JP2005155340A - Steam turbine plant - Google Patents

Steam turbine plant Download PDF

Info

Publication number
JP2005155340A
JP2005155340A JP2003391101A JP2003391101A JP2005155340A JP 2005155340 A JP2005155340 A JP 2005155340A JP 2003391101 A JP2003391101 A JP 2003391101A JP 2003391101 A JP2003391101 A JP 2003391101A JP 2005155340 A JP2005155340 A JP 2005155340A
Authority
JP
Japan
Prior art keywords
steam
pressure bleed
steam turbine
valve
bleed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003391101A
Other languages
Japanese (ja)
Inventor
Atsuo Kinoshita
敦夫 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003391101A priority Critical patent/JP2005155340A/en
Publication of JP2005155340A publication Critical patent/JP2005155340A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steam turbine plant improving steam turbine plant thermal efficiency by using types of turbine extraction steam appropriately, when supplying turbine extraction steam from a steam turbine to a feedwater heater. <P>SOLUTION: This steam turbine plant is constituted, such that a turbine extraction steam pipe supplying turbine extraction steam from the steam turbine 12 to the feedwater heater 16 is divided into a high-pressure extraction steam pipe 19 positioned in an upstream side of the steam turbine 12 and a low-pressure extraction steam pipe 21 positioned in the downstream side of the steam turbine 12, and that the high-pressure extraction steam pipe 19 and the low-pressure extraction steam pipe 21 are used appropriately in accordance with operation types or the like. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、蒸気タービンプラントに係り、特に蒸気タービンの途中段落から抽気したタービン抽気を給水加熱器に運転状態に見合って効果的に供給する蒸気タービンプラントに関する。   The present invention relates to a steam turbine plant, and more particularly, to a steam turbine plant that effectively supplies turbine bleed air extracted from an intermediate stage of the steam turbine to a feed water heater in accordance with an operating state.

従来、事業用の蒸気タービンプラントは、プラントの高出力化、高熱効率化を求めてランキンサイクルを発展させた再熱サイクル、再生サイクルを組み込んだものが多い。   Conventionally, many steam turbine plants for business use incorporate a reheat cycle and a regeneration cycle that are developed from the Rankine cycle in order to increase the output and heat efficiency of the plant.

これらのサイクルの中で、再生サイクルは、蒸気タービンで膨張仕事中の蒸気をタービン中間段落から抽気し、抽気したタービン抽気を給水加熱器に供給し、給水加熱器からボイラ等の蒸気発生器に還流させる復水・給水を加熱させ、蒸気発生器で蒸気を発生させる際、燃料を少なくしてプラント熱効率を向上させるもので、その例示として図6に示す構成のものがある。   Among these cycles, the regeneration cycle is a process in which steam that is being expanded by a steam turbine is extracted from an intermediate stage of the turbine, and the extracted turbine extracted air is supplied to a feed water heater, and the feed water heater is used to generate a steam generator such as a boiler. When the condensate / feed water to be refluxed is heated and steam is generated by a steam generator, fuel is reduced to improve plant thermal efficiency. As an example, there is a structure shown in FIG.

蒸気タービンプラントは、ボイラ等の蒸気発生器1、蒸気タービン2、発電機3、復水器4、復水・給水系5に組み入れた給水ポンプ6、給水加熱器7を備え、蒸気発生器1から発生した蒸気を蒸気タービン2に供給し、ここで膨張仕事をさせ、その際に発生する動力(回転トルク)で発電機3を回転駆動する。   The steam turbine plant includes a steam generator 1 such as a boiler, a steam turbine 2, a generator 3, a condenser 4, a feed water pump 6 incorporated in a condensate / feed water system 5, and a feed water heater 7. The steam generated from the steam is supplied to the steam turbine 2 where expansion work is performed, and the generator 3 is rotationally driven by power (rotational torque) generated at that time.

また、蒸気タービンプラントは、蒸気タービン2で膨張仕事を終えたタービン排気を復水器4で凝縮させて復水にし、その復水を昇圧脱塩して復水・給水にして給水ポンプ6、高圧給水加熱器7のそれぞれに順次供給し、ここで蒸気タービン2の中間段落からタービン抽気管9を介して給水加熱器7に供給されるタービン抽気を加熱源として復水・給水系5の復水・給水を加熱(再生)させ、加熱させた復水・給水を蒸気発生器1に戻している。   Further, the steam turbine plant condenses the turbine exhaust that has finished the expansion work in the steam turbine 2 into the condensate, condenses the condensate, pressurizes and demineralizes the condensate into the condensate / feed water, Each of the high-pressure feed water heaters 7 is sequentially supplied. Here, the turbine bleed supplied from the middle stage of the steam turbine 2 through the turbine bleed pipe 9 to the feed water heater 7 is used as a heating source to restore the condensate / feed water system 5. The water / feed water is heated (regenerated), and the heated condensate / feed water is returned to the steam generator 1.

なお、高圧給水加熱器7で復水・給水系5からの復水・給水を加熱させたタービン抽気は、ドレンとしてドレン管8を介して復水器4または復水・給水系5に供給され、復水・給水として再利用される。   The turbine bleed air heated by the high pressure feed water heater 7 from the condensate / feed water system 5 is supplied to the condenser 4 or the condensate / feed water system 5 through the drain pipe 8 as a drain. Reused as condensate / water supply.

また、図6は、説明の便宜上、蒸気タービン2を1ケーシングタイプとして表わしているが、実際には、高圧タービンケーシング、中圧タービンケーシング、低圧タービンケーシングの3ケーシングタイプが多く使用されている。この場合、高圧タービンで膨張仕事を終えたタービン排気は、蒸気発生器1に戻され、ここで組み込まれた再熱器で再熱される。再熱器で再熱された再熱蒸気は、中圧タービンを経て低圧タービンに供給される、いわゆる再熱サイクルが組み込まれている。   FIG. 6 shows the steam turbine 2 as one casing type for convenience of explanation, but actually, three casing types of a high pressure turbine casing, a medium pressure turbine casing, and a low pressure turbine casing are often used. In this case, the turbine exhaust that has finished the expansion work in the high-pressure turbine is returned to the steam generator 1 and reheated by the reheater incorporated therein. The reheat steam reheated by the reheater incorporates a so-called reheat cycle in which the reheat steam is supplied to the low pressure turbine via the intermediate pressure turbine.

