WO2007082970A1 - Turbina eólica con multiplicadora totalmente integrada - Google Patents

Turbina eólica con multiplicadora totalmente integrada Download PDF

Info

Publication number
WO2007082970A1
WO2007082970A1 PCT/ES2007/000016 ES2007000016W WO2007082970A1 WO 2007082970 A1 WO2007082970 A1 WO 2007082970A1 ES 2007000016 W ES2007000016 W ES 2007000016W WO 2007082970 A1 WO2007082970 A1 WO 2007082970A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind turbine
multiplier
bushing
rotor
power train
Prior art date
Application number
PCT/ES2007/000016
Other languages
English (en)
French (fr)
Inventor
Erik Nim
Original Assignee
Gamesa Innovation & Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gamesa Innovation & Technology filed Critical Gamesa Innovation & Technology
Priority to CN2007800031421A priority Critical patent/CN101375052B/zh
Publication of WO2007082970A1 publication Critical patent/WO2007082970A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/10Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/50Maintenance or repair
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/403Transmission of power through the shape of the drive components
    • F05B2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • F05B2260/40311Transmission of power through the shape of the drive components as in toothed gearing of the epicyclic, planetary or differential type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • This invention relates to a wind turbine and, in particular, to the power train of a wind turbine.
  • Patent application W002079644 describes such a wind turbine.
  • Patent application W004046582 describes in particular a turbine in which the multiplier directly couples with the rotor hub, transmitting the forces and moments generated by the blades to the gondola by means of bearings located in the multiplier.
  • Non-rotating shaft solution In this design, the rotor is incorporated into the main structure by means of a non-rotating hollow shaft with two main bearings subjected to radial force, the torque being transferred to the multiplier by means of of a rotating shaft that is located within the hollow non-rotating shaft.
  • the asymmetric moments on the rotor, the thrust and the weight of the rotation are transferred to the main structure by means of the non-rotating hollow shaft, which means that the weight of the rotor does not contribute to the fatigue load of the main shaft.
  • Patent application W09611338 and patents US4527072, US05663600 describe wind turbines of this type.
  • the present invention provides a wind turbine power train comprising a rotor hub, a planetary type multiplier of at least one stage, a high speed shaft, a generator and a main support structure, with the following characteristics: a ) also comprises a non-rotating shaft attached to the main structure and that supports the rotor hub by means of two bearings subjected to radial force; b) the rotor bushing and the multiplier have means for coupling, so that the motor torque is transferred directly to the multiplier by means of the rotor bushing.
  • Figure 1 is a cross-sectional view of a first embodiment of the wind turbine according to this invention.
  • Figure 2 is a sectional view of the wind turbine shown in Figure 1 along the line AA 1 .
  • Figure 3 is a cross-sectional view of a second embodiment of the wind turbine according to this invention.
  • Figure 4 is a cross-sectional view of a second embodiment of the wind turbine according to this invention.
  • the structural components of the power train of a traditional wind turbine consist of a rotor hub, a main shaft supported by one or two main bearings and a multiplier that is connected to the generator by means of the high-speed shaft, while the housing of The multiplier is connected to the main structure of the wind turbine.
  • the main purpose of these structural components is to transfer the motor torque generated by the rotor to the generator and increase the shaft speed, in order to achieve a suitable rotation speed of the generator rotor.
  • a secondary purpose is to transfer the weight of the rotor, the thrust and the asymmetric moments on the rotor, that is, the moments of rotation and orientation, to the main structure, and from there subsequently to the tower and the base.
