR-binding chemical and then humanely sacrificed.
  • Tissues are extracted for membrane proteins and western analysis, using the TLR specific antibody, is performed using standard methods (Sambrook et al. 1989). Compounds that up-regulate or down-regulate the TLR receptor are identified by this method.
  • Shrimp are then dosed with compounds that up-regulate or down-regulate the TLR to determine concentrations that do not affect the health of the shrimp.
  • One or two dosing regimes, identified in this manner, are then used to treat the shrimp in an experimental system.
  • the shrimp are then challenged with WSSV via oral delivery of live virus in the form of infected shrimp tissues. The mortality of the shrimp is monitored to determine which drugs provide protection from WSSV infection.
  • Rapid identification of disease is essential to the well being of the animals as well as the cost effectiveness of aquaculture.
  • An absorbent pad is placed at one end such as CF6 (Whatman) to act as a sink for liquids wicking across in a lateral flow assay.
  • a representative shrimp is removed from the pond and humanely sacrificed.
  • the tail muscle is macerated in pH 7.0 buffer containing a detergent such as tween-20.
  • the extracted muscle is clarified by centrifugation or placed directly on one end of the dried paper.
  • the clarified liquid is pulled by capillary action over the immobilized anti-TLR and any TLR is captured. Excess fluid is removed by the wick at the end of the paper.
  • dye labeled anti-TLR in a buffer containing 1% bovine serum albumin is loaded on the end of the paper and wicked across the immobilized TLR by capillary action. If high levels of TLR are present in the tissues, dye will accumulate on the line and the immune status of the animal will be evident.
  • VP35 nucleocapsid protein
  • HCV Hepatitis C Virus

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biotechnology (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Insects & Arthropods (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Genetics & Genomics (AREA)
  • Virology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention pertains to the composition and methods of use of differentially expressed genes in crustaceans, particularly that of shrimp. Genes that have special significance to the ability of shrimp to combat viral disease are described and their selection, amplification, and application for useful purposes. Compositions, including nucleic acid sequences and the polypeptides encoded by them, are described that are useful in feeds, therapeutics, diagnostics, and research. Methods to reduce the effect of viral infection, especially of the white spot syndrome virus, are also described. The uses of the described genes to monitor and diagnose viral disease are also disclosed.