ところで、上述の構成に基づくランキンサイクルに、再生サイクルおよび再熱サイクルを加えた熱サイクルは、図7に示すように、作動蒸気の状態量の熱移動をTH線図(温度・エントロピ線図)で表わすことができる。なお、図7に示すTH線は、図6の符号に対応させてある。   By the way, in the heat cycle in which the regeneration cycle and the reheat cycle are added to the Rankine cycle based on the above-described configuration, the heat transfer of the state quantity of the working steam is shown in a TH diagram (temperature / entropy diagram) as shown in FIG. It can be expressed as The TH line shown in FIG. 7 corresponds to the reference numeral in FIG.

図7に示すTH線図において、点Aで蒸気発生器1に供給される復水・給水は、ここで加熱されて蒸発し、飽和蒸気線を超えて点Bの過熱蒸気になる。過熱蒸気は、蒸気タービン2で膨張仕事をし、点Cの飽和蒸気線を経て点Dの湿り蒸気域までヒートドロップ(温度降下)する。そのときのエンタルピはp(kJ/kg°K)である。   In the TH diagram shown in FIG. 7, the condensate / feed water supplied to the steam generator 1 at the point A is heated and evaporated here, and becomes superheated steam at the point B beyond the saturated steam line. The superheated steam performs expansion work in the steam turbine 2 and heat-drops (drops in temperature) through the saturated steam line at point C to the wet steam region at point D. The enthalpy at that time is p (kJ / kg ° K).

ヒートドロップしたタービン排気は、復水器4で等温変化の下、点Eまで凝縮され、復水・給水になる。そのときのエンタルピはp(kJ/kg°K)である。   The heat exhausted turbine exhaust is condensed to point E under isothermal change in the condenser 4 to become condensate / water supply. The enthalpy at that time is p (kJ / kg ° K).

復水器4から出た復水・給水は、給水ポンプ6で昇圧されて点Fになり、さらに給水加熱器7で加熱されて点bになった後、蒸気発生器1に戻され、点Aになる。   The condensate / water supply from the condenser 4 is boosted by the feed water pump 6 to a point F, further heated by the feed water heater 7 to a point b, and then returned to the steam generator 1. Become A.

このときの理論蒸気タービンプラント熱効率(タービンサイクル効率)は、面積BCDEFbAと面積BCDpqEFbAとの比で表わされる。   The theoretical steam turbine plant thermal efficiency (turbine cycle efficiency) at this time is represented by the ratio of the area BCDEFbA and the area BCCDpqEFbA.

ところが、再生サイクルは、復水・給水が給水加熱器7を流れる際、蒸気タービン2からのタービン抽気を熱源として加熱されるので、その熱サイクルの面積がBCDabAになる。そして、点aにおける復水・給水のエンタルピはr(kJ/kg°K)である。   However, in the regeneration cycle, when the condensate / feed water flows through the feed water heater 7, it is heated using turbine bleed air from the steam turbine 2 as a heat source, so the area of the heat cycle becomes BCDabA. The enthalpy of condensate / water supply at point a is r (kJ / kg ° K).

一方、再生サイクルを組み入れた理論蒸気タービンプラント熱効率は、面積BCDprabAと面積BCDabAとの比になるので、上述で求めたランキンサイクルの面積比に較べて面積rabFEq分だけ少なくなって蒸気タービンプラント熱効率を向上させることができる。   On the other hand, the thermal efficiency of the theoretical steam turbine plant incorporating the regeneration cycle is the ratio of the area BCDprabA and the area BCDabA. Can be improved.

このようなプラント全体のヒートバランスを考慮して、例えば給水エンタルピに着目しながらタービンからの抽気蒸気制御する技術が原子炉の運転制御に活用されている(例えば特許文献1参照)。
特開昭56−43598号公報
Considering such a heat balance of the entire plant, for example, a technique for controlling extraction steam from a turbine while paying attention to water supply enthalpy is used for operation control of a nuclear reactor (see, for example, Patent Document 1).
JP 56-43598 A

図7で示したTH線図は、定格負荷(100%負荷)運転時の作動流体の状態量の熱移動を示すものであるが、部分負荷運転になると、TH線図は図8に示すように、作動流体の状態量の熱移動も変わる。なお、図8中、実線および添字「なし」は、定格負荷運転時のものであり、破線および添字「ゼロ」は部分負荷運転時のものである。   The TH diagram shown in FIG. 7 shows the heat transfer of the state quantity of the working fluid at the rated load (100% load) operation. In the partial load operation, the TH diagram is as shown in FIG. In addition, the heat transfer of the state quantity of the working fluid also changes. In FIG. 8, the solid line and the suffix “none” are those during rated load operation, and the broken line and the suffix “zero” are those during partial load operation.

一般に、蒸気タービンプラントは、定格運転時、蒸気タービンの入口蒸気温度を一定に維持させ、蒸気流量を制御することにより負荷の調整を行っている。   In general, a steam turbine plant adjusts a load by maintaining a constant steam temperature at the inlet of a steam turbine and controlling a steam flow rate during rated operation.

ところが、部分負荷運転に入った場合、蒸気タービンの中間段落から給水加熱器に供給されるタービン抽気の流量は少なくなる。このため、蒸気発生器に供給される復水・給水の温度は、定格運転時の点Aに較べて点Aの位置となって低くなり、蒸気の状態量が点Bから点Cの飽和蒸気線を経て点Dの湿り蒸気域までヒートドロップ(温度降下)する。そのときのエンタルピは、p(kJ/kg°K)である。 However, when the partial load operation is started, the flow rate of the turbine bleed supplied to the feed water heater from the middle stage of the steam turbine decreases. For this reason, the temperature of the condensate / feed water supplied to the steam generator becomes lower at the position of point A 0 than at point A during rated operation, and the steam state quantity changes from point B 0 to point C 0. Heat drop (temperature drop) to the wet steam region at point D 0 through the saturated vapor line. The enthalpy at that time is p 0 (kJ / kg ° K).

ヒートドロップし、膨張仕事を終えたタービン排気は、復水器で凝縮されて復水・給水となる。そして、復水・給水は、給水ポンプで昇圧され、給水加熱器で加熱され、蒸気発生器に戻される。   The turbine exhaust, which has been subjected to heat drop and finished the expansion work, is condensed in the condenser to become condensate / water supply. Then, the condensate / feed water is boosted by the feed water pump, heated by the feed water heater, and returned to the steam generator.

ヒートドロップしたタービン排気は、点a、点bの位置を経て蒸気発生器に戻される際、点Aに熱移動する。なお、点aのときのエンタルピは、r(kJ/kg°K)である。 The heat-dropped turbine exhaust heat-transfers to the point A 0 when returning to the steam generator through the positions of the points a 0 and b 0 . The enthalpy at the point a 0 is r 0 (kJ / kg ° K).

