WO2007083478A1 - Steam turbine cycle - Google Patents

Steam turbine cycle Download PDF

Info

Publication number
WO2007083478A1
WO2007083478A1 PCT/JP2006/325524 JP2006325524W WO2007083478A1 WO 2007083478 A1 WO2007083478 A1 WO 2007083478A1 JP 2006325524 W JP2006325524 W JP 2006325524W WO 2007083478 A1 WO2007083478 A1 WO 2007083478A1
Authority
WO
WIPO (PCT)
Prior art keywords
feed water
cycle
steam
turbine
water heater
Prior art date
Application number
PCT/JP2006/325524
Other languages
French (fr)
Japanese (ja)
Inventor
Koichi Goto
Nobuo Okita
Original Assignee
Kabushiki Kaisha Toshiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba filed Critical Kabushiki Kaisha Toshiba
Priority to CN2006800405919A priority Critical patent/CN101300407B/en
Priority to EP06843008.1A priority patent/EP1965043B1/en
Priority to US12/092,796 priority patent/US20090094983A1/en
Publication of WO2007083478A1 publication Critical patent/WO2007083478A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/40Use of two or more feed-water heaters in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/38Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating the engines being of turbine type

Definitions

  • the present invention relates to a steam turbine cycle having high cycle thermal efficiency.
  • Boiler feed water 14 is heated by using, for example, fuel combustion heat in boiler 4 to generate superheated steam (hereinafter referred to as main steam 16) having a sufficiently high temperature.
  • This superheated steam may be a supercritical fluid.
  • the main steam 16 flows into the high-pressure turbine 1, flows while expanding, and decreases in both pressure and temperature.
  • the steam that flows while expanding in the low-pressure turbine 3 decreases in both pressure and temperature, but in some cases, it is often in the state of saturated steam that is liquid water.
  • This saturated steam is cooled by the condenser 10 using seawater or the atmosphere 23 or the like to become the condensate 25.
  • Condensate 25 is sent to feed water heater 6 by condensate pump 11 and becomes boiler feed water 14.
  • the medium pressure turbine 2 and the low pressure turbine 3 are reheat turbines 24.
  • FIG. 1 eight feed water heaters 6 are shown.
  • the boiler feed water is extracted by the extracted steam 20 extracted from the extracted position 31 in the flow path of the high pressure turbine 1, the intermediate pressure turbine 2, and the low pressure turbine 3.
  • Heat water 14
  • the higher-pressure feed water heater 6 has a configuration in which higher-pressure extraction air flows.
  • the low-pressure turbine 3 is depicted as a double flow, and the force is depicted as if only one side of the low-pressure turbine 3 has been extracted. After that, it flows into the feed water heater 6. It should be noted that the feed water heater 6 may be configured to extract one side of the low pressure turbine 3 on one side.
  • the feed water heater 6 has a surface type and a mixing type.
  • the extracted steam 20 is condensed by heat exchange with the water supply via the heat transfer surface to become drain water 15, and in principle, the lower pressure water supply is made while sequentially flowing in from the higher pressure water heater 6. Flows to heater 6.
  • the drain water 15 of the lowest pressure feed water heater 6 flows to the condenser 10.
  • the drain water 15 may be joined to the feed water by the drain water pump 13.
  • the mixed feed water heater has a structure in which the extracted air is directly mixed with the feed water and heated, and the deaerator 9 that desorbs oxygen and the like dissolved in the feed water is a mixed feed water heater. Included in the bowl.
  • a feed water pump 12 is provided to send feed water to the higher pressure feed water heater 6.
  • the extraction to the mixed feed water heater is medium pressure turbine exhaust extraction 32, but this need not be the case.
  • the deaerator 9 is not necessary, but if not, the feed water pump 12 is provided at an appropriate position among the plurality of feed water heaters 6. The feed water heated by all feed water heaters 6 flows into the boiler 4.
  • the high-pressure turbine 1, the intermediate-pressure turbine 2, and the low-pressure turbine 3 are connected by a single rotating shaft 19 and connected to a generator 18.
  • the entraumi held by the steam is converted into shaft power and is generated by the generator 18. It is not necessary to connect each turbine with one rotating shaft 19 and connect it to one generator 18.
  • the low-pressure turbine 3 is depicted as a double flow. This is a structure in which the incoming steam is divided into two parts and flows into the two low-pressure turbines 3, and may be divided into four parts or not. Further, in FIG. 1, the medium pressure turbine 2 may be a force double flow depicted as a single flow. Further, in FIG. 1, the intermediate pressure turbine 2 and the low pressure turbine 3 may include only one power reheating turbine 24 depicted as separate steam turbines.
  • Both the regeneration cycle using the extracted steam 20 and the reheat cycle in which the high-pressure turbine exhaust 21 is heated by the reheater 5 and flows into the reheat turbine 24 are modified Rankine cycles, and are simple. Rankine cycle force Improves thermal efficiency. In the case of a power plant, the thermal efficiency is almost equal to power generation divided by boiler heat input. [0016] The cycle thermal efficiency varies depending on the cycle configuration, but also varies depending on the temperature and flow rate of each extraction steam 20. In particular, with the progress of high-temperature materials in recent years, there is room to improve the cycle configuration under the high-temperature conditions of steam, where the temperature of steam is increasing and the cycle thermal efficiency is increasing.
  • An object of the present invention is to provide a steam turbine cycle with high cycle thermal efficiency.
  • the invention according to claim 1 includes a high-pressure turbine, a reheat turbine, a boiler, a feed water heater that heats feed water to the boiler by the extracted steam from the turbine, a feed water pump, and a condensate.
  • the steam temperature at the boiler outlet is 590 ° C or higher, and is from the exhaust of the high-pressure turbine.
  • the temperature increase ratio between the increase in the feed water temperature in the first feed water heater corresponding to the bleed air and the average of the feed water temperature rise in the second feed water heater whose feed water is lower than that in the first feed water heater is 1.9.
  • This is a steam turbine cycle characterized by being 3.5 or less.
  • the present invention includes a high-pressure turbine, a reheat turbine, a boiler, a feed water heater that heats feed water to the boiler by extracted steam from the turbine, a feed water pump, and a condensate.
  • the working fluid is water
  • the Rankine cycle is a regeneration cycle
  • the steam temperature at the boiler outlet is 590 ° C or higher
  • the exhaust gas from the high-pressure turbine is exhausted.
  • the enthalpy increase ratio is 1.9 to 3.5 It is the steam turbine cycle characterized by being.
  • the invention according to claim 3 includes a high-pressure turbine, a reheat turbine, a boiler, a feed water heater that heats feed water to the boiler by extracted steam from the turbine, a feed water pump, and a condensate.
  • the steam temperature at the boiler outlet is 590 ° C or higher, and is from the exhaust of the high-pressure turbine.
  • the temperature rise ratio between the rise in the feed water temperature in the first feed water heater corresponding to the bleed air and the average rise in the feed water temperature in the feed water heater excluding the first feed water heater is 1.9 to 3.5. It is a featured steam turbine cycle.
  • the invention according to claim 4 includes a high-pressure turbine, a reheat turbine, a boiler, a feed water heater that heats feed water to the boiler by extracted steam from the turbine, a feed water pump, and a condensate.
  • the steam temperature at the boiler outlet is 590 ° C or higher and the exhaust gas from the high-pressure turbine is exhausted.
  • the increase in the specific enthalpy of the feed water in the first feed water heater corresponding to the bleed air and the average rise in the specific enthalpy of the feed water heater excluding the first feed water heater is L9 or more 3.5
  • the steam turbine cycle is characterized by the following.
  • FIG. 1 is a schematic diagram showing first to eleventh and eleventh embodiments of a steam turbine cycle according to the present invention and the prior art.
  • FIG. 2 is a schematic diagram showing ninth to eleventh embodiments of a steam turbine cycle according to the present invention.
  • FIG. 3 is a schematic diagram showing the relationship between temperature rise ratio and thermal efficiency.
  • FIG. 1 is a diagram showing a first embodiment of the present invention.
  • the steam turbine cycle of the present embodiment heats the feed water to the boiler 4 by the extracted steam from the high pressure turbine 1, the reheat turbine 24, the boiler 4, and the high pressure turbine 1 and the reheat turbine 24. It is equipped with a feed water heater 6, a feed water pump 12, and a condenser 10, and constitutes a Rankine cycle that is a one-stage reheat cycle in which the working fluid is water and a regeneration cycle
  • the steam temperature at the outlet of the boiler 4 is 590 ° C or higher, and the feed water temperature rises in the first feed water heater 7 corresponding to the bleed air from the high pressure turbine exhaust 21 (high pressure turbine exhaust bleed air) 22.
  • the temperature rise ratio with the average of the feed water temperature rise in the second feed water heater 8 where the feed water is lower than that in the first feed water heater 7 is 1.9 to 3.5.
  • the temperature rise ratio between the increase in feed water temperature in the first feed water heater 7 and the average rise in feed water temperature in the second feed water heater 8 is the number of feed water heaters 6, steam such as exhaust loss, etc.
  • the range varies depending on the mechanical differences of the turbine, the scale corresponding to the power generation output at the power plant, and the difference in fine structure.
  • the high-pressure turbine exhaust extraction 22 is a steam having a relatively high pressure and low specific enthalpy, and is not extracted from the steam heated by the reheater 5, and therefore, the high-pressure turbine exhaust extraction 22 If the boiler feed water 14 is heated more often using the heat, the thermal efficiency of the entire cycle will increase.
  • the temperature rise ratio has a predetermined optimum value that provides the best thermal efficiency, and this optimum value should be sufficiently higher than 1. This optimum value depends on the conditions of the main steam16, and it is estimated that the high steam value will be higher.
  • the steam turbine cycle of the present embodiment heats feed water to the boiler 4 by the high-pressure turbine 1, the reheat turbine 24, the boiler 4, and the extracted steam from the high-pressure turbine 1 and the reheat turbine 24.
  • a feed water heater 6, a feed water pump 12, and a condenser 10 are provided to constitute a Rankine cycle that is a one-stage reheat cycle in which the working fluid is water and a regeneration cycle.