Description

DISEASE CONTROL IN SHRIMP
Technical Field
[0001] The invention pertains to the identification, monitoring, and treatment of infection in crustaceans, particularly Penaeus sp. (shrimp). The compositions and methods using nucleic acids and polypeptides of the invention, e.g., sequences identified by differentially expression in non-infected and infected crustaceans, in therapeutics, diagnostics, and screening reagents, particularly for viral infection in Penaeus sp..
Background of the Invention [0002] During the past decade, shrimp (Penaeus sp.) farming has evolved from subsistence level farming to a major worldwide industry providing jobs to millions of people. Currently, shrimp farming remains a major source for economic development in the poor coastal areas of many countries in the Asia and the Americas (Rosenberry, 2002). As shrimp farming evolves, it is faces many challenges. Among these challenges, viral diseases are of major concern to shrimp farmers. More than 20 viruses have been reported to infect shrimp (Lightner 1996), and the list is growing. Many of these viruses have already caused serious disease in cultured and wild penaeid shrimp resulting in significant economic losses to commercial shrimp farmers. At present, white spot disease of shrimp, caused by the white spot syndrome virus (WSSV), is considered to be the most important viral disease of cultured shrimp worldwide (Office International de Epizooties, 2002). Since the initial report of WSSV in East Asia during 1992 to 1993 (Inouye et al. 1994), WSSV has spread to much of Asia and the Americas causing catastrophic losses to shrimp farmers (Krishna et al. 1997; Jory and Dixon 1999). The cumulative loss due to WSSV in the Asia since 1992 is estimated to be $4-6 billion. The losses due to WSSV in the Americas have been estimated to $1-2 billion. [0003] WSSV virions are ellipsoid to bacilliform in shape, enveloped with a tail- like appendage at one end of the particle. The genome of WSSV contains a circular double-stranded DNA of -300 kb in length (van Hulten et al. 2001; Yang et al. 2001). Although the WSSV has a morphological similarity with baculovirus, sequence analysis revealed that WSSV shares very little similarity with any known viruses (van Hulten et al, 2001 ; Yang et al , 2001). As a result, WSSV has been placed in a new family, the Nimaviridae, and a new genus, Whispovirus. [0004] WSSV infects all commercially important species of penaeid shrimp and a number of other crustaceans, including crabs and crayfish (Flegel 1997). Since the initial report of WSSV in East Asia during 1992 to 1993 (Inouye et al 1994), a number of WSSV-encoded genes, such as the capsid genes (van Hulten et al 2000a; van Hulten et al. 2000b; Zhang et al 2001 ; Chen et al 2002; Marks et al 2003), a ribonucleotide reductase gene (Tsai et al. 2000a), and the thymidine kinases (Tsai et al 2000b) have been studied in detail. In addition, a highly sensitive detection method based on real- time PCR has been developed for detecting and quantifying WSSV (Dhar et al. 2001). However, insight into immune genes in shrimp involved in WSSV pathogenesis is limited and only just beginning to emerge. For example, Dhar and colleagues cloned and sequenced a lipopolysaccharide and β-l,3-ghican binding protein (LGBP) gene from Penaeus stylirostris shrimp that shows up-regulation during WSSV infection (Roux et al. , 2002). LGBP, a pattern recognition protein (PRP), is known to elicit the expression of prophenoloxidase (proPO) during bacterial and fungal infection (Soderhall and Cerenius, 1998). Although LGBP gene expression is upregulated in WSSV-infected animals, proPO gene expression is downregulated as the WSSV infection progresses, suggesting that WSSV infection regulates the activation and / or activity of the prophenoloxidase cascade in a novel way (Roux et al, 2002). A syntenin-like protein (TE8) with a post-synaptic density protein (PDZ) domain has been isolated from Penaeus monodon shrimp and was upregulation during WSSV- infection (Bangrak et al, 2002). It has been suggested that the shrimp syntenin-like protein may function as an adapter that couples the PDZ-binding protein to cell-to-cell signal transduction during WSSV pathogenesis (Bangrak et al , 2002). Antiviral substances capable of binding to a variety of DNA and RNA viruses (Sindbis virus, vaccinia virus, vesicular somatitis virus, mengo virus, banzi virus and poliomyelitis virus) have been isolated from shrimp {Penaeus setiferus), although the genes representing these proteins have not yet been cloned (Pan et al, 2000). These antiviral proteins probably represent a component of the innate immune response in shrimp (Pan et al, 2000). All the above examples of the characterization of immune genes and associated proteins in shrimp revealed the candidate gene approaches used by different researchers. Although such approaches may provide in depth information on a particular gene, they do not provide a holistic view of gene expression during viral or microbial pathogenesis. [0005] To mitigate these challenges and to promote sustainable shrimp farming, there is an urgent need to develop therapeutics against white spot disease and viral diseases in shrimp in general. One of the limitations in developing therapeutics against viral diseases of shrimp is the lack of information on the cellular genes that might be involved in WSSV pathogenesis. This invention addresses this need by identifying cellular genes that play a critical role in viral, specifically WSSV, pathogenesis in shrimp, and viral pathogenesis in invertebrates in general. Several immune genes in shrimp have been isolated that showed differential expression between healthy and WSSV-infected shrimp. These genes could be used as potential targets for developing therapeutics against white spot disease and other viral, bacterial, and fungal diseases in shrimp.
Summary
[0006] This invention has identified cellular genes that play a critical role in viral, specifically white spot syndrome virus (WSSV), pathogenesis in Penaeus sp. (shrimp), and viral pathogenesis in invertebrates in general. Several immune genes in shrimp have been isolated that showed differential expression between healthy and WSSV- infected shrimp. The nucleic acids comprising these genes, or fragments thereof, can used as potential targets for developing therapeutics against white spot disease and other viral, bacterial, and fungal diseases in shrimp. Accordingly, the invention provides methods for screening for compounds for treating or diagnosing WSSV using the nucleic acids of the invention or the polypeptides they encode.
[0007] The invention provides compositions comprising, or consisting of, sets of differentially expressed genes selected by their differential expression on viral infection as compared to healthy Penaeus sp. (shrimp) expression profiles. In one aspect, the viral infection is white spot syndrome virus, Taura syndrome virus, infectious hypodermal and hematopoietic virus, yellowhead virus or baculovirus penae.
[0008] In one aspect, the genes are selected from expressed sequence tag libraries designed by differential selection of genes that are up- or down-regulated during viral infection. In one aspect, the viral infection is white spot syndrome virus. The genes can the genes described herein, e.g., the nucleic acids as set forth in Table 2 and the appendices. In one aspect, the viral infection is selected from white spot syndrome virus, Tarua syndrome virus, infectious hypodermal and hematopoietic virus, yellowhead virus and baculovirus penae. The genes can be selected from the shrimp expressed sequence tag differential library used for the treatment of disease. The disease can be selected from white spot syndrome virus, Tarua syndrome virus, infectious hypodermal and hematopoietic virus, yellowhead virus and baculovirus penae. The differential library can be produced from shrimp infected with WSSV, or, from shrimp infected with viruses selected from white spot syndrome virus, Tarua syndrome virus, infectious hypodermal and hematopoietic virus, yellowhead virus and baculovirus penae.
[0009] The invention also provides methods of determining the metabolic or disease state of shrimp using the compositions described herein, including the polypeptides of the invention and the nucleic acids of the invention.
[0010] The invention provides isolated or recombinant nucleic acids having at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more sequence identity, when compared and aligned for maximum correspondence, as measured using one any known sequence comparison algorithm, as discussed in detail below, or by visual inspection, to an exemplary nucleic acid of the invention, which include all nucleic acids sequences described herein, e.g., as set forth in Appendix A. [00H ] The invention provides isolated or recombinant polypeptides having at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more sequence identity, when compared and aligned for maximum correspondence, as measured using one any known sequence comparison algorithm, as discussed in detail below, or by visual inspection, to an exemplary polypeptides of the invention, which include all polypeptides described herein, and include all polypeptides encoded by nucleic acids of the invention, which include all nucleic acids sequences described herein, e.g., as set forth in Appendix A. [0012] In alternative aspects, the invention provides nucleic acid and polypeptide sequences having substantial identity to an exemplary sequence of the invention over a region of at least about 10, 20, 30, 40, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 or more residues. [0013] It is an object of the invention to provide a number of expressed sequence tags (ESTs) isolated from shrimp tissue that specifically correspond to the onset of viral disease.
[0014] The invention provides nucleic acids, e.g., probes or expressed sequence tags (ESTs), some isolated from Penaeid shrimp tissue; that specifically correspond to the onset of viral disease. In one aspect, these nucleic acids, e.g., probes or expressed sequence tags comprise subsequences of sequences of the invention, including the exemplary sequences set forth herein, e.g., as set forth in Appendix A. The invention provides nucleic acids, e.g., probes or expressed sequence tags (ESTs), comprising subsequences of sequences of the invention, including the exemplary sequences set forth herein, the specifically correspond to the onset of viral disease. In one aspect, these nucleic acids have been isolated from shrimp (Penaeus vannamei) tissue.
[0015] The invention provides compositions for use in protecting Penaeus sp. (shrimp) from viral infection and methods of protecting Penaeus sp. (shrimp) from viral infection using recombinant or isolated protein or nucleic acids comprising sequences of the invention, including the exemplary sequences set forth herein, e.g., as set forth in Appendix A; which in various aspects are derived from the full-length gene or recombinant truncated protein or nucleic acids derived from the functional domain of the gene identified using the EST differential libraries of the instant invention. [0016] The invention provides compositions and methods for use in protecting
Penaeus sp. (shrimp) from WSSV infection or other viral infection using recombinant or isolated protein or nucleic acids comprising sequences of the invention, including the exemplary sequences set forth herein, e.g., as set forth in Appendix A; which in various aspects are derived from the full-length gene or recombinant truncated protein or nucleic acids derived from the functional domain of the gene.
[0017] The invention provides feeds and/or feed supplements which comprise recombinant or isolated protein or nucleic acids comprising sequences of the invention, including the exemplary sequences set forth herein, e.g., as set forth in Appendix A; which in various aspects incorporate recombinant or isolated protein or nucleic acids identified using the EST differential libraries of the instant invention and providing same to the animal to inhibit the deleterious effects of the virus on the host. [0018] The invention provides compositions and methods for treatments comprising use of recombinant or isolated protein or nucleic acids comprising sequences of the invention, including the exemplary sequences set forth herein, e.g., as set forth in Appendix A; which in various aspects incorporate recombinant or isolated protein or nucleic acids identified using the WSSV infected and healthy EST differential libraries of the instant invention and providing it to the animal to inhibit or suppress the deleterious effects of the WSSV on the host. [0019] The invention provides therapeutics, a feed, or feed supplement that incorporates recombinant or isolated protein or nucleic acids identified using the WSSV infected and healthy EST differential libraries of the instant invention and providing it to the animal to inhibit or suppress the deleterious effect of the WSSV on the host. [0020] The invention provides methods of treatment for white spot viral disease in
Penaeus sp. (shrimp) based on the genes identified through differential expression libraries, including protein or nucleic acids comprising sequences of the invention, including the exemplary sequences set forth herein, e.g., as set forth in Appendix A. [0021] It is an object of the invention to provide a method of treatment wherein the method comprises the steps including the production of recombinant or isolated protein using bacterial, yeast, plant, and/or algal expression systems, then mixing the recombinant or isolated protein with feed and delivering the recombinant or isolated protein in sufficient quantity to prevent action of the virus on Penaeus sp. (shrimp). This approach can also be applied to diseases in Penaeus sp. (shrimp) caused other viruses, bacteria, fungi, as well as in other aquaculture species including fish and shellfish suffering from fungal, bacterial, and viral diseases. In aquatic invertebrate species, like Penaeus sp. (shrimp), with a primitive immune system (i.e., one that is not antibody driven) the invention provides a method for treatment of both acute and chronic diseases via delivery of therapeutic recombinant or isolated protein(s) and/or nucleic acids.
[0022] It is an objective of this invention to use sequences of the invention, including the exemplary sequences set forth herein, e.g., as set forth in Appendix A, including ESTs differentially expressed on viral infection, as a biopesticide.
[0023] It is an object of the invention to provide a method using sequences of the invention, including the exemplary sequences set forth herein, e.g., as set forth in Appendix A, including the differentially expressed genes from the EST differential library, as a diagnostic tool to evaluate Penaeus sp. (shrimp) both in aquaculture and in food processing. [0024] It is an object of the invention to provide a useful resource for functional genomics study in Penaeus sp. (shrimp) using microarray analysis and single nucleotide polymorphisms (SNPs) and a resource for microsatellite sequence useful for developing Penaeus sp. (shrimp) genome map. Thus, the invention provides arrays comprising sequences of the invention, including the exemplary sequences set forth herein, e.g., as set forth in Appendix A.
[0025] It is an object of the invention to provide a feed or feed supplement comprising sequences of the invention, including the exemplary sequences set forth herein, e.g., as set forth in Appendix A; including recombinant or isolated protein(s) or nucleic acid(s), derived from the expressed sequence tags from healthy and WSSV- infected libraries, that can inhibit or suppress the deleterious effect of other Penaeus sp. (shrimp) viruses including the Taura syndrome virus, yellow head virus, and infectious hypodermal and hematopoietic necrosis virus and WSSV (Lightner and Redman, 1998). [0026] It is an object of the invention to provide a method of treatment for bacterial diseases of Penaeus sp. (shrimp) and other aquaculture species using sequences of the invention, including the exemplary sequences set forth herein, e.g., as set forth in Appendix A, including sequences based on the genes identified through Penaeus sp. (shrimp) EST analysis. [0027] Therefore, the invention provides both compositions that can be used for prevention of disease and methods of prevention of disease, and diagnostic tools for evaluation of the health of the animals affected by disease.
Brief Description of the Drawings
[0028] FIG. 1 is a graphical representation of the function classes of genes isolated from hepatopancreas cDNA libraries of healthy and WSSV infected shrimp (P. vannamei) that showed similarities with the GenBank database entries;
[0029] FIG. 2 is a graphical representation of the differential expression of expressed sequence tags (ESTs) in white spot syndrome virus (WSSV) infected shrimp (Penaeus vannamei) compared to healthy shrimp (P. vannamei). Bars above the X-axis indicate up-regulation, and bar below the X-axis indicates down-regulation of the gene in WSSV-infected compared to healthy shrimp; and
[0030] FIG. 3 is a graphical representation of the quantification of differently expressed immune genes in WSSV infected shrimp (P. vannemef) by SYBR Green real-time PCR. Bars above the axis represent up-regulated genes and bars below the axis represent down-regulated genes. 1) gamma interferon inducible lysosomal thiol reductase (GILT); 2) Interleukin enhancer-binding factor 3; 3) tetraspanin-2; 4) NF- kappaβ essential modulator; 5) Chitinase; 6) prophenoloxidase-activating proteinase 2; 7) p-selectin; 8) T-cell activation protein; 9) O.-sialoglycoprotein endopeptidase; 10) ubiquitin; 11) anti-lipopolysaccharide factor.
Detailed Description of the Invention
[0031] Provided herein is a nucleic acid sequence comprising a nucleic acid sequence of at least 65% identity to a nucleic acid sequence as set forth in as set forth in Appendix A.
[0032] . In one embodiment, the nucleic acid sequence has at least 95% identity. In another embodiment, the nucleic acid sequence has 100% identity. The invention also provides the polypeptide encoded by the nucleic acid sequences disclosed herein. Provided herein is a vector comprising the nucleic acid sequence provided herein, and a cell comprising said vector.
[0033] Further provided herein is a feed or feed supplement comprising sequences of the invention, including the exemplary sequences set forth herein, e.g., as set forth in Appendix A; including recombinant or isolated proteins or biologically active fragments thereof encoded by a nucleic acid sequence of the invention, e.g., having at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%,
63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%,
' 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%,
93%, 94%, 95%, 96%, 97%, 98%, 99%, or more sequence identity to a shrimp gene or fragment thereof, wherein said shrimp gene is up-regulated during viral infection. In one embodiment, the shrimp gene is selected from a group of shrimp genes consisting of tetraspanin-2, P-selectin precursor, T-cell activation protein, anti-lipopolysaccharide factor, and heat shock protein STIl . In a specific embodiment, the shrimp gene is in clone PvWl 1A5, clone PvW4E03, clone PvW5G04, clone PvHBl 1, or clone PvWl 0D06. In some embodiment, the protein or biologically active fragment thereof is encoded by a nucleic acid listed in Appendix A. The protein can provided within a cell or provided as a disrupted cell.
[0034] Provided herein is a feed or feed supplement comprising a nucleic acid sequence of at least 65% sequence identity to a shrimp gene or biologically active portion thereof in a set of genes up-regulated by infection with a virus. The nucleic acid sequence can be a nucleic acid sequence listed in Appendix A. In one embodiment, the shrimp gene is selected from a group of shrimp genes consisting of tetraspanin-2, P-selectin precursor, T-cell activation protein, anti-lipopoly saccharide factor, and heat shock protein STIl . In a specific embodiment, the shrimp gene is contained in clone PvWl 1 A5, clone PvW4E03, clone PvW5G04, clone PvHBl 1, or clone PvWl 0D06. The nucleic acid sequence can be contained or provided within a cell or provided as a disrupted cell. In some embodiments, the nucleic acid sequence is produced synthetically. [0035] Also provided herein is a feed or feed supplement comprising a recombinant or isolated protein or biologically active fragment thereof encoded by a nucleic acid sequence with at least 65% or sequence identity to a nucleic acid sequence found in the set of shrimp genes down-regulated with viral infection. In one embodiment, the protein is gamma-interferon inducible lysosomal thiol reductase precursor, interleukin enhancer-binding factor 35 NF-kappaB essential modulator, chitinase, prophenoloxidase-activating proteinase 2, O-sialoglycoprotein endopeptidase, ubiquitin, or lysozyme. In a specific embodiment, the protein is encoded by a nucleic acid sequence selected from the group of shrimp nucleic acid sequence contained in clonePvHlA02, clone PvW8B06, clone PvW8E09, clone PvW9El l, clone PvW4F07, clone PvHC06, clone PvW04C06, and clone PvWl 0F4. In some embodiments, the protein or biologically active fragment thereof is encoded by a nucleic acid sequence listed in Appendix A. The protein can be provided within a cell or provided as a disrupted cell.
[0036] Provided herein is a feed or feed supplement comprising a nucleic acid sequence with at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more sequence identity to a nucleic acid of the invention, e.g., a shrimp gene or biologically active fragment thereof, wherein said nucleic acid sequence encodes a shrimp gene down-regulated at or during viral infection. The nucleic acid sequence can be one listed in Appendix A. In some embodiments, the shrimp gene is gamma-interferon inducible lysosomal thiol reductase precursor, interleukin enhancer-binding factor 3, NF-kappaB essential modulator, chitinase, prophenoloxidase-activating proteinase 2, O-sialoglycoprotein endopeptidase, ubiquitin, and lysozyme. In a specific embodiment, the shrimp nucleic acid sequence is contained in clonePvHl A02, clone PvW8B06, clone PvW8E09, clone PvW9El I5 clone PvW4F07, clone PvHC06, clone PvW04C06, and clone PvWl 0F4. The nucleic acid sequence can be provided within a cell or provided as a disrupted cell. In some embodiments, the nucleic acid sequence is produced synthetically.
[0037] Further provided herein is a therapeutic comprising a recombinant or isolated protein or biologically active portion thereof having at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more sequence identity to a nucleic acid of the invention, e.g., including a shrimp protein encoded by a shrimp gene up-regulated during viral infection. In one embodiment, the shrimp gene is a nucleic acid sequence listed in Appendix A. The shrimp gene can be tetraspanin-2, P-selectin precursor, T-cell activation protein, anti-lipopolysaccharide factor, and heat shock protein STI 1. In a specific embodiment, the shrimp gene is contained in clone PvWl 1 A5, clone PvW4E03, clone PvW5G04, clone PvHBl 1, and clone PvWl 0D06. The protein or biologically active portion thereof can be delivered orally, by immersion, by injection, or any suitable method. [0038] Provided herein is a therapeutic comprising a nucleic acid sequence of at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more sequence identity to a nucleic acid of the invention, e.g., to a shrimp gene or biologically active fragment thereof that is up- regulated by infection with a virus. The shrimp gene can be selected from those listed in Appendix A. In one embodiment, the shrimp gene is tetraspanin-2, P-selectin precursor, T-cell activation protein, anti-lipopolysaccharide factor, and heat shock protein STIl. In a specific embodiment, the shrimp gene is contained in clone PvWl 1A5, clone PvW4E03, clone PvW5G04, clone PvHBl 1, and clone PvWl 0D06. The nucleic acid sequence can be delivered orally, by immersion, by injection, or any suitable method that permits expression.
[0039] Further provided is a therapeutic comprising a recombinant or isolated protein or biologically active fragment thereof encoded by a nucleic acid sequence with at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more sequence identity to a nucleic acid of the invention, e.g., to a shrimp protein down-regulated by infection with a virus. The protein or biologically active fragement thereof can be encoded by a nucleic acid sequence listed in Appendix A. In one embodiment, the protein or biologically active fragment thereof is gamma-interferon inducible lysosomal thiol reductase precursor, interleukin enhancer-binding factor 3, NF-kappaB essential modulator, chitinase, prophenoloxidase-activating proteinase 2, O-sialoglycoprotein endopeptidase, ubiquitin, or lysozyme. In a specific embodiment, the protein or biologically active fragment thereof is contained in clonePvHlA02, clone PvW8B06, clone PvW8E09, clone PvW9El 1, clone PvW4F07, clone PvHC06, clone PvW04C06, or clone PvWl 0F4. The protein or biologically active portion thereof can be delivered orally, by immersion, by injection, or any suitable method.
[0040] Also provided herein is a therapeutic comprising a nucleic acid sequence of at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more sequence identity to a nucleic acid of the invention, e.g., including a shrimp gene or faction thereof down-regulated by infection with a virus. The nucleic acid sequence can be one listed in Appendix A. In one embodiment, the nucleic acid sequence is gamma-interferon inducible lysosomal thiol reductase precursor, interleukin enhancer-binding factor 3, NF-kappaB essential modulator, chitinase, prophenoloxidase-activating proteinase 2, O-sialoglycoprotein endopeptidase, ubiquitin, and lysozyme. In a specific embodiment, the nucleic acid sequence is contained in clone PvHl A02, clone PvW8B06, clone PvW8E09, clone PvW9El 1, clone PvW4F07, clone PvHC06, clone PvW04C06, or clone PvWl 0F4. The nucleic acid sequence can be delivered orally, by immersion, by injection, or any suitable method that permits expression.
[0041] Provided in a screening method for identifying a substrate of a protein that is up-regulated following infection by a pathogen, comprising: (a) providing a polypeptide of the invention; or a polypeptide encoded by a nucleic acid of the invention; (b) providing a test substrate; and (c) contacting the polypeptide of step (a) with the test substrate of step (b) and detecting a decrease in the amount of substrate or an increase in the amount of reaction product, wherein a decrease in the amount of the substrate or an increase in the amount of a reaction product identifies the test substrate as the polypeptide substrate. The protein can be encoded by a nucleic acid sequence selected from Appendix A. In one embodiment, the protein is tetraspanin-2, P-selectin precursor, T-cell activation protein, anti-lipopolysaccharide factor, or heat shock protein STIl. In a specific embodiment, the protein is encoded by the nucleic acid seqeunce contained in clone PvWl 1 A5, clone PvW4E03, clone PvW5G04, clone PvHBl 1, or clone PvWl 0D06. [0042] Further provided herein is a screening method cfor identifying a substrate of a protein that is down-regulated following infection by a pathogen, comprising: (a) providing a polypeptide of the invention; or a polypeptide encoded by a nucleic acid of the invention; (b) providing a test substrate; and (c) contacting the polypeptide of step (a) with the test substrate of step (b) and detecting a decrease in the amount of substrate or an increase in the amount of reaction product, wherein a decrease in the amount of the substrate or an increase in the amount of a reaction product identifies the test substrate as the polypeptide substrate. The protein can be encoded by a nucleic acid sequenced selected from Appendix A. In one embodiment, the protein is gamma- interferon inducible lysosomal thiol reductase precursor, interleukin enhancer-binding factor 3, NF-kappaB essential modulator, chitinase, prophenoloxidase-activating proteinase 2, O-sialoglycoprotein endopeptidase, ubiquitin, or lysozyme. In a specific embodiment, the protein is encoded by the nucleic acid sequence contained in clonePvHlA02, clone PvW8B06, clone PvW8E09, clone PvW9El 1, clone PvW4F07, clone PvHC06, clone PvW04C06, or clone PvWl 0F4. [0043] Also provided hererin is a diagnostic kit for evaluation of infection in crustaceans in aquaculture and food processing comprising at least one differentially expressed gene as a nucleic acid or recombinant polypeptide, wherein the gene can be used to identify a crustacean as being infected or non-infected with the pathogen of interest; and optionally instructions for use of the kit. The gene can be one selected from Appendix A.
[0044] Provided herein is a method for treating or preventing infection by a pathogen in an aquatic animal, e.g., shrimp, comprising providing at least one differentially expressed gene as a nucleic acid or recombinant polypeptide, wherein the gene is up-regulated with infection by the pathogen. The gene can be one selected from Appendix A. In one embodiment, the gene is tetraspanin-2, P-selectin precursor, T-cell activation protein, aήti-lipopoly saccharide factor, or heat shock protein STIl. In a specific embodiment, the gene is contained in clone PvWl 1 A5, clone PvW4E03, clone PvW5G04, clone PvHBl 1, or clone PvWlODOo. [0045] Further provided herein is a method for treating or preventing infection by a pathogen in an aquatic animal, e.g., shrimp, comprising providing at least one differentially expressed gene as a nucleic acid or recombinant polypeptide, wherein the gene is down-regulated with infection by the pathogen. The gene can be one selected from Appendix A. In one embodiment, the gene is gamma-interferon inducible lysosomal thiol reductase precursor, interleukin enhancer-binding factor 3, NF-kappaB essential modulator, chitinase, prophenoloxidase-activating proteinase 2, O- sialoglycoprotein endopeptidase, ubiquitin, or lysozyme: In a specific embodiment, the gene is the nucleic acid sequence contained clonePvHlA02, clone PvW8B06, clone PvW8E09, clone PvW9El 1, clone PvW4F07, clone PvHC06, clone PvW04C06, or clone PvWl 0F4. The aquatic animal is a crustacean, preferably a shrimp.
[0046] Also provided herein is an inhibitory RNA molecule comprising a nucleic acid sequence comprising a nucleic acid sequence or fragment thereof, or complementary sequence, of the nucleic acid sequence listed in Appendix A. In one embodiment, the inhibitory RNA molecule can be used in a method of preventing or treating infection of an aquatic animal comprising administering the inhibitory RNA molecule to the animal. The inhibitory RNA molecule can be used in a feed or feed supplement. The inhibitory RNA molecule can be provided in a cell or as a disrupted cell. The cell can be a bacterial, yeast, insect, fish, crustacean, or mammalian cell. [0047] Provided herein is a method of identifying shrimp lines that are resistant to viral, bacterial, or fungal diseases, comprising identifying at least one differentially expressed gene as a nucleic acid or protein, wherein the gene comprises a nucleic acid sequence provided in Appendix A, or a subsequence thereof.
[0048] Further provided herein is a method of screening for a therapeutic that modulates infectious disease in an aquatic animal, comprising identifying a compound which modulates the expression of the gene as a nucleic acid sequence or protein in an infected animal, wherein the gene comprises a nucleic acid sequence listed in Appendix A, or a subsequence thereof, whereby the compound is identified as a modulator of infectious disease when said modulation results in the ameriolation or prevention of one or more symptoms caused by the infection. [0049] Also provided herein is a microsatellite marker comprising at least one nucleic acid sequence listed in Appendix A, or a subsequence thereof. Provided herein is a method of developing microsatellite markers employing at least one nucleic acid sequence listed in Appendix A, or a subsequence thereof. [0050] Provided herein is a microarry comprising at least one nucleic acid sequence or biologically active fragment thereof listed in Appendix A, or a subsequence thereof.
[0051] Further provided is a biopesticide comprising at least one nucleic acid sequence or biologically active fragment thereof listed in Appendix A, or a subsequence thereof. [0052] Provided is a method for developing a biopesticide employing at least one nucleic acid sequence or biologically active fragment thereof listed in Appendix A, or a subsequence thereof.
[0053] Further provided is a transgenic plant expressing a protein or biologically active fragment thereof encoded by a nucleic acid sequence disclosed in Appendix A, or a subsequence thereof.
Definitions
[0054] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art to which this invention belongs. All patents, published patent applications and other publications and sequences from GenBank and other databases referred to herein are incorporated by reference in their entirety. If a definition set forth in this section is contrary to or otherwise inconsistent with a definition set forth in patents, published patent applications and other publications and sequences from GenBank and other data bases that are herein incorporated by reference, the definition set forth in this section prevails over the definition that is incorporated herein by reference.
[0055] As used herein, "a" or "an" means "at least one" or "one or more." [0056] As used herein, the term "aquaculture" refers to the cultivation of aquatic organisms under controlled conditions. An "aquatic organism" is an organism grown in water, either fresh- or saltwater. Aquatic organisms, include, but are not limited to, fish, e.g., bass, striped bass, tilapia, catfish, sea bream, rainbow trout, zebrafish, red drum, and carp; crustaceans, e.g., penaeid shrimp, brine shrimp, freshwater shrimp, and Artemia; and rotifers. [0057] A "coding sequence" is an in-frame sequence of codons that (in view of the genetic code) correspond to or encode a protein or peptide sequence. Two coding sequences show similarity or homology to each other if the sequences or their complementary sequences encode the same or similar amino acids. [0058] An "EST" or "expressed sequence tag" is a piece of nucleic acid that is found under specific conditions and is derived from a cDNA library. A unique DNA sequence derived from a cDNA library (therefore from a sequence which has been transcribed in some tissue or at some stage of development). The EST can be mapped, by a combination of genetic mapping procedures, to a unique locus in the genome and serves to identify that genetic locus.
[0059] A "feed" refers to a preparation providing nutritional value to an aquatic animals including, but not limited to fish, shrimp, lobsters, crawfish, mollusks, sponges, and jellyfish.
[0060] A "feed additive" is any substance added to feed, regardless of nutritional or therapeutic value.
[0061] As used herein, the term "shrimp" refers to any of the group of crustaceans that are commonly cultured for aquaculture or captured in the wild fisheries. The term "shrimp" includes shrimp eggs, shrimp larvae, shrimp post-larvae and adult shrimp. The term "shrimp" and "prawn" will be used interchangeably throughout the specification. Shrimp an be, but are not limited to Penaeus shrimp and include the species Penaeus vannamel, Penaeus chinensis, Penaeus monodon, Penaeus stylirostris, Penaeus japonicus, Penaeus penicillatus, Penaeus merguiensis, Penaeus indicus, Penaeus subtϊlis, Penaeus paulensis, Penaeus setiferus, Penaeus brasiliensis, Penaeus duorarum, Penaeus occidentalis, Penaeus schmitti, Penaeus californiensis, Penaeus semisulcatus, Penaeus latisulcatus, Metapenaeus monoceros, Metapenaeus dobsoni, Metapenaeus affinis, and Metapenaeus brivicornis; and Litopenaeid shrimp (such as Litopenaeus vannamei, L. setiferus).
[0062] "Contig" refers to a continuous sequence of DNA that has been assembled from overlapping nucleotide sequence of cDNA clones. [0063] "Singleton" refers to a single EST sequence representing a particular gene.
[0064] "Unigene set" refers to non-redundent set of gene-oriented clusters. [0065] The term "antibody" includes a peptide or polypeptide derived from, modeled after or substantially encoded by an immunoglobulin gene or immunoglobulin genes, or fragments thereof, capable of specifically binding an antigen or epitope, see, e.g. FUNDAMENTAL IMMUNOLOGY, Third Edition, W.E. Paxil, ed., Raven Press, N. Y. (1993); Wilson (1994) J. Immunol. Methods 175:267-273; Yarmush (1992) J. Biochem. Biophys. Methods 25:85-97. The term antibody includes antigen-binding portions, i.e., "antigen binding sites," (e.g., fragments, subsequences, complementarity determining regions (CDRs)) that retain capacity to bind antigen, including (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CHl domains; (ii) a F(ab')2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CHl domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) a dAb fragment (Ward et al. , (1989) Nature 341 :544-546), which consists of a VH domain; and (vi) an isolated complementarity determining region (CDR). Single chain antibodies are also included by reference in the term "antibody."
[0066] The terms "array" or "microarray" or "biochip" or "chip" as used herein is a plurality of target elements, each target element comprising a defined amount of one or more polypeptides (including antibodies) or nucleic acids immobilized onto a defined area of a substrate surface, as discussed in further detail, below.
[0067] The term "expression cassette" as used herein refers to a nucleotide sequence which is capable of affecting expression of a structural gene (i.e., a protein coding sequence, such as an recombinant or isolated protein encoded by a nucleic acid of the invention) in a host compatible with such sequences. Expression cassettes include at least a promoter operably linked with the polypeptide coding sequence; and, optionally, with other sequences, e.g., transcription termination signals. Additional factors necessary or helpful in effecting expression may also be used, e.g., enhancers. Thus, expression cassettes also include plasmids, expression vectors, recombinant viruses, any form of recombinant "naked DNA" vector, and the like.
[0068] "Operably linked" as used herein refers to a functional relationship between two or more nucleic acid (e.g., DNA) segments. Typically, it refers to the functional relationship of transcriptional regulatory sequence to a transcribed sequence. For example, a promoter is operably linked to a coding sequence, such as a nucleic acid of the invention, if it stimulates or modulates the transcription of the coding sequence in an appropriate host cell or other expression system. Generally, promoter transcriptional regulatory sequences that are operably linked to a transcribed sequence are physically contiguous to the transcribed sequence, i.e., they are cis-acύng. However, some transcriptional regulatory sequences, such as enhancers, need not be physically contiguous or located in close proximity to the coding sequences whose transcription they enhance.
[0069] A "vector" comprises a nucleic acid which can infect, transfect, transiently or permanently transduce a cell. It will be recognized that a vector can be a naked nucleic acid, or a nucleic acid complexed with protein or lipid. The vector optionally comprises viral or bacterial nucleic acids and/or proteins, and/or membranes (e.g., a cell membrane, a viral lipid envelope, etc.). Vectors include, but are not limited to replicons (e.g., RNA replicons, bacteriophages) to which fragments of DNA may be attached and become replicated. Vectors thus include, but are not limited to RNA, autonomous self-replicating circular or linear DNA or RNA (e.g., plasmids, viruses, and the like, see, e.g., U.S. Patent No. 5,217,879), and include both the expression and non-expression plasmids. Where a recombinant microorganism or cell culture is described as hosting an "expression vector" this includes both extra-chromosomal circular and linear DNA and DNA that has been incorporated into the host chromosome(s). Where a vector is being maintained by a host cell, the vector may either be stably replicated by the cells during mitosis as an autonomous structure, or is incorporated within the host's genome. '
[0070] As used herein, the term "promoter" includes all sequences capable of driving transcription of a coding sequence in a cell, e.g., a plant cell. Thus, promoters used in the constructs of the invention include cw-acting transcriptional control elements and regulatory sequences that are involved in regulating or modulating the timing and/or rate of transcription of a gene. For example, a promoter can be a cis- acting transcriptional control element, including an enhancer, a promoter, a transcription terminator, an origin of replication, a chromosomal integration sequence, 5' and 3' untranslated regions, or an intronic sequence, which are involved in transcriptional regulation. These cis-acting sequences typically interact with proteins or other biomolecules to carry out (turn on/off, regulate, modulate, etc.) transcription. "Constitutive" promoters are those that drive expression continuously under most environmental conditions and states of development or cell differentiation. "Inducible" or "regulatable" promoters direct expression of the nucleic acid of the invention under the influence of environmental conditions or developmental conditions. Examples of environmental conditions that may affect transcription by inducible promoters include anaerobic conditions, elevated temperature, drought, or the presence of light. [0071] "Plasmids" can be commercially available, publicly available on an unrestricted basis, or can be constructed from available plasmids in accord with published procedures. Equivalent plasmids to those described herein are known in the art and will be apparent to the ordinarily skilled artisan. [0072] The term "gene" includes a nucleic acid sequence comprising a segment of
DNA involved in producing a transcription product (e.g., a message), which in turn is translated to produce a polypeptide chain, or regulates gene transcription, reproduction or stability. Genes can include regions preceding and following the coding region, such as leader and trailer, promoters and enhancers, as well as, where applicable, intervening sequences (introns) between individual coding segments (exons).
[0073] The phrases "nucleic acid" or "nucleic acid sequence" includes oligonucleotide, nucleotide, polynucleotide, or to a fragment of any of these, to DNA or RNA (e.g., mRNA, rRNA. tRNA) of genomic or synthetic origin which may be single- stranded or double-stranded and may represent a sense or antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material, natural or synthetic in origin, including, e.g., iRNA, ribonucleoproteins (e.g., iRNPs). The term encompasses nucleic acids, i.e., oligonucleotides, containing known analogues of natural nucleotides. The term also encompasses nucleic-acid-like structures with synthetic backbones, see e.g., Mata (1997) Toxicol. Appl. Pharmacol. 144:189-197; Strauss-Soukup (1997) Biochemistry 36:8692-8698; Samstag (1996) Antisense Nucleic Acid Drug Dev 6: 153- 156.
[0074] "Amino acid" or "amino acid sequence" include an oligopeptide, peptide, polypeptide, or protein sequence, or to a fragment, portion, or subunit of any of these, and to naturally occurring or synthetic molecules. The terms "polypeptide" and "protein" include amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres, and may contain modified amino acids other than the 20 gene-encoded amino acids. The term "polypeptide" also includes peptides and polypeptide fragments, motifs and the like. The term also includes glycosylated polypeptides. The peptides and polypeptides of the invention also include all "mimetic" and "peptidomimetic" forms, as described in further detail, below.
[0075] As used herein, the term "biologically active fragment thereof thereof refers to a fragment of the protein or nucleic acid that retains at least one biological activity of the whole sequence. In one embodiment, the fragment retains all of the relevant biological activities of the protein or nucleic acid sequence. For example, the biologically active fragment of a protein is one that protects the organism growing in aquaculture from one or more deleterious effects of a pathogen, preferably a virus.
[0076] The term "isolated" includes a material removed from its original environment, e.g., the natural environment if it is naturally occurring. For example, a naturally occurring polynucleotide or polypeptide present in a living animal is not isolated, but the same polynucleotide or polypeptide, separated from some or all of the coexisting materials in the natural system, is isolated. Such polynucleotides could be part of a vector and/or such polynucleotides or polypeptides could be part of a composition, and still be isolated in that such vector or composition is not part of its natural environment. As used herein, an isolated material or composition can also be a "purified" composition, i.e., it does not require absolute purity; rather, it is intended as a relative definition. Individual nucleic acids obtained from a library can be conventionally purified to electrophoretic homogeneity. In alternative aspects, the invention provides nucleic acids which have been purified from genomic DNA or from other sequences in a library or other environment by at least one, two, three, four, five or more orders of magnitude.
[0077] As used herein, the term "recombinant" can include nucleic acids adjacent to a "backbone" nucleic acid to which it is not adjacent in its natural environment. In one aspect, nucleic acids represent 5% or more of the number of nucleic acid inserts in a population of nucleic acid "backbone molecules." "Backbone molecules" according to the invention include nucleic acids such as expression vectors, self-replicating nucleic acids, viruses, integrating nucleic acids, and other vectors or nucleic acids used to maintain or manipulate a nucleic acid insert of interest. In one aspect, the (isolated, recombinant, enriched) nucleic acids represent 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more of the number of nucleic acid inserts in the population of recombinant backbone molecules. "Recombinant" polypeptides or proteins refer to polypeptides or proteins produced by recombinant DNA techniques; e.g., produced from cells transformed by an exogenous DNA construct encoding the desired polypeptide or protein. "Synthetic" polypeptides or protein are those prepared by chemical synthesis, as described in further detail, below. [0078] A promoter sequence can be "operably linked to" a coding sequence when RNA polymerase which initiates transcription at the promoter will transcribe the coding sequence into mRNA, as discussed further, below.
[0079] "Oligonucleotide" includes either a single stranded polydeoxynucleotide or two complementary polydeoxynucleotide strands which may be chemically synthesized. Such synthetic oligonucleotides have no 5' phosphate and thus will not ligate to another oligonucleotide without adding a phosphate with an ATP in the presence of a kinase. A synthetic oligonucleotide can ligate to a fragment that has not been dephosphorylated. [0080] The phrase "substantially identical" in the context of two nucleic acids or polypeptides, can refer to two or more sequences that have, e.g., at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more nucleotide or amino acid residue (sequence) identity, when compared and aligned for maximum correspondence, as measured using one any known sequence comparison algorithm, as discussed in detail below, or by visual inspection. In alternative aspects, the invention provides nucleic acid and polypeptide sequences having substantial identity to an exemplary sequence of the invention over a region of at least about 10, 20, 30, 40, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 or more residues, or a region ranging from between about 50 residues to the full length of the nucleic acid or polypeptide. Nucleic acid sequences of the invention can be substantially identical over the entire length of a polypeptide coding region. [0081] A "substantially identical" amino acid sequence also can include a sequence that differs from a reference sequence by one or more conservative or non-conservative amino acid substitutions, deletions, or insertions, particularly when such a substitution occurs at a site that is not the active site of the molecule, and provided that the polypeptide essentially retains its functional properties. A conservative amino acid substitution, for example, substitutes one amino acid for another of the same class (e.g., substitution of one hydrophobic amino acid, such as isoleucine, valine, leucine, or methionine, for another, or substitution of one polar amino acid for another, such as substitution of arginine for lysine, glutamic acid for aspartic acid or glutamine for asparagine). One or more amino acids can be deleted, for example, from a recombinant or isolated protein encoded by a nucleic acid of the invention, resulting in modification of the structure of the polypeptide, without significantly altering its biological activity. For example, amino- or carboxyl-terminal amino acids that are not required for the protein's activity can be removed. [0082] "Hybridization" includes the process by which a nucleic acid strand joins with a complementary strand through base pairing- Hybridization reactions can be sensitive and selective so that a particular sequence of interest can be identified even in samples in which it is present at low concentrations. Stringent conditions can be defined by, for example, the concentrations of salt or formamide in the prehybridization and hybridization solutions, or by the hybridization temperature, and are well known in the art. For example, stringency can be increased by reducing the concentration of salt, increasing the concentration of formamide, or raising the hybridization temperature, altering the time of hybridization, as described in detail, below. In alternative aspects, nucleic acids of the invention are defined by their ability to hybridize under various stringency conditions (e.g., high, medium, and low), as set forth herein.
[0083] "Variant" includes polynucleotides or polypeptides of the invention modified at one or more base pairs, codons, introns, exons, or amino acid residues (respectively) yet still retain the biological activity of the recombinant polypeptide of the invention. [0084] As used herein, the term "therapeutic" refers to a protein or biologically active fragment thereof, or a nucleic acid sequence encoding the protein or fragment thereof that can heal, or provide a remedial, palliative, or preventive effect on a pathologic process. Therapeutic substances and compounds can be used to treat medical diseases, disorders, conditions, or syndromes. [0085] As used herein, the term "macroalgae" refers to algae that form structures easily discernable with the naked eye in at least one life stage. Usually these organisms have secondary vascularization and organs. Examples of different groups containing macroalgae include, but are not limited to, the chlorophyta, rhodophyta, and phaeophyta. [0086] As used herein, the term "microalgae" include both prokaryotic and eukaryotic algae that are classed in many different genera. Prokaryotic algae are typically referred to as cyanobacteria or bluegreen algae. Eukaryotic microalgae come from many different genera, some of which overlap with the macroalgae, but can be generally differentiated by their size and lack of defined organs. Microalgae can have specialized cell types. Examples of different groups containing microalgae include, but are not limited to the chlorophyta, rhodophyta, phaeophyta, dinophyta, euglenophyta, cyanophyta, prochlorophyta, and cryptophyta.
[0087] As used herein, the term "up-regulated" refers to an increase of mRNA or protein expression in a crustacean infected with a pathogen, preferably a virus, when compared to an uninfected crustacean.
[0088] As used herein, the term "down-regulated" refers to a decrease of mRNA or protein expression in a crustacean infected with a pathogen, preferably a virus, when compared to an uninfected crustacean.
ESTs, nucleic acids, polypeptides, and fragments thereof
[0089] The invention provides compositions consisting of, or comprising, a set of differentially expressed gene selected by their differential expression in viral-infected shrimp relative to non-virally-infected, or healthy shrimp, e.g., a set of genes comprising sequences of the invention. Summary of EST clones isolated from subtractive libraries of healthy and white spot syndrome virus fWSSWinfected shrimp.
Healthy Infected
Number of cDNA clones sequenced 478 478 Number of contigs 43 57 Number of unassembled clones/ singletons 42 64 Number of unigenes 85 121