このときの部分負荷熱効率は、面積Bと面積Bの比となり、定格運転に較べて蒸気タービンプラント熱効率が悪くなる。 The partial load thermal efficiency at this time is a ratio of the area B 0 C 0 D 0 p 0 r 0 a 0 b 0 A 0 to the area B 0 C 0 D 0 a 0 b 0 A 0 , and is a steam turbine compared to the rated operation. Plant thermal efficiency becomes poor.

このように、蒸気タービンプラントでは、部分負荷運転時、蒸気タービンプラント熱効率が悪くなることが知られているが、部分負荷運転時でも蒸気タービンプラント熱効率を向上させることが燃料の節約の観点からも大切である。   Thus, in a steam turbine plant, it is known that the thermal efficiency of the steam turbine plant deteriorates during partial load operation, but improving the steam turbine plant thermal efficiency even during partial load operation is also from the viewpoint of saving fuel. It is important.

部分負荷運転時の蒸気タービンプラント熱効率のみの向上を図るならば、蒸気タービンプラントは、タービン抽気口をより蒸気タービン入口側に近い位置に設定することで蒸気温度をより一層高くすることができるので、給水加熱器を通過する復水・給水の温度も高くすることができると考えられる。   If only the steam turbine plant thermal efficiency at the time of partial load operation is to be improved, the steam turbine plant can further increase the steam temperature by setting the turbine bleed port closer to the steam turbine inlet side. It is considered that the temperature of the condensate / feed water passing through the feed water heater can also be increased.

しかし、タービン抽気口の適正位置は、タービン負荷(出力)の増減に依存して変動するものであり、タービン負荷が部分負荷運転から定格負荷運転になった場合、給水加熱器に供給するタービン抽気量分だけ膨張仕事ができなくなり、蒸気タービンプラント熱効率が低下する問題がある。   However, the appropriate position of the turbine bleed port varies depending on the increase or decrease of the turbine load (output). When the turbine load is changed from the partial load operation to the rated load operation, the turbine bleed air supplied to the feed water heater is used. There is a problem that expansion work cannot be performed by an amount, and the thermal efficiency of the steam turbine plant is lowered.

また、タービン抽気口を蒸気タービンの入口側近くに設定しておくと、部分負荷運転から定格運転になったとき、タービン抽気温度が高過ぎて蒸気発生器に供給する復水・給水が設計温度を超え、蒸気発生器等の事故発生の要因になる。   In addition, if the turbine bleed port is set near the inlet side of the steam turbine, the turbine bleed temperature will be too high and the condensate / feed water supplied to the steam generator will be at the design temperature when the partial load operation is switched to the rated operation. It becomes a factor of accident occurrence of steam generators.

本発明は、このような事情を踏まえて部分負荷時の蒸気タービンプラント熱効率の向上を図るものであり、蒸気タービンに複数のタービン抽気口を設定し、運転状態等に応じてタービン抽気口を使い分け、定格運転時、蒸気タービンプラントに安定運転をさせつつ、部分負荷運転時の蒸気タービンプラント熱効率をより一層向上させる蒸気タービンプラントを提供することを目的とする。   The present invention is intended to improve the thermal efficiency of the steam turbine plant at the time of partial load in view of such circumstances, and a plurality of turbine bleed ports are set in the steam turbine, and the turbine bleed ports are selectively used according to the operation state and the like. An object of the present invention is to provide a steam turbine plant that further improves the thermal efficiency of the steam turbine plant during partial load operation while allowing the steam turbine plant to stably operate during rated operation.

本発明に係る蒸気タービンプラントは、上述の目的を達成するために、請求項1に記載したように、蒸気タービンから給水加熱器にタービン抽気を供給するタービン抽気管を、蒸気タービンの上流側に位置する高圧抽気管とその下流側に位置する低圧抽気管とに区分けするとともに、前記高圧抽気管と前記低圧抽気管とを運転の種類および作動流体の状態量のうち、いずれか一方に応じて使い分ける構成にしたものである。   In order to achieve the above-mentioned object, a steam turbine plant according to the present invention has a turbine bleed pipe for supplying turbine bleed gas from a steam turbine to a feed water heater on the upstream side of the steam turbine. The high-pressure bleed pipe is divided into a low-pressure bleed pipe located downstream of the high-pressure bleed pipe and the high-pressure bleed pipe and the low-pressure bleed pipe according to either the type of operation or the state quantity of the working fluid. It is configured to use properly.

また、本発明に係る蒸気タービンプラントは、上述の目的を達成するために、請求項2に記載したように、高圧抽気管は、高圧抽気弁を備えるとともに、この高圧抽気弁に、部分負荷運転時、開弁指令を与える抽気弁開閉制御装置を備えたものである。   In order to achieve the above object, the steam turbine plant according to the present invention includes a high pressure bleed pipe having a high pressure bleed valve, and a partial load operation. And a bleed valve opening / closing control device for giving a valve opening command.

また、本発明に係る蒸気タービンプラントは、上述の目的を達成するために、請求項3に記載したように、低圧抽気管は、低圧抽気弁を備えるとともに、この低圧抽気弁に、定格運転時、開弁指令を与える抽気弁開閉制御装置を備えたものである。   In order to achieve the above-mentioned object, the steam turbine plant according to the present invention includes a low-pressure bleed pipe having a low-pressure bleed valve as described in claim 3, and the low-pressure bleed valve is connected to the low-pressure bleed valve during rated operation. A bleed valve opening / closing control device for giving a valve opening command is provided.

また、本発明に係る蒸気タービンプラントは、上述の目的を達成するために、請求項4に記載したように、高圧抽気管は、高圧抽気弁を備えるとともに、蒸気発生器から発生した主蒸気が予め定められた圧力よりも低いとき、その主蒸気圧力信号に基づいて前記高圧抽気弁に開弁指令を与える抽気弁開閉制御装置を備えたものである。   In order to achieve the above-mentioned object, the steam turbine plant according to the present invention includes a high-pressure bleed pipe having a high-pressure bleed valve and a main steam generated from the steam generator. When the pressure is lower than a predetermined pressure, a bleed valve opening / closing control device is provided that gives a valve opening command to the high pressure bleed valve based on the main steam pressure signal.

また、本発明に係る蒸気タービンプラントは、上述の目的を達成するために、請求項5に記載したように、低圧抽気管は、低圧抽気弁を備えるとともに、蒸気発生器から発生した主蒸気が予め定められた圧力よりも高いとき、その主蒸気圧力信号に基づいて前記低圧抽気弁に開弁指令を与える抽気弁開閉制御装置を備えたものである。   In order to achieve the above object, the steam turbine plant according to the present invention includes a low pressure bleed pipe having a low pressure bleed valve and a main steam generated from the steam generator. When the pressure is higher than a predetermined pressure, a bleed valve opening / closing control device is provided that gives a valve opening command to the low pressure bleed valve based on the main steam pressure signal.