  • the steam temperature at the outlet of the boiler 4 is 590 ° C or higher
  • the ratio of the increase in enthalpy to the average of the increase in the specific enthalpy of the feed water in the second feed water heater 8 whose supply water is low is 1.9 to 3.5.
  • each extraction steam 20 and each extraction position 31 By adjusting the flow rate of each extraction steam 20 and each extraction position 31, it is possible to adjust the specific enthalpy increase of the supply water in the first feed water heater 7 and the second feed water heater 8.
  • the specific enthalpy for the extracted steam 20 from the high-pressure turbine exhaust bleed 22 or the medium-pressure turbine exhaust bleed 32 When changing the specific enthalpy for the extracted steam 20 from the high-pressure turbine exhaust bleed 22 or the medium-pressure turbine exhaust bleed 32, the exhaust performance of the high-pressure turbine 1 and the intermediate-pressure turbine 2 is changed. Will be changed.
  • the increase ratio of specific enthalpy depends on the mechanical differences of steam turbines such as the number of feed water heaters 6, exhaust loss, etc., the scale corresponding to the power generation output in the power plant, and the difference in fine structure. There is a range width.
  • the specific enthalpy increase ratio has a predetermined optimum value that provides the best thermal efficiency, This optimal value is better if the ratio of rise in specific enthalpy is sufficiently higher than 1. This optimum value depends on the conditions of main steam 16 and is estimated to be higher for high temperature steam.
  • the ratio of the increase in the specific enthalpy of the feed water in the first feed water heater 7 to the average of the increase in the specific enthalpy of the feed water in the second feed water heater 8 is 1.9 to 3.5.
  • the steam turbine cycle of the present embodiment heats feed water to the boiler 4 by the high-pressure turbine 1, the reheat turbine 24, the boiler 4, and the extracted steam from the high-pressure turbine 1 and the reheat turbine 24.
  • a feed water heater 6, a feed water pump 12, and a condenser 10 are provided, which is a one-stage reheat cycle in which the working fluid is water and a Rankine cycle that is a regeneration cycle.
  • the steam temperature at the outlet of the boiler 4 is 590 ° C or higher, excluding the rise in feed water temperature in the first feed water heater 7 corresponding to the high pressure turbine exhaust bleed 22 and the first feed water heater 7
  • the ratio of temperature rise to the average of the feed water temperature rise in the feed water heater is 1.9 to 3.5.
  • the feed water heaters excluding the first feed water heater 7 are the second feed water heater 8 whose feed water has a lower pressure than the first feed water heater 7, and the first feed water heater 7
  • all are combined with the third water heater 26, which has a higher water supply pressure.
  • the third feed water heater 26 heats the feed water with the extracted steam from inside the high pressure turbine 1.
  • the temperature rise ratio between the feed water temperature rise in the first feed water heater 7 and the average feed water temperature rise in the feed water heaters 8 and 26 excluding the first feed water heater 7 is There is a range of effects due to differences in steam turbine machinery such as the number and exhaust loss, as well as the scale, details, and configuration differences corresponding to the power generation output in the power plant.
  • the temperature increase ratio between the increase in the feed water temperature in the first feed water heater 7 and the average rise in the feed water temperature in the feed water heaters 8 and 26 excluding the first feed water heater 7 is 1.9 or more. 3.5 By making it 5 or less, cycle thermal efficiency can be improved as in Example 1.
  • the steam turbine cycle of the present embodiment heats the feed water to the boiler 4 by the high-pressure turbine 1, the reheat turbine 24, the boiler 4, and the extracted steam from the high-pressure turbine 1 and the reheat turbine 24.
  • a feed water heater 6, a feed water pump 12, and a condenser 10 are provided to constitute a Rankine cycle that is a one-stage reheat cycle in which the working fluid is water and a regeneration cycle.
  • the steam temperature at the outlet of the boiler 4 is 590 ° C or higher, excluding the rise in the specific water supply enthalpy in the first feed water heater 7 corresponding to the high pressure turbine exhaust bleed 22 and the first feed water heater 7.
  • the ratio of the increase in the specific enthalpy to the average increase in the supply water in the feed water heaters 8 and 26 is 1.9 to 3.5.
  • the specific enthalpy increase ratio of the feed water in the first feed water heater 7 and the average rise in the specific enthalpy rise in the feed water heaters 8 and 26 excluding the first feed water heater 7 is There are range ranges due to the difference in the number of feed water heaters 6, steam turbine mechanical differences such as exhaust loss, the scale corresponding to the power generation output in the power plant, and the difference in fine configuration.
  • the feed water temperature rise in the second feed water heater 8 is calculated by adding the feed water temperature rise by the feed water pump 12, and the others are the first embodiment. It is almost the same as the embodiment
  • the increase in the feed water temperature in the feed water heaters 8 and 26 excluding the first feed water heater 7 is calculated by adding the rise in the feed water temperature by the feed water pump 12.
  • the first water supply temperature increase in the second water heater 8 is calculated by adding the temperature increase of the water supply by the water supply pump 12, and then the temperature increase ratio is defined to thereby perform the first implementation.
  • the cycle thermal efficiency can be improved.
  • FIG. 1 The sixth embodiment shown in FIG. 1 is calculated based on the increase in the specific enthalpy of the feed water by the feed water pump 8 in the second feed water heater 8 and the others. This is substantially the same as the first embodiment.
  • the feed water pump 12 boosts the feed water, and further heats the feed water as described in the third embodiment, so that the specific enthalpy of the feed water rises. By adding this increase in the specific enthalpy, the average specific enthalpy increase per unit of the second feed water heater 8 is calculated.
  • the increase in the specific enthalpy of the feed water in the feed water heaters 8 and 26 excluding the first feed water heater 7 is caused by the feed water pump 12 It can also be calculated by adding an increase in specific enthalpy.
  • the feed water pump 12 boosts the feed water, and further heats the feed water as described in the third embodiment, so that the specific enthalpy of the feed water increases.
  • per unit of feed water heaters 8, 26 excluding the first feed water heater 7 Calculate the average specific enthalpy increase.
  • the increase in the specific enthalpy of the feed water is calculated by adding the increase in the specific enthalpy of the feed water by the feed water pump 12, and then the temperature rise ratio is defined, whereby the second embodiment and As in the fourth embodiment, the cycle thermal efficiency can be improved.
  • the total number of feed water heaters 6 is 8, and the cycle configuration is such that the temperature rise ratio is 1.9 or more and 3.5 or less. . This is because considering the economy, it is considered that a good number of feed water heaters 6 is 8 in a large thermal power plant.
  • the extraction from the intermediate pressure turbine 2 includes two places including exhaust, and the extraction from the low pressure turbine 3 includes four places.
  • the bleed air to the deaerator 9 is medium pressure turbine exhaust bleed 32, but this need not be the case.
  • the total number of feed water heaters 6 is 8, and the temperature increase ratio is 1.9 or more and 3.5 or less.
  • feed water heating The total number of vessels 6 is 8, and the cycle composition is such that the specific enthalpy increase ratio is 1.9 or more and 3.5 or less. This is because the number of feed water heaters 6 is considered to be good for large thermal power plants in consideration of economy.
  • the extraction from the medium pressure turbine 2 includes two places including exhaust, and the extraction from the low pressure turbine 3 takes four places.
  • the bleed air to the deaerator 9 is medium pressure turbine exhaust bleed 32, but this need not be the case.
  • the optimization calculation was limited to 8 feedwater heaters 6, and the cycle thermal efficiency was maximized when the specific enthalpy increase ratio was 1.9 or more and 3.5 or less.
  • the total number of the feed water heaters 6 is 8, and the increase ratio of the specific enthalpy is 1.9 or more 3.5.
  • FIG. 2 the same parts as those shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the total number of feed water heaters 6 in the first embodiment, the third embodiment, and the fifth embodiment described above is increased from eight to nine to nine.
  • the cycle configuration is such that the temperature rise ratio is 1.9 or more and 3.5 or less. Considering economic efficiency, it is considered that eight feed water heaters 6 are good for large thermal power plants, but nine are good as efficiency, power output, and main steam temperature increase. This is because there are cases.
  • the extraction from the medium pressure turbine 2 includes three places including exhaust, and the extraction from the low pressure turbine 3 is four places, but any number of places may be used as long as there are seven places in total.
  • the bleed air to the deaerator 9 is medium pressure turbine exhaust 32, but this need not be the case.
  • the cycle thermal efficiency was maximized when the temperature rise ratio was 1.9 or more and 3.5 or less.
  • the total number of feed water heaters 6 in the first embodiment, the third embodiment, and the fifth embodiment is increased from eight to one.
  • the cycle thermal efficiency can be improved.
  • the total number of feed water heaters 6 in the second embodiment, the fourth embodiment, and the sixth embodiment described above is increased from eight to nine to nine.
  • the cycle structure is such that the temperature rise ratio is 3.5 or less.
  • 8 is a good number of feed water heaters 6 in large thermal power plants.
  • 9 are good. This is because there are cases.
  • the extraction from the medium pressure turbine 2 includes three places including exhaust, and the extraction from the low pressure turbine 3 is four places.
  • the bleed air to the deaerator 9 is medium pressure turbine exhaust 32, but this need not be the case.
  • the cycle thermal efficiency was maximized when the specific enthalpy increase ratio was between 1.9 and 3.5.
  • the total number of the feed water heaters 6 in the second embodiment, the fourth embodiment, and the sixth embodiment is increased from 8 to 9, and the ratio is increased.
  • the cycle configuration such that the enthalpy increase ratio is 1.9 or more and 3.5 or less, the cycle thermal efficiency can be improved as in the second, fourth, and sixth embodiments. it can.