  • the power train comprises a rotating bushing 11 to which one or more blades 13 are connected by means of bearings 15, a planetary type multiplier 17 having the primary unit in the housing 47 And the other possible units in the housing 49 , a high speed shaft 19, a generator 20 and a main support structure 21.
  • the rotor bushing 11 comprises a roller body 23 to transfer the torque to the primary planetariums 25 that are located for such purpose with its external surfaces outside the main structure 21 through appropriate holes 37 and the power train comprises a non-rotating shaft 29 connected to the main structure 21 that supports the rotor bushing 11 by means of two bearings 31, 33 subjected to radial force.
  • said non-rotating shaft 29 has an outer shape similar to the inner shape of the rotating hub 11, although the person skilled in the art will easily understand that these shapes may be different.
  • the non-rotating shaft 29 transfers the asymmetric moments on the rotor, the thrust and the weight of the rotor to the main structure 21 through two main bearings 31, 33 , subjected to radial force, while the motor torque is transferred directly to the multiplier 17 by means of the rotor bushing 11 that is outside the non-rotating shaft, which means that a rotating inner shaft subjected to a torque is not necessary.
  • An important consequence of this arrangement is that the weight of the rotor does not contribute to the fatigue load on the non-rotating shaft 29.
  • the rotor bushing 11 could be lighter than that of traditional flanged splice solutions. between the bushing and the main shaft, since the rotating bushing 11 is supported in two sections. In fact, the tensile and compression forces 25 on the foot of the blade can be transferred almost directly to the non-rotating shaft 29 through the two main bearings 31, 33.
  • the multiplier has a fixed roller body and a rotating planetary carrier, while the planetariums 25 in the proposed solution are fixed directly to the main structure 21 since the roller body 23 rotates. with rotor bushing 11.
  • the resulting transmission ratio of the primary planetarium thus becomes smaller (n compared to n + 1 in traditional multipliers, where n is the ratio between the diameters of the roller body and the solar wheel).
  • the multiplier 17 according to this invention is simpler due to the absence of planetary holders.
  • the power train components are arranged such that the primary planetarium can be completely disassembled for maintenance.
  • the housing 47 and the roller body 23 are screwed to the main structure 21, to the non-rotating shaft 29 and to the bushing 11 through the plates 41, 43.
  • a third bearing (not shown) can be included between the roller body 23 and the housing 47 of the primary planetarium, which does not interfere with the planetariums, to fix the roller body 23 during the disassembly operation.
  • a special fixing system (not shown) to the main structure 21 can also be included, in order to avoid using a very large crane to disassemble the rotor during the disassembly operation of the primary planetarium.
  • the power train components are also arranged so that the primary planetarium can be completely disassembled for maintenance.
  • the housing 47 of the primary unit of the multiplier 17 is located in front of the rotor
  • the housing 47 is located behind the rotating hub 11 (from the point of view of the gondola).
  • the housing 47 is fixed to the non-rotating shaft 29 by means of screws 53 and the roller body 23 is fixed to the hub 11 of the rotating by means of screws 51 and has an outer cover 55 attached to the roller body 23 by screw medium 57.
  • An advantage of this invention is that the low speed rotary structures with torque and relatively large reader moments have large diameters to limit the stresses in the material, while the high speed rotary structures with relatively small motor torque have smaller diameters. .
  • Another advantage of this invention in its first and second embodiment, is that the primary of the multiplier is fully integrated in the main structure, which means that this unit does not have separate housing, with which the weight of the complete gondola is reduced .