また、本発明に係る蒸気タービンプラントは、上述の目的を達成するために、請求項6に記載したように、高圧抽気管は、高圧抽気弁を備えるとともに、発電機からの電気出力が予め定められた電気出力よりも低いとき、その電気出力信号に基づいて前記高圧抽気弁に開弁指令を与える抽気弁開閉制御装置を備えたものである。   In order to achieve the above-mentioned object, the steam turbine plant according to the present invention includes a high-pressure bleed pipe having a high-pressure bleed valve and a predetermined electrical output from the generator. When the electric output is lower than the output, a bleed valve opening / closing control device is provided that gives a valve opening command to the high pressure bleed valve based on the electric output signal.

また、本発明に係る蒸気タービンプラントは、上述の目的を達成するために、請求項7に記載したように、低圧抽気管は、低圧抽気弁を備えるとともに、発電機からの電気出力が予め定められた電気出力よりも高いとき、その電気出力信号に基づいて前記低圧抽気弁に開弁指令を与える抽気弁開閉制御装置を備えたものである。   In order to achieve the above object, the steam turbine plant according to the present invention includes a low pressure bleed pipe having a low pressure bleed valve and a predetermined electrical output from the generator. When the output is higher than the output, the extraction valve opening / closing control device is provided that gives a valve opening command to the low pressure extraction valve based on the electric output signal.

また、本発明に係る蒸気タービンプラントは、上述の目的を達成するために、請求項8に記載したように、高圧抽気管は、高圧抽気弁を備えるとともに、蒸気発生器の入口側の復水・給水が予め定められた温度よりも低いとき、その復水・給水温度信号に基づいて前記高圧抽気弁に開弁指令を与える抽気弁開閉制御装置を備えたものである。   In order to achieve the above object, the steam turbine plant according to the present invention includes a high-pressure extraction pipe having a high-pressure extraction valve and a condensate on the inlet side of the steam generator. A bleed valve opening / closing control device that gives a valve opening command to the high pressure bleed valve based on the condensate / feed water temperature signal when the feed water is lower than a predetermined temperature.

また、本発明に係る蒸気タービンプラントは、上述の目的を達成するために、請求項9に記載したように、低圧抽気管は、低圧抽気弁を備えるとともに、蒸気発生器の入口側の復水・給水が予め定められた温度よりも高いとき、その復水・給水温度信号に基づいて前記低圧抽気弁に開弁指令を与える抽気弁開閉制御装置を備えたものである。   In order to achieve the above-mentioned object, the steam turbine plant according to the present invention includes a low-pressure bleed pipe and a condensate on the inlet side of the steam generator. A bleed valve opening / closing control device that provides a valve opening command to the low pressure bleed valve based on the condensate / feed water temperature signal when the feed water is higher than a predetermined temperature.

本発明に係る蒸気タービンプラントは、蒸気タービンの中間段落から給水加熱器にタービン抽気を供給する抽気口を高圧側と低圧側とのそれぞれに区分けし、区分けした高圧側の系統と低圧側の系統とのそれぞれに抽気弁を備え、定格運転時、低圧側の抽気弁を開弁させるとともに、部分負荷運転時、高圧側の抽気弁を開弁させ、運転の種類および作動流体の状態量のうち、いずれか一方に応じて抽気弁の開閉を使い分ける構成にしたので、部分負荷運転時でも蒸気タービンから給水加熱器に高温のタービン抽気を供給することができ、蒸気発生器の消費燃料の低減の下、タービンプラント熱効率を向上させることができる。   The steam turbine plant according to the present invention divides an extraction port for supplying turbine extraction from an intermediate stage of a steam turbine to a feed water heater into a high-pressure side and a low-pressure side, and the divided high-pressure system and low-pressure system Each with a bleed valve that opens the low pressure side bleed valve during rated operation and also opens the high pressure side bleed valve during partial load operation. Therefore, it is possible to supply high-temperature turbine bleed gas from the steam turbine to the feed water heater even during partial load operation, which reduces the fuel consumption of the steam generator. The turbine plant thermal efficiency can be improved.

以下、本発明に係る蒸気タービンプラントの実施形態を図面および図面に付した符号を引用して説明する。   Hereinafter, an embodiment of a steam turbine plant according to the present invention will be described with reference to the drawings and reference numerals attached to the drawings.

図1は、本発明に係る蒸気タービンプラントの第1実施形態を示す概念図である。   FIG. 1 is a conceptual diagram showing a first embodiment of a steam turbine plant according to the present invention.

本実施形態に係る蒸気タービンプラントは、蒸気発生器10、発電機11を軸直結させた蒸気タービン12、復水器13、復水・給水系14、給水ポンプ15、給水加熱器16、ドレン管17を備え、蒸気発生器10から発生する蒸気を蒸気タービン12で膨張仕事をさせ、その際に発生する動力で発電機11を駆動する一方、蒸気タービン12で膨張仕事を終えたタービン排気を復水器13で凝縮させて復水・給水にし、その復水・給水を復水・給水系14の給水ポンプ15で昇圧し、さらに給水加熱器16で加熱(再生)させて蒸気発生器10に戻す閉ループを構成している。なお、給水加熱器16で生成されたドレンは、ドレン管17を介して復水器13に戻され、復水・給水として再び利用される。   The steam turbine plant according to the present embodiment includes a steam generator 10, a steam turbine 12 having a generator 11 directly connected to a shaft, a condenser 13, a condensate / feed water system 14, a feed water pump 15, a feed water heater 16, and a drain pipe. 17, the steam generated from the steam generator 10 is expanded by the steam turbine 12, and the generator 11 is driven by the power generated at that time, while the turbine exhaust that has finished the expansion work by the steam turbine 12 is recovered. The water is condensed in the water device 13 to be condensed water / feed water, and the condensate / water supply is boosted by the feed water pump 15 of the condensate / water feed system 14 and further heated (regenerated) by the feed water heater 16 to the steam generator 10. A closed loop is constructed. In addition, the drain produced | generated with the feed water heater 16 is returned to the condenser 13 via the drain pipe 17, and is utilized again as condensate and water supply.

また、本実施形態に係る蒸気タービンプラントは、蒸気タービン12の入口側に近い位置に設けた高圧抽気口18に接続する高圧抽気管19と、高圧抽気口18の下流側に設けた低圧抽気口20に接続する低圧抽気管21とを備える一方、各抽気管19,20と給水加熱器16とを結ぶ中間部分に介装する高圧抽気弁22および低圧抽気弁23のそれぞれに弁開閉信号を与える抽気弁開閉制御装置24を備えている。   Further, the steam turbine plant according to the present embodiment includes a high pressure bleed pipe 19 connected to a high pressure bleed port 18 provided at a position close to the inlet side of the steam turbine 12 and a low pressure bleed port provided on the downstream side of the high pressure bleed port 18. A low pressure bleed pipe 21 connected to 20 is provided, and a valve opening / closing signal is given to each of the high pressure bleed valve 22 and the low pressure bleed valve 23 interposed in an intermediate portion connecting each of the bleed pipes 19, 20 and the feed water heater 16. A bleed valve opening / closing control device 24 is provided.

次に作用を説明する。   Next, the operation will be described.

定格運転時、給水加熱器16は、加熱源としてのタービン抽気により高温・高圧化を求めていないので、蒸気タービンプラントは、高圧抽気管19の高圧抽気弁22を閉弁させ、低圧抽気管21の低圧抽気弁23を開弁させ、蒸気タービン12の低圧抽気口20から低圧抽気管21を介して給水加熱器16にタービン抽気を供給している。   During rated operation, the feed water heater 16 does not require high temperature and high pressure by turbine extraction as a heating source, so the steam turbine plant closes the high pressure extraction valve 22 of the high pressure extraction pipe 19 and the low pressure extraction pipe 21. The low-pressure bleed valve 23 is opened, and the turbine bleed air is supplied from the low-pressure bleed port 20 of the steam turbine 12 to the feed water heater 16 through the low-pressure bleed pipe 21.

このときの作動流体の状態量は、図5の実線で示すように、点B→点C→点D→点a→点b→点Aの熱サイクルに沿って熱移動する。   The state quantity of the working fluid at this time is thermally transferred along the thermal cycle of point B → point C → point D → point a → point b → point A as shown by the solid line in FIG.

この状態での定格運転から部分負荷運転指令があると、従来の作動流体の状態量は、破線で示すように、点B→点C→点D→点a→点b→点Aの熱サイクルに沿って熱移動する。このため、部分負荷運転になると、蒸気タービンプラント熱効率は著しく低下していた。 When there is a partial load operation command from the rated operation in this state, the state quantity of the conventional working fluid is, as shown by the broken line, point B 1 → point C 1 → point D 1 → point a 1 → point b 1 → to heat transfer along the heat cycle at point a 1. For this reason, in the partial load operation, the thermal efficiency of the steam turbine plant was significantly reduced.

しかし、本実施形態は、図1に示すように、蒸気タービン12の高圧抽気口18に接続する高圧抽気管19に高圧抽気弁22を設けるとともに、蒸気タービン12の低圧抽気口20に接続する低圧抽気管21に低圧抽気弁23を設け、抽気弁開閉制御装置24に部分負荷運転指令が入ると、抽気弁開閉制御装置24から低圧抽気弁23に閉弁信号を与え、高圧抽気弁22に開弁信号を与えているので、蒸気タービン12から給水加熱器16により高温高圧のタービン抽気を加熱源として供給することができる。   However, in the present embodiment, as shown in FIG. 1, a high pressure bleed valve 22 is provided in a high pressure bleed pipe 19 connected to the high pressure bleed port 18 of the steam turbine 12, and a low pressure connected to the low pressure bleed port 20 of the steam turbine 12. A low pressure bleed valve 23 is provided in the bleed pipe 21, and when a partial load operation command is input to the bleed valve opening / closing control device 24, a valve closing signal is given from the bleed valve opening / closing control device 24 to the low pressure bleed valve 23 to open the high pressure bleed valve 22. Since the valve signal is given, high-temperature and high-pressure turbine bleed air can be supplied from the steam turbine 12 by the feed water heater 16 as a heating source.

その結果、蒸気タービンプラントは、作動流体の状態量を、図5の一点鎖線で示すように、点B→点C→点D→点a→点b→点Aの熱サイクルに沿って熱移動させたので、熱移動させた分だけ蒸気タービンプラント熱効率を向上させることができる。 As a result, in the steam turbine plant, the state quantity of the working fluid is represented by the heat of point B 2 → point C 2 → point D 2 → point a 2 → point b 2 → point A 2 , as indicated by the one-dot chain line in FIG. Since heat is transferred along the cycle, the heat efficiency of the steam turbine plant can be improved by the amount of heat transferred.

図2は、本発明に係る蒸気タービンプラントの第2実施形態を示す概念図である。   FIG. 2 is a conceptual diagram showing a second embodiment of the steam turbine plant according to the present invention.

本実施形態に係る蒸気タービンプラントは、蒸気発生器10の出口側に圧力伝送器25を設け、圧力伝送器25で検出した主蒸気の圧力を抽気弁開閉制御装置24に与え、ここで、与えられた主蒸気圧力信号が予め定められた圧力信号よりも高いとき(定格運転時)、低圧抽気管21の低圧抽気弁23に開弁信号を与え、高圧抽気管19の高圧抽気弁22に閉弁信号を与えるとともに、主蒸気圧力信号が予め定められた圧力信号よりも低いとき(部分負荷運転時)、低圧抽気管21の低圧抽気弁23に閉弁信号を与え、高圧抽気管19の高圧抽気弁22に開弁信号を与える構成にしたものである。   The steam turbine plant according to the present embodiment is provided with a pressure transmitter 25 on the outlet side of the steam generator 10, and supplies the main steam pressure detected by the pressure transmitter 25 to the extraction valve opening / closing control device 24. When the generated main steam pressure signal is higher than a predetermined pressure signal (at rated operation), an open signal is given to the low pressure bleed valve 23 of the low pressure bleed pipe 21 and the high pressure bleed valve 22 of the high pressure bleed pipe 19 is closed. When a main steam pressure signal is lower than a predetermined pressure signal (partial load operation), a valve closing signal is given to the low pressure bleed valve 23 of the low pressure bleed pipe 21, and a high pressure of the high pressure bleed pipe 19 is given. The valve opening signal is given to the bleed valve 22.