Abstract

A steam turbine cycle which comprises a high pressure turbine (1), a reheat turbine (24), a boiler (4), a heater (6) for heating supply water to the boiler (4) with extraction steam from the turbines (1, 24), a water supply pump (12), and a condenser (10), and which is a single-stage reheat cycle where the working fluid is water and Rankine cycle as a regenerative cycle. Steam temperature at the outlet of the boiler (4) is 590°C or above. The cycle is constituted such that the temperature rise ratio between supply water temperature rise at a first supply water heater (7) corresponding to extraction steam (high pressure turbine exhaust gas extraction steam) (22) from exhaust gas of the high pressure turbine (1) and an average of supply water temperature rises at a second supply water heater (8) where the pressure of supply water is lower than that of first supply water heater (7) falls within a range of 1.9-3.5.

Description

明 細 書  Specification
蒸気タービンサイクル  Steam turbine cycle
技術分野  Technical field
[0001] 本発明は、サイクル熱効率の高い蒸気タービンサイクルに関する。  [0001] The present invention relates to a steam turbine cycle having high cycle thermal efficiency.
背景技術  Background art
[0002] 従来の技術として、火力発電プラント等で使用されて 、る蒸気タービンサイクルの 1 つを、図 1を用いて説明する。  [0002] As a conventional technique, one of steam turbine cycles used in a thermal power plant or the like will be described with reference to FIG.
[0003] ボイラ 4にて燃料燃焼熱を利用する等してボイラ給水 14を加熱し、充分に高温であ る過熱蒸気 (以下、主蒸気 16と記す)を発生させる。この過熱蒸気は超臨界圧流体で ある場合ちある。 [0003] Boiler feed water 14 is heated by using, for example, fuel combustion heat in boiler 4 to generate superheated steam (hereinafter referred to as main steam 16) having a sufficiently high temperature. This superheated steam may be a supercritical fluid.
[0004] 主蒸気 16は高圧タービン 1に流入し、膨張しながら流れ、圧力、温度共に低下する  [0004] The main steam 16 flows into the high-pressure turbine 1, flows while expanding, and decreases in both pressure and temperature.
[0005] 高圧タービン 1から流出した高圧タービン排気 21の大部分は再熱器 5に流入し、よ り高温になり再熱蒸気 17となって中圧タービン 2に流入する。 [0005] Most of the high-pressure turbine exhaust 21 that has flowed out of the high-pressure turbine 1 flows into the reheater 5, becomes higher in temperature, becomes reheated steam 17, and flows into the intermediate-pressure turbine 2.
[0006] 中圧タービン 2内で膨張しながら流れた蒸気は、圧力、温度共に低下して低圧ター ビン 3に流人する。 [0006] The steam that flows while expanding in the intermediate pressure turbine 2 decreases in both pressure and temperature and flows into the low pressure turbine 3.
[0007] 低圧タービン 3内で膨張しながら流れた蒸気は、圧力、温度共に低下するが、一部 、液体の水である飽和蒸気の状態になる場合が多い。この飽和蒸気は復水器 10に て、海水または大気 23等を用いて冷却され復水 25になる。復水 25は復水ポンプ 11 により給水加熱器 6に送られ、ボイラ給水 14になる。なお、中圧タービン 2と低圧ター ビン 3は再熱タービン 24である。  [0007] The steam that flows while expanding in the low-pressure turbine 3 decreases in both pressure and temperature, but in some cases, it is often in the state of saturated steam that is liquid water. This saturated steam is cooled by the condenser 10 using seawater or the atmosphere 23 or the like to become the condensate 25. Condensate 25 is sent to feed water heater 6 by condensate pump 11 and becomes boiler feed water 14. The medium pressure turbine 2 and the low pressure turbine 3 are reheat turbines 24.
[0008] 図 1では 8個の給水加熱器 6が示されており、高圧タービン 1、中圧タービン 2及び 低圧タービン 3の流路中の抽気位置 31から抽出された抽気蒸気 20により、ボイラ給 水 14を加熱する。ここで、より高圧の給水加熱器 6ほど、より高圧の抽気が流入する 構成になっている。  In FIG. 1, eight feed water heaters 6 are shown. The boiler feed water is extracted by the extracted steam 20 extracted from the extracted position 31 in the flow path of the high pressure turbine 1, the intermediate pressure turbine 2, and the low pressure turbine 3. Heat water 14. Here, the higher-pressure feed water heater 6 has a configuration in which higher-pressure extraction air flows.
[0009] 図 1では低圧タービン 3は複流として描いてあり、片側の低圧タービン 3のみ力 抽 気してあるように描いてある力 実際は、両側の低圧タービン 3から抽気して合流した 後、給水加熱器 6に流入させている。なお、給水加熱器 6によって片側の低圧タービ ン 3どちらか一方力 抽気する構成にしてもょ 、。 In FIG. 1, the low-pressure turbine 3 is depicted as a double flow, and the force is depicted as if only one side of the low-pressure turbine 3 has been extracted. After that, it flows into the feed water heater 6. It should be noted that the feed water heater 6 may be configured to extract one side of the low pressure turbine 3 on one side.
[0010] 給水加熱器 6は表面式と混合式がある。表面式給水加熱器において抽気蒸気 20 は、伝熱面を介した給水との熱交換により凝縮しドレン水 15となり、原則としてより高 圧の給水加熱器 6から順次流入合流しながらより低圧の給水加熱器 6へ流れる。最も 低圧の給水加熱器 6のドレン水 15は復水器 10へ流れる。なお、ドレン水 15をドレン 水ポンプ 13により給水に合流させてもよい。  [0010] The feed water heater 6 has a surface type and a mixing type. In the surface water heater, the extracted steam 20 is condensed by heat exchange with the water supply via the heat transfer surface to become drain water 15, and in principle, the lower pressure water supply is made while sequentially flowing in from the higher pressure water heater 6. Flows to heater 6. The drain water 15 of the lowest pressure feed water heater 6 flows to the condenser 10. The drain water 15 may be joined to the feed water by the drain water pump 13.
[0011] 混合式給水加熱器は、抽気が直接、給水と混合して加熱する構造であり、給水に 溶存して!/、る酸素等を脱気させる脱気器 9は、混合式給水加熱器に含まれる。  [0011] The mixed feed water heater has a structure in which the extracted air is directly mixed with the feed water and heated, and the deaerator 9 that desorbs oxygen and the like dissolved in the feed water is a mixed feed water heater. Included in the bowl.
[0012] 混合式給水加熱器の直後には、より高圧の給水加熱器 6に給水を送るために、給 水ポンプ 12が設けられる。図 1では混合式給水加熱器への抽気は中圧タービン排 気抽気 32だが、そうでなくてもよい。脱気器 9はなくてもよいが、ない場合も複数の給 水加熱器 6の間の内、適当な位置に給水ポンプ 12を設ける。全ての給水加熱器 6で 加熱された給水は、ボイラ 4に流入する。  [0012] Immediately after the mixed feed water heater, a feed water pump 12 is provided to send feed water to the higher pressure feed water heater 6. In Fig. 1, the extraction to the mixed feed water heater is medium pressure turbine exhaust extraction 32, but this need not be the case. The deaerator 9 is not necessary, but if not, the feed water pump 12 is provided at an appropriate position among the plurality of feed water heaters 6. The feed water heated by all feed water heaters 6 flows into the boiler 4.
[0013] 図 1では、高圧タービン 1と中圧タービン 2と低圧タービン 3は 1つの回転軸 19で連 結されており、発電機 18に接続されている。高圧タービン 1、中圧タービン 2、低圧タ 一ビン 3の内部で膨張する事によって蒸気の保有するェンタルビが軸動力に変換さ れ、発電機 18で発電する。各タービンを 1つの回転軸 19で連結して 1台の発電機 18 に接続しなくてもよい。  In FIG. 1, the high-pressure turbine 1, the intermediate-pressure turbine 2, and the low-pressure turbine 3 are connected by a single rotating shaft 19 and connected to a generator 18. By expanding inside the high-pressure turbine 1, the medium-pressure turbine 2, and the low-pressure turbine 3, the enthalbi held by the steam is converted into shaft power and is generated by the generator 18. It is not necessary to connect each turbine with one rotating shaft 19 and connect it to one generator 18.
[0014] 図 1では低圧タービン 3は複流として描いてある力 これは流入蒸気を 2分割し 2台 の低圧タービン 3に流入させる構造であり、 4分割する構造でも、分割しなくてもよい。 また図 1では、中圧タービン 2は単流として描いてある力 複流でもよい。さらに図 1で は、中圧タービン 2と低圧タービン 3とは別々の蒸気タービンとして描いてある力 再 熱タービン 24、 1台のみとしてもよい。  [0014] In FIG. 1, the low-pressure turbine 3 is depicted as a double flow. This is a structure in which the incoming steam is divided into two parts and flows into the two low-pressure turbines 3, and may be divided into four parts or not. Further, in FIG. 1, the medium pressure turbine 2 may be a force double flow depicted as a single flow. Further, in FIG. 1, the intermediate pressure turbine 2 and the low pressure turbine 3 may include only one power reheating turbine 24 depicted as separate steam turbines.
[0015] このような抽気蒸気 20を用いた再生サイクルと、高圧タービン排気 21を再熱器 5で 加熱し再熱タービン 24に流入させる再熱サイクルは、どちらも変形ランキンサイクル であり、単純なランキンサイクル力 熱効率を向上させる。なお発電プラントの場合、 熱効率は発電量 ÷ボイラ入熱量とほぼ等しい。 [0016] さて、サイクル熱効率はサイクル構成によって変化するが、各抽気蒸気 20の温度や 流量によっても変化する。特に近年、高温用材料の進歩に伴い、蒸気の高温化が進 みサイクル熱効率は向上しつつある力 蒸気の高温条件下にてサイクル構成を改善 する余地がある。 [0015] Both the regeneration cycle using the extracted steam 20 and the reheat cycle in which the high-pressure turbine exhaust 21 is heated by the reheater 5 and flows into the reheat turbine 24 are modified Rankine cycles, and are simple. Rankine cycle force Improves thermal efficiency. In the case of a power plant, the thermal efficiency is almost equal to power generation divided by boiler heat input. [0016] The cycle thermal efficiency varies depending on the cycle configuration, but also varies depending on the temperature and flow rate of each extraction steam 20. In particular, with the progress of high-temperature materials in recent years, there is room to improve the cycle configuration under the high-temperature conditions of steam, where the temperature of steam is increasing and the cycle thermal efficiency is increasing.
[0017] なお、非特許文献には、「再熱点からの抽気によるヒータェンタルピ上昇はそれより 低圧のヒータにおける平均ェンタルピ上昇の約 1.8倍が最適性能」という記述がある 特干文献 1 : Bartiett着「¾team Turoine Performance ana conomics」 発明の開示  [0017] In addition, the non-patent literature states that "the heater enthalpy increase due to extraction from the reheat point is about 1.8 times the average enthalpy increase in the low-pressure heater is the optimum performance". "¾team Turoine Performance ana conomics" Invention Disclosure
発明が解決しょうとする課題  Problems to be solved by the invention
[0018] 本発明は、サイクル熱効率の高 、蒸気タービンサイクルを提供することを目的とす る。 [0018] An object of the present invention is to provide a steam turbine cycle with high cycle thermal efficiency.
課題を解決するための手段  Means for solving the problem