[0090] Expressed sequence tag (EST) analysis is an effective, comprehensive, and relatively straightforward method of examining gene expression. This method is particularly useful for species where no or limited information is available regarding the genome of the species. An EST approach was used to examine gene expression in different tissues (cephalothorax, eyestalks, and pleopod) in black tiger shrimp, P. monodon (Lehnert et ah, 1999). The putative identities of many of these ESTs revealed the occurrence of tissue-specific expression that includes novel genes. A number of immune genes have also been isolated from the hemocyte and hepatopancreas cDNA libraries from cultured specific pathogen free (SPF) Penaeus (Litopenaeus) vannamei shrimp and wild P. setiferus (Gross et at , 2001). Among these shrimp, anti-microbial peptides and lectins were most prevalent in the hemocyte and hepatopancreas cDNA libraries, respectively (Gross et al., 2001). Immune genes isolated by EST analysis from a hemocyte cDNA library of P. monodon include genes that are involved in the clotting system and the prophenoloxidase-activating system, as well as antioxidative enzymes, antimicrobial peptides, and serine protease inhibitors (Supungul et al. , 2002). Recently, Rojtinnakorn et al. (2002) compared the mRNA expression profiles of healthy and WSSV-infected kuruma prawns (Penaeus japonicus) by EST analysis of hemocytes. Hemocytes and hepatopancreas tissue represent the core of the primitive immune system found in shrimp and most other invertebrates. Humoral immune responses are initiated in the shrimp hepatopancreas while both humoral and cellular components of the immune system are found in the hemocyte population. Applicants are unaware of any prior analysis of hematopancreatic gene expression in the presence or absence of viral infection in shrimp.
[0091] Thus, one aspect of the present invention is a composition of ESTs representing differentially expressed genes and substantially identical nucleic acids in the presence and absence of infection in crustaceans. Any suitable crustacean can be analyzed. In one embodiment, the crustacean is a shrimp. In a preferred embodiment, the shrimp is a P. vannamei shrimp. Any suitable type of infection can be analyzed. In one embodiment, the infection is a viral infection. The virus can be white spot syndrome virus, Taura syndrome virus, infectious hypodermal and hematopoietic virus, yellowhead virus or baculovirus penae. In a preferred embodiment, the virus is a member of the genus Whispovirus. Most preferably, the virus is white spot syndrome virus (WSSV). Differential expression of genes include, but are not limited to genes that are up or down regulated relative to the genes expressed in a non-infected crustacean. [0092] In one embodiment, differential gene expression is determined using ESTs isolated from cDNA libraries of virally-infected shrimp and non-virally infected shrimp. The gene expression can be determined using the hepatopancreas tissue or the hemocyte population. Preferrably, the hepatopancreas tissue is the source of the ESTs. Any suitable numbers of ESTs may be considered. [0093] Gene expression can be analyzed at any time during infection, including but not limited to time periods representing the onset of infection or the resolving of infection as well as during acute and chronic infections. In one embodiment, the EST isolated specifically correspond to the onset of infection, particularly that of viral disease. It is contemplated that gene expression analysis may also be performed if the crustacean has more than one infective entity.
[0094] In a specific embodiment, the ESTs are isolated from shrimp that non- infected or infected with WSSV at the onset of viral infection. [0095] Therefore, the invention provides isolated and recombinant nucleic acids, including ESTs. The invention further provides probes comprising or consisting of nucleic acids, e.g., ESTs3 of the invention.
[0096] The invention provides isolated or recombinant nucleic acids comprising a nucleic acid sequence having at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more, or complete (100%) sequence identity to an exemplary nucleic acid of the invention over a region of at least about 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200, 1250, 1300, 1350, 1400, 1450, 1500, 1550 or more, residues. In one aspect, the nucleic acid encodes at least one polypeptide having a biologic activity, and the sequence identities are determined by analysis with a sequence comparison algorithm or by a visual inspection. In another aspect, the invention provides nucleic acids for use as probes, inhibitory molecules {e.g., antisense, iRNAs), transcriptional or translational regulation, and the like. Exemplary nucleic acids of the invention include isolated or recombinant nucleic acids comprising a nucleic acid sequence as set forth in Appendix A, and subsequences thereof, e.g., at least about 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200, 1250, 1300,
1350, 1400, 1450, 1500 or more residues in length, or over the full length of a gene or transcript.
[0097] Another aspect of the invention is an isolated or recombinant nucleic acid including at least 10 consecutive bases of a nucleic acid sequence of the invention, sequences substantially identical thereto, and the sequences complementary thereto.
[0098] The invention provides isolated or recombinant nucleic acids comprising a sequence that hybridizes under stringent conditions to a nucleic acid of the invention, e.g., any one of the sequences in Appendix A. The nucleic acid can be at least about 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050,- 1100, 1150, 1200, 1250, 1300, 1350, 1400, 1450, 1500 or more residues in length or the full length of the gene or transcript. In one aspect, the stringent conditions include a wash step comprising a wash in 0.1X SSC at a temperature of about 65°C for about 15 minutes. [0099] In a specific embodiment, the gene of interest is a lectin gene. Lectin are known to plays a critical role in the innate immunity in vertebrates by activating complement factor after binding to the carbohydrate moieties on the surfaces of viral capsid proteins (Vorup- Jensen et al, 2000). In humans, the C-type lectin exhibits CD4-independent binding of the envelope glycoprotein, gpl20, of human immunodefficiency virus (HIV) (Curtis et al, 1992). Human MBL was also shown to bind to the envelope proteins of the influenza A virus, neutralizing the virus by inhibiting the spread of the virus and simultaneously activating the complement cascade (Kase et al, 1999; Malhotra et al, 1994). Replacement of MBL to MBL- deficient human has shown encouraging results in enhancing complement activation ability and opsonic activity towards Saccharomyces cerevisae in the treated individuals (reviewed in Kilpatric, 2002). In invertebrates (tunicate Clavelina picta), the binding of MBL to microbial ligands activates the complement component C3, through an MBL- associated serine proteinase. This leads to phagocytosis of the opsonized target and/ or humoral cell killing via the assembly of a membrane attack complex (Vasta et al , 1999). Therefore, lectins with such activity are suitable for use in the prevention and treatment of infection in invertebrates.
[0100] The nucleic acids of the invention can be made, isolated and/or manipulated by, e.g., cloning and expression of cDNA libraries, amplification of message or genomic DNA by PCR, and the like. Techniques for the manipulation of nucleic acids, such as, e.g., subcloning, labeling probes (e.g., random-primer labeling using Klenow polymerase, nick translation, amplification), sequencing, hybridization and the like are well described in the scientific and patent literature, see, e.g., Sambrook, ed., MOLECULAR CLONING: A LABORATORY MANUAL (2ND ED.), VoIs. 1-3, Cold Spring Harbor Laboratory, (1989); CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, Ausubel, ed. John Wiley & Sons, Inc., New York (1997); LABORATORY TECHNIQUES IN BIOCHEMISTRY AND MOLECULAR BIOLOGY: HYBRIDIZATION WITH NUCLEIC ACID PROBES, Part I. Theory and Nucleic Acid Preparation, Tijssen, ed. Elsevier, N. Y. (1993). [0101] The invention provides isolated or recombinant nucleic acids that hybridize under stringent conditions to an exemplary sequence of the invention, or a nucleic acid that encodes a polypeptide of the invention. The stringent conditions can be highly stringent conditions, medium stringent conditions, low stringent conditions, including the high and reduced stringency conditions described herein. In one aspect, it is the stringency of the wash conditions that set forth the conditions which determine whether a nucleic acid is within the scope of the invention, as discussed below.
[0102] In alternative embodiments, nucleic acids of the invention as defined by their ability to hybridize under stringent conditions can be between about five residues and the full length of nucleic acid of the invention; e.g., they can be at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 55, 60, 65, 70, 75, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, or more, residues in length. Nucleic acids shorter than full length are also included. These nucleic acids can be useful as, e.g., hybridization probes, labeling probes, PCR oligonucleotide probes, iRNA, antisense or sequences encoding antibody binding peptides (epitopes), motifs, active sites and the like.
[0103] In one aspect, nucleic acids of the invention are defined by their ability to hybridize under high stringency comprises conditions of about 50% formamide at about 37°C to 42°C. In one aspect, nucleic acids of the invention are defined by their ability to hybridize under reduced stringency comprising conditions in about 35% to 25% formamide at about 30°C to 35°C.
[0104] Alternatively, nucleic acids of the invention are defined by their ability to hybridize under high stringency comprising conditions at 42°C in 50% formamide, 5X SSPE, 0.3% SDS, and a repetitive sequence blocking nucleic acid, such as cot-1 or salmon sperm DNA (e.g., 200 n/ml sheared and denatured salmon sperm DNA). In one aspect, nucleic acids of the invention are defined by their ability to hybridize under reduced stringency conditions comprising 35% formamide at a reduced temperature of 35°C.
[0105] Following hybridization, the filter may be washed with 6X SSC, 0.5% SDS at 5O0C. These conditions are considered to be "moderate" conditions above 25% formamide and "low" conditions below 25% formamide. A specific example of "moderate" hybridization conditions is when the above hybridization is conducted at 30% formamide. A specific example of "low stringency" hybridization conditions is when the above hybridization is conducted at 10% formamide. [0106] The temperature range corresponding to a particular level of stringency can be further narrowed by calculating the purine to pyrimidine ratio of the nucleic acid of interest and adjusting the temperature accordingly. Nucleic acids of the invention are also defined by their ability to hybridize under high, medium, and low stringency conditions as set forth in Ausubel and Sambrook. Variations on the above ranges and conditions are well known in the art. Hybridization conditions are discussed further, below.
[0107] The above procedure may be modified to identify nucleic acids having decreasing levels of homology to the probe sequence. For example, to obtain nucleic acids of decreasing homology to the detectable probe, less stringent conditions may be used. For example, the hybridization temperature may be decreased in increments of 5°C from 68°C to 42°C in a hybridization buffer having a Na+ concentration of approximately IM. Following hybridization, the filter may be washed with 2X SSC, 0.5% SDS at the temperature of hybridization. These conditions are considered to be "moderate" conditions above 500C and "low" conditions below 500C. A specific example of "moderate" hybridization conditions is when the above hybridization is conducted at 55°C. A specific example of "low stringency" hybridization conditions is when the above hybridization is conducted at 45°C.
[0108] The invention also provides nucleic acid probes that can be used, e.g., for identifying nucleic acids encoding a polypeptide with a biologic activity or fragments thereof or for identifying genes. In one aspect, the probe comprises at least 10 consecutive bases of a nucleic acid of the invention. Alternatively, a probe of the invention can be at least about 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 110, 120, 130, 150 or about 10 to 50, about 20 to 60 about 30 to 70, consecutive bases of a sequence as set forth in a nucleic acid of the invention. The probes identify a nucleic acid by binding and/or hybridization. The probes can be used in arrays of the invention, see discussion below, including, e.g., capillary arrays. The probes of the invention can also be used to isolate other nucleic acids or polypeptides. [0109] The invention provides expression vectors and cloning vehicles comprising nucleic acids of the invention, e.g., sequences encoding the recombinant or isolated proteins encoded by the nucleic acids of the invention. Expression vectors and cloning vehicles of the invention can comprise viral particles, baculo virus, phage, plasmids, phagemids, cosmids, fosmids, bacterial artificial chromosomes, viral DNA (e.g., vaccinia, adenovirus, foul pox virus, pseudorabies and derivatives of SV40), Pl -based artificial chromosomes, yeast plasmids, yeast artificial chromosomes, and any other vectors specific for specific hosts of interest (such as bacillus, Aspergillus and yeast). In one embodiment, the expression vectors and cloning vehicle comprise yeast plasmids. Vectors of the invention can include chromosomal, non-chromosomal and synthetic DNA sequences. Large numbers of suitable vectors are known to those of skill in the art, and are commercially available.
[0110] In one embodiment, the vector is a baculovirus. In a specific embodimennt the baculovirus is Autographica californica nuclear polyhedrosis virus (AcNPV). Vectors and molecular biology supplies, as well as methods for baculovirus expression vector systems, including AcNPV, are readily available from commercial suppliers
[0111] The expression vector can comprise a promoter, a ribosome binding site for translation initiation and a transcription terminator. The vector may also include appropriate sequences for amplifying expression. Mammalian expression vectors can comprise an origin of replication, any necessary ribosome binding sites, a polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking non-transcribed sequences. In some aspects, DNA sequences derived from the SV40 splice and polyadenylation sites may be used to provide the required non-transcribed genetic elements.
[0112] In one aspect, the expression vectors contain one or more selectable marker genes to permit selection of host cells containing the vector.
[0113] Vectors for expressing the polypeptide or fragment thereof in eukaryotic cells can also contain enhancers to increase expression levels. Enhancers are cis-acting elements of DNA, usually from about 10 to about 300 bp in length that act on a promoter to increase its transcription. [0114] The invention provides cloning vehicles comprising an expression cassette
(e.g., a vector) of the invention or a nucleic acid of the invention. The cloning vehicle can be a viral vector, a baculovirus, a plasmid, a phage, a phagemid, a cosmid, a fosmid, a bacteriophage or an artificial chromosome. The viral vector can comprise an adenovirus vector, a retroviral vector or an adeno-associated viral vector. The cloning vehicle can comprise a bacterial artificial chromosome (BAC), a plasmid, a bacteriophage Pl -derived vector (PAC), a yeast artificial chromosome (YAC), or a mammalian artificial chromosome (MAC).
[0115] The invention provides transformed cell comprising a nucleic acid of the invention or an expression cassette (e.g., a vector) of the invention, or a cloning vehicle of the invention. In one aspect, the transformed cell can be a bacterial cell, a mammalian cell, a fungal cell, a yeast cell, an insect cell or a plant cell.
[0116] In another aspect, provided herein are recombinant or isolated proteins derived from full-length gene or recombinant truncated amino acids derived from the functional domain of the gene identified using the EST differential libraries provided herein. The identified ESTs of interest can be used to clone full length cDNAs using methods known in the art. See e.g., U.S. Patent No. 6,265,165. Recombinant polypeptides generated from these nucleic acids can be individually isolated or cloned and tested for a desired activity. Any recombinant expression system can be used, including bacterial, mammalian, yeast, insect or plant cell expression systems.
Recombinant truncated proteins of interest, are those that retain at least a detectable amount of the desired biologic activity.
[0117] The invention provides fusion proteins and nucleic acids encoding them. A polypeptide of the invention can be fused to a heterologous peptide or polypeptide, such as N-terminal identification peptides which impart desired characteristics, such as increased stability or simplified purification. Peptides and polypeptides of the invention can also be synthesized and expressed as fusion proteins with one or more additional domains linked thereto for, e.g., producing a more protective peptide, to more readily isolate a recombinantly synthesized peptide, to identify and isolate antibodies and antibody-expressing B cells, and the like.
[0118] In practicing the invention, nucleic acids of the invention and nucleic acids encoding the polypeptides of the invention, or modified nucleic acids of the invention, can be reproduced by amplification. Amplification can also be used to clone or modify the nucleic acids of the invention. Thus, the invention provides amplification primer sequence pairs for amplifying nucleic acids of the invention. One of skill in the art can design amplification primer sequence pairs for any part of or the full length of these sequences.
[0119] The invention provides methods of producing a recombinant polypeptide comprising the steps of: (a) providing a nucleic acid of the invention operably linked to a promoter; and (b) expressing the nucleic acid of step (a) under conditions that allow expression of the polypeptide, thereby producing a recombinant polypeptide. In one aspect, the method can further comprise transforming a host cell with the nucleic acid of step (a) followed by expressing the nucleic acid of step (a), thereby producing a recombinant polypeptide in a transformed cell. [0120] Any suitable host cell can be used for the production of the recombinant or isolated protein or biologically active fragment thereof.
[0121] The invention provides isolated or recombinant antibodies that specifically bind to the recombinant polypeptides of the invention. These antibodies can be used to isolate, identify or quantify the recombinant polypeptides of the invention or related polypeptides. These antibodies can be used to isolate other polypeptides within the scope the invention. The antibodies can be designed to bind to an active site of a recombinant polypeptide. Thus, the invention provides methods of inhibiting polypeptides using the antibodies of the invention. [0122] The antibodies can be used in immunoprecipitation, staining, immunoaffinity columns, and the like. If desired, nucleic acid sequences encoding for specific antigens can be generated by immunization followed by isolation of polypeptide or nucleic acid, amplification or cloning and immobilization of polypeptide onto an array of the invention. Alternatively, the methods of the invention can be used to modify the structure of an antibody produced by a cell to be modified, e.g., an antibody's affinity can be increased or decreased. Furthermore, the ability to make or modify antibodies can be a phenotype engineered into a cell by the methods of the invention.
[0123] Methods of immunization, producing and isolating antibodies (polyclonal and monoclonal) are known to those of skill in the art and described in the scientific and patent literature, see, e.g., Coligan, CURRENT PROTOCOLS IN
IMMUNOLOGY, Wiley/Greene, NY (1991); Stites (eds.) BASIC AND CLINICAL IMMUNOLOGY (7th ed.) Lange Medical Publications, Los Altos, CA ("Stites"); Goding, MONOCLONAL ANTIBODIES: PRINCIPLES AND PRACTICE (2d ed.) Academic Press, New York, NY (1986); Kohler (1975) Nature 256:495; Harlow (1988) ANTIBODIES, A LABORATORY MANUAL, Cold Spring Harbor Publications, New York. Antibodies also can be generated in vitro, e.g., using recombinant antibody binding site expressing phage display libraries, in addition to the traditional in vivo methods using animals. See, e.g., Hoogenboom (1997) Trends Biotechnol. 15:62-70; Katz (1997) Annu. Rev. Biophys. Biomol. Struct. 26:27-45. [0124] Polyclonal antibodies generated against the polypeptides of the invention can be obtained by direct injection of the polypeptides into an animal or by administering the polypeptides to a non-human animal. The antibody so obtained will then bind the polypeptide itself. In this manner, even a sequence encoding only a fragment of the polypeptide can be used to generate antibodies which may bind to the whole native polypeptide. Such antibodies can then be used to isolate the polypeptide from cells expressing that polypeptide.
[0125] For preparation of monoclonal antibodies, any technique which provides antibodies produced by continuous cell line cultures can be used. Examples include the hybridoma technique, the trioma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique (see, e.g., Cole (1985) in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96).
Uses of Recombinant Nucleic Acids and Polypeptides
Methods of treating infection [0126] Another aspect of the invention is a method of protecting crustacean from infection using sequence of the invention, e.g., recombinant or isolated protein or nucleic acids derived from the full-length gene or recombinant truncated protein or nucleic acids derived from the functional domain of the gene identified using the EST differential libraries of the instant invention. In one embodiment, the infection is a viral infection. In a specific embodiment, the viral infection is WSSV. The infection can also be one caused by bacteria, fungi, and the like. In one embodiment, the crustacean is a shrimp. The recombinant or isolated protein or nucleic acid, or biologically active fragment thereof, can be administered in any suitable manner in a single dose or repeatedly. The recombinant or isolated protein or nucleic acid can be administered alone or in combination with other treatment modalities for the infection. A therapeutically effective amount of recombinant polypeptide or biolgically active fragment thereof is an amount that reduces or eliminates at least one symptom of the infection. In one embodiment, a therapeutically effective amount prevents infection or cures established infection. [0127] The invention provides nucleic acids complementary to (e.g., antisense sequences to, including ribozymes and siRNA, in addition to "traditional" antisense sequences) the nucleic acids of the invention, e.g., as in Appendix A, for therapeutic (antiviral) and diagnostic purposes. In one aspect, the sequences of the invention are used as double-stranded inhibitory RNA (RNAi, or RNA interference) molecules (including small interfering RNA, or siRNAs, for inhibiting transcription, and microRNAs, or miRNAs, for inhibiting translation) comprising a sequence of the invention (e.g., as set forth in Appendix A, below) or a subsequence of a sequence of the invention. In one aspect, delivery of RNA (RNAi, or RNA interference) molecules is by plasmids expressing inhibitory sequences; and in one aspect follows published methods for DNA plasmid vaccine oral delivery (for example see Ramos et al 2005 Marine Biotechnology 7:89-94 for oral delivery of plasmid DNA to express proteins in tilapia). Another exemplary method uses DNA vaccines for oral delivery based on dendrimer complexed into nanoparticles, e.g., as described in Bodnar et al 2005 Biomacromol 6:2521-27.
[0128] The protein or biologically active fragment thereof can be one that is upregulated or downregulated following infection with a pathogen. The up-regulation can be mediated by any mechanism including, but not limited to increased transcription, increased mRNA stability, decreased mRNA degradation, or increased translation. Similarly, the down-regulation can be mediated by any mechanism known in the art. Expression can be determined using routine methods. Exemplary methods include those disclosed in CURRENT PROTOCOLS IN MOLECULAR BIOLOGY (Ausubel et al., John Wiley & Sons, most recent edition). Infection with pathogen is readily determined using routine methods that include but are not limited to bioassays using indicator hosts, monitoring clinical signs, histopathology, dot blot and in situ hybridization using a virus specific probe, and PCR. See, e.g., Dhar et al., J. Clin. Microbiol. 39:2835-45 (2001).
[0129] In one embodiment, the protein or biologically active fragment is one that enhances the innate, non-adaptive immunity of the organism. For example, in shrimp, immunity consists of a humoral and a cellular response. Cellular responses involve phagocytosis, nodule formation and encapsulation. Humoral responses involve the prophenoloxidase-activating cascade and immune-related proteins such as lysozymes, lectins, and anti-microbial peptides. See, e.g., Soderhall, Dev. Comp. Immunol. 23:263- 6 (1999).
[0130] It is the object of the invention to provides a method of transfecting or infecting crustaceans with non-native therapeutic proteins using baculovirus. This method is particularly suitable for crustaceans in aquaculture. Preferably, the crustaceans are Pacific white shrimp (Penaeus vannamei) and the baculovirus is Autographa californica nuclear polyhedrosis virus (AcNPV). The crustacean can be infected either by injection or orally by incorporating the virus into the crustacean's food. The baculovirus can be engineered to express green fluorescent protein (GFP) for monitoring infection. For example, the therapeutic proteins can inhibit the growth or replication of bacteria (e.g., Vibrio) or viruses (e.g., Taura or White Spot virus). [0131] In one aspect of the present invention, the crustacean can be provided a feed or feed additive which incorporates recombinant or isolated protein or nucleic acids identified using the EST differential libraries of the instant invention as a prophylactic or therapeutic treatment for the deleterious effects of the virus on the host. Thus, the present invention provides for a composition comprising at least one recombinant or isolated protein or nucleic acid, or biologically active fragment thereof, in a food source for the crustacean. The invention provides edible enzyme delivery matrices comprising a polypeptide of the invention, e.g., a polypeptide encoded by the nucleic acid of the invention. The protein or biologically active fragment thereof can be provided in a cell or in a disrupted cell. Any suitable cell can be employed including, but not limited to microalgae and macroalgae cells. The cells can be disrupted using any suitable methods.
[0132] The bioactive food complex can be preserved without drying as a semi-solid, moist paste, not a liquid, composed of microcapsules or beads, or as moist noodles, pellets, sheets or other forms, or can be stored frozen by employing cry ©preservatives. See, e.g., U.S. Patent No. 5,698,246; 4,741,904. The bioactive food complex can be added directly to aquaculture animal containment systems to be eaten by aquatic animals. In one embodiment of the invention, the bioactive food complex or the primary emulsion of the bioactive food complex can be added to pelleted or extruded aquatic feeds as a top-dress coating or enrobing of the pelleted or extruded aquatic feed.
[0133] The foodstuffs incorporated into the particulate fish foods of this invention may be those which are normally used for other particulate fish foods. Frequently fish meal will provide at least 30% of the formulation and often it will provide at least 50% of the formulation. [0134] Particulate fish foods are customarily manufactured by three routes, all of which involve some form of extrusion through a die. The methods are normally classified as compressed pelleting (also known as steam pelleting),/extruded pelleting and moist pelleting.
[0135] The feed of the invention may be adjusted for the requirements of the marine animal being fed as is known. For shrimp, the feed comprises animal protein, brine shrimp, egg product, betaine, alanine, isoleucine, leucine, serine, valine, glycine, astaxanthin, vitamin A supplement, vitamin B12 supplement, riboflavin supplement, calcium pantothenate, niacin supplement, vitamin D3 supplement, vitamin E supplement, menadione sodium bisulfite complex, folic acid, biotin, thiamine, pyridoxine hydrochloride, inositol and choline chloride. The particulate feed may also include medicaments. In one aspect, an edible oil is employed. Typical oils include fish oil, peanut oil, olive oil, corn oil, sunflowerseed oil, cotton seed oil, soybean oil, rapeseed oil, coconut oil, and palm oil. The oil may provide the omega-3 HUFA (highly unsaturated fatty acid) dietary requirements of marine shrimp and fish by providing EPA (eicosapentaenoic acid) and DHA (docosahexenoic acid).
[0136] In one embodiment, amplified cDNA can be cloned into bacterial expression vector (such as pETlOO Directional TOPO Expression vector, Invitrogen Inc.) and used to transform BL 21 Star (DE3) One Shot Chemically Competent Escherichia coli (Invitrogen, Inc.) following the manufacturer's protocol. Escherichia coli strain BL21 cells carrying IPTG inducible gene can be grown in LB medium containing ampicillin, and subsequently induced with IPTG to elicit expression of recombinant or isolated protein. The expression of the recombinant or isolated protein will be empirically optimized to obtain maximum induction using routine methods. Bacterial biomass containing cells, which express the shrimp recombinant or isolated protein, are then added to shrimp feed in a free or microbound format (in beads composed of alginate and starch in a polymeric form). Attractants can optionally be added to make the feed or beads more palatable to the target species. In the case of shrimp, krill meal is employed as the attractant. RNAi reagents
[0137] In one aspect, the invention provides an RNA inhibitory molecule, a so- called "RNAi" molecule, comprising a recombinant or isolated protein or nucleic acid sequence of the invention to be administered as a prophylactic or therapeutic regimen for infection. The RNAi molecule comprises a double-stranded RNA (dsRNA) molecule. The RNAi can inhibit expression of a gene encoding a nucleic acid of the invention. In one aspect, the RNAi is about 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or more duplex nucleotides in length. While the invention is not limited by any particular mechanism of action, the RNAi can enter a cell and cause the degradation of a single- stranded RNA (ssRNA) of similar or identical sequences, including endogenous mRNAs. When a cell is exposed to double-stranded RNA (dsRNA), mRNA from the homologous gene is selectively degraded by a process called RNA interference (RNAi). A possible basic mechanism behind RNAi is the breaking of a double-stranded RNA (dsRNA) matching a specific gene sequence into short pieces called short interfering RNA, which trigger the degradation of mRNA that matches its sequence. In one aspect, the RNAi's of the invention are used in gene-silencing therapeutics, see, e.g., Shuey (2002) Drug Discov. Today 7:1040-1046. In one aspect, the invention provides methods to selectively degrade RNA using the RNAi's of the invention. The process may be practiced in vitro, ex vivo or in vivo. In one aspect, the RNAi molecules of the invention can be used to generate a loss-of-function mutation in a cell, an organ or an animal. Methods for making and using RNAi molecules for selectively degrade RNA are well known ϊn the art, see, e.g., U.S. Patent No. 6,506,559; 6,511,824; 6,515,109; 6,489,127.
Functional genomics studies [0138] In yet another aspect of the present invention, a library of ESTs as well as cDNAs are provided for use in functional genomic analysis. In practicing the methods of the invention, a variety of apparatus and methodologies can be used to in conjunction with the polypeptides and nucleic acids of the invention, e.g., to screen polypeptides for biologic activity, to screen compounds as potential modulators, e.g., activators or inhibitors, of an activity of a recombinant polypeptide encoded by a nucleic acid of the invention, for antibodies that bind to a polypeptide of the invention, for nucleic acids that hybridize to a nucleic acid of the invention, to screen for cells expressing a polypeptide of the invention and the like.
[0139] Nucleic acids or polypeptides of the invention can be immobilized to or applied to an array. Arrays can be used to screen for or monitor libraries of compositions (e.g., small molecules, antibodies, nucleic acids, etc.) for their ability to bind to or modulate the activity of a nucleic acid or a polypeptide of the invention. For example, in one aspect of the invention, a monitored parameter is transcript expression of a gene. One or more, or, all the transcripts of a cell can be measured by hybridization of a sample comprising transcripts of the cell, or, nucleic acids representative of or complementary to transcripts of a cell, by hybridization to immobilized nucleic acids on an array, or "biochip." By using an "array" of nucleic acids on a microchip, some or all of the transcripts of a cell can be simultaneously quantified. Alternatively, arrays comprising genomic nucleic acid can also be used to determine the genotype of a newly engineered strain made by the methods of the invention. "Polypeptide arrays" can also be used to simultaneously quantify a plurality of proteins. The present invention can be practiced with any known "array," also referred to as a "microarray" or "nucleic acid array" or "polypeptide array" or "antibody array" or "biochip," or variation thereof. Arrays are genetically a plurality of "spots" or "target elements," each target element comprising a defined amount of one or more biological molecules, e.g., oligonucleotides, immobilized onto a defined area of a substrate surface for specific binding to a sample molecule, e.g., mRNA transcripts. [0140] In practicing the methods of the invention, any known array and/or method of making and using arrays can be incorporated in whole or in part, or variations thereof, as described, for example, in U.S. Patent Nos. 6,277,628; 6,277,489; 6,261,776; 6,258,606; 6,054,270; 6,048,695; 6,045,996; 6,022,963; 6,013,440; 5,965,452; 5,959,098; 5,856,174; 5,830,645; 5,770,456; 5,632,957; 5,556,752; 5,143,854; 5,807,522; 5,800,992; 5,744,305; 5,700,637; 5,556,752; 5,434,049; see also, e.g., WO 99/51773; WO 99/09217; WO 97/46313; WO 96/17958; see also, e.g., Johnston (1998) Curr. Biol. 8:R171-R174; Schummer (1997) Biotechniques 23:1087- 1092; Kern (1997) Biotechniques 23:120-124; Solinas-Toldo (1997) Genes, Chromosomes & Cancer 20:399-407; Bowtell (1999) Nature Genetics Supp. 21:25-32. See also published U.S. patent applications Nos.20010018642; 20010019827; 20010016322; 20010014449; 20010014448; 20010012537; 20010008765.
Biopesticides
[0141] In another aspect of the invention the differentially expressed ESTs differentially with viral infection are useful as a biopesticide. For example, baculovirus expressing shrimp chitinase gene can be used as a biological agent to infect and kill lepidopteran insects that infect agricultural crops. Baculoviruses have been widely used as a biological control agent in agricultural crop pest management Further effectiveness can be achieved by co-expressing shrimp chitinase gene with the recombinant polypeptide or biologically active fragment thereof, and then spraying this recombinant baculovirus on crop fields infected by an insect pest.
Screening assays
[0142] The invention provides methods for identifying a substrate of a recombinant polypeptide of interest, comprising the following steps: (a) providing a polypeptide of the invention; or a polypeptide encoded by a nucleic acid of the invention; (b) providing a test substrate; and (c) contacting the polypeptide of step (a) with the test substrate of step (b) and detecting a decrease in the amount of substrate or an increase in the amount of reaction product, wherein a decrease in the amount of the substrate or an increase in the amount of a reaction product identifies the test substrate as the polypeptide substrate. [0143] The invention also provides methods of determining whether a test compound specifically hinds to a polypeptide comprising the following steps: (a) expressing a nucleic acid or a vector comprising the nucleic acid under conditions permissive for translation of the nucleic acid to a polypeptide, wherein the nucleic acid comprises a nucleic acid of the invention, or, providing a polypeptide of the invention; (b) providing a test compound; (c) contacting the polypeptide with the test compound; and (d) determining whether the test compound of step (b) specifically binds to the polypeptide.
[0144] The invention provides methods for identifying a modulator of a recombinant polypeptide's activity comprising the following steps: (a) providing a polypeptide of the invention or a polypeptide encoded by a nucleic acid of the invention; (b) providing a test compound; (c) contacting the polypeptide of step (a) with the test compound of step (b) and measuring an activity of the recombinant polypeptide, wherein a change in the recombinant polypeptide activity measured in the presence of the test compound compared to the activity in the absence of the test compound provides a determination that the test compound modulates the recombinant polypeptide activity. In one aspect, the recombinant polypeptide activity can be measured by providing an recombinant polypeptide substrate and detecting a decrease in the amount of the substrate or an increase in the amount of a reaction product, or, an increase in the amount of the substrate or a decrease in the amount of a reaction product. A decrease in the amount of the substrate or an increase in the amount of the reaction product with the test compound as compared to the amount of substrate or reaction product without the test compound identifies the test compound as an activator of recombinant polypeptide activity. An increase in the amount of the substrate or a decrease in the amount of the reaction product with the test compound as compared to the amount of substrate or reaction product without the test compound identifies the test compound as an inhibitor of recombinant polypeptide activity.
Diagnostic Kits [0145] In another aspect of the present invention, methods are provided that use the differentially expressed genes identified in the EST library as a diagnostic tool to evaluate crustaceans in aquaculture and in food processing. Also provided herein is a kit comprising at least one differentially expressed- gene as a nucleic acid or recombinant polypeptide, wherein the kit can be used to positively identify a crustacean as being infected or non-infected with the pathogen of interest. Such kits are also useful for monitoring the course of infection. In one embodiment, the kit comprises at least one antibody or antigen binding fragment thereof that binds the polypeptide encoded by the EST of interest. The kit can be in any suitable format, and in some embodiments includes instructions for use. Data Mining
[0146] Complementary DNA sequences (consisting of contigs and singletons) obtained from healthy shrimp hepatopancreas library are provided in Appendix A, and the cDNA sequences (consisting of contigs and singletons) from the white spot syndrome virus affected library in Appendix A. The unigene sets obtained by combining the sequences from the two libraries are provided in Appendix A. BLAST search analysis using the cDNA sequences from the healthy (Appendix A) or WSSV- infected (Appendix A) shrimp libraries against the combined unigene set (Appendix A) will enable to determine which genes are present only in the healthy, only WSSV- infected and both healthy and WSSV-infected shrimp. These genes may represent unique for the health status (healthy or virus infected) of shrimp.
Examples
[0147] The invention, as contemplated herein, is described in the following examples for exemplification purposes only and is not intended to limit the scope of the invention.
Example 1. Isolation of expressed sequence tags (ESTs).
[0148] ESTs have been isolated from cDNA libraries of healthy and WSSV-infected shrimp hepatopancreas tissue. Two cDNA libraries were constructed from hepatopancreas tissues of healthy (PvH) and WSSV-infected (PvW) P. vannamei shrimp using SMART cDNA amplification method (BD Bioscience, California) and cloned into a plasmid vector (pAL16, Evrogen, Inc., Moscow, Russia). Randomly selected recombinant clones were sequenced using vector-derived primers (SP6 and T7). A total of 1248 clones from PvH and 1152 clones from PvW library were sequenced.
[0149] Complementary DNA sequences from both libraries were edited and assembled using the programs Phred, CodonCode Aligner and Phrap. Vector sequences were removed from the sequence of each clone and ESTs having Phred score of >20 were taken for BLAST search. A total of 1248 clones from PvH and 1152 clones from PvW library were sequenced. Seventy five percent of the PvH clones (940 out of 1248 PvH clones; Phred score>20, average length 473 bases) and seventy three percent of the PvH clones (840 out of 1152 PvW clones; Phred score>20, average length 440 bases) were taken for further analysis. PvH clones represented 269 singletons and 124 contigs (each contig contains between 2-20 clones), whereas the PvW clones represented 281 singletons and 211 contigs (each contig contains 2-20 clones). Among the PvH clones, 38.7% of the singletons (105/269) and 71.4% of the contigs (90/ 124), showed significant similarity to known genes from other organisms by BLAST search (e>10"3). For the PvW clones, 44.0% of the singletons (123/281) and 54.5% of the contigs (115/211) showed similarity to GenBank entries by BLAST search (e>10'3). The remainder of the clones from both libraries showed no similarity to the database entries, and thus may represent novel genes. Combining the ESTs from healthy and WSSV- infected shrimp cDNA libraries, there were a total of 683 unigenes (Figure 3). [0150] The average GC content of the PvH clones was 0.427±0.005 and for the PvW clones was 0.424±0.005. Based on gene homology, the PvH and PvW unigene sets were categorized into the following nine functional classes following published protocol (Adams et al., 1995): Cell division, cell signaling/ communication, cell structure, cell defense, gene/protein expression, metabolism, ribosomal proteins, unknown genes and no matches (Fig. 1, Table 1). PvW library contained a significantly higher number of cell defense genes compared to the PvH library (19.4% vs. 8.1 %), whereas the PvH library contained a significantly higher number of metabolic genes (37.5% vs. 25.6%) (Fig.l). A total of 40 immune genes were identified from both libraries (Table 2). A list of these immune genes, along with their frequencies in the healthy and WSSV-infected libraries and similarities with the GenBank database entries, is provided in Table 2. The expression profile indicates a differential expression of these genes in healthy and WSSV-infected shrimp. Table 1. Functional classes of genes isolated from hepatopancreas cDNA libraries of healthy and WSSV infected shrimp (P. vannamei) that showed homology with existing GenBank database entries.
Figure imgf000041_0001
Table 2. Summary of immune genes isolated from healthy and WSS V-infected shrimp hepatopancreas cDNA libraries.
Figure imgf000041_0002
Figure imgf000042_0001
Table 2. (Cont) Right hand columns of the above section of Table 2. Correspond line for line to the other section.
Figure imgf000042_0002
Figure imgf000043_0001
Example 2. Confirmation of differential expression of shrimp ESTs.
[0151] As a proof of principle, the differential expressions of three shrimp ESTs were confirmed by examining their mRNA expression in healthy and WSSV-infected shrimp by real-time RT-PCR assay. These genes include a λ interferon inducible lysosomal thiol reductase (GILT) gene, a lectin gene named P-selectin, and a chitinase gene.
[0152J The predicted amino acid sequences of the shrimp λ interferon inducible lysosomal thiol reductase (GILT) gene, a lectin gene named P-selectin, and a chitinase gene and their similarity with the GenBank database entries are given below (Tables 3- 5).
Table 3. The similarity between shrimp λ interferon inducible lysosomal thiol reductase (GILT) gene and homologous genes in the GenBank database.
Figure imgf000044_0001
Table 4. The similarity between the shrimp chitinase gene and homologous genes in the GenBank database.
Figure imgf000045_0001
Table 5. The similarity between shrimp P-selectin gene and the homologous genes in the GenBank database.
Figure imgf000045_0002
[0153] In order to measure the mRNA expression of these three genes in healthy and WSSV-infected shrimp, primers were designed using Primer Express software (Applied Biosystem, Inc.). The list of primers is given below (Table 6). Table 6. List of primers used for measuring the expression of immune genes in healthy and white spot syndrome virus (WSSV) infected shrimp (JPenaeus vannamel) by real-time RT-PCR.
Figure imgf000046_0001
[0154] The real-time RT-PCR assay showed that shrimp λ interferon inducible lysosomal thiol reductase (GILT) , P-selectin, and the chitinase genes showed differential expression between healthy and WSSV-infected shrimp. The mRNA expression of λ interferon inducible lysosomal thiol reductase (GILT) gene was down- regulated, where as the expression of chitinase and P-selectin was up-regulated in WSSV-infected shrimp. The real-time PCR assay was performed using 5 healthy and 5 WSSV-infected laboratory challenged shrimp. The summary of the real-time RT-PCR assay for each of the three genes is provided below (Tables 7-9).
Table 7. Relative quantification of λ interferon inducible lysosomal thiol reductase (GILT) mRNA expression in healthy and white spot syndrome virus-infected shrimp (JPenaeus vannamei) by real-time RT- PCR.
Fold
Sample Average ΔCT ± Sample Average Changes
# SD # Average ΔCT ± SD ΔΔCT
H1 5.533 ± 0.267 W1 6.333 ± 2.067 -2.507 -5.7
H2 6.100 ± 0.300 W2 10.133 ± 1.733
H3 5.600 ± 0.200 W3 8.067 0.333
H4 5.767 ± 0.033 W4 9.933 1.533
H5 6.233 ± 0.433 W5 7.300 ± 1.100
Hl to H5 represents healthy animals, and Wl to W5 represents WSSV-infected animals. CT represents threshold PCR cycle number. ΔCT represents the normalized Ct value. Normalized Ct value is obtained by subtracting the CT value of RT-PCR internal control gene, shrimp elongation factor- 1 alpha, from the CT value of the target gene. ΔΔCT obtained by subtracting the ΔCT of healthy from the ΔCT value for the WSSV-infected sample. Fold changes indicates the changes in target gene expression in the WSSV-infected compared to the healthy animals.
Table 8. Relative quantification of chitinase mRNA expression in healthy and white spot syndrome virus-infected shrimp {Penaeus vannamei) by real-time RT-PCR.
Sample # Average ΔCT ± SD Sample # Average ΔCT ± SD Average Fold Changes
ΔΔCT /2-kΔCTv
H1 1.100 ± 0.040 W1 -0.300 ± 0.740 0.700 1.62
H2 1.167 ± 0.027 W2 0.967 ± 0.967
H3 1.200 ± 0.060 W3 0.033 ± 0.407
H4 0.367 ± 0.773 W4 1.267 ± 1.227
H5 1.900 ± 0.760 W5 0.233 ± 0.260
Hl to H5 represents healthy animals, and Wl to W5 represents WSSV-infected animals. CT represents threshold PCR cycle number. ΔCT represents the normalized Ct value. Normalized Ct value is obtained by subtracting the CT value of RT-PCR internal control gene, shrimp elongation factor- 1 alpha, from the CT value of the target gene. ΔΔCT obtained by subtracting the ΔCT of healthy from the ΔCT value for the WSSV-infected sample. Fold changes indicates the changes in target gene expression in the WSSV-infected compared to the healthy animals.
Table 9. Relative quantification of P-selectin mRNA expression in healthy and white spot syndrome virus-infected shrimp {Penaeus vannamei) by real-time RT-
PCR.
Sample # Average ΔCT ± SD Sample # Average ΔCT ± SD ΔΔCT Fold Changes
Figure imgf000047_0001
H1 3.967 ± 0.733 W1 3.567 ± 0.033 1.100 2.11
H2 4.667 ± 0.033 W2 4.700 ± 1.100
H3 5.167 ± 0.467 W3 2.100 ± 1.500
H4 4.267 ± 0.433 W4 4.133 ± 0.533
H5 5.433 + 0.733 W5 3.533 ± 0.067
Hl to H5 represents healthy animals, and Wl to W5 represents WSSV-infected animals. CT represents threshold PCR cycle number. ΔCT represents the normalized Ct value. Normalized Ct value is obtained by subtracting the CT value of RT-PCR internal control gene, shrimp elongation factor- 1 alpha, from the CT value of the target gene. ΔΔCT obtained by subtracting the ΔCT of healthy from the ΔCT value for the WSSV-infected sample. Fold changes indicates the changes in target gene expression in the WSSV-infected compared to the healthy animals. Example 3. Cloning of shrimp ESTs.
[0155] In order to amplify the full-length open reading frame (ORF) in shrimp ESTs, primers will be designed using primer express software (Applied Biosystems, Inc.). Primers will also be designed to amplify a truncated version of the gene (representing the functional domain only). Amplified cDNA will be cloned into bacterial expression vector (such as pETlOO Directional TOPO Expression vector, Invitrogen Inc.) and used to transform BL 21 Star (DE3) One Shot Chemically Competent Escherichia coli (Invitrogen, Inc.) following manufacturer's protocol.
Example 4. Bacterial expression of shrimp recombinant or isolated protein and formulation into feed.
[0156] The expression of the recombinant protein will be either constitutive or under an induction system (e.g., induced by IPTG) and empirically optimized to obtain maximum protein expression. Escherichia coli strain BL21 cells carrying IPTG inducible gene will be grown in LB medium containing ampicillin, and then will be induced with IPTG for the expression of recombinant protein. Bacterial biomass containing cells, which express the shrimp recombinant protein, will be added to shrimp feed in a free or microbound format (e.g., in beads composed of alginate and starch in a polymeric form). Attractants are added to make the feed or beads more palatable to the target species (in the case of shrimp, krill meal would be a good attractant).
Example 5. Method for protection of shrimp from WSSV infection.
[0157] Shrimp are fed either a control diet or a diet containing bacterial biomass expressing recombinant protein (Example 4). Animals are challenged with WSSV5 and their survivability in response to viral infection will be measured. The WSSV load in the control and treatment samples is measured by real-time PCR following published protocol (Dhar et al. 2001). The mRNA expression of the target gene will be measured in the treated and control animals using real-time RT-PCR to determine the difference in expression in two treatment groups following the published method (Dhar et al. 2003). Protection from viral challenge will be determined by an increased survival versus a control not fed the diet containing the WSSV recombinant protein. Example 6. DNA method for protection of shrimp from WSSV infection.
[0158] Shrimp are immersed in a medium containing nucleic acid encapsulated in a liposome. The DNA will be designed to express proteins that are upregulated during infection by WSSV as determined from the differential EST libraries. The DNA is then absorbed through the gills or through gut lining and will then expressing the proteins in the tissues that absorb the DNA and thus providing protection against WSSV.
Example 7. RNAi method for protection of shrimp from WSSV infection.
[0159] A portion of a gene or genes identified using a differential expression library from shrimp (healthy versus WSSV-infected) as described in the specification are used to model a small interfering RNA as described by Timmons et al (2001). This DNA is then fed to the shrimp via incorporation in a feed or feed supplement. As shown for C. elegans in previous research (Timmons et al. 2001), this can interfere with expression of specific genes. Genes that are up-regulated in the EST differential library that have no defense function maybe important to viral infection and will be down regulated using this RNAi and this will suppress or inhibit WSSV infection.
Example 8. Diagnostic for WSSV infection.
[0160] The differentially expressed genes that are tied directly to WSSV infection, or general viral infection, will be used in a multiplexed assay to determine the metabolic health of a cultured shrimp population. Compared to WSSV titer determination, which tell the relative amount of virus in the population, this diagnostic will determine the effect of the infection on the metabolic health of the population (progress of the disease compared to the growth of the pathogen). Metabolic genes will be chosen from the EST library that are most influenced in the early, mid, and late stage infection. Defense genes will be chosen from the EST libraries that are the best indicators of early, mid, and late stage infection. These genes will be synthesized with a fluorescent tag on one end and a quencher on the other end as previously described for the molecular beacon system (Cantor 1996; Tyagi and Kramer 1996; Little and Vonk 2000; Livak et al 2000; Tyagi et al. 2000). These will be printed on a chip and then a crude DNA preparation from the infected shrimp used for hybridization of the chip. The detection will be carried out on a chip reader and monitored for the appearance of fluorescence and quantity of fluorescence relative to total DNA. This will be correlated empirically to disease progression and used as a way to monitor the disease status of the animals. This will be particularly important as disease resistant lines of shrimp are developed.
Example 9. Method for protection of shrimp from Taura syndrome virus (TSV") infection.