このように、本実施形態は、蒸気発生器10の出口側に圧力伝送器25を設け、圧力伝送器25で検出した主蒸気圧力が予め定められた圧力よりも高いとき、抽気弁開閉制御装置24から低圧抽気弁23に開弁信号を、高圧抽気弁22に閉弁信号をそれぞれ与える一方、圧力伝送器25で検出した主蒸気圧力が予め定められた圧力よりも低いとき、抽気弁開閉制御装置24から低圧抽気弁23に閉弁信号を、高圧抽気弁22に開弁信号をそれぞれ与える構成にしているので、部分負荷運転時、タービン抽気の温度を高くして、復水・給水の温度を上昇させ、蒸気タービンプラント熱効率を向上させることができる。   Thus, this embodiment provides the pressure transmitter 25 on the outlet side of the steam generator 10, and when the main steam pressure detected by the pressure transmitter 25 is higher than the predetermined pressure, the extraction valve opening / closing control device When the main steam pressure detected by the pressure transmitter 25 is lower than a predetermined pressure while an open signal is supplied from the valve 24 to the low pressure bleed valve 23 and a close signal is supplied to the high pressure bleed valve 22, the bleed valve opening / closing control is performed. Since the device 24 is configured to provide a valve closing signal to the low pressure bleed valve 23 and a valve open signal to the high pressure bleed valve 22, the temperature of the condensate / feed water is increased by raising the temperature of the turbine bleed during partial load operation. The steam turbine plant thermal efficiency can be improved.

図3は、本発明に係る蒸気タービンプラントの第3実施形態を示す概念図である。   FIG. 3 is a conceptual diagram showing a third embodiment of the steam turbine plant according to the present invention.

本実施形態に係る蒸気タービンプラントは、発電機11の出口側に電気出力計26を設け、電気出力計26で検出した電気出力(負荷)を抽気弁開閉制御装置24に与え、ここで、与えられた電気出力信号が予め定められた電気出力信号よりも高いとき(定格運転時)、低圧抽気管21の低圧抽気弁23に開弁信号を与え、高圧抽気管19の高圧抽気弁22に閉弁信号を与えるとともに、電気出力信号が予め定められた電気出力よりも低いとき(部分負荷運転時)、低圧抽気管21の低圧抽気弁23に閉弁信号を与え、高圧抽気管19の高圧抽気弁22に開弁信号を与える構成にしたものである。   The steam turbine plant according to the present embodiment is provided with an electrical output meter 26 on the outlet side of the generator 11, and provides an electrical output (load) detected by the electrical output meter 26 to the extraction valve opening / closing control device 24. When the generated electrical output signal is higher than the predetermined electrical output signal (during rated operation), a valve opening signal is given to the low pressure bleed valve 23 of the low pressure bleed pipe 21 and the high pressure bleed valve 22 of the high pressure bleed pipe 19 is closed. When a valve signal is given and the electrical output signal is lower than a predetermined electrical output (partial load operation), a valve closing signal is given to the low-pressure bleed valve 23 of the low-pressure bleed pipe 21 and high-pressure bleed of the high-pressure bleed pipe 19 The valve 22 is configured to give a valve opening signal.

このように、本実施形態は、発電機11の出口側に電気出力計26を設け、電気出力計26で検出した電気出力が予め定められた圧力よりも高いとき、抽気弁開閉制御装置24から低圧抽気弁23に開弁信号を、高圧抽気弁22に閉弁信号をそれぞれ与える一方、電気出力計26で検出した電気出力が予め定められた電気出力よりも低いとき、抽気弁開閉制御装置24から低圧抽気弁23に閉弁信号を、高圧抽気弁22に開弁信号をそれぞれ与える構成にしているので、部分負荷運転時、タービン抽気の温度を高くして、復水・給水の温度を上昇させ、蒸気タービンプラント熱効率を向上させることができる。   Thus, in the present embodiment, the electrical output meter 26 is provided on the outlet side of the generator 11, and when the electrical output detected by the electrical output meter 26 is higher than the predetermined pressure, the extraction valve opening / closing control device 24 When an open signal is given to the low pressure bleed valve 23 and a close signal is given to the high pressure bleed valve 22, while the electrical output detected by the electrical output meter 26 is lower than a predetermined electrical output, the bleed valve opening / closing control device 24 Since the valve closing signal is given to the low pressure bleed valve 23 and the valve open signal is given to the high pressure bleed valve 22, the temperature of the turbine bleed is raised and the temperature of the condensate / feed water is raised during partial load operation. Thus, the thermal efficiency of the steam turbine plant can be improved.

図4は、本発明に係る蒸気タービンプラントの第4実施形態を示す概念図である。   FIG. 4 is a conceptual diagram showing a fourth embodiment of the steam turbine plant according to the present invention.

本実施形態に係る蒸気タービンプラントは、蒸気発生器10の入口側に温度検知器27を設け、温度検知器27で検出した主蒸気の温度を抽気弁開閉制御装置24に与え、ここで、与えられた主蒸気圧力信号が予め定められた圧力信号よりも高いとき(定格運転時)、低圧抽気管21の低圧抽気弁23に開弁信号を与え、高圧抽気管19の高圧抽気弁22に閉弁信号を与えるとともに、主蒸気温度信号が予め定められた温度信号よりも低いとき(部分負荷運転時)、低圧抽気管21の低圧抽気弁23に閉弁信号を与え、高圧抽気管19の高圧抽気弁22に開弁信号を与える構成にしたものである。   The steam turbine plant according to the present embodiment is provided with a temperature detector 27 on the inlet side of the steam generator 10, and gives the temperature of the main steam detected by the temperature detector 27 to the extraction valve opening / closing control device 24. When the generated main steam pressure signal is higher than a predetermined pressure signal (at rated operation), an open signal is given to the low pressure bleed valve 23 of the low pressure bleed pipe 21 and the high pressure bleed valve 22 of the high pressure bleed pipe 19 is closed. When a main steam temperature signal is lower than a predetermined temperature signal (partial load operation), a valve closing signal is given to the low pressure bleed valve 23 of the low pressure bleed pipe 21 and a high pressure of the high pressure bleed pipe 19 is provided. The valve opening signal is given to the bleed valve 22.

このように、本実施形態は、蒸気発生器10の入口側に温度検知器27を設け、温度検知器27で検出した主蒸気温度が予め定められた温度よりも高いとき、抽気弁開閉制御装置24から低圧抽気弁23に開弁信号を、高圧抽気弁22に閉弁信号をそれぞれ与える一方、温度検知器27で検出した主蒸気温度が予め定められた温度よりも低いとき、抽気弁開閉制御装置24から低圧抽気弁23に閉弁信号を、高圧抽気弁22に開弁信号をそれぞれ与える構成にしているので、部分負荷運転時、タービン抽気の温度を高くして、復水・給水の温度を上昇させ、蒸気タービンプラント熱効率を向上させることができる。   As described above, in this embodiment, the temperature detector 27 is provided on the inlet side of the steam generator 10, and when the main steam temperature detected by the temperature detector 27 is higher than the predetermined temperature, the extraction valve opening / closing control device. When the main steam temperature detected by the temperature detector 27 is lower than a predetermined temperature while a valve opening signal is supplied from 24 to the low pressure bleed valve 23 and a close signal is supplied to the high pressure bleed valve 22, the bleed valve opening / closing control is performed. Since the device 24 is configured to provide a valve closing signal to the low pressure bleed valve 23 and a valve open signal to the high pressure bleed valve 22, the temperature of the condensate / feed water is increased by raising the temperature of the turbine bleed during partial load operation. The steam turbine plant thermal efficiency can be improved.

本発明に係る蒸気タービンプラントの第1実施形態を示す概念図。The conceptual diagram which shows 1st Embodiment of the steam turbine plant which concerns on this invention. 本発明に係る蒸気タービンプラントの第2実施形態を示す概念図。The conceptual diagram which shows 2nd Embodiment of the steam turbine plant which concerns on this invention. 本発明に係る蒸気タービンプラントの第3実施形態を示す概念図。The conceptual diagram which shows 3rd Embodiment of the steam turbine plant which concerns on this invention. 本発明に係る蒸気タービンプラントの第4実施形態を示す概念図。The conceptual diagram which shows 4th Embodiment of the steam turbine plant which concerns on this invention. 本発明に係る蒸気タービンプラントにおける作動流体の状態量熱サイクルと従来の作動流体の熱サイクルとを比較したTH線図。The TH diagram which compared the state quantity thermal cycle of the working fluid in the steam turbine plant which concerns on this invention, and the thermal cycle of the conventional working fluid. 従来の蒸気タービンプラントを示す概念図。The conceptual diagram which shows the conventional steam turbine plant. 従来の蒸気タービンプラントにおける作動流体の熱サイクルを示すTH線図。The TH diagram which shows the thermal cycle of the working fluid in the conventional steam turbine plant. 本発明に係る蒸気タービンプラントにおける定格運転時の作動流体の熱サイクルと部分負荷運転時の作動流体の熱サイクルとを比較したTH線図。The TH diagram which compared the heat cycle of the working fluid at the time of rated operation in the steam turbine plant concerning the present invention, and the heat cycle of the working fluid at the time of partial load operation.

符号の説明Explanation of symbols

1 蒸気発生器
2 蒸気タービン
3 発電機
4 復水器
5 復水・給水系
6 給水ポンプ
7 給水加熱器
8 ドレン管
9 タービン抽気管
10 蒸気発生器
11 発電機
12 蒸気タービン
13 復水器
14 復水・給水系
15 給水ポンプ
16 給水加熱器
17 ドレン管
18 高圧抽気口
19 高圧抽気管
20 低圧抽気口
21 低圧抽気管
22 高圧抽気弁
23 低圧抽気弁
24 抽気弁開閉制御装置
25 圧力伝送器
26 電気出力計
27 温度検知器
DESCRIPTION OF SYMBOLS 1 Steam generator 2 Steam turbine 3 Generator 4 Condenser 5 Condensate and feed water system 6 Feed water pump 7 Feed water heater 8 Drain pipe 9 Turbine extraction pipe 10 Steam generator 11 Generator 12 Steam turbine 13 Condenser 14 Recovery Water / water supply system 15 Water supply pump 16 Water supply heater 17 Drain pipe 18 High pressure extraction port 19 High pressure extraction pipe 20 Low pressure extraction port 21 Low pressure extraction pipe 22 High pressure extraction valve 23 Low pressure extraction valve 24 Extraction valve opening / closing control device 25 Pressure transmitter 26 Electricity Output meter 27 Temperature detector

Claims (9)

蒸気タービンから給水加熱器にタービン抽気を供給するタービン抽気管を、蒸気タービンの上流側に位置する高圧抽気管とその下流側に位置する低圧抽気管とに区分けするとともに、前記高圧抽気管と前記低圧抽気管とを運転の種類および作動流体の状態量のうち、いずれか一方に応じて使い分ける構成にしたことを特徴とする蒸気タービンプラント。 The turbine bleed pipe for supplying turbine bleed from the steam turbine to the feed water heater is divided into a high pressure bleed pipe located upstream of the steam turbine and a low pressure bleed pipe located downstream thereof, and the high pressure bleed pipe and the A steam turbine plant characterized in that the low-pressure extraction pipe is configured to be used in accordance with either the type of operation or the state quantity of the working fluid. 高圧抽気管は、高圧抽気弁を備えるとともに、この高圧抽気弁に、部分負荷運転時、開弁指令を与える抽気弁開閉制御装置を備えたことを特徴とする請求項1記載の蒸気タービンプラント。 2. The steam turbine plant according to claim 1, wherein the high pressure bleed pipe includes a high pressure bleed valve and a bleed valve opening / closing control device for giving a valve opening command to the high pressure bleed valve during partial load operation. 低圧抽気管は、低圧抽気弁を備えるとともに、この低圧抽気弁に、定格運転時、開弁指令を与える抽気弁開閉制御装置を備えたことを特徴とする請求項1記載の蒸気タービンプラント。 The steam turbine plant according to claim 1, wherein the low-pressure bleed pipe includes a low-pressure bleed valve and a bleed valve opening / closing control device for giving a valve opening command during rated operation to the low-pressure bleed valve. 高圧抽気管は、高圧抽気弁を備えるとともに、蒸気発生器から発生した主蒸気が予め定められた圧力よりも低いとき、その主蒸気圧力信号に基づいて前記高圧抽気弁に開弁指令を与える抽気弁開閉制御装置を備えたことを特徴とする請求項1記載の蒸気タービンプラント。 The high pressure bleed pipe is provided with a high pressure bleed valve, and when the main steam generated from the steam generator is lower than a predetermined pressure, the bleed air giving a valve opening command to the high pressure bleed valve based on the main steam pressure signal The steam turbine plant according to claim 1, further comprising a valve opening / closing control device. 低圧抽気管は、低圧抽気弁を備えるとともに、蒸気発生器から発生した主蒸気が予め定められた圧力よりも高いとき、その主蒸気圧力信号に基づいて前記低圧抽気弁に開弁指令を与える抽気弁開閉制御装置を備えたことを特徴とする請求項1記載の蒸気タービンプラント。 The low pressure bleed pipe is provided with a low pressure bleed valve, and when the main steam generated from the steam generator is higher than a predetermined pressure, the bleed air for giving a valve opening command to the low pressure bleed valve based on the main steam pressure signal The steam turbine plant according to claim 1, further comprising a valve opening / closing control device. 高圧抽気管は、高圧抽気弁を備えるとともに、発電機からの電気出力が予め定められた電気出力よりも低いとき、その電気出力信号に基づいて前記高圧抽気弁に開弁指令を与える抽気弁開閉制御装置を備えたことを特徴とする請求項1記載の蒸気タービンプラント。 The high pressure bleed pipe is provided with a high pressure bleed valve, and when the electrical output from the generator is lower than a predetermined electrical output, the bleed valve opening / closing which gives a valve opening command to the high pressure bleed valve based on the electrical output signal The steam turbine plant according to claim 1, further comprising a control device. 低圧抽気管は、低圧抽気弁を備えるとともに、発電機からの電気出力が予め定められた電気出力よりも高いとき、その電気出力信号に基づいて前記低圧抽気弁に開弁指令を与える抽気弁開閉制御装置を備えたことを特徴とする請求項1記載の蒸気タービンプラント。 The low pressure bleed pipe has a low pressure bleed valve, and when the electrical output from the generator is higher than a predetermined electrical output, opens and closes the bleed valve that gives a valve opening command to the low pressure bleed valve based on the electrical output signal The steam turbine plant according to claim 1, further comprising a control device. 高圧抽気管は、高圧抽気弁を備えるとともに、蒸気発生器の入口側の復水・給水が予め定められた温度よりも低いとき、その復水・給水温度信号に基づいて前記高圧抽気弁に開弁指令を与える抽気弁開閉制御装置を備えたことを特徴とする請求項1記載の蒸気タービンプラント。 The high pressure bleed pipe is provided with a high pressure bleed valve, and opens to the high pressure bleed valve based on the condensate / feed water temperature signal when the condensate / feed water on the inlet side of the steam generator is lower than a predetermined temperature. The steam turbine plant according to claim 1, further comprising a bleed valve opening / closing control device for giving a valve command. 低圧抽気管は、低圧抽気弁を備えるとともに、蒸気発生器の入口側の復水・給水が予め定められた温度よりも高いとき、その復水・給水温度信号に基づいて前記低圧抽気弁に開弁指令を与える抽気弁開閉制御装置を備えたことを特徴とする請求項1記載の蒸気タービンプラント。 The low pressure bleed pipe has a low pressure bleed valve, and when the condensate / feed water on the inlet side of the steam generator is higher than a predetermined temperature, the low pressure bleed pipe opens to the low pressure bleed valve based on the condensate / feed water temperature signal. The steam turbine plant according to claim 1, further comprising a bleed valve opening / closing control device for giving a valve command.
JP2003391101A 2003-11-20 2003-11-20 Steam turbine plant Pending JP2005155340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003391101A JP2005155340A (en) 2003-11-20 2003-11-20 Steam turbine plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003391101A JP2005155340A (en) 2003-11-20 2003-11-20 Steam turbine plant

Publications (1)

Publication Number Publication Date
JP2005155340A true JP2005155340A (en) 2005-06-16

Family

ID=34718271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003391101A Pending JP2005155340A (en) 2003-11-20 2003-11-20 Steam turbine plant

Country Status (1)

Country Link
JP (1) JP2005155340A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309194A (en) * 2006-05-18 2007-11-29 Hitachi Ltd Steam turbine plant
JP2011102583A (en) * 2009-11-10 2011-05-26 General Electric Co <Ge> Method and system for reducing influence on performance of turbomachine which operates extraction system
JP2020063677A (en) * 2018-10-15 2020-04-23 三菱日立パワーシステムズ株式会社 Control device, control method and control program for power generating plant, and power generating plant

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309194A (en) * 2006-05-18 2007-11-29 Hitachi Ltd Steam turbine plant
JP2011102583A (en) * 2009-11-10 2011-05-26 General Electric Co <Ge> Method and system for reducing influence on performance of turbomachine which operates extraction system
JP2020063677A (en) * 2018-10-15 2020-04-23 三菱日立パワーシステムズ株式会社 Control device, control method and control program for power generating plant, and power generating plant
WO2020080083A1 (en) * 2018-10-15 2020-04-23 三菱日立パワーシステムズ株式会社 Power generation plant control device, control method and control program therefor, and power generation plant
CN112567110A (en) * 2018-10-15 2021-03-26 三菱动力株式会社 Control device for power generation facility, control method and control program for power generation facility, and power generation facility
CN112567110B (en) * 2018-10-15 2023-06-20 三菱重工业株式会社 Control device for power generation facility, control method for power generation facility, control program for power generation facility, and power generation facility

Similar Documents

Publication Publication Date Title
JP4621597B2 (en) Steam turbine cycle
JP5227352B2 (en) System and method for pre-warming a heat recovery steam generator and associated steam line
EP1752617A2 (en) Combined cycle power plant
KR101594323B1 (en) Power plant with integrated fuel gas preheating
JPH06317106A (en) Steam-gas turbine composite type power plant
JP2009092372A (en) Supercritical steam combined cycle and its method
JP2013545915A (en) Method for operating a combined cycle power plant for cogeneration and a combined cycle power plant for implementing the method
US10287922B2 (en) Steam turbine plant, combined cycle plant provided with same, and method of operating steam turbine plant
JP4818391B2 (en) Steam turbine plant and operation method thereof
JP2015068314A (en) Fuel gas heating facility and combined cycle power generation plant
EP2942496B1 (en) Oxy boiler power plant with a heat integrated air separation unit
JP2010242673A (en) Steam turbine system and method for operating the same
JP6986842B2 (en) How to operate a steam power plant and a steam power plant to implement this method
JP2010164055A (en) Method and apparatus for varying flow source to alleviate windage hating at fsnl
JP2005155340A (en) Steam turbine plant
JP4415189B2 (en) Thermal power plant
JP2006161698A (en) Overload operation device and method for steam turbine
JP2004245184A (en) Reheat steam turbine plant and starting method for the plant
JP7066572B2 (en) Temporary piping system for boiler blow-out and boiler blow-out method
JP5977504B2 (en) Steam-driven power plant
JP2012140910A (en) Combined cycle power generation plant and gas turbine system, and gas turbine fuel gas heating system
JP6101604B2 (en) Steam turbine plant, combined cycle plant equipped with the same, and method of operating a steam turbine plant
JP4343610B2 (en) Power generation apparatus and power generation method
CN206681807U (en) A kind of TRT transformed based on medium temperature and medium pressure waste heat, complementary energy electricity generation system
JP3068972B2 (en) Combined cycle power plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060419

A131 Notification of reasons for refusal

Effective date: 20081209

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407