[0019] 請求項 1に係る発明は、高圧タービンと、再熱タービンと、ボイラと、前記タービンか らの抽気蒸気により前記ボイラへの給水を加熱する給水加熱器と、給水ポンプと、復 水器とを備え、作動流体が水である 1段再熱サイクルであり、かつ再生サイクルである ランキンサイクルにおいて、前記ボイラ出口の蒸気温度は、 590°C以上であり、前記 高圧タービンの排気からの抽気に対応した第 1の給水加熱器における給水温度上 昇と、前記第 1の給水加熱器より給水が低圧である第 2の給水加熱器における給水 温度上昇の平均との、温度上昇比が 1.9以上 3.5以下であることを特徴とした蒸気タ 一ビンサイクルである。 [0019] The invention according to claim 1 includes a high-pressure turbine, a reheat turbine, a boiler, a feed water heater that heats feed water to the boiler by the extracted steam from the turbine, a feed water pump, and a condensate. In the Rankine cycle, where the working fluid is water and the Rankine cycle is a regeneration cycle, the steam temperature at the boiler outlet is 590 ° C or higher, and is from the exhaust of the high-pressure turbine. The temperature increase ratio between the increase in the feed water temperature in the first feed water heater corresponding to the bleed air and the average of the feed water temperature rise in the second feed water heater whose feed water is lower than that in the first feed water heater is 1.9. This is a steam turbine cycle characterized by being 3.5 or less.
[0020] 請求項 2に係る本発明は、高圧タービンと、再熱タービンと、ボイラと、前記タービン からの抽気蒸気により前記ボイラへの給水を加熱する給水加熱器と、給水ポンプと、 復水器とを備え、作動流体が水である 1段再熱サイクルであり、かつ再生サイクルで あるランキンサイクルにおいて、前記ボイラ出口の蒸気温度は、 590°C以上であり、 前記高圧タービンの排気からの抽気に対応した第 1の給水加熱器における給水の比 ェンタルピ上昇と、前記第 1の給水加熱器より給水が低圧である第 2の給水加熱器に おける給水の比ェンタルピ上昇の平均との、比ェンタルピ上昇比が 1.9以上 3.5以下 であることを特徴とした蒸気タービンサイクルである。 [0020] The present invention according to claim 2 includes a high-pressure turbine, a reheat turbine, a boiler, a feed water heater that heats feed water to the boiler by extracted steam from the turbine, a feed water pump, and a condensate. In the Rankine cycle, the working fluid is water, and the Rankine cycle is a regeneration cycle, the steam temperature at the boiler outlet is 590 ° C or higher, and the exhaust gas from the high-pressure turbine is exhausted. Ratio of increase in water supply enthalpy in the first feed water heater corresponding to the bleed air and average increase in water supply enthalpy in the second water supply heater whose supply water pressure is lower than that in the first water supply heater. The enthalpy increase ratio is 1.9 to 3.5 It is the steam turbine cycle characterized by being.
[0021] 請求項 3に係る発明は、高圧タービンと、再熱タービンと、ボイラと、前記タービンか らの抽気蒸気により前記ボイラへの給水を加熱する給水加熱器と、給水ポンプと、復 水器とを備え、作動流体が水である 1段再熱サイクルであり、かつ再生サイクルである ランキンサイクルにおいて、前記ボイラ出口の蒸気温度は、 590°C以上であり、前記 高圧タービンの排気からの抽気に対応した第 1の給水加熱器における給水温度上 昇と、前記第 1の給水加熱器を除く給水加熱器における給水温度上昇の平均との、 温度上昇比が 1.9以上 3.5以下であることを特徴とした蒸気タービンサイクルである。  [0021] The invention according to claim 3 includes a high-pressure turbine, a reheat turbine, a boiler, a feed water heater that heats feed water to the boiler by extracted steam from the turbine, a feed water pump, and a condensate. In the Rankine cycle, where the working fluid is water and the Rankine cycle is a regeneration cycle, the steam temperature at the boiler outlet is 590 ° C or higher, and is from the exhaust of the high-pressure turbine. The temperature rise ratio between the rise in the feed water temperature in the first feed water heater corresponding to the bleed air and the average rise in the feed water temperature in the feed water heater excluding the first feed water heater is 1.9 to 3.5. It is a featured steam turbine cycle.
[0022] 請求項 4に係る発明は、高圧タービンと、再熱タービンと、ボイラと、前記タービンか らの抽気蒸気により前記ボイラへの給水を加熱する給水加熱器と、給水ポンプと、復 水器とを備え、作動流体が水である 1段再熱サイクルであり、かつ再生サイクルである ランキンサイクルにおいて、前記ボイラ出口の蒸気温度が 590°C以上であり、前記高 圧タービンの排気からの抽気に対応した第 1の給水加熱器における給水の比ェンタ ルビ上昇と、前記第 1の給水加熱器を除く給水加熱器における給水の比ェンタルピ 上昇の平均との、比ェンタルピ上昇比が L9以上 3.5以下であることを特徴とした蒸 気タービンサイクルである。  [0022] The invention according to claim 4 includes a high-pressure turbine, a reheat turbine, a boiler, a feed water heater that heats feed water to the boiler by extracted steam from the turbine, a feed water pump, and a condensate. In the Rankine cycle, where the working fluid is water and the Rankine cycle is a regeneration cycle, the steam temperature at the boiler outlet is 590 ° C or higher and the exhaust gas from the high-pressure turbine is exhausted. The increase in the specific enthalpy of the feed water in the first feed water heater corresponding to the bleed air and the average rise in the specific enthalpy of the feed water heater excluding the first feed water heater is L9 or more 3.5 The steam turbine cycle is characterized by the following.
発明の効果  The invention's effect
[0023] 本発明によれば、サイクル熱効率の高 、蒸気タービンサイクルを提供することがで きる。  [0023] According to the present invention, it is possible to provide a steam turbine cycle with high cycle thermal efficiency.
図面の簡単な説明  Brief Description of Drawings
[0024] [図 1]本発明による蒸気タービンサイクルの第 1乃至 8の実施の形態及び第 11の実施 の形態と、従来技術を示す概略図。  [0024] FIG. 1 is a schematic diagram showing first to eleventh and eleventh embodiments of a steam turbine cycle according to the present invention and the prior art.
[図 2]本発明による蒸気タービンサイクルの第 9乃至 11の実施の形態を示す概略図。  FIG. 2 is a schematic diagram showing ninth to eleventh embodiments of a steam turbine cycle according to the present invention.
[図 3]温度上昇比と熱効率の関係を示した概略図。  FIG. 3 is a schematic diagram showing the relationship between temperature rise ratio and thermal efficiency.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 第 1の実施の形餱 [0025] Form of the first implementation
以下、本発明に係る蒸気タービンサイクルの第 1の実施の形態について、図面を参 照して説明する。ここで、図 1は本発明の第 1の実施の形態を示す図である。 [0026] 本実施の形態の蒸気タービンサイクルは、 高圧タービン 1と、再熱タービン 24と、 ボイラ 4と、高圧タービン 1及び再熱タービン 24からの抽気蒸気によりボイラ 4への給 水を加熱する給水加熱器 6と、給水ポンプ 12と、復水器 10とを備え、作動流体が水 である 1段再熱サイクルであり、かつ再生サイクルであるランキンサイクルを構成する Hereinafter, a first embodiment of a steam turbine cycle according to the present invention will be described with reference to the drawings. Here, FIG. 1 is a diagram showing a first embodiment of the present invention. [0026] The steam turbine cycle of the present embodiment heats the feed water to the boiler 4 by the extracted steam from the high pressure turbine 1, the reheat turbine 24, the boiler 4, and the high pressure turbine 1 and the reheat turbine 24. It is equipped with a feed water heater 6, a feed water pump 12, and a condenser 10, and constitutes a Rankine cycle that is a one-stage reheat cycle in which the working fluid is water and a regeneration cycle
[0027] また、ボイラ 4出口の蒸気温度は 590°C以上となっており、さらに高圧タービン排気 21からの抽気(高圧タービン排気抽気) 22に対応した第 1の給水加熱器 7における 給水温度上昇と、第 1の給水加熱器 7より給水が低圧である第 2の給水加熱器 8にお ける給水温度上昇の平均との温度上昇比が 1.9以上 3.5以下となっている。 [0027] The steam temperature at the outlet of the boiler 4 is 590 ° C or higher, and the feed water temperature rises in the first feed water heater 7 corresponding to the bleed air from the high pressure turbine exhaust 21 (high pressure turbine exhaust bleed air) 22. Thus, the temperature rise ratio with the average of the feed water temperature rise in the second feed water heater 8 where the feed water is lower than that in the first feed water heater 7 is 1.9 to 3.5.
[0028] 各抽気蒸気 20の流量と、各抽気位置 31を調節することにより、第 1の給水加熱器 7 及び第 2の給水加熱器 8における給水温度上昇を調整することができる。なお、高圧 タービン排気抽気 22や中圧タービン排気抽気 32に関して温度変更する場合は、高 圧タービン 1と中圧タービン 2の排気仕様を変更する事になる。  [0028] By adjusting the flow rate of each extraction steam 20 and each extraction position 31, an increase in the feed water temperature in the first feed water heater 7 and the second feed water heater 8 can be adjusted. When changing the temperature of the high-pressure turbine exhaust bleed 22 or the medium-pressure turbine exhaust bleed 32, the exhaust specifications of the high-pressure turbine 1 and the intermediate-pressure turbine 2 are changed.
[0029] ボイラ 4入口の給水温度はボイラ 4側で規定される事が多 、ので、値を固定して最 適化計算をしたところ、 1.9以上 3.5以下の温度上昇比条件の時、サイクル熱効率は 最大になった。  [0029] Since the water supply temperature at the inlet of boiler 4 is often specified on the boiler 4 side, optimization calculation was performed with the value fixed. As a result, when the temperature rise ratio was 1.9 or more and 3.5 or less, cycle thermal efficiency Became the maximum.
[0030] 第 1の給水加熱器 7における給水温度上昇と、第 2の給水加熱器 8における給水温 度上昇の平均との温度上昇比は、給水加熱器 6の個数や、排気損失等といった蒸気 タービンの機械上の差異や、発電プラントにおける発電出力に相当する規模、細か い構成の差異等の影響によって、範囲幅がある。  [0030] The temperature rise ratio between the increase in feed water temperature in the first feed water heater 7 and the average rise in feed water temperature in the second feed water heater 8 is the number of feed water heaters 6, steam such as exhaust loss, etc. The range varies depending on the mechanical differences of the turbine, the scale corresponding to the power generation output at the power plant, and the difference in fine structure.
[0031] なお前述したように非特許文献では、比ェンタルピ上昇比として 1.8が最良という旨 の記述があるが、温度上昇比の範囲では、比ェンタルピ上昇比が 1.8になる事は、通 常の発電プラントではない。  [0031] As described above, in non-patent literature, there is a description that 1.8 is the best as the specific enthalpy increase ratio, but in the range of the temperature increase ratio, it is normal that the specific enthalpy increase ratio is 1.8. It is not a power plant.
[0032] この事象は以下の理由によると推定される。  [0032] This event is presumed to be due to the following reason.
[0033] 蒸気タービンの出力は、各タービンの各段落における「熱落差即ち比ェンタルピ減 少量 X蒸気質量流量」の総和なので、なるべく比ェンタルビの低 、位置力 抽気した 方力 蒸気タービンが仕事をした後にボイラ給水 14を暖めることになるので、効率が 高くなる効果がある。しかしながら一方で、ボイラ給水 14のボイラ 4入口温度が高い 方が再生サイクルとしての効率は高くなるため、その効果も考慮する必要がある。 [0033] Since the output of the steam turbine is the sum of the "heat drop, that is, the small amount of Xenthalpi reduction X steam mass flow rate" in each stage of each turbine, the specific force is as low as possible. Since the boiler feed water 14 will be heated later, the efficiency is increased. However, on the other hand, boiler feed water 14 boiler 4 inlet temperature is high Since the efficiency of the regeneration cycle is higher, it is necessary to consider the effect.
[0034] ボイラ 4入口温度を規定すると、最も器内蒸気圧力が高 、給水加熱器 26のボイラ 4 入口温度とほぼ同じ飽和温度である蒸気が必要で、抽気蒸気 20の圧力が規定され る。他の給水加熱器 7, 8はそこに至るまでの温度上昇を段階的に賄う。  [0034] When the boiler 4 inlet temperature is specified, the steam pressure in the vessel is the highest, and steam having the same saturation temperature as the boiler 4 inlet temperature of the feed water heater 26 is required, and the pressure of the extraction steam 20 is specified. The other feed water heaters 7, 8 will cover the temperature rise up to that step by step.