[0161] ESTs isolated from the healthy and WSSV-infected shrimp can be used for developing therapeutics for not only WSSV but also for other viral diseases such as Taura syndrome disease caused by the Taura syndrome virus (TSV). Taura disease, caused by the TSV, has caused catastrophic losses in the Western Hemisphere, and more recently in Taiwan (Dhar et al , 2004). The cDNA libraries described in Example 1 contained immune genes such as the low-density lipoprotein receptor (LDLr) gene (Table 2) that could be for developing therapeutics against the TSV. In addition to binding and internalizing lipoprotein molecules from circulating haemolymph, LDLr is known to be involved in viral pathogenesis. For example, Hepatitis C virus has been shown to complex with LDL and interacts with the LDL receptor (Wunschmann et al. , 2000). Type 2 rhinovirus was shown to up-regulate LDL receptor expression on human tracheal epithelial cells (Suzuki etal, 2001) and binding of the HIV-transactivator protein is mediated by LDL-related protein (Liu et al., 2000).
[0162] Primers will be designed to amplify the full-length open reading frame (ORF) of shrimp LDLr using primer express software (Applied Biosystems, Inc.).
Primers will also be designed to amplify a truncated version of the gene (representing the functional domain only). Amplified cDNA will be cloned into bacterial expression vector (such as pETlOO Directional TOPO Expression vector, Invitrogen Inc.) and used to transform BL 21 Star (DE3) One Shot Chemically Competent Escherichia coli (Invitrogen, Inc.) following manufacturer's protocol. Escherichia coli strain BL21 cells carrying IPTG inducible gene will be grown in LB medium containing ampicillin, and then will be induced with IPTG for the expression of recombinant protein. The expression of the recombinant protein will be empirically optimized to obtain maximum induction. Bacterial biomass containing cells, which express the shrimp recombinant protein, will be added to shrimp feed in a free or microbound format (in beads composed of alginate and starch in a polymeric form). Attractants are added to make the feed or beads more palatable to the target species (in the case of shrimp, krill meal would be a good attractant). [0163] Animals will be challenged with TSV, and their survivability in response to viral infection will be measured. The TSV load in the control and treatment samples is measured by real-time PCR following published protocol (Dhar et al. 2002). The mRNA expression of the target gene will be measured in the treated and control animals using real-time RT-PCR to determine the difference in expression in two treatment groups following published method (Dhar et al. 2003). Protection from viral challenge will be determined by an increased survival versus a control not fed the diet containing the TSV recombinant protein.
Example 10. Use of recombinant lectins for controlling viral and bacterial diseases of shrimp and other aquaculture species.
[0164] The differentially expressed genes in shrimp included a number of lectin genes (see Table 2, Gene ID# PvH09A06, PvHl 3 C04, and PvW04E03. Primers will be designed to amplify the full-length open reading frame (ORF) of shrimp lectins using primer express software (Applied Biosystems, Inc.). Primers will also be designed to amplify a truncated version of the gene (representing the functional domain only). Amplified cDNA will be cloned into bacterial expression vector (such as pETlOO Directional TOPO Expression vector, Invitrogen Inc.) and used to transform BL 21 Star (DE3) One Shot Chemically Competent Escherichia coli (Invitrogen, Inc.) following manufacturer's protocol. Escherichia coli strain BL21 cells carrying IPTG inducible gene will be grown in LB medium containing ampicillin, and then will be induced with IPTG for the expression of recombinant protein. The expression of the recombinant protein will be empirically optimized to obtain maximum induction. Bacterial biomass containing cells, which express the shrimp recombinant protein, will be added to shrimp feed in a free or microbound format (in beads composed of alginate and starch in a polymeric form). Attractants are added to make the feed or beads more palatable to the target species (in the case of shrimp, krill meal would be a good attractant).
[0165] Animals will be challenged with WSSV, TSV, yellohead virus (YHV), and infectious hypodermal and hematopoietic virus (IHHNV) and bacterial pathogens such as Vibrio sp. including V. penaeicida, an important bacterial pathogen of shrimp. The survivability of shrimp after viral and bacterial challenge will be recorded. The viral load (WSSV, TSV, YHV and IHHNV) will be measured by real-time PCR following published protocol (Dhar et άl, 2001, 2002). The mRNA expression of the lectin gene in the virus and bacterial-challenged animals will be measured in the treated and control animals using real-time RT-PCR to determine the difference in expression in two treatment groups following published method (Dhar et al. 2003). Protection from viral challenge will be determined by an increased survival versus a control not fed the diet containing recombinant lectin. [0166] In addition, by using homology modeling the tertiary structure of shrimp lectin genes will be determined. Shrimp lectins mentioned in see Table 2, Gene ID# PvH09A06, PvH13C04, and PvW04E03 will be taken for determining the tertiary structure by comparing with the crystal structure of homologous lectin available in the GenBank database (Feinberg et al., 2001). Homology modeling will enable to determine the sugar binding pocket. Ligand binding assay ,by virtual docking of different ligands (sugars), will be performed, and the affinity of different lectins to different sugars will be determined. Based on sugar binding affinity, recombinant lectins could be used as feed supplement to protect shrimp and other aquaculture species from different viral and bacterial disease.
Example 11. Method for protection of shrimp and other aquaculture species from bacterial diseases using recombinant anti-lipopolysaccharide protein.
[0167] Analysis of shrimp EST sequence revealed the presence of an anti- lipopolysaccharide (Anti-LPS) gene (see Table 2 EST ID #PvHBl 1). Anti-LPS gene encodes for small a basic protein that binds and neutralizes LPS, and thus possesses a strong antibacterial effect on the growth of Gram-negative bacteria (Iwanaga et al., 1992; Ried et al., 1996). Primers will be designed to amplify the full-length open reading frame (ORF) of shrimp anti-LPS gene using primer express software (Applied Biosystems, Inc.). Primers will also be designed to amplify a truncated version of the gene (representing the functional domain only). Amplified cDNA will be cloned into bacterial expression vector (such as pETlOO Directional TOPO Expression vector, Invitrogen Inc.) and used to transform BL 21 Star (DE3) One Shot Chemically Competent Escherichia coli (Invitrogen, Inc.) following manufacturer's protocol. Escherichia coli strain BL21 cells carrying IPTG .inducible gene will be grown in LB medium containing ampicillin, and then will be induced with IPTG for the expression of recombinant protein. The expression of the recombinant protein will be empirically optimized to obtain maximum induction. Anti-LPS recombinant protein will be purified from the recombinant cells and its Gram-negative bacterial neutralizing activity will be assayed against a number of Gram-negative bacterial pathogens of shrimp, fish and terrestrial agricultural species e. g. Vibrio penaeicida, Vibrio anguillarium, Virio parahemolyticus, Lactococcus garviae, Pasteur ella piscicida.
[0168] Bacterial biomass containing cells, which express the shrimp recombinant anti-LPS protein, will be added to shrimp feed in a free or microbound format (in beads composed of alginate and starch in a polymeric form). Attractants are added to make the feed or beads more palatable to the target species (in the case of shrimp, krill meal would be a good attractant). Shrimp will be challenges with the bacterial pathogen and mortality will be compared to control treatment where the animals will be fed pellet without containing any anti-LPS recombinant protein.
Example 12. Confirmation of differential expression of shrimp ESTs
[0169] As a proof of principle, the differential expression of nine more ESTs in healthy and WSSV -infected shrimp were evaluated by real-time RT-PCR assay. These include Interleukin enhancer-binding factor 3, Tetraspanin-2, NF-kappaB essential modulator, Prophenoloxidase-activating proteinase 2, T-cell activation protein, O- sialoglycoprotein endopeptidase, Ubiquitin, Anti-lipopolysaccharide Factor, Lysozyme 2, and Heat-shock protein (Table 10 and 11; Fig. 3). Out of these nine genes, four (Tetraspanin-2, T-cell activation protein, Anti-lipopolysaccharide Factor, and Heat- shock protein) genes were up-regulated and five genes (Interleukin enhancer-binding factor 3, NF-kappaB essential modulator, Prophenoloxidase-activating proteinase 2, O- sialoglycoprotein endopeptidase, Ubiquitin, and Lysozyme 2) were down-regulated during WSSV infection in shrimp (Table 11, Fig. 3).
Confirmation of differential expression of shrimp EST in Taura syndrome virus infected shrimp
[0170] Taura syndrome (TS) disease, caused by the Taura syndrome virus (TSV), pose a major threat to shrimp mariculture in both hemispheres. Although considerable progress has been made in elucidating the organization of the TSV genome and developing TSV-specific diagnostic methods, information on shrimp cellular genes involved in TSV pathogenesis and cellular immunity remains unknown.
[0171] Two separate strains of P. vannamei juveniles (one TSV-resistant (SPR) and one Fast Growth (FG) TS V-susceptible line) were per os exposed (Texas 2004 TSV strain). Moribund acutely infected shrimp, surviving chronically infected shrimp and unexposed negative control shrimp were preserved in Davidson's (AFA) for histological analysis. Mild to moderate multifocal pathodiagnostic acute phase epithelial necrosis was detected in moribund FG shrimp, which suffered 20-36% mortality. Moderate to severe lymphoid organ spheroids were detected in chronically infected FG survivors. No mortality or acute TSV lesions were detected among the 5 TSV-exposed SPR groups.
[0172] A cDNA clone from a healthy Penaeus vannamei (clone ID#PvH04G08) showed similarity with the low-density lipoprotein receptor (LDLr) gene of human, mouse, Drosophila and Caenorhabditis elegans. The LDLr gene is a member of an evolutionarily conserved family of multifunctional receptors that binds to rhinoviruses 0 (Family Picornaviridae) and a variety of ligands. Upon binding to the ligands, LDLr transports the macromolecules through receptor- mediated endocytosis. The LDLr gene expression was measured in both healthy and TSV-infected (acute and chronically infected) shrimp by real-time RT-PCR. LDLr mRNA expression was almost 4-fold higher in the healthy TSV-resistant SPR shrimp compared to the healthy FG TSV- 5 susceptible line. In the SPR animals, LDLr expression increased upon TSV challenge (3.3 to 6.6-fold higher expression depending on the TSV load). In the FG TSV- susceptible acute phase animals, there was no increase in the LDLr expression. However, in the FG TSV-susceptible chronic phase animals, LDLr expression was 5- fold lower compared to the healthy control animals. These data indicate that LDLr 0 expression is differentially modulated in the TSV-resistant and susceptible animals. Therefore, LDLr gene could be used as a potential target for developing therapeutics against Taura syndrome disease in shrimp. In addition, SPR animals showed higher expression of LDLr compared to the TSV-susceptible line making LDLr gene as a candidate genetic marker for marker-assisted selection in developing TSV-resistant line 5 of shrimp.
Table 10. List of primers used for measuring the expression of immune genes in healthy and white spot syndrome virus (WSSV) infected shrimp {Penaeus vannamei) by real-time RT-PCR.
Figure imgf000054_0001
Figure imgf000055_0001
Table 11. Relative quantification of differentially expressed immune genes in healthy and white spot virus infected shrimp (P. vannameϊ) by SYBR Green real-time RT-PCR
Shrimp Gene Average ; Δ CT value Average ; Δ CT value in ΔΔCT Fold Changes
Clone ID# in healthy shrimp ± WSSV infected shrimp
(Primer SD ± SD in WSSV-
Name) infected shrimp
Gamma interferon inducible PvHlA02 lysosomal thiol reductase (GILT) 5.847 ± 0.247 8.353 ± 1.353 -2.507 -5.7
PvW8B06
Interleukin enhancer-binding factor 3 7.093 + 0.392 7.120 ± 0.491 -0.027 -1.0
PvWl 1A5
Tetraspanin-2 6.320 ± 0.336 5.867 ± 0.572 +0.460 +1.4
PvW8E09
NF-kappaB essential modulator 13.780 + 0.734 13.883 + 1.114 -0.103 -1.1 'Jl
PvW9Ell
Chitinase 1.2474 + 0.440 0.440 + 0.720 +0.807 +1.8
Prophenoloxidase-activating PvW4F07 proteinase 2 13.320 ± 0.291 14.127 + 0.683 -0.807 -1.8
PvW4E03
P-selectin precursor 4.700 ± 0.480 3.610 + 0.647 +1.090 +2.1
PvW5G04
T-cell activation protein 12.587 ± 0.280 11.925 ± 0.375 +0.662 +1.6
PvHCOδ
O-sialoglycoprotein endopeptidase 12.800 ± 1.723 14.300 + 0.000 -1.500 -2.8
PvW04C06
Ubiquitin 3.123 + -0.202 3.130 ± -0.016 -0.007 -1.0
PvHBI l
Anti-lipopolysaccharide Factor 13.622 ± 0.000 7.547 ± 0.000 +6.075 +67.4
PvW10F4
Lysozyme 2 2.883 ± 0.390 3.157 ± -0.048 -0.274 -1.2
PvW10D06
Heat-shock protein 9.230 ± 0.550 8.470 + 0.002 +0.757 +1.7
Example 13. Shrimp Toll-like receptor.
This invention describes a Toll-like receptor (TLR) in shrimp challenged with WSSV that has not yet been described. TLRs are type I transmembrane proteins that serve as a key part of the innate immune system, the primary protective mechanism in shrimp. In vertebrates, they also stimulate activation of the adaptive immune system, linking innate and acquired immune responses. TLRs are considered pattern recognition receptors (PRRs), binding to pathogen-associated molecular patterns (PAMPs), small molecular sequences consistently found on pathogens. Their function is the recognition of pathogens and the activation of immune cell responses directed against those pathogens. TLRs were first discovered in the fruit fly Drosophila melanogaster. TLRs are present in mammalian immune cells as well as in numerous other animals (including human, mice, goldfish and chickens). They have even been found in plants and are thus believed to have an ancient evolutionary origin; after the defensins, they may be the oldest components of the immune system. This is the first description of a TLR in shrimp.
In vertebrates, innate immunity provides a rapid response to invasive stimuli (e.g. bacteria) mediated through pattern-recognition receptors such as the toll-like receptors (TLRs). These TLRs are critical signalling proteins for bacterial lipopolysaccharides, bacterial LPS/lipoproteins and bacterial DNA. Other members of the same receptor superfamily are involved in the regulation of ThI /2 T-cell function. Stimulation of TLR signalling pathways in tissues result in the rapid generation of an inflammatory response and the production of proinflammatory cytokines, such as IL-I, tumor necrosis factor-w and the chemokines. Leukocytes also express TLRs, which be involved in the regulation of their function. Signalling by LPS, perhaps predominantly mediated via TLR4, causes increased lifespan of neutrophils, possible upregulation of basophil histamine release, alterations in the expression of chemokine receptors on the surface of neutrophils and monocytes (which may modify processes of allergen sensitization), and chemokine generation from multiple cell types, including leukocytes and endothelial cells. Endotoxin responses may play an important role in the establishment of allergen sensitization in asthma, with variations in the LPS co-receptor CD 14 having functional significance in the development of atopy (together with the current hygiene hypothesis theories), and there is preliminary animal evidence that defects in TLR4 signalling can modify sensitization (Sabroe et al. 2002).
Invertebrates are known to rely on innate immunity, since they have not developed an elaborate acquired immunity (Arala-Chaves and Sequeirab 2000; Bachere 2000; Smith et al. 2003; Liu et al. 2004). This invention's identification of a putative TLR provides a key to understanding the shrimp innate immune response and development of drugs targeted to either enhance the effect, therefore stimulate a rapid innate immune protection, or to inhibit the effect, preventing a drain on the production of the organism for diseases such as the currently prevailing strains of a shrimp virus, infectious hypodermal and hematopoietic necrosis virus, IHHNV that do not cause mortality but long-term chronic infections.
Shrimp TLR cDNA clone represents partial sequence of the full-length gene. The sequence is used to design primers for cloning the 5'-and the 3'-end of the gene using standard 5'- and 3'- rapid amplification of cDNA ends method (RACE, such as First Choice RLM-RACR kit sold by Ambion, texas, (Sambrook et al. 1989; Jurecic et al. 1998)). This will allow the recovery of the complete gene from total mRNA. The full-length shrimp TLR gene is then cloned into a bacterial expression vector such as pET28a+ (Novagen) using the manufacturer's instructions. The protein is then expressed during log phase growth under induction with IPTG (an inducer of the lac operon promoter). Proteins are purified using nickel columns that react with the his- tag labeled recombinant proteins expressed in this method using standard methods (Sambrook et al. 1989).
The recombinant, tagged fusion protein is then used as a tool to investigate binding to either combinatorial libraries or to natural product libraries to determine if compounds that specifically bind this receptor are available. Such libraries are available at large pharmaceutical companies and have been previously described. Once receptor-binding chemicals are identified, in vivo testing can be attempted using antibodies made to the TLRs identified in this invention. Such antibodies can be made as either polyclonals (to peptide or whole protein) or monoclonals by a number of different contract laboratories by standard methods (e.g., Sigma Genosys, Spring Valley Labs, BioResource Intl). Shrimp are treated with the TLR-binding chemical and then humanely sacrificed. Tissues are extracted for membrane proteins and western analysis, using the TLR specific antibody, is performed using standard methods (Sambrook et al. 1989). Compounds that up-regulate or down-regulate the TLR receptor are identified by this method.
Shrimp are then dosed with compounds that up-regulate or down-regulate the TLR to determine concentrations that do not affect the health of the shrimp. One or two dosing regimes, identified in this manner, are then used to treat the shrimp in an experimental system. The shrimp are then challenged with WSSV via oral delivery of live virus in the form of infected shrimp tissues. The mortality of the shrimp is monitored to determine which drugs provide protection from WSSV infection.
Example 14 - POC Diagnostic based on TLR
Rapid identification of disease is essential to the well being of the animals as well as the cost effectiveness of aquaculture. Using antibodies designed in Example 1, one is able to design a point-of-care diagnostic that will allow rapid detection of the immune status of the. shrimp. This is done by immobilization of one of the anti-TLR antibodies described in Example 1 on activated paper used for protein immobilization in POC diagnostics (e.g., Whatman's Purabind membranes). This paper is then blocked with a protein-containing buffer (2% bovine serum albumin) to fill any remaining protein binding positions and dried. The dried paper is now a capture surface for the shrimp TLR protein. An absorbent pad is placed at one end such as CF6 (Whatman) to act as a sink for liquids wicking across in a lateral flow assay. A representative shrimp is removed from the pond and humanely sacrificed. The tail muscle is macerated in pH 7.0 buffer containing a detergent such as tween-20. The extracted muscle is clarified by centrifugation or placed directly on one end of the dried paper. The clarified liquid is pulled by capillary action over the immobilized anti-TLR and any TLR is captured. Excess fluid is removed by the wick at the end of the paper. At this point, dye labeled anti-TLR in a buffer containing 1% bovine serum albumin is loaded on the end of the paper and wicked across the immobilized TLR by capillary action. If high levels of TLR are present in the tissues, dye will accumulate on the line and the immune status of the animal will be evident.
REFERENCES
Adams, M. D. et al. (1995). Nature 377: 3-17.
Cantor CR (1996) Lighting up hybridization. Nature Biotechnology 14:264-265.
Chang CF, Su MS5 Chen HY, Liao IC (2003) Dietary beta-l,3-glucan effectively improves immunity and survival of Penaeus monodon challenged with white spot syndrome virus. Fish Shellfish Immunol 15:297-310.
Chen LL et al. (2002) Identification of a nucleocapsid protein (VP35) gene of shrimp white spot syndrome virus and characterization of the motif important for targeting VP35 to the nuclei of transfected insect cells. Virology 293:44-53.
Curtis, M. M., Scharnowske, S., and Watson, A. J. (1992) Sequence and expression of a membrane associated C-type lectin that exhibited CD4- independent binding of human immunodefficiency virus envelope glycoprotein gpl20. Proc. Natl. Acad. Sci. 89: 8356- 8360.
Dhar AK, Roux MM, Klimpel KR (2001) Detection and quantification of infectious hypodermal and hematopoietic necrosis virus and white spot virus in shrimp using real-time quantitative PCR and SYBR Green chemistry. J Clin Microbiol 39:2835-2845.
Dhar, A. K., Roux, M. M. and Klimpel, K. R. (2002). Quantitative assay for measuring the Taura syndrome virus (TSV) and yellow head virus (YHV) load in shrimp by real-time RT-PCR using SYBR Green chemistry. J. Virol. Methods. 104: 69-82.
Dhar AK, Dettori T, Roux MM, Klimple K, Read B (2003)
Identification of differentially expresed genes in white spot syndrome virus infected shrimp (Penaeus stylirostris) by cDNA microarrays. Arch Virol 148: 2381-2396.
Dhar, A. K., Cowley, J. A., Hasson, K. W., Walker, P. J., Lightner, D. V. 2004. Genome organization, biology and diagnosis of the Taura syndrome virus (TSV) and yellowhead (YHV) virus of penaeid shrimp. Adv. Virus Res., In Press.
Feinberg, H., Mitchell, D. A., Drickmer, K., and Weis, W. LI. (2001). Structural basis of selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR. Science 294: 2163-2166.
Flegel T (1997) Major viral disease of black tiger prawn (Penaeus monodon) in Thailand. World J Micro Biotech 13:433-442
Gross, P. S., Barlett, T. C, Browdy, C. L., Chapman, R. W., and Warr, G. W. 2001. Immune gene discovery by expressed sequence tag analysis of hemocytes and hepatopancreas in the Pacific white shrimp, Litopenaeus vannamei, and the Atlantic white shrimp, L. setiferus. Developmental and Comparative Immunology 25: 565- 577.
Inouye K et al. (1994) Mass mortality of cultured kuruma shrimp Penaeus japonicus in Japan in 1993: Electron microscopic evidence of the causative virus. Fish Pathology 9:149-158
Jory D, Dixon H (1999) Shrimp white spot virus in the Western Hemisphere. Aquacult Mag 25:83-91 Kase, T., Suzuki, Y.,- Kawai, T., Sakamoto, T., Ohtani, K., Eda, S.,
Maeda, A., and Okuno, Y. (1999) Human mannan-binding lectin inhibits the infection of influenza A virus without complement. Immunology 97: 385-392.
Kilpatrick, D. C. (2002). Mannan-binding lectin: clinical significance and applications. Biochem. Biophys. Acta 1572: 401-413.
Krishna R5 Rao K, Rao PV, Babu P (1997) White spot disease. World Aquaculture 12:14-19
Lehnert, S. A., Wilson, K. J., Byrne, K. and Moore, S. S. 1999. Tissue- specific expressed sequence tags from the black tiger shrimp Penaeus monodon. Marine Biotechnology 1: 465-476.
Lightner, D. V. (1996). A Handbook of Shrimp Pathology and
Diagnostic Procedures for Diseases of Cultured Penaeid Shrimp. World Aquaculture Society, Baton Rouge, Louisiana, USA. 304
P- Lightner, D. V. and Redman, R. M. (1998). Shrimp diseases and current diagnostic methods. Aquaculture 164: 201-220. Little M, Vonk G (2000) Kit and method for fluorescence based detection assay. In: US Pat. 6,077,669. Becton Dickinson, USA Liu, Y.5 Jones, M., Hingtgen, C. M., Bu, G., Laribee, N., Tanzi, R. E.,
Moir, R. D., Nath, A., and He, J. J. Uptake of HIV-I Tat protein mediated by low-density lipoprotein receptor-related protein disrupts the neuronal metabolic balance of the receptor ligands.
Nature Medicine. 2000. 6:1380-1387. Livak KJ, Flood SJA, Mermaro J, Mullah KB (2000) Self-quenching fluorescence probe and method. In: Eur Patent Pub 00972848/EP
A2. APPLICANT(S)- PERKIN-ELMER CORPORATION
(1910480) Office International des Epizooties (O IE) Fish Disease Commission
(2003). Manual of diagnostic tests for aquatic animals. Chapter
4.1.3, White spot disease.
<hrtp://www.oie.int/eng/normes/fmanual/A_summry.htm> Malhotr, R., Haurum, J. S., Thiel, S., Sim, R. B. (1994) Binding of human collectins (SP-A and MBP) to influenja virus. Biochem.
J. 304-455-461. Marks H, Mennens M, Vlak JM, van Hulten MC (2003) Transcriptional analysis of the white spot syndrome virus major virion protein genes. J Gen Virol 84:1517-1523. Rojtinnakorn, J., Hirono, L, Itami, T., Takahashi, Y., and Aoki, T. Gene expression in haemocytes of kuruma prawn, Penaeus japonicus, in response to infection with WSSV by EST approach. Fish and
Shellfish Immunology 13: 69-83. Supungul, P., Klinbunga, S., Pichyangkura, R., Jitrapakdee, S., Hirono,
L, Aoki, T., and Tassanakajon, A. 2002. Identification of immune-related genes in hemocytes of black tiger shrimp
(Penaeus monodon). Marine Biotechnology 4: 487-494. Suzuki, T., Yamaya, M., Kamanaka, M., Jia, Y. X., Nakayama, K.,
Hosoda, M., Yamada, N., Nishimura, H., Sekizawa, K., and
Sasaki, H. Type 2 rhinovirus infection of cultured human tracheal epithelial cells: role of LDL recpetor. Am J Physiol
Lung Cell MoI Physiol. 2001. 280:L409-L420. Timmons L, Court DL, Fire A (2001) Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263:103-112 Tsai MF et al. (2000a) Transcriptional analysis of the ribonucleotide reductase genes of shrimp white spot syndrome virus. Virology
277:92-99. Tsai MF et al. (2000b) Identification and characterization of a shrimp white spot syndrome virus (WSSV) gene that encodes a novel chimeric polypeptide of cellular-type thymidine kinase and thymidylate kinase. Virology 277:100-110. Tyagi S, Kramer FR (1996) Molecular beacons: Probes that fluoresce upon hybridization. Nature Biotechnology 14:303-308 Tyagi S, Kramer FR, Lizardi PM (2000) Detectably labeled, dual conformation oligo-nucleotide probes, assays and kits. In: US
Pat. No. 06103476. P ATENT NUMBER- 06103476 van Hulten MC, Goldbach RW, Vlak JM (2000a) Three functionally diverged major structural proteins of white spot syndrome virus evolved by gene duplication. J Gen Virol 81:2525-2529. van Hulten MC, Westenberg M, Goodall SD, Vlak JM (2000b)
Identification of two major virion protein genes of white spot syndrome virus of shrimp. Virology 266:227-236. van Hulten MC et al. (2001) The white spot syndrome virus DNA genome sequence. Virology 286:7-22. Vasta GR, Quesenberry M, Ahmed H, O'Leary N (1999) C-type lectins and galactins mediate innate and adaptive immune functions: their roles in the complement activation pathway. Dev Comp
Immunol 23: 401-420 Vorup- Jensen T, Petersen SV, Hansen AG, Poulsen K, Schwaeble W,
Sim RB, Reid KBM, Davis SJ, Thiel S, Jensenius JC (2000)
Distinct pathway of mannan-binding lectin (MBL)- and Cl- complex autoactivation revealed by reconstitution of MBL with recombinant MBL-associated serine protease-2. J Immunol 165:
2093-2100 Wunschmann, S., Medh, J. D., Klinzmann, D., Warren, S. N., and
Stapleton, J. T. Characterization of Hepatitis C Virus (HCV) and
HCV E2 interactions with CD81 and the low-density lipoprotein receptor. Journal of Virology. 2000. 74:10055-10062. Yang F et al. (2001) Complete genome sequence of the shrimp white spot bacilliform virus. J Virol 75 : 11811 - 11820. Yi G, Qian J, Wang Z, Qi Y (2003) A phage-displayed peptide can inhibit infection by white spot syndrome virus of shrimp. J Gen
Virol 84:2545-2553. Zhang X, Xu X, Hew CL (2001) The structure and function of a gene encoding a basic peptide from prawn white spot syndrome virus.
Virus Res 79:137-144. [0173] The above examples are included for illustrative purposes only and is not intended to limit the scope of the invention. Since modifications will be apparent to those of skill in this art, it is intended that this invention be limited only by the scope of the appended claims.
[0174] Appendix A
Unigeπe healthy SSH library (contigs+singletons)
>HP 14_SSH_trimmed.fasta.Contig 1
TGAGCTCAAGCAGTGGTACACGCATGTACGCCCTCGAGCGGCGCCAGGCA
GGTACCCAACCTTCCTCCTCCCGGATTGACATGTGGCTTCTCGACCCCTG
CGCGGATCTCGGACTCTCTCTGGCAACTGACTCTTGCCAGCCCACCCCTC
CTCCCTCCCTGTCAGCCAGCGGGAGCAAACGTCAGCCGAACATCGTTCCT
GTCAGCACTGCAAATATCCCTCTGCCCTTTCATGCAGCTTTTCCTATCTG
GGCGCGAACCGAAAGAGATCATCTCACCTTTAATTCTCGTGATCATTTTA
TTGTGAAACTCACGAAAGCTAAATTGCATCTTTGTGTATCAATTTACTCA
TCATGATGAATATGTCGCTTGTATCAAGCATTCATTAATTGTTCAGTTCA
CACACTCTCAGTCTGCCATGCTTCTGGATGACGTGGCATTCGACTATACA
TTGTTCATTTGATGTAITTGTGATATTTCTTGATCAAACTTTTCCTCATT
GCTCAGAGCACTTTGTTGTATTTCAAGTACCTCGGCCGCGACCACGCTGG
GCGTACTTCTGTCGTCTTGAGCGTACTGATGGTACCCAGCTTTTGTTCCC
TTTAGTGAGGGTTAATTGCGCXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXGNCCACTTGA
ATCNTGGTCGGTGTGTCTCTCTGCTTTTCGCTGCGCTGGTTCTCCG
>HP 14_SSH_trimmed.fasta.Contig2
TGAGCCAAGCAGTGGTACACGCAGAGTACGCCCAGCGTGGTCGCGGCCGA
GGTACAGAAACTTGTTAGAGACCTTAAGGATCACAGACTTCTCGAACAGA
AGCACTGGTTTTCTCTCTTTAACCCTACTTCCGTCAGCATATGAATGAAG
GAGAGTTTGTCTATGCCTTGTATGTTGCGGTCATCCACTCACCTCTGGCT
GAGCACGTTGTGCTCCCTCCACTCTATGAGGTCACACCTCATCTCTTCAC
TAACAGCGAAGTTATTGAATCAGCTTATCGTGCCAAGCAGACACAAAAAC
CTGGTAAATTTAAGTCTAGTTTCACTGGAACTAAAAAGAATCCTGAACAG
AGAGTAGCCTATTTCGGAGAGGACATTGGAATGAACACTCACCATGTTAC
CTGGCATATGGAATTCCCATTCTGGTGGCAAGACAGTTACAGTCATCACC
TGGACCGCAAAGGAGCGAACTTCTTCTGGGTACCTGCCCTGGCGGCCGCT
CGAGGGCGTACTTCTGTCGTCTTGAGCGTACTGATGGTACCCAGCTTTTG
TTCCCTTTAGTGAGGGTTAATTGCGCXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXCTGGCGGCAGCNGGTTCAGTCCTCCANGGGGGGAGGTCTCC
CCCNTGCNCCGGGTCTCATCCGGGAACATCTGTTGCCGGCGCGGGGGCAA
GCACAAGG
>HP14_SSH_trimmed.fasta.Contig3 GATGGAGCTCCAAGCAGTGGTACACGCAGAGTACGCCCGCGGGGTCGCGG
CCGAGGTACATGGGATTATAGTTCAAAATAGCTTCCTATTAATGCTGGAT
ATACTCGCCATGGTTGAAGACCTTAACTTGGATGTGGCCGAAGTTGGGAA
GATCTTCGAATACACGCTCATCGGGAACCTTACGATCCAGAGGGTAGCCA
TGTGGGCGATTGTCAGGGTATTTGCCATGAGCACCATAGTGGTTGAATTC
GGTATTTTCGTGGAGGCCATCCAATGCTGCGTCGGCTGCACCATCAGTCA
CAGCTACAACAAGGTCGAACTCCAGACCCTGTTCATTACCCTTGGGGAGC
AGGAATCGATTTGGAATACCAGTGGCACTCCCGAAATCTGCAAGTCCGGA
GTCTGCACCACCTAAGGCTTCTTTGGTCTTCTCAAAGAGTGTTGCAAAAC
TAGGCACATCAGGCACAGTAACAGCAGATTCCCCCGCGTACCTGCCCTGG
CGGCCGCTCGAGGGCGTACTTCTGTCGTCTTGAGCGTACTGATGGTACCC
AGCTTTTGTTCCCTTTAGTGAGGGTTAATTGCGCXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXGGTTTCTTCGTNCATT
GGANTCGTTGCNCGGCGTTCGGTTGGGGCAGCGGTTTGTCACTCAAGGGG
CACGGGTTCCCACCGGGTNTCCCNNNNCTNCTCG
>HP14_SSH_trimmed.fasta.Contig4
GATGGAGCCAAAGCAGTGGTACACGCAGAGTACGCCCAGCGTGGTCGCGG
CCGAGGTACCACCTGAGAGCATGTGCATACTTTCCAGCTGGGGCCTTGCC
CAGAGCTTCAAACACTGCTACATCATCCTGGGAGGCAACAAACCCTTCGA
TGTAACTTTTGTCCCCAAGATAATCATTTAGGGCCTTGACGCCAGCGTCA
CTTTCCAAGTCACCGAAATTTGGCATTTTCCTGGCTTTAAGCGTCCACCC
GCGTACCTGCCCTGGCGGCCGCTCGAGGGCGTACTTCTGTCGTCTTGAGC
GTACTGATGGTACCCAGCTTTTGTTCCCTTTAGTGAGGGTTAATTGCGCX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
XXXXXXXKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXGGGTTGCTGGTT
CGNCTGCGTAGCGGNCCNGCCGNCTTCTCCTTCGGGAAGGGGCGGTTCTT
AACGCGGGTCTCGGTGGGTGCCCCAGGGNGNTGGACCCTCGGAGGCTGNA
TGTGTGTCCGAGNNCTTCGCGTGATAGTAGTGTGTGGCACTCTGNTNNTT
TCNTTTTCTCTCTTCC
>HP 14_SSH_trimmed.fasta.Contig5
GAGGCCAAGCAGGGTACACGCAGAGTACGCCCAGCGTGGTCGCGGCCGAG
GTACACTAATGTTATGAAGGACTACCATTACCACGGCAGTGAATAAAAGT
TATTGCTCACTACTCTGTCACTAAATGATATCCATTGAATTGTTATTTAG
AAATGTTACCCCATCAGTCATTATAAGTACTGATGATAGATGAAACTCAG
TTCGGTATAGTAATGAATTGACTAAATCTATGTGTTTTAGAAAATAATAA
TTCCTTTCGGGAGTAAAAAAAAAAAAAAAAAAAAAGTACCTGCCCTGGCG GCCGCTCGAGGGCGTACTTCTGTCGTCTTGAGCGTACTGATGGTACCCAG CTTTTGTTCCCTTTAGTGAGGGTTAATTGCGCXXXXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXXXXXJCKXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXTTTNCAGCAAGT
TCAGNTGCGAGCCGACGTTTGTCCGGTCCGGCNCNCNTGCGACTCGTCTC
GCGNCGTAGATGCGTCTCCCNGGGGGGTCTACCGNTTCCAGGTGGGTCCC
GGGCCCCCGGGTCTTCNCACAGGGCACTCGGGTNNCTCTCCTCATCTGNT
CTTCTCNTCTCTCNCN
>HP 14_SSH_trimmed.fasta.Contig6
GATGGAGCTCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCGCC
AGGCAGGTACTAAGATAACTTTAATAAAATTAAGAGATAGAAACGACCTG
GCTCACGCCGGTCTGAACTCAAATCATGTAAGGATTTAAGGGTCGAACAG
ACCCCTCCTTTTATAAACCTTGGCGTGGCCATTTATTAAAGGGAAAACCC
TTTAAATTTCAAACCATCGGAGGGTTCGCAAACCCCTTTCCTTGGTTCGA
ATAATTGGGACTNCTCAAAGGGAAAGATTACCGCTGTCATCCCCTTAAAA
GTTAAACCTTTAATTCTTTATGATCTTCTAAAAGGCAGGATCATTAATTT
TTCCAGAAAATTACTGTTATTAAATTAAACCTTTTAAACGGAAAACCAAG
GTTTTAACTCAATTATTATATCCCCGTTCGCCCCCAAACGCAAACAAAAT
ATTATCTAAAAATCAAGTTATACTAACAATTTATAATATAAATAACTTAT
TGTAAAGCTTTTATAGGGTCTTATCGTCCCCTTAAATTATTTAAGCCTTT
TCACCCCGCGTACCTCGGCCGCGACCACGCTGGGCGTACTTCTGTCGTCT
TGAGCGTACTGATGGTACCCAGCTTTTTGTTCCCTTTAGTGAGGGTTAAT
TGCGC
>HP 14_S SHjximmed.fasta. Contig7
GATGAGCTCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCGCCA
GGCAGGTACAGGTCCTTACGGATGTCCACGTCGCACTTCATGATGGAGTT
GTAGGTGGTCTCGTGGATGCCGCAGGATTCCATGCCCAGGAATGAGGGCT
GGAACAGGGCCTCGGGGCAGCGGAACCTCTCGTTGCCGATGGTGAACACC
TGGCCGTCAGGGAGCTCGTAGGACTTCTCCAGCGAGGAGGAGGAAGCAGC
GGTGGTCATCTCCTGCTCGAAGTCCAGGGCCACGTAGCACAGTTTCTCCT
TGATGTCACGAACGATTTCTCGCTCGGCGGTGGTCGTGAAGGTGTAGCCA
CGCTCCGTCAGGATCTTCATCAGGTAGTCTGTGAGGTCGCGGCCGGCCAA
GTCCAGACGCAGCCCGCGTACCTCGGCCGCGACCACGCTGGGCGTACTTC
TGTCGTCTTGAGCGTACTGATGGTACCCAGCTTTTGTTCCCTTTAGTGAG
GGTTAATTGCGCXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXTTA CGGCCGGAAGACTNTTGCCAGGNCGAGGGGTCCCTGTCNCTTCTCCTGCT TTTTTTGCTTTCCTTTTGTCGGCCCTTGAGCTTCATNCGCTCCTGTGGGA
CCCGTTTAAAGCGGGTCCCGGCAAGCTCTGCAGNCTTTACAGACTCNCCG
GGGGACTCCACCATTGTGGTATCGTGTACCTCCCNTTCCTTTACCATCTN
CTTTTGT
>HP 14_SSH_trimmed.fasta.Contig8
GATGAGCTCAAGCAGTGGTACACGCANNTAGTACGCCCTCGAGCGGCCGC
CAGGCAGGTACAGAAACTTATGAGAGACCTTAAGGATCACAGACTTCTTG
AACAGAAGCACTGGTTCTCTCTCTTCAACCCAAGACAACGTCAGGAAGCA
CTCATGCTTTTCGATGTTCTCATCCATTGCAAGGATTGGGATTCATTTGT
CAGCAACGCTGCCTACTTCCGTCAGCGTATGAATGAAGGAGAGTTTGTTT
ATGCCCTGTATGTTGCAGTCATCCACTCACCTCTGGCTGAGCACGTTGTA
CTTCCTCCACTCTATGAGGTCACACCTCATCTCTTTACTAACAGTGAAGT
CATTGAAGCAGCATATCGTGCCAAGCAGACACAGACCCCTGGTAAATTCC
AGTCTTCCTTTACTGGAACAAAGAAGAACCCTGAACAGAGAGTAGCCTAT
TTCGGAGAGGACATTGGAATGAACACTCATCACGTTACCTGGCATATGGA
ATTCCCATTCTGGTGGCAAGACAGTTACAGTCATCACCTGGACCGCAAAG
GAGAGAACTTCTTCTGGGTACCTCGGCCGCGACCACGCTGGGCGTACTTC
TGTCGTCTTGAGCGTACTGATGGTACCCAGCTTTTTGTTCCCTTTAGTTG
AGGGTTAATTGCGCGC
>HP 14_SSH_trimmed.fasta.Contig9
AATGGAGCTCAAAGCAGTGGTACACGCATTAGTACGCCCAGCGTGGTCGC
GGCCGAGGTACGCGGGAGTTGCCACTGCAGCAGCACAACGAACCGGTGCA
CAAGAGACTCTCTCCTTTCTTTCAGTATGAAGGTGACACTGGTCCTGGTC
CTGGTGGCCGTCGTCGGCCTCTCCTCCGCCTACTCCCTCGGCGACGTCTA
CGAGGAGCTCCATCGCGTCGAGAGGGACATGAGCTCAGGGACGAGCGGAA
GCACGTCCGTGGAGAGGATAGAGAAGAGAGACATCAGCACAGGGAGCACC
AGCGACAGCGCGTCTTTTGAGAGAATAGAGAAAAGGGACATCGCTGCCAC
TCACGACTTGGATCTGAGGCGCCTCAGGAGACAAGCCTCCAGCTCCGAGA
GTGAGAGCTCTGAGGAATCTTCTGAGGAATGGGCAACTGTCGCTCCTTGA
AGGACTCATGTGACGGCGCTGACCTTTGGCGAACGACCTGACCTCCATTT
GGCCCTGATGATTTGAATTAGGATATGTCGAATAGTTTTCAAAATTCTTT
AAACTGTCTAGTAAGACACGTCATTGGATAGAATTTTCAGCTTTCATGTA
GACATAATCTGCATTTTGTGTAACCAGAATTAATAAAGAGATTGACCAAA
AAAAAAAAAAAAAAAAAAAAGTACCTGCCCTGGCGGCCGCTCGAAGGGCG
TACTTCTGTCGTCTTGAGCGTACTGATGGTACCCAGCTTTGTTCCTTTAG
TGAGGGTTAATTGGCGCTTGGGTXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXNTAAGAGCCGG
>HP 14_SSH_trimmed.fasta.Contig 10
GATGGAGCCCAAGCAGTGGTACACGCAGAGTACGCCCAGCGTGGTCGCGG
CCGAGGTACAGGAGGCCTTTACTTCAATGACCAGAAACACACGTGTGACC
TCCCTGAAAATGTTTCCTGTGAGGAGCGACGTAAAAGAAGTGAAATAGAC
CCAGTAACGGAAGAACACTACATCTTACCGGAGGAGTGTAAGGATCTGCA
AGGAATGTATGCCATTAGGGACAGACCAAGTTCGTATTACCTTTGCAGTC
ACGGCGTAGCCTTTGAAATGCGGTGTCCAGATGGCGGCGTGTTTTCAAGC
AAAGCCAAGAAATGCATCTTAAGGAAGTAAATACTAGACGAAAAAAAGAA
GAAAAGAAATGATAAGCAAAAAACAAACAAACAAACCATACTAATAAGCT
TAGATAACGTGATTTTCTGGTTCTTCCCTGGAAATGCTGATTGTAAATAA
AATGATAATTTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAA
AAAAAAAAAAAAAAAAAAAAAAAGTACCTGCCCTGGCGGCCGNTCNAGGG CGTACTTCTGTCGTCTTGAGCGTACTGATGGTACCCAGCTTTGGTTCCCT
TTAGTGAGGGTTAATTGGCGC
>HP14_SSH_trimmed.fasta.Contigl 1
TGGGCNCAAGCAGTGGTACAACGCAGAGTACGCCCAGCGTGGTCGCGGCC
GAGGTACATGATGCAAAGACATGGAACTAACTACTATGCTATGTCAAAAG
ATCCCAAGAATTACTATCAAGATACCCCAAAGCAACGTGGAAGCAAAGAT
CAAATCTTATATGGACAATCCTAGATACTACATTCCAGAAATGAGGAAGA
AAGGCTTACTTCCAGCTAAATTGGCAGAGAAGAAACAGAAGGCCCAAGAC
AAGAAGAAGAAGGCACAAAAAAAAAATTCAATTCCAAGAAGAAGAAGTCA
TAAAAAGGCTTTTGTGCGTGTGAATGTGTGTATGAATTTGGTATAGATAT
AAAAACTGTCAATTTACTGTGCTATTTTGTTATTTTTTGAATGTCGACAA
AAAGTCAAAATATCTTTTGTTGTTGTTTTGTTAACTGGTTAACTAAGATA
GATGTTTTATGCTTTATTCTTTATTATATAATAACAGTTGGTAAATTGCA
AAAAAAAAAAAAAAAAGTACCTGCCCTGGCGGCCGCTCGAGGGCGTACTT
CTGTCGTCTTGAGCGTACTGATGGTACCCAGCTTTTGTTCCCTTTAGTGA
NGGGTTAATTTGCGCXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXXXCTTGGGGGGTTGCCCTAATTGGAGTTGAAGCCT
TAAACTTCCACCATTATTTGCGGTTGCGCCTTCAACTGCCCGTTTCCAAG
TCCGGGGAAACCTTGTTCGTGGCCAGTTGGCCTTATGTTGAATCGGGCCA
CCGCCGCGGGGAGAGGGCGTGGCTATGGGCCGNCTTCGTNCTCCGCCTGG
ACTCGTGCGCCCTCNGTNNTTATCGTTTNNGGCACGGNTCAGTCACCAGA
GGGGGAAAG
>HP 14_SSH_trimmed.fasta.Contigl 2
GATGGAGCCCAAGCAGTGGTACACGCAGAGTACGCCCAGCGTGGTCGCGG
CCGAGGTACTCCCTCAAGTTATCAGAGATGAAAATCAGACCAAGACAGTA
AATCCAAGAGAAGATAAGGACAGAGAAGAAAAAAAAACGAACAGCTGAGA
CACAAGAGAAATCGGAAATTACGATCATTTACAAAAGAAATACGATCTGT
GTACCTGCCCTGGCGGCCGCTCGAGGGCGTACTTCTGTCGTCTTGAGCGT
ACTGATGGTACCCAGCTTTTGTTCCCTTTAGTGAGGGTTAATTGCGCXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXXCCTTACCCCCTGGTATCTCCACCCGTACTCT
>HP 14_S SH_trimmed.fasta.Contigl 3
GATGAGCCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCGCCAG
GCAGGTACCCCTGGCCGAGTGTATGACATGATCAATCGCCGAGTCTTAGA
GCCGAAGGACATCGAGATGTTCGTTCTTGATGAGGCTGATGAGATGTTGT
CACGTGGTTTCAAGGACCAGATCTACGATGTCTTCCGGTTCCTCCAAAGC
GATGTGCAGGTTGTGTTGCTCTCTGCTACCATGCCTGCTGATGTCATGGA TGTAACCACCAAGTTCATGCGAAAACCAATCACCATCTTGGTCAAGAAGG
AGGAGCTGACCCTTGAAGGTATCAAGCAGTTCTATGTGAATGTTGAGAAG
GAAGACTGGAAGTTGGAGACCCTGTGTGATCTGTACCTCGGCCGCGACCA
CGCTGGGCGTACTTCTGTCGTCTTGAGCGTACTGATGGTACCCAGCTTTT
GTTCCCTTTAGTGAGGGTTAATTGCGCXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
XXXXXGGCAGACCGTAAAGCCGTGNGGCGTTTCCTAGGCCGCCCTTTTTC
NTTTCTNTCTTCCTTTNTGTCACCCGGAGTTANACAAGGGCCCCGAAGCC
AGGGCCATGA
>HP 14_SSH_trimmed.fasta.Contigl4
GATGGAGCCAAGCAGTGGTACACGCAGAGTACGCCCAGCGTGGTCGCGGC
CGAGGTACCAGTGAAGGAAAGCCTTTCGCCTGAACATAGCAGTGAACTGT
TCGCTGACACACTTGAAGAGCTCCTGGATGGCAGTGGAGTTACCGATGAA
GGTAGAGGCCATCTTGTATACCTCGTGGAGGAATGTCGCACACGGCGGTC
TTTACGTTGTTGGGGATCCATTCAACGAAGGAATGAGGAGTTCTTGTTCT
GGATGTTGTACCTGCCCTGGCGGCCGCTCGAGGGCGTACTTCTGTCGTCT
TGAGCGTACTGATGGTACCCAGCTTTTGTTCCCTTTAGTGAGGGTTAATT
GCGCXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXCTTTAGGGCTTCCGGCCCCC
TTGAAGAGCTTTCCAAATTCGACGGCTCAAGTTTCGGAGGTNGGGAAAAC
CGGACGGGGGCTCTTGGTTCACGCGGGTTTCCCCTGGAAGTCCCTGGGGG
GGCTCNCTGTTCGACCTGCGGTACGNACTGCTTCTCCTTNGGNGG
>HP14_SSH_trimmed.fasta.Contigl5
GATGGAGCCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCGCCA
GGCAGGTACAGGTCCTTACGGATGTCCACGTCGCACTTCATGATGGAGTT
GTAGGTGGTCTCGTGGATGCCGCAGGATTCCATGCCCAGGAATGAGGGCT
GGAACAGGGCCTCGGGGCAGCGGAACCTCTCGTTGCCGATGGTGATCACC
TGGCCGTCAGGGAAGCTCGTAGGACTTCTCCAGCGAGGAGGAGGAAGCAG
CGGTGGTCATCTCCTGCTCGAAGTCCAGGGCCACGTAGCACAGTTTCTCC
TTGATGTCACGAACGATTTCTCGCTCGGCGGTGGTCGTGAAGGTGTAGCC
ACGCTCCGTCAGGATCTTCATCAGGTAGTCTGTGAGGTCGCGGCCGGCCA
AGTCCAGACGCAGGATGGCGTGGGGCAGGGCGTATCCCTCGTAGATAGGC
ACGGTGTGGGACACGCCGTCGCCGGAGTCGAGCACGATACCGGTGGTACC
TCGGCCGCGACCACGCTGGGCGTACTTCTGTCGTCTTGAGCGTACTGATG
GTACCCAGCTTTTGTTCCCTTTAGTGAGGGTTAATTGCGCXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXGTCCAACT
GATTCGTTGGCTCCGGGCCTGTCGGTTGGGCGAACGGTATACGNCCCCCA
AGGGGGAAAACGTGTCCCCCGACGGGTCTCNCCCGTCGTCTCC
>HP 14_SSH_trimmed.fasta.Contigl 6
GATGGAGCNCAAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCGC
CAGGCAGGTACTTGACACACAAACCCGTGTTTGTTAATAGCCATAATACA
AAGACAGGGTTAACAGACTGGGGCTTCATGTCCGCCGGAAACCTTCAAGA
GAGCAATGGTCAAGGTAATGCTGATTCACTAATCTATTATTCCCTTCCTT
GTCTTGTAGCTACTGATAAACAAGTTTCTTGGGTTGGTGCATTATCTTTT
TTTGGAACACACCAACCCGTATTCAGGGCGCAGTATACTGTATGGTGAGG
GTCCATGAGCAACATAGTGTCGAGAAAAGGGTGGCACTATGAAACCCGTA
GGATGCGATGAAACCAACGTGATCATGGAAATTAGAAGCATTTGCGGTGA
ACGATGCCGGGGCCAGAGTCGTCGTATTCTTCCTTGGTGATCCACATGGA
CTGGAAGGTGGACAGAGAAGCTAAGATAGAGCCGCCGATCCAGACGGAGT
ATTTACGCTCGGGAGGAGTAATGATCTTGATCTTAATAGTAGAAGGAGCC
AAGTTCGTGATCTCCTTCTGCATGCGGTCAGAAATACCAGGGTACCTCGG
CCGCGACCACGCTGGGCGTACTTCTGTCGTCTTGAGCGTACTGATGGTAC
CCAGCTTTTGTTCCCTTTAGTGACGGGTTAATTGCGCXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXGGGAGCCCTA
>HP14_SSH_trimmed.fasta.Contigl7
GCATGAGCCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCGCCA
GGCAGGTACATGAGGTAATTTAATTCATGTTCTCTTAAAAATTATAATTA
GAAAAGCAAATAAACCATTTTATTGCACAGCATCTTGGACACACTATTCA
TGGAAGTGAATATACAGCCTCTAAAACATGTGCAATTTCACAATACGTGT
GGAATGTCAGCTCTCTTAACGTATTCTTGAATTTATCGAGACGCGCAAGA
GAAATACAGAAATATCTATTCATTAGTTTTATCTATTCATCATTATTCCT
TTTTTTTTTTITTTTTTTTTTTTTTTTTTTTΓTTGGTTATTTTTTTCAGT
ATTGAATAACTAAGGTGTCATTACTATTCCTATTTTTATTTTTTGGTTAA
TGTTTTTTTCAGTATTGAATAACTAAGGTGTCATTACTATTCCTATTTTT
ATTTTTNGGTCTAGTTTTTTTCAGAATTGAATAACTAAGGTGTTTTCTTG
TTCATTTTCTTGACCAGCGGAGGAACAGCTTTCTCGGCCTTAGGAGACTC
CTTCGCTCCTTCTGAGTGACCTCCGGCGTTGCTTCAAATCCTTCAACTTC
TCGAGCCTAATGAGGTCGTCGACGTCCTTCCTCTCGCCGGCCAGGACGTG
GTTGAAGGCGAGCATGTTGTGGGGAGGTCGCTTGGCCCCCTTCGACCCGC
GGGAGCTCGGGCGGAGGGCGGATGTTGCAGTTGGAGGTGCCCCGGTACTC
GGCGGAACACGCCTGGGCGTANACTTCTGTCGCTTGAGCGTCCTGTGGTA
CCAGCTTTGTNCCTTTNGTGAGGGTTATGCGCGCCTGGGTAACCATGGCA
TACCTGNTCCNGNGTTGAAATTGTTCCGGCCCATTCCCCATTGGGGGNNT
TAGTTTTCGCNGGGGCTCAGAGGAGCCCTAATTGTTGCACNGCCTTCCAG
GGGAACNCTCGCGGTTATA
>HP 14_S SH_trimmed.fasta. Contig 18
ATGAGCTCAAGCAGTGGTACACGCAGAGTACGCCCAGCGTGGTCGCGGCC
GAGGTACTTAATAAACCCCATATCAAATTTGAAACTATACACATTAATAA
ACTCGAATTATCAATATTAGAAATATGAAAAAAAAGGATATGAAGGAAGG
GATGGAGAAGAGAGAGAAGAGAATGGCAAGGAGGAAGAACAAAAAGAGTT GAAAACGTAGCTAGAGAGAGAAAGAGGTAGGACAGAGCGGAGAGGAGAAG
GAAGAGGAAATGAAGAGAAACGGAGACGGATCGGGAGACACAGTAGACAG
AGGCGGGTGAATCAGCAGGAAAGGCAGCGGAAGGAGCGGCGTGCCTGCTG
AGCTGAGCCACCTGGAGCTCTTCCTTCCTTCTTAAACCAGCTGGAGTCCT
TCCTTTCTGCCTTCCTTCCTTCCTTCTCAAGCCAGGAGACGCGGCATGGC
GACGGGGATCAGCAGGAGAGGCAGCAAGAGGAGCGGCGTGCCTGCTGAAC
TGGTGGGTTTGTCGTTGCACAAGTTTCCTTTGCACACGTAGTTTGTATCG
TATATATAATGGCTCGTGGCAACAATCCTTGATCTCCACCGCGCGCCGTC
AGTTCGCCAAAGTCCGCCCTTACAGTTTCAGCTGCACAAAAACGGCTTTG
AGAGGCTCGCTTCGGCAACCTTTGAGGCCACGGAAGGACTCCGACAACGC
AGTAAGGATTATTGGTTTAGCTCGGTTGTATGAAAGAGAGGATTGTATCT
ATGCACGTGTAGCACTGTGTCGTCCACGGCTTGGCCTGGACGNTGGCGTG
TTGCCCAGGGACAGCACGGCACAANTTGGCCTTGTTGGCTGCCAGTGTTC
CGATGGGAAGCACTGTTTTTGGCCCTTGGCCCCTTTCCTCNCTGTNGCCC
NNGGGTCATTTCTTACGTCTGTGTCCCTTGNCCCTAGNGGATAGGCCGGG
TCACGNATTGCCGATAGTCCCCA
>HP 14_SSH_trimmed.fasta.Contig 19
GAGCCAAGCAGTGGTACACGCAGAGTACGCCCAGCGTGGTCGCGGCCGAG
GTACTTAGGACTCATTTCAAGCTGTTGCGTGTCTATGACCACACTGCATG
TAATGATATGCTATTTTTATATTGTTCnTATATTTCTGTCTATTTCTAA
TACTGTTTTTTTCATATTAAGTATCCAGACCCCCTCCTTTACGTATTTGT
AAAGATAGGGACCTAAGCTTAAGAAACCGTGTCTGCAGCTTGTTATATCA
AAACCCGAGATCATACGTAAGGCAATTGTAAATGTGAATTTTATGCATGT
GTTTTTTTGTGAAATATAAGCAAAACTTTTATTTTGATATGTATTGTTTT
GAGATATTCATTCCATGCAGTTTGATAAATTTGGCAATCCCAGAAAACTG
AATGACAATGATAATCAAGTGATATTAATATACATTGATAATAATTATGA
TGATGAAAAAATTACCTCTATCGATATTCCAGAATTATGTAAAATATTAC
TAAGTCGACTTTTTTCTCAAAGAATATAAGAACTTTGATAAAAATTTGCA
TGGCAATGAAGATACAAAATGAGACAGATATGCATGTATAGTTTGAATCA
TTAATGTTATATCATATTTCATGTTACTTTACATAATATATAAACTGTAA
CCAAATACTATAACGTTCAATAAAGGAAATAGTATTTTTACTCTAATATT
CATATAATGCTAAGGATATGCTTGTAATGTATACTGTTAATACTGACTTG
AAATTAAAGACGCAGATAGAAATAACAGTAAGAAAAAAAACCAAAAAAAA
AAAACACAACNAAAAAAGTACCTGCCTGGCGGCCGCTCGAGGGCGTATCT
CTGCGTGTACCACTGCTTGAGCTCATC
>HP 14_SSH_trimmed.fasta.Contig20
GCGCAATTAACCCTCACTAAAGGGAACAAAAGCTGGGTACCATCAGTACG
CTCAAGACGACAGAAGTACGCCCAGCGTGGTCGCGGCCGAGGTACCACAG
GGGGCACCACGAGTCGTATGCGGATGGCATTAACTGGTTCGACTGGCGTG
GACACCATTACTCCCTGAAGACCGTCACCATGAAGATCAAACCAAAGTTC
TAAAAGGTGCTTGAACGGAAGGTTCTAATTCTAAAGATTCTTAAATAGCA
TAATAGGTGTTCATGTAGCAGAAAAATATATTGTAAAATTTGTTCATGTT
GTAAGAAAAAAAATATTTGTTGTTGAACACtAAAGGAAATTGTGATATGC
CCATTTATTTTTTTTTTTAATTTTTTTTTGTTAATGTTTAGCTCTCTTCA
TATTITCTTTTTCTACTTAAAGTAAATTTTTCGTTCACTTTACAAAAAAA
TGTACCTGCCCCTGGCGGCCGCTCGAGGGGCGTACTTCTGTCGTCTTGAG
CCGTACTGATTGTACCCAAGGCTTTTGGTTCCCTTTAAGTTGGAGGGGGT
TATTGNGCCGCCTGGCCGTTATCCATGGGTCCTAGGCNTGTTCCTGTGTT
GAACATTGGTATCCGGTCAACATTCCCACACACTTACGAACCGGGGGCCT TACCGTGNTAAAGGCNGGGGTTGCTTATGNTTNACTTACTCCACTTAATT
GCGTTTGGGCCGTCTACTGNGCCCGGNGGTTTTTCCCCAGATNCGCGGGA
AAACCTCGTTGTCGCTGTCGCCCGCGTTGTGCTTTTATGGGATTTCCGGC
CAAGCGCGGCCGGGGGAAAGGCGGTTTGCGCGTATGGGCGGCTCTTCGGG
TTCTCGGCTACCACTTGAGTCNCGCNNGCCACCGGAGCTTCGGTGTATGG
GGNGACNGCGGGTTTCACGTC
>HP 14_SSH_trimmed.fasta.Contig21
GCGCAATTAACCCTCACTAAAGGGAACAAAAGCTGGGTACCATCAGTACG
CTCCAAGACGACAGAAGTACGCCCTCGAGCGGCCGCCAGGGCAGGTACGC
GGGGGCGACGCCGGGTCCTGTTTGTCATCTCCGAAAGAGAAACAAGTCAG
TCCCGATTTCCTTCAGATTTTAAGCATGACAATGGACGACCACAACGAGC
ACCACACAGGATTCCAGTTCGGCAACTTCGCCAGAAATGAGAAGCTAGCA
GCCAAGGGCTTCCCCATGCCCCGGGCCCGCAAGACTGGCACCACCATTGC
AGGGATTGTGTTCAAGGATGGCGTGGTGTTGGGGGCAGATACGAGAGCCA
CAGAAGGTGACACTGTTGCTGACAAGAACTGCAGCAAGATTCATTACCTT
CAACCCAATATGTACCTCGGCCGCGACCACGCTGGGCGTACTTCTGTCGT
CTTGAGCGTACTGATGGTACCCAGCTTTTGTTCCCTTTAGTGAGGGTTAA
TTGCGC
>HP 14_SSH_trimmed.fasta.Contig22
GCCAAGCGTGGTACACGCAGAGTACGCCCAGCGTGGTCGCGGCCGAGGTA
CGCGGGTAAGCAGTGGTAACAACGCAGAGTACTTGAAATACAACAAAGTG
CTCTGAGCAATGAGGAAAAGTTTGATCAAGAAATATCACAAATACATCAA
ATGAACAATGTATAGTCGAATGCCACGTCATCCAGAAGCATGGCAGACTG
AGAGTGTGTGAACTGAACAATTAATGAATGCTTGATACAAGCGACATATT
CATCATGATGAGTAAATTGATACACAAAGATGTAATTTAGCTTTCGTGAG
TTCACTATTCCTGGAATTCAGTATCAACTAACTGGAATATAGACTGATAT
ATGATTCCAAGAAATATTCACAATAAAATGATCACGAGAATTAAAGGTGA
GATGATCTCTTTCGGTTCGCGCCCAGATAGGAAAAGCTGCATGAAAGGGC
AGAGGGATATTTGCAGTGCTGACAGGAACGATGTTCGGCTGACGTTTGCT
CCCGCTGGCTGACAGGGAGGGAGGAGGGGGTGGGCTGGCAAGAGTCAGTT
GCCAGAGAGAGTCCGAGATCCGCGCAGGGGTCGAGAAGCCACATGTCAAT
CCGGGAGGAGGAACGGTTGGGTACCTGCCCTGGCGGCCGCTCGAGGGCGT
ACTTCTGTCGTCTTGAGCGTACTGATGGTACCCAGCTTTTGTTCCCTTTA
GTGAGGGTTAATTGCGC
>HP 14_SSH_trimmed.fasta.Contig23
GATGAGCCCAAGCAGTGGTACACGCAGAGTACGCCCAGCGTGGTCGCGGC
CGAGGTACTTCCTCCACTTTATGAGGTCACACCTCATCTCTTTACTAACA
GTGAAGTCATTGAAGCAGCATATCGTGCCAAGCAGACACAGACCCCTGGT
AAATTTAAGTCTTCCTTTACTGGAACAAAGAAGAACCCTGAACAGAGAGT
AGCCTATTTCGGAGAGGACATTGGAATGAACACTCACCACGTTACCTGGC
ATATGGAATTCCCATTCTGGTGGCAAGACAGTTACAGTCATCACCTGGAC
CGCAAAGGAGAGAACTTCTTCTGGGTACCTGCCCTGGCGGCCGCTCGAGG
GCGTACTTCTGTCGTCTTGAGCGTACTGATGGTACCCAGCTTTTGTTCCC
TTTAGTGAGGGTTAATTGCGC
>HP 14_S SH_trimmed.fasta.Contig24
ATGAGCCAAGCAGTGGTACACGCAGAGTACGCCCAGCGTGGTCGCGGCCG
AGGTACATGCAGGATCTAGGAGGAGAAGGGGAAGTGCTGCAACTAGCTTG
GAGGATTGTAAATGATTCCCTTCGCACGGACGTCTGTCTTCTATTTCCCC
CTTATGAAATTGCGTTATCTTGCATCCATATGGCATGTGTCGTCCATCAG AAGGATTGCAAGCAGTGGTTCGCCGAACTGAACACTGATCTGGACAGGCT
CATGGAAATCACAAGGTACCTGCCCTGGCGGCCGCTCGAGGGCGTACTTC
TGTCGTCTTGAGCGTACTGATGGTACCCAGCTTTTGTTCCCTTTAGTGAG
GGTTAATTGCGC
>HP14_SSH_trimmed.fasta.Contig25
GCGCAATTAACCCTCACTAAAGGGAACAAAAGCTGGGTACCATCAGTACG
CTCAAGACGACAGAAGTACGCCCAGCGTGGTCGCGGCCGAGGTACAAATT
ATTTATGGTCTGGAGTTGAAATTAATTCCCCGGTTAATTTTGATATGGAG
CTTACAGTTGTTTCCGCAATAATTGCATTCTCCATAAAACGTTTGAAAAT
GTCGAAGAGCCCCGAGGGATCATCGTGTGCCTAAACTCTTTTAATCCTGG
CAAAATCCTTGTTACTTGTCGAAGGAATAGCGCCTATTACTCGTGTTAGA
ATGTTATTTCAACACCCCTTTTATATGGCCAGCCAAACTAGGCTTCATCG
GCTAACACTCTGCTCTCGGCTTTTGTGGCGAAGCGGAGCGTTTTGGGCCT
GCGGTGAGCGGCTCTTCCGAACACCTCGCTTCCGTTTCGAAGGCTTGACG
ATTGGTCACGGTAAATCGCGTTTTTCTGATGTTCCTAAGGTGTGAAAGGA
AGCACGAGACGCTTAGTATTGCAACGATGAAGTTTAGTCGGGCTGTCCAC
ACTGTGTACCTGCCCTGGCGGCCGCTCGAGGGCGTACTTCTGTCGTCTTG
AGCGTACTGATGGTACCCAGCTTTTGTTCCCTTTAGTGAGGGTTAAATTG
CGC
>HP14_SSH_trimmed.fasta.Contig26
GTGGAGCCAAGCAGTGGTACACGCAGAGTACGCCCAGCGTGGTCGCGGCC
GAGGTACGCCTGTCGATCTTGGTCAGCAGTTCGGCGAACTTGCAGGCAAT
GTGAGCAGTGTGGCAATCAAGCACAGGTGAGTAGCCAGCCTGGATCTGGC
CAGGGTGGTTGAGGACGATCACCTGGGCGGTGAAGTCAGCAGCTTCCTTG
GCTGGGTCGTTCTTCGAGTCGGAAGCGACGAAGCCACGCTTCAGATCCTT
CACCGACACGTTCTTCACATTGAAGCCAACGTTGTCACCAGGGACAGCCT
CAGTAAGAGCTTCGTGGGTGCATCTCCACAGACTTTACCTCAGTGGTGGG
GCCAGTGGGGGCAAAGTTGACAACCATACCTGGCTTCAGGATACCAGTCT
CCACACGGCCCACGGGCACTGTTCCAATACCTCCAATCTTGTACCTGCCC
TGGCGGCCGCTCGAGGGCGTACTTCTGTCGTCTTGAGCGTACTGATGGTA
CCCAGCTTTTGTTCCCTTTAGTGAGGGTTAATTGCGC
>HP 14_SSH_trimmed.fasta.Contig27
GATGGAGCCAAAGCAGTGGTACACGCAGAGTACGCCCAGCGTGGTCGCGG
CCGAGGTACTGAAGGAGCGACTGCCACTGCCAGCTGACGACAGCGTGAGT
TTTATGTCAGATCCAAAGTGCATCATTTGGACGCCTGTCTGCCGCTCTGA
CATTGCCTGGAACTTCGAGAAATTCCTCATTGGCAAGGATGGACAGCCGT
TTAAGAGGTTCAGCAAGAAGTATGAAAGCCATATTTGCTTAAAGATGAAA
TCGCAAACTTGCTGAAAGCTTAAAGAAAGAAGATATCAGAAGACAAGGTG
ATCCAAAATTGTAGGAAAAAAAGAAAAATAAACATGAAATAACCAACAAT
TTGCACCAAAACAACAGAAAACGGAGAGCGGAGAAACAGAAAACGGAAAA
CCATTCCAACCGCCAACCAGCTGATCCCTTTTCCGTGCAAAAAGGGCTTT
AGGGACCTCAATAATGAAGGGAATCCTTCAAACACTCTTAAGTGCTAGGG
TTCTTGGATGATAAATTTCGAGGTCCTGGGGTTCTAGGATTTATTCCTTT
TTTTTGCATGGGCGTAGGATCAGTTAAGAGTTCCTTTAGAATACTTTTGA
AGAGATAAAGTCAAAAAATATTTTCTTTTCTTTTATAAATGTCTTGTGTG
TTAGTGGCATCGCGTATTATATATTTGGAGCAAGTCGATGTGATTTGTTT
ATATTAAAAACGGACATTATTTTACACACAAACNAAAAGTACTGCCCTGG
CGGCCGTCGAGGGCCGTAACTCTGGCGCTGACGTCTGTTGGTCCCCAGTT
TGGTCCCTTAGTGACGGTTAATTGGCGCTGGGGTAACCTGGGCNTAAGCC GGTCCTGGGNTGAGTGGTTCCGGTCCAATTCCGTTCTTNNCTCGNNCGCT
GTNTNTCNTTGCGCTCGGGTGCGGTCTGGGGGCCACCTAATGTGGCCAGG
CGGCTACAGGAACACGTGCGGNTTATGCACCGGGAGGTATTGGCCCCTTA
CAACACGGCGGGGTGGGCATTGACGCTGGTGCTCGACCGCCTCCNCCTCG
CTATT
>HP 14_SSH_trimmed.fasta.Contig28
GATGGAGCCCAAGCAGTGGTACACGCAGAGTACGCCCAGCGTGGTCGCGG
CCGAGGTACTTCTCTACAAGAAACGCCTAGACAGTTGAGGAACGTTCAAC
CTTTTGCTGCACTTGACTTACCCTGATGAGACATGTCGCTGAATACAATA
AGTATATATCGATGCATATTTGTGAAGAAATGGAGACTGGAGATGGCATG
CTAAGTGGTCCGTCTATACTGTCGAAGTATGTCATCACAGGTCACGTTAT
TTTTTAAAAATCTTATACCGAATATTATCTATTCAACCAACAACTAAATC
TTAATAAAATCTGGACAGATCGTGATTTCTTTTGGCGAGAGTTGCGTCTC
ACACTTTGTTTGCTTTGAGAAAAGTCCTCATGAATTCGGTCAAGCGTCTG
ACGTCATCGATGGCGATAGCATTGTAAAGCGAAGCGCGGATTCCACCAAC
CGACCTGTGTCCCTTGAGAGAAAGAAGTCCTTGGGCAGCAGCCTGTGAGA
TGAAGTTCGCCTCGAGATCGTCTTTCCCGCCTTCGCCCACCCGGAAAACG
ACGTTCATCCGGGACCTGGCAGCCACATCCACAGGATTGCTATAAAAGCC
GGCGCTCTCGTCGATAACGGCATACAGCATCTTGCTCTTCTCAATCGAGC
GTCTTTGCATCTCCTCCAGGCCGCCTTCCCGCTTCACCCACGCCAGGGAC
CTCGCCCACCACGTGGATCGCGAAGGTCGGCGGCGTGTTGTACCTGCCCT
GGCGGGCCGCTCGGAGGGCGTACTTCTGTCCGTCTTGAGCGTACTTGATG
GTACCCCCAAGCTTTTTGTTCCCTTTTAATGCACGGGGTTTAACTTTGCA
GCGCNTTGGCGTAAATCACTTGGTCAATTAGCTGTTTCCCTGTGGTGAAA
CTTGTAATCCGTCACCAATTTCCAACAACAAAGCATACGAAGGCCGGGAC
ACTTAAAGGTTGTNAAAGC
>HP 14_S SH_trimmed.fasta.Contig29
GATGGAGCCAAGCAGTGGTACACGCAGAGTACGCCCAGCGTGGTCGCGGC
CGAGGTACCCCTGGCCGAGTGTATGACATGATCAATCGCCGAGTCCTAGA
GCCGAAGGACATCAAGATGCTCGTTCTTGATGAGGCTGATGAGATGTTGT
CACGTGGTTTCAAGGACCAGATCTACGATGTCTTCCGGTTCCTCCAAAGC
GATGTGCAGGTTGTGTTGCTCTCTGCTACCATGCCTGCTGATGTCATGGA
TGTAACCACCAAGTTCATGCGAAAACCAATCACCATCTTGGTCAAGAAGG
AGGAGCTGGCCCTTGAAGGTATCAAGCAGTTCTATGTGAATGTTGAGAAG
GAAGACTGGAAGTTGGAGACCCTGTGTGATCTGTACCTGCCCTGGCGGCC
GCTCGAGGGCGTACTTCTGTCGTCTTGAGCGTACTGATGGTACCCAGCTT
TTGTTCCCTTTAGTGAGGGTTAATTGCGC
>HP 14_S SH_trimmed.fasta. Contig30
GATGGAGCTCAAGCAGTGGTACACGCAGTTAGTACGCCCAGCGTGGTCGC
GGCCGAGGTACATGGTGGTACCACCAGACATGACAATGTTGGCGAACAGG
TCCTTCCTGATGTCAATGTCGCACCTCATGATGGAGCTGTGGACGGTTTC
CTGAATACCAGCAGATTCCATACCAAGGAAGGAAGGCTGGAACAGAGCCT
CAGCGCAGCGGAAACGCTCGTTACCAATGGTGATGACCTGACCGTCGGGA
AGCTCGTAGGACTTGTCCAAGGAAGAGGAAGCAGCAGCGACGTTCATCTC
ACTCTCAAAGTCAAGGGCGATGTAGCAAAGCTTCTCCTTGATGTCACGAA
CGATTTCACGTTCAGCGGTGGTGGTGAAGGAGTAGCCACGCTCAGTCATG
ATCTTCATCAGGTAGTGGGTAAGGTCACGACCAGCCAAGTCGAGACGGAG
GATAGCATGAGGAAGAGCGAAACCTTCATAGACGGGGACGAAGTGAGTCA
CACCGTCACCAGAGTCGCAAACCTCACCGGTAGTACCTGCCCTGGCGGCC GCTCGAGGGCGTACTTCTGTCGTCTTGAGCGTACTGATGGTACCCAGCTT TTGTTCCCTTTAGTGAGGGTTAATTGCGC >HP14_SSH_trimmed.fasta.Contig31
GTGAGCCCAAGCAGTGGTACACGCAGAGTACGCCCGTGGTCGCGGCCGAG GTACTTTTTTITTTΓΓTTITTTTTΓITGTTTTTTTTTTTAAAAGCGACAA
TTTATTTGCACTACACCTTACTTAATAGAGCTTCATTTCCTGTCGCTGCT
CAGAGCTAACCTTGTGGTTCTTAGCAAGGTAGTCAGTGAACTCCTGGTAT
GGAGACTTAGTGAAGACGGCCTCCTTCCAGAGGTCTGGTGTAAGGTAAGC
ATATGTTTTGGCAATGGCAGCATATGCAGCCTTGGCAAAGTTACCGAGAG
TGGCAGTCTGTCCACGGGCACTGGTGTAGCAATCCTCAATACCCGCCATG
TTCAACAGCTTCTTGGGTACACAGATCGTATTTCTTTTGTAAATGATCGT
AATTTCCGATTTCTCTTGTGTCTCAGCTGTTCGTTTTTTTTCTTCTCTGT
CCTTATCTTCTCTTGGATTTACTGTCTTGGTCTGATTTTCATCTCTGATA
ACTTGAGGGAGTACCTGCCCTGGCGGCCGCTCGAGGGCGTACTTCTGTCG
TCTTGAGCGTACTGATGGTACCCAGCTTTTGTTCCCTTTAGTGAGGGTTA
ATTGCGC
>HP 14_SSH_trimmed.fasta.Contig32
GATGGAGCCCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCGCC
AGGCAGGTACTCTCTCTGACTACAACATTCAGGAAGAATCTACTCTCCAC
TTGGTCCTCAGACTCAGGGGTGGCCAGTGAATATTCCATTGTGATCAGTT
TCCAAAGATTTCCTGTCAACTACGCTTATTGCAAAAAAATGTAATTGCAC
ATTATTCCTTTCCAGTGTATGTGGAAATTATATGAACATGATTTTATTTC
AAATGCACATCAATATTATTTTTTACTTTTTATAATGGGCTAGCAGAACC
AAATAAAAACTTTATTTGCTAAAAAAAAAAAAAAAAAAAAAAAAAGTACT
TTAAAATACAACATAGTGCTCAGAGCAACGAGTTAAAACTGTAGCAAGAA
ACATCACCAAAACATCATATTTACAAAAAGAGTAACATTTTCTAGTCAAT
TGCTAGTCTGCCCAGACACACCGCTGGCCGAGAGGGAAGGAAGAGAGCAG
CTCTGTTAGAATGGATGCTTGATTGCAATGTGTAAACTGTAATGTGTAAA
CGATGGAGCAAAATACAGTGTAACATAAGTGAGATCGTCATTCCGGGAGG
TAAACGTCAACAAACTGCCAATAGTTTAGAAAAGTCATCGATTCCTTCGG
GCTAGTCGCGTCGAGTTAGTAGTTGTATCAGAAGTAAAGGAACGCTTGCA
GAGCTGACTGAGATGTTCGGCTGACGTTTGCTCCTGGAGGCTGTGGGGAA
AGGGGGGCCTGGCAGGGGTTAGTTGCCAGGGACAGTCCGAGATCCGTTCA
GGGGTCGAGTTGCCATATGTCAGTCCGGGGACGGTAGGTTGGGTACCTGC
CCTGGCGGCCGCTCGAGGGCGTACTTCTGTCGTCTTGAGCCGTACTGATG
GTACCCAGCTTTTGTTCCCTTTAGTGAGGGTTAATTTGCGC
>HP14_SSH_trimmed.fasta.Contig33
TGCGCGCTAATTTAACCCTCACTAAAGGGAACAAAAGCTGGGTACCATCA
GTACGCTCAAGACGACAGAAGTACGCCCTCGAGCGGCCGCCAGGGCAGGT
ACTTGCAAAGGACCAGGGTAGAAGGGCTAGTCAGCAAGATCAATGTAGTG
CTGCTTCAAGAGATCTTCAGTTGCCTGAATGTACAGCAATCATTATGAAC
ATGCAAGGGATTTCAAGACAGAGAAGACATCACACCACGCCAGAAAAATC
ATACTTACTAATCCTTCTTTTCCTCTTTCTCATCTCCCTCTTTCTTCTCG
TCTTTCTTTTTATCTCCATCTTTCTTCTCCTCTCCGTCTTTCTTCTCCTC
CTCATCTTTCTTATCTCCATCCTTCCCGTCCCCATCTTTGTCCGTGTCCC
CGCGTACTTTATTCTATAACTCTTTTTAATTATTTTTTCGATTCACTCTA
CTAAAACAATAATATTTCAAAATATTTTTATTACTTTTAAATTTATTTAT
TGCAAATTATTTACATTAGCAAGGTTTAATTTCCCGCGTACCTCGGCCGC
GACCACGCTGGGCGTACTTCTGTCGTCTTGAGCGTACTGATGGTACCCAG CTTTTGTTCCCTTTAGTGAGGGTTAATTGCGC
>HP14_SSH_trimmed.fasta.Contig34
GATGAGCCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCGCCAGG
CAGGTACGCGGGGAGTTGCCACTGCAGCAGCACAACGAACCGGTGCACAA
GAGACTCTCTCCTTTCTTTCAGTATGAAGGTGACACTGGTCCTGGTCCTG
GTGGCCGTCGTCGGCCTCTCCTCCGCCTACTCCCTCGGCGACGTCTACGA
GGAGCCCCATCGCGTCGAGAGGGACATGAGCTCAGGGACGAGCGGAAGCA
CGTCCGTGGAGAGGATAGAGAAGAGAGACATCAGCACAGGGAGCACCAGC
GACAGCGCGTCTTTTGAGAGAATAGAGAAAAGGGACATCGCTGCCACTCA
CGACTTGGATCTGAGGCGCCTCAGGAGACAAGCCTCCAGCTCCGAGAGTG
AGAGCTCTGAGGAATCTTCTGAGGAATGGGCAACTGTCGCTCCTTGAAGG
ACTCATGTGACGGCGCTGACCTTTGGCGAACGACCTGACCTCCATTTGGC
CCTGATGATTTGAATTAGGATATGTCGAATAGTTTTCAAAATTCTTTAAA
CTGTCTGGTAAGACACGTCATTGGATAGAATTTTCAGCTTTCATGTAGAC
AATAATCTGCATTTTGTGTAACCAGAATTAATAAAGAGATTGGTAAAAAA
AAAAAAAAAAGTACCTCGGCCGCGACCACGCTGGGCGTACTTCTGTCGTC
TTGAGCGTACTGATGGTACCCAGCTTTTGTTCCCTTTAGTGAGGGTTAAA
TTGCG
>HP14_SSH_trimmed.fasta.Contig35
GCGCAATTAACCCTCACTAAAGGGAACAAAAGCTGGGTACCATCAGTACG