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

Tren de potencia para turbina eólica, que comprende un buje (11) de rotor, un eje no rotativo (29) y que soporta el buje (11) por medio de dos cojinetes (31, 33) sometidos a fuerza radial unido, una multiplicadora (17) del tipo planetario de al menos una etapa, un eje de alta velocidad (19), un generador (20), y una estructura principal de soporte (21) en el que el buje (11) del rotor y Ia multiplicadora (17) tienen medios para acoplarse, de manera que el par motor se transfiera directamente a la multiplicadora (17) por medio del buje (11) del rotor, externamente al eje no rotativo (29). La unidad primaria de Ia multiplicadora está integrada en el conjunto mediante medios que permiten desmontarla con fines de mantenimiento.

Description

TURBINA EOLICA CON MULTIPLICADORA TOTALMENTE INTEGRADA
CAMPO DE LA INVENCIÓN
Esta invención se refiere a una turbina eólica y, en particular, al tren de potencia de una turbina eólica.
ANTECEDENTES
En el pasado, se han sugerido diversos diseños para Ia parte mecánica del tren de potencia de una turbina eólica. A continuación figura Ia descripción de tres de ellos.
1. Solución tradicional de dos cojinetes. En este diseño, el eje principal se apoya sobre dos cojinetes sometidos a fuerza radial, Io cual significa que los momentos asimétricos que el viento induce sobre el rotor, Le. los momentos de rotación y de orientación, se transfieren a Ia estructura principal mediante un par de fuerzas radiales sobre los cojinetes. El eje principal está sometido al par motor y al empuje, así como a los momentos flectores debidos a los momentos asimétricos sobre el rotor y al peso del mismo. En recientes solicitudes de patente, tales como W003031811 y US2003/0201647, se describe también un mecanismo de acoplamiento en el cual el eje del rotor se apoya sobre Ia góndola del aerogenerador mediante dos cojinetes.
2. Solución de un cojinete. En este diseño, el buje del rotar está conectado directamente con Ia estructura principal por medio de un cojinete principal sometido a momentos, Io cual significa que no es necesario un eje principal de gran longitud. La solicitud de patente W002079644 describe una turbina eólica de este tipo. La solicitud de patente W004046582 describe en particular una turbina en Ia cual Ia multiplicadora acopla directamente con el buje del rotor, transmitiendo las fuerzas y momentos generados por las palas a Ia góndola mediante cojinetes situados en Ia multiplicadora.
3. Solución de eje no rotativo. En este diseño el rotor está incorporado a Ia estructura principal mediante un eje hueco no rotativo con dos cojinetes principales sometidos a fuerza radial, transfiriéndose el par motor a Ia multiplicadora por medio de un eje rotativo que está situado dentro del eje hueco no rotativo. Con esta solución, los momentos asimétricos sobre el rotor, el empuje y el peso del rotar se transfieren a Ia estructura principal mediante el eje hueco no rotativo, Io cual significa que el peso del rotor no contribuye a Ia carga de fatiga del eje principal. La solicitud de patente W09611338 y las patentes US4527072, US05663600 describen turbinas eólicas de este tipo.
Ninguno de los trenes de potencia mencionados resuelve de manera satisfactoria los requerimientos que presentan las turbinas eólicas de alta potencia que Ia industria necesita. Esta invención trata de satisfacer estas necesidades.
SUMARIO DE LA INVENCIÓN
La presente invención proporciona un tren de potencia para turbina eólica que comprende un buje del rotor, una multiplicadora del tipo planetario de al menos una etapa, un eje de alta velocidad, un generador y una estructura principal de soporte, con las siguientes características: a) comprende también un eje no rotativo unido a Ia estructura principal y que soporta el buje del rotor por medio de dos cojinetes sometidos a fuerza radial; b) el buje del rotor y Ia multiplicadora tienen medios para acoplarse, de manera que el par motor se transfiera directamente a Ia multiplicadora por medio del buje del rotor.
Otras características y ventajas de Ia presente invención se harán evidentes de Ia siguiente descripción detallada de una realización ilustrativa pero no limitativa de su objeto, en relación con las figuras que se acompañan.
BREVE DESCRIPCIÓN DE LAS FIGURAS
La Figura 1 es una vista en sección transversal de una primera realización de Ia turbina eólica según esta invención.
La Figura 2 es una vista en sección de Ia turbina eólica mostrada en Ia Fig. 1 a Io largo de Ia línea A-A1.
La Figura 3 es una vista en sección transversal de una segunda realización de Ia turbina eólica según esta invención. La Figura 4 es una vista en sección transversal de una segunda realización de Ia turbina eólica según esta invención.
DESCRIPCIÓN DETALLADA DE LAS REALIZACIONES PREFERIDAS
Los componentes estructurales del tren de potencia de una turbina eólica tradicional consisten en un buje del rotor, un eje principal soportado por uno o dos cojinetes principales y una multiplicadora que está conectada al generador por medio del eje de alta velocidad, mientras que el alojamiento de Ia multiplicadora está conectado a Ia estructura principal de Ia turbina eólica. El propósito principal de estos componentes estructurales es transferir el par motor generado por el rotor al generador e incrementar Ia velocidad del eje, con objeto de conseguir una velocidad de rotación del rotor del generador adecuada. Un propósito secundario es transferir el peso del rotor, el empuje y los momentos asimétricos sobre el rotor, es decir, los momentos de rotación y de orientación, a Ia estructura principal, y de ahí posteriormente a Ia torre y a Ia base.