[0035] 高圧タービン排気抽気 22は、比較的高圧でありながら比ェンタルビが低い蒸気で あり、また再熱器 5で加熱された後の蒸気からの抽気でないので、この高圧タービン 排気抽気 22のェンタルピを用いてボイラ給水 14を加熱する事を多めにすると、サイ クル全体の熱効率が高くなる。  [0035] The high-pressure turbine exhaust extraction 22 is a steam having a relatively high pressure and low specific enthalpy, and is not extracted from the steam heated by the reheater 5, and therefore, the high-pressure turbine exhaust extraction 22 If the boiler feed water 14 is heated more often using the heat, the thermal efficiency of the entire cycle will increase.
[0036] 即ち、図 3に概略を示すように、温度上昇比には熱効率が最も良くなる所定の最適 値があり、この最適値は温度上昇比が 1より充分に高い方が良い。この最適値は主蒸 気 16の条件によって異なり、高温蒸気ではより高 ヽ値になると推定される。  That is, as schematically shown in FIG. 3, the temperature rise ratio has a predetermined optimum value that provides the best thermal efficiency, and this optimum value should be sufficiently higher than 1. This optimum value depends on the conditions of the main steam16, and it is estimated that the high steam value will be higher.
[0037] 上述したように、第 1の給水加熱器 7における給水温度上昇と、第 2の給水加熱器 8 における給水温度上昇の平均との温度上昇比を 1.9以上 3.5以下にすることによって 、サイクル熱効率を向上させることができる。  [0037] As described above, by setting the temperature rise ratio between the feed water temperature rise in the first feed water heater 7 and the average feed water temperature rise in the second feed water heater 8 to 1.9 or more and 3.5 or less, the cycle Thermal efficiency can be improved.
[0038] 第 2の実施の形態  [0038] Second Embodiment
次に図 1により本発明の第 2の実施の形態について説明する。  Next, a second embodiment of the present invention will be described with reference to FIG.
[0039] 本実施の形態の蒸気タービンサイクルは、高圧タービン 1と、再熱タービン 24と、ボ イラ 4と、高圧タービン 1及び再熱タービン 24からの抽気蒸気によりボイラ 4への給水 を加熱する給水加熱器 6と、給水ポンプ 12と、復水器 10とを備え、作動流体が水で ある 1段再熱サイクルであり、かつ再生サイクルであるランキンサイクルを構成する。  [0039] The steam turbine cycle of the present embodiment heats feed water to the boiler 4 by the high-pressure turbine 1, the reheat turbine 24, the boiler 4, and the extracted steam from the high-pressure turbine 1 and the reheat turbine 24. A feed water heater 6, a feed water pump 12, and a condenser 10 are provided to constitute a Rankine cycle that is a one-stage reheat cycle in which the working fluid is water and a regeneration cycle.
[0040] また、ボイラ 4出口の蒸気温度は 590°C以上であり、高圧タービン排気抽気 22に対 応した第 1の給水加熱器 7における給水の比ェンタルピ上昇と、第 1の給水加熱器 7 より給水が低圧である第 2の給水加熱器 8における給水の比ェンタルピ上昇の平均と の比ェンタルピ上昇比が 1.9以上 3.5以下となっている。  [0040] Further, the steam temperature at the outlet of the boiler 4 is 590 ° C or higher, the rise in the specific enthalpy of the feed water in the first feed water heater 7 corresponding to the high pressure turbine exhaust bleed air 22 and the first feed water heater 7 Furthermore, the ratio of the increase in enthalpy to the average of the increase in the specific enthalpy of the feed water in the second feed water heater 8 whose supply water is low is 1.9 to 3.5.
[0041] 各抽気蒸気 20の流量と、各抽気位置 31を調節することによって、第 1の給水加熱 器 7及び第 2の給水加熱器 8における給水の比ェンタルピ上昇を調整することができ る。なお、高圧タービン排気抽気 22や中圧タービン排気抽気 32からの抽気蒸気 20 に関して比ェンタルピを変更する場合は、高圧タービン 1と中圧タービン 2の排気仕 様を変更する事になる。 [0041] By adjusting the flow rate of each extraction steam 20 and each extraction position 31, it is possible to adjust the specific enthalpy increase of the supply water in the first feed water heater 7 and the second feed water heater 8. When changing the specific enthalpy for the extracted steam 20 from the high-pressure turbine exhaust bleed 22 or the medium-pressure turbine exhaust bleed 32, the exhaust performance of the high-pressure turbine 1 and the intermediate-pressure turbine 2 is changed. Will be changed.
[0042] ボイラ 4入口の給水温度はボイラ 4側で規定される事が多 、ので、値を固定して最 適化計算をしたところ、 1.9以上 3.5以下の比ェンタルピ上昇比条件の時、サイクル 熱効率は最大になった。  [0042] Since the feed water temperature at the inlet of boiler 4 is often specified on the boiler 4 side, the optimization calculation was performed with a fixed value. Thermal efficiency was maximized.
[0043] 比ェンタルピ上昇比には、給水加熱器 6の個数や、排気損失等といった蒸気タービ ンの機械上の差異や、発電プラントにおける発電出力に相当する規模、細かい構成 の差異等の影響による範囲幅がある。 [0043] The increase ratio of specific enthalpy depends on the mechanical differences of steam turbines such as the number of feed water heaters 6, exhaust loss, etc., the scale corresponding to the power generation output in the power plant, and the difference in fine structure. There is a range width.
[0044] なお前述したように非特許文献では、比ェンタルピ上昇比として 1.8が最良と 、う旨 の記述があるが、この文献では主蒸気 16の温度が述べられておらず、想定している 主蒸気 16温度が異なるために、比ェンタルピ上昇比の最適値が異なっていると考え られる。  [0044] As described above, in non-patent literature, there is a description that 1.8 is the best as the specific enthalpy increase ratio, but in this literature, the temperature of the main steam 16 is not described and is assumed. Since the main steam 16 temperature is different, the optimum value of the specific enthalpy increase ratio is considered to be different.
[0045] 本実施の形態の場合も、前述した第 1の実施の形態と同様に、図 3に概略を示すよ うに、比ェンタルピ上昇比には熱効率が最も良くなる所定の最適値があり、この最適 値は比ェンタルピ上昇比が 1より充分に高い方が良い。この最適値は主蒸気 16の条 件によって異なり、高温蒸気ではより高い値になると推定される。  [0045] In the case of the present embodiment as well, as in the first embodiment described above, as schematically shown in Fig. 3, the specific enthalpy increase ratio has a predetermined optimum value that provides the best thermal efficiency, This optimal value is better if the ratio of rise in specific enthalpy is sufficiently higher than 1. This optimum value depends on the conditions of main steam 16 and is estimated to be higher for high temperature steam.
[0046] 上述したように、第 1の給水加熱器 7における給水の比ェンタルピ上昇と、第 2の給 水加熱器 8における給水の比ェンタルピ上昇の平均との比ェンタルピ上昇比を 1.9 以上 3.5以下にすることによって、サイクル熱効率が向上させることができる。  [0046] As described above, the ratio of the increase in the specific enthalpy of the feed water in the first feed water heater 7 to the average of the increase in the specific enthalpy of the feed water in the second feed water heater 8 is 1.9 to 3.5. By doing so, the cycle thermal efficiency can be improved.
[0047] 第 3の実施の形態  [0047] Third Embodiment
次に図 1により本発明の第 3の実施の形態について説明する。  Next, a third embodiment of the present invention will be described with reference to FIG.
[0048] 本実施の形態の蒸気タービンサイクルは、高圧タービン 1と、再熱タービン 24と、ボ イラ 4と、高圧タービン 1及び再熱タービン 24からの抽気蒸気によりボイラ 4への給水 を加熱する給水加熱器 6と、給水ポンプ 12と、復水器 10とを備え、作動流体が水で ある 1段再熱サイクルであり、かつ再生サイクルであるランキンサイクルとなっている。  [0048] The steam turbine cycle of the present embodiment heats feed water to the boiler 4 by the high-pressure turbine 1, the reheat turbine 24, the boiler 4, and the extracted steam from the high-pressure turbine 1 and the reheat turbine 24. A feed water heater 6, a feed water pump 12, and a condenser 10 are provided, which is a one-stage reheat cycle in which the working fluid is water and a Rankine cycle that is a regeneration cycle.
[0049] また、ボイラ 4出口の蒸気温度が 590°C以上であり、高圧タービン排気抽気 22に対 応した第 1の給水加熱器 7における給水温度上昇と、第 1の給水加熱器 7を除く給水 加熱器における給水温度上昇の平均との温度上昇比が 1.9以上 3.5以下となってい る。 [0050] ここで、第 1の給水加熱器 7を除く給水加熱器とは、第 1の給水加熱器 7より給水が 低圧である第 2の給水加熱器 8と、第 1の給水加熱器 7より給水が高圧である第 3の給 水加熱器 26を合わせた全てのものである。なお、第 3の給水加熱器 26は高圧タービ ン 1内部からの抽気蒸気により給水を加熱する。 [0049] In addition, the steam temperature at the outlet of the boiler 4 is 590 ° C or higher, excluding the rise in feed water temperature in the first feed water heater 7 corresponding to the high pressure turbine exhaust bleed 22 and the first feed water heater 7 The ratio of temperature rise to the average of the feed water temperature rise in the feed water heater is 1.9 to 3.5. [0050] Here, the feed water heaters excluding the first feed water heater 7 are the second feed water heater 8 whose feed water has a lower pressure than the first feed water heater 7, and the first feed water heater 7 In addition, all are combined with the third water heater 26, which has a higher water supply pressure. The third feed water heater 26 heats the feed water with the extracted steam from inside the high pressure turbine 1.
[0051] 各抽気蒸気 20の流量と、各抽気圧力位置 31を調節する事によって、第 1の給水加 熱器 7、第 2の給水加熱器 8及び第 3の給水加熱器 26における給水温度上昇を調整 することができる。なお、高圧タービン排気抽気 22や中圧タービン排気抽気 32に関 して温度変更する場合は、高圧タービン 1と中圧タービン 2の排気仕様を変更する事 になる。  [0051] By adjusting the flow rate of each extraction steam 20 and each extraction pressure position 31, the feed water temperature rise in the first feed water heater 7, the second feed water heater 8, and the third feed water heater 26 Can be adjusted. When changing the temperature of the high-pressure turbine exhaust bleed 22 or the medium-pressure turbine exhaust bleed 32, the exhaust specifications of the high-pressure turbine 1 and the intermediate-pressure turbine 2 are changed.
[0052] ボイラ 4入口の給水温度はボイラ 4側で規定される事が多 、ので、値を固定して最 適化計算をしたところ、 1.9以上 3.5以下の温度上昇比条件の時、サイクル熱効率は 最大になった。  [0052] Since the feed water temperature at the inlet of boiler 4 is often specified on the boiler 4 side, optimization calculation was performed with the value fixed. As a result, when the temperature rise ratio was 1.9 or more and 3.5 or less, cycle thermal efficiency Became the maximum.
[0053] 第 1の給水加熱器 7における給水温度上昇と、第 1の給水加熱器 7を除く給水加熱 器 8, 26における給水温度上昇の平均との温度上昇比には、給水加熱器 6の個数や 、排気損失等といった蒸気タービンの機械上の差異や、発電プラントにおける発電出 力に相当する規模、細か!/、構成の差異等の影響による範囲幅がある。  [0053] The temperature rise ratio between the feed water temperature rise in the first feed water heater 7 and the average feed water temperature rise in the feed water heaters 8 and 26 excluding the first feed water heater 7 is There is a range of effects due to differences in steam turbine machinery such as the number and exhaust loss, as well as the scale, details, and configuration differences corresponding to the power generation output in the power plant.
[0054] 上述したように、第 1の給水加熱器 7における給水温度上昇と、第 1の給水加熱器 7 を除く給水加熱器 8, 26における給水温度上昇の平均との温度上昇比を 1.9以上 3. 5以下にすることによって、実施例 1と同様にサイクル熱効率を向上させることができ る。  [0054] As described above, the temperature increase ratio between the increase in the feed water temperature in the first feed water heater 7 and the average rise in the feed water temperature in the feed water heaters 8 and 26 excluding the first feed water heater 7 is 1.9 or more. 3.5 By making it 5 or less, cycle thermal efficiency can be improved as in Example 1.