CTCAAGACGACAGAAGTACGCCCTCGAGCGGCCGCCAGGGCAGGTACAGA
AACTTATGAGAGACCTTAAGGATCACAGACTTCTTGAACAGAAGCACTGG
TTCTCTCTCTTCAACCCAAGACAACGTCAGGAAGCACTCATGCTTTTCGA
TGTTCTCATTCACTGCAAGGATTGGGATTCATTTGTCAGCAACGCTGCCT
ACTTCCGTCAGCGTATGAATGAAGGAGAGTTTGTCTATGCCCTGTATGTT
GCAGTCATCCACTCACCTCTGGCTGAGCACGTTGTACriTTTTTTTTATT
TTTTTTGACTACTCATATTTTATTATAATTTTCAGATCCATTTATATAGG
AAAACAGCTTCCTCTGTGAGGCACTTCGCTTTTAGTGTCAATACTTCCTG
TGGCATCGGTTCATGGCCCTTCCTCTGTGGGTACCTCGGCCGCGACCACG
CTGGGCGTACTTCTGTCGTCTTGAGCGTACTGATGGTACCCAGCTTTTGT
TCCCTTTAGTGAGGGTTAATTGCGC
>HP14_SSH_trimmed.fasta.Contig36
GAGCCAAGCAGTGGTACACGCAGAGTACGCCCGCGTGGTCGCGGCCGAGG
TACACTTCAGAATGCAATGGGGGCTGTGCTGTTAACTGGGTTTGAGATGA
TGCAGATCATAGCATTGGGGCAATTTTCAGCACAAGCCTTGGCCAAGTTT
GCAACAATAGAGGCATTGGTGTTGAAAAGATCGTCTCTGGTCATGCCAGG
TTTGCGGGGAACTCCAGCAGGGATGACGACAACTTCACATCCCTTCAGGG
AATCTGCAAGTTGGTCGGGTCCAACAAAGCCGGTGACCTTGGCTGGGGAG
TTGATGTGGGAGAGGTCAGCAGCTACTCCTGGCGTGTGCACAATATCGTA
AAGGGAGAGTTCGGTGACCAAGGGAGAGTTCTTCAGGAGTAGGGAGAGTG
GCTGACCAATGCCTCCACTGGCACCCATGACAGCAACCTTCCTGTTGGCG
GCATTGGTGGTGGAGAAGTTCTTGACCAGCTGACCAAGGACATTGGCAGT
CTGGGGCTTGGCAAGTCTGGAAAACATGATTATTGGTGTTGAAGTGCCCC
GCGTACTCGGTATTCTCATGAAGGTTCGGCACTGCTGAGTCGGCATCACC
ATCGGTCACCGCCACCACAAGGTCGAATTCCAGGCCTCTATCGTTGCCCT
TGGGGAGAAGGAACCTGTTTGGCAGGCCTGTTGCACTTTCGAATTCGGAA
AGGCCAGTGCCGCCTGCCTCGACTTTTGCAAACAGGTCCTTTATGCTTGG
GACGTCCGGTACCTGCCCTGGCGGCCGCTCGAGGGCGTACTTCTGTCGTC
TTGAGCGTACTGATGGTACCCAGCTTTTGTTCCCTTTAGTGAGGGTTAAT TGCGC
>HP14JSSH_Mmmed.fasta.Contig37
GCGCAATTAACCCTCACTAAAGGGAACAAAAGCTGGGTACCATCAGTACG
CTCAAGACGACAGAAGTACGCCCAGCGTGGTCGCGGCCGAGGTACAACGA
AGCCTCGGGGGTGTGCGAGGATCCGTGCCAGTGGAACACGGGGAAATTCT
CCTGCATCGCGGAAGGCCGTTACCCCGATCCCCTCAGCTGCTCTCGCTAC
TTCGAGTGTGTCGTGGATGAGGCAGAGGAGACAGGCTACCGTCAGGAGTT
GCACGAATGCCCTGAAGGATACGTGTGGGACCCCAGCGCCAGGGGAGACT
TCGGCCACTGTGTCCTGGAGGGTGCGAGCAAAACACCCTGTTCGCCAGTC
ACCATCAACAAGTGCACCATCCCGGACAACTGGTGTGACAACACCATTCA
ATAAGTCCTTCAAGCACTGACATTCCCTCTGCTTTCTCCTTCCCCGGTCT
TAGTAATAAAACAGGGAATGGAAGAAACATGGTATAGGATGTCTGTTATC
ATGGATGTACAACAGGATTCAGAAGGACACGAGCACATTCGCCTGTGTAT
TCTGATTCCATCCACGCAGATTCAGAGACTGCTCTATGCGAGTCTGTTCT
CTGTGCGATTCCGGGAATTTATGATCTGTTTGTTATTTATTGATTGTTTT
CAGGTTGTTTGTTATCTGTTATTCTTAATTGTACCTCGGCCGCGACCACG
CTGGGCGTACTTCTGTCGTCTTGAGCGTACTGATGGTACCAGCTTTTTGT
TCCCTTTAGGTGAGGGTTAATTTGCGC
>HP 14_S SH_trimmed.fasta.Contig38
CAGAAGTACGCCCCAGCCTGTGTTCGCCGCCGGAGGTTACTGTGCACTCC
GTTAAGTGACGTCAAACCCAAGAATGTTGCCCTCCAGTAGACTTAAGGCC
GGAAAGTCCAGATCTTCATGGCATCAGTGGCATCGAACTCGTAGTGCTCG
CACAGTTAGGACCTTCCTGGCCTGGGTTCATCCACCGGGGAGTTGCCTTA
CCAGCCTCAANGTCCCCCGCCGTACAGAAACTTGTTAGAGACCTTAAGGA
TCACAGACTTCTCGAACAGAAGCACTGGTTTTCTCTCTTTAACCCAAGGC
AGCGTCATGAAGCACTCATGCTTTTCGATGTTCTCATTCACTGC AATGAC
TGGAATACATTTGTCAGCAACGCTGCCTACTTCCGTCAGCATATGAATGA
AGGAGAGTTTGTCTATGCCTTGTATGTTGCGGTCATCCACTCACCTCTGG
CTGAGCACGTTGTGCTCCCTCCACTCTATGAGGTCACACCTCATCTCTTC
ACTAACAGCGAAGTTATTGAATCAGCTTATCGTGCCAAGCAGACACAAAA
ACCTGGTAAATTTAAGTCTAGTTTCACTGGAACTAAAAAGAATCCTGAAC
AGAGAGTAGCCTATTTCGGAGAGGACATTGGAATGAACACTCACCACGTT
ACCTGGCATATGGAATTCCCATTCTGGTGGCAAGACAGTTACAGTCATCA
CCTGGACCGCAAAGGAGAGAACTTCTTCTGGGTACCTGCCCTGGCGGCCG
CTCGAGGGCGTACTTCTGTCGTCTTGAGCGTACTGATGGTACCCAGCTTT
TGTTCCCTTTAGTGAGGGTTAAATTGCGCG
>HP 14_S SH_trimmed.fasta.Contig39
GGGATGGAGCTCAAGCAGTGGTACACGCAGTAGATACGCCCTCGAGCGGC
CGCCAGGCAGGTACTAGGCCGTCAAGGTGATCCTCATGGAAAGTTTGATT
TACCACCTGGTGTGCTGGAACACTTCGAAACTGCCACCCGTGATCCCAGC
TTCTTCCGGCTTCACAAATATATGGATAACATTTTCAAAGAACACAAGGA
CAGTCTACCCCCATACACCAAGGCCGATTTGGAATTCTCTGGCGTGTCTA
TCTCAGAGCTAGCCGTTGTAGGTGAACTGGAGACCTACTTTGAAGATTTC
GAATACAGTCTTATCAACGCAGTTGATGATGCTGAAGGAATCCCAGATGT
GGAAATCAGCACATATGTGCCTCGTCTTAACCACAAAGAATTCACTTTTA
AGATTGATGTAGAGAATGGAGGTGCTGAGAGATTGGGCACAGTTCGTATC
TTTGCCTGGCCTCATAAAGACAACAACGGAATCGAGTTTACATTTGACGA
AGGTCGCTGGAATGCCATCGAATTGGATAAGTTCTGGGTAAATTTGAAGG
GTGGAAAAACTACAATTGAGCGCAAGTCCACGGAATCTTCGGTAACTGTA CCTGCCCTGGCGGCCGCTCGAGGGCGTACTTCTGTCGTCTTGAGCGTACT
GATGGTACCCAGCTTTTGTTCCCTTTAGTGAGGGTTAATTGCGCGCTTTG
GGGCGGTATCCATGGTTCCATAAGCTGTTCCCTTGGTGGTGACACTTGTT
TTCCGGCTTCACCAATTTCCAGCACAATTT
>HP 14_SSH_trimmed.fasta.Contig40
GCGCAATTAACCCTCACTAAAGGGAACAAAAGCTGGGTACCATCAGTACG
CTCAAGACGACAGAAGTACGCCCAGCGTGGTCGCGGCCGAGGTACAAATG
TAAAGAGAGGAACAACGACACTGCTTTTCTACCGCTGGGCAGCCATCACA
ACGCAACGACCTTCCTCCCCTTCGTCAGCGGCGATGCCCTGATGACCTCC
TTGAAGGCCACCACTCGCCGCCGCCCGAGCACCAAGGGATCCTCCGGGAG
TCAGAAGTACCTGCCCTGGCGGCCGCTCGAGGGCGTACTTCTGTCGTCTT
GAGCGTACTGATGGTACCCAGCTTTTGTTCCCTTTAGTGAGGGTTAATTG
CGC
>HP 14_SSH_trimmed.fasta.Contig41
CAAGCAGTGGTACAACGCAGAGTACGCCCGTGGTCGCGGCCGAGGTACTT
ACAACCATCAAATGCACTTTTCTTGTAACGGTCATCTACCTTCCAAAATC
CCACGGCGATGCTTGTCTTTTCACACTTAACTTTCTTGAGGATTTCTGGG
ATTTTGTTGACAATCGCGTGCGTGC AAGTGTAGCCAGAAAAAATTCTCTG
AGGATTATAATCTGGAGCGTTGTAGGTGAAGAGAAAGAGTTCCTTGGGGC
ATTCGTCCCTTTCACTCTTGGGAATCTCCTTCTTGTCCTTTTTTTTCGGG
TCTCTACCTCCGGCATGCTCCTTCTTCCATTTCTCGAGCATGGGTTCTAG
TGCCGTGTGGATCAACTGCCATTCAGAGTGCCTTCTTGTCTCTTCACGTC
CCTTTAAATCCATTTCTTTGAACGCGGGGGCAAAGTTGCAATGGGCGTGA
ACTTCCCCGGCTTCGTCAAAGTTTATTCTATGGCAATCTGTGCCATTGAT
GTCCTCTCCTGGCAGATACAGCACAGCAAACTGACGTTTCTCGGAGAGCA
TGTATTTCCCCTCCTTTTGCATTTTATTCAGAGTGTCGATGGCAGTCTCT
GTTGCAACTATGTGGCAGAAGAGGAGCGCCAGCAGGGAACCCAGGAACCA
GAAAAAACGGGAAGCCATCGTCACCCGCTTCTCAAGCAGTCTTAATCTGC
ACTGATGGCCTTGAAAGTCTGGTAGAAACCTTGAAAACCTGACCTAGTCA
GGGTGTGCAGCTGTACCTCGGCCGCGACCACGCTGGGCGTACTTCTGTCG
GTCTTGAGCGTACTGATGGTACCCAGCTTTTGTTCCCTTTAGTGAGGGTT
AATTGCGC
>HP 14_SSH_trimmed.fasta.Contig42
GCGCAATTAACCCTCACTAAAGGGAACAAAAGCTGGGTACCATCAGTACG
CTCAAGACGACAGAAGTACGCCCTCGAGCGGCCGCCAGGGCAGGTACATC
ATCAGCTGACCGTTCGCTTTGATGCCGAACGTCTCTCCAATTACTTGGAT
CCCGTCAGTGAACTTCACTGGGGTAAACCCATCGTTCAAGGTTTTGCTCC
ACACACCACTTACAAGTATGGCGGTCAGTTCCCCTCTCGTCCAGATAATG
TAGACTTCGAGGATGTGGACGGTGTTGCCCGAATTCGAGATCTGCTCATT
GTTGAGAGCCGAATTCGTGATGCCATTGCCCATGGATACATTGTGGACAG
GGCTGGCAATCGCATTGACATCATGAATGAGCGTGGTATTAATGTCCTCG
GAGATATCATTGAATCATCAATGTACCTCGGCCGCGACCACGCTGGGCGT
ACTTCTGTCGTCTTGAGCGTACTGATGGTACCCAGCTTTTGTTCCCTTTA
GTGAGGGTTAATTGCGC
>HP 14_SSH_trimmed.fasta.Contig43
TAGGAACCAAAAGCGGTACCATCCNTTACGTTTCAGCGACCGAAGTACGC
CCAGCGTGGTCGCGGCCCGAAGTAACCCNAGAAGTAGGAGAATAGGAATG
AGAAGTCCAATGGGGTGTGACGTCCGTGTTGGTAGATGAGTGATACCGAA
AAAAGAAAGGATAAATGTTTATAGGATATCATAACAGATATATGATAATA TATGGTGTACTTTTCTGGCATTCAATACATTACATACAATTTACGTAAAC
AAAACTGATTTAGATTGTGACCCACATAATAATGGCAATGAAAATATAAC
AGAGGGCAAAACTCCCATTGGCTTCGGTAATGAAAAACTACTTTCTCAAG
GTTGCTCCCGCGTACCTTGTGTATTAGGGAAAATCAAAATAATCTTAATA
AGATAAGTAATCCCGAAAGAGAAAGAGCTAATATAAATAGATAGTTTTCG
TATTAATGAAATTATAAAATTTATATTAGTAGTGAAATGCTAGTCGATTT
TTCATATCTGGTTGATAGAGAATTAAATTAAATTTAGTTGCTTTGAGGTC
GAAGAAAGCTTTAAAGTAATAAAGAGTAGGAGGGAAGAGCTTCTTATTCT
AATAATAAGTTTACTATAACGAAATGGATTTAAGTATTATTGAATTAGGC
TTAAAAACAGCCATATTAATAAAGCGTTCTAGTTAATGTAAATTCATTAA
TTAATATTTATATAGTGAAGGTTTAGTAATAATTATCTGTCTCTTTTAAT
AAATATATCATTAAAAGTAATAATGATTTTATTAGTAGAAATAAGTTGTG
TAGTAACAATTTAAAATAAGGAAAGAATTTTTAGTTGATATAAGATATAA
TTAAGGAACTCGGCAAATAATGCTTTTGCCCTGTTTATCAAAAACATGTC
TATATGATTGGTATGTAAAGTCTGGCCTGCCCACTGATTTATTTTAAAGG
GCCGCGGTATACTGACCGTGCGAAGGTAGCATAATCATTAGTCTCTTAAT
TGGAGGCTTGTATGAATGGTTGGACAAAAAGCAAACTGTCTCAATTATAT
TTATTGAATTTAACTTTTAAGTGAAAAGGCTTAAATAATTTAAGGGGACG
ATAAGACCCTATAAAGCTTTACAATAAGTTATTTATATTATAAATTGTTA
GTATAACTTGATTTTAGATAATATTTGTTGCGTTGGGGCGACGGGAATAT
AATGAGTAACTGTTCTTAAGTTATTTAATAACAGTAATTTCTGGAAAATT
AATGATCCTCTTTTAGAGATCATAAGATTAAGTTACTTTAGGGATAACAG
CGTAATCTTCCTTGAGAGTCCATATCGACAGGAAGGGTTGCGACCTCGAT
GTTGAATTAAGGTTTCCTTATAATGCAGCAGTTATAAAGGAGGGTCTGTT
CGACCTTTAAATCCTTACATGATTTGAGTTCAGACCGGCGTGAGCCAGGT
CGGTTTCTATCTCTTAATTTTATTAAAGTTATCTTAGTACCTCGGCCGCG
ACCACGCTGGGCGTACTTCTGTCGTCTTGAGCGTACTGATGGGTAGCCCA
GCTTTTGTTCCCTTTCGTGAGGGTTAATTGCGC
>E:\AnalyzedData/50513_2_2_Ql_Kubota_Hpl4_02Run01_Cp312_MDl/Ql_Kubota_Hpl4
_02_02B01.F.esd 486 MegaBACE.
GATGGAGCCCAAGCAGTGGTACAACGCANTAGTACGCCCAGCGTGGTCGC
GGCCGAGGTACAACAATCTTAAGAGATTTTAACAGTCACTTGTCTTGTTT
GATTATTTCTCATTCTGTATAAATATCTATTTATATGCAGATATGGAGTG
CACTCCATAATCATCTGGATATAATACTGCATTTGAAAAAATCTATCTTT
GTTCAGTATCAGCATAAATGGCAAAATTAATGTAATTACATGTATTACAG
CATAACATCTAGTTACTATTATCTGGTATTCCACAGCAGTTGCCATCTTC
TCATTGCATAAACCAAATCCATTCTAGTGTTATATTCTAGAAAAAAAACC
CCACATATGTTCAAAAATACGAAAATCTTGTTAAGTTGCAATTAAAAAAG
AATAAAAATCCATAGCATCTGTTATCTCACAGCCACAATTTACGAGTACA
GACACTTCACTGAACATTCATTGTCAGACAACTTTC
>E:\AnalyzedData/50513_2_2_Ql_Kubota_Hpl4_02Run01_Cp312_MDl/Ql_Kubota_Hpl4
_02_10B02.F.esd 944 MegaBACE
TGGAGCTCAAGCAGTGGTACACGCAGAGTACGCCCAGCGTGGTCGCGGCC
GAGGTACATTGATGTCAAATTATATATAAATCTGGAATACTTCTGTTCCT
CCATAATTCAACCCTAGACTCTAAATTGCTGACCTTTTTACAACTTCGGA
AAGATGGAAAAATTCTTCTTACAGAATATACATCCTAATAAACTGGTATG
TTTCTTAAAATAATAAAAATTCTTGGCAATATTCTTGAAGACATAATGAC
AGTGACCACAACTTCAATGGAAAAATTGCAGCTAAGAACTTCCTTCATCA
CAAAACTGATTGTTCTTGATTTCATAAATGCTCAACTGGTGCTGATGCCC TGACGACCTTAAAAATTATCCCTTACTCTTCGTAAAATATGTATATATAT
AAGATCAAGATAAATCAACACAAAATGTAAATTATCACATAATCCACTAT
AATAAAATATAGATCATCGAAGATAGAGAGAGAGAGATAGAGAAAGAAAG
AAAATGGATAAAAAACAACTGATAAGGCAAAATGGATATGTCACTCTCTC
AGATGGGCCTTGTAATAATTCATCAAAGCTCTCTATGCTGCAATCAATAG
CCCACTCTTTTAAGTTACATGTAAGTTTCTGGGTAAAAATAAAGAAAAAA
TATGAAACAATGAACGAAGAACAGAAAAAATTTGATCCTTGGGATGAAGC
CAAGCATTCTAAAAACCAGGNACCATGGTCCATTAAAAGGCAAAATAAAA
ANAAATACNTGGTAAACTTGGGTTAGAAGGGTAAAGGAGAGAAGAAGGAA
GAGAGAGAGCAGCAGAAGGAAGAGAAGAGGAGAAGAGAAAAGCCGGGGTA
CACTTAGGCTGGGGGCCGGTCGAAGGGGTAACACTGACGCGGAGGTACGN
ATGCACCCATTTGGCTCTCTGCGACACGCNANANTCGCCCCTCG
>E:\AnalyzedData/50513_2__2_Ql_Kubota_Hpl4_02Run01_Cp312_MDl/Ql_Kubota_Hpl4
_02_23G03.F.esd 955 MegaBACE
GGCCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCGCCAGGCAG
GTACGCGGGAGCCATATGGCACTGCCCTGCCACCTGAACTAACTGCCTCT
GACGCCACAGGTTTCCAAGCTTTCTTGGGCCAGTCTCTTGGAGGAACAGG
AGGTATTAAAGATGATTCGGGTCAAGGAACCACAACTGCATTTACTGAAG
CCATTTGTGCCCATCTTGGCACAAGGGCTCTTCTTACACCTGCTGATGCC
AAGGAAGCAAATTTGGCTTTACAGTCAACAGAGGCTACTAAAGTCCCAAA
ACCTGCAAAACAGATGCCTGAGAATGCAGCAGCTATGCATCCCGTCATGG
TTCTGCATCAGATGAAGCCAGGCCTGCAGTATGCTGTAACCCAGGCTACA
AAGGAGAACAAACCATATTTCACGGTTTCTGCTGACATTGATGGGAAACC
ATTTACAGGAGTAGGACACAACGTGAAGAAAGCGAAGTTTATTCTAGCCA
AAGAAGCCATTCAAGAATTGTATGGCATTGATTCAACCTTTGAGGCTCCG
GCΓΓAACATGAATACAACTTTTGTCTTAAGGAATAΓΓTTTTTTAATCTAA
TTGCTATTGATTAAAGTTGGAACACTTTGTAAGTCATTGCGTGTGGTTCA
CTTGCTTCTGCTTGCAGTGATCTCTGTAACTTTTGTTTATTGAATGTGGT
CTAATAACTACAGGGGTCTCTATTTTGTTTCCTCCAATTTTTACCCAATT
AGATATGCTATCTATTTCACAAGTTTGGTCCACTITAGTTTGGGTTACTC
NGGCCGCGAACCACGCCGGGCGTTNCTTCTGCGGCTTGAAGCNGTACTGA
TGGTCCCAGGTTTGGTCCTTTAGTGGGGGGTAATGCGCGCCTGGGGACAC
TGGCTCCNNNCNCCGTTCCTCGGGAAGNGTTCGGCCAATCCCATAGNCGG
GAAGT
>E:\AπalyzedData/50513_2_2_Q l_Kubota_Hp 14_02Run0 l_Cp312_MD1/Q l_Kubota_Hp 14
_02_39G05.F.esd 965 MegaBACE
GAGCCAAGCAGTGGTACACGCATNGTACGCCCTCGAGCGGCCGCCAGGCA
GGTACTGTGCAATGTCTGACTCCTACGATGCACATGAATACCTTGCACTA
TTGAGAGATATTAATGATTATGGAATGAAATATGGACTACATGGCTTTGA
ATAATTGCATCTGAACATGGCAGCACTGTGAACATCTTTCTGACATCAGC
AAGTAATTTGAAAAACTTTAAAACCTTTAAAAAAATCGTCCAGAACTAAT
CTCGAAACCTTTTTTATCTAGTATATGGCAAGCAAAATACAAAAAGGCAC
ACTGGCCTTCTCTGTATCATGTAATTCCTTTAATAACAGACTTTCAAATG
AATTAAATCTCCTTAATAAAAAAGCATGTCTTCATATACTCCACATGTGG
TTGATGAACACCGCATCCAGTCAACCAGATGGGCCTCAAAGTAAAAGAAT
TTCCTATAAGTAGCATAATATTTTTTACCAAACTGATTCCCCATTTTCAC
AATTACTGACAGCCATGGGGTAAATGTGCCATTTAGAACACCAGATACCA
CACTTTGCAGCACAAAAATGCTTTTGTCTACACCATCCTGAGATTACACA
CAAAAACTAAGCCACTCACTTGCTTAGTTGGATGTAGAAGAAGAAGAAAA AAAAATCCTAATGTATTTGTGTGTGTGCATGTGTTTCACATGTGAATGTA
CTCGGCGGGACCANGCGGGCGTACTCTTGTCGGTCTGGAGCNGTACTGGT
TGGGTACCCCCGNTTTTGGTCCCCCTTTTATGGAGGGGTTAAATNGGNGC
GCTGGGGGGTACACGGGGCAGGCGTTCCTGGNGNGAATGGTTTCCGGGTC
AAATTCCCGATNGAGGCNGGGGCGCTAAGTAACCGGGGCCCTNTGTTCTT
CTCTCCTCCCCTNACCTCNTGTGCGCCACNGGCGNGTTCGGAACATTGCG
TTATAATCCGGAGTG
>E:\AnalyzedData/50513_2_2_Ql_Kubota_Hpl4_02Run01_Cp312_MDl/Ql_Kubota_Hpl4
_02_47G06.F.esd 1066 MegaBACE
GATGAGCTCAAGCAGTGGTACAACGCAGATGTACGCCCTCGAGCGGCCGC
CAGGCAGGTACCATGTGCGTCCACCTCGGTCTGCACTTGGGGACTGGAGG
ACAGATGCAGGAGCTGAGGAGAGTAAGATCAGGAATACAGGGTGAGAAGG
ACTCGCTAGTAACCATGCATGACGTCTTAGATGCACAGTGGCTCTTTGAA
AACCATGGCGACGATTCTTACCTCCGAAGAGCAGTGAAGCCCTTGGAAGC
CATGCTCACCGCTCACAAGAGAATCATCATGAAGGATTCGGCAGTCAACG
CAGTTTGTTACGGAGCCAAGATCATGTTGCCTGGCGTGCTGAGATACGAA
AACGGCATTGAGCTGAATGAGGAGATTGTAGTTTGCACCACCAAGGGAGA
AGCCATTTGTATTGCTCTCGCCCTCATGACCACCTCCACCATGTCCTCCT
GCGATCACGGCGTTGTGGCCAAAATCAAGAGAGTGATCATGGAGAGAGAT
ACATACCCGCGCAAGTGGGGCCTGGGACCAAAGGCAACTATGAAGAAGAC
CATGATCAAGGATGGTCTTCTTGATAAGCACGGAAAACCAAATGAAAACA
CCCCGTCAGATTGGTTGCACAATTATGTCGACTACAGAACGGTGAACAAA
GGAACCTGTAGACAGTTTTGCAGCAGCTACACCTACCGTTGAAGCTACGC
CAACAGTAGAACCCAAGAAGAGAAAGTTAGTGAAGGCTCCAAAAAGGCTC
AGCAGCAGCGGGGAAACTCCCTGCGGTTAGAATGAAAGCCACAATTTCAG
GCAAGGAACCGCCTGGCGGGGGTTACNTCGGCCGGACCAGGGGCGTCTTT
GTCGGCTTGACCGTATCGTTGCCCCGTTTTGGTCCNTTTCNTCGTGCNCT
TTTCTCCGCTTGTCGTTCACTGGCAGTCTCCGTGGAATGTTCGGCCACAN
TCCACANCGGGGATTTGTAGCGGGTTGTGGACCACATTGTGGCGGCGCTC
TCGNNGCTGTGTGTAAGACGCAGGTTGTGCTTCTTCTNTCTGTTNCNTCN
TTGNCCGTGCGCGCCT
>E:\AnalyzedData/50513_2_2_Ql_Kubota_Hpl4_02Run01_Cp312_MDl/Ql_Kubota_Hρl4
_02_56H07.F.esd 691 MegaBACE
GATGGAGCTCCAAAGCAGTGGTACACGCAGTAGTACGCCCTCGAGCGGCC
GCCAGGCAGGTACCTTGTTTAAGAGATAGAAAAACAACAGTAATATAAAT
ACCAAATAAAAGGAAAAATTCAGAAGTAAATGGCAATGAAGATGACAAAG
ATCTAAAGAAAATGACTACAATAACTTGATGGTTTATAATGCTTCCTTTT
CTCCATACAGAGTTGGATAATGCCAAAAATACGGCTAGATATAGATATGC
TACCAACAACAGTACGCAAAAGGCACCATCATTACACAATCTCAAACAAG
AGACAAAAAATAATAATTTACTGACCTGCTATCACACAAAAGTATTAGAT
ATAAACTGTATTATGCATGTATACTTTGGCACACTTAAATGTCACCCAGC
ACAGTCTCCATTCTGCATTCACGTCCTAGCCACGTATTTGACGAGACTGG
GGGATATGACGTAACCAGGGGGTTCGATCGTGTTGACCATGTGATCCAAC
ACGCGGTGGAAAGGCACATACACGGAACACCTGACGTCGCTGAGGGAGTT
TGCGAGCTTGGCTGCACTCGCGGTTGGGAGGCTCATGGCGGAAAAGTGGA
CAGGCTCAGGAGGGTCGTAGAGGCGGTAGAAATCGGGAGCAAAGCGGCGT
AGCTCGCTGACGTAACCCGCGTACCTCGGCCGCGACCACGC
>E:\AnalyzedData/50513_2_2_Ql_Kubota_Hpl4_02Run01_Cp312_MDl/Ql_Kubota_Hpl4
_02_82Bll.F.esd 788 MegaBACE AATGGACAAAAAAACGAATGCAGAAAAAAAANGGAAGGAGAATTGGAAGG
CTCNAAAAGCCAAGCTTGGGTAACAACGCTAGNAATGTACGCCCCTTCCG
AATGGCCTGGGGGCCCCTGGCCAGGNGGCATGGTACATGGGTGNCACGCT
CAAGATCTCAGGAACCCCCTTTCCGCCAAAAAGGGGGGGGGGACAAAAAC
AAAANGGCCCCAAATTTCCCCCGGCCCAACCCCCNGGGGGGGGGGAAAAA
CGGGGTGTGGGAAACCCCCTTTTCCCAAAAACTGGTGTGCACTAGTTCCT
CAAACCCCTGCTTCCTTTCCCCTTTTTTTGAACGATAGTGTGAGCCGGAG
TTGAACAACCAAACCCTTCCAAACCCCAAATTTTTGGGGCTGGGGGGGCC
CTTTTTTTTCCNGGGTTGAACTGGTCCTGGCCCCTTTCTCCNCCCAAAAC
CCCTTGGGGCAACGGTTGGTGGGCCCCACACGGGCAAAACACCCGGCGAA
CAACAACAANCACAAACAAACCCGCCCCCCTGTTTTTTTTTAAATAAAAC
CCCCCCGTGTGGGTGAAAAAAAACCCCNCAAATATTTTTCTCCCCTGGGN
GCAAACACACTACACAACAACTTGGCTTGGCCCCCCCCCAAATCTNGGCA
AAAAACCCCCTCATAAAAAAAAACTCACAAGTTTTTAAAACCCGAACACC
ACCCATATGGACCCAACNACCGCGCACNCGGCGAACAACATTTCCCCTCG
GCCCCCCTAGGTCTGGGCCCACAATCGGNTGGGGCAAG
>E:\AnalyzedData/50513_2_2_Ql_Kubota_Hpl4_02Run01_Cp312_MDl/Ql_Kubota_Hpl4
_02_84Dl l.F.esd 760 MegaBACE
GATGAGCTCAAAGCAGTGGTACACGCATAGTACGCCCTCGAGCGGCCGCC
AGGCAGGTACCTCATCAGGTCAAAGGTCAACCGGTCATTTAGCCGGAAGG
ACGTCGAGGCGAAAACAGATATTTGCATTACAGACACTTGGCCTTGCGAT
ACCATTGAAAAGTTGTTGTCAGGGGATAAGTGAACAAACCAAGGTCTTAG
CAGAGAATCCTGAGGCTTGGAATGACAGCCAGTTTAGCCAGCTGGAAATT
CAGAGCAAAAACCTTACTGAAGCAGTGGAGGATGCAGAAAAGGATGATTT
TAAAGAGGAGGAAACAAAGGAAAGAATAAATGACGTGAAACAGGTAGTCC
AAGAAGGGAGGCGAGTGGCTAACGAACAGGTCAAAAGTTTCAAAGCAGCG
GAACGAGACAGTATCATCTTTACGTCGGTGCTGGGGACTGTGGGCGGCCT
CATGGTCGTGGGTCTGCTGGGCATCGTCATCTTCGCCGTCTTCAAAGGCA
AGAAGGTCTCCAAGAAGCCGGGAAACAAGGGCAATAATCAGGCTCCCGAA
GAAAAAATCCCTGTCGGCGACTTTATTCGCGCCCACGACAACCCTCCGCC
CACGAGGATTTCCCCCGAGGTTAGGAAGGACCCTTATGCCCGCGACGACT
ATGACACGCCCTACGCACCAGATGCCCCTGCGAATCGCGACCCTTACGCC
CGTGGGAGGTCACCGCGGAGGCTCGCTCGCATTACTCCCAGGGCAGGGTC
NCAGGGGGGT
>E:\AnalyzedData/50513_2_2_Ql_Kubota_Hpl4_02Run01_Cp312_MDl/Ql_Kubota_Hpl4
_02_85El l.F.esd 1474 MegaBACE
TGGAGCTCAAAGCAGTGGTAACAACGCAGTAGTACGCCCGTCTGGAGTCG
GGCGGCCGAGGTCACGNGGTGACGGAAGTTTGTATGGCATTCCGCCACTA
TCAACCTGTAACAAGTTATGCGCTTGTGCTCAAACCTNCCACATCCATCG
ATCCACACCATCCATAGCTACCACATCTCAGTGAGAGCAGTCCTGAACAG
CGCTCGCTCTTCTCGGCACTTTCTCACGCACATGGTCTTTAACTCTCATC
TCGCGTCAGCCGGGACTATCGCTCGAATGNGTATTCGCTCCCGACCGTAT
AATCCTTGTATCGGAATACGCGGCATGACCGAGAATCGAACAAATANGTA
GCACTCCCTCGTCCAACATGAGAAGTGAGTGACTATGCGGCAAAATGTAA
AGGGCGAAAGCTAACAAATTAGGTATAGCTATTCTTGAACTAGTATAACA
AGTACGTGCAAAAATTATTGTAGTCAAATGACTTCTATCTGGTATCGGAT
CGCAAGCCCTTAAATTAAAGAATAGGATTTGGTGTTGCCCATACTCCCAA
AGATAAGATACAAAGAAACAGATAGAGAAAAAGACAAAGAAAGGAGATAG
CATCGAGCCACGGGCGCACCACTACCTNGCCTAGGGGGCCCGGTTACGTA TCGTGGGCTTCTGCTACATTTAGCATGGCGATACATCGTCTAGGTCAACT
CGCCGACTTAACCGTANCCACTAAAGTTGTATGTGTGAATCTCATAGTCT
GCAGGCGGACATGTATGNTTTGAAGTACCTTGGAGGTACAAGTGAAGACT
ATTCTATCGCTAGTCCNGGGCACAGTGGGTTTATTNCAGGGCTANTAGAC
CCNTTTCATGACTTTGCAAAACNCGGCGTNAGAAAGCAAATAAACAAGGT
AGGTAAAAGAANTATCGCGCGTGTTCGCCACATCATATAGGCGGATAGAA
TGGCCATTTNGCATGCGGACAAGGTATGAAATGTAGNCGGGTCTNAAGCT
ATACGAGCTTGTCGCCCGACGTTGTAAACCCAATATTCCGNGTTAGTATC
CCNTTGGNGGTCGATTCCCCATGGGGAATTATTACCCTCACCCTTTGGNG
TCTACACCCTTAGCAAAGCTGTAACTAGGAGTAGGGTTCCCTGGCGTGAG
TCCGGAGGGGCCTTCGGTTCTTTTGGTGCCCTTTGGCCCTCCCTTGGGCA
GGCGTCCGGCTTCCGGATGGGCCNGTCACGGTCCTGGTTCCGGGGCCTTT
GGAAGGGCCGGTAAACCTGGGTTTGTTACCCCCCNGCTTTTANGGGGCCC
CGTTANCCGGGGGGGTTTCCACCGGGCCAGCCNCCGTGGGGGTGTACTCC
TGGGGCTACACNTTGTTTTCCCCGTGTGCACTGTATGCGGGGGCAACACT
GTGCTTACTTCTCTGCTCTAGTGTNTCCCGGGGTGTCCAATGAGGACACC
CCCGGCGCGGATGTAANGAGACAC
>E:\AnalyzedData/50513_2_2_Q l_Kubota_Hpl 4_02Run0 l_Cp312_MD1/Q l_Kubota_Hp 14
_02_93E12.F.esd 1592 MegaBACE
GAATGGAGCCCCAAAGCAGTGGTAACAACGCCAGAAGTACGCCCGTCGAT
GGCGTCGGCGGCCCGGGAGGATAGCCATACAGACAGCGTNGCCTNACAAN
GACCATTTGAGAGAGGACTCGACAAGAACATTTCTCGTAAGAACAACGAC
AGATCCACATGAGTTGTTATCTCTGCTANTAAACACCGCATAGGTCCGCG
TGTCTATAGCGATAGCCGACATACATATAGCTTTCGTAGCGTATAGTTCT
CTCTATTTCTCGATCTTGACCCGGAATTATGGGGAGATANGCATATCTCG
TCTCTAGCGCGAATCGACTTGGCGCTCTATCTCNGCCGTATCTAGAACAT
AATTGTAACTCTGGAGAGAGAGATAGTTTGTAGTACTCATNGGGCCTGTG
GTTTTCTAGTATGAGGGCTCCCCATTCGCATCTTCCGAGCCTACTGAGCT
AGCCAGCACCAACTGTGTGATAGATCTCGCGCCGTCCCAACTATCTCCAA
CGCTAGGTGTTTGCCAACCATCTCTTACACTTCTACATATACTATCATAA
GAGGCCAGGGTTCCGTAGACGTTTCTNAATTTAGTAGAATGCCTAGGACC
ATTTTGAGTTCGGTTTTGCCACTATAATGAACCTANGTAACTAGCGAACA
AAAGAGAATTCNCCTTTGNGTTATATAAAGTTTATTACAGTACGTATTCT
TTTTCAACCTATNAGGAGGTAAATCCTTTAAATATAACCGTAAAAGTACC
TTGTGAAACTCAGGNNGAAAGCCTAAAGACCCCTCAAATATANTCCGGTG
AAACGAACGCGTAAACTATTTATTGGGGGGATGAGTCCGANATAAACTAA
GACATTTTCCAATTCTCCGATTGGTTTTTTAAATCCCCTTAGGGGACCAA
TTAAAGTNTGGAAGCAAAATCTTATTGTCNCCNTCATACTTTTTTCCCCT
TGAAGGTNGCGATGTGGGTGGNCCTTATAGTTGTTANGGCGTTTGAGTGT
CGCCCCCCANGGGTTCCTCTTTTTCTGATACTCCTTTTTGGTGGTCACCC
CCCTGGCGCCTTAATCNTTGGGTTGGTATTGAGCACCCGCAAGGAAACCC
TTTTTACCCTTATTNCCTCTGTGGGGGGNAGGTGTTAAACCCCCTTTGGG
CCCCCCCTTTGGTGGGCCGGGGGGGCGTCTGGGGCCNTTTCCGCGGAGGG
GGCNGGGCCCGGGGTTTAAAACCTNTCATTCCCGNTGNGTTTGCCNCGGG
CGTCCCGGTTTTTGGGCACAGTCCCCCGGGTTTGGACCCCTGGGANCCCT
TTTGGTGGGGTAACCCCCCCCTGATTAGATCCNCTTTGGTTATTTTTGGG
CGNTTTTCCCCCCCCCTTTAATNGTTACAGTTTTTTTGGCGACAGGGTGG
GCGGGCTTCTCCCAACTATTTTTTAGGGGCCTGTGNCCCAAGGCCTGTGT
GTTGTGTGTGCACCTGTGTTTTATAGGTCTTCTCCCCCNTTCCGTGTGTT TTGCCCCGAATTTTGANTNACCTTTGTGCCNTATTTTGGCGCCTTTCGGT
TNNGTTGGNGCACTACAGCAGTTTTTGGGCTCCCTAANTTCG
>E:\AnalyzedData/50513_2_2_Ql_Kubota_Hpl4_02Run01_Cp312_MDl/Ql_Kubota_Hpl4
_02_94F12.F.esd 532MegaBACE
GAATGGAGCTCAAAGCAGTGGTACAACGCAGTTAGTACGCCCTCGAGCGG
CCGCCAGGCAGGTACCAGTCATGCCACAATCATTGCAGGTCATTACGAAG
CCAAGTTTTTTTTTTTTTCTTCTTTTTTTTTCTCTCTAGCAAAATTCTAC
TTCCTTGTAATGCAATGAGCTTTGTGGGAGATACATAAGGGGAAGCCCCC
AACCAGTGTAGTGCAGTGAGAAGCAGCAAATGCCCCTACACCCCTTTCCA
TGGTAATGTTTTGTAGCCTCGTTTATAAAAAAGTCGTGGTCTTCACATGG
AACTCTTATGTGAGTGTGAGGTGAGACGAGTCGAGGCTCATTGCAAATCC
CATCGCACGTTTCGGTTGGGGTGCGACATGGCTAGCAGGGAGGAGTGAGT
GCAGAGTGGCTTITTGAGTTGTATAATTTTTGAACAATGTTTAATTGTAT
CTGTTCACTATATATTTATTATCTTTATTATCATCATTATAATGATTATT
ATTTAAAAGTATTTGTGACAAAGAAATNGTAA
>E:\AnalyzedData/50425_2_2_Ql_Kubota_Hpl4_01Run01_Cp312_MDl/Ql_Kubota_Hpl4
_01_A19_289.F.esd 1054 MegaBACE
GATGGAGCCAAGCAGTGGTACACGCAGAGTACGCCCAGCGTGGTCGCGGC
CGAGGTACATGTCCTTCTGTGATCAATGTAATCAGCTTAGTGCATCAGCT
GCAAGGGCCCAGCAACCAAGTCACTTCCACATAAGGCTGGGGTAATGTTC
GCTCCACTGGGTTGGTAGATACTTTACCTCTTTATCACATCTATTCAGGA
ACTCCAGCTAGAGGGGCACCGGGTGGGGCAGGCGTGGGCGAGTTCATTTG
TCGGCCCTGTTCCTTAACAATAGGGTAGAAGTATGGGTGTTCCATGGCTT
CGTGGGCTGTCAGGCGCTCTTGGTGATCATAACGCAGTAATTTGTCCAAA
AGGTCTAGTGCTTCAGGAGAAACTAGATGCTGATTTTCACTATGGACAAA
CCTTTCCCACCGCTTCCGGGAATGCCTTCCCAGAATGTCATTGAACCTAG
GATCTAGCTCAATTTGATATTTCTCAACATATTCATAAAGTTCTTCGGTC
CCCAAGACCTTTGCAATGCGCACCAATTGGTCATAATTGTCATGCCCATG
GAAACAATGGTTCCTTGCGGAAGATCATGCTCGCTAGCATGCAGCCAAGT
GACCACATGTCCAATGAGTAATCATACATCTGATAATCTACAAGAAGTTC
AGGGCCCTTGAAGTATCTGGATGCCACCCGGACATTGTATTCCTGGCCTG
GGTGATAGAATTCTGCCAAGGCCCCAATCAATGAGGCGTAATTTCTGTTC
TCATGGTCTATCATGACTTTTGAGGTTTGCCTCTNCGGATGCTTATTTCC
ATNCTGGGCACGGTATCTATGCNTTAANGGAGCTCGTAACNTGGCCTGGG
GGCCGATCCAANGGCCGATAATCCGGCCGTTGAAACCGNACNGATGNACC
AGTTTGGTCCCTGAGAANNGCATCACGCGCCCCTTGGGTGACACAGGCAA
AACATCCGNGGAGAAAATTCCGCGCAATCCAANANAGCGGGGAAAAGTAA
CGGGGCAAAGAGACACAAATGTGGCGCCNCCACAGAAANGTGCGAGAAAA
ACCG
>E:\AnalyzedData/50425_2_2_Ql_Kubota_Hpl4_01Run01_Cp312_MDl/Ql_Kubota_Hpl4
_01_A23_353.F.esd 1811 MegaBACE
GGATGGCCCCGGACAGACGAGTGAGTAACAAATNGCAAGTAGGTGCGCCA
CTTCGCAACGCGCGAGCCAGCTCTAATGTCGAGGTGTACNTATAAANCCA
TAACAAGCGACCACACTACCTTTTAAATATGTTACACTTATTCTTGCTCA
CTTGACTTNATTACTACTCTCTCACACANTCTAAGTCGGAATACTTTTGG
TTAATTTCNCAGTGAATAAGGCACAATCACTNCAACACGATGNACGCTCC
TTGCATACCGGATATTGAAGACAAGCAGCTCTAGTTATTTATATATCGTA
TGCAGGAAGCGATCCTAATCGATTTGCATGGNAACTTTTGGGTCCTCATC
TACTCGCGAAAATTCAACCAAAGCTATTACTCGATTCCGAGATGTGGGTG AGCGATTAATTATATGTGNGANCCAGAGTANAACGAATAAACTAAAACCT
AATATAATGATAGGTTCCCTGTTCGTTGTTATCTTAACCCCGTAGNNACT
CNGTGCGTGGCGGTNATCGAATGTGGGCGNTAACTTCTTGGACCGTTCTT
TTTGNTCACCTGGGCGTTCGGNAAGCCNACCCGACCTGTCCGGCCTACCT
TAGTTTGGTGGGTACCTTCCAATTTAACTGAGCGGCGGGTCCGGCTTCCT
NGTGGGCGGCCCGTTTTCCGGATGCCGGGTTACCCTNGGCGTTTGCCGGT
TNAGGCACCCCNTAGNGGCGTAATAATGAGGGCCCCCCTCGCGGTCTGGT
TAGGATCGCGCCCGGAGGGCGTTTTGAAAATTTTCCGGTCGCGTCCGGNC
TTCTNAGGGGGCAGGTTATAACTNGCGCTCTGNGGGTTTCCGGGTCCCTG
AGGCGTTCTTGGTGGCCGGGTCTNTCGNTTANGGTTCGGGAGAAAAATTA
ACAGGGGGGTCTCCCCNNNNCCNGGGCCCTTGCCAATTTCCCGGGTTGCT
TCCGTTTTTCTCTCCCCATAANTCCAAAGTGTAATTTCGGCACCAGGCCC
ACAGGGCCGTGTAAGGGCCCTAATTTGGGGGGCCCGGGTTTGGNTGGGAG
GTGAAACCGGCGTGGGCCCCTCGGTTNGGCCAACCTTCCGGGTTTCGGAG
ACTGNTAGGNNAGGCGTGTCTGGCCCTTTCCACGCCGAGTTTTGGNCAGT
GTGTTGGCGGTTTTAGCCGGGCCCTTCCAAAGCTGGGGCGCGCCCTGNCG
GGTTTTTACCCAACGTGTTTTTCGGGGCCGCGGAGGAAGGGCTCCCCTCA
GNTTAGAGGGCTTGGGGCCCCCCCTGGGGCTTCCCGCTTGTGTTTTCCGA
GGGCTTTGTGTATATCACTTTTATGGGGTCCATTAATAACGCGCANCTTC
GCCCCCTGTACCCGGGGGCCAACGGAAACAGGGGGCCACACCGGGGGCTC
TCGTGTGGGGCCTNTTTTAATTTTCCCGCGGCGTGGTCGCGCCTTTGGAT
TTTTTACCTCGTGNAGAATTTTCCCCGGTTAGCGGGGTGGCTTCCCTCCA
CCCCCCTGTGGTANACTNGACCCGGGGGGTTTTGTCCCCGCGCGCGAGNN
CTTGTGGTGAGACCCCTTGGGGGTCTCCCTGGTGTGACCTTGGGTGGGGA
GAGAGCCCCGATACTGNCCAANGGCGCCTGCCCTTTTCCAAGGGNTCCTG
TTNNCTCCTCTTGTCCCAATTTGNTTGAGGGCGCGGTTGGGTAANTNTGG
CCTCTGCCGATCTGGTTTTNNCCCTTTGGGGGGGGGACCCCACACTTCCG
GGGGGCCCGTTTTTAATTNCTCGGGGCACCNGGGATTTATGTGGAACNCG
GCTTCTCTTTT
>E:\AnalyzedData/50425_2_2_Ql_Kubota_Hpl4_01Run01_CP312_MDl/Ql_Kubota_Hpl4
_01_El l_165.F.esd 1100 MegaBACE
GAGAGCCAAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCGCCAGG
CAGGTACGCGGGGGCCAGGCCGTTGTCAATGGACAGTTTAAGGAAATCTC
TCTTGAGGACTACAAAGGCAAATATGTTGTGCTCTTCTTCTATCCTCTAG
ACTTCACATTTGTTTGCCCTACTGAACTGATTGCCTTCAGTGAAAAAACT
GAAGCCTTCAAGGAACTTAATTGTGAGGTTATTGGGGTGTCGACTGACTC
TCATTTCTCACACTTGGCATGGAATAACATGCCACGAAAGCAAGGGGGTC
TGGGTGGCTTGAAATACCCCCTACTTGCTGATTTCAACAAGACCATCTCA
AGAGACTATGGCGTTCTTCTTGAGGATGCAGGCATTGCTCTCCGTGGCCT
CTTCTTGATTGATCCCGAGGGTGTCTTGAAGCACATGAGTGTAAATGACT
TGCCAGTAGGAAGGTCCGTAGAAGAAACCCTGAGATTGCTAAAGGCCTTC
CAGTTTGTGGCTGAGCATGGTGAAGTATGTCCAGCCAATTGGCAGCCAGA
GAGCCCAACCATCAAGCCTGACCCAGAAGCCTCTCTTGAATATTTTGAAA
AGGTCAACTAAAAATAGCAATGAAAATAAAACCTTCAAGTAGGGGGGCTA
GCATCGAGAATGTCATTGAAAGAATAAGGCAGCTGTATATGTCATATGAT
GTGTGTCTGGGCATTTGCATTGTATTGTTCTCAATGATGGTTTCCCTTGT
ATAGGAAAGAGATTAATTGCTTGAGTCATCAAAGTAATTTTCATTTGTAA
GGTNTTGACAAATAACCAATATAATCTAAAAAAAAAAAAAAAGTCCCCGG
CGGGAACCAGCCTGGGCGTTACTTNGGTCGGCTGAGTACGATTGGNCCCA CGCTTTTGTCCTTTAGGAGGGTANGGGCCTGGGGTATCAGCAAACGNCCG GTGAAATGGATTTCGCGCAATCCACAAAAGAACGGGAAAGTTACACGGGG GGCTCAAAGAACCACCATAGTGGGCAACCCTGGAACACGCTAATGNACAG CGAGAGNNTGNTNCCCTTCGNTNGTGTCTCCNCTCAANCTNCACCNCGCC
>E:\AnalyzedData/50425_2_2_Q l_Kubota_Hp 14_01Run01_Cp312_MD 1/Q l_Kubota_Hp 14
_01_E15_229.F.esd 1648 MegaBACE
GAGCNGGGGCGCCCGACCGGACAGTGCGCTAACAATGCGTTCATGAGATA
GCGACCCGCCNAATATTACCGAACGCNGTCAACTTATANTGAGACAGGTC
GTTNGTGCNCGAGCTCANGCTAGCGTGTATCACTAATGTNAATTGTACCA
GAGNACTCAGTTTACTCATNGGGAAAGTGGTATATCCCCAGTTCTAAGTT
CGACTTTCATCATAATCTACCTGGTACTAGCATTAAGAATTGGAATAAAT
CCTCCNGTGTACGTGTGNTAAGTTAATGAAATTGGNACTCCACCTACTCA
TGTTCGTATATAAAAAACTAGATAGATTACCATTTGTACGGCGACATATA
CGAGTGAATATGTATATTTGGAATCAGTAGCATAATTCTATGTAGTATTT
ATGTACGCATGTGATCCATATCTCATGAGTCAATACGCAATAGACATATA
TACTATATAGACATACAATAGAAATAAAAGTTACTCACGAGANAATCATT
TGATTTAGTACGGACACTCTGTAGAGGACATCACCAAGTAGNTTTCCTAC
GGCAAAACAAGAAAAAGACACTAGTGGTATATATACTACCTACGTTTATC
AAAGCCCCTTAAGCTTCCGGTGCAACGCTCTATAAATGGATATCGACAGG
ACTGTATGTTTCCTGGTNCCTAAATAGACCCTATCGGAGTTTTGTTTCGT
CCGTGTNTCNNTTCCCACCTTCTACCCCTTTCTTCGGCTCTCTAGGGAGC
CCTAACTTGTTATTTGTTAACCCCTNGGGCCCCCCTTTGTGTCCGGTGCC
TTCCNAGGTCCGTCCCCGATNGGGTGCCTGGTTTACCNTCTCCTTTTGGT
ACCTGCTTCCAATCTTTGCAAAAGGCCCCTGTNTCAATNCCGTTGGGCCA
CATTTGGGAGGGTTCCACCCCGCCTTAATGGGCTTTTATTCTCTNTGGGG
TTTCTCCCCCCCTCTCGGTTNAGTTCCTTGAGGTTTCCGCGCAGCGGTTG
CCGGTTAATATTGACGGAGTTGCTCTAGGTNCAGCGCCCTGCCCTTTTTT
GGTTGCCCCGGGGTTTACACTACTTNGCCACAAGTTTCGGGGGTTTCCCA
CTTTTGAAAGTCCGTTGGGTTAATCTNCCCCCCATTGGCTTTGTCTTGGG
AAGGATAATCCTCCGGCGTTATTTATTTACCGCCTGGGGCCATNGCCGGA
AGGCTTATAATTNTTTCCGCCGGACCGAAACCCGNAACATTCTAAGNTTA
GACCTGGGTAAAGGCCCCCCGCGGGGTGGGAAGGGTCCCCCAATTTAAAA
GNACCGGTTTGTGGTTTTAAAACACACCGTGTTCCNCCTTTGTGGGTGGG
GGAGNGGTTTAGGAGCTCCCCCCGTNTTGAAAAAATTTTGCCAACCGTGT
TTGTGGTAAACGNCCCNCTTNTAAAAAAATATGTTGTTCCCCCAACCCAA
TTTTTCTTAAAAATNTCTTTTTGGACCCGGTTTTATATAGGGCCCCGGCG
CCGTTTCCAAACCTTTTTGGGGTCCCCCCCCGAGGGGGTTTTGTTTTCCC
CCCCCAAAGAGCTCCCCCCCTGGAGGGGGGAAAAATAATAGANCGCCCTC
CCTTGGATATAAAACCACTTGGTTATAAGGGNGGCTCCTCAGAAAAGG
>E:\AnalyzedData/50425_2_2_Ql_Kubota_Hpl4_01Run01_Cp312_MDl/Ql_Kubota_Hpl4
_01_G23_359.F.esd 1104 MegaBACE
GATGAGCCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCGCCAG
GCAGGTACACTTGCTTGCACTTGGCAGTTTCATTTCCAGAGCGCACACCA
ACTACTTTCCCGTCCTCCACCACAATTTCGTCGATGGGCTTGTCAAGCAT
GTATGTGCCTCCATAGATAGCAGACAACCTAGCAAAGCCCTGGGGCAGCT
CACCCAGCCCATACAGAGGATAGAGGTAAGGAGACTTTCCGTAGCGAGCG
AGAGAGTCACTGTAAAGCTTAATTCTCTTCAGGGCTTTCCCCGGCGGGCC
AATTGAGGTATTCGTCATCCCTATATAGAGCAAGAGCGTGACCTGTGAAA TCAATGGTGTTCTTGTCGAGGTTAAAGTGGGTGAACACCGCATTCATGGC
GGTGGTTTTGGGGTCGAAGCCAGGCATGGCCTTCCATGTGGCTGGGTCAT
CGTCACGGTAGTCCTGGGCGAACACCAGGAAGTTCTTGAACCTTCGCTTT
TCAAACATGCCCATCAGATCTGAGGTAAGAGCCTCCTTCTCATCCGCAGG
GACCTTGGAGATTTTGTTTCCCTTGTACTACTTGGATGGCAACCTGAAAA
TCACCCAGAGCAGTGCCATCATCCGTCACATTGCTCGCCAGCACGATTTG
TGTGGCAAGACAGAGGAGGAGAAGGTTCGTGTGGACATCCTTGAAAAACC
AGGCTGTTGACTTCCGCAATGGATTTACACGACTCTGTTATAGAGAATAT
GACACCCAGAAGGATGCTTACTTAGAGGCTCTGCCAAAAAACACTTAAGC
TCTTAACTCCGGATTTCCTTTGGGAAACGCAAATGGTTTGNTGGGGACNC
ATTTTAATCTACGTGGACTTTATCCTGGTTTGGACTCTTGATTGNACTTT
CGTACTTNGGGGACCNAGCGTTNGNNTGTTCTCTTTCTCTCTTAGCGTTC
TAGTGTGCGNTTGTGTCCCTNAANGGGTNTGCGGCCTGGGTTTCGGNCAG
CTTCCTGTGGATTTCTCGCNTCACCAAAGGGGGGCAGTTCTGGGNTGATG
ACCCATTGTGCGTCGCGTCGCAACGCGGTTNTCTCTTCCCCTCNCGNCCG
NCCG
>E:\AnalyzedData/50425_2_2_Ql_Kubota_Hpl4_01Run01_Cp312_MDl/Ql_Kubota_Hpl4
_01_K21_331.F.esd 1004 MegaBACE
TGGATGGTAGCTCCAAAGCAGTGAGTAACAACCGGCCAGTAGAATAACGC
CCNAGCGCGANGTGCGGCCCGGCNAGCGACGAGTGACTTTACGGAAGTGG
TTTTATTGGCGTCCTCACTCAACCAACACGAGCGTGTAATCTACAAGATA
TGTGATGCGTCCCAGAGTGTCACCGCTTCCTACGTTCCCAGACTCAATTG
TCAGTGACATTGCTCAAGAGTGATGTNGTGTGACGCGATGTGTTGTCATT
CGCNCTACTGATGAAACCTGTGTGCGTGTACGTATATANGTGAGTAGCCA
GAATGTCTCGCNGTNTNACATATATATGTCNCCNCNTGTCTTACTGAATA
TGNGTCGGAGTCAAAGCGACCTCTGGTCCACCAATNCAATCACTTTCGAA
CAAGTTCCATTAGCAAATTTGATTCCTTGTTGAGAAATGCAGAGCGGTAC
ACCTTTGAGGNTGCATAATTAANTTTGGAAATCGCTCGCGTTTGTGGTAT
AAAGCCACATAAAACGTTGGCTANGCTTATCGCCCTCCTGTTGGGCCTGC
GGCAGCCTCAGCATTTGGCCGCGTATCACNCTCTGAGCGTTAGTGTCACC
CCACACTTGGCTATTTTGTGNANGNCGCTCTCCCAAAATATTCTCGTGCC
GNTTTATTGATGTNTAGCGATGTCGTGGATATANTAAAACAAAGCGCCGC
CGCGCNGCCCCTCCCAATTGTTTGTGGCGCCGCGNTGGACGGGGAAAATT
AAGNAAAGCAAAGGGGCGATTCGCATTANAGGACGANGGTTGCTAGGTGG
AGAAAAATAAAATCCGTCCTTNGTTCTGTGGAAACCCCGNNGAAGGGGGT
TTTGATAATACTAGNCGNTTATTGAATGGAAACACGGGGATACTAANACN
NCACTCATTATGTAGAGGGGCAGCACCAATGATAGNTAGAGTACTGANTT
AAGGAAACGGGAGACANAATAAAAACAGGNACGCCAAGATACAAGAAGCG
GNGT
>E:\AnalyzedData/50425_2_2_Ql_Kubota_Hpl4_01Run01_Cp312_MDl/Ql_Kubota_Hpl4
_01_M21_333.F.esd 992 MegaBACE
GANGGAGCCAAGCAGTGGTACACGCAGAGTACGCXXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXKXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXTACATTCAATC
CTAAAGGTNTCTTTTGCAGTTACAACCTTGGGCTTCTTGGACCGTTCACC
ATGCTTAAATCCCGGCGGAGGCACCCTATTTTCANGGNACCGGGTCNANT
CCGGCACATCCCATAGTTGCCTGAGATCCCGGTCGGGTTGAANTCTTCAC
GACCGGAGGGGTGACCNTCGGGCCCTCNGTCNTCGTGTAGGG
>E:\AnalyzedData/50425_2_2_Ql_Kubota_Hpl4_01Run01_Cp312_MDl/Q2_Kubota_Hpl4
_01_A06_081.F.esd 893 MegaBACE
GATGGAGCCAAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCGCC
AGGCAGGTACAAAGTGGACATTGACTCAAAGCTTGGCAAGAGCCAGGTCA
TCACTAAAACTACTCCAGCATCTCAATCAGGAGGGTATTATTGCAATGTG
TGTGACTGTGTTGTGAAGGATTCTATAAACTTCCTCGACCACATCAATGG
CAAAAAACATCAAAGAAATCTTGGGATGTCCAAGAGAGTTGAACGATCCT
CTCTGGACCAAGTGAAAAAACGTTTTGATATGAATAAGAAAAAATTAGAA
GAAAAGAAGAAAGACTATGATGTAGAACAGAGAATGCAAGAATTAAAGGA
AGAGGAGGAGAAGCTTAAAGAATATCGACGTGAGAAACGCAAGGAACGAA
AACGTAAGGCAGATTCCTCGATAGATGAGGACCAAGGATCTGGCATGGAC
CCAGAAATGGCAAAAATAATGGGTTTCTCTTCGTTTTCATCATTTAAGAA
ATGATATTATATTCATATTTATTTTCTACATTCAAGTGTTGTTTATAATT
ACTTTAAAGTCAATATACAATATTAACATGACTATATTGTAAGATGAGGT
TTTCTGTTATTTTCATGTTAATTGTTCAAGTTATGCAATTACTCTTTTCC
AAAGTGATAACTATAAAAAGTCATTTTANTGTGAAAGCAGGATGACCATT
GTCCCATTTCTTTTCTTTTGTTTTGCCCTGTATTACTTTATTTATAAGAA
TAATCTTTGAGCAAAAAAAAACAAAAAAGTCTCGGCGGACAGCTGGCGNA
ATCTGGTCGCTTGACGTACTGATGGTACCCAGTTTGGNCCCCTTAGAGGG
TANGGCGCTGGGGAANAGGGAAAGCCGGGGCTCTTCTCNNCNC
>E:\AnalyzedData/50425_2_2_Ql_Kubota_Hpl4_01Run01_Cp312_MDl/Q2_Kubota_Hpl4
_01_C08_115.F.esd 1693 MegaBACE
TGAGCTCAAAGCAGTGAGTACACGCAGAGTACGCCCAGCGTGAGTCGCGG
GCCCGAGAGTACNCTTACANTTACCAATTCCATTATNAAAAATCCCACTT
TTAATATTAGAACNCTGGANTTGGTCAAATANTCTGGGAATGGGTTACAC
CTTATACTCTAATTATGTGTTCCATTAACTNGACCTTTTACTCGGGAAAT
GGTCCGNACCCGAAAGAGCCAGTTGGTTTAATTTACACATTATTCCAAGT
TTAACAAATCTCTAACTCTAACTTTGTTGACCCAAAACGGGTGGTTTGGC
CTTACCCTGNGCTCAAGATATAACTCGGGCGCCATTTTCTCTGGTTCCNA
AATATGTCGTGACTCTCCCTATGTTTACATCTGTGGCCCGGTATTCCCAG
ACCGCGTCTCTCTAAGTTTTTACCCCCCAAATGTGNAACCCTATTATAAC
CACAACTGTGGGNCTATTTGGGGTGTCCCNTGGTGTCCCCCCGAGGTAAC
TCCGTGCCCNCGTTGGGGCGGGGCGCGGTNCCAAGGGNGCCTGTTAAACC
TACTCGTGGGTCCCGNGCTCTGGGAAAGCGCNGTTACTCCGTGGTNTGGT
NTAAACCCNGAAGCTCTTTTATTGNGGTTCTCCCCCTCTTATATATAAAA
TNTGAGAGNGGTCGTTAAAAATTTAANGCACGGCCGGCCTAATGGGGCGN
ATTAATCTCCAANNTGGGTGTNACTATAACGNCTGTATGAGTNTACTCCC TCGTGGTTGNTTGAGAANAATTGGGTTATAATTCCGCGGTNCTACCACCA
AAATTTCCCCCAACCACAAAATATTAACAGAAGGCCCGCGGGGAGAACGG
CCTATTAAAAGTTGGTTTGTTTACAGAGCGGCCTCGTTGGGGNGGGTTAG
TCGCTCTTATAGTAGGANTGGTTAGGGACGTCCTTTAANTCCTCCAACTT
TTTAATATTTGTNGGGCTGTTTGAGGCCCGCCTTNCCTNGTTGGCCCCGC
GTTTTTACNCCCGTGTGCTGCGGGGGGGAAACACCNCNTTGTTCTTGNGT
CGCCGCGTNCGTGGTCTTATTTAATGGTAGGCTATCTTGCGGGGCCCAAC
AGCGCGGCCGGCCGGGGGAGCAGGGAGCGNCGGAGTAGCAGCGCCAATTA
NTNTGAGGGCGGCGCCCTATCACCAGCCGGGATTTCTCCCCGACGGCACA
CCAAATGNAGAACTTCGATGATTAGGCCACCTACGGCACCTTTCTCACAG
NACATTAAGGCGGGACAGACAGCGAGATTACACACAGCTCTCACCATCAC
ACAAAGGGGGGGAGAAAACAACGGGTNATTCACTCCCACNACANAATCAT
CCCGGNGGGGNAAATACGCCCGCGNAGGAACACAATTCTTTTTGTGACGC
AAGGGCGGCAAAGGNGGCCGAGAGGCACCAGAAAGAGCGCGGGGTAGGAG
GTTACCAATAGGGTCCGGCCCCTTAGGAATTCAANNAAGTNANATNGTAC
NCTTNATGTTNGTGTAGCACCCCGGTAAAAAACGGGGCTCGAGAGACACC
ACGGAGTAGGTACTAGCCGCAGAAGGACGTATCCATCAAGGAGGGCNGCA
ACAAAGTTATTGAGGAGACCGGAGAGTGCANAGCCCCCCTCTCTTCTTCC
TCNTTCTCCACNGTNGCNACACAATACTCTCGCTTCTTNTACT
>E:\AnalyzedData/50425_2_2_Ql_Kubota_Hρl4_01Run01_Cp312_MDl/Q2_Kubota_Hpl4
_01_G22_343.F.esd 1004 MegaBACE
GATGGAGCCCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCGCC
AGGCAGGTACGCGGGCGAGTCGCCGTCGGAGCGTCCATCGAGGAACATCT
TTTTTTCGATCTCCTTCACCTAAACAAAATGTCTCCCAAAGTCCTCGTTG
GCGTGAAGAGGGTGATCGATTATGCCGTGAAGATTCGTGTCCGCCCCGAC
AAGCTGGGTGTTGTGACAGATGGCGTCAAGCACTCGATGAACCCTTTTGA
CGAGATTGCCATTGAAGAAGCAGTCCGTCTGAAGGGGAAGAAGATCGCCA
ACGTTTGCTTCTGAAATAAAGAAAACCGATGGTGAATTGGAGGTGACCCG
AGAAATTGATGGCGGGTTGGAGTCCATCAAGGTGAAGCTCCCCGCCGTTG
TTTCTGCTGATTTGCGACTTAACGAACCTCGCTATGCCACGCTCCCCAAC
ATTATGAAAGCCAAGAAGAAGAAGATTCAAAAGATGAAACCAGGCGACCT
TAGTGTGGATGTAACGCCTCACCTGGAAGTAGTTGAGGTGGTTGACCCCC
CCGTGAGAGGCAGGAATCAAGGTGGACGACGTAGACGGCCTCGTGACCAA
GCTCAAGGAAGCCGGACGCATCTGATGGGACTGTCATTATGAAATCGGAA
ATGGAATAAGATGTTGATTGAATTTACGGTGTTTGTATTAACTGTGAGTG
TGAGAATGAGTCACTTATCAATGCAATTTAACGTTCAACAGTTCTTTATA
CATTCTCGGGAAACCACAACTAACCAGATNTAACTTTTGGANTGTACTCG
GGCGCGACCACCNGGGCGTACTCCTGTCGCTGACGTACTGATGTNCCAGT
TGTCCTTGTGAGGTTATGNCGCCTGGGTATCAGGCCAANGGGCGGTCGCA
CNTTCCNNCCANNCCTTGGCGGCATATGTACCGGGGCNTGGNGCCACATT
GGTGGCCGCGTCTCGGAANTCTGCCTTTTTGACCCGGNNGGGGTGGNCCC
TCAC
>E:\AnalyzedData/50425_2_2_Ql_Kubota_Hpl4_01Run01_Cp312_MDl/Q2_Kubota_Hpl4
_01_I02_025.F.esd 1720 MegaBACE
GCAATGGGGAGGCCCCAAGAGAGCCAAGGTNNAGNTGNGANCAAAANCGA
GCTATGTAGATACGGGCTCACGTTTTAATAGTACAGCAACTCAACATAAA
TTAAGGGTGCATGCGGAGGGGCTGAGGCTGTCACTCAGTTGGACCAAGGT
AGCAGAGAATAAAGTCATGATTTATGGGAGGTGCGGTTATGATTTTTATT
GATCTGAACATAGCTAGCATAGATTATGTTATAAGAGTGTGTGGTTATGC TATAAATTGTTAATCAAACAGAGGAAAAAAAtTACGTCCTGATTAAAGAG
CTACTGCTGAAGTTTGGATTATCTGAGCATGGTTAACTAGTTATTTAACG
AAACTCCCGNCACAGATATTTTGAATTATAGAGAGAGGAAATACTACTGC
CATAAAAAATCTATTCAACTTGAACTTGTTAGCACTTCGAGACACTGACT
GTAACCGACCGCCCTCGCGCGACTTGTTACTGTACTTAGTTGCGGGTGGC
ATATGCAAGACCGCTAATCATAGAATTTGGTACCCAAGCCTCTGATATAT
CGCTATCCCCCCTCTGTCAGGATCGCAAGGCGCGCTTTAAGTCTGGTCAG
CCGCTAGGTGCCCGTTCCAATTCAATCGGGTTACATGAAAGTCTGGTTAC
CACCCATTGCTTGNTAGAGAAATCCCGTATTATAACCTGGCATGCGAGCT
AAATTTCCGACCGACCGACATCAGTGACCGGTTAAGACTCCCGAGTGGAG
TCCCATAACAGACGTTTGGTTCATACACTGTCGCTTTGGTGGAGATAGTC
CCTGTTTAAATTGCACGGTGCGTAACGACCTTAAAAATCTTTCCCAACCA
ATCTAAAACTATTGAACCGGTATGGCCCCGGCGTGCAGCTAGGTCACACA
GGCTTGTTTACACAAGGCTCCTGGGGGGAGATAGCCCCTTGATACTTGGT
AGGCTCCGAAGGCCTTGACAAACTTTTCAAACTAGTAAATACTGTGGGCC
GATAATCTGGCCTGGCCCTGNCGAGCGTAGGCACGGCGGCCCGTGTTTTC
TCGACGGTTCCAGTGTTGAGAGGACCGCCTTGCTTTCTCCGGGCCCTATT
CCCTTGCCGGNCTTTCCAAACTTTGAACCTTTCCGTGGCTCCGACCAGGC
CTTCCGGCGGTTNCGGNTATTCCAGGGGGCTTGGGCTTGTGNCCGGGAAG
GTCCTGTGGTGNAGTTGCCAGGCCTTTCCTATTCTTCCGAATATGGCGCN
CTGCGGGTCACATAACTTAACCTGTGGGTTTTTACTTCCCCATGCCCAAG
CACACTGCCATGCGGGTGGAATTAAACCTNGCCCAGTGGGAANAAAGAAN
GCATTAGGTTTGAAGGTCCCAAAATATCCGGCCCCATGGCCAAGATAAAG
CGGCCCCAGGGGGCAAACTNCCGGTTAACAAGAAAAAGTNGGCCCCGGGC
GGGTATTGGCCTTGGGGCTGGTTTTATNTTCCCNATTTATTGGTCTTTCC
CGGAACCCCCCCCGCTTTTAGGAAAGGCATTCGCCAAGAAGAAATTCCGG
AAGGCTCTACAGGCTTCTCAAAAAAGGTNTTGGGGAAAAAAACCCCGNAA
AAAGGGGATCTCTTAGAGCNACATTCCAGGGGGTTTTCTCCCCCCTNGAA
GACTCCCTCTCGTTCCGGCACTTTCTNTGNTTACCCGCCCCTTGGCGTTT
AAACGGANAAACGTGNCGGC
>E:\AnalyzedData/50425_2_2_Ql_Kubota_Hpl4_01Run01_Cp312_MDl/Q2_Kubota_Hpl4
_01_I04_057.F.esd 1043 MegaBACE
GATGGAGCCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCGCCAG
GCAGGTACGCAGATGAACTACCTAAACAAGGCTCTAGACATCTTCAACAC
ATCATTGGTGACCCCCATCTACTATGTGTTCTTCACTGCTTGTGTCATCC
TGTCATCAGCCATGCTATTCAAGGAGTGGAAAGGCCTTCCAGCCAAGGAT
GTGATTGGGGTCCTATCAGGATTCTTCACTGTTGTCATCGGCATCTTCAT
CTTGCACGCCTTTAAGGACATGGACATCACTTGGACAGGCATGTCGACCA
TGCTCATGGCCGGTGGAGTCAGTGAATCAAGGCGAAACAGCACAGAGGAC
ACAGGAAACGAAGTGACACCACTGTCAGAGGAGGAGGAGGGACTAATTAC
CTCCGAGCCTCTCTCATATGGCTCCAATAAGAGAGTTTACTAAAGCTTAG
GACAAAGCACAACATCATTCCTCTGCCTCGTTTCCATGTAATTCAATTAT
GCTCAATGATGACGACTGAAGTGCTAAAGATTTTTTTTTATTATTATTAT
TATTATTATTGTTATTACTGCTCTCGTTCAGAGTGCTTTGATAGGTTATG
GGTTTCTCACTTTTATACAGTAGAGGGAGAAGAAAGTTGTTTTNTCTCTG
AAGATGGAGGTTACNAATACGAATTTTACGTGATTAAAGTATTTTTGGTA
AACTACTTGAAAGTATACATCTGTGATGCATTCTTTTATATGAGAACCAA
ATGTCTTGCTCTCTTCCCTAAAAAATATGGTCACCNGGATCCGGAAATTT
AGCGCCTAAAACAAACCNGAATAGAAATTNCCGNGGGTTGCCATTAACTT ACCAACTTCCTCCGGGtTCAAGGGCTGGTTGTTCCTTCTCCTTTTTCCCT
GCCTNTTCNTCCNTCTNGCTCTCAGTTCTGCNGGCACCGGTCTTCTTGAC
TTGCCCCTTCCTAAGGTGCCNCTCANTCTTCTTTGTTGCCCCAGGGGGTG
GATTCTTCTCCCCCNCNCTCTCNTGCNNGNCCNCTCCNTGCNC
>E:\AnalyzedData/50425_2_2_Ql_Kubota_HP14_01Run01_Cp312_MDl/Q2_Kubota_Hpl4
_01_I08_121.F.esd 2604 MegaBACE
TCTGTNTGNTGCGTTTGTTTGGTCCACAATAGGCTGGTTTCTTGGCCCTT
GCTGGNGGGANGTTATCCAACCCATGAAAATNTAATNCATAGCATAAGAA
TCAGNTAAGCGAANTGCATGCTGAGTGAACAAGCAAGGGACTAGTNCGTT
GTAGACGCTGATCGCGATGCGCGACTACGTCAAGAGTCGANGAACACAGT
ANGGTCAGCGCAGCATAGTAGGCACTGCACATCGCNAGGATAATGACANC
ATGAAGACGCCACACAGACGGACATACAGACGATGAGACAGNCAAGCATG
ATAACAACGGCAACNGCACGCAACGTACAACGAGAATGCGTACACANGCA
CAGTGCAATAATATCACAACACGCGAGTGGGCGGNGTAGCAGATGGNTGC
NGATCGGACCATAGAAGCACNGAAAACGCTNTGNCCGGNCGNCGANNAAC
ACATCNGGCAGAGTCAAGCACAGAANNTGACGCCTGACAGTATAAACGAA
AGGGCTGGCANACCNNAAATACAANTACCNAGGTGTAATANNAAGCCCCC
TCGCGAGCGTTNTANTCCGNTAATGCCCTCACTNGCCATGTGGCATCGCG
CAGCATANGNNTGATGTANCGACNCACCGTACCTGTCGACCGCCACACCA
CTNACGCCTAGCCTCAGCAAACGANACCTCTTTTNCGNNTNTNGATNAAC
CTCANTCNAATCACCAAGTGGCNTCNGTAGCANAGGTCCNCAGTATCTCT
TACTGNAGAACNACNCTNAATCTATTCCGTGCTGTGAGCAGTNNAANANG
GNATAGAAAGNATCNCCANCNAATGTNTNGNTAGNTCAGCATCGCCGTTC
NCAGAACNCGGGTTNTGATCTGTCCANATTGAGNATACGNTANACCCNCG
NANTNANATNTANTTCGGGACTAACGCGGTNCGAGCTNCCGGTGTCTNAN
GCAATNTCGTCCTGACCTGNCCGATGTACAGTNTAATNACGGCGTANGGC
NNTGTGAGACCCTACGCAAGTGCANACTCCNCTACTGTTTTTTGATGCNT
NACGTANGAGNGTTCTCCGTAGACACAGCTNNACNATAAGCTCCAACCTA
GGGTNCTACNCNAAGCTCTAACGTNANCGNAAATTCAGTCTCAGCACCAT
NACNGGGNNTGCGATACGACACAANAGNGCTTGGAAGNTTAATATTAGTN
ATATCCTCTAAGCTAAGTCATGATAAAATATTACNTTAANNNTNACAATC
ACCCANTNANTANITSFTTTATGNANACACNGCNAGACTTNTTNNTGTTAAT
CATTACANGTCGTGCNATNAAAAGTTAAATCCNTAAANTCGCTANAAATT
NAAAAACACATTTACATACATNACTAAANATCANCGTTTNCAAAATTNAT
TCNATNATATACGNGTCGTNTANTTCTAGACTCCATCTTCTGTATATTCA
ACTACATCATTCNAANATATAACNAAACATTACNATNNTANCGATCCGTN
AAACTNATTTATCACAGTCNNCTGAATNNTNAGTGAATCCTCTCCCTACT
ATACTATCAGCTGNGANANANANACTNACGATAATTACCANCATTACATA
GACCTNNNCCTNTAATACAGGTTTTTANATNNCTCTACATAAATACTATC
TTACACNCTAΓΓCCAATTANNTCNTTCNTTATTNNNAATCATGTCTNTTN
TATCANTACNTAACTTACACTCTANTTCCAAATCAATANCNTCTTTTATT
TCCNTNACTATCTCAANCTCANTAATAAACCTATNNCCTATNCNANCCTA
CTNNCANTCTTTTTATTCNTTTCAACCATCCTTATACACTTCTACNANCT
TTANCNCCCTCTNTTNNCCCNCNNACCCATACNANCTATCCACANTAACA
CAATTCAAANANTTNNCATACNTATTATCACTACTCTCTAANCTTNANAN
ACAATCAACANATNTNATATGANNCTAATCTCACTCATNTCANTACTTAN
TTCCTTNANATTCACTAAATNCNNCTNCNCCNTNCNTCTACNTTCNTATA
CNCCNTTCTCNACTATCAAACTACTNCATATTACCCAATCCTTTACATCT
ATATCCCNCNAANCCCNTCTCNCNCACACNATTACTANNCACNNNNCCTT TCCGCNTACCNACCCCTAATCNATTCCTATTCACCACATCAACTTCAACN
CTTNACACATAACGTCCCNTTCTACTNTANCCCCACATANGCACATTACC
TTAAACCCACACTNACCANCCCCNACATACCCNCCAACACACCAAACCTA
CATACTTCAAATAATTATAGATAATACCCATNAATAATAGTTAATCAAAA
GNTACAACTCAAAGCNATCATTCACTCACGATANAACAAACNTANANAAC
ATCATCAACATNTCAAACACGTAATAANNCCNCAATTCCNANNCNNANCA
NNCCTTTTNTTTTTTCTCTTTNTTTTTCTTACNTCTTGATCATATCAATA
TAACGTAGCTAGGTANATAGCACGGATAACGACCTTAACTCACATATTCT
TANTGACGAANTCCNCGCTACTCATAATTAGAACCTTTAAAGNAGTNCNC
TAGC
>E:\AnalyzedData/50425_2_2_Q l_Kubota_Hp 14_01Run0 l_Cp312_MD l/Q2_Kubota_Hp 14
_01_K14_219.F.esd 1471 MegaBACE
GGGGCCCAAGCAGTGGGTAACAACGGCAGAGTTACGCCCATCGCGNGTCG
GGCCGCGGCGANGGACAGGTGTCACCGAAAAGCGTATACATAGCTTAAGC
GTGGTTCGAATCACGCACTAGTACCGTATAATGACTAGTCTAACTATTCA
AGCGCAGGTACCTATCAACCCAGAGAATGCCTTTTAACACATCACAGAGC
CNAATCTCACATTNTANCTCCGAANTNTGTGAACCANGCAAATCATAATN
GGGAACATACATGGCATGATAGATGAGTTGGATCGCATCTCTCGCTCTAC
ACAGAGGTGTTCAACAAGCTATCTATACATCAACGATATGGTAAAATGAC
TAAAGATTAGNTGGCAAGAGGAANTGTAAGATATCCCCTTAAAAGAAAGA
GTAGCGACATGTTTGCAATATAGAAAAAAATGCNAGAATGCACNGAATAG
AAAAGAATAAGATAAGGATTCCATAGATTTCATATCGATATCTAGTGATT
GTATTGAACCTATGCGTCGTGGATTCANATTCTAATTGACTAGTCCCAAA
CGTAGGAAGTGTTGCACGAGTGACGAAATCCTGTAGTAATATTCCACTAA
TGATTCATTTAGTTATAGGCAGTGAAATGCAACATCCAGGGTTCCAATAA
TCATGCGCTCTCGANATCGCCATTTCAGCGAGGCTTTGTCGTAACATGGA
TGCAGCTTAGGAATCACGNTCCTAGGATATGGAACACACTACTTAAATGT
GCACCCNTTATTTTTACAGAAGAGAGTAAATTTCNAGCATCACCCCTAGG
NAATTAAGTNTTTGGGGACGANCAGGCTTAAGACACCTGTGGGTCTTAAG
GTTACGATATAACGTTGAAATCTATCCCTCTACCAATTTGACCCCTTAAC
AGGACTCTGANAGGGACATTCTGTAGTAGGGTCTCGCGAAATNCATGTGA
ATGGGCCCTCTTTATTACTCCATAGAATNGACGGTGTACAGACTCACAAC
ATGGGTCCACATTTTCACANCTACGAGATATATCACCCTATACACGCAGT
TACCTCGTGCCGCAGAACCCACGCTGGGCGTATCTTACTAGTGCGGGCTT
GAGGCGTACTGATGGNTACCCCAGTTTTTGTCCCCTTTTNTGCAGGGGGN
TAACTTTGGGCGCTGGGGTNACACTGGGCTAACTGTTCCCGTGTGGCGAG
GTTGGTTTCTCCGGGTCCACCCAGTTCCCCCGCGGGGTTACCGAGGCCGG
GNGNCTTTTTGGTTAAACGCGGGGGGGCCTACCTANCTCNCGCCTNCACA
CACAGCCTCGTTTGGGTTGGGGCACCTGCGGGTTTCCCCCGGAAGAAGTG
TCTGCCGCGGGTATATAATNAGTCGCGCCGCGCNGCGGTTANAGTATGGG
CCCGCCCCCCAANACACTTCTNCTCGGGGAGGGGCCACCCCGNGGAGGCC
ANTTCGCAGNTAGTAGACCAG
>E:\AnalyzedData/50425_2_2_Ql_Kubota_Hpl4_01Run01_Cp312_MDl/Q2_Kubota_Hpl4
_01_K24_379.F.esd 1649 MegaBACE
GAATGGAGCTCAAAAGCAGTGGTACACGCAGAGTACGCCCAGCGTTGGTC
GCGGCCGAGGTACTTTTTACTGACGCTTTTTGGGTCCATTCCCAGGGGAA
ACCATTTTTGCCTGAACGTTTCCAATTTACCCCGGCGGGTTNCAGGGCCT
NGCATTCTTTTTTTATGGAACTTCTTGGCTNCCTTCCAATCCGCCTTTCC
AGGAATGAAAATTGGCAAGGTTAGGGTAANAAGAATTTCTTTAATTCTTA ACTTCCCGAAGGGAAACAAGGGCGAAATTGGTTCCTCCCAAGCCTTTTTC
CGCCCAATTTTTCTCCGGGCTTTTCTTCCTATTTATTGGAGACTTCTNAC
TTAACCTTGGCAAGTGGTTACCTTTTGCCTTCCCCANGAAGGGCCCCTTA
ATTGGTTCCTTCCGGGGGTTCCAGGCCCCGGAAGGCCCCAAGGTTTTCGG
CGTTTTGGCCGGTTCCTTGGGCTTTGGAAATTGGCCGGGATTTTGGCCGA
TTGGGCCNACTTGGAAGAGCCATTTCCGGTTTCCCCAACCAATTATTCCG
GAAGGGGCCCCCGGCTTCCGGGGTTAACACCCTTGGGCCCCCCTTGGGTG
GNCTGTGTGNCCCCGGGCTTCCGGAAGGGGGGGCCGGTTTAACTTTTCCT
TGGTTCCGGTTCCTTTCGGAAAGGCCGGTTAACCTTGGGATTTGGCGGTT
AANCCCCCATGGCTTTTTTTNGGTTTACCCCCTTTTTTTAACGTTTGGCA
GGGGCTTCTCACATTTTTNGNCGCNCGGGCCTTTTATGGGGCCGGGTTTA
AAATTTCCCAATTTTGGGCGGTCCCCAATTTAAAAAGGCCCTCTTAGAGG
TTATTTTNCCCCCTTTATAGGTGTTNGGNGTCTTGCGCGGAAAAAACCAA
CAGTCTTCTTGGGGTGTTTTAAATTTACCACCCCGGCGGCTGTTNCCAAA
AACGCGATAAATNTTTTCGCCCCAAAACGCGAAATCGAGAAGAGGCCAAT
TTAAAAACCGGGAAAAGGGCCCCCCCNGTGTGGGAAAAGGNCCCNATTAA
ACAAAGACAGGGGTTTGGGGCTTAAAAAAAAATAGGGGCCCCNTTTAGGG
AGNTGCGTTTTATTGGGCCCCCTTTTTAAAAACTTTCTGGGCAAAGGGTT
TCGGGAAAAAGGGCCTTTTAAAAANAACGTTGTCCCCAGAAGGCCATATT
NTTGAAAAACTGTTTTTTGGGCGCCGTGGTTGTTTAAAGGGGCCGGAGNC
CTTATTACCCAACAAGTGCTTTAGGGGGCGAACCCCCCCCCCTAGGGAGG
GTGTTGATTAATAGTCCCCCCCCCNCAAAGGGGTTTTTTNNCCCCCCNGA
TGGTGGGGGGTGGGACACAAAAAANAAATNCCGCGCCCGCCTTTTTTNTT
GGGNGGGCGTTTATTCCCCACACCGGNGAGTTTTTAGATAGTGGACGGCC
CCCCCCCATAANAAGTAGTGAGGGTGCCCACCATTTTATNGTNGGTGGGT
CGGCCCCAAANATAGTTGTTTTTTTTTACNGNGCAAGAANGNGCGAANCT
TTTGTTTGTTNGGGGTCGGCGACGAAAACAANCAAGTTTTTTTTTTANCC
CNCGGACGGCGTGTGTGTGNAGGAACCTCTTCCCCCTCNTAAAATAAAC
>E:\AnalyzedData/50425_2_2_Ql_Kubota_Hpl4_01Run01_Cp312_MDl/Q2_Kubota_Hpl4
_01_M02_029.F.esd 1273 MegaBACE
GAGAGCCAAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCGCCAG
GCAGGTACCATGATTTAGAGTTTCTATTTTTATTGATAAGGTAAATATAT
TTAGCTTTATGCACTTTTATTCATGTATATCAGAAAAAGCATCTTGGCAG
TGCTTTTCTCTTAAAATTCATCTGATGGGGAAAATGTCATCATTATGTGA
ATGAGGGGCACATTTTTGTATAAGTTAAGTTGGAGTTTACTTAATATTTA
TATAATTAGAGTTACAGTCATTGATTTCATGTGAAGTTTTTGAATACTTT
CTTGTGGAAGAATAGGCAAAGCATAAGAACATTTTGATAATTTCTTAAAT
AAAGGAAAAGCAAAGTAAAAAAAAAAAAAAAAAAAAAAAAGTTCCCCCGG
CCGGAACCAGCGCCGGGGCGCTTACACTCCGGTCCGCTCTGGAGACGCTT
ACTCGGATTGTTACACCCAGAGCNTTTGGTCCCTTTTAATGGAAGGTTAA
TTGGGCCGCCTGGCCTTAATCCATNGGTCCATTAANCGGTTCCTGGTGGT
TGAACATTGGTATNTCGGTCCACACAATTCCCACACACACAATTACACGG
AANCNGGGAGACCATTAAGTGGTAAGGCCTGGGGTNGCCTTAATGGAGAT
TGAANCTTAACTCCNCATTATTGGCTTGGGNCNCACATGGCCGGTTTCCC
AGTCCGGGAAACCCTGGTGTGGCCCNGGTTGGCTTCATTGGATTCCNGGC
CAGCCGCCCGGGGAAGAAAGCGCGGGGANAGGGCGTTATATGGGGGCGNC
ACTACCCCGGGTTTCCCTCCGGTCCAATTGAATTTCCGGGTTGAGCGCNT
CCAGNNCCGTGTCCCGGAGTCTGGGCGGCNAAACCGGNAATCAACGTNCN
ATCTCAAAGGGCGGGGAATACACGGTGTATCCCACACNGAATCAGGGGGG ANAACCGCCGGGGAAAAACCTTTTTGGCCAAAAGGCGCAAAAGGGCCCGG
AACCGNAAAAAGGCCGGTTGGGCGGAGTTCCCCTAAGGGCCCAGCGCCCC
CCTNAGCGAAGNACTGCAACATAGCGTCCCANTAAAGGGGGGGAACCCGC
AGGATTAAAAAACACNGGTGCCCCGAGAAACACTGGNGGCCTGTGATGCA
ACGCGTACGAGAATGACGTCNCAGAGAGGGCGNGGACCAAGGCAAACGGG
TAGGAACAGGNGTGACAGCCGGCAATATCCAATANCANNTACGACCGTNN
CANTCCTCATCGNGCGCGNCCTG
>E:\AnalyzedData/50425_2_2_Q l_Kubota_Hp 14_01 RunO l_Cp312_MD 1 /Q2_Kubota_Hpl 4
_01_M04_061.F.esd 934 MegaBACE
GATGGAGCTCAAAGCAGTGGTAACAACGGCAGNATGATACGCCCATGCGC
GAGTGCGGCCGCGGGACGAGGGTGACTACGGTCTACGCGGAGAGAATTTC
TCGTGTGGNGCTTGTTGCTNGCTTCTCAATTAGTAGATCTCTGTCCGANC
CGTTCAANATTGTNTANCACCATGAAACTTTGAATCCATATTTNCGGAAT
TGAGCAGATNCTCAGTCGAACCGTTCGTTCGAATNTAGTTCAAGCATCGG
AATATCCCGCTAGTGATGGTTCTATATAATGAAGCGACCATGAGTGCTAG
ACACATGACTGCAAACATGCCTGACCACAAAATACATCCTCCATCACCTC
CCATATGTCATNTACATCAATGTCGTAGTTGATGACGTGTGAGCAATTTA
CTTNGTGGTCGGGCTAGTAAGCGATCGATAGCGCGCCATNTANTGTTGCT
CTCGATATTAGCCCAACAATCTGGNGGGGATATCCCTATCAGTCCCACTT
CAATTCCACAGCNGACGTCTGCATGAGAGACATGTGCTATCTGCGAANTA
TGTGCTTCAGATAGCTTAGGGGTCTCCCNGTTGTCAGCNCGTNAGCAACA
CGAGCTTAACTACTGGAAGACTGACAACGATCGCCCCNGGAAAAATACTT
CCGCCCGAACGTTNACCCTTCGGTACCGCTTTGTGNTGACGAGGACCGGA
ACTTTCCGTAAGTGTGCNGGTTAACCNTCCTTGAGCGGTTTATGGTTTAA
CCCCAAGCGTTGGCCTTTTTTGGGGAGNCTCCCAAAATTTCGGCCCCCTA
ATATGGTTGAGGTTCCCGGTACTTTAACCGGACGGCCGCACTTCCACCTT
TGCGNGCCGGCAGCGNAGTNCAGAAACGAGACAAAACAGANTTCCGAATG
AACGCTTAGGAGAACAACGAGCACCTAGGAGACG
>E:\AnalyzedData/50425_2_2_Ql_Kubota_Hpl4_01Run01_Cp312_MDl/Q2_Kubota_Hpl4
_01_O02_031.F.esd 1046 MegaBACE
GATGAGCTCAAGCAGTGGTACACGCAGAGTACGCCCXXXXXXXXXXXXXX xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXGGCCTTGGTAACCAGTTCCTT
NCGGACAAGAGTGTGTCTGATTCGNAACAACCCGTGACGGGGTTTNTGNC
TCTCNCTCNCTTCCTCCGACAGGNCTNAGACTGCTTTCAGGGTGCGCGGG CCACACTTGGTGGGNATAAGGTGCCCTGGGAGGGTACCCTTNANGGGCGG
GCCGTTNTCTCTCCCTCTCNTCCCCTCTTGTCNNCTTCCTCTTCNC
>E:\AnalyzedData/50425_2_2_Ql_Kubota_Hpl4_01Run01_Cp312_MDl/Q2_Kubota_Hpl4
_01_O08_127.F.esd 1913 MegaBACE
GAATGGAGGCGCCAGAGACAGGTGGTTAACAATCGCCAGTAGTACGCCCG
TGANATCACAGAGCTTCACTTATATCGTGGTNCTCGAGTGTCGTGCACGT
CCCGAGCGTCTAGGCGGTAACGACACAATGTCNGCTATGTCGTCCTGGGC
ATATGTCCCTATTCACAGAAACGAATGCTTGATGACGNATAGTTCCAGCA
AATTGCGNAGACTCGTGCACTCCGCTGTAGTGTAGTCTCAGTATGACATA
GATAAGCACTGCACTGATGGTGGCATGTTCAGTGAGAGACGGAGAACTTG
CGCAGAAATGACCAATCCGCACTTGATCTCCTATTGAAAGTTACTNATGC
TGGTTGTCCCCCTTCTTGTCGAAAATCGAGTGTCGCGAAACCGGGAACGA
CACCGAGCGGAATATCACCTTTTCNCACCCCATATCACTATGGATTCCNT
TCTTATTGGAAGCCATCGGCAAATCAGTATCATGGCCTACCATTAGATNA
CTCGATCNGATCNGTATCTGGATGCTCTCTTTCAGTTACTCCTTCAANTC
AAATCTTCCCNGTGCACCTACTGTGTGTACACACCACATACAGGGACTGN
GTAACTATGGATGTACGNAGANNGAAAACGAAATATANCTCCTCAATNGT
ATCCGTACTTACTTATTACCTATTATGGTAGCCTCATCTCGTTTCCTCAC
CTACTTGGTATCATTCCTATCCTCAGCTNTCTCATTTGGTAANATGNGGT
ACTCACTCTTAGTACNGGGGTGTGCCTTATTTCATCGGCCNATCCTTACC
ACTATACCGTTNGNACCGTTTTCCTTTCGTGGTCCNACCTCTGNTTNCTC
CCNTACTGGCGNCATGCATGTTNTGCTGCCCTAGCCCGGGTCACGTCGTA
GCATAAAACCTATCTTCGTTTTGTAGGGTCCNCCTGGTCGGGGGAATTGT
GACCNTTCGTTTTGTTCAATTCTGCTCGGGTTCCCCCGATCCATTTGGTC
CGACTTCTTTGGCCAGNGATCTAGNGTCCTTGGCGCCCACCCTGTGGGGN
TCCACCNTTCCACTTATCGNCCTTTGACCTCCACTNGGTTNCGNCTTTCG
NTCGAAGCAGTGGCGGTCTCACCGAGGGTCGNTCNTTCCGTCTGGTTCTC
TTGGAAACNTTCGGGTCCCTTTGGAGTCCAATTAGGTTGGTCTNTTATAC
TTCCTTTTCCTCCTTTGACCCCTCTGGGGTGGGGGCCTTGCCCTCCGNAA
GGACCCCCNTAATTATTNTTNGGAGGTTTCCGGTTTCTCCTCNAAACAGN
GGGGNCGGTACCTCCTGGGGCGCGCATTTTGGGGTTTTACCCCACCCTCT
GGCGCCTTTTTNGGGAAGGCCTNCNCCACACTTTTCCGGGGCCCCNGTAT
TAACTCAGAGCCGCGGTTCTAATAATAGCGGCTCGGTCCACACCTAGGGG
CCAGNCGCGCGCGGGTGTTTACCACCCCACTCGTCTGTCGCNCGGTACAT
NGGGGGNCACCACCCCCTGGGGCTCCCCCCGTGTTTTTTTCCCCTCTTTG
ATGGGGAGGTTCACCCTCTCGTTCGCCCCAGGTGNGGGCTTTNTGGGGGC
CANAGAGGGCGCTTCGGGGTTGGGATCTCCTAGGTGGTGGCCCCCTGGGT
GGTCTGGTGNNGGTCGGCGCCCGCGGTTGGTGGGTCGATTATCAACCGGG
GGGCGTNGTTGANGATGATAGACCCACTAATAATAGGTTTGTGGCCGGGC
GGGCGGCGTCCTTTGTAATGGGTCATNNTTTCNTTAAGATACCCACCGGC
GGAAGAGGGATTCGAGGTCGTATTATTGGCCACCCCAACTAGAGAGGTGG
GCACACACCGAGCGTGGGTTTNACCANTCTTCAACAATTATNNACTNCTC
CCTTCTNNCANNN
>E:\AnalyzedData/50425_2_2_Q l_Kubota_Hp 14_0 lRunO 1 _Cp312_MD 1 /Q2_Kubota_Hp 14
_01_O24_383.F.esd 1086 MegaBACE
GAGGAGCCAAAGCAGTGGTACACGCAGAGTACGCCCTCGAAGCGGCGCAG
GCAGGTCNCTTAACCATTGTATAGGTTAGAAAAAATTNCAAGGGTTTTGG
GTAANTTACCAAACAGTAAATTGGCNCAGTTTCTTANTCTTCCAATGGCT
NTCCTAATTAAACACATTATTTTTTTAACTTCTTAATGGCTAATAAACAC GGGTTCAATCGGAGGTNCTTAATTAACTGGCTTAACCAACAAAGCAGTNC
TNTATGAAATAATAANTAACCTTAATAATANCGGTAAAATATACTTGGCA
CAACGGCAACATAGGTGGTAGTGGACGGTGGATTGGTCCTTTAATATTAA
TAAGTAACAGCTTTTCCATTGGCTGGCTTTGANTTTAAAATCACTGGTGG
GTTCTTGTAATGTAACCTCGGCCGGCGGAACCACGGGGCGGTTACTTCTT
GGTCGGTCTTGAGCGGTNACTGGATGGTACCCAGCTTTTGGTGCCCTAAT
AGTAGAGNGCGTTATTAGCGGCXXXXXXXXXXXXXXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXAGTTAGCTAGGACGTATCCCATAAGGTCCGGCCCCCT
GAAGAGAACATTCAACAAATTCAGGCGNCACAGTACAAAGTGGGAACGTT
TGGTCTTCTCTNATNANCGGGTTTCCCCGATGAAAA
>E:\AnalyzedData/50425_2_2_Ql_Kubota_Hpl4_01Run01_Cp312_MDl/Q3_Kubota_Hpl4
_01_B01_002.F.esd 1870 MegaBACE
GATGGAGCCAAAGCAGTGGTACAACGCAGTAGATACGCCCTCGAGCGGCC
GCCAGGGCCAGGTACTGCGTGTGGAACATGATGAGTAGCCTATTTCGGAG
ACCGAGCATTGAGAGTTGAATCACTCTCTCNACAGTTTAACTAGGCCGAT
TATTGTGACTGCCCTNGTCTGGTTGTGACAAGATCAGCCTCAACATTATA
CTCACCTAGAGCATCCNTGCAGGGAAGAATACATTATCTATCCTCGTGTG
CTAAGTATCTCATACCTAGCATTTTAACTAGTATGCGTTCAGCNAAACTT
TCTAGGACNACATATATATTTTAAGTCNATNTAGACNCGATACACTAAGN
AAAGCCAGGCCAATAAATCGGGTCGTCGCAAGACGACAAGAAACCCCCCG
GTACCATCGTTGAGCCCTCCGGTGTCTCNGAGCGTACCTCNACCCGCTCT
TTGGGGGTCGGGTAAACCTCATCCTTGGTTACCGGATACCTCTCGTAGGA
CGCTTAGCATGAAGTTGGGGTTCACTCACTATGNTCTTGTGTATGGATGT
GCACCCCTTTTTTGGGGTAGTAGGAGGCTNTCTACTATGNNCAGCNGTCT
ATGCGTGNGGTCCAATTTACNCGGTTGCGNTTCTCTCCACGTTTTGCTTT
GGGCTCGTGCTTGGTTGAANCAAGGTTGGNCTTCGGTTCCCTGGCCTNTC
CCACTGGGGGTATCCCGGCCNACAAGGGCAGTTAANGCACGNGCANNTNT
CCCTGGNGGCGTAGGGNCGNTTTAAACCCTTGNNGGNTCACCCGGGGGGC
GGCATTCGGGAGCGGGCTTGGNCGNGACCAGTTTAGCANGTTTCNNTTAG
GGCCTNAGTCCTTCNCGAGACACAGITCGGTTTATTTTTGGATTTTTTTG
TGTNCACGCCCNCNCAGAGCTTTGGGTCCCCCGGGGTCTCCCCNTCCAAA
GGANGTCCGGGGAAGGGAGAGGGTATCCCCTTTGGTTGGGTTGGNCGCGC
CCTTATTGGTTGCGGCGGGTTTNTATNTACCTTGNGGAGGGTTTCCCGCT
GGCACCGCCATCGGGTNCCTGCCCCGCGCTTGGGGTAAAGGTTAAGCACG
CGCGTTGTGTGTTGTGGCGTNNNTNGGTTTTGCGGGAGNCGGCGTTTTCC
CTTTATCCCAAGGGATTTCCTCTTTTCCCCGGNATTCCACCGGTTGGGAA
AAGTCTCCNNTAACAGGGGTCCGTTCCNGGGGGCCCNCTTTCNCGGGGGT
TNCCCCCTTGTAGGATTTAANCGTTTGGTTNTCTTAAGGTTTCCCAAACT
CTTTNTAAAAGTCGGNGGCGGGNTTTGAGTNGCCCTTCGTGTTNGTCCCC
CAGCGCGTTATATCCCAGGTGNNCGGATTAAAACCCGCCCTNGGTCACGT
TGGCCCCCCGTTGTGTGCGCATTCCAATTGTGGAAGGTTCCCGGGCCCAA AAACGGGCCCCCGGGGGCACACCACGTGACGGNAGTTTGCCGNTTTGTTT
GGGGCGGCGGGCCGCTTTTTTTCCGCGTTACTGTCGTCTCCGNCCNTGAC
CTTTGNGTGGGGCTTTCGGGACGAGTTTCGGCGGTGTCCGAGGGTCGGGG
NTTTTGGCGGACACCCCCGACGGGGCTGATAA AAGGGGTCCACCGNGGGG
GTCCCCCGGGACCTCTGCCGCNGTTNGTCTCCTTCTTTCGTCTCTCCGCG
TGCGATAGGCGCGGCAAACGCTNAACGTGCGTCCTTCTGGAGGAGGTCGG
TTTCCTACCACCGAGCNGTTTTCTAGAGGCTCGTTGCTTGNCAACCCGAG
CGGTTGTAAACCCGCCCCGAGACGTCTGTCTGTNTGTTGTGCGGATCGCG
CGACTCCGCGGGCCAACCAG
>E:\AnalyzedData/50425_2_2_Ql_Kubota_Hpl4_01Run01_Cp312_MDl/Q3_Kubota_Hpl4
_01_Bl l_162.F.esd 1916 MegaBACEo
GATGGAGCTCAAAGCAGTGGTAAACAACGGCAGAGTAACGGCCCATGCGC
GATGCGGGTCCGNCGGCAGCGAGCGGTGANTACACGAGCGNCTGTTGTCN
GAATTGGTCNATAATANCCACTAGAGACTAGTCATACAAAAATGATATAC
ATAACAACACCATGATCCCACTATNTAAAGAGATNTAAACGAGTATANGT
GCACTACTTGCCTACCACATAATGTAAGNGCTGAAGTGAAACGTGCAATA
GCGTTGTGATTGTACAGTTGCGATTTGTGTCTGTGGGAAGCAATGATACA
GATACGAACACTATTGTCCACTTTTCAACCACTATCCATATATATACGTA
AACGGAAGTAGACTAAGTGGATGTAGGATCAGTATCATCAACAGAAGATT
AACGTGTGAGTCTAGCACGTAAGAGTCTNGGATTTGCCATAGGTTATAGT
AAATACGTAAATTTTAGGGTGTTAACACGCTCCTTCGCTCACCCCCTTGT
CTCTCTTGAGACTGGGACTCTGGCATTCTGAAAGTGTGTCGCTTACTTTT
ACCTAGAGTTCTGGGTTCTTATTGTAGGTCGATTAGCGTAGGGAATGGGG
GTAATCCCCAAGGACGGTGTATATAGTTTTGCCCTCCGTTTCTTAGTTTT
GAATGCGAGTTTTATAATTTTGNCTGTCCGTCTTGTAGAGACNAGTTGAC
TTTCAGTTGAGGTACCTNCTAATTTCCGTAGTTTTATTGCCCTCATTGGT
TCGAATGGANAACGACTATGTGNTTTGGCTCCCGGGCCATCGCAATCNAA
TTAATTCCCCCACTNTCGGTATCCAATTACTGCAAGTCCCCCGGGGGGCA
TTGGCCNCGGTTATCATGCCGGTNGGACTATTGTCACCTTNGGGGTGGTG
GGTTTGGCCCCTATATTGGGGAATCGGTTGGACTGGCCTCAATACCCTTT
CCCTACCCCATTTTTGGATTTTTGACCGTTTTGGACTGGNCCTTCCAACC
NTTGACCCCCCAGGCTTTTATTCCCCCAGTNCGGGAGAGGCATNGNCCCT
ATGTTTCGGAGATTGCCCGCAAGACTTTTGTCGNTTCTTGGTTTTGGAAC
CTTCCGGGGGTTCGAAAACATGTCACCGCCGTNGTGTNAACCGCATGCGG
NGGGCCTGTCGGCAAAGTCAAATTGGNGNGGCGGGCCTGCTTTATTCCTC
CGGCGNTTGTCCCGTTCCGTTCTTGCCAAGCCTTGTNACCTTCGGACTTT
GGGTCGCCCCCCGGGTCCCGTTTCCGGGGGCCNCCGCTTGTGGCNGGNGC
CAGGGTGNTTCCCAAGTCTTTGCCAGCTTCCCATATAGGGGGCGGCTTAA
CACTCNACGGNGGTTCCATTCCCCCCTCCGGTGANTCCCTTGGTGGGTGC
GNTCAAACCTTNCCCTGCTGTACCCGGACATTCATTTTGTTTGTTTCCCC
AAATGAGGGCCCATTATCCGAAACGGGGGCGCGGGGGCAACNCCCGGGTG
TGAGTAAAAGGCCCCTCGTTTGTGTGTTNTGCGCCCTGTTTTTNTCTCGT
AAGGGGNCTCTCCGCGCCCCCCTTTTTTGGGGGGGGTGTNCGCCAACATG
GCCCGGGTTTCCAAGTTCCGAGGGTAGGCCGGGACCCGCGNCCGGGGGGT
TTTAAAGAAACCAGGGGGGGTCCCGGGATCGCTCTGTTTNTGTCTTTCTT
CNCTNGTTCTTCCTCTCTTGCCTGGTTCGACAGCAGAAATTGCGTCGGTC
TGCTATNCTTCGGGGAGGAGGGGGTCTACTACTCACCCACCGGGGNGGGT
GTCATGTTCTACTTAGTGCTGNTGCGCCGGTNAGTGTGANCACAACCCCA
CGCCGANGGGCGATCTACGAGTNATGTTTTATGTCGCCNCACACGAGCNC TCGGGCAGGAGGAGAG
>E:\AnalyzedData/50425_2_2_Ql_Kubota_Hpl4_01Run01_Cp312_MDl/Q3_Kubota_Hpl4
_01_D17_260.F.esd 1077 MegaBACE
GATGAGCCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCGCCAG
GCAGGTACACAGATGCCCTCCACAGGGGCTGAACCTCCGTCCCCACAGCA
GTCACAGTCTCCCATGCATGAGGAGGCACCAGAAAAGGTGGAGTCTAATC
CATCCATACAGCCTCAGTCCAGACAACCGGCAGCTTCTGTAACTCCCCCC
CAGCCACAGCCAGAAGCAGAGCCCGCAGAGGAAGATGAAACCACGCCCAA
ACTGCCATCCCCTCCAACGGAGCCCCCCAACAGCATTGATTCTCCTGAGG
AGGAGTTCTTAGAGGCTCAGGCAGGCTCTCCCTCAGAGGATGATGATGTG
GGAGAAGAGGAAGAAGCAGTAAAACCATCTTCTGCAGTCTCACAAGAACC
AGTTCCAGTCGCTCAGTAGTAGACAATTGGCCTCATCAATATTTAGACAA
AATTAGGTTTGGGAGTGAAGATCCAGTTGGTGTGTATAGGGAAAGCCTGT
ATATTTATGCTGTGTTGGATGTTGATTTCTGTTTTGTAGCAAACAAAAAT
TCAGTAAGATTTAGCATAAATAGACCAGGTGTGTGTGTGAATGAGGAAGG
ATAAGATGAAACTGGAAATTTATTCCAAACCATATAGAANTTATATATGA
TGAGTTTATTCTGAAATGTCCTTTATGGAGTGCTTAGAAAGAAAAATGTT
ATTCTATTGAAACAAGTATCTACACTGACGTGATTATTACAGATTTCACG
GGGATTTGTACCTTCGGGCGCGAACACGCCTGGCCGTACTTCTGTCGCCT
NGGACGTTCTGGTTGTCCCCAGCCTTTTGGTNCCTTTAGNGGGGNTAATT
GGCGCCTGGGGAACAGGGCCTAGCGGTNCCGGNTGAATGGGTCCGCATNC
TGCCTCATTCTTCGCCNCCGGNGTCTATGNGTACCGCGGGGGCAAGGAGC
ACCCATTNTAGTGTGGCCAGGCGGTCTGGAATGTNCGCGTTGATTCCCGG
AGAGGGTTGAGCCGCACAAACGGTCGCGGGGGNACTACTGTTAGGGGAGA
GTCTGCGCTCNTNCNCCNTTGCCTTGG
>E:\AnalyzedData/50425_2_2_Ql_Kubota_Hpl4_01Run01_Cp312_MDl/Q3_Kubota_Hpl4
_01_H07_104.F.esd 1049 MegaBACE
GATGGAGCCCAAAGCAGTGGTACACGCAGAGTACGCCCGCGTGGTCGCGG
CCGAGGTACGCTATATGGCTCTCTTATTGTGTCATGAATGCACTTGATTG
GTTTGTTGATTACTGATGGTAAGTGACTAATTGGTAATGACAATTATTTA
AAAATTAACAGGTTCGTGGTGACAGTTAATTGAAATGCAACTACGGACAC
ACTTGGAATCGTCCAGTCGTCACAAACCTCTGAAGTGCATCTGGAGCTCA
TTTTAAAAAAAATGGATTATAGACAACTTCACCAGTGTTTATTTAAGGTT
TGTGATTCCAACGTCAGATCTTAAACCTACCAGCTAACTGTGTTTTGTCT
GACCTGTGGCCAAGATTGTTGTCTTTATTAGAGTAGGGAAAGGCTCTTTG
GCCCAAAGTTAATTTGATTTTGTATACTTAAACTAGACATTCAGTTGTGT
GTGTATGGACGTGTGTGTGTGTATATATGTATATATATATATTGAAAGCC
TGATGGCATAGCCATAAAAAAGATAAATTCAGCTGGGAATTTAATACATT
CTGTAACACGATTCCCCCAAAAGTATGTTCTTATTGCAGGTTATCCTTAT
AAAGAAGATGAGTAAATATTTATGTTGCTAAGACATACGGAGATGATTTA
AGAATTTGGAAATATGTTATATTATTATTATCAGTTTTATAATTGTCATC
ATCATTATTCATTATTGTGTGCACCATCAGGTCCGTTGAAAGAAATACCG
GACGCGAACAGACGGTTTTGCCACCCCCTTGGATGACGTTGAATTGGTTT
TGNTGGTCCACAGCGTTCCTTAACATCTCCTGGAATTCTTTACTGGTTAC
CACCAATGATTCATATGCTGTCCCTGGTAATATTTACAGGGCTTTTGCCT
CNNCTNGNCCNCCNTNNGCTGCTCGCTCNTTTCTTTGCGANCGTTGTCGC
AACATGGGGAGAACAATCAATAGGTTCTCTCTGAGANTGTGTCGCGCAAA
AAAAACGCGCGGGGGGAATTTACAAGAGCGCGACCTCATGAGGCGCNCT >E:\AnalyzedData/50425_2_2_Ql_Kubota_Hpl4_01Run01_Cp312_MDl/Q3_Kubota_Hpl4
_01_J07_106.F.esd 1426 MegaBACE
AGTGGCGCCCAAAGCCGTGGTACCAAGCGGCAGAGGCTATCGCCCAGGCG
CGGTCTGCTGGACGACGGTACGTGTGCCGAGGCGGCCTTTTTTTTTTTAC
TAAAGTTTTAGTTATCATATTTCGACAAAAAAACAACTATGCATATAACA
CTGTGACATGATACAAGAGTTGCCTTACGCTATCGACTTGTATGTGTATG
TCTATATTAGAGCTGCANAACAAGGCTATTCTTCAAGACATCTAAGGAGA
TCTACCTAAATACNTATAATNATAGTATAGTAATAGNAGGGGGTGTACTG
GACTACCTTAATCTCAGTGGACACAATAGAACCAGTAGTGTAGAATAAGT
AGACCAGAAATATGAAGTAACAAGNATTAGAATCCCNTAGCATAATCATT
TACATTGCAAGTAGGTGAGCTCCATAGAACNACGTCGAACNGCTTTGAGT
TGAGTCGCATACGTTAACATGCCCTTGGCGGCCGCAGTCGAGGGCGTACT
TCTGCTCGTCTTGAGCGTACTGACTGGTCNCCCAGGCTTTTGTNCCCTTC
TCAGGTGGAGGGTGTTAGATTGCGCGGCGTGTGAGCGTACTCGCATGGGT
CTATAGCCGTGGTCTTCCTGTGTGGAACAGTTGTTTATCCGCTCAGCATA
TTCGCGACNAGCTAACATTATCGGAGCCTCGGTGGAGTCNTTNGACGACG