Uno de los principales problemas a Ia hora de aumentar el tamaño de una turbina eólica es que Ia disposición principal de cojinetes se hace desproporcionadamente cara y técnicamente compleja en relación a Ia solución tradicional de dos cojinetes, así como en relación a Ia solución de un cojinete. Igualmente, Ia solución de eje no rotativo presenta problemas cuando se aumenta de escala, ya que Ia conexión entre el eje interior rotativo y el buje se hace complicada.
El tren de potencia propuesto por esta invención en Ia primera realización mostrada en las Figuras 1 y 2 resuelve este problema, como se explicará a continuación.
El tren de potencia comprende un buje rotativo 11 de rotar al cual están conectadas una o más palas 13 por medio de cojinetes 15, una multiplicadora 17 del tipo planetario que tiene Ia unidad primaria en el alojamiento 47 Y las otras posibles unidades en el alojamiento 49, un eje de alta velocidad 19, un generador 20 y una estructura principal de soporte 21.
Según Ia invención, el buje 11 de rotor comprende un cuerpo de rodillo 23 para transferir el par motor a los planetarios primarios 25 que están situados para tal propósito con sus superficies externas por fuera de Ia estructura principal 21 a través de apropiados orificios 37 y el tren de potencia comprende un eje no rotativo 29 conectado a Ia estructura principal 21 que soporta el buje 11 de rotor por medio de dos cojinetes 31 , 33 sometidos a fuerza radial. En esta realización, el citado eje no rotativo 29 tiene una forma exterior similar a Ia forma interior del buje 11 de rotar, si bien el experto en Ia materia entenderá fácilmente que estas formas pueden ser diferentes.
El eje no rotativo 29, al igual que el eje no rotativo del diseño 3 de Ia técnica anterior, transfiere los momentos asimétricos sobre el rotor, el empuje y el peso del rotor a Ia estructura principal 21 a través de dos cojinetes principales 31, 33, sometidos a fuerza radial, mientras que el par motor se transfiere directamente a Ia multiplicadora 17 por medio del buje 11 de rotor que está fuera del eje no rotativo, Io cual significa que no es necesario un eje interior rotativo sometido a un par. Una consecuencia importante de esta disposición es que el peso del rotor no contribuye a Ia carga de fatiga sobre el eje no rotativo 29. Además, se anticipa que el buje 11 de rotor podría ser más ligero que el de las soluciones tradicionales con empalme de bridas entre el buje y el eje principal, ya que el buje 11 de rotar se soporta en dos secciones. De hecho, las fuerzas de tracción 25 y de compresión sobre el pie de Ia pala se pueden transferir casi directamente al eje no rotativo 29 a través de los dos cojinetes principales 31 , 33.
Con las soluciones tradicionales, Ia multiplicadora tiene un cuerpo de rodillo fijo y un portaplanetarios rotativo, mientras que los planetarios 25 en Ia solución propuesta están fijados directamente a Ia estructura principal 21 ya que el cuerpo de rodillo 23 gira. con el buje 11 de rotor. La relación de transmisión resultante del planetario primario se hace así más pequeña (n en comparación con n+1 en las multiplicadoras tradicionales, donde n es Ia relación entre los diámetros del cuerpo de rodillo y de Ia rueda solar). Sin embargo, Ia multiplicadora 17 según esta invención es más simple debido a Ia ausencia de portaplanetarios. En Ia segunda realización mostrada esquemáticamente en Ia Figura 3, los componentes del tren de potencia están dispuestos de tal manera que el planetario primario se pueda desmontar por completo para su mantenimiento. El alojamiento 47 y el cuerpo de rodillo 23 están atornillados a Ia estructura principal 21 , al eje 29 no rotativo y al buje 11 a través de las chapas 41 , 43. Se puede incluir un tercer cojinete (no mostrado) entre el cuerpo de rodillo 23 y el alojamiento 47 del planetario primario, que no interfiera con los planetarios, para fijar el cuerpo de rodillo 23 durante Ia operación de desmontaje. También se puede incluir un sistema de fijación especial (no mostrado) a Ia estructura principal 21, con objeto de evitar Ia utilización de una grúa muy grande para desmontar el rotor durante Ia operación de desmontaje del planetario primario.
En Ia tercera realización mostrada esquemáticamente en Ia Figura 4, tos componentes del tren de potencia también están dispuestos de tal manera que el planetario primario se pueda desmontar por completo para su mantenimiento. Mientras que en Ia segunda realización, el alojamiento 47 de Ia unidad primaria de Ia multiplicadora 17 es situada enfrente del rotor, en Ia tercera realización el alojamiento 47 está situado detrás del buje 11 del rotar (desde el punto de vista de Ia góndola). En este caso, el alojamiento 47 está fijado al eje no rotativo 29 por medio de tornillos 53 y el cuerpo de rodillo 23 está fijado al buje 11 del rotar por medio de tornillos 51 y tiene una cubierta externa 55 unida al cuerpo de rodillo 23 por medio de tornillos 57.
Una ventaja de esta invención es que las estructuras rotativas a baja velocidad con par motor y momentos f lectores relativamente grandes tienen grandes diámetros para limitar las tensiones en el material, mientras que las estructuras rotativas a alta velocidad con par motor relativamente pequeño tienen diámetros más pequeños.
Otra ventaja de esta invención, en su primera y segunda realización, es que el primario de Ia multiplicadora está totalmente integrado en Ia estructura principal, Io cual significa que esta unidad no tiene alojamiento separado, con Io que se reduce el peso de Ia góndola completa.
Aunque Ia presente invención se ha descrito por entero en conexión con realizaciones preferidas, es evidente que se pueden introducir aquellas modificaciones que estén comprendidas en el ámbito de Ia invención, no considerando como limitativas estas realizaciones, según las reivindicaciones siguientes.

Claims

REIVINDICACIONES
1. Tren de potencia para turbina eólica que comprende un buje (11) de rotar, una multiplicadora (17) del tipo planetario de al menos una etapa, un eje 5 de alta velocidad (19), un generador (20) y una estructura principal de soporte (21), caracterizado porque: a. también comprende un eje no rotativo (29) unido a Ia estructura principal (21) y que soporta el buje (11) del rotar por medio de dos cojinetes (31 , 33) sometidos a fuerza radial b. el buje (11) del rotar y Ia multiplicadora (17) tienen medios para acoplarse, de manera que el par motor se transfiera directamente a Ia multiplicadora (17) por medio del buje (11) del rotar, externamente al eje no rotativo (29)
2. Tren de potencia para turbina eólica según Ia reivindicación 1 , caracterizado porque el buje (11) de rotor comprende un cuerpo de rodillo (23) para transferir el par motor a los planetarios primarios (25) de Ia multiplicadora (17) que están dispuestos para tal propósito con sus superficies externas por fuera de Ia estructura principal (21).
3. Tren de potencia para turbina eólica según Ia reivindicación 2, caracterizado porque Ia multiplicadora (17) está estructurada con un primer alojamiento (47) que incluye Ia unidad primaria y con un segundo alojamiento (49) que incluye las otras posibles unidades.
4. Tren de potencia para turbina eólica según Ia reivindicación 3, caracterizado porque el primer alojamiento (17) está situado enfrente del buje (11) del rotar.
5. Tren de potencia para turbina eólica según Ia reivindicación 4, caracterizado porque el primer alojamiento (47) comprende uniones atornilladas a Ia estructura principal (21), al eje no rotativo (29) y al buje (11) de rotor, de modo que Ia unidad primaria se pueda desmontar con fines de mantenimiento.
6. Tren de potencia para turbina eólica según Ia reivindicación 3, caracterizado porque el primer alojamiento (17) está situado detrás del buje (11) del rotor.
7. Tren de potencia para turbina eólica según Ia reivindicación 6, caracterizado porque el primer alojamiento (47) está atornillado al eje no rotativo 10 (29) Y el cuerpo de rodillo (23) está atornillado al buje (11) de rotar, de modo que Ia unidad primaria se pueda desmontar con fines de mantenimiento.
PCT/ES2007/000016 2006-01-17 2007-01-17 Turbina eólica con multiplicadora totalmente integrada WO2007082970A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007800031421A CN101375052B (zh) 2006-01-17 2007-01-17 具有完全一体的倍增器的风轮机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200600099 2006-01-17
ES200600099A ES2278530B1 (es) 2006-01-17 2006-01-17 Turbina eolica con multiplicadora totalmente integrada.

Publications (1)

Publication Number Publication Date
WO2007082970A1 true WO2007082970A1 (es) 2007-07-26

Family

ID=38287294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2007/000016 WO2007082970A1 (es) 2006-01-17 2007-01-17 Turbina eólica con multiplicadora totalmente integrada

Country Status (3)

Country Link
CN (1) CN101375052B (es)
ES (1) ES2278530B1 (es)
WO (1) WO2007082970A1 (es)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2253843A1 (en) 2009-05-12 2010-11-24 Ecotecnia Energias Renovables S.L. Wind turbine
WO2011058184A2 (de) * 2009-11-13 2011-05-19 Suzlon Energy Gmbh Windturbine
WO2011037696A3 (en) * 2009-09-24 2011-07-07 General Electric Company Rotor-shaft integrated generator drive apparatus
EP2525090A1 (en) * 2011-05-18 2012-11-21 ZF Wind Power Antwerpen NV Wind turbine nacelle
CN103075308A (zh) * 2011-10-25 2013-05-01 通用电气公司 具有单级紧凑型传动系的风力涡轮机

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019119473A1 (de) 2019-07-18 2021-01-21 Renk Aktiengesellschaft Triebstranganordnung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0388207A2 (en) * 1989-03-15 1990-09-19 Kabushiki Kaisha Toshiba Transmission apparatus
ES2146439T3 (es) * 1996-06-03 2000-08-01 Aerodyn Eng Gmbh Combinacion de engranaje y generador para instalacion de fuerza eolica.
ES2226631T3 (es) * 1999-04-12 2005-04-01 Winergy Ag Caja de engranajes para una instalacion de energia eolica.

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4308516B2 (ja) * 2000-08-15 2009-08-05 ハンセン・トランスミッションズ・インターナショナル・ナムローゼフェンノートシャップ 風力タービンのための駆動組立体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0388207A2 (en) * 1989-03-15 1990-09-19 Kabushiki Kaisha Toshiba Transmission apparatus
ES2146439T3 (es) * 1996-06-03 2000-08-01 Aerodyn Eng Gmbh Combinacion de engranaje y generador para instalacion de fuerza eolica.
ES2226631T3 (es) * 1999-04-12 2005-04-01 Winergy Ag Caja de engranajes para una instalacion de energia eolica.

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2253843A1 (en) 2009-05-12 2010-11-24 Ecotecnia Energias Renovables S.L. Wind turbine
WO2011037696A3 (en) * 2009-09-24 2011-07-07 General Electric Company Rotor-shaft integrated generator drive apparatus
WO2011058184A2 (de) * 2009-11-13 2011-05-19 Suzlon Energy Gmbh Windturbine
WO2011058184A3 (de) * 2009-11-13 2011-12-01 Suzlon Energy Gmbh Windturbine
WO2011058185A3 (de) * 2009-11-13 2011-12-01 Suzlon Energy Gmbh Antriebseinheit für windturbine
US9206787B2 (en) 2009-11-13 2015-12-08 Suzlon Energy Gmbh Wind turbine
EP2525090A1 (en) * 2011-05-18 2012-11-21 ZF Wind Power Antwerpen NV Wind turbine nacelle
US9163612B2 (en) 2011-05-18 2015-10-20 Zf Wind Power Antwerpen N.V. Wind turbine nacelle
CN103075308A (zh) * 2011-10-25 2013-05-01 通用电气公司 具有单级紧凑型传动系的风力涡轮机

Also Published As

Publication number Publication date
ES2278530B1 (es) 2008-07-01
CN101375052A (zh) 2009-02-25
ES2278530A1 (es) 2007-08-01
CN101375052B (zh) 2011-03-02

Similar Documents

Publication Publication Date Title
ES2278530B1 (es) Turbina eolica con multiplicadora totalmente integrada.
ES2587020T3 (es) Una turbina eólica con un tren de transmisión
KR100752510B1 (ko) 단일 메인베어링을 갖는 풍력 발전기
ES2617973B1 (es) Aerogenerador con un tren de potencia modular
RU2457358C1 (ru) Надземная ветрогенераторная система, использующая летающее тело
ES2540783T3 (es) Conjunto de guiñada para uso en turbinas eólicas
ES2461543T3 (es) Husillo para sistema de engranaje planetario
JP5260737B2 (ja) 風車
ES2672146T3 (es) Disposición de accionamiento para una turbina eólica
ES2451000T3 (es) Aerogenerador
CA2732088C (en) Hollow single-side supported direct-drive wind turbine generator
BRPI0721590A2 (pt) rotor de turbina e usina de energia
ES2639861T3 (es) Módulo para desacoplar la energía de rotación del buje de rotor de la rueda eólica de una instalación de energía eólica
ES2583637T3 (es) Instalación de energía eólica
JP2005538305A (ja) 同心配置されたギア/発電機を有する風力発電装置
ES2705350T3 (es) Una unidad multiplicadora modular para un aerogenerador
ES2906450T3 (es) Turbina eólica con tren de potencia compacto de una etapa
ES2854923T3 (es) Tren de transmisión para un aerogenerador
CN105765218A (zh) 具有带驱动式传动装置的风轮机
ES2682344T3 (es) Árbol motor flexible
ES2545986T3 (es) Unidad compacta generador-engranaje para centrales de energía eólica
ES2360159B1 (es) Un tren de potencia de un aerogenerador accionado directamente.
KR101100459B1 (ko) 풍력발전장치
CN103807105A (zh) 一种风轮在集风罩内位置可调的小型高效风力发电机
ES2277795B1 (es) Un tren de potencia de un aerogenerador.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200780003142.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07704730

Country of ref document: EP

Kind code of ref document: A1