[0055] 第 4の実施の形餱  [0055] Form of the fourth implementation
次に図 1により本発明の第 4の実施の形態について説明する。  Next, a fourth embodiment of the present invention will be described with reference to FIG.
[0056] 本実施の形態の蒸気タービンサイクルは、高圧タービン 1と、再熱タービン 24と、ボ イラ 4と、高圧タービン 1及び再熱タービン 24からの抽気蒸気によりボイラ 4への給水 を加熱する給水加熱器 6と、給水ポンプ 12と、復水器 10とを備え、作動流体が水で ある 1段再熱サイクルであり、かつ再生サイクルであるランキンサイクルを構成する。  [0056] The steam turbine cycle of the present embodiment heats the feed water to the boiler 4 by the high-pressure turbine 1, the reheat turbine 24, the boiler 4, and the extracted steam from the high-pressure turbine 1 and the reheat turbine 24. A feed water heater 6, a feed water pump 12, and a condenser 10 are provided to constitute a Rankine cycle that is a one-stage reheat cycle in which the working fluid is water and a regeneration cycle.
[0057] ボイラ 4出口の蒸気温度は 590°C以上であり、高圧タービン排気抽気 22に対応し た第 1の給水加熱器 7における給水の比ェンタルピ上昇と、第 1の給水加熱器 7を除 く給水加熱器 8, 26における給水の比ェンタルピ上昇の平均との比ェンタルピ上昇 比が 1.9以上 3.5以下となっている。 [0057] The steam temperature at the outlet of the boiler 4 is 590 ° C or higher, excluding the rise in the specific water supply enthalpy in the first feed water heater 7 corresponding to the high pressure turbine exhaust bleed 22 and the first feed water heater 7. The ratio of the increase in the specific enthalpy to the average increase in the supply water in the feed water heaters 8 and 26 is 1.9 to 3.5.
[0058] 各抽気蒸気 20の流量と、各抽気位置 31を調節する事によって、第 1の給水加熱器 7、第 2の給水加熱器 8及び第 3の給水加熱器 26における給水の比ェンタルピ上昇 を調整することができる。なお、高圧タービン排気抽気 22や中圧タービン排気抽気 3 2に関して比ェンタルピを変更する場合は、高圧タービン 1と中圧タービン 2の排気仕 様を変更する事になる。  [0058] By adjusting the flow rate of each extraction steam 20 and each extraction position 31, the specific enthalpy of the supply water in the first feed water heater 7, the second feed water heater 8, and the third feed water heater 26 is increased. Can be adjusted. When changing the specific enthalpy for the high pressure turbine exhaust bleed 22 and the medium pressure turbine exhaust bleed 3 2, the exhaust specifications of the high pressure turbine 1 and the intermediate pressure turbine 2 are changed.
[0059] ボイラ 4入口の給水温度はボイラ 4側で規定される事が多 、ので、値を固定して最 適化計算をしたところ、 1.9以上 3.5以下の比ェンタルピ上昇比条件の時、サイクル 熱効率は最大になった。  [0059] Since the feed water temperature at the inlet of boiler 4 is often specified on the boiler 4 side, the optimization calculation was performed with a fixed value. Thermal efficiency was maximized.
[0060] 第 1の給水加熱器 7における給水の比ェンタルピ上昇と、第 1の給水加熱器 7を除く 給水加熱器 8, 26における給水の比ェンタルピ上昇の平均との比ェンタルピ上昇比 には、給水加熱器 6の個数や、排気損失等といった蒸気タービンの機械上の差異や 、発電プラントにおける発電出力に相当する規模、細かい構成の差異等の影響によ る範囲幅がある。  [0060] The specific enthalpy increase ratio of the feed water in the first feed water heater 7 and the average rise in the specific enthalpy rise in the feed water heaters 8 and 26 excluding the first feed water heater 7 is There are range ranges due to the difference in the number of feed water heaters 6, steam turbine mechanical differences such as exhaust loss, the scale corresponding to the power generation output in the power plant, and the difference in fine configuration.
[0061] 上述のように、第 1の給水加熱器 7における給水の比ェンタルピ上昇と、第 1の給水 加熱器 7を除く給水加熱器 8, 26における給水の比ェンタルピ上昇の平均との比ェ ンタルピ上昇比を 1.9以上 3.5以下とすることによって、第 2の実施の形態と同様に、 サイクル熱効率を向上させることができる。  [0061] As described above, the ratio of the increase in the specific enthalpy of the feed water in the first feed water heater 7 and the average of the increase in the specific enthalpy of the feed water in the feed water heaters 8 and 26 excluding the first feed water heater 7. By setting the enthalpy increase ratio to 1.9 or more and 3.5 or less, cycle thermal efficiency can be improved as in the second embodiment.
[0062] 第 5の実施の形餱  [0062] Form of fifth implementation
次に図 1により本発明の第 5の実施の形態について説明する。図 1に示す第 5の実 施の形態は、第 2の給水加熱器 8における給水温度上昇が、給水ポンプ 12による給 水の温度上昇を加えて算出されたものであり、他は第 1の実施の形態と略同一である  Next, a fifth embodiment of the present invention will be described with reference to FIG. In the fifth embodiment shown in FIG. 1, the feed water temperature rise in the second feed water heater 8 is calculated by adding the feed water temperature rise by the feed water pump 12, and the others are the first embodiment. It is almost the same as the embodiment
[0063] 給水ポンプ 12は給水を加熱してしまうため、給水が温度上昇する。このため、この 温度上昇を加えて、第 2の給水加熱器 8の 1台当たりの平均温度上昇を算出する。 [0063] Since the feed water pump 12 heats the feed water, the temperature of the feed water rises. Therefore, by adding this temperature rise, the average temperature rise per unit of the second feed water heater 8 is calculated.
[0064] また、第 3の実施の形態において、第 1の給水加熱器 7を除く給水加熱器 8, 26に おける給水温度上昇を、給水ポンプ 12による給水の温度上昇を加えて算出すること ちでさる。 [0064] In the third embodiment, the increase in the feed water temperature in the feed water heaters 8 and 26 excluding the first feed water heater 7 is calculated by adding the rise in the feed water temperature by the feed water pump 12. Chisaru
[0065] やはり、給水ポンプ 12は給水を加熱してしまうため、給水が温度上昇する。このた め、この温度上昇を加えて、第 1の給水加熱器 7を除く給水加熱器 8, 26の 1台当た りの平均温度上昇を算出する。  [0065] Again, since the feed water pump 12 heats the feed water, the temperature of the feed water rises. Therefore, by adding this temperature rise, the average temperature rise per feed water heater 8, 26 excluding the first feed water heater 7 is calculated.
[0066] ボイラ 4入口の給水温度はボイラ 4側で規定される事が多 、ので、値を固定して最 適化計算をしたところ、 1.9以上 3.5以下の温度上昇比条件の時、サイクル熱効率は 最大になった。 [0066] Since the feed water temperature at the inlet of boiler 4 is often specified on the boiler 4 side, optimization calculation was performed with the value fixed. As a result, when the temperature rise ratio was 1.9 or more and 3.5 or less, the cycle thermal efficiency Became the maximum.
[0067] なお、第 1の実施の形態にて記載した理由にカ卩えて、給水ポンプ 12の機械上の差 異による発熱差の影響もあるので、上述のように温度上昇比には範囲幅が生じてしま  [0067] In addition, because of the reason described in the first embodiment, there is also the influence of the heat generation difference due to the mechanical difference of the feed water pump 12, so the temperature rise ratio has a range width as described above. Has occurred
[0068] 上述のように、第 2の給水加熱器 8における給水温度上昇を、給水ポンプ 12による 給水の温度上昇を加えて算出したうえで、温度上昇比を規定することによって、第 1 の実施の形態及び第 3の実施の形態と同様に、サイクル熱効率を向上させることがで きる。 [0068] As described above, the first water supply temperature increase in the second water heater 8 is calculated by adding the temperature increase of the water supply by the water supply pump 12, and then the temperature increase ratio is defined to thereby perform the first implementation. As in the present embodiment and the third embodiment, the cycle thermal efficiency can be improved.
[0069] 第 6の実施の形態  [0069] Sixth embodiment
次に図 1により本発明の第 6の実施の形態について説明する。図 1に示す第 6の実 施の形態は、第 2の給水加熱器 8における給水の比ェンタルピ上昇力 給水ポンプ 1 2による給水の比ェンタルピ上昇をカ卩えて算出されたものであり、他は第 1の実施の 形態と略同一である。  Next, a sixth embodiment of the present invention will be described with reference to FIG. The sixth embodiment shown in FIG. 1 is calculated based on the increase in the specific enthalpy of the feed water by the feed water pump 8 in the second feed water heater 8 and the others. This is substantially the same as the first embodiment.
[0070] 給水ポンプ 12は給水を昇圧する物であり、さらに第 3の実施の形態で記載したよう に給水を加熱してしまうため、給水の比ェンタルピは上昇する。この比ェンタルピ上 昇を加えて、第 2の給水加熱器 8の 1台当たりの平均比ェンタルピ上昇を算出する。  [0070] The feed water pump 12 boosts the feed water, and further heats the feed water as described in the third embodiment, so that the specific enthalpy of the feed water rises. By adding this increase in the specific enthalpy, the average specific enthalpy increase per unit of the second feed water heater 8 is calculated.
[0071] また、本実施の形態は、前述の第 4の実施の形態において、第 1の給水加熱器 7を 除く給水加熱器 8, 26における給水の比ェンタルピ上昇を、給水ポンプ 12による給 水の比ェンタルピ上昇を加えて算出することもできる。  [0071] Further, in the present embodiment, in the above-described fourth embodiment, the increase in the specific enthalpy of the feed water in the feed water heaters 8 and 26 excluding the first feed water heater 7 is caused by the feed water pump 12 It can also be calculated by adding an increase in specific enthalpy.
[0072] やはり、給水ポンプ 12は給水を昇圧する物であり、さらに前述の第 3の実施の形態 で記載したように給水を加熱してしまうため、給水の比ェンタルピは上昇する。この比 ェンタルピ上昇をカ卩えて、第 1の給水加熱器 7を除く給水加熱器 8, 26の 1台当たり の平均比ェンタルピ上昇を算出する。 [0072] Again, the feed water pump 12 boosts the feed water, and further heats the feed water as described in the third embodiment, so that the specific enthalpy of the feed water increases. In view of this rise in the enthalpy, per unit of feed water heaters 8, 26 excluding the first feed water heater 7 Calculate the average specific enthalpy increase.
[0073] ボイラ 4入口の給水温度はボイラ 4側で規定される事が多 、ので、値を固定して最 適化計算をしたところ、 1.9以上 3.5以下の比ェンタルピ上昇比条件の時、サイクル 熱効率は最大になった。  [0073] Since the water supply temperature at the inlet of boiler 4 is often specified on the boiler 4 side, the optimization calculation was performed with a fixed value. When the specific enthalpy increase ratio was 1.9 or more and 3.5 or less, the cycle was Thermal efficiency was maximized.
[0074] 本実施の形態は、前述した第 1の実施の形態で記載した理由に加えて、給水ボン プ 12の機械上の差異による発熱差の影響もあるので、上述の方に比ェンタルピ上昇 比には範囲幅が生じてしまう。  [0074] In this embodiment, in addition to the reason described in the first embodiment described above, there is also an influence of the heat generation difference due to the mechanical difference of the water supply pump 12. The range will have a range.
[0075] 上述のように、給水の比ェンタルピ上昇を、給水ポンプ 12による給水の比ェンタル ピ上昇を加えて算出した上で、温度上昇比を規定することによって、第 2の実施の形 態及び第 4の実施の形態と同様に、サイクル熱効率を向上させることができる。  [0075] As described above, the increase in the specific enthalpy of the feed water is calculated by adding the increase in the specific enthalpy of the feed water by the feed water pump 12, and then the temperature rise ratio is defined, whereby the second embodiment and As in the fourth embodiment, the cycle thermal efficiency can be improved.