TGTGAGTAGCCTGGGGGGTGCCTCAAATGGAGGTGACGCTCAAAGCGTGC
ACTATTTAACTTTGGTCGTTTGTAGCCGTCCTCCAGCGTGGCCTCGCTTT
TTCCCTAGGTNCCGGCGAAACACCCGTGGATACTGCTGGCCCAAGGCTTG
GNATTTCTAACTCGAAGAGTTCAGGTCCCAAACGCCGCCGGGGGGCAGCG
AGGGCGGGATATGGCCGTTCATTGGGGCGCCTCCTTTCCCGGGTTTCCCT
CGGCTTCATTGGACTCCGCGTTGNGGCTCGCGNTCGTTTCGGTTGCCTGC
TGAANGCGGGGGAATTCAGGCTTNCCAACTTTCCACAAAGGGNCNGGGTA
AGTACCGGGTTCGTTCCCCCCCGAAATGCGCNGGTTATNGCACGGAAGAC
CTTNTTCNCGCCATACGNGGCCCGGTCTAGGGGCCCTGGACACCGTCAAG
AAGGCCGGTTGGCCGCCGGTGTCCATGAGGGTCCGCCCCTTTAGAGATTG
ACTCTCCGNCNACNCTTCTATCGTGTGNGTGCGCTCCCGGGGGNATAATA
GGTACCNGGGTGCCCGGGNANCCACTCGGGTCATGCTCANCNACCGGAGT
GAGTGATTGCCGTCCCTCTCGGAGAGGGGTCTTCTACACCAAGGTGTNTC
CTTGGGGNCANGAGTCNTCGCAGCCCGGCCTNTTTGTTCGCTACTTCGNC
CGTCTTNCTCTCCNTGTCGNNGNCCG
>E:\AnalyzedData/50425_2_2_Ql_Kubota_Hpl4_01Run01_Cp312_MDl/Q3_Kubota_Hpl4
_01_L15_236.F.esd 808 MegaBACE
GATGAGCCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCGCCAG
GCAGGTACGCGGGGAGGAGCAAAACAAGAAAAACGATCGAGTGACCCAGA
GAGAGCGCAAGAGCATTTTCTCGTCTTTTTACATATATAAATCAAATATT
TGCAAACATGTCGAAGGTTTTCCTGGCCACCAGTCGTGCGATAGCGCCTA
GAATCCACACGATGAGGCAAATTCATATGACAAAAGTCTTCAAGGGGACT
TTTACATCGACCGATGCTGTTATGCCAAAACCTCACACGACAAAACTTCT
GGGATATATGGGAGTGACTCTAGCGACTTCTCTGGGAATCTTCACTGGTG
CTGAAATAAGCAAGAATATTGCAAGCTTCCTAGAAGAAAATGAACTATTT
GTTCCCTCTGACGATGATGATGATGATTGAACATCTAGGTTTTCACAAAA
AATAGAAGGTTTGTGAATATGCATCTAGTCTCCTCCCCTCAACGACTCGG
GTTTGGACTCCAAGAATCATGTCCAGTGCATGAACCAAGACCCTTATCAG
TAGTTTTTAAGAGATGTTTACCAATGTTAGAACTGCAGATATTATATTTA
AGTAATTTGTTGTTGAATTAAAGTTTCAATATGATTATATGAACCTGCCA
ATGTATCATCCATAGACTTrTGCCATTTTATTTACTTATTTTAACTTTTT
TAAAAGGGTTGGACTTTTTCTTTTATCACTGGACACACTTGGGAGGGCTG
TCCAGTTCCTCCTTGTTTTTTAAAAGAAACTTTACCATTTTGGATCCACC AGGTTAAG
>E:\AnalyzedData/50425_2_2_Ql_Kubota_Hpl4_01Run01_Cp312_MDl/Q3_Kubota_Hpl4
_01_P01_016.F.esd 435 MegaBACE
CAGCTTAAAANNGGTANGACGNATGCAGGCATCCCCCGTGTGGNTNTTTT
CCTCATGGTGTGAAGATTGCANGTGGGACGGGACATCAGATACCACATGG
GCAGCCCGCCCNGCGAGGATAGACGNTGTGAATATAGGCGCAAACGAGAG
AGTGGACTCAGTGAATCGCAAANCAGCNNCAGCNTGCACGACGNCATCAA
GTAGCACGGANTAACGCCTCACANCAGCCAGGTCGACGAAGCGCAGACTN
AGNNAGAGGAGAACNGCNAACCANNGTAGCATAGACTACCTGCCTCANAC
ACCATCGNGNTTAGCAACNCAGTATCCANGAAANCNGATACCGNTCGAAC
CCCGAGTCTCCNTGCAAGGATGNTCGTAAGCATAAAAGAACAACGATCGC
GCAACCTACAGAGAACANAAAGCANTATGCNCAGG
>E:\AnalyzedData/50425_2_2_Q l_Kubota_Hpl 4_01 RunO l_Cp312_MD l/Q3_Kubota_Hp 14
_01_P21_336.F.esd 816 MegaBACE
GAGGAGCCAAAGCAGTGGTACACGCAGAGTACGCCCAGCGTGTCGCGGCC
GAGGTACGCGGGAAGTCCTGAAATGTTTAGCAACTTTCGTTTTATGGGCA
AATGAAAGTTACTGGTATCTCTTTGATGTATATGAAAGTGAAATTGTCAA
ATTTTACTTTACCATTCCAGAAAAAGAAAAGGAAAATAATTGGAATAGTG
TCTTTATGAAATTAACATCACTAAACAATTTATATATCTATATATATATT
TAGCTGTTTCCATGATGATGTGAACTTGTTTATATATATATATGTATATG
AATATATATGAAAGGCTGTGTTTCTATATTTGTGGCTATATATTTGACAG
GCATTTCATTTTGTTATCACAGCCATCTTTTAACTTTACTGTGGAGCATA
TGTATCAAGCATCAATAGGAAATTTACTTGATATAGGTTGCTTTGTGATT
CGTGTAATTTTAGTGTAAGTCGTCATATTTATTAGTTTAATGTGAACTTG
CGCNAAATTACCTTTTGTCCGGACTTTGTGCAAAGCCAATGCAGTATAGG
AAACAACCAAGACCATCTGTATAGGCTTGAACTTTGACTTTTACTNTTTC
CAAGGTTAGGGGAAGGTNATTNTCCCAAAAACTTTGGAAAAAGCGGCTTT
TAAATTTCCTAAGAAATTTCGACAGGCAGGTTTTTCCAATTATTCTTTGG
AGTTAACCCTTGGCCCTTGGGGCGGGCCGGCTCCGAAGGGGCCGTTACTT
TCTGTACGGTCCTTGAAGCGTTAACTGATGGTACCCAGCTTTTTTGTTCC
CCTTTAGGTTGAGGGG
>E:\AnalyzedData/50425_2_2_Ql_Kubota_Hpl4_01Run01_Cp312_MDl/Q4_Kubota_Hpl4
_01_B16_242.F.esd 925 MegaBACE
TGAGCTCCAAGCAGTGGTACACGCAGAGTACGCCCAGCGTGGTCGCGGCC
GAGGTACCCTCTCCAGCAAAAGATTCAAATTCATCAGGCTCTTCTGGTTT
ATTTTCAGTATTGTTCACTTTCGGTAACTTTCTCCAGAATTTAATAAAAC
CTATTTCATAATCATAATCTGGAATCCCACGCTGACGGGGCAATTTTTTA
AGAAGTTCTTCTTGAGGAAGTTGTAAATTCTTCTTTTTCCCATCTAGTCT
GTTTCCTGAGCCTTGGAAAGAGTAGAAGCCTGTAGGTTCTGGTAGCATCT
CCTCTTCTGTATCCTCTGGCAAGGCTGCTGCACTGTCCATTCTCTCTGGC
TCCTGGTAGCCCACTGGGGCAGCAAACTCCACGTTCATATCACATTCGAT
GATGCTAACAGCACTCCCAGGCTTGACCTCTAGGACTCGCATTTCATATA
TTCTATCATTGTAATTAATGGCAATAACATCGTCAGTTGTTAGACAAGCA
AAGTTTCGAAGCGCATTTTCCAAAACAGCTTTGGGATTTGTGATATCAAG
GAACTCCACATTCTGAGGTTCAAACTTGGAGAACGTAGCAACAGGAAGTG
ACACAGACTCGATGTGAATAAGATCCCCCTCATCCAGCAGCAGATTTCTC
ATCATCCAATAAGGAATATAAACCTTTCCTTCATCAGCTACAAATTCTAA
AAACACCGCAATGTGTATTTCTATTGGCACGTCGGTGGTTAACTTTGAAT
AACCATTGGGTAAAACCAATTGTTTAAGACGTGTCAAAACCATCCAGAAG CTGAANGTGGGCTTCTATAATTTTTGGCCACCATTTTCCAACTTGATTGG
TTTGGCCAGCACCCAGGGAAACCATTGGGGATTNTCCCCGGAAAATAAGA
CATCCGGGAATTTGCGCGCNGATTG
>E:\AnalyzedData/50425_2_2_Ql_Kubota_Hpl4_01Run01_Cp312_MDl/Q4_Kubota_Hpl4
_01_H04_056.F.esd 1312 MegaBACE
GATGAGCTCCAAAGCAGTGGTACAACGCAGAGTACGCCCTCGAGCGGCCG
CCAGGCAGGTACATTTGTCATGCTCCCATGATAAATATTTGCCGACTGTG
TTATTTCGGGAGGCACATCTTGAGAAAATGACCAAGTTAAAAGGTNAGCG
AGATNAATAAATAATTGATAACGAAATAAAATAAGTGAATAATAATTGAT
ATACAACTAACAGATTNTCCTTGATAATATACAAGGTTTAGATAGGATCA
AGCAATATTGCGTAAGCTCATCAGGCTACGGCGTATGTTGAGAACGATGA
CGCATGGGGTACAGTACNGATGAAACGTCGGGAACCCCCCTTTCGCCCAA
GACAAATAAGAGAGAGAATGAAAATGCAGCAAGAAGAGAGAGTGCAGATC
ATTTGACTACAAGTAGCGAGCCCAGCTAACGATGGATAGCAATCTGCTTA
TATCCATCTACCACTCTCTTCTATCTTTAAGTGAAACGTGGGTTGTCGAC
CCCTAGAAGCTTCTTATCCACGGATAGGAGTTATGGTAGGGCGTGGAGCT
GGGGATCTTGGCTCATCAAAGAAAAATCTAGCGTTAATATAAAATAGACT
AAGGAGCGGNGAAGAACCAATGAGGAATGGTATTATACNCTTCTTGCTNN
TTTATGNANTGGTTCAGACGCATATCTGGTTACGGATCTCGACAGATATC
CGGATGAGACACACGAGGATGTCAGCTAGTGTTGCGTGCGCTAAGGAATG
CCCTGGGCAACCNGGGTTTGCCGGCTGGCGGTNGTGATTTNTCCCCCCAA
TNATTTGTTAACGCCCTTGGATTTGGTTGCACCCGCTTGACGTCTTTACA
GCATGTTCAAGGTCGACGGCAGAGATGGCTTAACGAGGAANTCGCAAACT
TNAGGGGAAAACNCGGGGGGGGAGGCACCGNNGCCGTTCTCACCCGGTTT
NGCCTCCGGGCCGGNACCCACGGGGNGTTTCTTGGTCTGCGTCTGAAACG
NGTCTGGGTGGTAAGCCCAGGTTTGTGGTCCCCGTTCAAGAAAGGGGGTA
AAATGGGCGCGCNGGGGAAGGGGCACAANAAGCNGGNTCCGCTCGNGGAA
CANGCGTTCNGNCAAAAACGAANCAGAAAATAGCGGACACAAAATAGAAG
CAGNGGGCGACAAAAGCAACACACAACAAATGGNAGGCACAGACAAGCAA
ACCAGGAAAAGTGGCNTCAAAACAAACACGNAAGGAAGATGTNCAACAAA
CAATCACGAGGGGGCCACGTTCCTCGCTTTCGTCNCTNATCGCCCTCCCC
TCTCTCTCTCCG
>E:\AnalyzedData/50425_2_2_Ql_Kubota_HP14_01Run01_Cp312_MDl/Q4_Kubota_Hpl4
_01_L22_348.F.esd 1852 MegaBACE
AGGTTGGCCCCGNAACAGGACAGTGAATNCAACAAATCAGTCTAAGTAGA
TACAGTCCCCCAGGAGGGNAGTGTCTCAGCCGAGCGGGACAGGAGATAAC
GCTCGAGCGAACACCAACNGCCGCAACAGACCAAAACTNTCAGCGTCTAC
CTGACCTTCCTTACTGCCTCGCCTCATTTCGTCAAGTCATCGCGCGACTA
AATCTAACGTNATAGTGTATCAATATTATAAGTACGTGCGCAATTCTTAA
TCTCCTGTCATCCNATACGGTGTTGGGGTCGAACCTCGTGAACATTCGCA
TTCCGATCCAATTACATNTATCCATGTATTCAATCGCAAAGTTGCACGAA
ACCCACAGATTAACCCGGAACCACAGGTGTATNCAANCCAAATTAGGTTA
CTATTCCATCCACTCTTCCTTGTANATTCAATCCCAATTCAATACGCAAA
TTCGAATNTCGAATCACTCCCANTCCCATCNACGTAATTCAGCCACAGGG
CCATTTTCAAAGTAAAGGCCTAGGAATTCCCCGGTTTTGGTTTCGGGTTC
GGTTCGGTTTTATTTTTNCCCTCNGCCTGCTTGACTCTTGTCCACATTGT
TGCCCCCGGTTGCGGCCATTCCGTGGGNGTTCGGNTAAGCTTTCTTGGCC
NGGTTGCCTCTTACGCGACCTGGCCTAACTCGNCAGCCTTGCCCNCATTA
TTTCGGGCTCGCTGATCAGTTTTAGTATGATACGGTAACTTTAACGGCTG CCCGTGCCTTCCAGATCTCTTTGTNGGCCACGGGCTGCCTTGTTCTTTGT
AATCTCGAGTTCGGGCTCCCGANTGGCACATCTTTTGGTGGGGTAATACC
ACCACCCTTCTNCTTAGGGTCGGGNTTTTGAGNCCCCAAAAATTCTTGTC
AGGACTCNGTCCCGTTGTGGCCATGACCTACCCAATTTACCNCCTCCCCT
TTATTGTCCTGTCCTAATGTCCCTTGGCNGGTTTAGAAATTAAGGTCCTG
GTATAGGAAGGNGCGCCCTTGCGCAACCCAGGTANTTCTGGCCCCCCTTT
TTCCCACTAAACCGAAGGTTTCGGCGGGGCCAAGGCCCCTTAGAAAGTTT
GGGGTCAGCAAGTGCGTGGGAACGGGCCNTGGCCCCCCTTTGGTTGAGGA
CGGGTGGCCAGCCCATTTTAACATTGCCNGGCCCGGTGTCCGGGGTGTTT
GGGCTTGGTGTTGGCGGGTCCTTACCAGGCTTGGGCCCACGGCCGGGNTT
TGTATNCCCCGGCGTTTACCGAGCTTTTGGCCCCCTGGGNTGCCCCCTCC
CGTTAACGCGAACCGGGCCCCCGACTTTCCATTTTTTGACGGTNTTTTCC
TTATCCCGCCTTTCCCGTTTTTTCATTCAGGNGCGACNGGTTATNGGCGC
GGCTGNGTCGNTTTTGCCGGCCTTGGGTTNCACNGGCCTTCTCTCATTCA
TTCCCGNCGGGGGGGCCTCCTCCCNTTTTAANCGGGGGTCTCCCCNGGAA
CTTTTTACAGTTGGCTCTTTTTANCCGGGGGCAGCCGCGTTCAGTAAACG
CCCTTCAAAATCAACTTTGTGCACTTNTACNGGGGTTCGACATTGGNTTC
CACCGNTTAATTGGGCGGCCCAACTTAACCCTCTTAATTTANAAACCGGA
GGTTTTTTCGGCGCCTTANGGANCCTTTTGGAAATATCGCCCGGTGTCAC
TCTAAAAATGGCCGCCTTTTNTNNCCCCGCTTTTGTCCAAAAAGTCTACA
CCCCCTTTTTTGGGGTTTTTACTCCTATTACTTATCATCCTANNTGCGNT
ATATGCTCTGGGAACACCGCCCAGNGTGAAAAAAAAACAGCGGTGTTCTC
CA
Unigene set from WSSV-infected SSH library:
>HP35_SSH_trimmed.fasta.Contigl
ATGAGCTCAAAGCAGTGGTACAACGCAGTAGTACGCCCTCGAGCGGCCGC
CAGGCAGGTACTTTTTTTTTTTTTTTTTTTTTGGCCAATTCGTAATTCTT
AAAGAAGGTCTTGAGGACGTTTCACTGTAGTTAATGGAAGATTTCCGTCA
GTCATGTGTCGTTCGGATCTAAAATCCTGGCCTAGTTGCCCGATCGAAGC
CTTACGTTCGCCGACTGCTGCAATCGACGTTGCCGGCATGGTCGCAGGAC
TTCGTTTCTTGGTTCCAGAGGAGACCGGAGGGGCATTCCTTCTTTTCGGG
CGTACCTCGGCCGCGACCACGGGGCGTACTTCTGTCGTCTTGAGCGTACT
GATGGTACCCAGCTTTTGTTCCCTTTAGTGAGGGTTAATTGCGCXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXTGAGAGTTCAAATTGNCGTC
AATCCANAGNGGNGAAACCCGGTNTTTGTGTTTTNTGCTTTCCCCTGTGT
ANCCTCTGGGCTCTGTTGCNGCCCTGCTTAGAAAGTGAGCTTCTCGGGGG
GGGCTTAACCCNGTATCACGGNGTG
>HP35_SSH_trimmed.fasta.Contig2
GATGGAGCTCAAGCAGTGGTACACGCATNNGTACGCCCAGCGTGGTCGCG
GCCGAGGTACTTTTTTTTTTTTTTTTTTTTTTTTTTTTTGTCACTACCTC CCCGTGCCGGGAGTGGGTAATTTGCGCGCCTGCTGCCTTCCTTAGATGTG
GTAGCCGTTTCTCAGGCTCCCTCTCCGGAATCGAACCCTGATTCCCCGTT
ACCCGTGATAGTCATTGTAGGCGTTTAACCTACAATCGAGAGCTGATAAG
GCAGACGCCTGCAGGACGCGGCGCCGACCCAACCCGCCCGCGTACCTGCC
CTGGCGGCCGCTCGAGGGCGTACTTCTGTCGTCTTGAGCGTACTGATGGT
ACCCAGCTTTTGTTCCCTTTAGTGAGGGTTAATTGCGCXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXGTTTAGCTGAGAGCGGTT
>HP35_S SHJximmed.fasta. Contig3
GTGAGCTCAAGCAGTGGTACACGCAGAGTTACGCCCAGCGTGGTCGCGGC
CGAGGTACTGTTCATCGTAGTTAGCAGGAAGACTAGAGGTGTAGCCGTAA
GGAGTCATCCAGAGCTGAGAGTAGGAGTGGATCGTGAAGAACACCTTCAT
CTGAGAAGCCAAGGCCAAGACTGAATCCCGGACAGCTTGCGACTCTGCCT
CTGAGAAAGCGGATGGTCCGTGGTAGATGTCAGAGCAAGGGCTGTTGGAG
GTTCCGAGGCCACCGAAGTCAGAGTCGAAATTGCGGTTGGGGTCAGTGCC
GTGGCATCCCAGATCGCCATAGGGCACACGGTTCTTACGCCAGAGACGGT
TGGAATTATGAGTGCCCGCGTACCTGCCCTGGCGGCCGCTCGAGGGCGTA
CTTCTGTCGTCTTGAGCGTACTGATGGTACCCAGCTTTTGTTCCCTTTAG
TGAGGGTTAATTGCGC
>HP35_SSH_trimmed.fasta.Coπtig4
GATGGAGCCCAAAGCAGTGGTACAACGCAGAGTACGCCCAGCGTGGTCGC
GGCCGAGGTACTAAGATAACTTTAATAAAATTAAGAGATAGAAACCGACC
TGGCTCACGCCGGTCTGAACTCAAATCATGTAAGGATTTAAAGGTCGAAC
AGACCCTCCTTTATAACTGCTGCATTATAAGGAAACCTTAATTCAACATC
GAGGTCGCAACCCTTCCTGTCGATATGGACTCTCAAGGAAGATTACGCTG
TTATCCCTAAAGTAACTTAATCTTATGATCTCTAAAAGAGGATCATTAAT
TTTCCAGAAATTACTGTTATTAAATAACTTAAGAACAGTTACTCACCCGC
GTACCTGCCCTGGCGGCCGCTCGAGGGCGTACTTCTGTCGTCTTGAGCGT
ACTGATGGTACCCAGCTTTTGTTCCCTTTAGTGAGGGTTAATTGCGC
>HP35_SSH_trimmed.fasta.Contig5
TGNGCTCAAGCAGTGGTACACGCAGAGTACGCCCAGCGTGGTCGCGGCCG
AGGTACTGCGACGCTAGAGGTGAAATTCTTAGACCGTCGCATGACGACCT
ACTGCGAAAGCATCTGCCAAGGATGTTTTCATTGATCAAGAACGAAAGTT
AGAGGTTCGAAGGCGATCAGATACCGCCCTAGTTCTAACCTTAAACGATG
CTGACTAGCGATCCGCCGCAGTTATTCCCATGACCCGGCGGGTAGCTTCC
GGGAAACCAAAGTCTTTGAGTTCCGGGGGAAGTATGGTTGCAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAGTACCTGCCCTGGCGGCCGCTCGAGGGCGT
ACTTCTGTCGTCTTGAGCGTACTGATGGTACCCAGCTTTTGTTCCCTTTA
GTGAGGGTTAATTGCGC
>HP35_SSH_trimmed.fasta.Contig6
TGGCCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCGCCAGGCA GGTACTITTTTTTTTTTTΓTTTITTTTTTTTTGCGAAGCAATCGTTTTAT TATGACATCGATCATCGCACACACGGGACGCCCGTCACTCCAAGGGCTAO
AATAAGAACATATGTTGACCTTGCTTCACTCCTTCCCGCTGCGGGTGTGC
GCGCCTTCGGACACCCGCGTACCTCGGCCGCGACCACGCTGGGCGTACTT
CTGTCGTCTTGAGCGTACTGATGGTACCCAGCTTTTGTTCCCTTTAGTGA
GGGTTAATTGCGC
>HP35_SSH_trimmed.fasta.Contig7
TGAGCCAAGCAGTGGTACACGCAGAGTACGCCCAGCGTGGTCGCGGCCGA
GGTACAACTCTGTCTCAGTTTCAGGAAATTATGACTTTGACCACAAAGTT
GTTATCTTTGTCGCTATAAATGCTGATGGTAGAGAATCTAAAATTGATAT
CAACATTGCTGATATCAACCCCACGTATCTGCCCTGGCGGCCGCTCGAGG
GCGTACTTCTGTCGTCTTGAGCGTACTGATGGTACCCAGCTTTTGTTCCC
TTTAGTGAGGGTTAATTTGCGC
>HP35_SSH_trimmed.fasta.Contig8
GATGGAGCTCCAAAGCAGTGGTACACGCATTAATACGCCCAGCGTGGTCG
CGGCCGAGGTACTACTTAACACTGGCCCTCACTGGCAATTAACAGAACAG
GTGAAATGAAATGTTGGAACTTCAGGAA AATCAGTTATTTGGAAAAGAAA
TGCCCTTCTCTGAATTCCATATATCATTGTCTGGGAAAATCTGAACACAA
AAGTTGAATAATTCCCCTATGTAAAAAATAGTATAAACGGCAAAAATAAA
TATGTCTTTCTTTATGGAAATCCATATCTATGTTTAATGATAAATAAATA
TGGAAGTTTAAAATGTATACTGTCTGAATTGTAGTCTTTCAATGCAAAAA
TAAATTAATTACAGTTTATTTCCTTACTTTGAACATTAACACAACAAATA
TTTCACTTTGAAAGTCTGAAAGTTTTGGTTATTTAACCATGAAATAAATA
AAGTCTTGTATAAAATATATTGTGATTTAACGTAAATTTAGAGTGTAGAC
CTTCAAATCAATAATCCATAAAATCTGAAGATGTAATGAATAAATTAATA
ATTAACAAACTTTCTAGTGAAAAGCTTGAACAAAAATATTTCTTGTATTC
ATGCAGCTACATTTGCCAACTTACTGAAAATAGTACCTGCCCTGGCGGCC
GCTCGAGGGCGGTACTTCTGTACGTCTTTGAGCGTACTTGATGGTACCCC
AGGCTTTTTGTTCCCTTTTATGACGGGTTCACTTGCGCGCTTTGGGCGTT
AATCCATTGGTTCACATACGCT
>HP35_S SH_trimmed.fasta.Contig9
GATGGAGCTCAAAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCG
CCAGGCAGGTACAGTTACCGAAGATTCCGTGGACTTGCGCTCAATTGTAG
TTTTTCCACCCTTCAAATTTACCCAGAACTTATCCAATTCGATGGCATTC
CAGCGACCTTCGTCAAATGTAAACTCGATTCCGTTGTTGTCTTTATGAGG
CCAGGCAAAGATACGAACTGTGCCCAATCTCTCAGCACCTCCATTCTCTA
CATCAATCTTAAAAGTGAATTCTTTGTGGTTAAGACGAGGCACATATGTG
CTGATTTCCACATCTGGGATTCCTTCAGCATCATCAACTGCGTTGATAAG
ACTGTATTCGAAATCTTCAAAGTAGGTCTCCAGTTCACCTACAACGGCTA
GCTCTGAGATAGACACGCCAGAGAATTCCAAATCGGCCTTGGTGTATGGG
GGTAGACTGTCCTTGTGTTCCCCGCGTACGCGGGGGGAACGGAGAGAGAA
GGAGAGGAAAAGGAAAAAAAAAGGTGTAGATAAAAACATTTTATCTCCTG
ATGTGTCTTGTGTTTGGAACTAATGATGCTTTTGAAGTGTGTTTGTTTTT
ATACAGAAACAAAGGAAGAAATCTTTAAGAAAACTGAAAAGTCTGCTGCA
CAACACCATGGGTTTGATACCATACCTGCCAAGGGAGAGTGTCCTTAGAA
TCACAATTCTGGGGCATGTTTTCCACGTGTGAAATGGGCTCCGCGCAACG
AGCATCAGATGTCCCAACTTGTACCTTNCGGGCCNGCGAACCACGGCTTG
GGCGTACTTCCTGGTCGCTTGGAGCGTTACTTGGATTTGTACCCAAGGTT
TTGGTTCCCCTTTNTGACGGTTAATTGCCGCCTTGGGGTATCTACTGGGC
ATAGTGTTTCCCTGNGTC >HP35_SSH_trimmed.fasta.ContiglO
GTACGGCTCAAAGACCGGACAGAAAGGTAACGGCCCCCTTCGGACCGGCC
CCCCAAGGGGGCAAAGGGTACGCGGGGATTACGAGGGATACGCCCTGCCC
CACGCCATCCTGCGTCTGGACTTGGCCGCCGCGGACCCTCACCAAGACCT
ACCCTGATGAAGATCCTGACGGAGCGTGGCTACACCTTCACGACCACCGC
CGAGCGAGAAATCGTTCGTGACATCAAGGAGAAACTGTGCTACGTGGCCC
TGGACTTCGAAGAGGAAATGTCCACTGCCTCACAGTCTTCTTCTCTTGAG
AAATCTTACGAACTCCCCGACGGCCAGGTGATCACCATCGGCAACGAGAG
GTTCCGCTGCCCCGAGGCCATGTTCCAGCCTTCCTTCCTGGGCATGGAAA
TGGCTGGCATCCACGAGACCACCTACAACTCCATCATGAAGTGTGACGTG
GACATCCGTAAGGACCTGTACCTGCCCTGGCGGCCGCTCGAGGGCGTACT
TCTGTCGTCTTGAGCGTACTGATGGTACCCAGCTTTTGTTCCCTTTAGTG
AGGGTTAATTGCGC
>HP35_SSH_trimmed.fasta.Contigl l
ATGAGCCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCGCCAGG
GCAGGTACAGACAGTCGACAACCATGTAGAGGTTCTTGTTCTCGTAGAGG
TCGTTCACCTGGAAGAGGTCCTGGCTCTTGAGGCCGTAGCTCTCGCACCC
CTTGAGGAACATCTCCAAGTTCTCCCTCTGTTTGAATGGCGCTTTCATAG
TGTTGATTCGCTTGACTGCGCCTGGCTGGAGGCAGTTCAACAACGTGCAG
AGGGCGATGCCGTCTTTGAGGGCATGCCCGAATGCCAGCTGGTCGGTGAG
GCCTTCCGCCGTGGGGAACTCCAGGGGGCATCTTCGTGACTCCCTCCACC
CAGTCGCACGCCTCTCGCGCTCCGTTGATGTCGAACTTGGCCTGGCTCTT
CATCTGACATTCCCTGCTGAGACCGTAGGAGGGGCCGTGGTACCTCGGCC
GCGACCACGCTGGGCGTACTTCTGTCGTCTTGAGCGTACTGATGGTACCC
AGCTTTTGTTCCCTTTAGTGAGGGTTAATTGCGC
>HP35_SSH_trimmed.fasta.Contigl 2
TGAGCCAAGCAGTGGTACACGCAGAGTACGCCCAGCGTGGTCGCGGCCGA
GGTACCTGGTGTTGAGACCATCTGTGTTGACAAGCTGAATCTGCTGAAGC
TTGCTCCTGGTGGCCATGTGGGAAGATTCTGTATCTGGACTGAGGATGCA
TTCCGTAAGTTGGATGCTCTCTATGGAACATGGCGCAGGGAAGCTAAGAA
TAAGAAGGGATATAATCTACCGGTGTCAAAAATGACTAACACCGATTTGT
CCAGGCTCCTGAAGTCGGACGAAATCAAGTCTGTCATTAGGAAGCCAAAC
AAGACCATTGTTCGTAGCAAGGTGAAGCCAAACCCACTGACCAACTACCA
AGCCATGCTGGAACTTAACCCCTTCCACCGTGTTGAGAAGAAATTGGCCC
AAGCTGTTGAAGCAAAGCACATTGAGGCTAAGAAATCTGGAAAGCCTACT
GAAGTTGTAAAGCCTGCAAAGAAAGAAAAGCAAAGAAAGAAGAAGACTAC
CAAGAAGACTGTGAAGAGGCTGAGGAAGCAACACCCAAGGAGTCATTCTG
GCAAGAAGGGCAAGGCTGCTGCAAAAGTAAAGCAAACCAGGCAATGCTTT
GATGAAAAATAAACCGTGCGAAAAAAAAAAAAAAAAAAAAAAAAAAGTAC
CTGCCCTGGCGGCCGCTCGAGGGCGTACTTCTGTCGTCTTGAGCGTACTG
ATGGTACCCAGCTTTTGTTCCCTTTAGTGAGGGTTAATTGCGC
>HP35_SSH_trimmed.fasta.Contigl 3
GAGCCAAGCAGGGTACACGCACGAGTACGCCCTCGAGCGGCGCAGGCAGG
TACTCTGCGTTGTTACCACTGCTTACCGCGTACTTTΓTTTTTTTTTTTTT
TTTTTGGAAAACTACAACAAATACTAATACAATTACTCAAAGTAGAAAAC
TTAATATATATACTTTCATTCTATTGTCTTGTAACACCTGTAAAATTTTA
GATCTTCTTATAATGAAGGAATAAATTCCCTGTCCTCCGGTAATATTCAG
ATCACCCTATATCTCCAACTCTCTGATAAGTTTCTCCTCTTCCTAAAAAA
TTCTTACTTGCCCCATAAGTAGATAAAAATGGTATAAATCATACTAGAAC CAGAAAATACAACTATATTATAATGTTTTAAAGAATTTAAATTATAATTA
ACAGGCATTTAAATTTAGTAAATAGCCTAAAGAATACCTCCAACTGCTCT
AACAATTAAAGCTAACATCTTAAAAATAGGACTTATACCAAATTATATTA
GGACAGGGAAAAATCAATCAAGCTAATGTAGCTCCTCCAAATACAGCTCC
AACT
>HP35_SSH_trimmed.fasta. Contig 14
GATGAGCCCAAGCAGTGGTACACGCAGAGTACGCCCAGCGTGGTCGCGGC
CGAGGTACCATACAGCTGTAGCGAGGAGGAGTTGTTGATTGTTCTTGATA
GCACCGAGGATGGGTTCACCGAGGAGGAAGTTAGTGATTAAGCCACCAGC
AAAAATGGTGATCATGCTCGACAGCCAGTTGGCCAGGGGATGTTTCCGGG
AGAAGGGAAGTCCGCCGGTGCCGAGGTCCTCCCTGACGTAGAGGCAGCAG
AGGGCACAGTGGGCGACGTCGAAGTATAGAAACATCTTTAACTTGGTGAC
CTGGTTGGCCATCTCTAAGAAGGCTTCGGGATCCATGTTTGCGGGTGTGT
TCTTCCTCGGTTGGGGGAATACAACTCTTCCTCTTTCGTTTGTTTGTTAT
GACCTATGTATCTTTTTATTTCTGGACACCCACGAGGAATACGGGAAAGA
GAGAGAAGGGGAGAAAGGCGTACAGGTCTTTGGGTGTGGGAACAAGACCA
CTGTAAGAAGGACACGATGGTACCTGCCCTGGCGGCCG
>HP35_SSH_trimmed.fasta.Contigl 5
GAGAGCCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGTCGCCAGG
CAGGTACCTTGCATGCCAACGGAGCCTCTTTCTTTTTCATTTGTTTATAT
ATACACACAGGGCGGGGTATCTATTATGGGTCTTTCTTATATTTACACGC
CTGATCTGTAGGAGTCATTATTCTCTTACTTGTTATAGCAACAGCTTTCC
TAGGGTATGTACCTCGGCCGCGACCACGCTGGGCGTACTTCTGTCGTCTT
GAGCGTACTGATGGTACCCAGCTTTTGTTCCCTTTAGTGAGGGTTAATTG
CGC
>HP35_SSH_trimmed.fasta. Contig 16
GTGAGCCAAGCAGTGGTACACGCAGAGTACGCCCAGCGTGGTCGCGGCCG
AGGTACTATAGTGTTAAATAAAGTCTGATCTCAAAGCATGCTCTACCAAT
CTACAGATATCAGTATATCAGATTTTCCTTTAGTCCTAGTCAGAAATTTG
GCTTGGAGGGGAAGCTGGTATCACCAATTTGTAAAGGTGTTCATTTGTGA
GCCAATGGTGTAGCACTTTACTCTGCTTCCGCACTGTCATATATAGTTTC
TCTGTTATCAAGCTGACAGTCAATCATGTCTGGGATCCAGGGGAAGTAAA
ATAGCAACCAAAAATATTGGGATACAAAAAGAAAAAGAAGAAAAAAAAAA
AAATTAAGGAAACTAAAAATCTGAGACTATTATCAATTAAAAATTCATAT
AATATTTCCAATAAGTATAACATTACCTATAAGTAATCACCTAGCAATTC
TCTCTCACAGGTTCACATTATATAAATATTTTCAACAAACCAATCATTCC
CCCTTTGCTCCTTCTATGACTACATGGCTGATCAATCACAAGCTTTCTCT
AAGGGAAGATAAACTATTAATGCATGTTTTGGAAACAGTCCTCTCTCGCT
TGCTATCATCACAGCTGATACTAAGATTACTGGTCCTCCAAATCCTTGGC
TCCGTGCTTGAGGATGCGAGTGAACTCCACATAGTCAAACATGGAGTTCT
TGATGGGGGGCTTCTCGGTACCTGCCTGGCGGCCGCTCGAGGGCGTACTC
TGCGTTGTACCACTGCTTGGAGCTCATT
>HP35_SSH_triπuned.fasta. Contigl 7
TGAGCCCAAGCAGTGGTACACGCAGAGTACGCCCAGCGTGGTCGCGGCCG
AGGTACGCGGGATTTTTCATCTATGCAGAACTCTGATTTTTTCAATATCT
CATTGTTTCTTGTGTAGAAGAAGAGTTCTGTGAAGATGACAGTCTCACTG
TTTGGCAGAAAAATATATTTCACTATTACAACATGAATAGAAAAAGTCTG
TCTGGGTGTTTGTGCCAACAAATAGGTTTTTTTTTGTTTTTGTTTTCTCA
TACCAAGTTGGACGACATTGGGCCTAGACTAATGGTGCACAAGGTATATC TTGCAGTATTGTAGTTAATGAAAGAAAGATAATTTCATGAACATAGGCTC
CTTGAAAAGTAAATATGTTTCAGAAAAAAAGTATTTTGCACACTTTGGGA
GTGTCAGATTCATGTGCAAGTTCTCGCAGAAAATACAAGAAAGAATATAC
AGAAAATATCTGGTTATAGGCATACAGTGTGGCAAGTAGGTAGATATACT
TCCTTTTTATTCTTTCATACCTATGATAAGCAACCTCCAAAGTTGTCACA
AACTTTCAGAAAGTGAACAAGGGGAATTCCATTTTGGTATTACAAGTTGA
AATATTGTAAAACTGCCATATGGGTCAGAACTGCTAATGAAGTGCAGGTT
ATGTTTTGAG
>HP35_SSH_trimmed.fasta.Contigl 8
GCGCAATTAACCCTCACTAAAGGGAACAAAAGCTGGGTACCATCAGTACG
CTCAAGACGACAGAAGTACGCCCAGCGTGGTCGCGGCCGAGGTACGCGGG
AAGCAGTGGTAACAACGCAGAGTACGCGGGAAGCAGTGGTAACAACGCTG
AGTACGCGGGGGGTTGGGTCGGCGCCGCGTCCTGCAGGCGTCTGCCTTAT
CAGCTCTCGATTGTAGGTTAAACGCCTACAATGGCTATCACGGGTAACGG
GGAATCAGGGTTCGATTCCGGAGAGGGAGCCTGAGAAACGGCTACCACAT
CTAAGGAAGGCAGTAGGCGCGCAAATAACCCACTCCCGGCACGGGGAGGT
AGTGACGAAAAATACTGTTGCGAGCCCCGAACGGGGCCTCGCAATTGGAA
TGAGTACCTGCCTGGCGGCCGCTCGAGGGCGTACTCTGCGTTGTACCACT
GCTTNGAGCTCATC
>HP35_SSH_trimmed.fasta.Contig 19
GATGAGCTCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCGCCA
GGCAGGTACTTTTTTTTTTTTTTTTTTTTTTTTTTTCGACAATCTCTTTA
TTAATTCTGGTTACACAAAATGCAGATTATTGTCTACATGAAAGCTGAAA
ATTCTATCCAATGATGTGTCTTACTAGAACAGTTTAAAGAATTTTGAAAA
CTATTCGACATATCCTAATTCAAATCAGAAGAGCCAAATGGAGGTCAGGT
CGTTCGCCAAAGGTCAGTGCCGTCACATGAGTCCTTCAAGGAGCGACAGT
TGCCCATTCCTCAGAAGATTCCTCAGAGCTCTCACTCTCGGAGCTGGAGG
CTTGTCTCCCGAGGCGCCTCAGATCCAAGTCGTGAGTGGCAGCGATGTCC
CTTTTCTCTATTCTCTCAAAAGACGCGCTGTCGCTGGTGCTCCCTGTGCT
GATGTCTCTCTTCTCTATCCTCTCCACGGACGTGCTTCCGCTCGTCCCTG
AGCTCATGTCCCTCTCGACGCGATGGAGCTCCTCGTAGACGTCGCCGAGG
GAGTAGGCGGAGGAGAGGCCGACGACGGCACCCCCGGCGTACCTCGGCCG
CGACCAAGCTGGGCGTACTTCTGTCGTCTTGAGCGTACTGATGGTAC
>HP35_SSH_trimmed.fasta.Contig20
TGGCGCGACGAAGGCGAGTTAGGTTAACAACGCCAGTAGTTACTGCCCTT
CGAAGCGGACCGGTCTCTAGAGTTCTAGAGTTACAGAGCCTCCCCCTAGC
GTAATATTGCCCTTGACTGACCCCACGCGTGACAAACCGGCTGTCTGATC
GTACCCCAGTGTACCATCTTATGAGAGCTTGCCTATCCCATCGGAGGGAC
CACATGGAACACGCGCACGGNTAAATGGGTCAGTATCGTCCGAAAGACTC
TCGGGCTGAATCGTATAAAGTATCTGACTGTGACTCAATGTCTCACATGT
CCGACCGAGACAGTAGTAGTCACTGTGCAGAGTCAATCACTGTCTCTGGC
TCGGGCAANTGTGACAAGTACTCGCTATAATTTTACTCGTCACTGACCCG
AGCGTCTTCCGGGACGGTTAATCCCAATTCCCGGTGCGCGTGGTTCCAGA
TTTGGTCCCCNCNGATGGGATATGCAAAGCCTTCTTATAAGATAACCATC
ACGGTGGGGATNCACTCCGGAACGGAGCGGTGTTTGTCACGCCGGTTGTG
GGTTCGGATCCACAAGGGAGAACCCAATTATAATCGCNTTAGGGGGGAAG
GGTCTCCAGATACTTCCCCATTAGAACTCCGNCAGTAGGAGTTCTCTGAG
GCCAACAGGCCTTATCCGAAAGAGGGACCCGGATTAACCTTACCGTGGCC
GGTTTTNTGGTTTTTTTTCCANCCAANTTTTCTGGCGCTTCTTCTTGGTT GGGGGAACAAGCCACAATCTGNCGCCATAAAATTCCCTCCTGCACATCTC
CCTTATTAATNATAATGTTTGCGCGAATNGTTNTANCTNTACAAACACAG
GTNTGNAAAACCGTGGGTNCAANCCTTGTTTCCCTCTTTCCGGAGAGTCC
NCTTGGCTGGACCCTCCTGTGGGATGAAACGGGTCTTTTGTTTTTNATAC
ATCGNGAAATTNCGGGTGTTTTTCCAACTTCCCGGCCAAAACGTTTTTGG
TTGTTNTTCANGAGGGATAATCCCCCCCCCCCTTTGGTTGGTTCNCAGGG
TTTTTGGACAACCGCCGGGCGGATTTATTCTCTTCATTTTACAATGATAG
GTNTGCCGGCGGCCCGGCCCTTTTTTNTGTGGCGCGGACGCGGGGCCTNA
ACCTATATTTCCCCGCCTGTTCCGGGCGGGCCGTTTTCCTTNATTCCCNA
GGGGCCCCCNTAAGGGGTCCTTTGGGCCGGCCCCTCTTGGGGGTTTTTAG
GCGTTTTTTTGACGCACAAGGCCCCAGTNCTCNGACGGCGGTTCTAAATG
GTAGGNTCCCCCCCCCGGGGCTGCCGATTAAACCGACNCGCGGAGAATAT
TTTTTCCTTGGGCCCGCCCCACACCGTTAATTTTCCACACCCAGACNACA
AAAAAATTATCACAAAACCGGGATGTAAATATGTGGGCCCCCCGTGCGCC
CTGAAGGAGGACACGGCCGNTTAGGAATTTTAAAAAAAATTTTTGAGGGG
GGGTNCCGNGGGGATGTAAAAAAAANTGNTTAATGGGCGGGGCGGNCCAA
TANCGGGGGGCCGCGGGGGCCTCTTCAGGNCCGTTCGGTTTTTAAAAAAA
CGTCTCCGGGGAGAAGGGT
>HP35_S SH_trimmed.fasta.Contig21
ATGAGCCAAGCAGTGGTACACGCAGAGTACGCCCTCGAAGCGGCCGCCAG
GCAGGTACACTTCAGAATGCAATGGGGACTGTGCTGTTAACTGGGTTTGA
GATGATGCAGATCATAGCATTGGGGCAATTTTCAGCACAAGCCTTGGCCA
AGTTTGCAACAATAGAGGCGTTAGTGTTGAAAAGATCGTCTCTGGTCATG
CCAGGTTTGCGGGGAACTCCAGCAGGGATGGCGACAACTTCACATCCCTT
CAGGGAATCTGCAAGTTGGTCGGGTCCAACATAGCCGGTGACCTTGGCTG
GGGAGTTGATGTGGGAGAGGTCAGCAGCTACTCCTGGCGTGTGCACAATA
TCGTAAAGGGAGAGTTGGGTGACCAAGGGAGAGTTCTTCAGGAGTAGGGA
GAGTGGCTGACCAATGCCTCCACTGGCACCCATGACAGCAACCTTCCTGT
TGGCGGCATTGGTGGTGGAGAAGTTCTTGACCAGCTGACCAAGGACATTG
GCAGTCTGGGGCTTGGCAAGTCTGGAAAACATGATTATTGGTGTTGAAGT
GCCGCTGGTGTTCTCTCCCCCGCGTACCTCGGCCGCGACCACGCTGGGCG
TACTTCTGTCGTCTTGAGCGTACTGATGGTACCCAGCTTTTGTTCCCTTT
AGTGAGGGTTAATTGCGC
>HP35_S SH_trimmed.fasta.Contig22
GATGGAGCCAAGCAGTGGTACACGCAGAGTACGCCCAGCGTGGTCGCGGC
CGAGGTACATTGACCGCAATGGAGAAGAACCACGTCTTCCTGGTCTCGAC
CAATACTCCCCCCAACAGATTTTCTTCCTTTCTAATGCCAACATCTGGTG
TGGTTCTATTACCAAAGAGGGTCTTCTGAACCAGGTGCTTACTGACCCCT
CACTCCCCAGGCAAGTTCCGTGTACCTGCCCTGGCGGCCGCTCGAGGGCG
TACTTCTGTCGTCTTGAGCGTACTGATGGTACCCAGCTTTTGTTCCCTTT
CAGCTCACGGTTAATTGCGC
>HP35_SSH_trimmed.fasta.Contig23
ATGAGCCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCGCCAGGG
CAGGTACTGGACGTTAGGGCTATACAAAGAGGATTCAATAATATCTCCAA
GGACGTCGATTCCACGCTCATTCATGATGTCAATGTGATTGCCAGCCTTA
TCGACAATATAACCGTGGGCAATAGCATCGCGAATGCGGCTCTCAATAAT
AAGCAAGTCTCGAATGCGAGCAACACCGTCCACATCCTCGAAGTCTACAT
TATCTGGACGAGAGGGGAACTGACCGCCATACTTGTAAGTGGTGTGGGGA
GCAAAACCTTGTACGATGGGTTTACCCCAGTGAAGTTCGTCGACGGGATC CAAGTAATTAGAGAGACGTTCGGCATCAAAACGAACGGTAAGTTGATGAT
GTACCCAGAAGAAGTTCTCTCCTTTGCGGTCCAGGTGATGACTGTAACTG
TCTTGCCACCAGAATGGGAATTCCATATGCCAGGTAACGTGGTGAGTGTT
CATTCCAATGTCCTCTCCGAAATAGGCTACTCTCTGTTCAGGATTCTTTT
TAGTTCCAGTGAAAACCTTAAAGACTTAAATTTACCAGGTTTTGTGTCTG
CTTGGCACGATAGCTG
>HP35_SSH_trimmed.fasta.Contig24
TGAGCCAAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCGCCAGGC
AGGTACTGCTCGTAAAACTTATTGTGTCCGACCCAGTGTTCCTTATCGTG
AGCTTCTTCCGTCACTAGGACAGTCTGCCTTTCTCCCAATTTATGATCAT
ACGGTCTATACGACTGGAATAACTCTGTCAGCTGTCTTGAGCGATTTTTC
ACCTCTTTTGTAGGTATTCTTTGCATCTTGGCCGCTGGAGTTCCTGGCCG
TGGATAAAACTGATTGATGAATAAGGATGGGAACTTATAACGTCTACACA
GTTCTATAGTTTCCTGGAAATCTTTCTCTGTTTCTGTAGGAAAGCCACAG
ATTATGTCTGTTGCTACTGTGATACCTGGGACTTTTTCCTTCAAAAAATC
TACCACTCTGTAAAACTCTTCCACAGTGTATTCTCTTTTCATGTCAGCCA
GGACACCATTACTTGCAGCCTGGACTGGAACGTGCAAGAAGGCATAGACT
CGAGGATGTTGCATAATCTTGGCAATTTCCTCTAAATGGTCTAAGATGTA
AGGTGGGTTTGTCATGC
>HP35_SSH_trimmed.fasta.Contig25
GATGAGCCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCGCCAG
GCAGGTACTTTTTTTTTTTTTTTTTTTTTTTTGTGGAAAAGATTTTATTA
CAAGAAACAGGTTAACTGTGAACAAGGGAGTCAACATGTTTTTACATGAA
TTTAGAAAATAAAAAATAATAGTTACAGATTCTGGCAATGAAATAAATAC
ATCAAAAGTCACACTGACAATATCTACAAGATTTGTATATTTATGAGCTT
ATAAAATCAATTGCCCTAGCCTACATGAACAACGATTTCTTAGGGTAATA
TATGAAAGATTCTTTTCTGTCAGACCTTGAAAACCATTAAAAAAAAAGTT
TAGAACAAAAATACAATACTCATAATTTGAAAGAGCACTGAACCAGTAAG
AATTTTGGAAAAAAGAAAAAGGGGGAAAAATAGAGCATTAATCTGGTGGT
TGCATTTGCACGATTTGTGATACTTCAATTTCAATCATGAATTGCTTTTT
AAGTCAATTTATCTCATTAAATGTCTTTGCTAAACCTGCTCAAACTATCA
CTTTCATT
>HP35_SSH_trimmed.fasta.Contig26
TGAGCCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCGCCAGGG
CAGGTACGGCGGCCGAGACGCAGTGCCCCACGAATACCCGTGGAATGTGG
TCGTGTGGATGGACCATGCGTACTTTTTTTTTTTTTTTTTTTTTTTTTTT
GGCTACTGAAAATTTTATTATAAATTGTAAAAAAGATAATATATCACAAA
TCTATGACCCAATAGGTTATAGATCACTCTTCAGTATCTCTTATAGTAAT
TGTAGTTTCCTCAGGGGATAATGCACAAAATTTCTTCGTGAAGCATAAAT
ACAATGTCAAAGACCATGTGATATTCCATCAAGAAGGGACAAATTCAAAG
GAATTAGGTATTCTTTGGAAAACTCTTTGCCAAGTTTAAAAGCACACTTC
ACATAGACATGGAGCACAGGTATGATCTTTCATGCTTCAAATGATGATAA
CATTACTACCAGAAATATCTTTAAAGTACCTCGGCCGCGACCACGCTGGG
CGTACTTCTGTCGTCTTGAGCGTACTGATGGTACCCAGCTTTTGTTCCCT
TTAGTGAGGGTTAATTGCGC
>HP35_SSH_trimmed.fasta.Contig27
TGAGCTCAAAGCAGTGGTGACAACGCAGAGTACGCCCTCGAGCGGCCGCC
AGGCAGGTACTGGTGTGCCCTGATGGGAGAACTCTGGAGTCTGAGGCTGC
CCATGGCACTGTCGCACGCCACTACCGCCAGCACCAGCAAGGCAAAGAGA CATCCACAAACCCTATTGCCTCCATCTATGCCtGGACACGAGGTCTGGCC
CACCGTGCCAAGCTGGACAAATAATGAACCCTTGTCCAAGTTCTGTGCAA
CGCTTGAACAGGTGTGCGTAGACACCATTGAGGGTGGCACGACATGACCA
AGGGACCTTGCGCCCAATATTGGTATCAAAGGGGATGGCAAAGCATCACC
CGCAGTGACTACCTCAACACCGTTTTGAAGTTTCTTGGGGACAAAAACCT
GGCTTGAGGAACTTGGCAGGAAGGACAGATCACTGCCTTGACTATCCTTG
GCAAGGAAACCAGTCACATCACACTGCCAGGCTCTAACATGCAACAAGAC
ATTCCCCAGCCCCTTTGTCTAATATTAAAAATTGTGTCCCAGTGTCCCTG
GGGGATTTTATTGATTCTGGTGCTTTTGAAAATATTTTAAACTTGTATTA
GGGACCAGATAATAAATTTAGTAAATTTTGAAAAAAAAAAAATAAAAAAA
AANAAAAAGTACCTC
>HP35_SSH_trimmed.fasta.Contig28
GTGAGCCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCGCCAGG
CAGGTACTAAGATAACTTTAATAAAATTAAGAGATAGAAACCGACCTGGC
TCACGCCGGTCTGAACTCAAATCATGTAAGGATTTAAAGGTCGAACAGAC
CCTCCTTTATAACTGCTGCATTATAAGGAAACCTTAATTCAACATCGAGG
TCGCAACCCTTCCTGTCGATATGGACTCTCAGGGAAGATTACGCTGTTAT
CCCTAAAGTAACTTAATCTTATGATCTCTAAAAGAGGATCATTAATTTTC
CAGAAATTACTGTTATTAAATAACTTAAGAACAGTTACTCATTATATTCC
CGTCGCCCCAACGCAACAAATATTATCTAAAATCAAGTTATACTAACAAT
TTATAATATAAATAACTTATTGTAAAGCTTTATAGGGTCTTATCGTCCCC
TTAAATTATTTAAGCCTTTTCACTTAAAAGTTAAATTCAATAAACCCCGC
GTACCTCGGCCGCGACCACGCTGGGCGTACTTCTGTCGTCTTGAGCGTAC
TGATGGTACCCAGCTTTTGTTCCCTTTAGTGAGGGTTAATTGCGCGCGTC
>HP35_S SH_trimmed.fasta.Contig29
ATGAGCTCAAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCGCCA
GGCAGGTACGCGGGACAGCCAAAACGCCTCGTTCCCACTCGCCATCGAAG
TCCTCGACCTGAGCTACAACAACTTCAGTCTCCTCCCGAGGAACTGCTTC
CGCCATCTGCCGGCGCTCAAGAAACTGATCCTGGCGCACAACCCCCTCGG
CGACATCTCCCACACGACGAGCATGGCCATCAACGAGCTCCACAGCCTCG
TCGAACTTGACCTCTCGCAGACCGGGATCGAGCGCCTACCACACGGGTTC
CTCACTGACCTCCTTAACCTCCAAGTGCTGATCCTTGCGGGGAACAGGCT
CACGAGTGTGCCGGAGGAGGTCAACTACGCTCGCTCGCTCACGCACCTCA
ACCTCAACGCCAACCCCATTGAGATCGTACCTCGGCCGCGACCACGCTGG
GCGTACTTCTGTCGTCTTGAGCGTACTGATGGTACCCAGCTTTTGTTCCC
TTTAGTGAGGGTTAATTGCGC
>HP35_S SH_trimmed.fasta.Contig30
TGAGCCAAGCAGTGGTACACGCAGAGTACGCCCGCGTTGGTCGCGGCCGA
GGTACAAGCTGTCAACAGTTGTCTGTCTCGTCTATCAGATCCTTATCCTT
CTTTCAGTCGAGGTGCGTGTGTGTATGCGTTTTAATTTCCAGTGTATATC
TAAAGATTATCGAATGTATATGATTAAAAATCCTTCAATGGAATACATAC
ATACCACAATGCCCTTCTTGGATTAGACTGTGCGTATGTGTACCTGCCCT
GGCGGCCGCTCGAGGGCGTACTTCTGTCGTCTTGAGCGTACTGATGGTAC
CCAGCTTTTGTTCCCTTTAGTGAGGGTTAATTGCGC
>HP35_SSH_trimmed.fasta.Contig31
GATGAGCTCNAAGCAGTGGTACACGCANGTAGATACGCCCTCGAGCGGCC
GCCAGGGCAGGTACCTACAGCAGATTCTACAGATGATGAAGATGTAGAGA
AACAGCTTACAGCAGATAATTTGGCACTGATCGTAGCTAATGCAGTAAGT GAGGACCAAGCAGTTCAGTTGTCTGCAGTTCAAGCAGCACGAAAACTGCT
CTCTTCAGATAGAACCCCCCTATTGATGATCTGATCCAGTCTGGAATCCT
TCCTATACTTGTCAAATGTCTGGAAGGCACTCACAATGTATCTTCCCCGG
ACAGCCCATCCTTACAATTCGAAGCGGCCTGGACTCTGACAAATATAGCC
TCAGGAACATCCAGGCAAACTCAGGCGGTGGTCCAAGCTGGAGCTGTTCC
CCTATTTCTTAAATTACTTCAGTCATCTAGCCAGAATGTCTGTGAGCAAG
CTGTTGGGCACTAGGTAATATAATTGGTGATGGGCCACAACTAAGAGACT
ATGTCATCTCCTTGGGTGTTGTCCAGCCACTTCTTAGCTTCATTAACCCA
GAAATACCTATTGGATTCTTACGAAATGTTACATGGGTCATTGTCAACCT
GTGCCCGGAACAAGGAAACCACCACAACCCAACAGACTATAAAGGAGATT
CTTCCTGCATTAAATATCTTGATTCATCACCATGACACTTCTATATTGGT
GGACACAGTATTGGGCTCTTAGTTACCTTACGGATGGTGGTCATAATCAT
ATTCAGTGGTCATAACGTGGTGTTGTTCCAAAGCTTATTCCATTGTTCTT
CCCTTAAGAATTAGGTCCAGAACGCGCTAAAAGCTGTGNACTATGTACTG
GACTTCGCCGGAACCAGCCTGGTCTCGTCCTTNNCCCCTCTCTNTGTCCC
TTTTGTCCCCTGAAAGGTATCCCCNGATATNCANCTTCCTGTAAATTTCC
ACACNCACANTCGC
>HP35_SSH_trimmed.fasta.Contig32
GATGAGCCCAAGCAGTGGTACACGCAGAGTACGCCCAGCGTGGTCGCGGC
CGAGGTACAGAGAGCCAGCATGCATCTGCTTGTTGCTTAATTTGTAGACT
CCATTCACAGTAAAGGAGTTTTCCCAGTTGAACCAATCATTGAAGGTAAT
GGTATGGTCAATAACAACAGATTTTGTTCCCTTCATGAGAACTATGTTGG
AAGTTCTTGTGTTGTCATCCTTCTTGCTATCAATGCTGACTTTTACATCA
TCTAGGCCACTGAAAGTGGAATTGACTTCAGCTTTAAGGATTACCAAGCT
CCTAGACACATTCAGAAGTCCATCCACAGGCACATGAATACGTTCAGAGT
TGAAAATGACATCAACTGAGGAATCCATCTTGGTGTTAGTGACAGTGTGC
TTGAAGGCAATTGATCCCTTATTTACTGGGCTAGAAACGTCAACCTTGAA
TTCTACATCATTCTTGGAGAGCATGTGTCCCTGAGCGTGCACCTTGACGC
TACCGTATGTAGACCAGGATCCTGGTCATCTCGAACTGCGATGTAAAGTG
CTCCGTGTCATGGGTGTGCTTGAGAGATACTGTCAGAGGGTAAGTGAAAC
GGCAGTAATGAAGCGAACGTCTCCAGAAAACTGTCCGTAGTGTCCGCCAC
TGACAGTCCTCTTGGCCACTTACATTTAAGGCATGATTTTCTTTCTTCCC
CAATTCTTTACCTTTCAGTGATCACAGTTTGGAGAACCTTTCTCCACTTG
GAGAAGAGTTCTTTTACACGNATTGGGCCTTTTNTTCTTCAGGGGATCCA
CAGAAACACGCGAGTGTCACCTTGAACCACCAGAGTGACTTNCTTGTTAC
TTGCCCTGGCGGCCGTCGAGGGGTACTCTGGTCGCTTGAGCGTCTGGTGG
TACCCAGTTTTGTCCCTTAGTGGGGTATGNGCGCTCGCGNCACCTGCTAG
TCGTGTGGAAATTTCGGTCATCC
>HP35_SSH_trimmed.fasta.Contig33
GCGCAATTAACCCTCACTAAAGGGAACAAAAGCTGGGTACCATCAGTACG
CTCAAGACGACAGAAGTACGCCCAGCGTGGTCGCGGCCGAGGTACGGCCC
CCAGGAAATGCCCTGTGCCCCAGGAACCGTGTGGGACCAGGACCTCTTGA
CCTGCAACCACGAGGCCACGACCCCCTGTGTCATCGCCGAACCCTGTGAC
AAAAGTCATGACAAGCAATGCCGCAAAGGAGACGGAAGATATGCCGTCGA
AGGAAAGACAGCATATTACCTCTGCCGCTCCCGAGTATCCTTCCTCCTTC
AGTGTCCCGATGAAGGAACCTTTAATCCTCACATTACATCCTGTGTCTAT
AAGGACCGCACTGCCATCGGGAAGGTAGTCGCTTAGAGAAAGATAAGGGT
TGTGGGTTGTGTAAGAGTTAAATAAAATGAAATTTGAACAAAAAAAAAAA
AAAAAAAAAAAGTACTGTTCATGAATGAATTACATCAGCAGCTCTAATTA GAACTCGAATTTGAGTATTTATTGGTAACACAGTGCGATTGTCTACATCT
AGAAGCCGGAATCCGTTCTCAGGCAGCTCATTGGAAGGAATCATATAAGA
ATCAAATTCTACTTGAAGAAAGTCTGAATATTCGTATCTTCAATATCATT
GATGACCAATAGTTTTTAATGCTACTCTAGGATTATTAACTTCATCTAGT
AAGTATAAAAGTCG
>HP35_SSH_trimmed.fasta.Contig34
GATGGAGCTCAAAGCAGTGGTACAACGCAGTAGATACGCCCTCGAGCGGC
CGCCAGGCAGGTACCACCCACTCCCGTCTGCATAACGAACGAGACATCCA
GCGTTAACGACACAGACCTGTGCGAGCGCCTGACTTCGGTCCTGGACGAC
ATCGAGGCCATTACGAGCACCGTGGCCGAGGGAACCATGGGCCAGACCGA
GTTGGACGACCTGAGGAACTGCTCCACGAGGCTTGACGATGTGATTGAGG
ACATGCGCAACAACACAGACTTCCTCGCCAGCAGCGTTGACGTTGACGGG
TCTGATTGCGAGGAGAGATGCTCTCGACGAGGTGCTGACGGAGGCCGAAA
AGGCAGTGGAAGACGCGCTGACGACAGATGACTACGACCCGACACTCGCC
ATCGTTCTCGGTGTTCTGGGAGGCCTCCTGGGCGTCGGCATCATCGGCTA
CGTTGGTTTCGCTTTCTATAAGAAGAACAAAGCCAAAAAGGCACGCAAGA
ACGATAATCCTATGACAAGCATGGAGAGAGGTTCAGGGCAAGACAACAGC
GCATATGCCGGCAGCAGCAGCAGAATCAACTAGGAAATAAGAGGAGCATA
TAGTATAAATAGTCTCATGCTTTTGACTTTTACTTTTCGAAAGCCTAATC
ATATGTTCCGTCTTGTCTAAGGGTGAAACGAAAAAAAATAAAAGAAGACT
TAACAAACACGATTGCGCTGAAGGCAGTAAGTAGAAAAGGATTAAATACA
TGATAATGATAAAAATAATACTGTCCATGAGATGAAAAAAGTATATGTAA
GGCATGTTTTAAGTATAAATAATACGCCTCACCTCATTACGATTAAAAAA
AAAAATGAATCGGAGTGCCCCAGAGTACCTGCCTGGCGGCCGCTCGAGGG
CGTACTACTGCGTGTACCACTGCTTGGCTCATC
>HP35_SSH_trimmed.fasta.Contig35
TGAGCCAAGCAGTGGTACACGCAGAGTACGCCCAGCGTGGTCGCGGCCGA
GGTACATCCTTACATATGGCCTATCAGGATCATACTGGCTGGGTGCCTCC
GATCAGTCTTATGAAGGTGACTGGCTGTGGGTAGCTGATAACTCTAGGGT
TAACAAGGGCACACCCTACTGGGCTATCCACAATGGAATCTTTGGCTGGG
CTCATGAACCTGCAGGTGGTGCTGACGAAAACTGCCTTCTGCTTGATGAA
AATCGCAAACATTACTTTAATGATGCCAATTGTAACCTGATTCATCATCC
CCTTTGTATGATTTAAATGTAACCATAAATAAAGCTTGGCAATGAAAAAT
CCAAAAAAAAAAAAAAAAAAAAAAAGTACCTGCCCTGGCGGCCGCTCGAG
GGCGTACTTCTGTCGTCTTGAGCGTACTGATGGTACCCAGCTTTTGTTCC
CTTTAGTGAGGGTTAATTGCGC
>HP35_SSH_trimmed.fasta.Contig36
GATGAGCTCAAGCAGTGGTACACGCAGAGTACGCCCAGCGTGGTCGCGGC
CGAGGTACGCGGGAATTTAAGGGGACGATAAGACCCTATAAAGCTTTACA
ATAAGTTAtTTATATTATAAATTGTTAGTATAACTTGATTTTAGATAATA
TTTGTTGCGTTGGGACGACGGGAATATAATGAGTAACTGTTCTTAAGTTA
TTTAATAACAGTAATTTCTGGAAAATTAATGATCCTCTTTTAGAGATCAT
AAGATTAAGTTACTTTAGGGATAACAGCGTAATCTTCCTTGAGAGTCCAT
ATCGACAGGAAGGGTTGCGACCTCGATGTTGAATTAAGGTTTCCTTATAA
TGCAGCAGTTATAAAGGAGGGTCTGTTCGACCTTTAAATCCTTACATGAT
TTGAGTTCAGACCGGCGTGAGCCAGGTCGGTTTCTATCTCTTAATTTTAT
TAAAGTTATCTTAGTAGCCTGCCCTGGCGGCCGCTCGAGGGCGTACTTCT
GTCGTCTTGAGCGTACTGATGGTACCCAGCTTTTGTTCCCTTTAGTGAGG
GTTAATTGCGC >HP35_S SH_trimmed.fasta.Contig37
ATGAGCCAAGCAGTGGTACACGCAGTAGTACGCCCAGCGTGGTCGCGGCC
GAGGTACGTGGGCACCATCGGAGGCAAGCAGAGGGTCTCCCTGGACTCCA
ACGGCTGCATCTACAAGGGCACGGCCATCCACGAGCTCATGCACGCCATT
GGCTTCTACCACGAGCACTGCCGCAACGACCGTGACTACTATGTTACTAT
TCACTACGAAAATGTGCAGTCAGGCATGGAGTCTCAGTTCAACAAGGACA
CCTACTGGCAGTACCTGCCCTGGCGGCCGCTCGAGGGCGTACTTCTGTCG
TCTTGAGCGTACTGATGGTACCCAGCTTTTGTTCCCTTTAGTGAGGGTTA
ATTGCGCG
>HP35_S SH_trimmed.fasta.Contig38
TGAGCCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCGCCAGGG
CAGGTACTGGTTGGCGTTATTCACTTGAACTGAAACACATTTTGATACTT
AATTCAATTCATTGTTCTTACTGTCTCCTACTTCTTTCACTTGTAATAAA
GTGTTTGTGTCACTTCTATTACACAATCATCTACACCAACTCATGCATGT
GACCAGCAGAAGTAATGGTTAAGCAAATTTCATAAAATTAAATTTATTAT
ATAACTAATAATAATAATAATAGTGACACTAACAACAGCAATTACAACAA
TAACAATAGCTAATTTTGTAATGCACAAGGAGCCATAAAGCAACCATTAT
ATTGGCACTGGATATGGTGCTAACTGGAACCTTGTAAATCAACATCCCAG
ATAATTCTGCTGTAATCTAATCCCTCATCATGATTACCACTATTGATCAG
TACCTCGGCCGCGACCACGCTGGGCGTACTTCTGTCGTCTTGAGCGTACT
GATGGTACCCAGCTTTTGTTCCCTTTAGTGAGGGTTAATTGCGC
>HP35__S SH_trimmed.fasta.Contig39
GCGCAATTAACCCTCACTAAAGGGAACAAAAGCTGGGTACCATCAGTACG
CTCAAGACGACAGAAGTACGCCCAGCGTGGTCGCGGCCGAGGTACGCGGG
GGGGCCGGCCGCACACATCTTGGTGAATCAGAATAACTTTTGCCGAGCGC
ACGACCCCTCCCGTAACCCGGGTTGGGTCGGCGCCGCGTCCTGCAGGCGT
CTGCCTTATCAGCTCTCGATTGTAGGTTAAACGCCTACAATGGCTATCAC
GGGTAACGGGGAATCAGGGTTCGATTCCGGAGAGGGAGCCTGAGAAACGG
CTACCACATCTAAGGAAGGCAGCAGGCGCGCAAATTACCCACTCCCGGCA
CGGGGAGGTAGTGACGAAAAATACTGTTGCGAGCCCCGAACGGGGCCTCG
CAATTGGAATGAGTACCTCGGCCGCGACCACGCTGGGCGTACTTCTGTCG
TCTTGAGCGTACTGATGGTACCCAGCTTTTGTTCCCTTTAGTGAGGGTTA
ATTGCGC
>HP35_SSH_trimmed.fasta.Contig40
GATGGAGCTCAAAGCAGTGGTACACGCATAGTACGCCCACGTGGTCGCGG
CCGAGGTACGCGGGGATCGGGAAACGAAGGGCAGTTTCCCGTCTCCGAAC
GAGAAGCACTTGACATTTGAGTTGAGGAAAGGAAGGGGAGGCTGAGTCAG
AGGGAGAAACGGCCAGAGAAACAACAAACCAGAGTCCATTGACGTAACTA
TAGCAGACTTCGATAGTGTGTTGTATCATCTATCAAACATCAATGGTGAC
AGGACAAAAATACGGATAAGCATCTCATTAAAGTTCTACAAGGAGCTCCA
GGAACATGGGGCGGACGAACTCGTACCTGCCCTGGCGGCCGCTCGAGGGC
GTACTTCTGTCGTCTTGAGCGTACTGATGGTACCCAGCTTTTGTTCCCTT
TAGTGAGGGTTAATTGCGC
>HP35_SSH_trimmed.fasta.Contig41
GCGCAATTAACCCTCACTAAAGGGAACAAAAGCTGGGTACCATCAGTACG
CTCAAGACGACAGAAGTACGCCCAGCGTGGTCGCGGCCGAGGTACTCGTT
GCCGTCGGCATTAATCTCGAAGTTAACATTGGCCTTGTCCTTGTCTGCAT
AGATACCCAGGTTGGATTTCCAGTCGAAGTCAGACGTCTTGAGGAATCAC
ATCGACGGATGGTGTTTGATTTTTACCGGCCACGGAATTATCCTTAAAAG TTCCTTCCAAAACCATTTCTTTCTCATTAAAACCACCATACACCTGAGCT
TTGTAGTAGCCAGCTGCGATCTTATTGAAAACAAATTCAAGGGAAGACTT
CAGGTCCTCAGCCTGCACGTTGATACGTCCGAGTGTTTCGACGTCATACT
GATGACTGAATTCCACCCAAATAAAAAAAAAAAAAAAAAAAAAAAAAAAG
TACCTGCCCTGGCGGCCGCTCGAGGGCGTACTTCTGTCGTCTTGAGCGTA
CTGATGGTACCCAGCTTTTGTTCCCTTTAGTGAGGGTTAATTGCGC
>HP35_SSH_trirnmed.fasta.Contig42
GTGCCAGGTGATTAACGCCCTCAAGCCCGGTCAGATCAAGAAGATCCAGA
CCTCCGCCATGGCCTTCAAGTGCATGGAGAACATCAACGCCTTCGTGGAG
GGAGCTAAGGCCTGCGGCGTGCCCACTCAGGAGACCTTCCAGACTGTCGA
CCTTTGGGAGCGACAGAACCTCAACTCTGTTGTTATCTGCTTGCAGTCTC
TGGGAAGGAAGGGATCTCAGTTTGATAAGCCTTCCATTGGCCCCAAAGAG
TCTGAGAAGAACGTCCGCCACTTCACCGAGGAGCAGCTCAGGGCTTCTGA
GGGCATTGTCAACCTGCAGTATGGCTCCAACAAGGGTGCCACTCAGTCTG
GCATGTCCTTCGGCAATACTCGCCACATGTAAAAGCAATCTTTGTACCGG
ACGTCCCAAGCATAAAGGACCTGTTTGCAAAAGTCGAGGCAGGCGGCACT
GGCCTTTCCGAATTCGAAAGTGCAACAGGCCTGCCAAACAGGTTCCTTCT
CCCCAAGGGCAACGATAGAGGCCTGGAATTCGACCTTGTGGTGGCGGTGA
CCGATGGTGATGCCGACTCAGCAGTGCCGAACCTTCATGAGAATACCGAG
TACCTGCCCTGGCGGCCGCTCGAGGGCGTACTTCTGTCGTCTTGAGCGTA
CTGATGGTACCCAGCTTTTGTTCCCTTTAGTGAGGGTTAATTGCGC
>HP35_SSH_trimmed.fasta.Contig43
TGAGCTCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCGCCAGG
CAGGTACGCGGGAGTCTGACGACATTTCATGACTTCCACAAGCAAGAGAC
TGAAGATGGAACGTTCGCCTTTGACTCCCTTGTTGATCCTGGTCCTTTGT
ATGGCGGCAGGAGCATGGAGTCAGACACTGCTGGATCCTATAAGCAGAGC
CTGTCGCGGAATGGCGGTCGGGAATCAGGCAAAGGCGCTGTCCAGGAACG
AGTATCCTGCAGGAGGGCTCCTGATGGTGCTGGCTTCCGTGCCCGCCGGG
GTCAAGGGCTTCTTCAAGTTCTACCTGTGTCTGGACGACGACGCTGGGCA
GGAGGAGTGCCTCAACAAGATGTCCCTCCCGTTGGCTGACGGGTCCGGCG
ACACTTTCGACCTGAGCAAAGTGGCGAAGGGCGGGCAGTTTCGAGATCCC
GTTGACCATCCCCGATGACGTGACCTGCGACACCTGTTCTGTCCAGTGGA
CATGTGGAGGTGGAGGACTGTGGAGGGAATGCAGGCTGCTCACTCATAAG
CCAGGATTCCTGCTTTGACGTCAAGATCCGTCAGGCCAAGAAAGAGGAAA
AGAGGCTGTTTGGACTTATCTTTGGTGCAGTAAGAGCCATTGGAGGCGGT
ATCAGGGCCCTAGCCAGGAGGAGAGGCTAGAAGGTGGTGTAACGACCTGG
CTCGACTTGTCCCCCGACGTCACGCGAGGAAATGGGAATATGGATACTTG
TGGAACTCCGAGGTGTTGAGAACTGGTGCCGAGCAGACTTCACCACGAAA
ATAACTATTTCATTGTTGTGATATTCATACAATTGGATTGTTTATAGTCA
CAGAAACAGGGCCATGTGCAGGGAGTAAAAAAAAAAATCGATAGAATTAC
AGTTTTATGATGCAAAAAAAAAAAAAAAAAAAAAAAG
>HP35_SSH_trimmed.fasta.Contig44
TGAGCCCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCGCCAGG
CAGGTACTAAGATAACTTTAATAAAATTAAGAGATAGAAACCGACCTGGC
TCACGCCGGTCTGAACTCAAATCATGTAAGGATTTAAAGGTCGAACAGAC
CCTCCTTTATAACTGCTGCATTATAAGGAAACCTTAATTCAACATCGAGG
TCGCAACCCTTCCTGTCGATATGGACTCTCAAGGAAGATTACGCTGTTAT
CCCTAAAGTAACTTAATCTTATGATCTCTAAAAGAGGATCATTAATTTTC
CAGAAATTACTGTTATTAAATAACTTAAGAACAGTTACTCATTATATTCC CGTCGCCCCAACGCAACAAATATTATCTAAAATCAAGTTATACTAACAAT
TTATAATATAAATAACTTATTGTAAAGCTTTATAGGGTCTTATCGTCCCC
TTAAATTATTTAAGCCGTTTTCACTTAAAAGTTAAATTCAATAAATATAA
TTGAGACAGTTTGCTTTTTGTCCAACCATTCATACAAGCCTCCAATTAAG
AGACTAATGATTATGCTACCTTCGCACGGTCAGTATACCGCGGCCCTTTA
AAATAAATCAGTGGGCAGGCCAGACTTTACATACCAATCATATAGACATG
TTTTTGATAAACAGGCAAAAGCATTATTTGCCGAGTTCCTTAATTATATC
TTATATCAACTAAAAATTCTTTCCTTATTTTAAATTGTTACTACACAACT
TATTTCTACTAATAAAATCATTATTACTTTT AATGATATATTTATTAAAA
GAGACAGATAATTATTACTAAACCTTCACTATATAAATATTAATTAATGA
ATTTACATTAACTAGAACGCTTTATTAATATGGCTGTTTTTAAGCCTAAT
TCAATAATACTTAAATCCATTTCGTTATAGTAAACTTATTATTAGAATAA
GAAGCTCTTCCCTCCTACTCTTTATTACTTTAAAGCTTTCTTCGACCTCA
AAGCAACTAAATTTAATTTAATTCTCTATCAACCAGATATGAAAAATCGA
CTAGCATTTCACTACTAATATAAATTTTATAATTTCATTAATACGAAAAC
TATCTATTTATATTAGCTCTTTCTCTTTCGGGATTACTTATCTTATTAAG
ATTATTTTGATTTTCCCTAATACAACAAGTACCTGCCTGGCGCCGCTCGA
GGGCGTACTCTGCGTTGTACCACTGCTTGAGCTCATC
>HP35_SSH_trimmed.fasta.Contig45
GCGCAATTAACCCTCACTAAAGGGAACAAAAGCTGGGTACCATCAGTACG
CTCAAGACGACAGAAGTACGCCCAGCGTGGTCGCGGCCGAGGTACTGCCA
GTAGGTGTCCTTGTTGAACTGAGACTCCATGCCTGACTGCACATTTTCGT
AGTGAATAGTGACATAGTAGTCACGGTCGTTGCGGCAGTGCTCGTGGTAG
AAGCCAATGGCGTGCATGAGCTCGTGGATGGCCGTGCCCTTGTAGATGCA
GCCGTTGGAGTCCAGGGAGACCCTCTGCTTGCCTCCGATGGTGCCCACGT
ACCTGCCCTGGCGGCCGCTCGAGGGCGTACTTCTGTCGTCTTGAGCGTAC
TGATGGTACCCAGCTTTTGTTCCCTTTAGTGAGGGTTAATTGCGC
>HP35_SSH_trimmed.fasta.Contig46
GTAGTACGCCCGTGGTCGCGGCCGAGGTACCTGAAAATAATTCTAATGTA
ATGCCCAAGATACAAAATACAAACAAACACCTCATAACTTGTATCTTAAA
CATCTCCGAGGCATAACAGGATGAGATGATAGTTGTGCTGCATGCACTGG
TCACTGTCAACTTGAAGTCCCATAGGGTATACTTTTAAAGGGTTATTATT
GGGACAATTATCGAGGACATGAGGACACTCGCACCAAGGGTCTTTCAAAC
CCTCCTTGATATTTTTTATAATTAAAATTACATTTTACGAATCTGAAGAA
CATAAATAAAATCTATTTTCAATTACATTTTACTATTATTCTGAATAAAG
GAAATAGAATCTGATGGAAAATACAAGACATTTTGTTACGGTTCATTTTA
TAGTGTATGTGAATTTATAATAACTGTGGCTATCTGTAAAAAGTGAATGC
ATTCATTTCTTAGCAAAGGTTTTGTTGTAAGAGACTGCAGAGTGTTAATG
ATATCTTATATGTCTTTGCATCGCTACGAAACCCTCATAATTTTCATCAG
TAAAAGATTGTCAATGGCCAAGAATGTTTGGTTACTTCTCCGTGAACTGC
AGGTCCTTTAAAAGTATCTTCATGGCACTACACGAGACATGCTGGGCAAC
TTGCCCGCGTACCTGCCCTGGCGGCCGCTCGAGGGCGTACTTCTGTCGTC
TTGAGCGTACTGATGGTACCCAGCTTTTGTTCCCTTTAGTGAGGGTTAAT
TGCGC
>HP35_SSH_trimmed.fasta.Contig47
GATGAGCTCNAAGCAGTGGTACACGCAGAGTACGCCCAGCGTGGTCGCGG
CCGAGGTACAGTCACTACCTGCCTTACAGGTGCAGGCTCCGCTGGCAGCC
CAGTGCTTGCAGTCTGCATCCTCGCCACCGCATCCACCTGGCGGTCGGAC
GGTCACAGTTGGGCATCCATTGCAACCTGAACAGCTTCCATTGGGTAGAA GGTGGTTCCCTGTCACACAAGGGGTGTTCCATTCATGQTTGCAGGTGAGG
ATCTTCTGGTCCCACCTGGTTCCTGCAGGGGCATGGCATTTCCCGGGGAC
CATAAGGGGCACACTGAATGAACTTTTTGGCAGTCGGTAGGATGCTGCCA
GTATTGCTGGCCAGTGGAGCAATCTACACAGGGGAAGTTGCCTGGTGTGA
CAGGTTTGTGTGTTGGAGGGCTGGTTGGGGGCTTTGCTGGAGGAGTGCAT
CCTGAGCATCCTGAACAGCTTCCGTTAGTGAGAAGGAAGTTGCCTGTCAA
GCACTCAATGGCCCATGCATGGTTGCAGGTGAGCAGGTTTTGGTCCCACA
CTGTTCCTTCTCCACATGGCATCTCCTGAGGACCGTACCTGCCCTGGCGG
CCGCTCGAGGGCGTACTTCTGTCGTCTTGAGCGTACTGATGGTACCCANG
CGTTTTTGTTCCCTTTTAGTGAGGGGTTAATTTGCGCCGCTTTGGCGGTA
ATCATGGGTCCATAGCCTGTTTCCCTGTGTGAACATTGTTAT
>HP35_SSH_trimmed.fasta.Contig48
TGAGCTCAAAGCAGTGGTACAACGCAGAGTACGCCCTCGAGCGGCCGCCA
GGGCAGGTACTTTTTTTTTTTTTTTTTTTTTTGTGATTTCTTATGGCTCA
CTTTTAACTTTAGTTACAGATTGCCAATAGTGGCAAAGATGATATCACAT
GAAAATTTTAACAAATGTATTGCCATACAACCTCTATGTCTTGAAGATCT
AAGCCAAAAGAATGGACAGAATCAACAAGCTTAAACCATTGAATATAAAA
TGATATACTTTATAAAAATTATTTTCTATTGCCTCTTCTTCCTACAGATG
ATATTAATGACTTCTTTAACCTTCCATTCTTTCCTTGTGCTTAATATTAG
TTCAAGTGTTATTATTAACATATTCATGTGCAGTTGTACCTCGGCCGCGA
CCACGCTGGGCGTACTTCTGTCGTCTTGAGCGTACTGATGGTACCCAGCT
TTTGTTCCCTTTAGTGAGGGTTAATTGCGC
>HP35_SSH_trimmed.fasta.Contig49
GGAAACAGGCTAATGGACCCATGGATTACGGCCCAAGCCGCCGCAAAGTT
AACCCCTCCAACTAAAAGGGGAACCAAAAAGCCTGGGTACGCAATCAGTA
CGCCTCAAGACGGACCAGAAGTACGGCCCTCGAGCGGCCGCCAGGGCAGG
TACTCATTCCAATTGCGAGGCCCCGTTCGGGGCTCGCAACAGTATTTTTC
GTCACTACCTCCCCGTGCCGGGAGTGGGTAATTTGCGCGCCTGCTGCCTT
CCTTAGATGTGGTAGCCGTTTCTCAGGCTCCCTCTCCGGAATCGAACCCT
GATTCCCCGTTACCCGTGATAGCCATTGTAGGCGTTTAACCTACAATCGA
GAGCTGATAAGGCAGACGCCTGCAGGACGCGGCGCCGACCCAACCCGGGT
TACGGGAGGGGTCGTGCGCTCGGCAAAAGTTATTCTGATTCACCAAGATG
TGTGCGGCCGGCCCCTTGCGGGAACCGGCTGCCGAGGGTTTTGGTCTAAT
AAAAGCGCTCCTCCCTCGCGGTCGGAGACTACAAAGGCATGTATTAGCTC
TAGAATTACCACAGTTATCCAAGTAATGCGGTTCAGCAGAGATCCAATGA
GTTATATCTGATTTAATGAGCCGTCCGCGGTTTCGCCTTAAGTCGGCCTG
TACCTCGGCCGCGGCCGCTCGAGGGCGTACTTCTGTCGTCTTGAGCGTAC
TGATGGTACCCAGCTTTTGTTCCCTTTAGTGAGGGTTAATTTGCGC
>HP35_S SH_trimmed.fasta.Contig50
AAGGGAACAAAAGCTGGGTACCATCAGTACGCTCAAGACGACAGAAGTAC
GCCCTCGAGCGGCCGCCAGGGCAGGTACGCAGGCTAGAGTCTCGTTCGTT
ATCGGAATTAACCAGACAGATCACTCCACCAACTAAGAACGGCCATGCAC
CACCACCCACCGAATCGAGAAAGAGCCTTCATTCTGTCAATCCTTCCGGT
GTCCTGGCCTGGTGAGTTTCCCCGTGTTGCGTCAAATTGAGCCGCAGGCT
CCACTCCTGGTGGTGCCCTTCCGTCAATTCCTTTAAGTTTCAGCTTTGCA
ACCATACTTCCCCCGGAACTCAAAGACTTTGGTTTCCCGGAAGCTACCCG
CCGGGTCATGGGAATAACTGCGGCGGATCGCTAGTCAGCATCGTTTAAGG
TTAGAACTAGGGCGGTATCTGATCGCCTTCGAACCTCTAACTTTCGTTCT
TGATCAATGAAAACATCCTTGGCAGATGCTTTCGCAGTAGGTCGTCATGC GACGGTCTAAGAATTTCACCTCTAGCGTCGCAGTACCTCGGCCGCGACCA
CGCTGGGCGTACTTCTTGTCGTTCTTTGAGCGTAACTTGATTGTGGTACC
CCAGCTTTTTGTTCCCCTTTTAGTGAGCGGGTTTAATTTGCGGCCGGCTT
TGGGCGGTTAATTCCATTGGGTCCATAGGCTGGTTTTCCCTTGGTTGTTG
AAAATTTGGTTTATTCCCGGTTCCAACCAAATTTTCCCAAAAACCAAAGC
AATTAACCGGAAGGCCCCGGGNGAAGGCCATTTAACACAGAGNTTGGTTA
CAAACAGGCCCCTTAGGGGTGGGGTTGGCCCTTAAAATTTGGAAGGTTTG
GAAGGGCTTTAAAACCTTTCCAACCATTTTTAACTCTCTCGGCCGTTTTG
GGCCGGGCTTCCAACCTTTGGCCCCGGGCTTTTATCCCCCAAAGNTCCNG
GCGGGGGAAAAAAAC
>HP35_SSH_trimmed.fasta.Contig51
GCCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCGCCAGGCAGG
TACTACACTTAGAGGAAGTGTAAACGAGACGAAAGAAGCTGAACTGTAAT
TGGAAAATCCTACCCCAGCTAAGATGAGTAGGAAAAGAACTGCCTTCTGA
AATGATATCTGATACAGACACAGTATCAAGTGTTATGGGTTAAATAGGTT
TCCATTCACACCGTGAATCTACTACTTGTGTAGTTCTTTAGTGGCTCAGA ττττττττττττττττττττττττττττπ
TACGCATTTTTGGAATTTCTCTAAACTGGGATCTCATTGCAGGTACGGTC
CTCAGGAGATGCCATGTGGAGAAGGAACAGTGTGGGACCAAAACCTGCTC
ACCTGCAACCATGCATGGGCCATTGAGTGCTTGACAGGCAACTTCCTTCT
CACTAACGGAAGCTGTTCAGGATGCTCAGGATGCACTCCTGCCAGCAAAG
CCCCCAACCAGCCCTCCAACACACAAACCTGTCACACCAGGCAACTTCCC
CTGTGTAGATTGCTCCACTGGCCAGCAATACTGGCAGCATCCTACCGACT
GCCAAAAGTTCATTCAGTGTGCCCCTTATGGTCCCCAGGAAATGCCATGC
CCTGCAGGAACCAGGTGGGACCAGAAGATCCTCACCTGCAACCATGAATG
GAACACCCCTTGTGTGACAGGGAACCACCTTCTACCCAATGGAAGCTGTT
CAGGTTGCAATGGATGCCCAACTGTGACCGTCCGACCGCCAGGTGGATGC
GGTGGCGAGGATGCAGACTGCAAGCACTGGGCTGCCAGCGGAGCCTGCAC
CTGTAAGGCAGGTAGTGACTGTACCTGCCCTGGCGGCCGCTCGAGGGCGT
ACTTCTGTCGTCTTGAGCGTACTGATGGTACCCAGCTTTTGTTCCCTTTA
GTGAGGGTTAATTGCGC
>HP35_SSH_trimmed.fasta.Contig52
GCGCAATTAACCCTCACTAAAGGGAACAAAAGCTGGGTACCATCAGTACG
CTCAAGACGACAGAAGTACGCCCTCGAGCGGCCGCCAGGGCAGGTACTGG
TGAGCGGGCACACACGTATCCTGTTCCGGGTGGAATACTAGCCCAGACGA
GCACGTGAAGTAGGTAATGTTCTTGTTCACATCACAGTAGTAATAGGATG
TGCAGTCAGTCGGGTGAGGGATATGGCAACATTCGCATGTGCATCTGGGG
TCGACTGTGGGAGGTGGGCCAGTGGGAATTGGGTCGGGTTTAATTTCGCA
ACTCTGGTGGTCCCCTGAAGGTTACCTTCGNGGCCGCCGACCCACGCCTT
GGGGGGCCGNTTTANAACCTTTTTCCGTTTGGTACCGGATTCCCTTTTGG
AACGCCCGGGCTTAAACCTTTTGGAACTTGGGCGTTAAAGCGCCCGCCCA
AAGGGCGCCCTTATATATΓCTCTGGTTTTCCCCCCCGCTTTTTTTTAGGN
TTTGGGNACGGCGGGGGATTCTTTACANCACATTTTCTGGGCCCGGGCCA
CTGGGCCCTTTTTGGGGAGGCCGCGCGG
>HP35_SSH_trimmed.fasta.Contig53
ACGCTCAAGACGACAGAAGTACGCCCAGCGTGGTCGCGGCCGAGGTACAA
CCGGTGAAAGCGTCTTGAAAAGGGCGTACTAGGCCGTCAAGGTGATCCTC
ATGGAAAGTTTGATTTACCACCTGGTGTGCTGGAACACTTCGAAACTGCC
ACCCGTGATCCCAGCTTCTTCCGGCTTCACAAATATATGGATAACATTTT CAAAGAACACAAGGACAGTCTACCCCCATACACCAAGGCCGATTTGGAAT
TCTCTGGCGTGTCTATCTCAGAGCTAGCCGTTGTAGGTGAACTGGAGACC
TACTTTGAAGATTTCGAATACAGTCTTATCAACGCAGTTGATGATGCTGA
AGGAATCCCAGATGTGGAAATCAGCACATATGTGCCTCGTCTTAACCACA
AAGAATTCACTTTTAGGATTGATGTAGAGAATGGAGGTGCTGAGAGATTG
GGCACAGTTCGTATCTTTGCCTGGCCTCATAAAGACAACAACGGAATCGA
GTTTACATTTGACGAAGGTCGCTGGAATGCCATCGAGTTGGATAAGTTCT
GGGTAAATTTGAAGGGTGGAAAAACTACAATTGAGCGCAAGTCCACGGAA
TCTTCGGTAACTGTACCTGCCCTGGCGGCCGCTCGAGGGCGTACTTCTGT
CGTCTTGAGCGTACTGATGGTACCCAGCTTTTGTTCCCTTTAGTGAGGGT
TAATTGCGC
>HP35_S SH_trimmed.fasta.Contig54
CAGAGTTGATGATGGCATTCACAACAACCTGGACTGGGTTCTCTCCAGTG
AGGAGGTGGATGATCTCGAAGGAGTGCTTGACAATGCGGACGGCCATGAG
CTTCTTGCCATTGTTGCGACCGTGCATCATGAGGGAGTTGGTCAGACGCT
CCACAATGGGGCACTGAGCCTTGCGGAAACGCTTGGCAGCATAACGACCA
GCAGAGTTGGGGCAAGTACTGGTGAGCGGGCACACACGTATCCTGTTCCG
GGTGGAATACTAGCCCAGACGAGCACGTGAAGTAGGTAATGTTCTTGTTC
ACATCACAGTAGTAATAGGATGTGCAGTCAGTCGGGTGAGGGATATGGCA
ACATTCGCATGTGCATCTGGGGTCGACTGTGGGAGGTGGGCCAGTGGGAA
TTGGGTCGGGTTTAATTTCGCAACTCTGGTGGTCCCCTGAGGTACCTGCC
CTGGCGGCCGCTCGAGGGCGTACTTCTGTCGTCTTGAGCGTACTGATGGT
ACCCAGCTTTTGTTCCCTTTAGTGAGGGTTAATTGCGC
>HP35_SSH_trimmed.fasta.Contig55
GCGCAATTAACCCTCACTAAAGGGAACAAAAGCTGGGTACCATCAGTACG
CTCAAGACGACAGAAGTACGCCCAGCGTGGTCGCGGCCGAGGTACAAGGT
TTTGCTCCCCACACCACTTACAAGTATGGCGGTCAGTTCCCCTCTCGTCC
AGATAATGTAGACTTCGAGGATGTGGACGGTGTTGCTCGCATTCGAGACT
TGCTTATTATTGAGAGCCGCATTCGCGATGCTATTGCCCACGGTTATATT
GTCGATAAGGCTGGCAATCACATTGACATCATGAATGAGCGTGGAATCGA
CGTCCTTGGAGATATTATTGAATCCTCTTTGTATAGCCCTACCGTCCAGT
ACTGGTGAGCGGGCACACACGTATCCTGTTCCGGGTGGAATACTAGCCCA
GACGAGCACGTGAAGTAGGTAATGTTCTTGTTCACATCACAGTAGTAATA
GGATGTGCAGTCAGTCGGGTGAGGGATATGGCAACATTCGCATGTGCATC
TGGGGTCGACTGTGGGAGGTGGGCCAGTGGGAATTGGGTCGGGTTTAATT
TCGCAACTCTGGTGGTCCCCTGAGGTACTGGTCCAAGGACACCTCCTGCC
AACCGCCCATCATGCCCACGTAGGACCAACAGCCTCCGCCACTGACGCCA
TTCGTAGTGATGTAGATGTAGTTCGATTCCCGCGTACCTGCCCTGGCGGC
CGCTCGAGGGCGTACTTCTGTCGCTCTTGCAGCGTACTGCATGGTACCCA
GCTnTGTTCCCTTTAGTGAGGGTTAATTGCGC
>HP35_SSH_trimmed.fasta.Contig56
GCGCAATTAACCCTCACTAAAGGGAACAAAAGCTGGGTACCATCAGTACG
CTCAAGACGACAGAAGTACGCCCAGCGTGGTCGCGGCCGAGGTACTAAGA
TAACTTTAATAAAATTAAGAGATAGAAACCGACCTGGCTCACGCCGGTCT
GAACTCAAATCATGTAAGGATTTAAAGGTCGAACAGACCCTCCTTTATAA
CTGCTGCATTATAAGGAAACCTTAATTCAACATCGAGGTCGCAACCCTTC
CTGTCGATATGGACTCTCAAGGAAGATTACGCTGTTATCCCTAAAGTAAC
TTAATCTTATGATCTCTAAAAGAGGATCATTAATTTTCCAGAAATTACTG
TTATTAAATAACTTAAGAACAGTTACTCATTATATTCCCGTCGCCCCAAC GCAACAAATATTATCTAAAATCAAGTTATACTAACAATTTATAATATAAA
TAACTTATTGTAAAGCTTTATAGGGTCTTATCGTCCCCTTAAATTATTTA
AGCCTTTTCACTTAAAAGTTAAATTCAATAAATATAATTGAGACAGTTTG
CTTTTTGTCCAACCATTCATACAAGCCTCCAATTAAGAGACTAATGATTA
TGCTACCTTCGCACGGTCACCCGCGTACCTGCCCTGGCGGCCGCTCGAGG
GCGTACTTCTGTCGTCTTGAGCGTACTGATGGTACCCAGCTTTTGTTCCC
TTTAGTGAGGGTTAATTGCGC
>HP35_SSH_trimmed.fasta.Contig57
CTGGGGCCCCCCCGGAAAATGTGTTGTCCCCAGAAGTGTGTGAAAAAATG
TGGCCAAGGCATTGGGGCCAAACGGAACCCAAGGGGTTTTTTCCCCGGAA
CCTTGGGGATAAAAAGCCGGGGGCCCAAGGTGGAAGCCGGCCATAACCGG
CCAAATTTATAATTGGTTGGAAGGTTTTAAGGCCTTCCAAACCCTTCCAA
TTTTAAAGGGGGCTCAACACCCCCAAGGGGCCTGTGTTTAACCAACCTGT
TTTAATTTGGGCCTTCCCCCCCGGGGCTTTCCGGTTAATTGTTTGTTGTT
GGGAAAATTTGGTGGAAGCCGGGAATTAACCAAAATTTTCCAACCACCAG
GGAAACCAAGGCTTATTGGACCCAATGAAGTTACCGCCCCAAGCGCCGCA
TAATTAACCCTCAACTAAAGGTAATAAAAGCTGGGTACCAGTCAGTACGC
TCAAGACGACAGAAGTACGCCCAGCGTGGTCGCGGCCGAGGTACTTTTTT
TTTTTTTTTTTTTTTTTTTTTTTTTAGCTTTTCCGAGATGCATTGCAAGA
AGAGTTTAAAATTTTGATAAAAAACATAATCATCAGAAAACAATATCATA
AAAAATAATATCAAGGATGCAACTTTTCCAAAAAGAAAAAAAAAAAAGAA
AAAAAAATTTGGTCGTGCTTTTTGCCAATTCGTAATTCTTAAAGAAGGTC
TTGAGGACGTTTCACTGTAGTTAATGGAAGATTTCCGTCAGTCATGTGTC
GTTCGGATCTAAAATCCTGGCCTAGTTGCCCGATCGAAGCCTTACGTTCG
CCGACTGCTGCAATCGACGTTGCCGGCATGGTCGCAGGACTTCGTTTCTT
GGTTCCAGAGGAGACCGGAGGGGCATTCCTTCTTTTCGGGCGTACCTGCC
CTGGCGGCCGCTCGAGGGCGTACTTCTGTCGTCTTGAGCGTACTGATGGT
ACCCAGCTTTTGTTCCCTTTAGTGAGGGTTAATTGCGC
>E:\AnalyzedData/50513_2_2_Ql_Kubota_Hpl4_02Run01_Cp312_MDl/Q2_Kubota_Hp35
_02_08H01.F.esd 965 MegaBACE
GAGCCAAGCAGTGGTACNNCGCAGANTACGCCCAGCGTGGTCGCGGCCGA
GGTACCGCATCCAGTGTTGCCTTCACACCGCTTCAGGGTCTTGAGATTGT
CAATCCTCAGGCAGCAGAGATGAGCGGACATGCTAAGGCCAACAAGTATT
TCTCTAATGTTCTTGGATTCAAGAATGTAAATAACAAATTGGTGTAGTTG
AAGATGAAGCAAGTGAATGGAAACATATTTTTTGTAAAAGGAGAGTAAAT
GCAAGTTACCAGAAATATTATGTGTTACAATGGATGTAATAAAAGAATTA
GTTGTATTAATTTTATTTTACTTTACAAATTACCTACATATAGTGTATGT
GTGTATGTACTTTTTTTTTTTITTTTTTTTTTTTTTGCAAAAGCACTTTA
TTGGCTCCCAAAATCNCATTTACTTGGATTCCCCAAAAAGCAAATTAATT
TTGAAACCAAGGCCAGATAAAATTCTCTTATTAAACNCTTTAAAAATTCC
TGTTAATGCTTAACCATTAAATGCCAATTACAATGGGGTTNAACACATTG
AGACTCACACATTACAATCCTGGCAAATTACACAATTCNTTGTACCTGGC
CTGGGGGCGGTCGAAGGCGTACTTCTGTCGTCTTGAGCGTACTGNTNGCG
CCAGTTTTGTTCCCTTTAGTGAGGGTTAATTGGGCXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXGCCGG GGAAGGGGTTTGCTTTTGGCGCCTTCTCGTCTCGGCCATGAGNCCTGGCC GNTTCGGTGGGACAG
>E:\AnalyzedData/50513_2_2_Ql_Kubota_Hpl4_02Run01_Cp312_MDl/Q2_Kubota_Hp35
_02_22F03.F.esd 1472 MegaBACE
GAATGAGCTCAAAGCAGTGGTACAACGCANTAGATACGCCCAGCGTGGTC
GCGGCCGAGGTACCGCGNGCGAGCTACTCCGAATTCAGTATGNCACTAAA
TAGATGACATCCACTATGCGTGCAGCGTATCATCAAGAAGCATTGTTGTC
AGTAGTCGTCGCTGATCTTCATATTCACTTGTATGGCACCATTCAAAGTA
CTCATATTACTGACATCGANACTGACTGAGTAACCATAAGTATAACCAAT
GTGAGCNCAGAGTTAGCTGTAAGACNGGAACTGTAACACATAGTGAGACC
ACNGACATACACATCGAAGTGTNATGACACAAAAGGAGAGATTATTAATG
ACGAAGGGGCAANCAATAGTTAAAATACAANATGCGCGTCANGCAATCGT
CTAAGAAATTAAAGAAAGGATCAGGTATTAGTCTGTGGAGCCATGTATGT
GTGGCTTACATGCTCAACTGTATGAGTAAGCACAGAAACTTGTGGAAGTT
GACTCTGCCAAAATGTGTCTCCGAGGTGTATATGNAACTGACAGTCGTTG
NACCGGGTAATCTCTAACTTGTGCTTAATCAAAGTCGCTTCAACNAAGNT
ACTGTCTCCTAATCTGTTTCTACCTGTTGTTTATGCACTTTGGGGCCGAA
GGGTCACTTTCGCTTTGTGTTNGCAGGGTACTATGCCTATTTCCAGTTCA
GGGACTTGATCCATTTTGGGGGCCTATCGGCTTGTTGCTTTNGGTACCCA
TAGGCACACCTAGAGNCGGNGCCCGGCTTCCGGCAGCGGGGCCGGATTNA
CATCCTGCATTGTACTGCGTCCTTATGGAAGCCCGGTCCTTGGTGGATAN
CGCNNGACGTGGGTTGGTGCCCCCATCATATGANGGTCGAATGANTCGTC
CCAGGGTCAAGGGCCGACCGCCTGTGTCGAGGGCAGNATTTCCACTATCC
CTTATAGGGGNACCATAAAGGCAATGGGTAAGTCCNCTTAGTTAGTTGAA
NAAAATTTTGGTCTTTCCANNGGCTCTAACGAAACGTTTTCCAAANCCAN
TCTTAATCCAGTAAAACANGAACNGCTTCAGAGTCCAAGTCCAATTGATT
ACCGCGGGTTCANTACAGGGTCCCTTTAGAGGGGGGTTGGCCCCATACCA
GATAGCAAGTTGGAAANTTTAAAAACTTCAACGGAANTTTTAAAAATCTA
GACCAGTACGGCAATCTTGCCAGCCTTGGGACACACCGGNCCTTGTTCNC
CAGNTATCCGAANGGCAAGAATCCCNGGTTCGGTGGTCCCATCTTGGNCA
CTTTTAAAATTGTAAAATTACCCTGGGCCCCCATTGCGCCCTGTGGGAAA
AAAGACTCAGTTTTGCACGGGACATTGGTTNGCACACCTGTCACACAAAT
TAACTAACGGCTTACAAACATACATTCTGAAGAATGCACAGANACCAAAA
CTGNTTTCCGGGATGTAGCCCG
>E:\AnalyzedData/50513_2_2_Ql_Kubota_Hpl4_02Run01_Cp312_MDl/Q2_Kubota_Hp35
_02_26B04.F.esd 903 MegaBACE
GATGGAGCTCAAAAGCAGTGGTACACGCANTAGATACGCCCTCGAGCGGC
CGCCAGGCAGGTACAAAAGTGTGCTTTTTTTTTTCCTTTTCTTTTCCTCC
TTTGTCAGTAATTTGAGACTTCTTATTGGTGAAGCTACTTTTTCGTTTTT
TTGACCTATATTATAGAATGCCAAGTCGAGATTGATATTGAAATAGAAAA
TGCAAAAGAAGAAAGATTACGAGTCAAACCGGGAATGTTTAACAGAGTAG
TTGAATAGATGGAAGAAAGGAATCTATTATTGTATTAAAGAGAACGCAGT
TTTTATCAGAGTAATTTTGTCTATGATTCTTATAAGTTAGAAAATCTAGA
TTTTTGAACTCTTGTATCTTTGCATGGAACAAAGCCAGTTAATGTATTTT
GAATAATTAATGTCTCAGAGAATGTTCTTTTTTATATGCAGATTTCTATT
TTAAATCGTATGTTGATGCATAGTCCATGTCTGTAATAGATATGTATCAT
ATGATATTGATATTACAGTATTTGTTTTACAAGTATTCAATACATCCAAT
AANAAGGTCAATTCATTCTAATTGTTGTCAAATTTTCACGGAATGTCTCT
TTCACATTTGGTTCACAGTGCTACAACATGAGCAAAAAAAAAGAGACCTG
AATTATCTTCGAGTATATGTCCAAATTATATTGACTNTTTCTAAGGTGTT TTATGTGTACTTACTTTTGAGTACCCTCGGCGGGAACCAACGCTGGGGGT
ACTTCTGTCGTCTTGAAGGCGTACTGATTGGTACCCAGTTTTTGTTCCTT
TAGTGANGGTTATTTGCGCGGCXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXTTGAGCCGGGGGGCTAAG
NGT
>E:\AnalyzedData/50513_2_2_Q l_Kubota_Hp 14_02Run01 _Cp312_MD l/Q2_Kubota_Hp35
_02_34B05.F.esd 1401 MegaBACE
GAGTGGACTGCCCACAGACAGTANAGTGACAATCAGCATGAGCTANCACC
GCGTTAATACGGACTCACTTATAGGGCGTCAGTGCTGTGTCAGNCTCTGC
GATCGCTCGACGCACANCGAATTCGACCTGGCAGGTCGGGACGGGTCCAC
ATGTTGGGGCATTACCNTNTGTCGACACCCTTGTANACCATCTTCCCATT
GNGGTATCAAAGGTGGTTCCCTGTGTACNCGACAACGGGGTTGTTCCTTC
TCTTGGTATGCTGGGTGAGTCGATCTTCTGGGTCCCACCTGGTTTCCTGT
CGATGGGCCANTGGNATTTTCCTGCGGTGACCCAGTATATGGGGGCGATC
GACTTGATACTGACANCTTTCNGCGCACGTTCGTGTCACACGTGACTGCN
TGCCCTAGGTAATTTTGTCTGTGCCAGGATCGCGATGGCCAGATGTTCGT
AACCCACCATGGGGGGTAGCAAGGTCTTGCCCCTTGGGGNTGTTTGCACC
GAGAGTTGTCACTTGGGTCGTTGGCTCTAGGGAACGTGTGGCCTTGGGTC
CNCGGGGTGGGCTTTCTGCTTNCGGACCGCGNAGTGGCGATTCCTTTGAC
NCCANTCCCGTAGGAAACCCAGGGCTTTTCCGCCGGTTATGTTGAACGCA
GAGGGGAGAGGTTTTGGCCGTAGTCAAGGCNAGCGTCCAAAATTGTGGCC
CCACTTGTCGANTTGGTTTACCCAGGAGCTGAAGCAATGAGCTTATTAGG
GTCNCCCACACGTAGTTTCCTTTCTTCCCACATAGGTCATTCTTCCATGC
ATGTGACCCTTGTTGATCCCTTNGACCGCGCTTTGAGCGAGCCCTGCTTT
CGGATGCGCGGCCGGTAACCTTTTCTGCTTCGTTCCTTTTGNAAGTCGGG
GTACCTTGGACCTTGTGGTANCCACACGGCNTTTCTTGGTTCCCCCGTTT
TTTAGTTCGACGGGCGGGTTNAGNTTGGCAGNCGTGTCCTTTGGTGGCGC
GGTTACACTCCANTCTGGNTCCCACTTAAGCAGTTTGGTTATTCTACCCC
CCTTTNGGTTTGGTTGGAGAAAATCTCCGGTTCAATTTACCGCCTGGGGC
TTNCGANCTAAAAATTTCCACCAACGCGACACCGAGCAATCCAGATTACC
GGGAANAGCCCCCCGNGGTCGGAAGCCACACTTAAANACGGNTTGGCTCA
ACACACCGGCGCCTTTTGGGGGGG AATTGCCCGGTTAATTTCGCACGTTG
GAACGCTTAAATCTTCCCAAGCAAATTTTTAAACATTTTGGCCGTTTTGC
CGGCNGTCAACCTTTTAGGACCAGCGGCGTTTTTCACCCACACGGTCTCC
TGGGGGGGAACAAACGCCCTTNGATACTAGTGTAGAGCACCNAAGGTTTC
A
>E:\AnalyzedData/50513_2_2_Ql_Kubota_Hpl4_02Run01_Cp312_MDl/Q2_Kubota_Hp35
_02_53E07.F.esd 1009 MegaBACE
TGAGCTCAAGCAGTGGTACACGCAGAGTACGCCCXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXTAACTTTCACNAACTGACGGTTTTAAATTCNACCTT
ACGTTTTTTGAGTTAACTTGGTCTGGCGGTTCCCGGGTTTCTCGTGNNGG
GTNCTCTCNTCCTCGCGCTGCTCTTTCTCGGNCTCACCATGNGACACCCC
GGGTGAGTAGAACCACAGGGGGNCTCTGTGCCCGTGTGNATAGTCGACCC
GGTNTTCAA
>E:\AnalyzedData/50513_2_2_Ql_Kubota_Hpl4_02Run01_Cp312_MDl/Q2_Kubota_Hp35
_02_73A10.F.esd 228 MegaBACE
TGAGTCAAGCAGTGGTAACACGCAGTAGTACGCCCAGCGTTGGTTCGCGG
GCCGGAAGGGTTACATTTTTGGGGATTACAAACTGGTAGTAACGGTATGG
TANTGGTAGACTAAGGGCCGGGTTTATTTTGACGGACTTTGTAAAAACTG
GCACTTAACTGAGTGAATTTGAATTTTCCTAACTATTAAAGGGGGGCCAA
AAAGGGGGGGCCCGGGTTTCAAAAAAAT
>E:\AnalyzedData/50513_2_2_Q 1 JCubotaJHp 14_02Run0 l_Cρ312_MD 1 /Q2_Kubota_Hp35
_02_92D12.F.esd 767 MegaBACE
TGAGCCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCGCCAGGCA
GGTACTGCATCATCAATAGCTCGTTGTCATTCCCTGATCCNCACTGCATN
TCNTGACNATAGTCACATTCAAATATGTCCCACATAGTACTTGGTATTGA
NCCTTCCTTACCAATTCCTAGTATTTNGTGATTACATAGCTCTTATGCAT
TGGTATACCTTACTGCGAGTTACCTTGCGGCCCGGCGACCACGNTTGTCG
TNGTNCTNNCGNCNATTAGCGTCNGGTCTTTGGTGCCCACGCTTCTTGCT .
TCCCGTTGACNCTTGAGCGCGCTGTAAGTCTGCTGCGACTTTNCGACAGT
AACTACTGTGGGTACATTACCTGATTGTCCTTCGCTGTTGAATATTCGCT
TTACTCCCTGTGTCCTTGGGAATTCTGCCTTCATACCCGGGGTTCACAGA
ACGGGCTGACGCATCGCGGGTTTACCGGGCCGGTNGGTCCAAACCGGGCT
NTCGTTGGGGGCGGGTTAGNNCCTTCCTAGTTGCAGGGTTCGTATGGCCT
TACCGTTTTACCTTCGATTTGGGTTATCGCCCGATTGTGCGTCTGTCCTT
GCATCCTCGCTTCTCGGACTTTGCCGCGGTTTCCGCGTGAGNCAGCCGTC
CTTTTCGGGTCGGCTCAAGTCCTCAGCTCGGTTTCACATTTAGACCTTTC
NTGTGGTCCCCCTTTGGCTTNGCTTTCCAGGCNCGTGTACAGGAAGGGNC
GGCGGGNTTTTCGGCCG
>E:\AnalyzedData/50513_2_2_Ql_Kubota_Hpl4_02Run01_Cρ312_MDl/Q2_Kubota_Hp35
_02_94F12.F.esd 562MegaBACE " "
ATTGGAGCTCAAGCAGTGGTACACGCATAGTACGCCCTGGTCGCGGCCGA
GGTACAAGGATCCCTGATTGGTTCCTCAACAGGCAAAAGGACATTAAGGA
TGGCAAATACAGCCAGGTCATGTCTAACAACTTGGACACAAAGCTCCGTG
AGGATCTTGAGCGTCTGAAGAAGATCCGTGCCCATCGTGGTCTGCGCCAT
TACTGGGGTCTCCGTGTGCGTGGTCAGCACACCAAGACCACTGGCAGGCG
TGGTCGCACTGTTGGTGTGTCTAAGAAGAAGTAAAAAACTAATACATCTT
GTAGGGAAATTCATTGTATTTTATTATCCAAACCTTTATTTGCATCGTAT
TACACAATTCCCCTTGATCATTTTAGTTAAAGGTTTTGGCTGAGTTTAAT
AATGTATATTGTCTTGCCCAGGTAAAATTTATTTGAAGTGTGCTGTACAT
TTCTCCTCAAACTATAGAACTGACCATGCTCTTACATTATGTTTACAGAT
ATACTGATTATAACTGATTATAGAATACTATACATGAAATTGTAATAANT
CGTGATATGAAA >E:\AnalyzedData/50513_2_2_Ql_Kubota_Hpl4_02Run01_Cp312_MDl/Q2_Kubota_Hp35
__02_96H12.F.esd 1568 MegaBACE
CNGAGTGGGAGCCCCCAACNGGCAGGTGCTACTAACCAATCTGCATCTNA
AATGACTGCCCTGATCAAATAACGTACTNCTACTAATAAGTGGACTNTGT
GTGCGATCGCGAGCTCCCGGGGCTAACNGAAGTCATTACATTTGCATCAT
TCAGTTCANNCAGGNTATACATCNTAGGTACGGGTAACCTGGGACNGCAC
GGACACACATTAGGCANNTNCCATTAAACGTACATCAGGCTCAGCGNCCT
TCGAAGATGCCCACTAGGACGCAGACTAAATGGCGTTATACTCGTTCGTG
ACGCTCGAAATGTGATGAANTTCGGCNCAATTACGTAACGGNCTAAAAAT
GATTTCTCTATGNGCATGCTGGGATCTTGTAACTGAATTGCTTTTTCATT
AACTTATGTTNTACGAACCCAACGTTCACTTACACAAGCAAGACCCATAA
TTACTCTACCATTAAAAAGCCCCGGGATTNATCTNCCTGCACTNNTAATT
TCACCTTTCCTTTTTACAAGCGAAATACCACTTAACCAAGTTGNCCCCGC
NNTTCCTATANCTTTGCCAACCCAGGAACCACTCCAATTTCGATTTCACA
CTTCCCCGAAAGATAACGCATTNCCNTTACCAAAGAGACATCACATCCCG
ANTTTCCTCTCCCCCTCACACACNTTGGGNCCCATTGTCCNGGAAAAACG
CANAGTTNCCNTTTTCAGCAANTTGTCACCCTCTGACACAAANTTAACTC
AGAATTTAAAATTACACCTTTATCCTANCCCCATTTGGCCCAATTTATTA
AGTCNCCCAATCTCTAATTAAATATTAACACCACACACGGCAANGGGGCA
CACATCTAACCAGANAAAGGGCAAAATTCGTTTCACCATTGGTTTCACCT
AAATCCNCGAATAAACGTGTTCCGCNGTTGGAACACCCACTTTTTNCGCA
TCCGGGGGAAAAATTTCCGGGGCTTTTTTCACTAGNCNCGAATTTTTTCC
CCCCTCTTTTAGAGTGNTCCACAAAGCAGAAAAACNANTACCGCTGTNTT
CCCCCTATTATTAAAAAGGCGGGATTATAATCGCCTTTATATCACCACAT
ATATGGTGGGGTAATTGAAAAGGNGGCCAATATACCGGTGGTNCTCCGGG
GAGGTCACACCAAGCAGTTAATATTTGGGCCACGGGGCACGCCATTTTTC
AACACTTTTTGAAACCCCGTTTTATTCCCCACCNGGGAAAAATGTCGTTT
CGNCACCTTTCTCCCTGGGTATACCCCCNAGGTGTTTTTNCCCCCGGGGG
GGCGNGTTTTTAAGGAGTATATATCATNNTTNCACCGGGTTTCCCCNCGC
CGACCANCCCNTTTGTCCCCATCACGGTTTTTTTNGGTTCTTTTTGGGCC
CCNCTTTAAAGAATACCTTTTTTAATGAGGGCCCCTTTGGNGGTTTATTC
ACCGAATAATNGGCACANAATTTTTTGGTCGGCGCACCGCATNATCNCCC
CACANNTGGTTGTAAACGGGCCCAGGATTTTTTTAACCAACTCTCCGGGG
GTTGGTCGACCCCACAAT
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cρ312_MDl/Ql_Kubota_Hp35
_01_A21_321.F.esd 537 MegaBACE
TGAGCTCAAGCAGTGGTACAACGCANTAGTACGCCCGCGTGGTCGCGGCC
GAGGTACGACTTCGGAGAAAGGAAGCCCACCGTGGGACAAGTACCTCAAC
TGTTACCCTATTGCCATCGACCTGATTTCCAAGGGCGTGGTCGACGTCAA
GCCCCTCATCACCCACCGCTTCAAGTTCGACGAATTCCAGAAAGCCTTTG
AGTTCTTCCGCAACGGGACAGACGGCGCCATCAAGTGCATAATTTCTTGT
GACTGAGTTTGACGTTGGGGAAAAGGGATGCTTACAGGTGGCTTTGCGTG
CATGTGCCTGCGAGCGTGTCTGTGTGTGTGGGAGAGAGAGAGAGAGAGAT
AAAGAATGTGTGTGAGAGAGAGAAAGAGAGCGAGAGCGAAAGAGAGAGAG
AGATAAAGAATGTCTGTGTGTGTGAGAGAGAACGAGAGCGAAAGAGAGAG
AAAGAGAGAGAGAGAGAGAGACAGAAGGATGACAGCGTGGCTGAATGAGA
GAGGAGACGAGAGCGAATATGGATGAATTAACACAAT
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cp312_MDl/Ql_Kubota_Hp35
_01_A23_353JF.esd 996 MegaBACE GATTGAGCNAAGCAGTGGTACAACGCAGAGTATCGCCCTCGAGCGGCCGC
CAGGTCAGGTACTTTTTGTANTTCGGTCTCTATTTTGAAATAACGTGCAT
AAATAGATTTATTAACACACACTCTCTTTTTATCTTTTGTGTGCTATATA
TTTAGATCATACATACGAAATATATCATATATAGAAAGTATAACATTNCA
GTTCAAAGTATCAANANATCATTATTGGATTCGTGAGCGTGAAGCATATG
AGGGTGAAGATATATATGCAGAAATGAATGANCGGTGACNTGAGTATGAT
GATGGCGATGGTGATGAAGCACAATAGCACGAGTCATCACAGTAGTCACA
GAGGCTTGCNATTGCCGGCTTGANNGGCTCCAGCAGCGGGCTATGCCCCA
AGCAGGAGCNGTCTACAGGCCGACTTATGNGAAACTCCCAATTCGCCCCC
TTGTAACACGGCGNCCGGGGCAGGTTCCCGGGCACGGGCCCCATTGGGGC
CTTTGGAAAAGGGGNAACCCTCAGGGTACGGGTTTTAACCCCTTTCCCGG
TGGCACCCGGACTGTGAACCAAAAGGCCTTGTTGGGGACCGGTTAACCGT
TTCATGGTTCCCGAGTACCGTNTGGAAAGCCGGTTTACCTTCGGCATTGT
CGTTAACCCGCCAAAGCGCCCTATCTAGTGTGGGCTTNNTACCCCCCCGT
TTANTTTTCAACNGGCTNGGGACAACANGGTGGGGCGGTTTTNTCCCAAA
AAAANTACTCTTTTATATTCGAGGGGATGCTCTGTGGGGCCCCACGGCGA
CCCCTTATATGGGCNCGGNGCCGAGGTTTTTAAAAAGAGTTTTCCCNCGA
AGATTGTTTTGGGAGGTGTTCCCCCCCTTTTATAANGGCCTTGGGTTGTG
TGTTTCCCCCNCTTTGGGGTATGAGAGTTTGNGAAACACAAGTTTTTCCG
GATTGTGTTTAAANTTCCNCGCCGGGCCTTTTTCCAACCCAAGACT
>E:\AnalyzedData/50425_4_2_Q l_Kubota_Hp35_01 RunO l_Cp312_MD 1/Q l_Kubota_Hp35
_01_Cl l_163.F.esd 1362 MegaBACE
AATGAGCTCCAAAGCAGTTGAGTACAACGCAGATGTACGCCCATCGCATG
CGGTCCGGNGAGCTGACNGGTGATACAGGTAATCTCATCGATNTACTGTG
TCTAAGTTTGGCTTACGTCAGTCACTCTGTACCTCGAAGTGACGCGCACA
ACCNCANACAGGTCGGAGAATTTCGAAGTGACACTCATATGGTCTAAGCA
CNATTTGTGCGTATGAATATCGTAAGCCCTCGTTTGTGAGGCATGAGCCG
TGCTGTTCCCCCCGTTGTCTTGATAGCTGACTGAAATCGAGGTGCATCAT
TACACTACAATAGGCCATCTTGAACTTCTATAGACAAAAACAGGATACCA
TATATAATNGACTTGGGAAGCTATCCCTGCGGTACCGGCCAGAAAGGCAA
TCTTGACGTAGTGGAGACTGTTGAGCATATTCATAGTTTCCGTTCTCATT
TTGGTATGACTGATTAAGNTTAGTAATAGGGTTATACACACATTGGGTTT
CTTTGGTTTTGGCCTTTTTTGGAGGCATTGAAAGGGTGATCTAAAAATAT
AGGAAGGACCAGGGACCATATAGGAGACAGATAAAAATACAAATTATGAG
NATTGCTAACTCACTTAGGTTGCGTATTGGGGCCTNAGGTAGCTAGGANA
CAGANTGTGGTGTCAGTTTACCCTNTTTTATCANNTCACAAGTTCTCTCT
AAAACAGGCCAAGATTAACACTTAGGACTAGGGGTCAAGCGCAGCAATGC
ATTTATAAGAGTGTTTGTCACTTATTTGACGCTTAGAGAGGGTGTGGTCA
CATATANTGGAGGCTGAGAATATGGCTGACATGTTCTAACCACCCNATTT
GCAGATTTCNAATGGACCGGTTTCTTGAGGTCTGTCCTCCCCTAAGGTTT
GGTCCGCAGCAANTTTTTTTGGTCCCCAAATNGTCCCCCGGGGNTGAACC
AACAACCACCACTTNGGTTCCCANGTCAAGCCACAAAGGCAACTTTAAGC
CAATAATGCAACCACCTGGGAGAAAATGCCCCANCTNTAACACAAAAGGT
TGGTCAGCAACAANGGGGGCGCCTAATNGGAAAAGGGGGTTTTGGGNGCT
CTTNAAGAGGATTTGATAAAAGTTTATGGAAGGGGCTTCANGAAGCCTTC
TTCATCATAACCCAACTTGGTTGANAATTGATCTTCCTGGCCAGAGTTAT
TAAGGAAAGGCTGTTTGTAACAAATTTTTNTGGGGCTAATCGTCGGAGGG
ATTCTTTNCGGANGAATAGAGCATTTGTNTAGTCGGGGAAAGAACTAAAG
GGNATGAGGGTTCCNNATTTGGGGGCGGNTTAAATTTTATNGGGTATTTT TTCNAAACTGTT
>E:\AnalyzedDatay50425_4_2_Ql_Kubota_Hp35_01Run01_Cp312_MDl/Ql_Kubota_Hp35
_01_E05_069.F.esd 1264 MegaBACE
GGTNAGANATCGGACAGCAGTGTGTTAGNCAATCGCATCAGTACGCCGNT
CGTAGCCGGTCGGCTCAGTGGTCAGTGGCTACATCAGTCTCAAGCTACTT
CACATGAATATGTCACTAGTGTACATTGATTGACTTTATACTTGCATGGT
ACTCTGAGTCGTATTAAGACATCACAAAGATCATGACACGTTACCACGCG
TGCAGGTAGGCATGAAGTGCGATTAACAATACCGACGTCTCTAGTGTACG
TCTTCACCCATTATGCTGCCCTCATATGATGTAGGATGCTNCTGTTTATT
ACACAGCCGTCTATACAAATGGGCAACACTTCTTCTTATTACCACCCTGT
TCCATTTCACACTTTCTGTCGGGGGATTTATTGCCGGCGCTTTTAACTAC
TCGACCCAGTGCACCTCAATGTTCCANTCAGAAAGTAATCCTGCTTAATA
TTGGAACCATTATAGGAATCGTTCTCAAGCTNTCNTTGGCTTTGGAACTT
CATTTCCTAAGGGAAAAGTGGCCGGCCNAAAGCACGGAAATTGAACCTTT
TTGGGGCCCAAGGGGTCTGGAAGNGTTCCCCGTTGGGGTTCCGTTTCCCC
ANAAACCGAGAACGACCGTGGCTCAGTTCCTTACNCAAAGTTNCAACCAA
CGTCCTGGGNTCTNAACCCCCAACCGTAATGGGAATCCCATTGTCGCGAG
GGAACCGGGTTACCAATACCGTCGGGTCGTTCGCCCTTTTTCGGCCAGAC
TTTTCCCTTGGGACAAAGGTAAAACATTCCCCTTCTGGGGGTCTTTCCTC
AACCCGGGTTTTTAAAGCGAAATTTCCGTTCTNNGGGTNTCAAGANTAAA
TTCCCGAACTTCTTNTGGCGGACCAATCCTGGGTTCAACACCCCCCCGTT
ATCCTGCGGGGACACGCCCCGGGTCGCGGAAAAAAACCCAAAACTCTGGG
GCCCCTGATGTGTGGGGGGGGGGCCCGNGTGCTTNCAACACCCTNTTTTT
TTTCCCCATTTTGGGGCGTTTTCCCCGNGTGTTTCCCCCTTTTGTTTGGC
GCAANAGTGGCCCCCCGGGGTTTTAAAGCCGCNTTGTGGGTAAATTTATG
GCCGGCGTTTAGAACCCCCCCCCCCCAATGTGTGCCCCGTTNTATGATGA
TCTCTGCTCGGGGCTTTATTCCCCCCCCCNTTANTATTCCTCTACAGGGG
TCTAGGCANAAGGCAGGCGGGTTTGTCANAGAGCAGTTTTTGGGGCCTTG
GGCCCCGNGCCCCT
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cp312_MDl/Ql_Kubota_Hp35
_01_E19_293.F.esd 525 MegaBACE
GGAGCTCAAGCAGTGGTACACGCAGAGTACGCCCAGCGTGGTCGCGGCCG
AGGTACCTTGGTTTGTTGCATTACCTTTGTGTCGCTATTACTCTAATGAA
ACTAGACCATGCGAGACCCATAGATGCAGCCAAGAGACACAACCAAGCAA
GGACTAAACTCAGACCTTTGCTCCATGTCCCATGACACCCTACAACTATG
TAACAATACAGATTAACTGGTGAAGAAAAGACATTCCCTTGCACCGTAAT
GAACAACAAATGACAACAGAAATAAATTAGGGATGTGGTCATGTAATACC
GTTTAACTGTCATTCACTACTATTCAACTATGGAAGGTTGCCTATTGTTG
CCTTGCCAGTAGTCCAGGAGTCAAGGGGGCTACCTCCTCACCGTCTCGGT
TTCTGTGAATGATGATGCCTTCCATCCAGTGTCTGAAACTCTCCATCTAG
ACTCCTCAGAATTGTTTTTAGTATTATCTATGTATATATTATCTCCATGG
GTGGCCAACTCCATGACAGCAACCA
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cp312_MDl/Ql_Kubota_Hp35
J)l_G21_327.F.esd 608 MegaBACE
ATGAGCCAAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCGCCAGG
CAGGTACTCGGCTTCTCCCTCTTCGTCTCCGGGTTTATCCTGACGGTGCT
GGCCTACGCGCCCACGGACTCCTACCTGATGGTCATGATTCAGAGCATGG
GCGTGATGGGTTTCCTTGGCCCAATTGTGCTCGTCATTGGCACGATCATG
CTCCTGGTGTCCATCTTCTACTGCTTATTCGGCAACACTGAAGACGACGA TTACTAGCCGAACGTTCGATCCTCTGACGTTATAAGCCGCCATTTCCAGC
CTGCAAACAATGAGAACAAAAGACTTTTTTCCAGGAATTAAACAATCGTT
GGTCGCGATGTTGACTCACATCTTTTATCCTTTTTTTTCTGTGCCAAATG
CAGAAAAGATATGAATGAGAATCAATACTTTCGCAGCAGAAGAGATGTAT
TTGACGAGTTTCGGAGACATCTTCGTCAGAAATGCATGTATTTCTGAAGA
TATAATCGAAAACCGGGTTAAATATAGCTCTTGATATTGTGAATATATTA
ATTATCTTTCATACCTTTCCTAACATTTTTGCTTTATTTTTTTCCCTTCT
TTTTTTCA
>E:\AnalyzedData/50425_4_2_Q l_Kubota_Hp35_01 RunO l_Cp312_MD 1 /Q l_Kubota_Hp35
_01_Il l_169.F.esd 521 MegaBACE
TGAGCCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCGCCAGGC
AGGTACCATTTTGCTGACCAACCAGGAGAACGCTCTATTGAACCCAGCTA
TGAAGAGGTCAAAAACATTCTAACAGGGGTTGGATTTAAAATTACCGTTG
AAGAAACTGGGATGCATACAGCTTACACCCAAAATGTTCGGTCGATGCTG
AAGTATGAATATGATAGTGTCTTCTTTGTTGCCATGAAACCTTAACACTG
GCACTGTAGCAAAAGATGAAACAGTATCAGTTATCTTGACATAATTTCAA
AGATGATAGGATAAATGCATCTTGATATTTTCTCCACTTTTGATATATAT
TGACATACATAAAAAAAAACATTGATATGAAGAGGATGGCAAGCAAAACT
TTTTATCTTAATGTGATACGGAAATTTTAAAGTAAATTTGCTACTGCCTA
GGTTATTATAAAGGTAGCTTAGATAATCAATATCTGATAATGATGAAGTA
AAGAGGTAATATACCTTACTA
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cp312_MDl/Ql_Kubota_Hp35
_01J23_361.F.esd 480 MegaBACE
GATGAGCCAAGCAGTGGTACACGCAGTAGTACGCCCTCGAGCGGCGCAGG
CAGGTACCAATAAATCTAATTTTTAAGGAAACCTTTAAAAGTTTTTTCAA
TGATTCCTTGCGACCATAATCATATCACCACTGAAAAATACCGAACAATC
ACCAAGAGCTCTGATTAAAAAGCGGAAGCAAAAATAAGGAGAGCAGTGCA
GCGACAGGTATCCAGGTAAGACCCAATACTCACGTGAGGTGACCTTCTAG
TTGTCACTTGCTTCAGTATCCTTGGCCTGATCCGTCTGTAGTTCACTGTA
GGACCTAGACAATGCCCTGGGCCAGATGCTGTTCGACCTACTACCACCCC
CACTGTTCACAAGCATCGTAAGCGACCAGAACTTGATGACGGCGATGTGA
CCGCGTGCTAGAGCGCACCGAGGCAGCGCCGGCCGGCAACATCTCTTGCA
GGTGGAGCGTGTGAGAGCTTGAGCGAGATG
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cρ312_MDl/Ql_Kubota_Hp35
_01JC09_139.F.esd 470 MegaBACE
TGAGCCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCGCCAGGC
AGGTACGCGGGTGCCATGCATTCATTAATCTGATAAAAGCGTTATAATTA
GGTGCTTGATTTGCCGTATATATTATCATGGACTCATAAGGTTGATGTTA
GTGCACAATATCCTCATAATGTCTTITGCTGATTTTCATTTGCGCTTTGG
TTTATTTATTTAGTCTTTATCTAACACCAGATAACCTATCCAAACTCACA
TGTTTATTCCCAGTGTCTTTACAAAGAAGTGATGTTAAACGCAGTGAGAT
TCTTTTTCGAATATTTGGATTGTTATTTTAGTTAAAAGCATTTGATCAAC
TTAAAGGACTTGGACACCGACTGCAATTGATGCATTCTGTTCGTACTCTT
CTTATGGCATTCTATCAGTGCCTAAGCTAGCTCTGTTGAAGAGCATATTT
ATTTTAATGAGAATATCAAT
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Rxin01_Cp312_MDl/Ql_Kubota_Hp35
_01_K17_267.F.esd 655 MegaBACE
TGAGCCCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCGCCAGG
CAGGTACCATCATTTTAAGCATAAACTTAAGGCTAAGAATAAATCGAAGG ACAGAATCTCAATACTGACTCAAAGCAAAATCAAATAAATTTCTTTATTC
TTAGCAGTTCAGGTGGCAGTGGGCTGTGTCAGCCGTGAATCAAAAAGGTC
TCGAGTATCATAGGCCAATGAATGTGATTGCCAATAAGTGTTCCTTCTGC
ATAAGGAACATTAATGACTAATATGACTATGAAAACAGGTGTGATAAGTG
GCATTCCTTGTTAAGGAATGTCATTTATTACTCAATCAGAAAAATAAAGA
TCATTTACTATTAATATTCTGTTTGGCTCTTCACCAGTGGCTCACAGAAC
ATCATAAAGTAATGGCTTCGAGAAATAGAATTCACTATGTTAACGACATA
AAATTTATATATAACCTCCTTTGACCACGAGAATCCCCCAAGAATACCCA
GAGCGACTTAAGGATTCGAAATGAATCAGAGGGCATCGCTGACCTGATTC
CTCTACAAGGAGACAGAGCTTTCCTTCAGAATTCTTCCGGAAACCAGCAG
CCTCTTCAAGTCGGTNCTTCAGTCTCAGGAGGGAAGGTCGACCACATCCG
GCCCG
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01 RunO l_Cp312_MD l/Ql_Kubota_Hp35
_01_M01_013.F.esd 757 MegaBACE
GCTGACGCCACAGCGTGCGTACAGGCACGAAGCTNAAACAATCCATACGG
AGCGTGTGGGCGCTCGAAGTCAGGGCCGAGATNGCATGTGATTGTTGCCN
ATCCTAATCGATTGGTGCACTTCNAATATTATGTGATNTGACNTGAACTT
NCTTACTCACGTGCNCGTCTGGGTAGTATCCCACNCGGGACGGGGATACT
TATGTGCCCGTTCACAATTACTTGTCCTGGTTGTCCGGTCGATGGGCGTA
CCTTCTGTCCGTCTAGAGNCGTTNTNGCTGGTCCCCCAGNCTTTGGTCCC
CNTTACGTGATGGGTTATTTGCNCCGCTTTGGNCGTAGTCCTGGNCAGTA
AGGGTGNCTCCGTGTGTGACCNTGTTATCCCGGGTCGACAATTTCCACAG
CAAGGATACTAGGCCGGGACCTACTGTGTCCTGGCTTGGGGTGCCTAATT
GAGNTGCAGCTAACTTCCACCATTAACATTATGGCGTATTCGNGGCTACC
ACTTGGCCCCGGTGNTTACCCGACAGTTCGGGGGGGCAAACCCTTTAGTT
CCGNTTGGACCCAAGCTTAGCATTTCNCNACTTGACAANTTCGTGGCCAA
AACGCCTGCCGGGTGGGAGCGAAGGGGCGGGGATCCATAGGGTGTCATTT
AGGGGGCGGCCTCCTTTCACCNGCTTTCCCNCCGGGTTACACACATGTGA
GAACTTCGCTAGGGNCCATCCCGGGTCGGNCACCCGGGGCTATGNTTGAT
GGGGGAC
>E:\AnalyzedData/50425_4_2_Q 1 __Kubota_Hp35_0 lRunO l_Cp312_MD 1 /Q 1 _Kubota_Hp35
_01_M15_237.F.esd 1271 MegaBACE
TGAGCCAAAGCAGTGGTACACGCAGAGTACGCCCTCGGATGCGGCCGGCG
AGCGACGAGTGATACGTAGTGNCCGATTAAGGTTGATCCTTACATCGGTA
AATGTNTGATTTAACCACACTGGATGATCGACTTGCGAAACAACATGTTC
GTAAAACATAGCACTAGCACACGATGAATCCACAGTCATTTCTTTCACAG
GCTATTCACTAATAGTATATTGTGATATACATCTATTACATTAGTAACAT
CTGGAGGTACACGTACTTATGCGCGCACAATAGCACCCATAGGTCCGAAA
TCTTAGTGAAGTATCTCCTGGACGTGTCTAATCTACACAGCTATCCGTAN
NTNAGTTAAACNGTGAAGAACCTTAACTATTAGCATACAGGAATTTTCCT
CTGAAAATTACCCCCGATTCTTTTCATNCCNACTCGGCCAATGTTTTGCA
CTCGATTCCGACTTCGNATACATGTGAAAATTCNCCCAAGGAAAATAGTT
CGAGGCAAAAATTCCAANGTCGGTCAATTCNCNGTTGTTTGGCCCATTTC
GGATAGTTGTGAAAGAAACCTAAACTAAAAAGGAATAATTATACAGATTT
AATTTAAANGAGCAATTCCTAGCAATGGGTAACAGGAAGGAAAAATTTAG
GGAATGGGTTTGGGTCATTGGAAAGGAAGGCAAGTTTATAGGGCGGTTNG
AACCCAACGTTGGTGCCGGTGGAATTCGGTTCTTTTTCCGGGCAACCGGT
NGGGGGGCCCGCCTTNAACCCCAATTTTAACCAATTNACAGNGTAAACCC
GATAAACCCTAAAAATAGGCCAAAGCGGCCACAGAATTTACCCCGTTAAC GGGTCATTCTTCGTAAGTTCCAATTTTNCTCCTAAAGOGAAACCCCCTTG
AACATAATTGGGGTTTCACCCGCGCCCCCTTATGGTTTGTTACAACACAC
TTCTGGCCGCCCCAGAATTGGTCGCCCTTGAAAAAGAGGGTTTTTTTGTG
GGGGGCACATNTTCCANAAGAAAGCGGTTAATATTGAGGCCTGGTACGCG
CGGGTGGGATTTTAAAACTACCACAATCTTTNTTCTGTTGGGGTAAAACA
ACACGCTGTGTGGANACGAGTGTTGTCAGGGTTGTGGGAGAGAAGAAAAT
ATAAAAACACCCTTTTTGAGAAGACTTCTGAGAGATATAATTGTGTGCTA
TAGAGAGGAAAAAAGGTNTCCCCGGGGGGGCTCCCTAAAAAAAGAAATGT
NNGTTTTACACACCGGCCGGG
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cp312_MDl/Ql_Kubota_Hp35
_01_O07_l l l .F.esd 738 MegaBACE
GNTGAGCTCAAGCAGTGGTACACGCANTAGTACGCCCAGCGTGGTCGCGG
CCGAGGTACGCCGCTGCCGGAGGTTCAGACGACTGGGCCAAGGGAGAAGG
TGGAGTCAAATTCGCCTACACCGTAGAACTTCGTGACACTGGCAACTACG
GCTTCGTCCTCCCCCCTGACCAGATTATCCCCACCGGAGAGGAGACCTTC
GAGGCTCTCAAGGTGGTCGCTAACTACGTCAAGGACAACTACCCGATTTA
AAGGTGTGGTGTTGAAAAGGATTGGAATGGACCAAGCGTCTTGAGAAAAC
GGCGAGATGTGATTCGGAGAAGGAAATTACACCACTTTGGCANCGNACTT
TTNTGGCATGNCGGCNNCGCNACACACAAAATCAACAACAAACTANACAC
NCCGCNACACACCAAACATCACANCACTACATANNNACAATCACCNAANC
ACNATAATACTAAACAACAAGAAGGCTTTAAAACCGCNTTTGGTGCCCTG
CCTTGTTGGTGGCGCTCGGTGGGACCACCGGGGGCCTTTTCCCGGAAACG
GCAGGGCCCCCGATTAAACCTTTGTCCCTTTAGGTTCCCCGGGTTTCACT
TTTGTTTGGACAAAGAGCCCCGGGTTTTAAACCCCTTTTGGGAAACTTTG
GCTGGTTAAAACCCCCCAAAGGTCACCACTTTTTCACTTCAGTGCGGGAT
TTITTCCCACCCGCCCCTTTTTTTCTTTAAGAGATTTG
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01 RunO l_Cp312_MD1 /Q l_Kubota_Hp35
_01_O23_367.F.esd 1432 MegaBACE
GGAATTGGAGCTCTATAGCAGTNTGTACANCGCAGAGTANNGCCCTCGTA
GCTGGCCGCCATGGCCAGGTACGCGGAAAGCGAGAAGTGAGAGAGAGGAA
GAGAAGAAGAGAGTGAGAAGAAGGAAGGAAGAGAAGCGGGAGGAAGGACA
AGGAGAGAAGAAGGGAAGAAAGAGGAATGGTGATGCGAAAGAGGACACAT
GGTGTACAGAAGCAAAAACATTGGAGGGAAAGAAGGACAAGGTGTAAGGA
GAAAAAATCATTGGACGGGGANAAGGAGGGAAAAAGGGTGTAAGGAAGAA
CAAAAAATGGAGGGGAACAAAGGAAGAATTGAAAAGGGGGGNAAGGGGGG
GGAAAAACAACGGCAAGGCAAGGGGAAAAACAGGGGGGAACGGTGGGAAA
CCAGGAACNGCAAGGAAAAAACANTAAGCANAGCAAAGAAACAAAAATAA
AACAANAGANAGAATCACAGAAGAAGAGTGTTAACAGGCCAGGNGGGTTT
AAAAAGGACCAAGTTGGGTTAAACCAAAACGGCAAAGAGTCAAGGGTTAA
CCACCCCTTTCCTGGTGACCACCCAGATGGAAANCACAAAACNAGGGCCT
TTGTGCGGCGACTCGTGTTTTAACAGCATTTTTACACATTTTGGGTGTTT
TCCCACAGAGAATTTCCACCAATTTTGGAGACGAAAGGGACCCCANGGGT
GTTTTCACAACCCTTGTTTGAGAGACACATTCGGACGNGGAGTTTTTAAA
ACCACCCCACCCGAAAAAATGAGGCCACNCTTTTTATTAAACGGCTACGG
GAATTAATNTCCACACNCCCCCATATTTAAATGTTAATTACAAACGAGAT
GTTTTGATGGTAAAACAGAGACGCGCAGGGCNTTTTCNTACAAAAACAGC
AGGTTTATATTGAGGGGACCACTAGAGCGACCCCAGTAGCAGACACCCAT
CTTTTTNTGAGAAGCAGCGACCGCTGTCGAGTTTTTACAGTGAAGTGTCT
TCCCCACACACTTTTTTCGGGGAGGAANTTCTCCCCGAAGATAGATTTAC CAANGCGAGAGCGCACCTTTTATGGGGGACAGTCCATTATCTNATATAGC
ACCCAGCCCCATATTTTTTAGGGGAAGCACTTTCTGCGAGGGGCATTTTT
TTTCGAGGCGGAAGACAACACAAGCAGCCAACNAGNAGATACACGACTTT
TATTCATTGCATGGGAAGGGAGCACATTCTACAATTACANACAAAGGAAT
TCGTTTTTACCNCCACACCACACCAGCCTAGGTATGTAGAAGCCACCTAA
TTTTTTTTCCCGCCCCGAAGAAAGCANNCCCGCATACATAGCAAAANAAA
CTNTTTTTCTANTTCGACACCAGCACCCCCTAANAATGGACNACCATGAA
AAAACTGCCATCCACAAGAAATAANTANCTAC
>E:\AnalyzedData/50425_4_2_Ql_Kubota_HP35_01Run01_Cp312_MDl/Q2_Kubota_Hp35
__01_A04_049.F.esd 754 MegaBACE
TGGAGTCAAGCAGTGGTAACACGCAGTAGATACGCCCCGTTGGTCGCGGC
GAGGTACCAGAATGTGACATTGAACGGCTCCAATTGGAGTTGTGATGTAA
CTATNACCTCAAGGGTTTGGAGGAATATTTTGTCTGGAGAGTACGCGGGA
AAAAAATGGGGTTGGNCAAGGTTAAAGTCTCCGGTTCTCAAATCTTATTG
TTGGGAAAACTTNGGATTGTCCTGGGTGTGGGAAAAAATGTTTTGGTAAA
CCGGGGGATTGAAGAACATTTGTTGNTGGTGTGACGGAGTTGTGAAAGCG
CTTTTCTTCATGTTTGGGGNCCCCCGTTAAACAAGGTTGATTGNCGCCCA
CGATATTTGGAGCGAAAGGCTCAAAGGATTAGTTGAGTACGCGACTGGGC
TTGTAGAAGACAAGGTGGANTACATCACTTATATGGGGACCGTCGATTTT
CTACAGAAAAGTATNAGAAGACCTTCCCAATAGTTTGGCCAGAAGAAAAA
CTTGGTCCTTTTGTGGGGGGCGTTGGGGGTGTTTTTACCGACCAGGGNAT
ATATCTTGGGACATTAACAAGTTTTCAATGGGGGATTAGTCAATACTTNC
CTCTTAAATAAAAGGTCTTTAACTAACNTGTTGGCTGGGATTTCAATAGA
CATAGGCTTGGGTGTTGTATTAATTAGCGATTNGCATTTTGCTTGGGAGG
GNAGTAGGAGGTTCATTAGTTCAGAACAGGTAACCTTGCCTTGANGNGGG
CGGT
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cp312_MDl/Q2_Kubota_Hp35
__01_C06_083.F.esd 736 MegaBACE
GTGAGCCAAGCAGTGGTACACGCAGAGTACGCCCAGCGTGGTCGCGGCCG
AGGTACCAAATCATAAGCTTGGCTAGATCTCTGGAGTAGATAAACTGCCG
ACGAGGATTTCCAGTTCCCCATACAGTAAATGGTGTCCCATTTTTCTTGG
CCGTGTAAATCTTGTTTATTAGTCCTGGCAACACATGGCCATCCTCCAAG
CTGAAGTTGTCATATGGTCCATAGACATTTGTTGGAATAACTGAAGTGAA
ATTACAGCCATATTGTAGATGATATACTTGGTTCATTACATCAATCATCC
TCTTAGCATGACTATACCCAAAGTTAGAGTGATGTGGAGGGCCATTATGG
ATCATTGTTTCATCAATAGGGTATGTAGTTTTGTCTAGAAAGATGCAAGT
TGAAAGACAAGAAACTACTTTCTTCACTTTGAATTCCTTGCATAAATCCA
ATACATTGTCATTGATTGCCATATTCAATCGAAGGAAATCGCAGTTGTAT
TTCATGTTTCGGTAAAGGCCTCCCACCAATGCAGCCAGATGAATAACATG
AGTTGGCTTATATTTCTCAAACAAAGCTCGGGTTTCAGCTTTGTTTTTCA
GATCACCATCCTTTGAGCTGATAAATATCCAGCGCTCATTTGGGCGTTTC
TCCTCTTCTGCAACAGCTCTTATTGCTTGTCCTACCAATCCCGTGCCTCC
AGTCACCAGAATCACCATCTCTGTTTCAGCCATTTT
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cp312_MDl/Q2_Kubota_Hp35
01_E10_149.F.esd 497 MegaBACE
TGAGCNCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCGCCAGG CAGGTACATGGGATTATAGTTCAAAATAGCTTCCTATTAATGCTGGATAT ACTCGCCATGGTTGAAGACCTTAACTTGGATGTGGCCGAAGTTGGGAAGA TCTTCGAATACACGTTCATCGGGAACCTTGCGATCCAGAGGGTAGCCATG TGGGCGATTATCAGGGTATTTACCATGAGCACCATAGTGATTGAATTCGG
TATTTTCGTGGAGGCCATCCAATGCTGCGTCGGCTGCGCCATCAGTCACG
GCAACAACAAGGTCGAACTCCAGACCCTGTTCATTACCCTTGGGGAGCAG
GAATCGATTTGGAATACCAGTGGCACTCTCGAAATCTGCAAGTCCGGAGT
CTGCACCACCTAAGGCTTCTTTGGTCTTCTCAAAGAGTGTTGCAAAACTA
GGCACATCAGGCACAGTAACAGCAGATTCCGAGCATTTACGCTCGAT
>E:\AnalyzedData/50425_4_2_Q l_Kubota_Hp35_01 RunO l_Cp312_MD 1 /Q2_Kubota_Hp35
__01_E24_373.F.esd 1562 . MegaBACE
GNGTTGGACGCTCGACAGCAGTNTTGTCACCTACAATCCGCAAGACGTTA
ACAGCCACGATAATAACAGACNTCACGTAGTGATGNAGCAATGCGTGTTG
CGATCTGCAGCGACCAGAGTGCTACCTGTANATGTACACGCCGCCATATT
AGTCAATCCATGAAAGCATATTGCNNNATCCGTGGGGCTTCTGTGTATTA
CGAACTTCCCAGTATCTTTTGCGAAACCCCAACAGACACATAGCTAACAT
TAGTTCTAGTCAANTCACATCTGTTTGTAGGCTTTGGAGGCGCACGCTAT
AATCGAACATGCTCGCTATCTTGGGAACTCGACAAAAGAGTCCTGATACT
CTTGTGTTGGGCAGATNCGCATCGTAGCTTGGGGCCTCTTTAGGGCGGGA
CCCGGACAGCGGAACCCACTGAATCGTGAACCTGGGAAAAAAGTGCTTCT
CCGCAACTTTTCATAGCCTTGAGCGACGTAGGGAGCACAATCCGGTACCC
TTGCCGAACACCGTATCCCGTACTCGCGTTANACTCAAGAGAGAAGAGTG
TAACCGGCAATNAGTAAGGGGGCGCACGAGAAAGGCCACCGTAACCCCAA
TAAGATNTATCTTTAAACTAGGGTTGCCATAATTATCGGTACCCCTCCTA
ATATAGGCCATTTCTTTTTATTACGNGGNGGGCTAAAAAAAAAGGAAGGG
TTTTTGTGGGGNCCAAGGTTACCGCCGTTTTATTGGGGGAACTTTAAATT
TANTCAAATTTGTCCTCTATATCTTGGTAAAACNTTTCGGGAGAAATTAA
AGATTTTATGTGGGGTTTATTAATNTACCTGTTGGGNATATTGAGGGAAC
ATTATATAAAAGTTNAGGGTTAATTAATGCGCTTTATTAAAATTACCGAC
AGGAANGAAAAACTNTNATGNT AAAGAAGGACAGCNGTTACeCTTATTTA
NCTNTAAGNAGGGCGCCCTAAAACTATATGGGCCGCTANATTTAACCCTT
TTCACCCTGGTGTGGGGGAAAATTAACAAATAAACNGNGGGCCGTAATTT
TGTGGTGTTTCACCCCTAATCGAGAAACTTTGAAGAAAACTACTAAAACG
ACATACAGCGGTATATANCAGAANACCTACATGATCAAAAGCATATCAAC
CCAACGACAGAAACAAANATGCTACTAAGAAATTGGATAAAAAACCCGCC
TTTTGGGTCCCCCCCCCTAATGTGGTGGGCNCTGNGTTGGGTCCTCCGCC
GCACNATTACCCTGTAGCACCACGGNGGGTCGGGGCCCTTGGTATTNAAG
GCCTTTATTTTACGTTTTGTAGGGCGTCACCGCGGGTTCCCCTTTACTGG
GCAGCAAGGGCCCCTGGTTTATACACCCCTNTTGGGCACACTCTTGGGTG
GTGTTAAACCCCCCGCCACAAAAGAGGGCTTTTANTACTTCTCTGTGGGT
TTACTTCCCCCCCCCACCNAGTTTTTGTAANTGAAGAGGTCTNCGGGCAN
CGGGTGTGGCNNGCGTCTAATTACACGAGCAGCTCCTNTGNGTCNACCGC
CCTCTGTGCCCG
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cp312_MDl/Q2_Kubota_Hp35
_01_I02_025.F.esd 586 MegaBACE
GATGAGCTCAAGCAGTGGTACACGCAGTAGTACGCCCTCGAGCGGCCGCC
AGGCAGGTACGCGGGAGTTGAGCATTGGACTTCAACGAGAAGTTAGCCTT
CGAACCAGAATCACCACCACCCACCACCACCATCATGAGCGCCGAAACTC
CCCTCAAGGACCTTCCCAAGGTTGACCCCACCCTCAAGGGACAGCTCGAG
GGATTCTCCGCCGTAAACCTTAAGAAGACCGAGACGGAGGAAAAGTGCCA
CCTGCCAAACAAGGAGGACGTGGCACAAGAGAAGCAACACATAGAACATC
TACAGAACATCAGCGAGTTTCGCAGCGAAAGACTCAAACGAACGCCCACC TCTGAGAAGTTGGTCCTCCCCAGTAGTCAAGACGTGGAAGCAGAGAAGGC
AGCACAGGCCCATCTGCAGGCCGTCGAAGGCTTCAATACTGCACAACTCA
AGCATGCCAATATCCAAGAAAAAATTGTTTTACCTGCTAAGGAAGATATC
GAGACTGAGAAGACACATCAGAGCATTTTCCAAGGTGTAACAGGATTTGA
CAAGTCCCAAATGCGACATGCCGAGACCGAAGAAAA
>E:\AnalyzedData/50425_4_2_Q l_Kubota_Hp35_01 RunO l_Cp312 __MD 1 /Q2_Kubota_Hp35
_01_I06_089.F,esd 1624 MegaBACE
GTGGAGCTCCAAAGCAGTGGTAACAACGCAGAAGTACGCCCGTCGGACGC
TGGTCGTCGATGCGGTCATGTGATACCTGTTACTTGCATNGTNGTACCTC
CGTTTTTCTTAATTGTTTTCCTCTTTTCGAATTGCAGCGTGCTTAACATT
ATAGACACCAGACTTAAGTACTNTTACAATAAATTGAGTNTCTATTTAAG
TCTATGCTTTTCTNATGAGTGTTATATATATTGGCATCACTGTAATCTAT
ACATTTCACGACCAACGAGATTTATTAACTGTATGCGCCCGGCGGATACC
ACTTCGAGGCTNGTCGTACCACCTGCGTGGTGCGNGTACTGTCTGTGTAC
GGCTCATATGCATCACGATAACATAGAATGGGTACCCCACTNCTATCTTG
GCTCCGCCTTTTTCACATGTACGGGGGGTATAACTCTTGGCTTGCACGAG
TCGTCTCGAAGCCCGTTTGANCATTTCAAATAGTGGGTACATTTCAGGGC
CTTCGAATATCTNCCCCCTCGNTTGTTCGAAAAAAGNGTCGTNTTATTGC
GCCCGTAATCCAACGAGAGTTTCCCTACCTAGTCACATGCATTTACCCTT
ACGCCCCNTANCANGATGGCCCTTCCAGACTTTGGTTACATACCGGCGCT
TCCGGGTTGGGGCTTTGCCCTTGAAAAGTTGGCAAGGAATTGCCACGGGG
CCTAATTAACACTNCCCATCCAATTNCTTTACCACCTANNAGGCGGGCCC
TTGGGTACAGTTCTCATACCAAGCGTTTGTCACCTCCCGATCTTCATGTC
CACCAAGTGCCGTCCTCGNGGCGTAATCTCAAACCCCCTTTGATCCGGGG
ATAAGGNCCAANATCATTTTTGCTGATTGTAATAANACCATAGGAATAAN
TGGTGNGCCGACTCCCAATAGAGCGAGGACTGCGGCCGGCGAAGAGGGAA
AGAAACCGCCGGGCTGAGAGGAATTATAGGGCGGGCTTCANGTCTTTGGT
TGGCTGGCCGNTCCATTTCCCTTATTTACCCTGGGGGNTCATANACCTTT
ACGGGGNCCTTTTTCCGACACGGTTTGGAAACCTTCCGTTGCGAGATAGN
AGAAACCCTNACAGTTCTGCATCCCAGNTTATACCNAAGTTCTCGGTAGG
NCNGNCGTCTCCCGAAAAGGGGCCTGGCNGATTCAAATTACCGATTTGGG
GGTTCCCGCAACACNTCCCCACACCAAGGANGGGGCACGGGGGGCAAACA
GTTATAAATACNGAGGGTATNAATTNTACCCAACGAGGGGAAAAATTTTT
ACAAAGCGGGGGGTCGATGTAAAACAGGGCCATTCGGGGAAATTAGACGG
GGTAGNACCAGATTCGGTTTNGGAACCGTTCTGAATTAGATCTGGGCATC
CAACCGTTGAAAACGCGGGNTGGTCACAACGGGGAAAAATACAGGGTTAT
AAGAGNAAACACGNGGGCCCTTTGCGTTGTTTATCGGGCCTTTGTAGGCG
GGTGAAAACATTCCGCTAAGTTNGNGGCGTTTTCATCCGGTTCCACTCNC
CGGCTTTTGGAACGGGACGTTGGGNTATCAGAGAAAAATAACATATAACG
GGGAAACNGGGGTTCAATAAATGC
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cp312_MDl/Q2_Kubota_Hp35
_01_K08_123.F.esd 507 MegaBACE
GANGAGCCCAAGCAGTGGTACACGCAGAGTACGCCCAGCGTGGTCGCGGC
CGAGGTACACTTAGGTCTCTGCATCTGTCTCTCAGACACCACAACAAGTG
TTACCTCAGGGACACTGTTCACTAGCTCGCTCACTGTCTGTTCCAACCAT
GGCCAACACTTCTCTCGTGATCATTATGATGCTTGATCGACGAGACTCAA
GTTGGGGCACACAGCTGTTTATCACATCCAATATATGTCATTCACTCATT
ATAGTTTTAAATACATACATCTAAGTTACAGTCCTCGTCCTCCTCTTTTT
TTTTTTTTTCTTCCCACTTTATTACATACATCTTAGGCATCTTGTTTTTT TTTTTTTTTTTTGTTTTTTCATAAAACTGATTTATGCTGAACCTGCCCAA
ACAAAAATAATATTCCTTACGCTCTTTTTCTCCCTTACACTTATACATCA
GTATAAGCAACAAACACTAAATTTTGAATAGATGGATTAAAACGTGGAAC
ATGCATT
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cp312_MDl/Q2_Kubota_Hp35
_01_K14_219.F.esd 879 MegaBACE
TGGCCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCGCCAGGCA
GGTACGCGGGAAAGACTCTTAGCGGGGGATCACTTGGCTCGTGGGTCGAG
GAAGACCGCGGCAAGAAGCGAAGTTTTGGTGGCTATCGCAATTCTCCCGT
GATTCCACGACGTGTCGAACGCACATTGCGGCGGCCCTGTGCCTTCTTCG
AAGGACGGCTGCCACCTTCCCTCGAGTGTCGTGGTACTGAACCACTGAGC
TCAAGAGGTAATGAACGGCAGCAGCAACCACACCTTCTCTAATCAAGAAG
AGATGACCTTCATTGACTACCACAGCATTCTATGCGGTGAAGGACAACGG
CCACCGCAATATTTCAATGGAGCTGTAGTCTGCTACCGCTACCACAACGG
GAATCTAAGACGACAGATAACTGCCTAAATGCAATCAAAACAACGAAGAA
TAGCAGTCTTTGAAGGAAACGGTAACTAATCGGATTTTCTATATTTTCTT
ACACTAGATCGTTTGCAGAGCTGGTGAAATTTCAGCCCTTAAAAGGAAAC
GGTGACTTTTCTGATTTTCAATTTCTTACTTGCATAGCTTGATGTAATAA
CAGCATTCTTCCAAGGGAATTTAAAACCATACAGTCATTTTGTCCGTCTT
CCTCTTCGGAGCTATAAATAGCAAACATTTGAACATTGCTCAATTAACAA
TATGCGCACTATCGAAGATTGGAAATTTGCATTTTGTGAAAGTACTCGGC
GGGAACAACGCTGGGCGTANTCTGTCGTTTGAGCGTACTGATGTACCAAT
TTTGTTCCTTTATGAGGTTAATGGCGTTGGGNAAAAAGGCATAATGTTCC
TGGGTNATTTNCGNNTCTAATCNCACAAG
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cp312_MDl/Q2_Kubota_Hρ35
_01_M10_157.F.esd 540 MegaBACE
GTGAGCCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCGCCAGG
CAGGTACATATACTTACAAAATATAAACCAACCCAAATTCATGTAAACTC
ACACAAGGCTCCAGGACTAAATAAATTCATCTCCCTCCTCATAAAATTTC
ATCAAGAATATTCCGTGTCATATATCATTATTATAAAGTTTATCTTTTTT
CCAAGGGCCAAATAAGAATACTTATTATTAGGTGTAATATTATCACTATT
ATTCTTAAGCTATTGAAATTTAACTCTTATATAATTTTGATGAATTATTG
TGGAAAAGATGTTTCAAAAGGTCCATCCTATAACCCAGGATCTTCATGAT
ACTCTGCATTTTCCCTCGGGACTGATGTTGCCGTCAGCCTTCTCGATCTC
CAGAATGACACGTGTGAAGATATCATTTACAGCCTCATGTTGTTTGGCAC
TTGTCTCCAGGAAAACAGCCTTCCACATCTCGGCAATTTTGCGTCCTTGA
TCTGTGGTCACAACACGTTCCATGTGAAGATCTGTTTTGT
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cp312_MDl/Q2_Kubota_Hp35
_01_O16_255.F.esd 537 MegaBACE
TGAGCCAAGCAGTGTACACGCAGAGTAGCCGCGTGATCGCGCCGAGGTAC
TGGTCCATTGATTGNAATTAACTCAGCNGTTCCTANTAAGACTCCGATTT
GAGTATTAATGGGTACCCAGTGCGATNGTCTACTCCTAGAAAGTCGGAAT
CCGTCCTCAGGCAGTCTCATNGGAGGATTCTATAGGATTCAATTCCTANT
TGAAGAAGGTCTGATATACGTATCTTCATTATCATTGNTGACCAATAAGT
TTTTAATTNGGTTTAAACNTTNCCTTNAAGGGAATTTTAATTTAACTTAT
CCATCTAAGTAGGTATAAAAAGTCGGAGTGAAGGAAGAGCAATAAAAGAA
TAAGAATATAAAGNTGGTAAAACAGTTCATAACAATTTCAATAAGTATTG
TCCTTCTAAATAAAGAATCGGTTTGTAAAAAGTATATAAAGAAAGAGTGT
ATGATATTATATAATAAACCTACTTAAGTGTCGTAAATTATAAAGATTAG TACCGCGGGGAAGCAGTGGTAAACAAACGCAGAGTAA
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Rυn01_Cp312_MDl/Q2_Kubota_Hp35
_01_O18_287.F.esd 1490 MegaBACE
TGGAGTCAAAGCAGTGGTACATCGGCAGTAGTTAACGCCCANAGTNGTGA
GTCGNCGGCCGGAGGTAATCTTAANATTAATGNTTAATATNAATTAAATT
AACCTTATTTTTGTATATTGGTGGTAAGGGTTAAATACTAGACATTGTTG
GATTGAAAAAATTCTTTATTATTGGCAATTAATACCTTTTGACTTTGGAA
ACTTTGTNGAGNACNAGGTANATATCTAATTNTGNANTCCTATTAGATAA
TAANTCCGTTTTAACAATTATTCGGTCTTACACATTCCATTAACATGAGA
ACATTNGTAAGAAATACCATGGGAATCCTTAGGATCTGTGGGTTAAANAA
TTTGGGTAAATTAAATTCAGTAATATTGCCCTCTTAAATTTGGGAAAGAG
GAGACCTTTGAGCCCAGTAAATTATGNTGTAAGATGACAAACNTTGTGGA
TTAAAGAAAGTTCCCGCAATGTTATAAAGATTTTTCACACCCGATTTTAT
TTACTCTTCGGGTTTAAGGCACAAATGAAAAGAAACNTNGAANTAAAGAG
TTGTGGTTTACACCTCGTCTTTAAAANAGAATAAAGGTGGTGGACATAAC
GTGGAGAAGAGAAGGAGAATTTTTCTCCNAGAGTGAGCAAACAACGAACA
GAACACNNTTTGTTGTGGGTTTTCCCGCTTTTACAGAATTTTAAANATNG
CCGCNTTTTAATGTATTTTCTGAAGAAAGAAAAAGACCGANGTGGGAAAN
ACNCCCAAAAGGGTTATCACACGTAAAGTGTGAGGGCACTTATAAAGGNC
GAAGATAGCGCAANANAAATNTGGGGTAACACTTANTGGGTTGTATNTTA
AACCGCCTTTTTTGTAATAACNCACAGTTTTNTTCTGTTGGTAGNTCAAC
GTTTATTTAATTGGGGGTATGGGGAAAATTTACCATGTTTACNCACAAAA
AGNAAAAGTTGTCGGGNGTTNAAATGTCACAACANACGGTGAAAACGGGA
CAACAAACACAGTTGGNGGGAGAACGGTGGTCGGTGNAAAAACACATTTT
GGTGCGGTGGGATGTTTTATGAGGCGAGNTAGGTGTGTAGAGAACAAAAG
GGTGGTGGGAAGCAAAAAGAAGAGACTACANGTGTGGGGAAAACAAGCAA
AGAGTATATGTGGGCCTTAACAGGCAGATAATGTGTNNTTGAAACTATTT
TTGGGGAGCAAACAAGAAAAGTACTGTTTNTNGACAGCAANAAGGTTGTT
NGTGGGAAGACACANTTNAAAAAAAGGGGGCAGCACCNCCAAAAAATATG
GATGGGGGGCNACAGATAATTTATTATGGGAGGGGAGGGAGCCCAACAAC
ATTTGTTTAGGGGGTGTNATCACACCNCGAAGAGAATTTGTGATCGGGGA
NGGGGGNGGCCCCTCTTTATTANGGGTGTATTGAGCGGTGAGGGCACAAA
AGTGGGTTGGTAGGGAGGTGTAAACAATATNGANTGGGGG
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cp312_MDl/Q2_Kubota_Hp35
_01_O24_383.F.esd 1381 MegaBACE
GGAATNGNAGCTCAAAGCAGTGGTACACGCANAGTACGCCCTCGAGCGGG
CCGCAATGGNCAGGTTACTTAATATTAATTTATTATTTGGNCNAATTAAC
TTCTTITATTTTACCATTTAATTTACACAAACCATTTTTCACTTGTTGAA
AAAGGNTATTATTAAGAATTAACAGGTGAAACTTTCAGTTCCGCCAAGGT
TACAACACAATATTTCATTGCTAATAGGCCACTTTATTCAGAAGGGTTTA
CAGTGACCAGGAAAGAAAAAATTTAAGTATAACAAATTATTTAACAGGTT
AATTCACTTGAAACATTCAAACACGCCATTTAAACCTTTTNCAGGGTTAT
AACGGATTCCCCCCTAAAATCCCTTAATTTCAAGTTTCCCAACAAAATCT
ACCAACAAGTTAGGGCACACAACAAATTATTCCAACCCAATTCCCACAAA
CATGGTTGGAACCCAACATTCATACTTCATGCCATGGCCCACTTTTGTAA
TTCACACAAACGTTATANAAAAAGGCCCCCCCTTTTAAAAAGACAAACCG
TTCCTGTTCGCAAACAGGAAACCTTTCCCTTNCCACAAAATTTCCCCAAG
CAACATTTTTCCCACAAACCAACAACCTTTGGGGNGGGTTTCTNCNCACA
AAACGCCCACAAAATTTNTTATTGTAGCCACAAAGTTTACCCCCCAAAAA TNNTATGTGAAAAATTCCCGTTTGGGCTTCACAACACGGTTATTGAGGGA
CACGGGCCTTATAAAAATTGNGTTTTAGGGGNGGCACCAAAGTGTGTTTA
AACCTNTTATGACTGCCCGACAAAGAGCAACGAAGAACACAATGTGTTTT
TGGGTTNTGAGGCAGCTTAAAAAAAAGGGGGANCACAAAGACATAACAGA
AAAAAACGACTTTTTACTTGCATGGTTAGGNGGGGGTGCTGGGGACACAA
CANTTTGTAAAAAACAGCCCGCCTTTTTAATATGGTNCGGTANGGGCAAG
TTTGTTTACAAACGTGTTTTGTCAGGGAAATTTACAACTTTTGTAAAAAA
TTTTGCCCGCCGACAAGTTTTGGGAAATTTGTCGGTTTTGGCGACCCACA
TATACACATTGCGGTTTGGGAGTTTAAAAAACGGGTTTTTNGNCAACGGN
GGGCAAACATTTTACACAGGAAACAGGGNCCCAAAGGGATAGGGGAGGGG
TATTATAAACCCCACTCTTACCCGCGAGAATGGGAACCCCGAGGCNTATG
AAAAAAAACCCAAATATGAGGTGTGAATCTTTAGNGAGGAGGAGGAACAC
GGTATTTTAACAAGTTGTTGTTGAGCGATATGTGGAGGTCAACGGAGGGG
ACGACTATNTGGTGATGGAGAACTAAGTGGA
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cρ312_MDl/Q3_Kubota_Hp35
_01_D17_260.F.esd 1213 MegaBACE
GTGAGCCCAAAGCAGTGGTACAACGCAGAGTAACGCCCTANGCGTGGTGC
CGCGGCGACGGAGGTGATNACCTTGTCTGCCTGGAGTGTTCAGACTGACG
TGGGGCCTAATGGTGCANAAAGNTTGGTAGTCGAAATTCANCTCTACAAC
CAGATCAATATACTNTCGTTGCACACTANNGCATACATACAGAGGCATGT
CTGGTCCATACCTCTCGCACATTGC AACCTAGAATTGTAATTCGCTCGCT
ATCCCAGCGCAAGTAAGAGTATGGAACACTATCCGTATGAGACCTCCTGC
GAATGTTGGTTTCGGACTGATATCTTGAGCGATTGCATAGTGTACAAATA
CGCCGCATTCTATACTAGGTTAGATATTGTGTTTTGGTCTTNTGGGTANC
NACCAAAGANAGAAGTTAAGTGAAAATTGTNGAACAAAAGCGCGCTTCTT
ATGCGAGGANAATAAATTGAGGGCGCAAGAATAGNTTGGGTTTGAAAAAA
TCCCTCCGGTGAAAGTTGAAATTGTNGGATAAAATCTCCAATNACCATTG
GGGAANCCAGATCACTGTGACTCGGGCCAANGCAGACCCGGCTCAANCTT
TATCCCTTCGATTACGGGCATACCATATGGAAGGACCGATTNACCATTTG
GGAANTAGAGATAAACACCACCAAGGTCACTCCTGTTGGTGGGCTCCCTC
TGCGCGGCTGTTGGTCACCCGGTTCGGCAANCCGGGGAAGGGTGTGTGGA
NCCCCGGTTTTTATATGAGGCGCGCTTGTTCCCCGGNTCCGGTTTTTCCC
GGGGGGTCCCCGTTTTTGGCGAAAGTTTCCCCCGGTTTGAGCGCTCCGGC
AACTTTAGNCGGGCCTATTATCGCTTCTAATGCCCCCTTTGGTGTTGGCT
CGNCTNNTGCTACCCACCCACTTTCTTGTGGTCTTCTNAGCATTTTGCGC
ACCGGGGGCGTGTTTTCTACAAAAANCAAATTAATATTGGGTCCCGCNCG
CCAGAGCGCCCAATTCTGNAGGAAGGGGCGCAATGTTTTTAACCAAGATT
AACACGCAACTTGCNGGGGGGGTTCGCGCCCAAAAAGTTCCCAAANGTTT
CCCCANTAAGGAATATGGTTTTGGCCTTCCCATTNTAGGAATTGGGCCTT
NCCGGTATGAACGAAACGAANTGCGTTANGGGTNTCCACCCTATNTTTTA
CCCCCTTGTGGGG
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cp312_MDl/Q3_Kubota_Hp35
_01_D19_292.F.esd 553 MegaBACE
GATGAGCCAAGCAGTGGTACACGCAGAGTACGCCCAGCGTGGTCGCGGCC
GAGGTACCAAGAGGTGGTATTTGCACAGATGAAGGCTCTCCTCCCCAACA
TTTCTGACTGGTCACGTGTTGTCTTGGCTTATGAACCAGTCTGGGCCATT
GGAACTGGCAAGACAGCCAGCCCAGAACAGGCACAAGAAGTCCACGCAGA
CCTTAGGCAGTGGCTGCGGGACAATGTGAATGCTGAAGTTGCAGAGTCCA
CTCGCATCATCTATGGTGGCTCTGTCAGTGCTGGCAACTGCCAGGAGTTG GCCAAGAAGGGTGACATTGATGGATTCCTTGTGGGTGGAGCAGCTCTCAA
GCCAGACTTTGTTCAGATCATTAATGCTCGGGGTTAAGGTTTTTTTTTTA
GCATGGGGTTCAAAAGGCCAGCCACTTTCTTGGCTGCTTACTGCATTGCT
TTTGTAGAAGCAAGTAAAGTCTCTCTCTCTCTGGGCAAATGCTTAAACTT
CTTGGGTAATTGTATAAAAGGATAAAATGTGTCCAGAATTAGATAATTTC
AGG
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cp312_MDl/Q3_Kubota_Hp35
_01_Jl l_170.F.esd 544 MegaBACE
TGAGCCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCGCCAGGCA
GGTACAAAACATCTCGTATGTCTATGGTGCTAACGAAGGATATCCAGACT
GATCCAACTATAGTGTTCTTTTTGGGAGAAAATTAAACACCTGGGGCCTC
CGAGAAAAAAGAAACTCATTTGGCAAAGCTAATGTTTAAGTCAATGCCTG
GACATCTTTCGTGCGGTATACTGTATCAAAGGTCAATCTCGAATATGTTA
TGGTTATTTTGGATGGGAGTGTCCTATGTGCAAGTGAAAACAATGTTGAC
CAGAAGAACTTGAAACCAGAATTATAATTTTAATAAATCTTTTTTTCTTA
CCATATCTTGAAAAAGGCCACAGAATGAGGGAGAGGCTTTATAGACGAGT
GGGGTTGAGAAATTAATGGAATTTAAAAAAGCATTTGGAGGAATAACATA
TAACGAAATAATGAAAGAGAAACTTGGAAAGAATATTGATACATATATTT
CTTATTTTATTCATATTATATCCCGAAATTAATTCTGAATCTTA
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cp312_MDl/Q3_Kubota_Hp35
_01_J21_330.F.esd 699 MegaBACE
TGAGCCAAGCAGTGGTACACGCAGAGTACGCCCAGCGTGGTCGCGGCCGA
GGTACGACATGTCCAATATTGCAGATGCTCATGCTGAAGTTGACTATTCA
AGAACGACAACAGATGGTGATAAGAAGGAATTTAGGCTCAACTGGACTAG
GAAATCCACTGATGACCATCTTGAAAATGAAATGATCTTTGACTCCAACT
TTGAGACCCTGTCACATGCCCGTGCATATGCCAATGCTGAGTATGGTAAC
AATTTCAAATTGTTATCTGGGTTGGATTGGAATGACAAGAAAATTAGCCT
TACCCTTGAAGTTCGCAAAACCAAGATTTCAGGAATGCTCACCACACCAT
TTGAAGGATTTGAAACACTAGAGATTGACCTGCAGTATAAGCTTACTGGT
AAGGACAAGTCAGTTCAAGCAACATATCAACGGGGAGATAGGAAAGTCAG
TCTCAATATGGAAATGAGCATGAAGGGTAAAAAAGGAGGCTCCTTTAAAG
TTGATCTCACTACACCTTTTGAAGTGGTGAAAAACCTTCATATTGACGGT
CAGTATGAAAATAAAGTGGCTCAAATCAATTACCAGAGAAACGATATTCA
AATGAACTTCAATGGAAAGGCCAACATCAAGACAAGTAAAGCTTCCTTTG
ACATTTCATTCACACCACCTAGTGGTCAAAATATCAGGATAGCTGCCTC
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cp312_MDl/Q3_Kubota_Hp35
_01_N03_046.F.esd 454 MegaBACE
GATGAGCCAAGCAGTGGTACACGCAGAGTACGCCCAGCGTGGTCGCGGCC
GAGGTACAATGCCATTTATTGAAGGCAAGTGCTTCATCACTTACATAATC
TTATCTTCCTTTCCACATTCTTTAAAGTGAGGTAGGTTGCTTAAAAAAAA
TATTGTATGAAAGAATCATAGTTGCAGCCAGAACATTTGGAGGGTTACTG
TATTTCATTCATAAACATTGATTCTTTGATACTTATCCTTCATATTTCTT
TTCACTTGTCTGTGTTGAATACATTACTCGTGGAATCCCCATTTTCTGTG
GTTTTATTCCAATTGCTGCTCATCCTGTGTTAGTCACATTCAACCATTAT
AACCTGTCGTGAGAGACACTTCTCTCAGTATCATATTGAGCAAGTGAATG
TAACTTGTATAAACAGCATGGTTAAATGTGAACAGTTGTAACAAAATACT
TTGT
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cp312_MDl/Q3_Kubota_Hp35
_01_P05_080.F.esd 1480 MegaBACE TTGGAGCTCAAAGCAGTGGTACCAACGCANTAGTAACGCCCGCNGTGGTC
GGCGGGCCGGAGGGTACTTTTTTATTATTTATTTNATATTTTTTCAAATC
AANTAAGCACCTTAACAGGTTAACAAAGAACCTTCAAGAATTAAATTACA
GGACTTGGCCAATTCCAATTGGGGAAATTGCCCAATTCCTNCATTAAGGC
ATTTAACCAAAACCAGTGTGATGGCAATTATCCGGGGAAACCAAAAAAAT
TAAGGCATTATTATTGNGGCACAAAATTTTAGACAAAAAANGGAANCACA
AAAGGCAGAAGNATTACTTAAGTTGTGGTNGTTAACCAAATTCCGGAAAG
GGAANAAAGGNGGNGGAAATCTTTAACGGGTTCNAACGTTTGNGGTACGA
AAAAAACACAACGTGGNTTGGACATTTTTTCACATTTTAGANACATTTTA
AAACGAACACAAAAGATGTCCCTTTTTTACCCTTTGGTGTTTATCTGNGG
CAGGACAACATTTGGGTACNAAGGNGGAAAAGTTTCCTGTAGGTAAATTA
CCCCTGTTNNTCACTTCACGTGGGTANCCATGGCCCAAGTGTATGAGAAA
CCAATTTTAAACCGNGGCCCCCCCGGGATGNGTTAAACCCCCTTTTGGGC
CCCCTTTGNGGGACTGGNGGGCCCCGNGTTTCCGCGTAATAGTGTGCGTG
TTACCTTTTATACCGTNNGGTCCCGGTTCCTTTCTGTGGAAAGGGCCCGG
TTTACACCTTGGGACNTTTGNGCGTTAACCCCCCAAAGGACTTATTTTGT
GGGGTATACACCCCCCTTTTTTNCAAGGGTTGCGACACGGGGGTTATAAN
AACTTTTTTAGGGACATNGACCCTGCACACTTTATNAGGGGGCCGGTTNA
AAACATTCCACGAAGTTGAGGGGGTTCCAGAATTTAAAGGGCTTTATGGG
GTTATNTACACCCTGTTAGGNTTAGGGTTTCATGGAAACAAATTTGGGGT
GNCAAATTTANCCCAGCTGGGAGATTACAAAGCACAATAAATTTTCCGGC
AAAGCAAAAATCGAGAGAGTAAATTAAAACCAGAGAAAAGAGCCCCNAGG
GTGGAAAAGGCCAATTTAAACAAAATGGTNTTGGGTTATAAAACAAATNG
AGGCCTATTATGNAGGAGGGGGGNATAGGGGCCCNTTAAAAATTTGGGAA
GTTTTGGAAAAGGNTTATAAAAAGAGTGTTTCACAAGCCGAATTTNTTAC
AAGATTTNTGGGGGGTGTATATAGGCGGGCGCTTTAACAAGTTTNNGGAG
CCCAAGGAGTTATTTATACCACAAAGGTTTACCTGGGTGGTGGAAAAAAA
CCGTTTTGGNTATAGAGTATATAGACGCACAAAAAGGTTTGGGGGCTCAT
TTACAATTGTTNGGAAACTATTCCNGGGGGGCACAAAATATAGTGAGCGC
AGCTGAGCGTGTGTGGGAAANACAACGAGG
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cp312_MDl/Q3_Kubota_Hp35
_01_P07_112.F.esd 1451 MegaBACE
GGGAATTGAGGNNCAAGAGCNGNTGATTAACAGGCGGTATTAAGCCTTNA
AGGGGGCANAGGACAGGTAGCGGGGCAGTTTAAGATATNTTAANGTTACA
GGTTANTGTATCTAAACTTTGNGANTAAGANTAATTTTTTATAGTGATGG
TGGAATNATATATAANATATAATNCNTTACCTTACATGAGGATAGGGGTA
CATATAAATATTACCGACACTGTGANGAAAAGGTNTTATAAGAAAAGGAA
AGGTANTGTTGCACATAATAAGGTTACCCAGGGAAAGTTAATTAATACAC
AGGTCTANNTAAGNGTTAACTATACGGGGCGCGGGGAACANAAAGGACTN
TTGNGGGGGCNGNTTTAAAACTTACNTGACGGAGGACAGCGGANGACTTA
TGGACAAAGGNGGTTAAGCTTGNATATTGAGGTTAAACACCAAGGCTAAA
ATATGAGGATAATCCCCTTATTAAAGTTTAGAANAGGTGGAGGTTAAAAA
ATTAGAGGGGGCTCAGANCTATTNTGAGGGGTTAAATTTCGANATGAGAG
GTCCCGATTAAAGGAGCTTGAGTTTATATACCACCTTNNAGGTNGGGTTT
ACGAGAAAAATTNTGTGGGATTACAAATNCCCTCNGGGTTTCTACCNCAC
ACAGATAATGTATNCAGCTACCGACTGAAAGAACAAAACGAATATTTAAA
ACGGAAAGGGACCCGTGGGGGGGAANAGCCAATTNAAAACAAGGGTGTGA
TAAAAAAGAGGGCCNTCTGTGGAGAGAGGTTAAGCCCNTTTAANGATATT
GGGGAAAAGTTTTAGGGAAAAGGTTTCAAAAAANATGTTTTCANGAAAAT CACTTANTTTATAAAGATAAGTTTTATTGAGGGACGATGTTTTAAAAGGA
GAGGNGGAGCNTGATAAGACAAAAAAATTTANGAGGGGAACACAGTAGGG
TTGTTATATTATAGAACNGACGAAAGTGTTAACCTGAGGGNGGGAAAAAA
AAAACGCTTTTAGAGNTGTCAACCCGGGTGGAGAGGACCACAAAAATGGT
TTAAGAGAGGAGNTNTTAATAAAAAAATTAGNGGAAAAAATNTATAATCA
GGTGGGGGGCCNAAAAATATAAANGATCTAGTACCTAAGTGTAGTGAGAG
AAAAAAACGGAAAATNGNGGGCNAGGGNGGATTATTATAANGGGGGAACG
GNTGTCAAATAATTGATNAGGANGGGGNAGGCAAGGGACNCTAAACATGT
TTAGNAAGCACGAGGGAGGTGTTTAAAACACATCGTTATAAAGGGGTGTT
ACANNAAGAAGTTAGTTGAGANGAAAATTTGNTAAGTACGTTTTTGAGAN
AGAGGAGGANCTTAANNAGGGAGAGTAACAAGAGGATATCACACAGGGGG
NAGTTTAATGAGCTAGATGGAGGTAAGAGGAAAAGGGCCNAGAGGNGTAA
A
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_CP312_MDl/Q3_Kubota_Hp35
_01_P09_144.F.esd 723 MegaBACE
GTGAGNCAAAGCAGTGGTACACGCAGAGTAGCCAGCGNGGTCGCGGCGAG
GTACAGGANGCGCAGATTAATTAAAGAAGTCTGAAGAAAAAAAAATCGGT
GTATTGCTGAAATAAAAGATNATCTGAGAAAAAATCCAGTGTAATGCAGG
AAATAAGTGCATCAAGTTAATTAGTAAATTAAAAATATGTCAGGTTTCTT
TAGAAATTAGGTCTTTAAAGTTTTGTAAATCATCTAGGGTGATGACCAGG
TAATATGAATGTTNGACTGATACACTTTTATCTTAATTCTTTAAGACCAT
AAATTTTTATTAATNCAAGGAAANGGAATTGCCTATAAGGCAGGTTGGAA
GACAGGGCTGATAATTTGTATTATATTTAAAGGAAACTAATACAAAGGGT
ATTTCCTAAGAAAAATCAGCACTTATCCTTTAGTTATAAGAAGCCATCTT.
AAAGTTANATTAACAAAACCATTGTTTGGGAAGANTCACTTGTTAGTTTT
TGGCAATATCCCTACAATCCTGTTTTACTNTTCTTGTGGTGGGAAAGGAT
GGGGAAGAATAGGTAACCCTTGCCCCCTTGGCGGGGCCGCTTCGGAGAGG
GGCGGTTACTNTACTTGTTCGGTCATAGGANGCCGTACTTGGAATGNGTT
ACCCCCAAGCTTTTNTGGACCCCCTATTTAAGTTGGAANGGGGGTTTAAA
ATTTAGGCGCACGACCTTTTGTG
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cp312_MDl/Q3_Kubota_Hp35
_01_P13_208.F.esd 730 MegaBACE
GATGAGNCAAGCAGTGTACACGCAGAGTAGCCTCGAGCGGCGCAGGCAGG
TTGTACTTCAGGGACCACAGAGTTGGNAAATAAAACCCGACCNAAATTCC
CACTGCCAACCTCCCANAGTCGGACCCCAGATGCCATGCAANTGGTTGCC
ATATCCNTCACCCGACTTGATTGACATCTTAATTAACTTAATTGGTGATG
GTGAACCAAGAAACAATTTAACCTACTTNAGTGCTCGTCTGGGGCTAGTA
TTCCACCCGGCGAAACCAGGGAATTACCGTTGGTGGTGGCCCCGGTTCAA
CCCAAGTTAACCTTCCGGGACCGGCAGAGAAACCCAACATCGCCTTGGTG
GCCGGTTAACCTTTCCTTNGTCCGGTCCTTTTGGAAGCCGGTTAACCTTG
GAATTGGGGTTAACCCCAAGGCTTTTΓΓTGGTTTCCCCCTTTATTAAGGT
TGGGAGGGGCGGGTTTAACATTTTTNGGCTCGGGCCTGGCACTTTTTGGG
TGGCGGGTTTAAAAATTTCCAAGTTTTGGGGGTTCCAAATTAAAAGGCTT
TGGGTTATGTTACGCACTTAAGGGTTGGTTTGGAAAAAAAGTTGTTGGTT
GAATTNCACAGGGGATNCCAAAACGAAATATTTTTCGTCACAAGANAAAC
NAATNAAAAATTTAAACCGGAAAAAGAGCCCCAGGGTGAGGAAAANGCCA
TTTAAAAAAAGGTGTTGGGTTTACAACAGG
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cp312_MDl/Q3_Kubota_Hp35 _01_P15_240.F.esd 344 MegaBACE AAGCATATGAGCCAAAGCATTGGTACCAGGCAGNATNATACGCCCAGNGT
GTGGTCGTGGCCAGGAGGATCANGGCGGGGNCCTCTAAATTGGGAGGGTT
TTGATNTTNAGATTTTGGNTTATNGGGNACCACAAAAA AAACATACAATA
GAGACAAAAAAAAAANNCTAGTCCTTACAAAGTATANTTAAATTTTTAAG
TATGAAATTTTGGAAGCATTTTATAAAGAGTATTANTTAAAAAAGGGTTT
TGAAAAGAAAGAGAATAGAGAATTATTGNTNGGANGGGAGAAATTANNAA
ATAGNGGAGTTTTTAAGAGTTTATACAAAGATGTGGGTGGTGAC
>E:\AnalyzedData/50425_4_2_Q l_Kubota_Hp35_01 RunO l_Cp312_MD l/Q3_Kubota_Hp35
_01_P17_272.F.esd 717 MegaBACE
TGAGCCAAGCAGTGGTACACGCAGAGTACGCCTCGAGCGGCGCATGCAGT
ACGCGGAAGCAGTGTAACACGCAGAGTACGCGGGGCTTCNTGANGGTCGA
AGGAGNTGTAGGACGCCNGGAATTCTTCANGCACAAATATGTTGAAGGTG
GTTGTATTGGAGAANGCTGGGAGGTTGTTTCCAAGGAAAGTTTGAAAGCG
GCCACCGNTTTGGCAGTTCTTCCTCNTTTAAGGAANTTATTCTTTACTTA
AAGGGAAAGTTCTTTCCGGACCAAGGTTCCGAAGGACCAGAAAGACCTTC
CCTTGGGGAAGCCACCCTTCCTTCGGAACGTTCTATTCCCCAGTTCCCGG
GTTGTTGGGGAAGAAAAACCAAGGGAATTCCTTNGAGTGGGTTAGGGGTA
ATTCTTATTGNCTTCCCTGGACTGGCCCGGAAGGGCCTTAACAACCCTTA
CTTNTCTTCTTCCCCTTCCTTAGTCCGGAACCCCCCATTCCAATTCCGGA
AGGGAAACTTAAACCCANATTGGTTTTAGGGCCTTTATTCCAAGGGCCAG
GAATCCCGGNAANCTTAAAGGGCAGACCCGCGCCGNAAAACGAAAGNGGG
GAAACTATNTACCGCGGGGTTGGGAAATTTGTTTGGAAAAACTTCCCCAT
TTATCNGGTTGGGANAACCCGGTTTNGGAACCCCCCGGAAAGGGGGCCCA
AAAAGGGTTTATCCGGG
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cp312_MDl/Q3_Kubota_Hp35
_01_P23_368.F.esd 581 MegaBACE
GATGAGTCAAGCAGTGTACACGCAGAGTACGCCTCGAGCGGCGCCAGGCA
GGTACCTCATGGGACACCAGAGTTGGAAATAACCNGACCAATTTCCCATT
GGCCCACCTTCCCAACAGTTCGAACCCCAAGAATGGCCCATTGCGAAATT
NGTTGGCCATTATTCCCTCAACCGGAATTNGATTGGCCCTTCCNTANTAC
TTAATTGGTGATGTGACCAGGAAAACTTGTAACCTTAACTTTCCAACGGT
TGCCTCCGTTACTTAGGGGCCTTAAGTTAATTTTCCCAACCCGGAAAACC
AAGCGCATACCGTTGTTAGTTAGGCCCGGGTTCAACCCAGGTAAACCTTC
GGGCCGGTGAACCAACGGCTTTGGGGCGGTAACTTTCCTTGTCCGTCCGT
TTGGAAGCGGTACTTGGATTAGCGTTAACCCCAAGCTTTATTTTNAGGTT
ACCCCTTTTTTTAAGTTCGGGAANGGGGTTTTCACATTTTGNGGCGGCGC
CTTTNGGGGGTGTAAAATTCCATNGGTTCCATACAGCCTTGTTTATCCCT
GTGTTGTTGAACNTTTGGGTTCATCCCGTGG
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cp312_MDl/Q4_Kubota_Hp35
_01_B04_050.F.esd 625 MegaBACE
GTGAGCCAAGCAGTGGTACACGCAGAGTACGCCCTCGAAGCGGCCGCCAG
GCAGGTACAGCCTCCTACTCCTCGGAGACGTGTTGCTATGCCGATCAAAG
CCAGCACGGGGAGTGGTATGACTTCAACGAGTACAAGCACCCCGACTTTG
CTGACCAGTTGAGTCGGCTGTAAAAGCATGGTCGAGCTATGGCACCTTCC
ACCCCCTCTCTCATATGTATGTTTTATTTTTTACTTTCCGTTCCCCCTAT
TTTTGTCGCCAGAAATGTTTTTTATGCAAATTATTTTAATAACAAGTTTT
TTGGAAAATAAAGTCATATATCCGTCCCTGTGAAAATTCTACTAAAGTAA
ATATGTTTAATAAAGAGAAAGGCAGAGAGGGGGGGAGGAAGTAAGGAGGA
TATATAAACAAGCAGAGTGAGGAATGGAGAAAGAGATAGATAGGCGTGTT TGTTTACACAAATGGCTCTGAATAACTGATATATCTACCCTCAGTCCATG
ACGCCAGCGCCAGGCCCGCAACACCGCAGCCAGGAACCTGCCAGTTCCCA
TTTTCCTCAAGACCAGTGGGAGCGACTACGAGGAGAACAGTCGTCGTGCT
TTTCAGTAGGCCACGTGAGTGCCTG
>E :\AnalyzedData/50425_4_2_Q l_Kubota_Hp35J) 1 RunO l_Cp312_MD l/Q4_Kubota_Hp35
_01_B12_178.F.esd 391 MegaBACE
GGAGAGAAAAAAACATAGTTATNGGGGNATTNTATGNGANTGNTGTTGGT
NATTCAGTAATGNAAAGTAGTAAGTAGGGTGCCCGAGAGGGGGTGGGTTT
TTCAAGGGGGGGNNAGAGANGTGGANTGCAAGGGANTAGATGCGNTCNNG
TAGNGTGGATAAGCTGTTTTTGAGNAAGGAGGTGGACGGATGGAGNNAGG
TAAGACGAAGAGGGAAGATTAAACATGAGAGAAGGTNCGTGTGAAAGGGT
GAGATGNTAGANAGTGNGAAAGAGTAAAGNNGAGTAGANTAGACGTGGAG
ATGATGAGGAGATTGAATGAGTGATTGTGNAAGATGAANAANAAGAGTGC
AGTTAAAANGNAAGGCGTGTAAGAGANGGCGATTANGTGGG
>E:\AnalyzedData/50425_4_2_Q l_Kubota_Hp35_01 Run01_Cp312_MD 1 /Q4_Kubota__Hp35
_01_B24_370.F.esd 1720 MegaBACE
AAAATGGACACTANGAAGCTCAGTNGNTAACAGCCGGCAGTAGGCTNATC
AGACCCTTGTCGTTCGGATGCTGCTGAGAACGGTACTGATATCGGCGCGC
AGACGTGCCGGGAACGTGTCTGACCTTCTTCGAGTGACAAATATGTGCNT
GGCGNATTTCTCCACTTTCCCCTGTTATTGCTCACTCGCGAACTGCGTGA
CTTGTGGCTAACAATAGCAGTGCCGGNTCATCATGGAACTTNGTGACTAA
CGCTGTGCAAACACATAATGTAGGAGGTAAACTTGCACTTGAAGNTTTGG
TTCATCACAAATTTATTAAATGAACACCAATAAAAATGCAAAATTTGNCA
NGCAAGTTGGTGGTTTCCCTCGGGATTNCGGAAATTCCGTGGTAAATTCC
GGGCATTTTGGTAACTGGNCCAACTATTNGNTTGGAATCTTTGCTTTTGG
TCGCCAACTGGTGGGGTTAAACCCAGCGATTTTGTGGGGGACANGAGACC
CTTTTTGGGAGGGAACATGGTGTCGGGGTAACCTATTGGGAATGAATACA
CCCATAGGGAAAAATGTAGTTGGGGGCTGTGGACACCTTGCNGGATNTTA
CACAGCGAAATTTATTGAACCACAGTTTAGGGNNAGTTAACACCCTGTGT
GACAGTTAACATCCAATTTTATCNTGTAGAGGGAAAAAAAGAGTGGACCT
ATGGGGGTTTTAACAAAAGCCAATTTATATGGGGGNNAAAATTTTATCGG
GATGGGGCATTTATAAAAAAGCGATGCCANCAGNCACNAAAAAGAGAGGG
ATCACANTTAAAAATAGANAAAGACACTTTNGTGGGATTATCCATTAACC
AGAACATACCAGATTATAACTTATATATCACAAGGAGGTTTTTTAGGGCG
AAAATTGAGCCGGGGTGGGANATTACTTCGAAAAGAGTTGTCTTATCAAG
GGGCCTAATAATAAGACCTTGGTGGCNCCATANTATTTNTACGGTTTTAG
AGTTANTTGGCGTTCAAACGAAGATTTCCCAAGAAACTTTTGGTGNGGNT
ATACCACTGAGAATCTACAANATGAGGAGCCGTTAANGGTCGAGATTTTC
CGCCANCACACTGTTATTNTGGGTTATCGTGGTTTTTCAGGGAACACATC
AGAGTGTAATCATATNGGTTGCTACAAAATTTCCAGCCTCTAGGACATTT
ACCAAAAANGNAACAAGTTTGTACCNTACGAATAGACGAAAGCNCATATN
AAAATGCAATAAATTAAGAACACCTAGTGACTATTGAACGGCAGTNTGTT
CTGGNGACATTGCGGAATTTNCAACANGGCAAGAGGTGTTGGGTTTTAAA
ACACATATCGANAGATGAGAGAACACCCCATTATTANGAGAGGNGAGAGT
GCGGAGAGGAAGTTTTATNGGGCCAGCACCNGTATNAACAAAGAATTTTC
TGCAAAACGTGGGNTTCTATGGAAAAAACGANCACTACTGCTAATATGAG
ACNANTTTTACCCACAAGAAGCAAGAAAAGTTTACTAANCAAGAAAAAAG
ATGTTAATGATTGGACAAGCAACAGCGATATAATACTAGGGGCTGATANN
TGGACCTAGATAGTACCACCAAAAAAAAGACGTATNTTTGGAAGCTTATG CGATTAGANGAATGGACGACAATTGTAATATATACCAACGCNCANAAAAA
GGGAAATTCCCAACGCAGGT
>E:'\AnalyzedData750425_4_2_Ql_Kubota_Hp35_01Run01_Cp312_MDl/Q4_Kubota_Hp35
_01_D08_116.F.esd 1515 MegaBACE
GGGCTCAAAGCAGTGGTANCAACGCAGAAGTACGCCCAGGCGTGTGGTCT
CGCGGGCCGAGAGGTTACCAAATAATCTCATATGTATATACGATGGATAG
CTATTTGTTCAAATCANGGGTACTAGAGACATCATAAAATTCGATGTCTG
AGCATATCACTACATGCGGGTNTCCAAGCTCGTTTCTATCAGNTGATAGC
ACCATTGGACATACAGGAGCTCGATCGCACAAGAAATCTTNAACAGTTCA
TCCTATACACGCAACTGTACACCAAGGCCATGTAAACAGCGATCCATAGG
TCAAGGATTCCATGATACTATCNCGTATCCGACAGAGTATCTCTNNTGTC
ACTTCCTCTTGAAAATTCGCNCATATAGTAGCTAACAGAGACGTGGGCGC
AATATNAAGAGATTGCGTNTCTTTCTCGCGCAATGCGAGTCTATAGAGAA
GTTATGCATTAACTCGTGGGCCAACCANCCTTAATCAACATCCAAGCTGA
AGTTTGTGGCAGGGCCCGTAGCGCAGAAAGTCGCGGTAAGAAATTTTGTC
CCAAGGATCTTGGCCGACGACTAATNGTTCGNACGGCCGCCATAGGGCGC
CAATAATGCCACCTANGAAAAAAGTACCACTTTAAACGGCTGCCAAAGGG
TTGAAACTTCCATTGGGCTCCTCCCTAGAAGAACCCGGAGGGACAACTGG
CCCNTACCTCGCCATTGTGGCGACTTGTTTTAATCCCTTTTAACGGTAAG
TTCCCCCCGTTTTCTTTTTGGGACACTTGCCCCAGATGTGATTCCGGTCC
GCCTCATTTTGCCGATAAGGCCACTTTCCTTATTGAATTTTGGCCCCTGG
GGTTCCTTCCTCCTCCATTTTTGGTCCCCGTTTTAAAGGCAAAAGCNGTG
TAGGGCTTCCTTAAGGATTTAAATCCCGGCCCTTTGGGGCCCCGCCCCCT
CTTTTTTGGGTGGGGGGCCGCGGGGGGCNTCCCACCCNGGGTGCGCTTTA
ACCTNCGGGGAAAGGGGTGNCGGGAGACCTCTGTATGTGAACCCCTTTTT
GGTGCTCCTTTTAGGGCCGTTCTCCTGGGNGTTTTCCNGTTTTTTTTGGG
GAAAAACGGCGACCCTTGGGCTTTGGAAATCCCTTTTATGGTTACNACTT
GCCNGGGGGCGTTTTAACCCCACCCCCACAAAAAGGTGCCTCTCCCTCCG
AAATTCGGNATTCCTTATACCCACCCCCCCATTTTTTTTAATNCCTCCAG
GNGACTTGTTGGGCGCANCCCGGGCGCGGGTCGGCGTTTCACACTTCGTN
CCACCAACATTTTTTTGTAAGGGCCCGAGGGGGCCCTGGGCNCCCTTAAA
TATGAGGNGGGGCCGCGCGTTTGAAGAAAAGAGTTTCCCCGCATATTTTT
GGCGGCGCGCGCGNTTTCCCCCNAAAATTTTTTAAAGGGAACCCGGTTTT
TTGGGAANAAANGCTCCCNTCNCATATAAGGGCGTTTTCGGCGTTATAGG
GGCGAAANATATTCA
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cp312_MDl/Q4_Kubota_Hp35
_01_F14_214.F.esd 525 MegaBACE
GATGAGCCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCGCCAG
GCAGGTACGCGGGAGACTAGTCGTTTCCAAGCCTCGCCATGACAGAATCT
TGAGTATCGTGCTTGCTGCTTTAAAGAAAACCCTTCGTCGAGGTCTTGGC
GGCAGAGTCGTTGTCTGAGGAGAGGGAGCATCAGCGAAGTTGTTCCAACA
TGTGGCTTCCCATGCTGGTTATCCTGGCTGGCGCGNGTGCCTCTGTGGTG
AACTGCCTGGAGGTGTGCGCCCCCGACTGCACCGGCAGAGCGCCCGGCGA
GAAGGTCGTTGACCCTAAAGACTGCACTCAGTTCTACTACTGCCTCGTCG
GTGAAATGCCGACCGACAGCCCTGTTCCGTGTGAGGACGGTCAAGTTTTC
GACACTGCAACCGGCTCCTGCGTTCCCGGGACAGACTGCACCAATCTCTG
CAGTTCCAAAGAGTGTAACTACGTCTGCAACGATATTTAGAGGTGGTCAG
CGACCCCCTGAATTGCGGTCAGTAC >E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cp312_MDl/Q4_Kubota_Hp35
_01_J14_218.F.esd 586 MegaBACE
TGAGCCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCGCCAGGC
AGGTACTTCTTGACTCCCTGTGGGTTAGTAATACCTAGGATAAGCATGTG
TTCTGCTAACCAGCCCTCGCGACGGGCGATGGTCGACCCAATGCGCAGAG
CGAAGCACTTCTTGCCCAAGAGGGAGTTTCCGCCATACCCTGAACCGAAG
GAGATGATCTCGTTTGAGTCTGGCACGTGAGTGACGATCGTCCTCTCGGG
GTCGCAAGGCCAGTTGTTCACCAAGGTCCTTTTGAGGGGAAGTGGGTAGC
CCACAGAGTGGAGGCATTTGACGAAGTCTTCTTCAGCGAGCGTATCGAGC
ACGTGTTTCCCCATCCTCGTCATGGTGCGCATCGAGACCACAACGTACGC
CTTGTCGGCCGTGATCTGCTTGGAGGGCGGCCTGGACCTGCAGCAGGAGC
TTCACCCTCTCGATGGGCGCCACGGCCGTCTTGGAAATCGCGGCGGCGAT
GCCACCGGCGATAAAATCCTTGGCGAAGCTCATAGGATCGAAGCCCTTCG
ACATGATGGTGGAGTGTGTATAGTAGCGTCCTTGTC
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cp312_MDl/Q4_Kubota_Hp35
_01_L08_124.F.esd 554 MegaBACE
ATGAGCCAAGCAGTGGTACACGCAGAGTACGCCCAGCGTGGTCGCGGCCG
AGGTACAGCGGGCGACAGGGCGTGGGCGGATGCAATGGTGACACAGGCAG
CCCCCTCAACTACGTGAAGGACGGCGTCACCTACACCCGCGGCATCGCTG
TCTTCTGGTCCTCCGCCGGCTGTGGCTCTGGGGACCCGACGGGCTTTACT
CGCGTCTCGAAGCACCTGGACTGGATCTCGGAGAAGACTGGCATCGCTAT
CGACCCCTGAGGCTGAAGGAGGGCGTCCCCGGGGTGGTGTCGGTCATCCC
TCCTTCCCACCTTCTCATTTCTCACCCTCCCTCCTTTCCCCTTCTCACTT
CCGCCCCTCTTCCCCTCCTTTCCCCCCTCCCTCTCTCACTTTCCACGCTG
TGGTTTGGTTATTCTGTATATATATTGTTGCTCTTGNTATATATATATTG
TATATAAGTTTATGTATGTGATGTAAGAGGGAGAGAGAGCAGAGAGTGAG
AGGGCAGAGCANAGAGAGAGAGTGAGAAAGAGCAANGGGNCNGATGGTAG
GATG
>E:\AnalyzedData/50425_4_2_Q l_Kubota_Hp35_01 RunO l_Cp312_MD l/Q4_Kubota_Hp35
_01_L18_284.F.esd 319 MegaBACE
GTGATAGAATAGAAGGGTTGTGATGACCCGATAGGGGGGTTTTCAAGGAG
GCTAGGAATGGTNGTGAAGTTAGAGGNAATGAACCNGAAGTGGATNAANG
TGGNATTTATAGGAATGAATTGGATAAAGNTAANTATNCGAGTAGAATGN
TTGGAGCNATTATGTTCTTGANGAAATAGAGCAGTGATNAAATCTAAATG
AGATATATGAGATTNGAAGAAGTAATNATCTNGTTAGGNAGAGTNGTGNG
TTGGTANAAGAGACANTGTGGGATAGNATAAGATAANTTATNAAGTAAGN
AGNAAATAAGAGTANGTAC
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cp312_MDl/Q4_Kubota_Hp35
_01_L24_380.F.esd 733 MegaBACE
GATGAGCTCAAGCANTGGTACACGCAGAGTACGCCTTNTGGCGCTCTTAC
CGTTTCTCGCTCATGANTCGCTGCGCTNGTTCGNTCGGNCTGGGGGCGGA
AGCCGTTANATCAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXTCG
GAACCGGCTCCAAAGGTTCAGAGGTGGGCGAAACCCCGACCAGGGACTTA
TAAAGGAATACCCAGGGCCGGTTTCCCCCTGGGAAAGCCTTCCCCTNCGG
TGGCCGCTTCTTCCCTTGGTTTCCCGAACCCTGACCGGTTTAACCCGGGA
ATTACCCTTGTTCCCGGCCTTTTTCTTCCCCTTTCCGGGGGAAAAGCGGT GXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXCAAAGGCTGGAGGCTTGTGTTGGCCACCGAACC
CCCCCGGTTTACCAGGCCCCGGAACCGGTTGGCGCCCTTTAATTCCCGGG
TAAACTAATTCGGTCCTTNGAAGTTCCAAACCCCGGGTTAAAGGACCAAC
CGGACTTTTAATTCCGGGCCCAACTTTGGGGCA
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cp312_MDl/Q4_Kubota_Hp35
_01_N06_094.F.esd 526 MegaBACE
GATGGAGCTCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCGCC
AGGCAGGTACCCCAGTTGATTCAAAGGCACAGGCGCGTGTTGATGAATAC
CTTGAGTGGCAGCATGTGAACACCCGACTGCAGTGTGCTATGTTCTTCCA
GTTTAAGTTCCTGCTACCAAAGATGCTTGGGATGCCAGTGAATGAAAAGA
AAGTTGCGGAGTTCAAGGGACGGATGGAAACTGTGCTGGATCAGCTGGAA
ACCATTTGGTTGAAAGATCGCCCATTTATTGCCGGAGATCACATAACCAT
TGCTGATTTACTTGCTGCTTGTGAACTGGAGCAACCAAGTATGGCTGGGT
ATGACGTGTGTGAGGGAAGGCCTAACCTGACTGCCTGGTTCAAACGCGTC
AAAGATGCATTCCAGCCACACTATGATGAAGCACACGTGATGGTATACCG
TGTCAAGGACAAATTTGGTGGCAGTCCCATGAAATCAAACCTTTAACATG
AACGATGGTGTATATAGAGTTATGGA
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cρ312_MDl/Q4_Kubota_Hp35
_01_N10_158.F.esd 500 MegaBACE
TGAGCTCAAGCAGTGGTACAACGCAGAGTACGCCCTCGAGCGGCCGCCAG
GCAGGTACGTGGGCATCAACAAGCATAACGCCATCAATTTGAACCGCGGC
AGAAGGATAAAGGTGTCCTTCAATGTTTATATTCTTGAGACTACGAGCCT
TGAAGTTTCCATTCATCTTGAGTCCAAGGGTAGCTGTTCCCTTTGCAGTG
AGGGTCACAGGTAAACCAGTCACAGTAGGAATGGTGTGGTGAGTGTCCAT
TAGCTGGTAAGATTTTGTGTAATCAACCTCTCCCTGACGAGCCAGATTCA
TCAAGAATTCCAGTGGGTTAGAAGCACCGGATGTTTGGATGAGGTTTTCA
AGTCCTAAGAAGTGGTGGTAATGAAGCTCATTGCCAAAAACGCGGAGGTA
GTAGGATCCCTTCGGTTCATCAGTTATGTGGTCAAGGCAAGCCTTCAAGC
GTGGTGGCATCAGTGTCACTCCCGCGTACCTCGGCCGCGACCACGCTGGG
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cp312_MDl/Q4_Kubota_Hp35 _01_N24_382.F.esd 677 MegaBACE
ATGAGTCAAGCAGTGTACACGCAGTAGTAACGCCTCAGCGGACGCCAGGC
AGGTACACTGTGCCTTGTATGTGTGTTGGAGAAAGGTTGAGAAGAAAGGA
ATTAGAAAAGTCATATTAACCAATTCTGAAGGAGGCTGTTGGTGTAAATG
GAAGNCAAAGAACCCATGGCCATTGTTANTCCGGAATGACCTTCTTTAAG
GTGCCGGTCCACAATTAATTACCTCGGCCGGAACCACGCCTGGGCGGTAC
TCCTGTCGTCCTGGAAGCCGGTACTGNTGGTACCCAGCTTTTGTGCCCTA
TTAGTTGAGTGGTTAAATΓGCGCXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXGGAGGCATAAAAAGTGTAAAAGGCCCTTTGGGNGGGTTGGCCTTAAA
TGGAGGTTGAAGGCTTAAAGTTTCCACCATTTTAAATTTGGGTTTGAGGC
NTTCAAATTGGNCCCGGCTTTTATCCCAAGTACCGGGGGGAAAAAACCTT
GTTCNGGGTGGCCAANGCGTTGGCATTTTAATTTGGAAGATNCCGGGGGC
CAAAAAGGGCGAGCCNGGTNGTGGGACAGGAANGGGNGGGGTATATTNGC
GGGTAATTTCTGGGGGGCCGGCTTCTT
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Rm01 Cp3l2_MDl/Q4_Kubota_Hp35 J)l_P02_032.F.esd 835 MegaBACE CCCGAATGAGCCAAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCC
GCCAGGCAGGTACGCGGGGGTCCAATAGCGAGAGTAACTAGGACCTCTCC
CTTCCCCCCTCTAGTTCATGGATCCCTCCCAGGTGAGGGCTCAAATACTG
TGAGAAATCGGATTCTGCTACGTGTACGGCGGTCCTGTTCTCCTCGGGGC
AACGAAAACCACACGCTTTTCAGGCCCGCTATTGGCCGGAACGGGAAACC
CTTCTTGGTTTGGGGGAACCTTGGACCCTTCCAAGTTCCAAGGGCCGGTT
TCCTTTCCGGGGTTGGAATTATTGGTTTGGAAANTGGAAAACATTTCCCA
AACAATAAAGAAACCACAACATTCCCCCCCCCCAAATTGGAATTAGGAGG
GAACCTAAGAAGGTTGGCCCGGAACAGGCTTTTCCCTTGGAGTTCAACCA
AGTGGCCACGTGGTTGATGAAACCACGACCACCAATTGGAAAACCATTAA
TTAAAACCGAAGGTTTGGTATTTGGGAGACACAAGGAACCCAACTTTGTC
ACGCAATTAGGGTTTTAAAACAACTTAAAANAGGTTAGGGGGCCCCAAAA
AATTTTNGGGAAACACATTTAAAATTTGCCTGTTTTGGGGTGTGAAAACT
TTTTTGGGTTTTTTGGGCAAACCACAAACATGGGGGGGAACANACACGGG
GAAAAAGGGTTTTAAACTTTTATTTTGTANCCCTTTATCCCTTTTAGGGG
ACACACAAAAACAGGGTTGAAAATTTTTCCCAAAGTTTNTCACCCCAAAT
TATGGGGGGGGCGNGTTTTAACNGGGGGAACANAG
>E:\AnalyzedData/50425_4_2_Q l_Kubota_Hp35_0 lRunO l_Cp312_MD l/Q4_Kubota_Hp35
_01_P08_128.F.esd 479 MegaBACE
GTGAGCAAGCAGTGGTACACGCAGAGTACGCCCTCGAGCGGCCGCCAGGC
AGGTACATTATCCCCCAAAATGGGGCATTTAATATAGCATTGCTTACTTA
CAATTTCATTTTTTAATATTGTCAGATTTATCACAAAATATTCTCATCTT
TTAGTGCCATAATTATTCTATTTACAAACATTCCATAAGTGGATTGCTTT
TGGGCTTTCCTAAATTATTCAATTCGATGCCGAGCAAGTCGAATGAATCT
GACAATTAATAATATAAGAAAAAAAAACAAACAAAAAAACACAGTTTTAC
AAAAATCACAGTCAAAAGGCACCGGGACAATATGCAAAATTAATTATTAT
CAAGATAAAAAATCTACTTATTTGATTCTTTACCTTTTCCATTCACACTT
TGTCCTATTTGAACTATTAATTCATCTGTTTATTTCCTAATATTTTAGTA
ACTAAAGAAACATCAAGCGAAAAATGATA
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cp312_MDl/Q4_Kμbota_Hp35
_01_P18_288.F.esd 754 MegaBACE
GATGAGCCAAGCAGTGTACACGCAGTAGTACGCCAGCGTGTCGCGGCGAG
TACCTGGATGTNGTCAGAGACAGGGAGAATTGNATTGGNCGGCCAGAAAT
GATTAGTGGTCGCTATGTTTCAAGAGANGCAATCCAACCAGAGATGTGTT
GGAAAAAGCTCTAAGTTCCTTCCATTCCTTGAAAGAAAGGTCCGAAGGGT
CCTAAGAAGGCAAAGGGAACCCTTTCTGAGGAACCAATTCCTGGATCCTC
AGAAGCAAGCCAAGTTTAAATTCCGGAAATTGATTAGTGGTTCCAGGCCA
TGTTAGGTGTAAAAATCCATAGGGCATTCCCATAATTTTTTAATTTATAT
TATGTGTTATAAGGGAAATTTCTTTGGGTANAGTTTATAGCTTACAGGAA
TGTTGAAAAAAATTCTAATGTTAAGAATTAATTAATTTTGATTGAATTTT
TCCTACCAAAATAAACAAGGGAAATGGTTCAACATTGGTTACCCCTTGGC
CCCCTTGGGGCAGGGGCCCGGTCCGGAAGTGGGGCGTTACCTTATCCCTT
GGTACCGGTCCTTTGGAAGGCCGGTTACCTGGCATTGGGTTACCCCCCAA
GTTTGTTGGATTCCCCCCTTTTATAAGTTTGGAAGGGGGCGTTCACAATT
ATGGGCGAGCCGGCCTTCTTGGGGCGGTTACACTTNCCCAATTGGGGTTC
CCATCAAAGCNTTNGTTTTCCCTTTGGTTTGGTTGGCAACAACATTNTGG
TTTA
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cp312_MDl/Q4_Kubota_Hp35
_01_P22_352.F.esd 1579 MegaBACE GAATTGNGGAAGCCAAAAAGCCAGTGTTCANGNAGGCAAGTAGTAACAGG
CCCTTCGAAAGCGGGACCGGCCAGTGACATGGTGATACCTTTGAACGTCT
GTGGCAGCGTCGAGAAACGCCTCAANTANCCNTGNTCCTTCGATTNNAAG
TGTCGTGGGGTCCTCCACGAGAACACTGTGAATGTGGTGTTNACCCGAGA
TCTNGGACCAGGGGGACCANATTTGTTTGCCCCCTGTGGAGGTTTATAAC
CAAAAGGGGCACCACAGAGCCGATATACCGCGGGATTCTTTGCAATTCTT
AATTAAANGCAAACGCAAGACAAACACGGAATTTAACACATTTAGGGATG
TGAATTTGCNGGAATTAAAAGGTTTGGGTTAAAGGGGGNTTGTTAAGCCN
GAGAANCACGNGACAAGGTTTGTGAAAACCTTTGGGATTCCCCCNTNNTA
CCCGTGCAACAANGATTGGCNCTTTTATAACCACAANNGCAAATTACAGC
TTTTCGGTTTTATGGNAGGCCTANACCAAGGAACACANTTACCCTGTNGC
CANCAAAGACACTATTCCCAAAGNGGGAACCCCTTCCNNGAACAGTGAAC
AGACACAGGCCTTTGGCATNCGGGNTAACACCCCTATCAGGTGACCTCAG
CGTGAAACACTGCTCAAAAGTGGAGCCTCATTTATGGGTGNGAGGCAGAA
GNTTTACACGCTATTTAATACCNGTATGAGGAATNACCGGAGAGTATCGA
TNTTTTTTGTGAAAAACGTGCCGTGTGTTTTAAACANTTTNGTGGGCAAT
TTTAGGGAGTGGTATAAACGCCGGCCNAGGACAAGNAACTNAATTAATAA
TCAGATGGGGTATTANAAAGACNAGCNCAGNTATTAAAATATATAAAAGG
GTTATGGAGAACAGTAGGAGGGNGGGGTTTTAACACAAAGTTGTATTTTG
NGGGGACAAGGACAGGAACGAAAGTTTTATGGAGGGAGGAACGAGTGTTT
TTCAAAAAATTGATACCAACATTTATAGTGGAGGTGNAACCNAAATGTTT
AAAAGGGGCGNTTTNTAGGAGTATTAGATATGTTAACCCATTGATTGATG
GTATTNGGTATTTAGGNGACAAAGTAAGATAGTATTTATGAAGGATTGAT
ATAGAAATTTAAAGCCCACAGGAGGATGATCACCAAACGAANGNGAAAAA
ANTTTTTATAAACGACCAAAAAGCAAANGAGCAANAATGATAAAGTGAAA
ATATTTTAACACAGTGAGGACAAATTGAGCACCCAACCAAATNGGAGTAG
AGTGAACAATGGGCCCAAACTTTCTACAAGAAACAGANGGGAGGATTTTG
GGATTANAAACAACAGCANAGGGAGCCGCCATTATATAGGGTATAGANGA
TGGTATTTNGNGGCGCCCTNTAAAAANAAATTTGTAGGANGAAAGAGGTA
TTTTTGGAGAAAAAGGAGGTCTTATTATAAAAGAAGTATTCACACNAAAA
CGGAAGAGTTTTTTTTTAGCAAACAGNGTGATAAAGTAGNGGAACNGAGA
TACTATATTAAGTAGGCNGNAGAANCNGA
>E:\AnalyzedData/50425_4_2_Ql_Kubota_Hp35_01Run01_Cp312_MDl/Q4_Kubota_Hp35
_01_P24_384.F.esd 817 MegaBACE
GGCCCGNCAGCAGTGTGTCACAACCGCAGATGAACCTGCCCGTAATCCTG
ACTGCACTATCATGAGGCAGCAGTAGGATCATGCAGAGCCTGCATGTTAN
CTACTATGGATACAATCATATANCTATGAAGTACAGTCCTGCTTAGACTA
NTACGTGACGTTGATATAAGGNTATCAGATCTGCCTAAAGACTGAATGCG
GTATAGCCTAATTACTCGAGTAAACATTTCCAGATANNTGTTAGTGATGG
ATAGCTGGAAAGTGACTACCCTGGACAAAAGGAGGAACCCAACGCGGATC
CGTGCAAATCTNTGTCCTATAAGTCGTGTTCGAGGGAGGTTATAACCCNG
CGTAATAGGACGTAATTATTAATCTANTATCCTTTCGTTTGGTATACATA
TTGTGTCATTCTCCTTTGTGGGNATACAAGTCATCGATCATAGTGAAATA
AATATNTGATGCTGAATAAGAATTGTGTATTTGTTAGAAACGAGGTCATC
TTGTCTCGAAATCTAACTAATATAGAGGACTGCAAGGATAATCTAACGTA
GTAATAGAACATAGAATCGTACAAGCTAGCCAATCAGGAGATAAATTAGT
ACTTCAAAAGCATAACATACTGAACGGTATTAATAATATCGATACTTAAT
CTNCATANTCTCTGCATTACTTAACCAAACATAAATTCATTGCTNGACTA
AGATATAACGATTTCTTATATCTCGACGGAAATACATCGTTTTCCATCAC CTANAAGTTTTTTTGCNTATNCCCGNCNTTACGTACCCCTGGCTGGCCTG GCACGAAGGCGTACTTC
A number of aspects of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other aspects are within the scope of the following claims.

Claims

WHAT IS CLAIMED IS:
1. An isolated or recombinant nucleic acid sequence comprising
(i) a nucleic acid sequence of at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%. 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more sequence identity to a nucleic acid sequence as set forth in Appendix A, wherein the nucleic acid can be used to detect viral infection in Penaeus sp. (shrimp), or, reduce the effect of viral infection, wherein optionally the viral infection comprises white spot syndrome virus;
(ii) a nucleic acid sequence that hybridizes under stringent conditions to a nucleic acid comprising a nucleic acid sequence as set forth in Appendix A, wherein the nucleic acid can be used to detect viral infection in Penaeus sp. (shrimp), or, reduce the effect of viral infection, wherein optionally the viral infection comprises white spot syndrome virus, and the stringent conditions include a wash step comprising a wash in 0.2X SSC at a temperature of about 650C for about 15 minutes, wherein optionally the nucleic acid is at least about 20, 30, 40, 50, 60, 75, 100, 150, 200, 300, 400, 500, 600, 700, 800, 900, 1000 or more residues in length or the full length of a gene or transcript; and optionally the sequence comparison algorithm is a BLAST version 2.2.2 algorithm where a filtering setting is set to blastall -p blastp -d "nr pataa" -F F, and all other options are set to default.
(iii) a nucleic acid sequence complementary to (i) or (ii).
2. The isolated or recombinant nucleic acid sequence of claim 2, wherein said sequence has at least 95% identity.
3. Th isolated or recombinant e nucleic acid sequence of claim 3, wherein said sequence has 100% identity.
4. A vector comprising a nucleic acid sequence of claim 1.
5. A cell comprising the vector of claim 4 or the nucleic acid of claim 1.
6. A feed or feed supplement comprising a recombinant protein or biologically active fragment thereof encoded by a nucleic acid sequence having at least 65% sequence identity to a shrimp gene or fragment thereof, wherein said shrimp gene is up-regulated during viral infection.
7. The feed or feed supplement of claim 6, wherein the shrimp gene is selected from a group of genes consisting of tetraspanin-2, P-selectin precursor, T-cell activation protein, anti-lipopolysaccharide factor, and heat shock protein STIl.
8. The feed or feed supplement of claim 7, wherein the shrimp gene is contained in clone PvWl 1A5, clone PvW4E035 clone PvW5G04, clone PvHBl 1, or clone PvWIODOβ.
9. The feed or feed supplement of claim 6, wherein said protein or biologically active fragment thereof is encoded by a nucleic acid listed in Appendix A2.
10. The feed or feed supplement of claim 6, wherein said protein is contained within a cell or provided as a disrupted cell.
11. A feed or feed supplement comprising a nucleic acid sequence of at least 65% sequence identity to a shrimp gene or biologically active portion thereof in a set of genes up- regulated by infection with a virus.
12. The feed or feed supplement of claim 11, wherein said nucleic acid sequence is a nucleic acid sequence listed in Appendix A2.
13. The feed or feed supplement of claim 11, wherein the shrimp gene is selected from a group of shrimp genes consisting of tetraspanin-2, P-selectin precursor, T-cell activation protein, anti-lipopolysaccharide factor, and heat shock protein STIl.
14. The feed or feed supplement of claim 11 , wherein the shrimp gene is contained in clone PvWl 1A5, clone PvW4E03, clone PvW5G04, clone PvHBl 1, or clone PvW10D06.
15. The feed or feed supplement of claim 11, wherein said nucleic acid sequence is contained within a cell or provided as a disrupted cell.
16. The feed or feed supplement of claim 11 , wherein said nucleic acid sequence is produced synthetically.
17. A feed or feed supplement comprising a recombinant protein or biologically active fragment thereof encoded by a nucleic acid sequence with at least 65% or sequence identity to a nucleic acid sequence found in the set of shrimp genes down-regulated with viral infection.
18. The feed or feed supplement of claim 17, wherein the protein is gamm'a- interferon inducible lysosomal thiol reductase precursor, interleukin enhancer-binding factor 3, NF-kappaB essential modulator, chitinase, prophenoloxidase-activating proteinase 2, O- sialoglycoprotein endopeptidase, ubiquitin, or lysozyme.
19. The feed additive or supplement of claim 17, wherein the protein is encoded by a nucleic acid sequence selected from the group of shrimp nucleic acid sequence contained in clonePvHlA02, clone PvW8B06, clone PvW8E09, clone PvW9El l, clone PvW4F07, clone PvHCOo5 clone PvW04C06, and clone PvW10F4.
20. The feed or feed supplement of claim 17, wherein said protein or biologically active fragment thereof is encoded by a nucleic acid sequence listed in Appendix Al .
21. The feed or feed supplement of claim 17, wherein said protein is provided within a cell or provided as a disrupted cell.
22. A feed or feed supplement comprising a nucleic acid sequence with at least 65% sequence identity to a shrimp gene or biologically active fragment thereof, wherein said nucleic acid sequence encodes a shrimp gene down-regulated at or during viral infection.
23. The feed or feed supplement of claim 22, wherein the nucleic acid sequence is one listed in Appendix A.
24. The feed or feed supplement of claim 22, wherein the shrimp gene is gamma- interferon inducible lysosomal thiol reductase precursor, interleukin enhancer-binding factor 3, NF-kappaB essential modulator, chitinase, prophenoloxidase-activating proteinase 2, O- sialoglycoprotein endopeptidase, ubiquitin, and lysozyme.
25. The feed or feed supplement of claim 22, wherein the nucleic acid sequence is contained in clonePvHlA02, clone PvW8B06, clone PvW8E09, clone PvW9El 1, clone PvW4F07, clone PvHCOβ, clone PvW04C06, and clone PvWl 0F4.
26. The feed or feed supplement of claim 22, wherein said nucleic acid sequence is provided within a cell or provided as a disrupted cell.
27. The feed or feed supplement of claim 22, wherein said nucleic acid sequence is produced synthetically.
28. A therapeutic comprising an isolated or recombinant protein or biologically active portion thereof
(i) having at least 65% sequence identity to a shrimp protein encoded by a shrimp gene up-regulated during viral infection; or,
(ii) encoded by a nucleic acid comprising a sequence as set forth in claim 1
29. The therapeutic of claim 28, wherein the shrimp gene is a nucleic acid sequence listed in Appendix A2.
30. The therapeutic of claim 28, wherein the shrimp gene is tetraspanin-2, P- selectin precursor, T-cell activation protein, anti-lipopolysaccharide factor, and heat shock protein STIl.
31. The therapeutic of claim 28, wherein the shrimp gene is contained in clone PvWl 1A5, clone PvW4E03, clone PvW5G04, clone PvHBl 1, and clone PvW10D06.
32. The therapeutic of claim 28, wherein said protein or biologically active portion thereof is delivered orally.
33. The therapeutic of claim 28, wherein said protein or biologically active portion thereof is delivered by immersion.
34. The therapeutic of claim 28, wherein said protein or biologically active portion thereof is delivered by injection.
35. A therapeutic comprising a nucleic acid sequence of at least 65% or greater sequence identity to a shrimp gene or biologically active fragment thereof that is up-regulated by infection with a virus.
36. The therapeutic of claim 35, wherein the shrimp gene is selected from those listed in Appendix A2.
37. The therapeutic of claim 35, wherein the shrimp gene is tetraspanin-2, P- selectin precursor, T-cell activation protein, anti-lipopolysaccharide factor, and heat shock protein STIl.
38. The therapeutic of claim 35, wherein the shrimp gene is contained in clone PvWl 1 A5, clone PvW4E03, clone PvW5G04, clone PvHBl 1, and clone PvW10D06.
39. The therapeutic of claim 35, wherein said nucleic acid sequence is delivered orally.
40. The therapeutic of claim 35, wherein said nucleic acid sequence is delivered by immersion.
41. The therapeutic of claim 35, wherein said nucleic acid sequence is delivered by injection.
42. A therapeutic comprising a recombinant protein or biologically active fragment thereof encoded by a nucleic acid sequence with at least 65% sequence identity to a shrimp protein down-regulated by infection with a virus.
43. The therapeutic of claim 42, wherein said protein or biologically. active fragement thereof is encoded by a nucleic acid sequence listed in Appendix Al.
44. The therapeutic of claim 42, wherein the protein or biologically active fragment thereof is gamma-interferon inducible lysosomal thiol reductase precursor, interleukin enhancer-binding factor 3, NF-kappaB essential modulator, chitinase, prophenoloxidase- activating proteinase 2, O-sialoglycoprotein endopeptidase, ubiquitin, or lysozyme.
45. The therapeutic of claim 42, wherein the protein or biologically active fragment thereof is encoded by a nucleic acid sequence contained in clonePvHlA02, clone PvW8B06, clone PvW8E09, clone PvW9El l, clone PvW4F07, clone PvHC06, clone PvW04C06, or clone PvWl 0F4.
46. The therapeutic of claim 42, wherein said protein or biologically active fragment thereof is delivered orally.
47. The therapeutic of claim 42, wherein the protein or biologically active fragment thereof is delivered by immersion.
48. The therapeutic of claim 42, wherein the protein or biologically active fragment thereof is delivered by injection.
49. A therapeutic comprising a nucleic acid sequence of at least 65% sequence identity to a shrimp gene or faction thereof down-regulated by infection with a virus.
50. The therapeutic of claim 49, wherein said nucleic acid sequence is one listed in Appendix A.
51. The therapeutic of claim 49, wherein said nucleic acid sequence is gamma- interferon inducible lysosomal thiol reductase precursor, interleukin enhancer-binding factor 3, NF-kappaB essential modulator, chitinase, prophenoloxidase-activating proteinase 2, O- sialoglycoprotein endopeptidase, ubiquitin, and lysozyme.
52. The therapeutic of claim 49, wherein the nucleic acid sequence is contained in clonePvHl A02, clone PvW8B06, clone PvW8E09, clone PvW9El 1, clone PvW4F07, clone PvHC06, clone PvW04C06, or clone PvWl 0F4.
53. The therapeutic of claim 49, wherein said nucleic acid sequence is delivered orally.
54. The therapeutic of claim 49, wherein said nucleic acid sequence is delivered by immersion.
55. The therapeutic of claim 49, wherein said nucleic acid sequence is delivered by injection.
56. A screening method for identifying a substrate of a protein that is up-regulated following infection by a pathogen, comprising:
(a) providing a polypeptide of the invention; or a polypeptide encoded by a nucleic acid of the invention;
(b) providing a test substrate; and
(c) contacting the polypeptide of step (a) with the test substrate of step (b) and detecting a decrease in the amount of substrate or an increase in the amount of reaction product, wherein a decrease in the amount of the substrate or an increase in the amount of a reaction product identifies the test substrate as the polypeptide substrate.
57. The screening method of claim 56, wherein the protein is encoded by a nucleic acid sequence selected from Appendix A, or comprising a sequence as set forth in claim 1.
58. The screening method of claim 56, wherein the protein is tetraspanin-2, P- selectin precursor, T-cell activation protein, anti-lipopolysaccharide factor, or heat shock protein STIl.
59. The screening method of claim 56, wherein the protein is encoded by the nucleic acid seqeunce contained in clone PvWl 1 A5, clone PvW4E03, clone PvW5G04, clone PvHBl 1, or clone PvWl 0D06.
60. A screening method cfor identifying a substrate of a protein that is down- regulated following infection by a pathogen, comprising:
(a) providing a polypeptide of the invention; or a polypeptide encoded by a nucleic acid of the invention;
(b) providing a test substrate; and
(c) contacting the polypeptide of step (a) with the test substrate of step (b) and detecting a decrease in the amount of substrate or an increase in the amount of reaction product, wherein a decrease in the amount of the substrate Or an increase in the amount of a reaction product identifies the test substrate as the polypeptide substrate.
61. The screening method of claim 6O3 wherein the protein is encoded by a nucleic acid sequenced selected from Appendix A, or comprising a sequence as set forth in claim 1.
62. The screening method of claim 60, wherein the protein is gamma-interferon inducible lysosomal thiol reductase precursor, interleukin enhancer- binding factor 3, NF- kappaB essential modulator, chitinase, prophenoloxidase-activating proteinase 2, O- sialoglycoprotein endopeptidase, ubiquitin, or lysozyme.
63. The screening method of claim 60, wherein the protein is encoded by the nucleic acid sequence contained in clone PvHl A02, clone PvW8B06, clone PvW8E09, clone PvW9El 1, clone PvW4F07, clone PvHC06, clone PvW04C06, or clone PvWl 0F4.
64. A diagnostic kit for evaluation of infection in crustaceans in aquaculture and food processing comprising at least one differentially expressed gene as a nucleic acid or recombinant polypeptide, wherein the gene can be used to identify a crustacean as being infected or non-infected with the pathogen of interest; and optionally instructions for use of the kit.
65. The diagnostic kit of claim 64, wherein the gene is one selected from Appendix A, or comprising a sequence as set forth in claim 1.
66. A method for treating or preventing infection by a pathogen in an aquatic animal, comprising providing at least one differentially expressed gene as a nucleic acid or recombinant polypeptide, wherein the gene is up-regulated with infection by the pathogen.
67. The method of claim 66, wherein the gene is one selected from Appendix A2.
68. The method of claim 66, wherein the gene is tetraspanin-2, P-selectin precursor, T-cell activation protein, anti-lipopolysaccharide factor, or heat shock protein STIl.
69. The method of claim 66, wherein the gene is contained in clone PvWl 1A5, clone PvW4E03, clone PvW5G04, clone PvHBl 1, or clone PvW10D06.
70. A method for treating or preventing infection by a pathogen in an aquatic animal, comprising providing at least one differentially expressed gene as a nucleic acid or recombinant polypeptide, wherein the gene is down-regulated with infection by the pathogen.
71. The method of claim 70, wherein the gene is one selected from Appendix A.
72. The method of claim 70, wherein the gene is gamma-interferon inducible lysosomal thiol reductase precursor, interleukin enhancer-binding factor 3, NF-kappaB essential modulator, chitinase, prophenoloxidase-activating proteinase 2, O-sialoglycoprotein endopeptidase, ubiquitin, or lysozyme.
73. The method of claim 70, wherein the gene is the nucleic acid sequence contained in clonePvHl A02, clone PvW8B06, clone PvW8E09, clone PvW9El 1, clone PvW4F07, clone PvHC06, clone PvW04C06, or clone PvWl 0F4.
74. The method of claim 66 or 70, wherein the aquatic animal is a crustacean.
75. The method of claim 74, wherein the crustacean is a shrimp.
76. An inhibitory RNA molecule comprising a nucleic acid sequence comprising a nucleic acid sequence or fragment thereof, or complementary sequence, of the nucleic acid sequence listed in Appendix A, or comprising a sequence as set forth in claim 1.
77. A method of preventing or treating infection of an aquatic animal comprising administering the inhibitory RNA molecule of claim 76.
78. A feed or feed supplement comprising the inhibitory RNA molecule of claim 76.
79. The feed or feed supplement of claim 78, wherein the inhibitory RNA molecule is provided in a cell or as a disrupted cell.
80. The feed or feed supplement of claim 79, wherein the cell is a bacterial, yeast, insect, fish, crustacean, or mammalian cell.
81. A method of identifying shrimp lines that are resistant to viral, bacterial, or fungal diseases, comprising identifying at least one differentially expressed gene as a nucleic acid or protein, wherein the gene comprises a nucleic acid sequence provided in Appendix A, or comprising a sequence as set forth in claim 1.
82. A method of screening for a therapeutic that modulates infectious disease in an aquatic animal, comprising identifying a compound which modulates the expression of the gene as a nucleic acid sequence or protein in an infected animal, wherein the gene comprises a nucleic acid sequence listed in Appendix A, or comprising a sequence as set forth in claim 1, whereby the compound is identified as a modulator of infectious disease when said modulation results in the ameriolation or prevention of one or more symptoms caused by the infection.
83. A microsatellite marker comprising at least one nucleic acid sequence listed in Appendix A, or comprising a sequence as set forth in claim 1.
84. A method of developing microsatellite markers employing at least one nucleic acid sequence listed in Appendix A, or comprising a sequence as set forth in claim 1.
85. A microarry comprising at least one nucleic acid sequence or biologically active fragment thereof listed in Appendix A, or comprising a sequence as set forth in claim 1.
86. A biopesticide comprising at least one nucleic acid sequence or biologically active fragment thereof listed in Appendix A, or comprising a sequence as set forth in claim 1.
87. A method for developing a biopesticide employing at least one nucleic acid sequence or biologically active fragment thereof listed in Appendix A, or comprising a sequence as set forth in claim 1.
88. A transgenic plant expressing a protein or biologically active fragment thereof encoded by a nucleic acid sequence disclosed in Appendix A3 or comprising a sequence as set forth in claim 1.
89. An isolated or recombinant polypeptide encoded by a nucleic acid comprising a sequence as set forth in claim 1.
90. An antisense oligonucleotide comprising a nucleic acid sequence complementary to or capable of hybridizing under stringent conditions to a sequence as set forth in claim 1 , or a subsequence thereof, wherein optionally the antisense oligonucleotide has a length of between about 10 to 50, about 20 to 60, about 30 to 70, about 40 to 80, or about 60 to 100 bases.
91. A method of inhibiting the translation of a viral message in a cell comprising administering to the cell or expressing in the cell an antisense oligonucleotide comprising a nucleic acid sequence complementary to or capable of hybridizing under stringent conditions to a sequence as set forth in claim 1.
92. A double-stranded interference RNA (RNAi) molecule comprising a subsequence of a sequence as set forth in claim 1, wherein optionally the RNAi comprises an siRNA or an miRNA, and optionally the RNAi molecule is about 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 or more duplex nucleotides in length.
93. A method of inhibiting the expression of a viral gene in a cell comprising administering to the cell or expressing in the cell a double-stranded interference RNA (RNAi) molecule as set forth in claim 92.
PCT/US2007/001125 2006-01-13 2007-01-16 Disease control in shrimp WO2007084499A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US75878906P 2006-01-13 2006-01-13
US60/758,789 2006-01-13

Publications (2)

Publication Number Publication Date
WO2007084499A2 true WO2007084499A2 (en) 2007-07-26
WO2007084499A8 WO2007084499A8 (en) 2008-01-31

Family

ID=38288176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/001125 WO2007084499A2 (en) 2006-01-13 2007-01-16 Disease control in shrimp

Country Status (1)

Country Link
WO (1) WO2007084499A2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101942527A (en) * 2010-08-03 2011-01-12 中国水产科学研究院黄海水产研究所 Gene chip for detecting various prawn pathogenes and detection method thereof
CN102643861A (en) * 2012-03-12 2012-08-22 中国水产科学研究院东海水产研究所 Application of efficient shRNA (short hairpin Ribose Nucleic Acid) molecule in anti-WSSV (White Spot Syndrome Virus)
CN103724412A (en) * 2013-09-29 2014-04-16 中国科学院海洋研究所 Fenneropenaeus chinensiss anti-lipopolysaccharide factor as well as preparation and application thereof
US8822427B2 (en) 2010-10-27 2014-09-02 Harrisvaccines Methods and compositions to protect aquatic invertebrates from disease
US8828961B2 (en) 2010-10-27 2014-09-09 Harrisvaccines Methods and compositions to protect aquatic invertebrates from disease
CN104946675A (en) * 2015-07-02 2015-09-30 江苏敖众生物科技有限公司 Cloning of egg white lysozyme gene (RJM) and yeast expression method thereof
CN105779613A (en) * 2016-04-19 2016-07-20 新疆大学 Sinkiang Alaska grayling genetype detection method based on microsatellite marker Tarcticusg
CN105779615A (en) * 2016-04-19 2016-07-20 新疆大学 Method for detecting genotypes of Sinkiang thymallus arcticus grubei through microsatellite marker Thymallus
CN105779614A (en) * 2016-04-19 2016-07-20 新疆大学 Sinkiang Alaska grayling heritable variation detection method utilizing microsatellite marker Thymalag
CN105779616A (en) * 2016-04-19 2016-07-20 新疆大学 Sinkiang Alaska grayling detection primer and method based on microsatellite marker Thymall-01
CN105779617A (en) * 2016-04-19 2016-07-20 新疆大学 Primer and method for Sinkiang Alaska grayling detection through microsatellite marker Thymall-02
US10004797B2 (en) 2010-10-27 2018-06-26 Harrisvaccines, Inc. Method of rapidly producing improved vaccines for animals
CN109943562A (en) * 2019-03-06 2019-06-28 汕头大学 A kind of miR-2 antisense nucleic acid is preparing the application in wide spectrum white spot syndrome virus resisting preparation
CN110327453A (en) * 2019-07-31 2019-10-15 陕西麦可罗生物科技有限公司 The kasugarnycin residue albumen joint Chinese herbal and crude drugs preparations of anti-WSSV a kind of and its application
CN110540996A (en) * 2019-08-29 2019-12-06 华中农业大学 Procambarus clarkii i-type lysozyme gLysi2 gene, gLysi2 protein coded by same and application thereof
CN110747136A (en) * 2019-11-25 2020-02-04 天津师范大学 Pichia pastoris strain KM71 and application
CN112048572A (en) * 2020-09-17 2020-12-08 福建省水产研究所(福建水产病害防治中心) LAMP technology-based visual rapid detection kit for shrimp health system
CN114807157A (en) * 2022-04-29 2022-07-29 浙江海洋大学 Transcription factor PvMyc from penaeus vannamei boone and application thereof
CN117327706A (en) * 2023-10-13 2024-01-02 江苏三仪生物工程有限公司 Composition for improving antiviral and immunity abilities of aquatic products and application thereof

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101942527B (en) * 2010-08-03 2012-07-18 中国水产科学研究院黄海水产研究所 Gene chip for detecting various prawn pathogenes and detection method thereof
CN101942527A (en) * 2010-08-03 2011-01-12 中国水产科学研究院黄海水产研究所 Gene chip for detecting various prawn pathogenes and detection method thereof
US9650634B2 (en) 2010-10-27 2017-05-16 Harrisvaccines, Inc. Methods and compositions to protect aquatic invertebrates from disease
US8822427B2 (en) 2010-10-27 2014-09-02 Harrisvaccines Methods and compositions to protect aquatic invertebrates from disease
US8828961B2 (en) 2010-10-27 2014-09-09 Harrisvaccines Methods and compositions to protect aquatic invertebrates from disease
US10004797B2 (en) 2010-10-27 2018-06-26 Harrisvaccines, Inc. Method of rapidly producing improved vaccines for animals
CN102643861A (en) * 2012-03-12 2012-08-22 中国水产科学研究院东海水产研究所 Application of efficient shRNA (short hairpin Ribose Nucleic Acid) molecule in anti-WSSV (White Spot Syndrome Virus)
CN103724412A (en) * 2013-09-29 2014-04-16 中国科学院海洋研究所 Fenneropenaeus chinensiss anti-lipopolysaccharide factor as well as preparation and application thereof
CN104946675A (en) * 2015-07-02 2015-09-30 江苏敖众生物科技有限公司 Cloning of egg white lysozyme gene (RJM) and yeast expression method thereof
CN105779616A (en) * 2016-04-19 2016-07-20 新疆大学 Sinkiang Alaska grayling detection primer and method based on microsatellite marker Thymall-01
CN105779617A (en) * 2016-04-19 2016-07-20 新疆大学 Primer and method for Sinkiang Alaska grayling detection through microsatellite marker Thymall-02
CN105779615A (en) * 2016-04-19 2016-07-20 新疆大学 Method for detecting genotypes of Sinkiang thymallus arcticus grubei through microsatellite marker Thymallus
CN105779613A (en) * 2016-04-19 2016-07-20 新疆大学 Sinkiang Alaska grayling genetype detection method based on microsatellite marker Tarcticusg
CN105779614A (en) * 2016-04-19 2016-07-20 新疆大学 Sinkiang Alaska grayling heritable variation detection method utilizing microsatellite marker Thymalag
CN109943562B (en) * 2019-03-06 2023-03-10 汕头大学 Application of miR-2 antisense nucleic acid in preparation of broad-spectrum White Spot Syndrome Virus (WSSV) resistant preparation
CN109943562A (en) * 2019-03-06 2019-06-28 汕头大学 A kind of miR-2 antisense nucleic acid is preparing the application in wide spectrum white spot syndrome virus resisting preparation
CN110327453A (en) * 2019-07-31 2019-10-15 陕西麦可罗生物科技有限公司 The kasugarnycin residue albumen joint Chinese herbal and crude drugs preparations of anti-WSSV a kind of and its application
CN110540996A (en) * 2019-08-29 2019-12-06 华中农业大学 Procambarus clarkii i-type lysozyme gLysi2 gene, gLysi2 protein coded by same and application thereof
CN110747136A (en) * 2019-11-25 2020-02-04 天津师范大学 Pichia pastoris strain KM71 and application
CN112048572A (en) * 2020-09-17 2020-12-08 福建省水产研究所(福建水产病害防治中心) LAMP technology-based visual rapid detection kit for shrimp health system
CN112048572B (en) * 2020-09-17 2023-04-28 福建省水产研究所(福建水产病害防治中心) LAMP technology-based shrimp health system visual rapid detection kit
CN114807157A (en) * 2022-04-29 2022-07-29 浙江海洋大学 Transcription factor PvMyc from penaeus vannamei boone and application thereof
CN114807157B (en) * 2022-04-29 2023-10-31 浙江海洋大学 Transcription factor PvMyc derived from penaeus vannamei boone and application thereof
CN117327706A (en) * 2023-10-13 2024-01-02 江苏三仪生物工程有限公司 Composition for improving antiviral and immunity abilities of aquatic products and application thereof

Also Published As

Publication number Publication date
WO2007084499A8 (en) 2008-01-31

Similar Documents

Publication Publication Date Title
WO2007084499A2 (en) Disease control in shrimp
Sánchez‐Martínez et al. White spot syndrome virus in cultured shrimp: a review
Renault et al. Suppression substractive hybridisation (SSH) and real time PCR reveal differential gene expression in the Pacific cupped oyster, Crassostrea gigas, challenged with Ostreid herpesvirus 1
De Zoysa et al. Molecular evidence for the existence of lipopolysaccharide-induced TNF-α factor (LITAF) and Rel/NF-kB pathways in disk abalone (Haliotis discus discus)
Venier et al. Insights into the innate immunity of the Mediterranean mussel Mytilus galloprovincialis
WO2005084312A2 (en) Disease control in shrimp
Wang et al. Comparison of antiviral efficiency of immune responses in shrimp
Castillo et al. Biomphalaria glabrata immunity: Post-genome advances
Prasad et al. Infectious Myonecrosis Virus (IMNV)–An alarming viral pathogen to Penaeid shrimps
Saijuntha et al. Liver flukes: Clonorchis and opisthorchis
Liu et al. The peroxinectin of white shrimp Litopenaeus vannamei is synthesised in the semi-granular and granular cells, and its transcription is up-regulated with Vibrio alginolyticus infection
Lan et al. Characterization of an immune deficiency homolog (IMD) in shrimp (Fenneropenaeus chinensis) and crayfish (Procambarus clarkii)
Duan et al. Molecular responses of calreticulin gene to Vibrio anguillarum and WSSV challenge in the ridgetail white prawn Exopalaemon carinicauda
Clark et al. Molecular immune response of the American lobster (Homarus americanus) to the White Spot Syndrome Virus
Jin et al. Molecular cloning, characterization and expression analysis of two apoptosis genes, caspase and nm23, involved in the antibacterial response in Chinese mitten crab, Eriocheir sinensis
Saijuntha et al. Liver flukes: clonorchis and opisthorchis
Toledo et al. Recent advances in the biology of echinostomes
Machat et al. Carp edema virus and immune response in carp (Cyprinus carpio): Current knowledge
Tang et al. Apoptosis of hemocytes is associated with the infection process of white spot syndrome virus in Litopenaeus vannamei
Kim et al. First report on Enterocytozoon hepatopenaei (EHP) infection in Pacific white shrimp (Penaeus vannamei) cultured in Korea
Moreira et al. Bivalve transcriptomics reveal pathogen sequences and a powerful immune response of the Mediterranean mussel (Mytilus galloprovincialis)
Jithendran et al. Co‐infection of infectious myonecrosis virus and Enterocytozoon hepatopenaei in Penaeus vannamei farms in the east coast of India
Chang et al. Metagenomic discovery and co-infection of diverse wobbly possum disease viruses and a novel hepacivirus in Australian brushtail possums
Zhang et al. Two c-type lectins from Venerupis philippinarum: possible roles in immune recognition and opsonization
Qiao et al. Comparison of immune response of Pacific white shrimp, Litopenaeus vannamei, after multiple and single infections with WSSV and Vibrio anguillarum

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07716680

Country of ref document: EP

Kind code of ref document: A2