[0076] 第 7の実施の形態  [0076] Seventh embodiment
次に図 1により本発明の第 7の実施の形態について説明する。  Next, a seventh embodiment of the present invention will be described with reference to FIG.
[0077] 第 1の実施の形態、第 3の実施の形態及び第 5の実施の形態において、給水加熱 器 6の総数を 8個とし、温度上昇比が 1.9以上 3.5以下となるサイクル構成にする。経 済性を考慮すると大型火力発電所では給水加熱器 6の個数は 8個が良いとされてい るためである。  [0077] In the first embodiment, the third embodiment, and the fifth embodiment, the total number of feed water heaters 6 is 8, and the cycle configuration is such that the temperature rise ratio is 1.9 or more and 3.5 or less. . This is because considering the economy, it is considered that a good number of feed water heaters 6 is 8 in a large thermal power plant.
[0078] 図 1では中圧タービン 2からの抽気は排気を含めて 2箇所、低圧タービン 3からの抽 気は 4箇所だが、合計 6箇所であればどちらが何箇所でもよい。  [0078] In Fig. 1, the extraction from the intermediate pressure turbine 2 includes two places including exhaust, and the extraction from the low pressure turbine 3 includes four places.
[0079] 図 1では脱気器 9への抽気は中圧タービン排気抽気 32だが、そうでなくてもよい。  [0079] In FIG. 1, the bleed air to the deaerator 9 is medium pressure turbine exhaust bleed 32, but this need not be the case.
給水加熱器 6を 8個と限定して最適化計算したところ、 1.9以上 3.5以下の温度上昇 比条件の時、サイクル熱効率が最大になった。  When optimization calculation was performed with the number of feed water heaters 6 limited to 8, the cycle thermal efficiency was maximized when the temperature rise ratio was 1.9 or more and 3.5 or less.
[0080] 上述のように、第 1の実施の形態、第 3の実施の形態及び第 5の実施の形態におい て、給水加熱器 6の総数を 8個とし、温度上昇比を 1.9以上 3.5以下となるようなサイク ル構成にすることによって、第 1の実施の形態、第 3の実施の形態及び第 5の実施の 形態と同様に、サイクル熱効率を向上させることができる。  [0080] As described above, in the first embodiment, the third embodiment, and the fifth embodiment, the total number of feed water heaters 6 is 8, and the temperature increase ratio is 1.9 or more and 3.5 or less. By adopting such a cycle configuration, the cycle thermal efficiency can be improved as in the first embodiment, the third embodiment, and the fifth embodiment.
[0081] 第 8の実施の形餱  [0081] Eighth implementation form
次に図 1により本発明の第 8の実施の形態について説明する。  Next, an eighth embodiment of the present invention will be described with reference to FIG.
[0082] 第 2の実施の形態、第 4の実施の形態及び第 6の実施の形態において、給水加熱 器 6の総数を 8個とし、比ェンタルピ上昇比が 1.9以上 3.5以下となるサイクル構成に する。経済性を考慮すると大型火力発電所では給水加熱器 6の個数は 8個が良いと されているためである。 [0082] In the second embodiment, the fourth embodiment, and the sixth embodiment, feed water heating The total number of vessels 6 is 8, and the cycle composition is such that the specific enthalpy increase ratio is 1.9 or more and 3.5 or less. This is because the number of feed water heaters 6 is considered to be good for large thermal power plants in consideration of economy.
[0083] 図 1では中圧タービン 2からの抽気は排気を含めて 2箇所、低圧タービン 3からの抽 気は 4箇所だが、合計 6箇所であればどちらが何箇所でもよい。  [0083] In Fig. 1, the extraction from the medium pressure turbine 2 includes two places including exhaust, and the extraction from the low pressure turbine 3 takes four places.
[0084] 図 1では脱気器 9への抽気は中圧タービン排気抽気 32だが、そうでなくてもよい。  [0084] In FIG. 1, the bleed air to the deaerator 9 is medium pressure turbine exhaust bleed 32, but this need not be the case.
給水加熱器 6が 8個と限定して最適化計算したところ、 1.9以上 3.5以下の比ェンタル ピ上昇比条件の時、サイクル熱効率は最大になった。  The optimization calculation was limited to 8 feedwater heaters 6, and the cycle thermal efficiency was maximized when the specific enthalpy increase ratio was 1.9 or more and 3.5 or less.
[0085] 上述のように、第 2の実施の形態、第 4の実施の形態及び第 6の実施の形態におい て、給水加熱器 6の総数を 8個とし、比ェンタルピ上昇比を 1.9以上 3.5以下となるよう なサイクル構成にすることによって、第 2の実施の形態、第 4の実施の形態及び第 6 の実施の形態と同様に、サイクル熱効率を向上させることができる。  [0085] As described above, in the second embodiment, the fourth embodiment, and the sixth embodiment, the total number of the feed water heaters 6 is 8, and the increase ratio of the specific enthalpy is 1.9 or more 3.5. By adopting the cycle configuration as described below, cycle thermal efficiency can be improved as in the second embodiment, the fourth embodiment, and the sixth embodiment.
[0086] 第 9の実施の形態  [0086] Ninth Embodiment
次に図 2により本発明の第 9の実施の形態について説明する。図 2において、図 1 に示した部分と同一部分には同一符号を付して詳細な説明は省略する。  Next, a ninth embodiment of the present invention will be described with reference to FIG. 2, the same parts as those shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0087] 本実施の形態は、前述した第 1の実施の形態、第 3の実施の形態及び第 5の実施 の形態における、給水加熱器 6の総数を 8個から 1個増やして 9個とし、温度上昇比 が 1. 9以上かつ 3.5以下となるサイクル構成にする。経済性を考慮すると大型火力発 電所では給水加熱器 6の個数は 8個が良いとされているが、高効率化、高出力化、 主蒸気高温化が進むにつれ、 9個が良 ヽと 、う場合もあるためである。  [0087] In this embodiment, the total number of feed water heaters 6 in the first embodiment, the third embodiment, and the fifth embodiment described above is increased from eight to nine to nine. The cycle configuration is such that the temperature rise ratio is 1.9 or more and 3.5 or less. Considering economic efficiency, it is considered that eight feed water heaters 6 are good for large thermal power plants, but nine are good as efficiency, power output, and main steam temperature increase. This is because there are cases.
[0088] 図 2では中圧タービン 2からの抽気は排気を含めて 3箇所、低圧タービン 3からの抽 気は 4箇所だが、合計 7箇所であればどちらが何箇所でもよい。  [0088] In Fig. 2, the extraction from the medium pressure turbine 2 includes three places including exhaust, and the extraction from the low pressure turbine 3 is four places, but any number of places may be used as long as there are seven places in total.
[0089] 図 2では脱気器 9への抽気は中圧タービン排気 32だが、そうでなくてもよい。給水 加熱器 6が 9個と限定して最適化計算したところ、 1.9以上 3.5以下の温度上昇比条 件の時、サイクル熱効率は最大になった。  In FIG. 2, the bleed air to the deaerator 9 is medium pressure turbine exhaust 32, but this need not be the case. When the optimization calculation was performed by limiting the number of feed water heaters to nine, the cycle thermal efficiency was maximized when the temperature rise ratio was 1.9 or more and 3.5 or less.
[0090] 上述のように、本実施の形態は、第 1の実施の形態、第 3の実施の形態及び第 5の 実施の形態における、給水加熱器 6の総数を 8個から 1個増やして 9個とし、温度上 昇比が 1. 9以上かつ 3.5以下となるようなサイクル構成にすることによって、第 1の実 施の形態、第 3の実施の形態及び第 5の実施の形態と同様に、サイクル熱効率を向 上させることができる。 [0090] As described above, in this embodiment, the total number of feed water heaters 6 in the first embodiment, the third embodiment, and the fifth embodiment is increased from eight to one. By using a cycle configuration that has nine temperature rise ratios of 1.9 or more and 3.5 or less, Similar to the embodiment, the third embodiment, and the fifth embodiment, the cycle thermal efficiency can be improved.
[0091] 第 10の実施の形餱  [0091] Form of the tenth implementation
次に図 2により本発明の第 10の実施の形態について説明する。  Next, a tenth embodiment of the present invention will be described with reference to FIG.
[0092] 本実施の形態は、前述した第 2の実施の形態、第 4の実施の形態及び第 6の実施 の形態における、給水加熱器 6の総数を 8個から 1個増やして 9個とし、温度上昇比 力 以上 3.5以下となるサイクル構成にする。経済性を考慮すると大型火力発電所 では給水加熱器 6の個数は 8個が良いとされているが、高効率化、高出力化、主蒸 気高温化が進むにつれ、 9個が良 ヽと 、う場合もあるためである。  [0092] In the present embodiment, the total number of feed water heaters 6 in the second embodiment, the fourth embodiment, and the sixth embodiment described above is increased from eight to nine to nine. The cycle structure is such that the temperature rise ratio is 3.5 or less. Considering economic efficiency, it is said that 8 is a good number of feed water heaters 6 in large thermal power plants. However, as efficiency increases, output increases, and main steam temperature rises, 9 are good. This is because there are cases.
[0093] 図 2では中圧タービン 2からの抽気は排気を含めて 3箇所、低圧タービン 3からの抽 気は 4箇所だが、合計 7箇所であればどちらが何箇所でもよい。  [0093] In Fig. 2, the extraction from the medium pressure turbine 2 includes three places including exhaust, and the extraction from the low pressure turbine 3 is four places.
[0094] 図 2では脱気器 9への抽気は中圧タービン排気 32だが、そうでなくてもよい。給水 加熱器 6が 9個と限定して、最適化計算したところ、 1.9以上 3.5以下の比ェンタルピ 上昇比条件の時、サイクル熱効率は最大になった。  In FIG. 2, the bleed air to the deaerator 9 is medium pressure turbine exhaust 32, but this need not be the case. When the optimization calculation was performed by limiting the number of feed water heaters to nine, the cycle thermal efficiency was maximized when the specific enthalpy increase ratio was between 1.9 and 3.5.
[0095] 上述したように第 2の実施の形態、第 4の実施の形態及び第 6の実施の形態におけ る、給水加熱器 6の総数を 8個から 1個増やして 9個とし、比ェンタルピ上昇比を 1.9 以上 3.5以下となるようなサイクル構成にすることによって、第 2の実施の形態、第 4の 実施の形態及び第 6の実施の形態と同様に、サイクル熱効率を向上させることができ る。  [0095] As described above, the total number of the feed water heaters 6 in the second embodiment, the fourth embodiment, and the sixth embodiment is increased from 8 to 9, and the ratio is increased. By making the cycle configuration such that the enthalpy increase ratio is 1.9 or more and 3.5 or less, the cycle thermal efficiency can be improved as in the second, fourth, and sixth embodiments. it can.
[0096] 第 11の実施の形餱  [0096] Form of Eleventh Implementation
次に図 1及び図 2により本発明の第 11の実施の形態について説明する。  Next, an eleventh embodiment of the present invention will be described with reference to FIGS.
[0097] 第 1乃至 10の実施の形態において、ボイラ 4出口の蒸気温度が 600°C以上である サイクル構成にする。主蒸気 16が 600°C以上の場合、より効果が顕著になるためで ある。主蒸気 16温度の高温ィ匕によるサイクル熱効率の向上効果が、抽気蒸気 20の 条件設定により損なわず生力される。 [0097] In the first to tenth embodiments, a cycle configuration is adopted in which the steam temperature at the outlet of the boiler 4 is 600 ° C or higher. This is because the effect becomes more remarkable when the main steam 16 is 600 ° C or higher. The effect of improving the cycle thermal efficiency due to the high temperature of the main steam at 16 temperatures is viable without being impaired by the condition setting of the extracted steam 20.
[0098] 第 1乃至 10の実施の形態において、ボイラ 4出口の蒸気温度が 600°C以上である サイクル構成にすることによって、第 1乃至 10の実施の形態と同様に、サイクル熱効 率を向上させることができる。 [0098] In the first to tenth embodiments, by adopting a cycle configuration in which the steam temperature at the outlet of the boiler 4 is 600 ° C or higher, the cycle thermal efficiency is reduced as in the first to tenth embodiments. Can be improved.

Claims

請求の範囲 The scope of the claims
[1] 高圧タービンと、再熱タービンと、ボイラと、前記タービン力 の抽気蒸気により前記 ボイラへの給水を加熱する給水加熱器と、給水ポンプと、復水器とを備え、作動流体 が水である 1段再熱サイクルであり、かつ再生サイクルであるランキンサイクルにおい て、  [1] A high-pressure turbine, a reheat turbine, a boiler, a feed water heater that heats feed water to the boiler by extracted steam generated by the turbine power, a feed water pump, and a condenser, and the working fluid is water In the Rankine cycle, which is a one-stage reheat cycle and a regeneration cycle,
前記ボイラ出口の蒸気温度は、 590°C以上であり、  The steam temperature at the boiler outlet is 590 ° C or higher,
前記高圧タービンの排気からの抽気に対応した第 1の給水加熱器における給水温 度上昇と、前記第 1の給水加熱器より給水が低圧である第 2の給水加熱器における 給水温度上昇の平均との、温度上昇比が 1.9以上 3.5以下であることを特徴とした蒸 気タービンサイクル。  The average of the feed water temperature rise in the first feed water heater corresponding to the extraction from the exhaust of the high pressure turbine, and the average feed water temperature rise in the second feed water heater whose feed water is at a lower pressure than the first feed water heater. The steam turbine cycle is characterized by a temperature rise ratio of 1.9 to 3.5.
[2] 高圧タービンと、再熱タービンと、ボイラと、前記タービン力 の抽気蒸気により前記 ボイラへの給水を加熱する給水加熱器と、給水ポンプと、復水器とを備え、作動流体 が水である 1段再熱サイクルであり、かつ再生サイクルであるランキンサイクルにおい て、  [2] A high-pressure turbine, a reheat turbine, a boiler, a feed water heater that heats feed water to the boiler by the extracted steam of the turbine power, a feed water pump, and a condenser, and the working fluid is water In the Rankine cycle, which is a one-stage reheat cycle and a regeneration cycle,
前記ボイラ出口の蒸気温度は、 590°C以上であり、  The steam temperature at the boiler outlet is 590 ° C or higher,
前記高圧タービンの排気からの抽気に対応した第 1の給水加熱器における給水の 比ェンタルピ上昇と、前記第 1の給水加熱器より給水が低圧である第 2の給水加熱器 における給水の比ェンタルピ上昇の平均との、比ェンタルピ上昇比が 1.9以上 3.5以 下であることを特徴とした蒸気タービンサイクル。  Increase in specific enthalpy of feed water in the first feed water heater corresponding to extraction from the exhaust of the high pressure turbine, and increase in specific enthalpy of feed water in the second feed water heater where the feed water is at a lower pressure than the first feed water heater The steam turbine cycle is characterized by an increase in specific enthalpy of 1.9 to 3.5.
[3] 高圧タービンと、再熱タービンと、ボイラと、前記タービン力 の抽気蒸気により前記 ボイラへの給水を加熱する給水加熱器と、給水ポンプと、復水器とを備え、作動流体 が水である 1段再熱サイクルであり、かつ再生サイクルであるランキンサイクルにおい て、 [3] A high-pressure turbine, a reheat turbine, a boiler, a feed water heater that heats feed water to the boiler by the extracted steam of the turbine power, a feed water pump, and a condenser, and the working fluid is water In the Rankine cycle, which is a one-stage reheat cycle and a regeneration cycle,
前記ボイラ出口の蒸気温度は、 590°C以上であり、  The steam temperature at the boiler outlet is 590 ° C or higher,
前記高圧タービンの排気からの抽気に対応した第 1の給水加熱器における給水温 度上昇と、前記第 1の給水加熱器を除く給水加熱器における給水温度上昇の平均と の、温度上昇比が 1.9以上 3.5以下であることを特徴とした蒸気タービンサイクル。  The temperature rise ratio between the rise in feed water temperature in the first feed water heater corresponding to the extraction from the exhaust of the high pressure turbine and the average rise in feed water temperature in the feed water heaters excluding the first feed water heater is 1.9. A steam turbine cycle characterized by being 3.5 or less.
[4] 高圧タービンと、再熱タービンと、ボイラと、前記タービン力 の抽気蒸気により前記 ボイラへの給水を加熱する給水加熱器と、給水ポンプと、復水器とを備え、作動流体 が水である 1段再熱サイクルであり、かつ再生サイクルであるランキンサイクルにおい て、 [4] The high-pressure turbine, the reheat turbine, the boiler, and the extracted steam generated by the turbine power In the Rankine cycle, which is equipped with a feed water heater that heats feed water to the boiler, a feed water pump, and a condenser, and is a one-stage reheat cycle in which the working fluid is water and a regeneration cycle,
前記ボイラ出口の蒸気温度が 590°C以上であり、  The steam temperature at the boiler outlet is 590 ° C or higher,
前記高圧タービンの排気からの抽気に対応した第 1の給水加熱器における給水の 比ェンタルピ上昇と、前記第 1の給水加熱器を除く給水加熱器における給水の比ェ ンタルピ上昇の平均との、比ェンタルピ上昇比が 1.9以上 3.5以下であることを特徴と した蒸気タービンサイクル。  The ratio of the increase in the specific enthalpy of the feed water in the first feed water heater corresponding to the extraction from the exhaust of the high pressure turbine and the average increase in the specific enthalpy of the feed water in the feed water heater excluding the first feed water heater Steam turbine cycle characterized by an enthalpy increase ratio of 1.9 to 3.5.
[5] 第 2の給水加熱器における給水温度上昇は、給水ポンプによる給水の温度上昇を 加えて算出されることを特徴とした請求項 1又は 3のいずれかに記載の蒸気タービン サイクル。 [5] The steam turbine cycle according to any one of claims 1 and 3, wherein the feed water temperature rise in the second feed water heater is calculated by adding the feed water temperature rise by the feed water pump.
[6] 第 2の給水加熱器における給水の比ェンタルピ上昇は、給水ポンプによる給水の 比ェンタルピ上昇をカ卩えて算出されることを特徴とした請求項 2又は 4のいずれかに 記載の蒸気タービンサイクル。  [6] The steam turbine according to claim 2 or 4, wherein the increase in the specific enthalpy of the feed water in the second feed water heater is calculated taking into account the increase in the specific enthalpy of the feed water by the feed water pump. cycle.
[7] 前記給水加熱器の総数は 8個であり、 [7] The total number of feed water heaters is 8,
前記温度上昇比が 1.9以上 3.5以下であることを特徴とした請求項 1、 3又は 5のい ずれかに記載の蒸気タービンサイクル。  6. The steam turbine cycle according to claim 1, wherein the temperature increase ratio is 1.9 or more and 3.5 or less.
[8] 前記給水加熱器の総数は 8個であり、 [8] The total number of the feed water heaters is 8,
前記比ェンタルピ上昇比が 1.9以上 3.5以下であることを特徴とした請求項 2、 4又 は 6の 、ずれかに記載の蒸気タービンサイクル。  The steam turbine cycle according to any one of claims 2, 4, and 6, wherein the ratio of rise in specific enthalpy is 1.9 or more and 3.5 or less.
[9] 前記給水加熱器の総数は 9個であり、 [9] The total number of water heaters is nine,
前記温度上昇比が 1.9以上 3.5以下であることを特徴とした請求項 1、 3又は 5のい ずれかに記載の蒸気タービンサイクル。  6. The steam turbine cycle according to claim 1, wherein the temperature increase ratio is 1.9 or more and 3.5 or less.
[10] 前記給水加熱器の総数は 9個であり、 [10] The total number of water heaters is nine;
前記比ェンタルピ上昇比が 1.9以上 3.5以下であることを特徴とした請求項 2、 4又 は 6の 、ずれかに記載の蒸気タービンサイクル。  The steam turbine cycle according to any one of claims 2, 4, and 6, wherein the ratio of rise in specific enthalpy is 1.9 or more and 3.5 or less.
[11] 前記ボイラ出口の蒸気温度は、 600°C以上であることを特徴とした請求項 1乃至 10 の!、ずれか 1項に記載の蒸気タービンサイクル。 11. The steam turbine cycle according to any one of claims 1 to 10, wherein the steam temperature at the boiler outlet is 600 ° C or higher.
PCT/JP2006/325524 2006-01-20 2006-12-21 Steam turbine cycle WO2007083478A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2006800405919A CN101300407B (en) 2006-01-20 2006-12-21 Steam turbine cycle
EP06843008.1A EP1965043B1 (en) 2006-01-20 2006-12-21 Steam turbine cycle
US12/092,796 US20090094983A1 (en) 2006-01-20 2006-12-21 Steam turbine cycle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-012124 2006-01-20
JP2006012124A JP4621597B2 (en) 2006-01-20 2006-01-20 Steam turbine cycle

Publications (1)

Publication Number Publication Date
WO2007083478A1 true WO2007083478A1 (en) 2007-07-26

Family

ID=38287434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325524 WO2007083478A1 (en) 2006-01-20 2006-12-21 Steam turbine cycle

Country Status (6)

Country Link
US (1) US20090094983A1 (en)
EP (1) EP1965043B1 (en)
JP (1) JP4621597B2 (en)
KR (1) KR20080038233A (en)
CN (1) CN101300407B (en)
WO (1) WO2007083478A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8443606B2 (en) 2008-03-26 2013-05-21 Babcock & Wilcox Power Generation Group, Inc. Enhanced steam cycle utilizing a dual pressure recovery boiler with reheat
CN113898429A (en) * 2021-11-09 2022-01-07 华北电力大学(保定) Supercritical reheat regenerative Rankine cycle system

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2468214C2 (en) 2007-03-30 2012-11-27 Сименс Акциенгезелльшафт Device including steam turbine and condenser
EP2204553A1 (en) * 2008-06-23 2010-07-07 Siemens Aktiengesellschaft Steam power assembly
EP2333256B1 (en) * 2009-12-08 2013-10-16 Alstom Technology Ltd Power plant with CO2 capture and method to operate such power plant
US8161724B2 (en) * 2010-03-31 2012-04-24 Eif Nte Hybrid Intellectual Property Holding Company, Llc Hybrid biomass process with reheat cycle
US8596034B2 (en) 2010-03-31 2013-12-03 Eif Nte Hybrid Intellectual Property Holding Company, Llc Hybrid power generation cycle systems and methods
US8418467B2 (en) * 2010-06-29 2013-04-16 General Electric Company System including feedwater heater for extracting heat from low pressure steam turbine
JP5818557B2 (en) 2010-10-19 2015-11-18 株式会社東芝 Steam turbine plant
JP5912323B2 (en) 2010-10-19 2016-04-27 株式会社東芝 Steam turbine plant
JP5672450B2 (en) * 2011-02-25 2015-02-18 株式会社ササクラ Fresh water generator and fresh water generation method
US8495878B1 (en) * 2012-04-09 2013-07-30 Eif Nte Hybrid Intellectual Property Holding Company, Llc Feedwater heating hybrid power generation
CN103696816B (en) * 2013-12-15 2016-05-25 河南省电力勘测设计院 A kind of resuperheat low capacity split shaft Turbo-generator Set
RU2560510C1 (en) * 2014-03-11 2015-08-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") Operating method of thermal power plant
RU2560607C1 (en) * 2014-04-07 2015-08-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") Heat power plant operation mode
RU2562730C1 (en) * 2014-05-06 2015-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") Utilisation method of thermal energy generated by thermal power plant
RU2562724C1 (en) * 2014-05-06 2015-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") Utilisation method of thermal energy generated by thermal power plant
CN104358596B (en) * 2014-10-31 2016-05-18 中国大唐集团科学技术研究院有限公司 Many steam turbines cogeneration ultra supercritical unit
CN110206601A (en) * 2019-06-04 2019-09-06 大唐郓城发电有限公司 A kind of steam turbine air inlet protective device
CN111946412A (en) * 2020-07-06 2020-11-17 东方电气集团东方汽轮机有限公司 Back pressure type steam turbine system with heat regeneration system
CN112780373B (en) * 2020-12-30 2022-11-11 华北电力大学(保定) Water vapor cycle based on supercritical and subcritical heat regeneration
CN113137290A (en) * 2021-05-28 2021-07-20 西安热工研究院有限公司 High-parameter steam turbine steam reheating circulating system
CN113137289A (en) * 2021-05-28 2021-07-20 西安热工研究院有限公司 Double-machine heat regeneration-based double reheating 650 ℃ ultra-supercritical coal-fired power generation system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015939A (en) * 1973-06-15 1975-02-20
JPH07233704A (en) * 1994-02-22 1995-09-05 Hitachi Ltd Steam turbine power plant and steam turbine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4314442A (en) * 1978-10-26 1982-02-09 Rice Ivan G Steam-cooled blading with steam thermal barrier for reheat gas turbine combined with steam turbine
JPS61205309A (en) * 1985-03-08 1986-09-11 Hitachi Ltd Protective operating method and its device of feed water heater
JPH04298604A (en) * 1990-11-20 1992-10-22 General Electric Co <Ge> Combined cycle power plant and steam supply method
US5836162A (en) * 1996-08-08 1998-11-17 Power Software Associates, Inc. Feedwater heater drain recycle system
CN1318737C (en) * 2000-05-31 2007-05-30 西门子公司 Method and device operating system turbine comprising sereral no-load or light-load phases

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015939A (en) * 1973-06-15 1975-02-20
JPH07233704A (en) * 1994-02-22 1995-09-05 Hitachi Ltd Steam turbine power plant and steam turbine

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BARTLETT L.B.: "Joki Turbine Seino to Keizaisei", 30 November 1965, OHMSHA, LTD., pages: 142 - 143 *
See also references of EP1965043A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8443606B2 (en) 2008-03-26 2013-05-21 Babcock & Wilcox Power Generation Group, Inc. Enhanced steam cycle utilizing a dual pressure recovery boiler with reheat
CN113898429A (en) * 2021-11-09 2022-01-07 华北电力大学(保定) Supercritical reheat regenerative Rankine cycle system

Also Published As

Publication number Publication date
KR20080038233A (en) 2008-05-02
EP1965043A1 (en) 2008-09-03
JP2007192152A (en) 2007-08-02
US20090094983A1 (en) 2009-04-16
EP1965043B1 (en) 2016-03-09
CN101300407B (en) 2011-01-19
JP4621597B2 (en) 2011-01-26
EP1965043A4 (en) 2014-07-02
CN101300407A (en) 2008-11-05

Similar Documents

Publication Publication Date Title
WO2007083478A1 (en) Steam turbine cycle
JP4700786B2 (en) Method and apparatus for humidifying and heating fuel gas
EP2541021B1 (en) System for fuel gas moisturization and heating
KR101594323B1 (en) Power plant with integrated fuel gas preheating
US20100170218A1 (en) Method for expanding compressor discharge bleed air
JP7132186B2 (en) Steam power generation plant, modification method of steam power generation plant, and method of operating steam power generation plant
CA2679811C (en) High efficiency feedwater heater
CN104832902B (en) 720 DEG C high-efficiency supercritical secondary reheat steam turbine set optimization scheme
Srinivas et al. Thermodynamic modeling and optimization of multi-pressure heat recovery steam generator in combined power cycle
US10287922B2 (en) Steam turbine plant, combined cycle plant provided with same, and method of operating steam turbine plant
JP2010242673A (en) Steam turbine system and method for operating the same
JP5591377B2 (en) Steam rankin plant
WO2015077095A2 (en) Selective pressure kettle boiler for rotor air cooling applications
JPH1061413A (en) Exhaust reburning type compound power plant
EP2472072B1 (en) A saturated steam thermodynamic cycle for a turbine and an associated installation
JP3017937B2 (en) Hydrogen combustion turbine plant
US20140069078A1 (en) Combined Cycle System with a Water Turbine
JP2007183068A (en) Once-through exhaust heat recovery boiler
JP2004169625A (en) Co-generation plant and its starting method
JP2004245184A (en) Reheat steam turbine plant and starting method for the plant
Jordal et al. New possibilities for combined cycles through advanced steam technology
JP2005155340A (en) Steam turbine plant
JP6101604B2 (en) Steam turbine plant, combined cycle plant equipped with the same, and method of operating a steam turbine plant
RU2776091C1 (en) Thermal power plant
RU2686541C1 (en) Steam-gas plant

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680040591.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087006641

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006843008

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12092796

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE