WO2007080698A1 - Photosensitive resin composition, photosensitive transfer film, and method for pattern formation - Google Patents

Photosensitive resin composition, photosensitive transfer film, and method for pattern formation Download PDF

Info

Publication number
WO2007080698A1
WO2007080698A1 PCT/JP2006/322305 JP2006322305W WO2007080698A1 WO 2007080698 A1 WO2007080698 A1 WO 2007080698A1 JP 2006322305 W JP2006322305 W JP 2006322305W WO 2007080698 A1 WO2007080698 A1 WO 2007080698A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
pixel
photosensitive
light
pattern
Prior art date
Application number
PCT/JP2006/322305
Other languages
French (fr)
Japanese (ja)
Inventor
Kazumori Minami
Yasutomo Goto
Morimasa Sato
Original Assignee
Fujifilm Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corporation filed Critical Fujifilm Corporation
Priority to JP2007553838A priority Critical patent/JPWO2007080698A1/en
Publication of WO2007080698A1 publication Critical patent/WO2007080698A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/029Inorganic compounds; Onium compounds; Organic compounds having hetero atoms other than oxygen, nitrogen or sulfur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/029Inorganic compounds; Onium compounds; Organic compounds having hetero atoms other than oxygen, nitrogen or sulfur
    • G03F7/0295Photolytic halogen compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029

Definitions

  • Photosensitive resin composition photosensitive transfer film and pattern forming method
  • the present invention relates to a photosensitive resin composition suitable for forming a photosensitive layer of a dry film resist (DFR), a photosensitive transfer film having a photosensitive layer formed from the photosensitive resin composition, and
  • the present invention relates to a pattern forming method using the photosensitive transfer film.
  • a photosensitive transfer film in which a photosensitive layer is formed by applying a photosensitive resin composition on a support and drying it has been used.
  • a photosensitive layer is formed using a photosensitive transfer film on a substrate such as a copper clad laminate on which the pattern is formed, and the photosensitive layer is exposed. It is known that after the exposure, the photosensitive layer is developed to form a pattern, further etched, and then the pattern is removed.
  • the method is known.
  • copper is coated on an ultra-thin aramid resin of about 100 m, so in other methods, the irregularity of about 1 to 2 / zm becomes as large as about 12 m, and the obtained substrate Resist trackability is required.
  • a photosensitive layer when a photosensitive layer is laminated on a substrate having a plurality of hole portions such as a printed wiring board having a hole portion such as a through hole or a via hole, the photosensitive layer is supported from the photosensitive layer for development after exposure.
  • the uncured unexposed portion of the photosensitive layer adheres to the support near the hole in the substrate and breaks, and when the substrate is peeled off, so-called unexposed film breakage occurs. There was something to do. For this reason, minute peeling pieces peeled off from the photosensitive layer contaminate the device or reduce the resolution of the pattern. May cause problems such as.
  • a photosensitive transfer film having a photosensitive layer formed of a photosensitive resin composition and a pattern forming method capable of forming a high-definition pattern using the photosensitive transfer film have not been provided yet, and further improvements and developments have been made. This is the current situation.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-330189
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-345005
  • the present invention has been made in view of the current situation, and it is an object of the present invention to solve the above-described problems and achieve the following objects. That is, the present invention provides a photosensitive resin composition that has good followability of a resist on a substrate, and that can achieve both excellent developability and finer stripping at the time of resist stripping. It is an object of the present invention to provide a photosensitive transfer film having a photosensitive layer formed of a photosensitive resin composition, and a pattern forming method capable of forming a high-definition pattern using the photosensitive transfer film.
  • the melt viscosity of a photosensitive resin composition containing a noinder, a polymerizable compound, and a photopolymerization initiator is 50.
  • C is 40,000 to 120,000 Pa, s, 70.
  • C By setting C to 5,000 to 20,000 Pa's, the followability of the resist on the substrate is good and excellent development is achieved.
  • a photosensitive layer can be formed which can satisfy both the properties and the miniaturization of the peeled piece when the resist is peeled off.
  • the present invention is based on the above findings of the present inventors, and means for solving the above problems are as follows. That is,
  • ⁇ 1> Contains a binder, a polymerizable compound, and a photopolymerization initiator, and has a melt viscosity of 50.
  • C is 40,000-120, OOOPa, s, 70. It is a photosensitive resin composition characterized by having a C of 5,000 to 20, OOOPa, s.
  • the copolymer includes a copolymer A having a mass average molecular weight of 3,000 to 10,000, and a copolymer B having a mass average molecular weight of 30,000 to 150,000,
  • the photosensitive resin composition according to ⁇ 1>, wherein a mass ratio of A to the copolymer B is AZB 10Z90 to 90Z10.
  • ⁇ 6> The photosensitive resin composition according to any one of ⁇ 1> to ⁇ 5>, wherein the polymerizable compound includes a monomer having at least one of a urethane group and an aryl group.
  • the photopolymerization initiator is a halogenated hydrocarbon derivative, phosphine oxide, hexaarylbiimidazole, oxime derivative, organic peroxide, thio compound, ketone compound, acyl phosphine oxidoxide compound,
  • a photosensitive transfer film comprising a photosensitive layer formed of the photosensitive resin composition according to any one of ⁇ 1> to ⁇ 8> on a support. .
  • the thickness of the exposed portion of the photosensitive layer is used for the exposure that is not changed after the exposure and development.
  • the photosensitive transfer film according to ⁇ 9>, wherein the minimum energy (sensitivity) of light is 0.1 to 20 miZcm 2 .
  • ⁇ 12> The photosensitive transfer film according to any one of ⁇ 9> to ⁇ 11>, wherein the support contains a synthetic resin and is transparent.
  • ⁇ 14> The photosensitive transfer film according to any one of ⁇ 9> to ⁇ 13>, which is long and wound in a roll shape.
  • ⁇ 16> The photosensitive transfer film according to any one of ⁇ 9> and 15>, wherein the photosensitive layer is laminated on a substrate to be processed, and then the photosensitive layer is exposed. This is a pattern forming method characterized by this.
  • Exposure includes light irradiation means, and n (where n is a natural number of 2 or more) two-dimensionally arranged pixel parts that receive and emit light from the light irradiation means,
  • An exposure head provided with a light modulation means capable of controlling the picture element portion according to pattern information, wherein the column direction of the picture element portion is a predetermined set inclination angle ⁇ with respect to the scanning direction of the exposure head.
  • N is a natural number of 2 or more
  • the exposure head is controlled by the pixel part control unit and the used pixel part specifying unit. Controlling the pixel part so that only the specified pixel part is involved in exposure, and
  • the pattern forming method according to the above item 16> including: In the pattern forming method described in 17>, the exposure head is subjected to N double exposure (where N is a natural number of 2 or more) of the usable pixel parts by means of the used pixel part specifying means.
  • the pixel part to be used is specified, and the pixel part is controlled by the pixel part control unit so that only the pixel part specified by the used pixel part specifying unit is involved in the exposure. .
  • the exposure head is formed on the exposed surface of the photosensitive layer due to a shift in the mounting position or mounting angle of the exposure head. Variations in resolution and unevenness in density of the pattern are leveled. As a result, the photosensitive layer is exposed with high definition. For example, a high-definition pattern is formed by developing the photosensitive layer thereafter.
  • the exposure is performed by a plurality of exposure heads, and the used picture element designating unit is configured to perform drawing related to exposure of a head-to-head connection area, which is an overlapping exposure area on an exposed surface formed by the plurality of exposure heads.
  • the pattern forming method according to ⁇ 17> wherein among the element parts, the image element part to be used for realizing N double exposure in the inter-head connection region is designated.
  • the exposure is performed by a plurality of exposure heads, and the used pixel portion designating unit is an overlapped exposure region on an exposed surface formed by the plurality of exposure heads.
  • the position of the exposure head and the mounting position of the exposure head can be determined by specifying the picture element part used for realizing the N-fold exposure in the head-to-head connection area. Variations in the resolution and density unevenness of the pattern formed in the connecting region between the heads on the exposed surface of the photosensitive layer due to the angle deviation are leveled. As a result, the photosensitive layer is exposed with high definition. For example, a high-definition pattern is then formed by developing the photosensitive layer.
  • Exposure is performed by a plurality of exposure heads, Realizes N-fold exposure in areas other than the head-to-head connection area among the pixel parts involved in exposure other than the head-to-head connection area, which are overlapping exposure areas on the exposed surface formed by the exposure head.
  • the pattern forming method according to ⁇ 18> wherein the pixel part to be used for designating is specified.
  • the exposure is performed by a plurality of exposure heads, and the used pixel portion designating unit performs overlapping exposure on the exposed surface formed by the plurality of exposure heads.
  • the exposure is performed. Variations in the resolution and density unevenness of the pattern formed in areas other than the joint area between the heads on the exposed surface of the photosensitive layer due to deviations in the mounting position and mounting angle of the head are equalized. As a result, the photosensitive layer is exposed with high definition. For example, by developing the photosensitive layer thereafter, a high-definition pattern is formed.
  • ⁇ 21> The pattern forming method according to any one of ⁇ 17> to ⁇ 20>, wherein the N force of N double exposure is a natural number of 3 or more.
  • the N force of N double exposure is a natural number of 3 or more.
  • multiple drawing is performed by using a natural number of N force 3 or more in N double exposure.
  • a light spot position detecting means for detecting a light spot position as a pixel unit that is generated by the picture element unit and constitutes an exposure area on the exposed surface
  • a pixel part selecting means for selecting a picture element part to be used for realizing N double exposure; The pattern forming method according to any one of the above items 17> to 21>.
  • the light spot position detecting means detects the light spot column direction on the surface to be exposed and the exposure head running direction when the exposure head is tilted based on at least two light spot positions detected.
  • the actual inclination angle ⁇ 'formed by the image is determined, and the pixel part selection means selects the pixel part to be used so as to absorb the error between the actual inclination angle ⁇ ' and the set inclination angle ⁇ .
  • the actual inclination angle ⁇ ′ is an average value, a median value, and a plurality of actual inclination angles formed by the row direction of the light spots on the surface to be exposed and the scanning direction of the exposure head when the exposure head is inclined.
  • the pattern forming method according to 24> wherein the pattern forming method is one of a maximum value and a minimum value.
  • T the natural number
  • M rows where m represents a natural number greater than or equal to 2
  • the pattern forming method according to any one of the above items.
  • the pattern forming method according to any one of 22> kara 25>, wherein the pixel part excluding the unused pixel part is selected as a used pixel part.
  • the pixel portion selection means In the region including at least a double exposure region on the exposed surface formed by a plurality of pixel portion rows, the pixel portion selection means,
  • connection area between the heads which is the overlapping exposure area on the exposed surface formed by the plurality of exposure heads
  • the number of pixel units in the overexposed area is equal to the number of pixel units in the underexposed area.
  • N N ⁇ 1 column-by-column drawings are used for N of N multiple exposures.
  • N— 1 Reference exposure is performed using only the pixel part constituting the pixel part column for each column, and a simple pattern of simple single drawing is obtained. As a result, the picture element portion in the head-to-head connection region is easily specified.
  • the above-mentioned pixel part row constituting each 1ZN line is configured.
  • 1ZN lines for N of N double exposures in order to specify the used pixel part in the used pixel part specifying means, among the usable pixel parts, 1ZN lines for N of N double exposures. Reference exposure is performed using only the pixel parts constituting each pixel part sequence, and a simple pattern of approximately single drawing is obtained. As a result, the pixel portion in the head-to-head connection region is easily specified.
  • the used pixel part specifying means includes a slit and a photodetector as a light spot position detecting means, and an arithmetic unit connected to the photodetector as a pixel part selecting means ⁇ 32>
  • the pattern forming method according to any one of the above.
  • V is a pattern forming method described in any of the above.
  • the light modulation means further includes a pattern signal generation means for generating a control signal based on the pattern information to be formed, and the pattern signal generation means outputs the light emitted from the light irradiation means.
  • a pattern signal generation means for generating a control signal based on the pattern information to be formed, and the pattern signal generation means outputs the light emitted from the light irradiation means.
  • V is a pattern forming method described in any of the above.
  • the pattern information is converted so that the dimension of the predetermined part of the pattern represented by the pattern information matches the dimension of the corresponding part that can be realized by the specified used pixel part.
  • Light modulation means force force The pattern forming method according to any one of ⁇ 17> to ⁇ 36>, which is a spatial light modulation element.
  • ⁇ 38> The pattern forming method according to 37, wherein the spatial light modulator is a digital 'micromirror' device (DMD).
  • DMD digital 'micromirror' device
  • the pattern forming method according to ⁇ 40> since the light irradiation unit can synthesize and irradiate two or more lights, exposure is performed with exposure light having a deep focal depth. As a result, the exposure of the photosensitive layer is performed with extremely high definition. For example, by developing the photosensitive layer thereafter, an extremely fine pattern can be formed.
  • the light irradiating means includes a plurality of lasers, a multimode optical fiber, and a collective optical system that collects the laser beams irradiated with the plurality of laser forces and couples the laser beams to the multimode optical fiber.
  • the laser beam irradiated by each of the plurality of laser forces is collected by the collecting optical system and can be coupled to the multimode optical fiber. By doing so, exposure is performed with exposure light having a deep focal depth. As a result, the exposure of the photosensitive layer is performed with extremely high definition. For example, after that, the photosensitive layer is developed to form an extremely fine pattern.
  • ⁇ 42> The pattern forming method according to any one of ⁇ 16> to ⁇ 41>, wherein the photosensitive layer is developed after the exposure.
  • the conventional problems can be solved, the followability of the resist on the substrate is good, excellent developability, and finer strips at the time of resist stripping.
  • a photosensitive resin composition capable of standing, a photosensitive transfer film having a photosensitive layer formed from the photosensitive resin composition, and a pattern capable of forming a high-definition pattern using the photosensitive transfer film A forming method can be provided.
  • FIG. 1 is a perspective view showing an appearance of an example of a pattern forming apparatus.
  • FIG. 2 is a perspective view showing an example of the configuration of the scanner of the pattern forming apparatus.
  • FIG. 3A is a plan view showing an exposed region formed on the exposed surface of the photosensitive layer.
  • FIG. 3B is a plan view showing an arrangement of exposure areas by each exposure head.
  • FIG. 4 is a perspective view showing an example of a schematic configuration of an exposure head.
  • FIG. 5A is a top view showing an example of a detailed configuration of an exposure head.
  • FIG. 5B is a side view showing an example of a detailed configuration of the exposure head.
  • FIG. 6 is a partially enlarged view showing an example of a DMD of the pattern forming apparatus in FIG.
  • FIG. 7A is a perspective view for explaining the operation of the DMD.
  • FIG. 7B is a perspective view for explaining the operation of the DMD.
  • FIG. 8 is an explanatory view showing an example of unevenness that occurs in a pattern on an exposed surface when there is an attachment head angle error and pattern distortion.
  • FIG. 9 is a top view showing a positional relationship between an exposure area by one DMD and a corresponding slit.
  • FIG. 10 is a top view for explaining a method for measuring the position of a light spot on a surface to be exposed using a slit.
  • FIG. 11 is an explanatory view showing a state in which unevenness generated in a pattern on an exposed surface is improved as a result of using only selected micromirrors for exposure.
  • FIG. 12 is an explanatory view showing an example of unevenness occurring in a no-turn on the exposed surface when there is a relative position shift between adjacent exposure heads.
  • FIG. 13 is a top view showing a positional relationship between an exposure area by two adjacent exposure heads and a corresponding slit.
  • FIG. 14 illustrates a technique for measuring the position of a light spot on an exposed surface using a slit. It is a top view for doing.
  • FIG. 15 is an explanatory diagram showing a state in which only the used pixels selected in the example of FIG. 12 are actually moved, and unevenness in the pattern on the exposed surface is improved.
  • FIG. 16 is an explanatory diagram showing an example of unevenness that occurs in a pattern on an exposed surface when there is a relative position shift and a mounting angle error between adjacent exposure heads.
  • FIG. 17 is an explanatory diagram showing exposure using only the used pixel portion selected in the example of FIG.
  • FIG. 18A is an explanatory view showing an example of magnification distortion.
  • FIG. 18B is an explanatory diagram showing an example of beam diameter distortion.
  • FIG. 19A is an explanatory view showing a first example of reference exposure using a single exposure head.
  • FIG. 19B is an explanatory view showing a first example of reference exposure using a single exposure head.
  • FIG. 20 is an explanatory view showing a first example of reference exposure using a plurality of exposure heads.
  • FIG. 21A is an explanatory view showing a second example of reference exposure using a single exposure head.
  • FIG. 21B is an explanatory diagram showing a second example of reference exposure using a single exposure head.
  • FIG. 22 is an explanatory view showing a second example of reference exposure using a plurality of exposure heads.
  • the photosensitive resin composition of the present invention contains at least a solder, a polymerizable compound, and a photopolymerization initiator, and includes other components appropriately selected as necessary.
  • the melt viscosity of the photosensitive resin composition is 40, 000-120, OOOPa's at 50 ° C,
  • the force S is preferably 5,000 to 20,000 Pa's at 70 ° C and 5,500-18,000.
  • the melt viscosity is 120 at 50 ° C. , If OOOPa's is exceeded or if it exceeds 20, OOOPa's at 70 ° C, the followability of the resist on the substrate will deteriorate. In addition, if the melt viscosity is less than 40, OOOPa's at 50 ° C or less than 5, OOOPa's at 70 ° C, the tentability is insufficient because the strength of the film itself is insufficient. .
  • the melt viscosity is, for example, by repeating lamination of the photosensitive layer surfaces of the photosensitive resin composition, adjusting the sample so that the thickness becomes 150 ⁇ 10 m, and then adjusting the photosensitive layer to 25 ° C 50% RH. After being allowed to stand for 24 hours in this environment, it can be measured using a rheometer (dynamic viscoelasticity measuring device) (REOLO GCA, DynAlyserDAR-100) under the conditions of frequency 1 ⁇ and gap 1.5 mm.
  • a rheometer dynamic viscoelasticity measuring device
  • the noinder is not particularly limited and can be appropriately selected according to the purpose.
  • the mass average molecular weight is a relative value in terms of polystyrene, and can be determined from a calibration curve obtained by measuring a polystyrene standard mixed sample having a known molecular weight, for example.
  • the above-mentioned noder is, for example, preferably swellable in an alkaline aqueous solution, more preferably soluble in an alkaline aqueous solution.
  • binder exhibiting swellability or solubility with respect to the alkaline aqueous solution for example, those having an acidic group are preferably exemplified.
  • the acidic group is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include a carboxyl group, a sulfonic acid group, and a phosphoric acid group. Among these, a carboxyxenore group is preferable. .
  • binder having a carboxyl group examples include a vinyl copolymer having a carboxyl group, polyurethane resin, polyamic acid resin, and modified epoxy resin.
  • solubility in a coating solvent Viewpoints such as solubility in alkaline developer, suitability for synthesis, and ease of adjustment of film properties.
  • Vinyl copolymers having a carboxyl group are preferred. From the viewpoint of developability, a copolymer of at least one of styrene and a styrene derivative is also preferable.
  • the vinyl copolymer having a carboxyl group can be obtained by copolymerization with at least (1) a vinyl monomer having a carboxyl group, and (2) a monomer copolymerizable therewith. Examples of the compounds described in JP-A-2005-258431, [0164] to [0205].
  • the content of the binder in the photosensitive layer is not particularly limited.
  • a force that can be appropriately selected according to the purpose For example, 10 to 90% by mass is preferable, and 20 to 80% by mass is more preferable. 40-80 mass% is especially preferable.
  • the content is less than 10% by mass, the alkali developability and the adhesion to a printed wiring board forming substrate (for example, a copper-clad laminate) may be deteriorated. The stability against image time and the strength of the cured film (tent film) may be reduced.
  • the above content may be the total content of the binder and the polymer binder used in combination as necessary.
  • the binder is a substance having a glass transition temperature (Tg)
  • the glass transition temperature is not particularly limited and can be appropriately selected depending on the purpose.
  • the light-sensitive transfer film From at least one of the viewpoints of suppressing tack and edge fusion and improving the peelability of the support, 80 ° C or higher is preferable, 100 ° C or higher is more preferable, and 120 ° C or higher is particularly preferable.
  • the tack fusion of the photosensitive transfer film may increase or the peelability of the support may deteriorate.
  • the Noinda one acid value, especially the force limit Ru can be appropriately selected depending on the Nag purpose for example, preferably 70 ⁇ 250mgKOHZg force s, 90 ⁇ 200mgKOH / g and more preferred signaling 100 ⁇ 180MgKOH / g is particularly preferred.
  • the acid value is less than 70 mg KOHZg, developability may be insufficient or resolution may be inferior, and permanent patterns such as wiring patterns may not be obtained in high definition. At least the developer resistance and adhesion of the turn may be poor, and a high-definition pattern may not be obtained.
  • the copolymer A as long as the mass average molecular weight is 3,000 to 10,000, in particular No restrictions can be selected according to the purpose, and the weight average molecular weight is more preferable than 3,000 to 9,000 force ⁇ , 3,000 to 8,000 force is particularly preferable! /, 0
  • the weight average molecular weight of the copolymer A When the weight average molecular weight of the copolymer A is less than 3,000, the residual film ratio after development may be lowered. If the mass average molecular weight exceeds 10,000, the solubility in the developer is lowered, the resolution is lowered, and the fineness of the peeled piece cannot be achieved, or the melt viscosity is within the range of the present invention. In some cases, the followability of the resist on the substrate may be poor.
  • Examples of the monomer constituting the copolymer A include (meth) acrylic acid, vinyl benzoic acid, maleic acid, maleic acid monoalkyl ester, fumaric acid, itaconic acid, crotonic acid, and cinnamic acid.
  • Acrylic acid dimer monomer having a hydroxyl group (for example, 2-hydroxyethyl (meth) acrylate) and cyclic anhydride (for example, maleic anhydride, phthalic anhydride, cyclohexanedicarboxylic anhydride)
  • cyclic anhydride for example, maleic anhydride, phthalic anhydride, cyclohexanedicarboxylic anhydride
  • Carboxy-poly-strength prolacton mono (meth) acrylate, (meth) acrylic acid esters, crotonic acid esters, bulle esters, maleic acid diesters, fumaric acid diesters, itacon Acid diesters, (meth) acrylamides, butyl ethers, esters of butyl alcohol, styrenes (eg Styrene, styrene derivatives, etc.), (meth) acrylonitrile, heterocyclic groups substituted with a bur group
  • the copolymer ⁇ from the viewpoint that a permanent pattern such as a wiring pattern can be formed with high definition and from the viewpoint of improving the tent property, for example, at least styrene and a styrene derivative are used. It is preferable to have a structural unit derived from one of them.
  • Examples of the copolymer A include a copolymer of benzyl methacrylate and methacrylic acid, a copolymer of styrene and acrylic acid, a copolymer of methyl methacrylate and methacrylate, and styrene.
  • Copolymer of styrene and methacrylic acid Copolymer of styrene and maleic anhydride, Copolymers of benzyl methacrylate, methacrylic acid, and styrene, copolymers of methyl methacrylate, methacrylate, and styrene, and benzyl methacrylate and methacrylate, methyl methacrylate, and 2-ethylhexyl. Examples thereof include a copolymer with metacryl.
  • the copolymer B is not particularly limited as long as the mass average molecular weight is 30,000 to 150,000, and can be appropriately selected according to the purpose.
  • the mass average molecular weight is 40,000 to 130,000. 000 power more preferred, 40,000 to 120,000 power ⁇ especially preferred! / ,.
  • the weight average molecular weight of the copolymer B is less than 30,000, the strength of the cured film required for tent properties may be insufficient, and if it exceeds 150,000, the developability will be poor. Sometimes.
  • Examples of the monomer constituting the copolymer B include (meth) acrylic acid, vinyl benzoic acid, maleic acid, maleic acid monoalkyl ester, fumaric acid, itaconic acid, crotonic acid, and cinnamic acid.
  • Acrylic acid dimer monomer having a hydroxyl group (for example, 2-hydroxyethyl (meth) acrylate) and cyclic anhydride (for example, maleic anhydride, phthalic anhydride, cyclohexanedicarboxylic anhydride)
  • cyclic anhydride for example, maleic anhydride, phthalic anhydride, cyclohexanedicarboxylic anhydride
  • Carboxy-poly-prolactonone (meth) acrylate, (meth) acrylic acid esters, crotonic acid esters, bulle esters, maleic acid diesters, fumaric acid diesters, itacon Acid diesters, (meth) acrylamides, butyl ethers, esters of butyl alcohol, styrenes (eg , Styrene, styrene derivatives, etc.), (meth) acrylonitrile, heterocyclic groups substituted with a bur group (for
  • copolymer ⁇ from the viewpoint that a permanent pattern such as a wiring pattern can be formed with high definition and from the viewpoint of improving the tent property, for example, a butyl monomer having a carboxyl group is used. Preferred to have.
  • the copolymer B include a copolymer of benzyl methacrylate and methacrylic acid, a copolymer of styrene and acrylic acid, a copolymer of methyl methacrylate and methacrylate, and styrene.
  • the polymerizable compound is not particularly limited and may be appropriately selected according to the purpose.
  • a monomer or oligomer having at least one of a urethane group and an aryl group is preferably exemplified. These preferably have two or more polymerizable groups.
  • Examples of the polymerizable group include an ethylenically unsaturated bond (for example, a (meth) atalyl group, a (meth) acrylamide group, a styryl group, a beryl group such as a butyl ester or a butyl ether, a allylic ether or the like.
  • Aryl groups such as aryl esters
  • polymerizable cyclic ether groups for example, epoxy groups, oxetane groups, etc.
  • the monomer having a urethane group is not particularly limited as long as it has a urethane group, and can be appropriately selected according to the purpose. For example, [0210] to [0262] in JP-A-2005-258431 And the like.
  • a monomer having an aryl group having an aryl group
  • the monomer having an aryl group is not particularly limited as long as it has an aryl group, and can be appropriately selected according to the purpose.
  • a polyhydric alcohol compound having an aryl group a polyvalent amine compound.
  • at least one of polyamino amino alcohol compound examples thereof include esters or amides of deca and unsaturated carboxylic acids, and examples thereof include compounds described in JP-A-2005-258431, [0264] to [0271].
  • the photosensitive resin composition of the present invention may contain a compound having a polyalkylene oxide chain.
  • the compound having a polyalkylene oxide chain may be a monofunctional monomer that is not particularly limited, or may be a polyfunctional monomer! /.
  • the monofunctional monomer for example, a compound represented by the following structural formula (i) is preferably exemplified.
  • R 1 represents a hydrogen atom or a methyl group.
  • X represents an alkylene group having 2 to 6 carbon atoms, and preferably has a chain structure rather than a cyclic structure.
  • the chain alkylene group may have a branch.
  • examples of the alkylene group include an ethylene group, a propylene group, a tetramethylene group, a pentamethylene group, and a hexamethylene group. Among these, an ethylene group and a propylene group are preferable.
  • n is an integer of 1 to 30, and when n is 2 or more, a plurality of (—X—O) may be the same or different from each other, and ( ⁇ X—0-) are When they are different, for example, a combination of an ethylene group and a propylene group is preferably exemplified.
  • R 2 examples include an alkyl group, an aryl group, an aralkyl group, and the like, and these groups may be further substituted with a substituent.
  • alkyl group having 1 to 20 carbon atoms examples include a methyl group, an ethyl group, a propyl group, a hexyl group, a cyclohexyl group, a 2-ethylhexyl group, a dodecyl group, and a hexadecyl group.
  • the alkyl group may have a branch or ring structure which may have a substituent.
  • Examples of the aralkyl group include a benzyl group and a phenethyl group. .
  • the aralkyl group may have a substituent.
  • aryl group examples include a phenyl group, a naphthyl group, a tolyl group, a xylyl group, an ethyl file group, a methoxy file group, a propyl file group, a butyl file group, a t-butyl file group, and an octyl file.
  • Groups, norphenyl groups, chlorophenol groups, cyanphenol groups, dibromophenol groups, tribromophenol groups, bibromophenyl groups, benzylphenyl groups, a dimethylbenzylphenyl groups, etc. Can be mentioned.
  • the aryl group may have a substituent.
  • Examples of the substituent in the alkyl group, the aralkyl group, and the aryl group include a hydrogen atom, a rogen atom, an aryl group, an alkyl group, an alkoxy group, and a cyan group.
  • halogen atom examples include a fluorine atom, a chlorine atom, and a bromine atom.
  • the aryl group preferably has a total carbon number of 6 to 20, more preferably 6 to 14. Examples of the aryl group include a full group, a naphthyl group, an anthracyl group, and a methoxyfur group.
  • the alkenyl group preferably has a total carbon number of 2 to 10 and more preferably 2 to 6.
  • Examples of the alkenyl group include an ethur group, a propenyl group, a butyryl group, and the like.
  • the alkoxy group may be branched and the total number of carbon atoms is preferably 1 to 5 and more preferably 1 to 5 times.
  • Examples of the alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, a 2-methylpropyloxy group, and a butoxy group.
  • Specific examples of the compound represented by the structural formula (i) include compounds represented by the following structural formula.
  • R represents a hydrogen atom or a methyl group.
  • n represents an integer of 1 to 30, m and L each represents an integer of 1 or more, and m + L represents an integer of 1 to 30.
  • Me represents a methyl group, and Bu represents a butyl group.
  • polyethylene glycol and polypropylene glycol having 10 to 30 ethylene groups or propylene groups are also suitable. Is mentioned.
  • the compound having a polyalkylene oxide chain may be used alone or in combination of two or more.
  • Examples of the polyfunctional monomer include ethylene glycol di (meth) acrylate and polyethylene glycol di (meth) acrylate having 2 to 30 ethylene groups (for example, diethylene glycol di (meth)).
  • Ethylene glycol chain Z dialkyl (ethylene) chain di (meth) acrylate for example, compounds described in WO 01Z98832 pamphlet
  • polybutylene glycol di (meta) ) Atarirate for example, compounds described in WO 01Z98832 pamphlet
  • ethylene glycol di (meth) acrylate propylene glycol di (meth) acrylate, ethylene glycol chain Z and alkylene glycol chain each having at least one propylene glycol chain.
  • Di (meth) acrylate is preferred.
  • the content of the compound having a polyalkylene oxide chain in the polymerizable compound is preferably 40% by mass or less, more preferably 1 to 30% by mass, and even more preferably 1 to 25% by mass. preferable. If the content is less than 0.1% by mass, the effect of improving the peelability and development latitude may be insufficient, and if it exceeds 40% by mass, the resolution, adhesion, tent property, etc. are poor. There is a case to hesitate. [0054] Other polymerizable monomers
  • a polymerizable monomer other than the monomer having a urethane group and the monomer having an aryl group may be used in combination as long as the characteristics as the photosensitive transfer film are not deteriorated. ,.
  • an unsaturated carboxylic acid for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid
  • examples include esters of maleic acid and the like and aliphatic polyhydric alcohol compounds, amides of unsaturated carboxylic acids and polyhydric amine compounds, and examples include [0274]-[ [0284] and the like.
  • the content of the polymerizable compound in the photosensitive layer is, for example, preferably 5 to 90% by mass, more preferably 15 to 60% by mass, and particularly preferably 20 to 50% by mass.
  • the strength of the tent film may be reduced, and if it exceeds 90% by mass, edge fusion during storage (extruding failure of the roll end force) may be deteriorated. is there.
  • the content of the polyfunctional monomer having two or more polymerizable groups in the polymerizable compound is preferably 5 to: LOO mass% is preferable 20 to: LOO mass% is more preferable 40 to: LOO mass % Is particularly preferred.
  • the photopolymerization initiator can be appropriately selected from known photopolymerization initiators that are not particularly limited as long as it has the ability to initiate the polymerization of the polymerizable compound. Those that have photosensitivity to visible light may have some effect with photo-excited sensitizers, and may be active agents that generate active radicals. Cationic polymerization is performed depending on the type of monomer. It may be an initiator that initiates.
  • the photopolymerization initiator preferably contains at least one component having a molecular extinction coefficient of at least about 50 within a range of about 300 to 800 nm (more preferably 330 to 500 nm).
  • Examples of the photopolymerization initiator include halogenated hydrocarbon derivatives (for example, triazide). Having skeleton, oxadiazole skeleton, etc.), hexarylbiimidazole, oxime derivatives, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, metaguchines Etc.
  • halogenated hydrocarbon derivatives for example, triazide. Having skeleton, oxadiazole skeleton, etc.
  • hexarylbiimidazole hexarylbiimidazole
  • oxime derivatives organic peroxides
  • thio compounds thio compounds
  • ketone compounds aromatic onium salts
  • metaguchines Etc metaguchines Etc.
  • a halogenated hydrocarbon having a triazine skeleton, an oxime derivative, a ketone compound, Hexaarylbiimidazole compounds are preferred, for example, compounds described in [0288] to [0309] of JP-A-2005-258431.
  • the content of the photopolymerization initiator in the photosensitive layer is preferably from 0.1 to 30% by mass, more preferably from 0.5 to 20% by mass, and particularly preferably from 0.5 to 15% by mass.
  • Examples of the other components include sensitizers, thermal polymerization inhibitors, plasticizers, color formers, colorants, and the like, and adhesion promoters to the substrate surface and other auxiliary agents (for example, pigments). , Conductive particles, fillers, antifoaming agents, flame retardants, leveling agents, release accelerators, antioxidants, fragrances, thermal crosslinking agents, surface tension modifiers, chain transfer agents, etc.) Examples thereof include compounds described in JP-A-2005-258431, [0312] to [0336]. By appropriately containing these components, it is possible to adjust properties such as the stability, photographic properties, print-out properties, and film properties of the target photosensitive transfer film.
  • the photosensitive transfer film of the present invention has at least a photosensitive layer formed of the photosensitive resin composition of the present invention on the support, and if necessary, a protective film, and further if necessary. , And other layers such as a cushion layer and an oxygen barrier layer (PC layer).
  • the form of the photosensitive transfer film can be appropriately selected according to the purpose without any particular restriction. For example, the form having the photosensitive layer and the protective film in this order on the support, A form in which the PC layer, the photosensitive layer, and the protective film are provided in this order on a support, and the cushion layer, the PC layer, the photosensitive layer, and the protective film are provided on the support. The form etc. which have in order are mentioned.
  • the photosensitive layer may be a single layer or a plurality of layers.
  • the photosensitive layer is formed by the photosensitive resin composition of the present invention.
  • a photosensitive composition solution is prepared by dissolving, emulsifying, or dispersing the photosensitive composition of the present invention in water or a solvent on the support, and the solution is used.
  • the method include a method of directly coating and laminating by drying.
  • the solvent of the photosensitive composition solution is not particularly limited and may be appropriately selected depending on the intended purpose.
  • methanol, ethanol, n-propanol, isopropanol, n-butanol, sec butanol, n Alcohols such as hexanol; Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diisoptyl ketone; Ethyl acetate, butyl acetate, n-amyl acetate, methyl ethyl sulfate, ethyl ethyl propionate, phthalic acid Esters such as dimethyl, ethyl benzoate, and methoxypropyl acetate; aromatic hydrocarbons such as toluene, xylene, benzene, ethylbenzene; carbon tetrachloride,
  • Rogenated hydrocarbons Tetrahydrofuran, Jetyl etherenole, Ethylene glycol monomethino ethenore, Ethylene glycol eno monoethinore ether, ethers such as 1-methoxy-2-propanol; Dimethylformamide, dimethylacetamide, dimethylsulfoxide, sulfolane Etc. These may be used alone or in combination of two or more. Also, add a known surfactant.
  • the coating method can be appropriately selected according to the purpose without any particular limitation.
  • the drying conditions vary depending on each component, the type of solvent, the ratio of use, etc., but are usually 60 to 110 ° C. for 30 seconds to 15 minutes.
  • the thickness of the photosensitive layer can be appropriately selected according to the purpose for which there is no particular limitation. For example, 1 to: LOO 111 or more preferably 5 to 70 m force.
  • the thickness of the exposed portion of the photosensitive layer is not changed after the exposure and development.
  • the minimum energy (sensitivity) of light used for the light is 0.1 to 20mjZcm 2 And are preferred.
  • the minimum energy of light used for the exposure that does not change the thickness of the exposed portion of the photosensitive layer after the exposure and development is so-called development sensitivity. It can be determined from a graph (sensitivity curve) showing the relationship between the amount of light energy (exposure amount) used for the exposure when exposed and the thickness of the cured layer generated by the development process following the exposure. .
  • the thickness of the cured layer increases as the exposure amount increases, and then becomes substantially the same and substantially constant as the thickness of the photosensitive layer before the exposure.
  • the development sensitivity is a value obtained by reading the minimum exposure when the thickness of the cured layer becomes substantially constant.
  • the thickness of the cured layer is not changed by exposure / development.
  • a method for measuring the thickness of the cured layer and the photosensitive layer before exposure is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a film thickness measuring device for example, Surfcom 1400D (manufactured by Tokyo Seimitsu Co., Ltd.)) and the like.
  • the support can be appropriately selected according to the purpose for which there is no particular limitation. However, it is preferable that the photosensitive layer can be peeled off and the light transmittance is good. Further, the surface is smooth. More preferred to have good sex. Specific examples of the support and the protective film are described in Japanese Patent Application Laid-Open No. 2005-258431, [0342] and [0344] to [034 8].
  • the thickness of the support can be appropriately selected depending on the purpose for which there is no particular limitation.
  • t is preferably 4 to 300 ⁇ m force, more preferably 5 to 175 ⁇ m force ⁇ . Ms./ !.
  • the other layers can be appropriately selected according to the purpose without any particular limitation, and examples thereof include layers such as a cushion layer, a barrier layer, a release layer, an adhesive layer, a light absorption layer, and a surface protective layer.
  • the photosensitive transfer film may have one of these layers alone. It may have two or more types, and may have two or more layers of the same type.
  • the photosensitive transfer film is wound around a cylindrical core, wound into a long roll, and stored.
  • the length of the long photosensitive transfer film is not particularly limited, and can be appropriately selected from the range of 10-20, OOOm, for example.
  • slitting may be performed for ease of use by the user, and a long body in the range of 100 to 1, OOOm may be rolled.
  • the support is wound so that the outermost side is the outermost side.
  • the roll-shaped photosensitive transfer film may be slit into a sheet shape.
  • a separator especially moisture-proof, with desiccant
  • the pattern forming method of the present invention includes at least a laminating step of forming a laminate by transferring the photosensitive layer in the photosensitive transfer material of the present invention to the surface of the base material, and an exposure step, and an appropriately selected developing step and etching step. It includes other processes such as a process and a resist stripping process.
  • the method for forming the laminate is not particularly limited, and can be appropriately selected according to the purpose.
  • the photosensitive transfer film is peeled off from the substrate, and the protective film is peeled off while heating and pressurizing. It is preferable to laminate at least one of them.
  • the heating temperature is not particularly limited and can be appropriately selected according to the purpose. For example, 15 to 180 ° C is preferable, and 60 to 140 ° C is more preferable.
  • the pressure of the pressurization is not particularly limited and can be appropriately selected depending on the purpose.
  • the column is preferably 0.1 to 1. OMPa force, more preferably 0.2 to 0.8 MPa force ⁇ I like it!
  • the apparatus for performing at least one of the heating and pressurization can be appropriately selected according to the purpose without particular limitation, and examples thereof include a laminator and a vacuum laminator.
  • the apparatus for performing at least one of the heating and pressurization can be appropriately selected depending on the purpose, and for example, a laminator (for example, VP- ⁇ manufactured by Taisei Laminator Co., Ltd.) Are preferable.
  • a laminator for example, VP- ⁇ manufactured by Taisei Laminator Co., Ltd.
  • VP- ⁇ manufactured by Taisei Laminator Co., Ltd.
  • the base material there are no particular restrictions on known materials, those having high surface smoothness, and those having a surface with a rough surface.
  • a photo solder resist for forming a wiring pattern, and a color resist.
  • the plate-like base material (substrate) is preferred, and specifically, a known printed wiring board forming substrate (for example, a copper-clad laminate), a glass plate (for example, Soda glass plate, glass plate sputtered with oxygen and quartz, quartz glass plate, etc.), synthetic resin film, paper, metal plate and the like.
  • the laminate is formed by forming the photosensitive layer on a base material, and curing a region exposed by an exposure process described later on the photosensitive layer, and forming a pattern by a development process described later. Can do.
  • the exposure step is a step of exposing the photosensitive layer of the laminate formed in the lamination step.
  • the exposure can be appropriately selected according to the purpose for which there is no particular limitation, and powers such as digital exposure, analog exposure, etc. Among these, digital exposure is preferable.
  • Examples of the digital exposure include, for example, a light irradiating unit and n light (n is a natural number of 2 or more) two-dimensional shape that receives and emits light from the light irradiating unit.
  • the exposure head is designated by the use pixel part designation means, and the N-fold exposure (however, of the usable picture element parts) , N is a natural number greater than or equal to 2) and specifies the pixel part to be used, and for the exposure head, only the pixel part specified by the pixel part specifying unit is used by the pixel part control unit. Control the pixel part so that the against the optical layer, a method of performing exposure by relatively moving the exposing head in the scanning direction is preferable.
  • N-double exposure means that a straight line parallel to the scanning direction of the exposure head is formed on the surface to be exposed in almost all regions of the exposure region on the surface to be exposed of the photosensitive layer. This refers to exposure with a setting that intersects the N light spots (pixel array) irradiated on.
  • light spot “Column (pixel column)” refers to an array of light spots (pixels) as pixel units generated by the pixel unit in a direction in which the angle formed with the scanning direction of the exposure head is smaller.
  • the arrangement of the picture element portions does not necessarily have to be a rectangular lattice, for example, an arrangement of parallelograms.
  • the “substantially all areas” of the exposure area is described as a straight line parallel to the scanning direction of the exposure head by tilting the pixel part rows at both side edges of each picture element part. Since the number of picture element parts in the used picture element part decreases, even if it is used to connect multiple exposure heads in such a case, scanning will occur due to errors in the mounting angle and arrangement of the exposure heads.
  • the number of pixel parts in the used pixel part that intersects a straight line parallel to the direction may slightly increase or decrease, and the connection between the pixel parts in each used pixel part is less than the resolution.
  • N double exposure and “multiple exposure” are used as terms corresponding to “N double exposure” and “multiple exposure” with respect to an embodiment in which the exposure apparatus or exposure method of the present invention is implemented as a drawing apparatus or drawing method.
  • N in the N-exposure is a natural number of 2 or more, a force that can be appropriately selected according to the purpose for which there is no particular limitation, a natural number of 3 or more is preferable, and a natural number of 3 or more and 7 or less is more preferable. .
  • the pattern forming apparatus is a V-flat exposure apparatus of a flat bed type, and as shown in FIG. 1, a laminate 12 (hereinafter referred to as “laminated layer”) in which at least the photosensitive layer in the photosensitive transfer film is stacked.
  • a plate-like moving stage 14 that adsorbs and holds the photosensitive material 12 on the surface (sometimes referred to as “photosensitive material 12” or “photosensitive layer 12”).
  • the stage 14 is arranged so that its longitudinal direction faces the stage moving direction, and is supported by the guide 20 so as to be reciprocally movable.
  • the pattern forming apparatus 10 is provided with a stage driving device (not shown) for driving the stage 14 along the guide 20.
  • a U-shaped gate 22 is provided at the center of the installation base 18 so as to straddle the moving path of the stage 14. Each end of the U-shaped gate 22 is fixed to both side surfaces of the installation base 18.
  • a scanner 24 is provided on one side of the gate 22, and a plurality of (for example, two) sensors 26 for detecting the front and rear ends of the photosensitive material 12 are provided on the other side.
  • the scanner 24 and the sensor 26 are respectively attached to the gate 22 and fixedly arranged above the moving path of the stage 14.
  • the scanner 24 and the sensor 26 are connected to a controller (not shown) for controlling them.
  • an X axis and a Y axis orthogonal to each other are defined in a plane parallel to the surface of the stage 14 as shown in FIG.
  • Ten slits 28 are formed at regular intervals.
  • Each slit 28 also has a force with a slit 28a located on the upstream side and a slit 28b located on the downstream side.
  • the slit 28a and the slit 28b are orthogonal to each other, and the slit 28a has an angle of ⁇ 45 degrees and the slit 28b has an angle of +45 degrees with respect to the X axis.
  • the position of the slit 28 is substantially matched with the center of the exposure head 30.
  • the size of each slit 28 is set to sufficiently cover the width of the exposure area 32 by the corresponding exposure head 30.
  • the position of the slit 28 may be substantially coincident with the center position of the overlapping portion between the adjacent exposed regions 34.
  • the size of each slit 28 is set to a size that sufficiently covers the width of the overlapping portion between the exposed regions 34.
  • each slit 28 in the stage 14 a single cell type as a light spot position detecting means for detecting a light spot as a pixel unit in a used pixel part specifying process to be described later.
  • a photodetector (not shown) is incorporated.
  • each photodetector is used as a pixel part selection means for selecting the pixel part to be used in the process of specifying the pixel part to be used, which will be described later.
  • Connected to all the arithmetic units (not shown).
  • the operation form of the pattern forming apparatus at the time of exposure may be a form in which exposure is continuously performed while the exposure head is constantly moved, or each pattern is moved while the exposure head is moved step by step.
  • the exposure operation may be performed with the exposure head stationary at the destination position.
  • Each exposure head 30 is connected to a scanner 24 so that each pixel portion (micromirror) row direction of an internal digital 'micromirror' device (DMD) 36 described later forms a predetermined set inclination angle ⁇ with the scanning direction. Is attached. Therefore, the exposure area 32 by each exposure head 30 is a rectangular area inclined with respect to the scanning direction. As the stage 14 moves, a strip-shaped exposed region 34 is formed for each exposure head 30 in the photosensitive layer 12.
  • the scanner 24 includes ten exposure heads arranged in a matrix of 2 rows and 5 columns.
  • the individual exposure heads arranged in the m-th column and the n-th column are indicated, they are represented as exposure heads 30, and the exposure by the individual exposure heads arranged in the m-th row and the n-th column mn
  • each of the nodes 30 is arranged with a predetermined interval (natural number times the long side of the exposure area, twice in this embodiment) in the arrangement direction. Therefore, the exposure area 32 in the first row and the exposure area
  • the part that cannot be exposed to the rear 32 can be exposed by the exposure area 32 in the second row.
  • each of the exposure heads 30 includes a light modulation unit that modulates incident light for each pixel part according to image data (modulation for each pixel part).
  • DMD36 (made by Texas Instruments Inc., USA) as a spatial light modulator.
  • This DMD 36 is connected to a controller as a pixel part control means having a data processing part and a mirror drive control part.
  • each micromirror in the use area on the DMD 36 is determined for each exposure head 30 based on the input image data.
  • a control signal for controlling the driving of is generated.
  • the mirror drive control unit controls the angle of the reflection surface of each micromirror of the DMD 36 for each exposure head 30 based on the control signal generated by the image data processing unit.
  • a laser in which the emission end portion (light emitting point) of the optical fiber is arranged in a line along the direction that coincides with the long side direction of the exposure area 32.
  • a fiber array light source 38 having an emission part, a lens system 40 for correcting the laser light emitted from the fiber array light source 38 and condensing it on the DMD, and reflecting the laser light transmitted through the lens system 40 toward the DMD 36
  • the mirrors 42 to be used are arranged in this order.
  • the lens system 40 is schematically shown.
  • the lens system 40 includes a pair of combination lenses 44 that collimate the laser light emitted from the fiber array light source 38 and a collimated laser. It is composed of a pair of combination lenses 46 that correct the light amount distribution of light so that it is uniform, and a condensing lens 48 that condenses the laser light whose light amount distribution has been corrected on the DMD 36.
  • a lens system 50 that forms an image of the laser light reflected by the DMD 36 on the exposed surface of the photosensitive layer 12 is disposed.
  • the lens system 50 includes two lenses 52 and 54 arranged so that the DMD 36 and the exposed surface of the photosensitive layer 12 have a conjugate relationship.
  • the laser light emitted from the fiber array light source 38 is substantially magnified five times, and then the light from each micromirror on the DMD 36 is reduced by the lens system 50 described above. It is set to be reduced to 5 ⁇ m!
  • the light modulation means has n (where n is a natural number of 2 or more) two-dimensionally arranged pixel parts, and according to the pattern information. Any device that can control the picture element portion can be appropriately selected according to the purpose without any particular restriction. For example, a spatial light modulator is preferable.
  • Examples of the spatial light modulator include a digital micromirror device (DMD), a MEMS (Micro Electro Mechanical Systems) type spatial light modulator (S LM), and transmission by an electro-optic effect.
  • DMD digital micromirror device
  • S LM Micro Electro Mechanical Systems
  • Optical element that modulates light PZT element
  • FLC liquid crystal light shatter
  • the light modulation unit includes a pattern signal generation unit that generates a control signal based on pattern information to be formed.
  • the light modulating means modulates light according to the control signal generated by the pattern signal generating means.
  • control signal can be appropriately selected according to the purpose for which there is no particular limitation.
  • a digital signal is preferably used.
  • the DMD 36 has a mirror structure in which a large number of micromirrors 58 are arranged in a lattice pattern as a pixel portion constituting each pixel (pixel). It is a device.
  • the power to use DMD36 in which micromirrors 58 of 1024 columns x 768 rows are arranged.
  • micromirrors 58 that can be driven by a controller connected to DMD36, that is usable are only 1024 columns x 256 rows.
  • the data processing speed of DMD36 is limited, and the modulation speed per line is determined in proportion to the number of micromirrors used. Thus, by using only some of the micromirrors in this way, Modulation speed increases.
  • Each micromirror 58 is supported by a support column, and a material having high reflectivity such as aluminum is deposited on the surface thereof.
  • the reflectance of each micromirror 58 is 90% or more, and the arrangement pitch thereof is 13.7 m in both the vertical direction and the horizontal direction.
  • the SRAM cell 56 is a silicon gate CMOS manufactured on an ordinary semiconductor memory manufacturing line via a support including a hinge and a yoke, and is configured monolithically (integrated) as a whole.
  • each micromirror 58 supported by the column is Inclined to one of ⁇ ⁇ degrees (for example, ⁇ 10 degrees) with respect to the substrate side on which the DMD 36 is disposed with the diagonal line as the center.
  • FIG. 7 (b) shows a state tilted to + ⁇ degrees when the micromirror 58 is in the on state
  • FIG. 7 (b) shows a state tilted to ⁇ degrees when the micromirror 58 is in the off state.
  • the laser incident on the DMD 36 is controlled by controlling the inclination of the micro mirror 58 in each pixel of the DMD 36 in accordance with the image signal as shown in FIG.
  • Light B is reflected in the tilt direction of each micromirror 58.
  • FIG. 6 shows an example of a state in which a part of the DMD 36 is enlarged and each micromirror 58 is controlled to + ⁇ degrees or ⁇ degrees.
  • the on / off control of each micromirror 58 is performed by the controller connected to the DM D36.
  • a light absorber (not shown) is arranged in the direction in which the laser beam B reflected by the off-state micromirror 58 travels.
  • the light irradiating means can be appropriately selected according to the purpose without particular limitation.
  • (ultra) high pressure mercury lamp, xenon lamp, carbon arc lamp, halogen lamp, copying machine For example, a fluorescent tube, a known light source such as an LED or a semiconductor laser, or a means capable of combining and irradiating two or more lights.
  • a means capable of combining and irradiating two or more lights is preferable. .
  • the light emitted from the light irradiation means is, for example, an electromagnetic wave that passes through the support and activates the photopolymerization initiator and sensitizer used when the light is irradiated through the support.
  • electromagnetic wave that passes through the support and activates the photopolymerization initiator and sensitizer used when the light is irradiated through the support.
  • ultraviolet to visible light, electron beams, X-rays, laser light, etc. are mentioned, and among these, laser light is preferred.
  • Laser that combines two or more lights hereinafter sometimes referred to as “combined laser”) ) Is more preferable. Even when the support is peeled off and the light is irradiated with light, the same light can be used.
  • the ultraviolet power is preferably 300 to 1500 nm, more preferably 320 to 800 mn, and particularly preferably 330 to 650 mn.
  • the wavelength of the laser light is, for example, 200 to 1500 nm force S, preferably 300 to 800 nm force, more preferably 330 to 500 mn force, and 400 to 450 mn force, particularly preferred! /.
  • a means capable of irradiating the combined laser for example, a plurality of lasers, a multimode optical fiber, and a laser beam irradiated with each of the plurality of laser forces are condensed and coupled to the multimode optical fiber.
  • a means having a collective optical system for example, a plurality of lasers, a multimode optical fiber, and a laser beam irradiated with each of the plurality of laser forces are condensed and coupled to the multimode optical fiber.
  • a means having a collective optical system for example, a plurality of lasers, a multimode optical fiber, and a laser beam irradiated with each of the plurality of laser forces are condensed and coupled to the multimode optical fiber.
  • Examples of means (fiber array light source) capable of irradiating the combined laser include means described in JP-A No. 20 05 258431 [0109] to [0146].
  • the used pixel part specifying means includes a light spot position detecting means for detecting the position of a light spot as a pixel unit on the exposed surface, and a detection result by the light spot position detecting means. It is preferable to have at least a pixel part selection means for selecting a pixel part to be used for realizing N double exposure.
  • the pattern forming apparatus 10 performs double exposure on the photosensitive material 12, and the variation in resolution and density unevenness due to the mounting angle error of each exposure head 30 are reduced.
  • the set tilt angle ⁇ in the column direction of the pixel part (micromirror 58) with respect to the scanning direction of the exposure head 30 can be used as long as there is no mounting angle error of the exposure head 30 etc. From the angle ⁇ , which is exactly double exposure using a 1024 column x 256 row pixel part
  • the ideal also uses a slightly larger angle.
  • This angle ⁇ is the number of N exposures N, the number of usable micromirrors 58 in the row direction s
  • the angle ⁇ is about 0.45 degrees according to the equation 3. Therefore, the set tilt angle ⁇ is, for example, 0.5 ideal
  • the pattern forming apparatus 10 is within an adjustable range so that the mounting angle of each exposure head 30, that is, each DMD 36 is an angle close to the set inclination angle ⁇ . It is assumed that initial adjustment is performed so that
  • FIG. 8 shows unevenness generated in the pattern on the exposed surface due to the effect of the mounting angle error of one exposure head 30 and the pattern distortion in the pattern forming apparatus 10 initially adjusted as described above. It is explanatory drawing which showed the example.
  • the light spot as the pixel unit generated by each pixel part (micromirror) and constituting the exposure region on the exposed surface the light spot in the m-th row 3 ⁇ 4 ⁇ (m), the light spot in the nth column is denoted as c (n), and the light spot in the mth row and the nth column is denoted as P (m, n).
  • FIG. 8 shows the pattern of light spots from the usable micromirror 58 projected onto the exposed surface of the photosensitive material 12 with the stage 14 being stationary, and the lower part is The pattern of the light spot group as shown in the upper part appears, and the state of the exposure pattern formed on the exposed surface is shown when the stage 14 is moved in this state and continuous exposure is performed. Is.
  • FIG. 8 for convenience of explanation, the exposure pattern by the odd-numbered columns of the micromirrors 58 that can be used and the exposure pattern by the even-numbered columns are shown separately. However, the actual exposure patterns on the exposed surface are shown in FIG. It is a superposition of two exposure patterns.
  • the set inclination angle 0 is set to a slightly larger angle than the above angle 0.
  • FIG. 8 is an example of pattern distortion appearing on the surface to be exposed, and “angular distortion” is generated in which the inclination angle of each pixel column projected on the surface to be exposed is not uniform.
  • the Causes of this angular distortion include various aberrations and alignment deviations of the optical system between the DMD 36 and the exposed surface, distortion of the DMD 36 itself, and micromirror placement errors.
  • the angular distortion that appears in the example in Fig. 8 indicates that the tilt angle with respect to the scanning direction is It is a distortion of a form that is smaller and larger in the right column of the figure.
  • the overexposed area is smaller on the exposed surface shown on the left side of the figure and larger on the exposed surface shown on the right side of the figure.
  • the slit 28 and the photodetector are used as the light spot position detecting means.
  • the actual inclination angle ⁇ ′ is specified for each exposure head 30, and the arithmetic unit connected to the photodetector is used as the pixel part selection unit based on the actual inclination angle ⁇ ′.
  • a process of selecting a micromirror to be used for actual exposure is performed. Based on at least two light spot positions detected by the light spot position detecting means until the actual tilt angle ⁇ , the light spot column direction on the surface to be exposed and the exposure head when the exposure head is tilted. It is specified by the angle formed by the scanning direction.
  • FIG. 9 is a top view showing the positional relationship between the exposure area 32 by one DMD 36 and the corresponding slit 28.
  • the size of the slit 28 is set to sufficiently cover the width of the exposure area 32.
  • the angle formed by the 512-th light spot array positioned substantially at the center of the exposure area 32 and the scanning direction of the exposure head 30 is measured as the actual inclination angle ⁇ ′.
  • the positions of P (l, 512) and ⁇ (256, 512) are detected, and the angle formed by the straight line connecting them and the scanning direction of the exposure head is specified as the actual tilt angle ⁇ ′.
  • FIG. 10 is a top view illustrating a method for detecting the position of the light spot 256 (256, 512).
  • the stage 14 is slowly moved to move the slit 28 relatively along the axis direction, and the light spot ⁇ (256, 512) is
  • the slit 28 is positioned at an arbitrary position between the upstream slit 28a and the downstream slit 28b.
  • the coordinates of the intersection of slit 28a and slit 28b are (XO, YO) and To do.
  • the value of this coordinate (XO, YO) is determined and recorded by the movement distance of the stage 14 to the above position indicated by the drive signal given to the stage 14 and the known X-direction position force of the slit 28.
  • the stage 14 is moved, and the slit 28 is relatively moved to the right in FIG. Then, as indicated by a two-dot chain line in FIG. 10, the stage 14 is stopped when the light of the light spot 256 (256, 512) passes through the left slit 28b and is detected by the photodetector.
  • the coordinates (XO, Y1) of the intersection of the slit 28a and the slit 28b at this time are recorded as the position of the light spot P (256, 512).
  • the stage 14 is moved in the opposite direction, and the slit 28 is relatively moved along the Y axis to the left in FIG. Then, as indicated by a two-dot chain line in FIG. 10, the stage 14 is stopped when the light at the light spot P (256, 512) passes through the right slit 28a and is detected by the photodetector.
  • the coordinates (XO, Y2) of the intersection of the slit 28a and the slit 28b at this time are recorded as the position of the light spot P (256, 512).
  • the coordinates indicating the position of P (l, 512) are also determined, and the inclination angle formed by the straight line connecting the coordinates and the scanning direction of the exposure head 30 is derived, and this is the actual inclination angle. It is specified as ⁇ .
  • a natural number T is derived that is closest to the value t satisfying the above relationship, and the micromirrors in the 1st to Tth rows on the DMD 36 are selected as the micromirrors that are actually used during the main exposure.
  • a micromirror that minimizes the total area of the overexposed area and the underexposed area for the ideal double exposure is actually realized. It can be selected as a micromirror to be used for.
  • the smallest self value equal to or greater than the value t is used. It is also possible to derive the number. In that case, in the exposure area in the vicinity of the 512th column, a micromirror that minimizes the area of the overexposed area and produces an insufficient exposure area for ideal double exposure. Can be selected as the actual micromirror to be used.
  • a micromirror that minimizes the area of the underexposed area and does not produce an overexposed area with respect to the ideal double exposure It can be selected as a micromirror to be actually used.
  • FIG. 11 shows the unevenness on the exposed surface shown in FIG. 8 in the exposure performed using only the light spot generated by the micromirror selected as the micromirror actually used as described above. It is explanatory drawing which showed how it is improved.
  • T 253 is derived as the natural number T and the micromirror on the 253rd line is selected as the first line force.
  • a signal for setting the angle in the always-off state is sent by the pixel part control means. Is not involved in exposure. As shown in Fig. 11, overexposure and underexposure are almost completely eliminated in the exposure area near the 512th column, and uniform exposure very close to ideal double exposure is realized.
  • the angle distortion of the light spot sequence on the exposed surface is near the center (c (512 in the figure)) due to the angular distortion. It is smaller than the angle of inclination of the ray train in the area of). Therefore, the exposure using only the micromirrors selected based on the actual inclination angle ⁇ ⁇ measured with c (512) as a reference, is ideal for each of the even-numbered exposure pattern and the odd-numbered exposure pattern. A slight under-exposure area is generated for the double exposure.
  • the exposure is caused by the angular distortion.
  • the tilt angle of the light beam on the optical surface is larger than the tilt angle of the light beam in the region near the center (near c (512) in the figure). Therefore, in the exposure with the micromirror selected based on the actual tilt angle ⁇ measured with c (512) as the reference, as shown in the figure, the region is overexposed for the ideal double exposure. Will occur slightly.
  • the overexposed areas are complemented with each other, and the density unevenness due to the angular distortion is It can be minimized by the effect of offset by double exposure.
  • the actual tilt angle ⁇ ′ of the 512th ray array is measured, and the actual tilt angle ⁇ is used to calculate T based on the T derived from the equation (4).
  • a method for specifying the actual inclination angle ⁇ ′ a plurality of image element row directions (light spot rows) and a scanning direction of the exposure head are used. The actual tilt angle is measured, and any one of the average value, median value, maximum value, and minimum value is specified as the actual tilt angle ⁇ '. As a form to select a mirror.
  • the average value or the median value is set to the actual inclination angle ⁇ ′, it is possible to realize exposure with a good balance between an overexposed area and an underexposed area with respect to an ideal N-fold exposure. For example, the total area of overexposed areas and underexposed areas is minimized, and the number of pixel units (number of light spots) in overexposed areas and underexposed areas It is possible to achieve an exposure that makes the number of pixel units (number of light spots) equal to the maximum number of pixels. It is possible to achieve exposure that places more importance on eliminating excessive regions, for example, to achieve exposure that minimizes the area of underexposed regions and prevents overexposed regions. Is possible.
  • the minimum value is the actual inclination angle ⁇ ′, it is possible to realize exposure that places more emphasis on the exclusion of areas that are insufficient for the ideal N double exposure. Exposure that minimizes the area of the area to be exposed and does not produce underexposed areas. It is possible to realize.
  • the identification of the actual inclination angle ⁇ is not limited to the method based on the positions of at least two light spots in the same pixel part row (light spot row).
  • the angle obtained from the position of one or more light spots in the same pixel part sequence c (n) and the position of one or more light spots in a row in the vicinity of c (n) may be specified.
  • one light spot position in c (n) and one or a plurality of light spot positions included in a light spot row on the straight line and in the vicinity along the scanning direction of the exposure head are detected.
  • the actual inclination angle ⁇ ′ can be obtained from these positional information.
  • the angle obtained based on the position of at least two light spots in the light spot array in the vicinity of the c (n) line is obtained.
  • the actual inclination angle ⁇ ′ may be specified.
  • the pattern forming apparatus 10 performs double exposure on the photosensitive material 12, and is a head that is an overlapping exposure area on the exposed surface formed by the plurality of exposure heads 30.
  • each exposure head 30 that is, each DMD 36
  • the set tilt angle ⁇ of each exposure head 30, that is, each DMD 36 can be used as long as there is no mounting angle error of the exposure head 30 and can be used. 58 and adopt an angle ⁇ that is exactly double exposure.
  • This angle ⁇ is obtained from the above equations 1 to 3 in the same manner as in the above embodiment (1).
  • FIG. 12 shows two exposures in the pattern forming apparatus 10 initially adjusted as described above. Ideal position relative to the X-axis direction of the head (exposing heads 30 and 30 as an example)
  • FIG. 6 is an explanatory view showing an example of density unevenness generated in a pattern on an exposed surface due to the influence of deviation from the state. Deviations in the relative position of each exposure head in the X-axis direction can occur because it is difficult to fine-tune the relative position between exposure heads.
  • the upper part of FIG. 12 is a micromirror 58 that can be used by the DMD 36 of the exposure heads 30 and 30 that is projected onto the exposed surface of the photosensitive material 12 while the stage 14 is stationary.
  • Fig. 12 shows the exposure pattern formed on the exposed surface when the stage 14 is moved and continuous exposure is performed with the light spot group pattern shown in the upper part appearing.
  • every other column exposure pattern of the micromirrors 58 that can be used is divided into an exposure pattern based on the pixel column group A and an exposure pattern based on the pixel column group B.
  • the actual exposure pattern on the exposed surface is a superposition of these two exposure patterns.
  • the light spot position detection is performed. Using a set of slit 28 and photodetector as means, exposure head 30 and 30 force
  • the position (coordinates) of some of the light spots that constitute the inter-head connecting area formed on the exposed surface is detected from among the 12 21 light spot groups. Based on the position (coordinates), processing for selecting a micromirror to be used in actual exposure is performed using an arithmetic unit connected to the photodetector as the pixel part selection means.
  • FIG. 13 shows the positional relationship between the exposure areas 32 and 32 similar to those in FIG. It is the top view which showed engagement.
  • the size of the slit 28 is already exposed by the exposure heads 30 and 30.
  • the size from 12 21 is sufficiently large to cover the connecting area between the heads formed on the exposed surface.
  • Fig. 14 shows an example when the position of the light spot P (256, 1024) in the exposure area 32 is detected.
  • the stage 14 is slowly moved to relatively move the slit 28 along the Y-axis direction, and the light spot P (256, 1024) is upstream.
  • the slit 28 is positioned at an arbitrary position between the slit 28a on the side and the slit 28b on the downstream side.
  • the coordinates of the intersection of the slit 28a and the slit 28b are (XO, Y0).
  • the value of this coordinate (XO, Y0) is determined and recorded by the movement distance of the stage 14 to the above position indicated by the drive signal given to the stage 14 and the known X-direction position force of the slit 28.
  • the stage 14 is moved, and the slit 28 is relatively moved along the Y axis to the right in FIG. Then, as indicated by a two-dot chain line in FIG. 14, the stage 14 is stopped when the light at the light spot P (256, 1024) passes through the left slit 28b and is detected by the photodetector.
  • the coordinates (XO, Y1) of the intersection of the slit 28a and the slit 28b at this time are recorded as the position of the light spot P (256, 1024).
  • the stage 14 is moved in the opposite direction, and the slit 28 is relatively moved along the Y axis to the left in FIG. Then, as indicated by a two-dot chain line in FIG. 14, the stage 14 is stopped when the light at the light spot P (256, 1024) passes through the right slit 28a and is detected by the photodetector. The coordinates (XO, Y2) of the intersection of the slit 28a and the slit 28b at this time are recorded as the light spot P (256, 1024).
  • Detection is performed by a combination of a slit 28 and a photodetector as a position detection means. Next, exposure area 32
  • each light spot on the light spot line r (256) of the 256th line of 21 is defined as ⁇ (256, 1024), ⁇ (256, 10 23) X coordinates larger than light spot P (256, 1) in exposure area 32
  • the corresponding micromirror is specified as a micromirror (unused pixel part) that is not used during the main exposure.
  • the detection operation ends.
  • the 1021 row power in the exposure area 32 corresponding to the portion 70 covered by the diagonal line is also the light spot that forms the 1024th row.
  • the micromirror force corresponding to is specified as a micromirror that is not used during the main exposure.
  • the position of the light spot P (256, N) in the exposure area 32 is detected for the number N of N double exposures.
  • the positions of the light spots that make up the rightmost 1020th column are represented by P (l , 1020)
  • the force is also detected in order as P (l, 1020), P (2, 1020) ..., and light spot P indicating an X coordinate larger than light spot P (256, 2) in exposure area 32 (m, 1020)
  • an exposure area 32 Thereafter, in an arithmetic unit connected to the photodetector, an exposure area 32
  • the X coordinate of the light spot P (m, 1020) in the exposure area 32 is the exposure area 3
  • the micromirror corresponding to the force P (m-1, 1020) is also identified as the micromirror that is not used during the main exposure.
  • the X coordinate of the light spot P (m–1, 1020) in the exposure area 32 is the light in the exposure area 32.
  • micromirrors corresponding to the light spots that form the shaded area 72 in FIG. 15 are added as micromirrors that are not used during actual exposure. These micromirrors are always signaled to set their micromirror angle to the off-state angle, and these micromirrors are essentially not used for exposure.
  • exposure areas 32 and 32 are selected. Ideal double dew in the area between the heads
  • the total area of areas that are overexposed and underexposed to light can be minimized, and uniform exposure very close to ideal double exposure is achieved, as shown in the lower part of Fig. 15. can do.
  • the X coordinate of the light spot P (256, 2) of the exposure area 32 and the exposure area are determined when specifying the light spot that constitutes the shaded area 72 in FIG. 32 of
  • micromirror May be specified as a micromirror that is not used during the main exposure.
  • a micromirror that minimizes the area of the overexposed region with respect to the ideal double exposure and does not generate an underexposed region in the connecting region between the heads. It can be selected as a micromirror to be actually used.
  • the light spot P (l, 1020) force in the exposure area 32 corresponds to P (m— 1, 1020).
  • a micromirror which is not used for this exposure. In that case, in the connecting area between the heads, a micromirror that minimizes the area of the area that is underexposed with respect to the ideal double exposure and that does not cause an overexposed area is actually used. It can be selected as the micromirror to be used.
  • the micromirrors that are actually used may be selected so as to be equal.
  • the solution caused by the relative position shift in the X-axis direction of the plurality of exposure heads reduces image variability and density unevenness, and realizes ideal N double exposure.
  • the pattern forming apparatus 10 performs double exposure on the photosensitive material 12, and is a head that is an overlapped exposure region on the exposed surface formed by a plurality of exposure heads 30.
  • the relative position of the two exposure heads (for example, exposure heads 30 and 30) in the X-axis direction deviates from the ideal state, as well as each exposure.
  • each exposure head 30 that is, each DMD 36
  • the set tilt angle of each exposure head 30, that is, each DMD 36 can be used as long as there is no mounting angle error of the exposure head 30 and the 1024 columns x 256 rows of usable pixel parts (micrometers). Angle slightly larger than angle ⁇ , which is exactly double exposure using mirror 58)
  • the degree shall be adopted.
  • This angle ⁇ is obtained in the same manner as in the above embodiment (1) using the above equations 1-3.
  • an angle of about 0.50 degrees may be adopted as the set inclination angle ⁇ . It is assumed that the pattern forming apparatus 10 is initially adjusted so that the mounting angle of each exposure head 30, that is, each DMD 36 is close to the set inclination angle ⁇ within an adjustable range.
  • FIG. 16 shows a mounting angle error between two exposure heads (for example, exposure heads 30 and 30) in the pattern forming apparatus 10 in which the mounting angles of each exposure head 30, that is, each DMD 36 are initially adjusted as described above. And relative mounting angle error between each exposure head 30 and 30
  • FIG. 6 is an explanatory diagram showing an example of unevenness that occurs in a pattern on an exposed surface due to the influence of a shift in relative position.
  • the phases of the exposure heads 30 and 30 in the X-axis direction are the same as the example of FIG.
  • the exposure head scanning direction on the exposed surface in the exposure areas 32 and 32 is determined in both the exposure patterns of every other light spot group (pixel array group A and B).
  • the exposure area other than the overlapping exposure area on the coordinate axis perpendicular to the scanning direction of the exposure head on the exposed surface In this area, both of the exposure patterns of every other light spot group (pixel array groups A and B) and the pixel that is an overlapped exposure region on the exposed surface formed by a plurality of pixel part rows.
  • a region 76 is formed which is overexposed than the ideal double exposure state, and this causes further density unevenness.
  • Use pixel selection processing is performed to reduce density unevenness due to the influence of the angle difference. Specifically, a set of the slit 28 and the photodetector is used as the light spot position detecting means, and the actual inclination angle ⁇ ′ is specified for each of the exposure heads 30 and 30, and the actual inclination angle is determined.
  • processing for selecting a micromirror used for actual exposure is performed using an arithmetic unit connected to a photodetector as the pixel portion selection means.
  • the actual inclination angle ⁇ ′ is specified by the light spot P (l,
  • the arithmetic device connected to the photodetector using the actual inclination angle ⁇ ′ thus specified is similar to the arithmetic device in the above-described embodiment (1), as shown in the following equation 4
  • Equation 4 The natural number T that is closest to the value t that satisfies this relationship is assigned to each of the exposure heads 30 and 30.
  • the ( ⁇ + 1) line force on the DMD 36 is also identified as the micromirror that is not used for the main exposure.
  • the micromirror force corresponding to the light spots constituting the portions 78 and 80 covered with diagonal lines in FIG. 17 is specified as a micromirror that is not used in the main exposure.
  • the micromirror force corresponding to the light spots constituting the portions 78 and 80 covered with diagonal lines in FIG. 17 is specified as a micromirror that is not used in the main exposure.
  • the total area of the overexposed and underexposed areas with respect to the ideal double exposure can be minimized.
  • the smallest natural number equal to or greater than the value t may be derived. In that case, to multiple exposures in exposure areas 32 and 32
  • the number of pixel units in the overexposed area for the ideal double exposure in each area other than the joint area between the heads, which is the overlapping exposure area on the exposed surface formed by multiple exposure heads It is also possible to specify a micromirror that is not used during the main exposure so that the number of pixel units (number of light spots) in the underexposed area is equal to the number of light spots!
  • the relative position shift in the X-axis direction of the plurality of exposure heads, and Variations in resolution and density unevenness due to the mounting angle error of the optical head and the relative mounting angle error between the exposure heads can be reduced, and ideal N-fold exposure can be realized.
  • a set of the slit 28 and the single cell type photodetector is used as a means for detecting the position of the light spot on the surface to be exposed.
  • the force that was used is not limited to this, V, or any other form can be used.
  • a two-dimensional detector can be used.
  • the actual inclination angle ⁇ ′ is obtained from the position detection result of the light spot on the exposed surface by the combination of the slit 28 and the photodetector, and the actual inclination angle is obtained.
  • a micromirror to be used is selected based on ⁇ ⁇
  • a usable micromirror may be selected without going through the derivation of the actual inclination angle ⁇ ′.
  • the reference exposure using all available micromirrors is performed, and the micromirror used by the operator is manually specified by checking the resolution and density unevenness by visual observation of the reference exposure result. It is included in the scope of the present invention.
  • magnification distortion that reaches the exposure area 32 on the exposure surface at different magnifications from the light power from each micromirror 58 on the DMD 36.
  • beam diameter distortion that reaches the exposure area 32 on the exposed surface with different beam diameters, the light power from each micromirror 58 on the DMD 36.
  • this distortion of light intensity includes the positional dependency of the transmittance of the optical element between the DMD 36 and the exposed surface (for example, the single lens 52 and 54 in FIGS. 5A and 5B), This is caused by unevenness in the amount of light due to the DMD 36 itself.
  • These forms of pattern distortion also cause unevenness in resolution and density in the pattern formed on the exposed surface.
  • the residual elements of the pattern distortion of these forms are also the above-mentioned angular distortion. As with the residual elements, it can be leveled by the effect of multiple exposure, and the unevenness in resolution and density can be reduced over the entire exposure area of each exposure head.
  • every (N-1) micromirror columns or adjacent to 1ZN rows of all light spot rows The reference exposure is performed using only the group of micromirrors that make up the row, and the microphone mirror that is not used during actual exposure is identified among the micromirrors used for the reference exposure so that uniform exposure can be achieved. You can do it.
  • the result of the reference exposure by the reference exposure means is output as a sample, and the output reference exposure result is subjected to analysis such as confirmation of resolution variation and density unevenness and estimation of the actual inclination angle.
  • the analysis of the result of the reference exposure is a visual analysis by the operator.
  • FIG. 19A and FIG. 19B are explanatory views showing an example of a form in which reference exposure is performed using only (N-1) rows of micromirrors using a single exposure head.
  • reference exposure is performed using only the micromirrors corresponding to the odd-numbered light spot arrays indicated by solid lines in FIG. 19A, and the reference exposure results are output as samples. Based on the reference exposure result output from the sample, it is possible to specify a micromirror to be used in the main exposure by confirming variations in resolution and uneven density, or estimating the actual tilt angle.
  • a microphone aperture mirror other than the micromirror corresponding to the light spot array shown by hatching in FIG. 19B is designated as actually used in the main exposure among the micromirrors constituting the odd light spot array. Is done.
  • a separate reference exposure may be performed in the same manner to specify a micromirror to be used during the main exposure, or the same pattern as that for odd-numbered light spot arrays may be applied. Good.
  • FIG. 20 is an explanatory view showing an example of a form in which reference exposure is performed using only a plurality of (N-1) micromirrors using a plurality of exposure heads.
  • Exposure is performed, and a reference exposure result is output as a sample. Based on the output result of the reference exposure, the two exposure heads check resolution variations and density unevenness in areas other than the head-to-head connection area formed on the exposed surface, and estimate the actual inclination angle. Therefore, it is possible to specify the micromirror to be used during the main exposure.
  • a separate reference exposure may be performed in the same manner, and the micromirror used for the main exposure may be designated, or the same pattern as that for the odd-numbered pixel lines may be applied. .
  • the two exposure heads form the surface to be exposed.
  • a state close to ideal double exposure can be achieved in areas other than the head-to-head connection area.
  • FIGS. 21A and 21B use a single exposure head and correspond to IZN rows for all light spot rows It is explanatory drawing which showed an example of the form which performs reference exposure using only the micromirror group which comprises an adjacent line.
  • a microphone mouth mirror other than the micromirror corresponding to the light spot group indicated by hatching in FIG. 21B is actually used during the main exposure in the micromirrors in the first to 128th rows.
  • two adjacent exposure heads in the X-axis direction are equivalent to 1ZN rows of the total number of light spots
  • FIG. 10 is an explanatory diagram showing an example of a form in which reference exposure is performed using only micromirror groups constituting adjacent rows.
  • a light spot array in a region 90 indicated by hatching and a region 92 indicated by shading Micromirror force other than micromirrors corresponding to is designated as the actual one used during the main exposure in the micromirrors in the 1st to 128th lines.
  • a separate reference exposure may be performed in the same manner to specify the micromirror to be used for the main exposure, and the first to 128th lines are designated. The same pattern as that of the micromirror may be applied.
  • micromirror By specifying the micromirror to be used during the main exposure in this way, a state close to ideal double exposure is realized in areas other than the joint area between the heads formed on the exposed surface by the two exposure heads. it can.
  • the power described in the case where the main exposure is double exposure is not limited to this, and any multiple exposure over double exposure is possible. It is good.
  • the triple exposure power is set to approximately seven exposures, it is possible to achieve exposure with high resolution and reduced resolution variation and density unevenness.
  • the size of the predetermined portion of the two-dimensional pattern represented by the image data matches the size of the corresponding portion that can be realized by the selected use pixel. It is preferable that a mechanism for converting image data is provided. By converting the image data in this way, it is possible to form a high-definition pattern on the exposed surface according to the desired two-dimensional pattern.
  • the developing step exposes the photosensitive layer in the pattern forming material in the exposing step, cures the exposed region of the photosensitive layer, and then removes the uncured region to form an image, thereby forming a no-turn. It is a process.
  • the development step can be preferably carried out, for example, by a developing means.
  • the developing means is not particularly limited as long as it can be developed using a developer, and can be appropriately selected according to the purpose.
  • the means for spraying the developer, and applying the developer And means for immersing in the developer may be used alone or in combination of two or more.
  • the developing unit may include a developing solution replacing unit that replaces the developing solution, a developing solution supply unit that supplies the developing solution, and the like.
  • the developer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include alkaline solutions, aqueous developers, organic solvents, etc. Among these, weakly alkaline aqueous solutions are mentioned. preferable.
  • Examples of the basic component of the weak alkaline liquid include lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium phosphate, phosphorus Examples include potassium acid, sodium pyrophosphate, potassium pyrophosphate, and borax.
  • the pH of the weak alkaline aqueous solution is more preferably about 9 to 11 force, for example, preferably about 8 to 12.
  • Examples of the weak alkaline aqueous solution include 0.1 to 5% by mass of sodium carbonate aqueous solution or potassium carbonate aqueous solution.
  • the temperature of the developer can be appropriately selected according to the developability of the photosensitive layer, and for example, about 25 ° C. to 40 ° C. is preferable.
  • the developer is a surfactant, an antifoaming agent, an organic base (for example, ethylenediamine, ethanolamine, tetramethylammonium hydroxide, diethylenetriamine, triethylenepentamine, morpholine, triethanolamine, etc.)
  • an organic solvent for example, alcohols, ketones, esters, ethers, amides, latatones, etc.
  • the developer may be an aqueous developer obtained by mixing water or an alkaline aqueous solution and an organic solvent, or may be an organic solvent alone.
  • the etching step can be performed by a method appropriately selected from among known etching methods.
  • the etching solution used for the etching treatment can be appropriately selected according to the purpose without any particular restriction.
  • cupric chloride is used.
  • examples thereof include a solution, a ferric chloride solution, an alkaline etching solution, and a hydrogen peroxide-based etching solution.
  • the point of the etching factor salty ferric solution is preferable.
  • a permanent pattern can be formed on the surface of the substrate by removing the pattern as a strip after the etching process.
  • the permanent pattern is not particularly limited and can be appropriately selected according to the purpose.
  • a wiring pattern etc. are mentioned suitably.
  • the resist stripping step can be performed by a method appropriately selected from known resist stripping methods without particular limitation as long as it is a step of stripping the pattern and then stripping it as strips.
  • the strips produced in the resist stripping process are extremely fine, and can prevent stripping failure and the like, and can prevent contamination of the apparatus by the stripping pieces. .
  • the stripping solution used for the resist stripping treatment is not particularly limited and may be appropriately selected depending on the purpose.
  • 1 to 10% by mass of sodium hydroxide aqueous solution 1 to: LO mass inorganic alkali aqueous solution and the like 0/0 Mizusani ⁇ aqueous potassium and 1 to 20 mass 0/0 Amin organic alkaline aqueous solution. among these,. 1 to: LO wt% of an inorganic Al force Li solution Is preferred.
  • the strips produced by the resist stripping step preferably have a maximum side length of 5 cm or less. If the length of the maximum side of the peeling piece exceeds 5 cm, it may cause a peeling failure or cause trouble in the transportation system of the apparatus.
  • the pattern forming method of the present invention can be suitably used for the production of a printed wiring board, particularly for the production of a printed wiring board having a hole portion such as a through hole or a via hole.
  • a hole portion such as a through hole or a via hole.
  • the photosensitive transfer film is formed on a substrate for forming a printed wiring board having a hole portion as the base, and the photosensitive layer thereof. Are stacked in a positional relationship on the substrate side, and (2) a desired region is irradiated from the opposite side of the laminate to the substrate to cure the photosensitive layer, (3) The laminate strength The support in the photosensitive transfer film
  • the pattern can be formed by removing the body, cushion layer and barrier layer, (4) developing the photosensitive layer in the laminate, and removing the uncured portion in the laminate.
  • a method of etching or plating the printed wiring board forming substrate using the formed pattern for example, a known subtractive method or additive method (for example, Semi-additive method and full additive method)).
  • the subtractive method is preferable in order to form a printed wiring board with industrially advantageous tenting.
  • the cured resin remaining on the printed wiring board forming substrate is peeled off.
  • the copper thin film portion is further etched after the peeling to produce a desired printed wiring board. can do.
  • a multilayer printed wiring board can also be manufactured in the same manner as the printed wiring board manufacturing method.
  • a printed wiring board forming substrate having through holes and having a surface covered with a metal plating layer is prepared.
  • the printed wiring board forming substrate for example, a copper clad laminated substrate and a substrate in which a copper plating layer is formed on an insulating base material such as glass-epoxy, or an interlayer insulating film is laminated on these substrates, and a copper plating layer is formed.
  • a formed substrate (laminated substrate) can be used.
  • the lamination temperature of the photosensitive transfer film is not particularly limited, for example, room temperature (15 to 30 ° C.) or under heating (30 to 180 ° C.). Among these, under heating (60 to 140 ° C) is preferred.
  • the roll pressure of the crimping roll is not particularly limited, for example, 0.1 to lMPa is preferable.
  • the crimping speed is preferably 1 to 3 mZ, which is not particularly limited.
  • the printed wiring board forming substrate may be preheated or laminated under reduced pressure.
  • the laminate may be formed by laminating the photosensitive transfer film on the printed wiring board forming substrate, or a photosensitive resin composition solution for manufacturing the photosensitive transfer film.
  • the photosensitive layer, the barrier layer, the cushion layer, and the support may be laminated on the printed wiring board forming substrate before the coating is applied directly to the surface of the printed wiring board forming substrate and dried.
  • the photosensitive layer is cured by irradiating light from the surface of the laminate opposite to the substrate.
  • the support is peeled from the laminate (peeling step).
  • the uncured region of the photosensitive layer on the printed wiring board forming substrate is dissolved and removed with an appropriate developer to cure the hardened layer for forming the wiring pattern and the metal layer for protecting the through hole.
  • a layer pattern is formed to expose the metal layer on the surface of the printed wiring board forming substrate (development process).
  • post-heating treatment or post-exposure processing may be performed to further accelerate the curing reaction of the cured portion.
  • the development may be a wet development method as described above or a dry development method.
  • etching step the metal layer exposed on the surface of the printed wiring board forming substrate is removed by dissolution with an etching solution (etching step). Since the opening of the through hole is covered with a cured resin composition (tent film), the metal coating of the through hole prevents the etching solution from entering the through hole and corroding the metal plating in the through hole. Will remain in the prescribed shape. Thereby, a wiring pattern is formed on the printed wiring board forming substrate.
  • the etching solution is not particularly limited, and can be appropriately selected according to the purpose.
  • a cupric chloride solution examples thereof include a ferric solution, an alkaline etching solution, a hydrogen peroxide-based etching solution, and the like.
  • a salty ferric solution is preferable from the viewpoint of an etching factor.
  • the cured layer is removed from the printed wiring board forming substrate with a strong alkaline aqueous solution or the like as a strip (resist stripping step). Stripping in the resist stripping process Although a piece is formed, the peeling piece of the pattern formed by the photosensitive layer having the photosensitive resin composition power of the present invention is extremely small, and therefore, contamination of the apparatus by the peeling piece without peeling failure can be prevented.
  • the base component in the strong alkaline aqueous solution is not particularly limited, and examples thereof include sodium hydroxide and potassium hydroxide.
  • the pH of the strong alkaline aqueous solution is, for example, preferably about 13-14, more preferably about 12-14.
  • the strong alkaline aqueous solution is not particularly limited, and examples thereof include 1 to 10% by mass of sodium hydroxide aqueous solution or potassium hydroxide aqueous solution.
  • the printed wiring board may be a multilayer printed wiring board.
  • the photosensitive transfer film may be used in a plating process that involves only the etching process described above.
  • the plating method include copper plating such as copper sulfate plating and copper pyrophosphate plating, solder plating such as high flow solder plating, watt bath (nickel sulfate-nickel chloride) plating, nickel plating such as nickel sulfamate, and hard plating.
  • Gold plating such as gold plating and soft gold plating can be used.
  • the pattern transfer method of the present invention uses the photosensitive transfer film of the present invention, formation of various patterns, formation of permanent patterns such as wiring patterns, color filters, pillar materials, rib materials, spacers, It can be suitably used for the production of liquid crystal structural members such as partition walls, the production of holograms, micromachines, proofs, etc., and can be particularly suitably used for the formation of high-definition wiring patterns.
  • a 16 ⁇ m thick polyethylene terephthalate film as the support is coated with a photosensitive resin composition solution having the following composition and dried to form a 15 m thick photosensitive layer, and then the photosensitive layer.
  • a 20 ⁇ m thick polypropylene film as the protective film The photosensitive transfer film was manufactured by laminating.
  • the protective film of the photosensitive transfer film is peeled off from the surface of a copper-clad laminate (no through-hole, copper thickness: 12 m) whose surface is polished, washed and dried as the substrate.
  • laminator MODEL8B-720-PH, manufactured by Taisei Laminator Co., Ltd.
  • the crimping conditions were a crimping roll temperature of 105 ° C, a crimping roll pressure of 0.3 MPa, and a laminating speed of lmZ.
  • the melt viscosity, followability on the substrate, unexposed film breakage, developability, sensitivity, resolution, edge roughness, peeled piece size, and tent property are as follows. evaluated.
  • the photosensitive layer is allowed to stand in an environment of 25 ° C and 50% RH for 24 hours, and then a rheometer (dynamic viscosity measuring device) (REOLOGCA, DynAlyserDAR-100) is used with a frequency of 1 Hz and a gap of 1.5 mm. It measured on condition of this. The results are shown in Table 2.
  • a rheometer dynamic viscosity measuring device
  • the laminate strength is peeled off, and a 1 mass% sodium carbonate aqueous solution at 30 ° C. is sprayed at a pressure of 0.15 MPa over the entire surface of the photosensitive layer on the copper clad laminate, Spray start force
  • the time required for the photosensitive layer on the copper clad laminate to be dissolved and removed was measured, and this was taken as the shortest development time.
  • the shortest development time was evaluated according to the following criteria. The results are shown in Table 3.
  • the photosensitive layer of the photosensitive transfer film in the laminate described above prepared from said support side, a patterning device, which is described below, the light energy of 0. ImiZcm 2 force at 2 1/2 times intervals until LOOmiZcm 2 Exposure was performed by irradiating light of different amounts, and a part of the photosensitive layer was cured. After standing at room temperature for 10 minutes, the support was peeled from the laminate, and a 1 mass% sodium carbonate aqueous solution at 30 ° C was sprayed to the entire surface of the photosensitive layer on the copper clad laminate at a pressure of 0.15 MPa.
  • a micromirror 58 is 1024 in the main scanning direction schematically shown in FIG.
  • DMD36 controlled to drive only 1024 x 256 6 columns, and the light shown in FIG. 5A and FIG.
  • each exposure head 30, ie each DMD 36 is slightly larger than the angle ⁇ that is exactly double exposure using the available 1024 rows x 256 rows micromirror 58
  • This angle 0 is the number of N exposures N, the available micromirrors
  • the constant inclination angle ⁇ for example, 0.50 degrees was adopted.
  • the exposure pattern for every other column of the micromirrors 58 that can be used is shown separately for the exposure pattern by the pixel column group A and the exposure pattern by the pixel column group B.
  • the exposure pattern on the surface overlaps these two exposure patterns. It is
  • a set of a slit 28 and a photodetector is used as the light spot position detecting means, and an exposure head 30 is used.
  • the angle formed by the inclination angle of the straight line connecting them and the scanning direction of the exposure head was measured.
  • the natural number T that is closest to the value t that satisfies this relationship is assigned to each of the exposure heads 30 and 30.
  • micromirrors constituting the portions 78 and 80 covered with diagonal lines in FIG. 17 were identified as micromirrors that are not used during the main exposure.
  • micromirrors corresponding to the light spots constituting the shaded area 84 were identified and added as micromirrors not used during the main exposure.
  • a signal for setting the angle of the always-off state is sent by the pixel unit control means, and these microphone mirrors are substantially It was controlled so that it was not involved in exposure.
  • the exposure areas formed by a plurality of the exposure heads in the exposure areas 32 and 32 are formed by a plurality of the exposure heads in the exposure areas 32 and 32.
  • the laminated body is irradiated and exposed so as to form a horizontal line pattern in a direction perpendicular to the scanning direction of the exposure head, and a partial region of the photosensitive layer is exposed to the resolution.
  • a pattern was formed in the same manner as the above measurement.
  • any five points on a line with a line width of 30 m were observed using a laser microscope (VK-9500, manufactured by Keyence Corporation; objective lens 50 ⁇ ), and the edge position in the field of view was observed.
  • the difference between the most swollen part (mountain peak) and the most constricted part (valley bottom) was obtained as an absolute value, and the average value of the five observed points was calculated, and this was used as edge roughness.
  • As the edge roughness a smaller value is preferable because good performance is exhibited.
  • Table 3 The results are shown in Table 3.
  • the laminated body was subjected to the same method and conditions as the developability evaluation method, except that a copper-clad laminate (100 pieces of 4 mm diameter through holes, copper thickness 12 m) was used as the substrate. was prepared. The entire surface of the laminate was exposed using the pattern forming apparatus and developed. Thereafter, the presence or absence of breakage of the cured resin pattern formed on the through hole was observed with an optical microscope. The results are shown in Table 3.
  • a laminated body for evaluation of unexposed film breakage was prepared in the same manner as in the laminated body except that the photosensitive layer was laminated on both surfaces under the pressure bonding conditions with respect to the copper clad laminated board in the laminated body.
  • the obtained laminate was stored at room temperature (25 ° C., 50% RH) for 5 days.
  • the substrate was peeled from the layered product after storage, and the number of peeled and broken photosensitive layers in the hole portion was counted, and evaluation of unexposed film breakage was performed.
  • the diameter of the largest hole portion in which 30 holes were not broken at all was defined as the unexposed film tear value.
  • the results are shown in Table 2. [0212] (Examples 2 to 6)
  • Example 1 except that the binder copolymer A and copolymer B were changed to the compositions and mass ratios shown in Table 1, in the same manner as in Example 1, the melt viscosity, the followability on the substrate, unexposed Film tear, developability, sensitivity, resolution, edge roughness, peeled piece size, and tent properties were evaluated. The results are shown in Tables 2 and 3.
  • Example 1 the exposure apparatus was replaced with an exposure apparatus having an ultra-high pressure mercury lamp as a light source, and the exposure was performed using a photomask. , Unexposed film breakage, developability, sensitivity, resolution, edge roughness, peeled piece size, and tent properties were evaluated. The results are shown in Tables 2 and 3.
  • the piece size and tent property were evaluated. The results are shown in Tables 2 and 3.
  • the shortest development time is 10 seconds, and the light energy required to cure the photosensitive layer is approximately 3 mj / cm (?
  • Example 1 except that the copolymer A and the copolymer B of the binder were changed to the compositions shown in Table 1, in the same manner as in Example 1, the melt viscosity, the followability on the substrate, the unexposed film was broken, Image quality, sensitivity, resolution, edge roughness, peeled piece size, and tentability were evaluated. The results are shown in Tables 2 and 3.
  • Example 1 8000 100000 10/90 37.0 63.0 28.8 55.0 11.7 4.5
  • Example 2 8000 100000 50/50 37.0 63.0 28.8 55.0 11.7 4.5
  • Example 3 8000 100000 80/20 37.0 63.0 28.8 55.0 11.7 4.5
  • Implementation Example 4 4000 100000 10/90 37.0 63.0 28.8 55.0 11.7 4.5
  • Example 5 8000 100000 10/90 29.0 71.0 28.8 55.0 11.7 4.5
  • Example 6 8000 100000 10/90 37.0 63.0 30.0 0.0 0.0 70.0
  • Example 7 8000 100000 10/90 37.0 63.0 28.8 55.0 11.7 4.5
  • Example 8 8000 100000 10/90 37.0 63.0 28.8 55.0 11.7 4.5
  • Comparative Example 2 8000 100000 5/95 37.0 63.0 28.8 55.0 11.7
  • Example 1 110000 18000 ⁇ 6 or more
  • Example 4 100000 11000 ⁇ 6 or more
  • Example 5 110000 18000 o 6 or more
  • Example 6 110000 18000 ⁇ 6 or more
  • Example 7 110000 18000 o 6 or more
  • Example 8 110000 18000 ⁇ 6 or more
  • Comparative Example 1 180000 45000 X 6 or more
  • Example 1 ⁇ 10 15 1.0 2 ⁇ Example 2 ⁇ 10 15 1.3 2 ⁇ Example 3 ⁇ 10 15 1.4 2 ⁇ Example 4 ⁇ 10 15 1.2 2 ⁇ Example 5 ⁇ 10 15 1.2 2 ⁇ Example 6 ⁇ 10 15 1.3 2 ⁇ Example 7 ⁇ 5 15 1.5 2 ⁇ Example 8 ⁇ 10 15 1.6 2 ⁇ Comparative Example 1 X 10 30 1.2 5 ⁇ Comparative Example 2 X 10 30 1.2 5 ⁇ Comparative Example 3 ⁇ 10 15 1.6 2 X Comparison Example 4 ⁇ 10 20 1.2 5 ⁇ Comparative Example 5 X 10 15 1.3 5 X [0219] From the results of Table 2 and Table 3, Example 1 in which the melt viscosity is 40,000 to 120, OOOPa's at 50 ° C and 5,000-20, OOOPa's at 70 ° C.
  • a photosensitive transfer film was produced in the same manner as in Example 1 except that the composition of the photosensitive resin composition solution was changed as follows, and a laminate was prepared.
  • Binder with compositional power shown in Table 4 below (*)... 139. 6 parts by mass
  • Example 9 except that the binder copolymer A and copolymer B were changed to the compositions and mass ratios shown in Table 4, in the same manner as in Example 9, the melt viscosity, followability on the substrate, unexposed Film tear, developability, sensitivity, resolution, edge roughness, peeled piece size, and tent properties were evaluated. The results are shown in Tables 6 and 7.
  • Example 9 the copolymer V of the binder having a mass average molecular weight of 20,000 was used in the same manner as in Example 9 except that the copolymer and mass ratio shown in Table 5 were used. , Unexposed film breakage, developability, sensitivity, resolution, edge roughness, peeled piece size, and tent property were evaluated. The results are shown in Tables 6 and 7.
  • Example 9 except that the binder copolymer A and copolymer B were changed to the compositions and mass ratios shown in Table 5, in the same manner as in Example 9, the melt viscosity, followability on the substrate, unexposed Film tear, developability, sensitivity, resolution, edge roughness, peeled piece size, and tent properties were evaluated. The results are shown in Tables 6 and 7.
  • Example 9 the compound represented by the structural formula (3), the compound represented by the structural formula (4), In the same manner as in Example 9, except that 72 parts by mass of the compound represented by the structural formula (2) was used instead of the compound represented by the structural formula (5),
  • 72 parts by mass of the compound represented by the structural formula (2) was used instead of the compound represented by the structural formula (5).
  • Examples 9-18 which formed the photosensitive layer from the photosensitive resin composition of this invention are excellent also in the developability which an etching peeling piece is small compared with Comparative Examples 6-9.
  • the photosensitive resin composition of the present invention can form a photosensitive layer that has good resist followability on the substrate and that has both excellent developability and finer strips during etching. Therefore, the photosensitive transfer film having a photosensitive layer formed of the photosensitive resin composition can be suitably used for forming various high-definition patterns, and particularly a highly precise permanent pattern. It can be used suitably for formation of.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials For Photolithography (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

This invention provides a photosensitive resin composition, which can realize excellent resist conformation on a substrate, and can simultaneously realize excellent developability and the refinement of peeled pieces upon etching, a photosensitive transfer film comprising a photosensitive layer formed using the photosensitive resin composition, and a method for pattern formation which can form a high-definition pattern using the photosensitive transfer film. The photosensitive resin composition is characterized by comprising a binder, a polymerizable compound, and a photopolymerization initiator and having a melt viscosity of 40,000 to 120,000 Pa·s at 50ºC and 5,000 to 20,000 Pa·s at 70ºC.

Description

明 細 書  Specification
感光性樹脂組成物及び感光性転写フィルム並びにパターン形成方法 技術分野  Photosensitive resin composition, photosensitive transfer film and pattern forming method
[0001] 本発明は、ドライフィルムレジスト(DFR)の感光層の形成に好適な感光性榭脂組 成物、該感光性榭脂組成物により形成された感光層を有する感光性転写フィルム、 並びに該感光性転写フィルムを用いたパターン形成方法に関する。  [0001] The present invention relates to a photosensitive resin composition suitable for forming a photosensitive layer of a dry film resist (DFR), a photosensitive transfer film having a photosensitive layer formed from the photosensitive resin composition, and The present invention relates to a pattern forming method using the photosensitive transfer film.
背景技術  Background art
[0002] 従来より、パターンを形成するに際して、支持体上に感光性榭脂組成物を塗布、乾 燥することにより感光層を形成させた感光性転写フィルムが用いられている。前記パ ターンの形成方法としては、例えば、前記パターンが形成される銅張積層板等の基 体上に、前記感光性転写フィルムを用いて感光層を形成し、該感光層に対して露光 を行い、該露光後、前記感光層を現像してパターンを形成させ、さらにエッチングを 行 、、その後前記パターンを除去する方法が知られて 、る。  Conventionally, when a pattern is formed, a photosensitive transfer film in which a photosensitive layer is formed by applying a photosensitive resin composition on a support and drying it has been used. As a method for forming the pattern, for example, a photosensitive layer is formed using a photosensitive transfer film on a substrate such as a copper clad laminate on which the pattern is formed, and the photosensitive layer is exposed. It is known that after the exposure, the photosensitive layer is developed to form a pattern, further etched, and then the pattern is removed.
[0003] 前記パターンの形成にぉ 、て、ビルドアップ基板の作製方法として、各層ごとに必 要な部分にビアホールを形成する Interstitial Via Hole (IVH)構造を採用した A ny layer IVH (ALIVH)方式という方法が知られている。この方法では 100 m程 度と極薄のァラミド榭脂の上に銅をコーティングするため、他の方法では l〜2 /z m程 度の凸凹が、 12 m程度と大きくなり、得られた基板上でのレジストの追従性が要求 される。  [0003] Any layer IVH (ALIVH) method adopting an Interstitial Via Hole (IVH) structure in which a via hole is formed in a necessary portion for each layer as a method for producing a build-up substrate, before forming the pattern. The method is known. In this method, copper is coated on an ultra-thin aramid resin of about 100 m, so in other methods, the irregularity of about 1 to 2 / zm becomes as large as about 12 m, and the obtained substrate Resist trackability is required.
[0004] 一方、前記パターンの形成においては、感光層の剥離片等による装置の汚染や解 像度の低下が大きな問題となって 、る。  [0004] On the other hand, in the formation of the pattern, contamination of the apparatus due to a peeled piece of the photosensitive layer or the like, and a decrease in resolution are serious problems.
例えば、スルーホール又はビアホールなどのホール部を有するプリント配線板など 、複数の穴部が開口された基体上に感光層を積層した場合、該感光層の露光後に、 現像のため該感光層から支持体を剥離しょうとすると、前記基体の穴部付近におい て、感光層の硬化してない未露光部分が支持体に付着して破断され、基体から剥離 するといつた、いわゆる未露光膜破れが発生することがあった。そのため、前記感光 層から剥離した微小な剥離片が、装置を汚染したり、パターンの解像度を低下させる などの問題を生じることがあった。 For example, when a photosensitive layer is laminated on a substrate having a plurality of hole portions such as a printed wiring board having a hole portion such as a through hole or a via hole, the photosensitive layer is supported from the photosensitive layer for development after exposure. When an attempt is made to peel the body, the uncured unexposed portion of the photosensitive layer adheres to the support near the hole in the substrate and breaks, and when the substrate is peeled off, so-called unexposed film breakage occurs. There was something to do. For this reason, minute peeling pieces peeled off from the photosensitive layer contaminate the device or reduce the resolution of the pattern. May cause problems such as.
[0005] この問題に対し、現像スカム防止、剥離性を改善するために、単官能モノマーをド ライフイルムレジスト (DFR)の材料として用いる方法 (特許文献 1及び特許文献 2等 参照)や、バインダーの酸価、ガラス転移温度 (Tg)、 IZO値等を調整する方法が提 案されているが、前記特許文献 1及び 2に記載の方法によると、現像性が悪化してし まうという問題がある。  [0005] In order to solve this problem, in order to prevent development scum and improve releasability, a method using a monofunctional monomer as a material for dry film resist (DFR) (see Patent Document 1 and Patent Document 2, etc.), a binder A method for adjusting the acid value, glass transition temperature (Tg), IZO value, etc. of the resin has been proposed. However, according to the methods described in Patent Documents 1 and 2, there is a problem that developability deteriorates. is there.
このように、レジストの剥離性を改善することにより、現像性等の他の性能を低下さ せてしまうという問題があった。  As described above, there has been a problem that other performance such as developability is deteriorated by improving the peelability of the resist.
[0006] したがって、基板上でのレジストの追従性が良好であり、かつ、優れた現像性と、レ ジスト剥離時の剥離片の微細化とを両立可能な感光性榭脂組成物、該感光性榭脂 組成物により形成された感光層を有する感光性転写フィルム、並びに該感光性転写 フィルムを用いた高精細なパターンを形成可能なパターン形成方法は未だ提供され ておらず、更なる改良開発が望まれているのが現状である。  [0006] Therefore, a photosensitive resin composition having good resist followability on a substrate and having both excellent developability and finer strips at the time of resist stripping. A photosensitive transfer film having a photosensitive layer formed of a photosensitive resin composition and a pattern forming method capable of forming a high-definition pattern using the photosensitive transfer film have not been provided yet, and further improvements and developments have been made. This is the current situation.
[0007] 特許文献 1 :特開 2003— 330189号公報  [0007] Patent Document 1: Japanese Patent Application Laid-Open No. 2003-330189
特許文献 2:特開 2003 - 345005号公報  Patent Document 2: Japanese Patent Laid-Open No. 2003-345005
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 本発明は、力かる現状に鑑みてなされたものであり、従来における前記諸問題を解 決し、以下の目的を達成することを課題とする。即ち、本発明は、基板上でのレジスト の追従性が良好であり、かつ、優れた現像性と、レジスト剥離時の剥離片の微細化と を両立可能な感光性榭脂組成物、該感光性榭脂組成物により形成された感光層を 有する感光性転写フィルム、並びに該感光性転写フィルムを用いた高精細なパター ンを形成可能なパターン形成方法を提供することを目的とする。 [0008] The present invention has been made in view of the current situation, and it is an object of the present invention to solve the above-described problems and achieve the following objects. That is, the present invention provides a photosensitive resin composition that has good followability of a resist on a substrate, and that can achieve both excellent developability and finer stripping at the time of resist stripping. It is an object of the present invention to provide a photosensitive transfer film having a photosensitive layer formed of a photosensitive resin composition, and a pattern forming method capable of forming a high-definition pattern using the photosensitive transfer film.
課題を解決するための手段  Means for solving the problem
[0009] 本発明者らは、前記課題に鑑み鋭意検討を重ねた結果、以下の知見を得た。即ち 、ノインダー、重合性化合物、及び光重合開始剤を含有してなる感光性榭脂組成物 の溶融粘度を、 50。Cで 40, 000〜120, 000Pa,sとし、 70。Cで 5, 000〜20, 000P a' sとすることにより、基板上でのレジストの追従性が良好であり、かつ、優れた現像 性と、レジスト剥離時の剥離片の微細化とを両立可能な感光層を形成できるという知 見である。 [0009] As a result of intensive studies in view of the above problems, the present inventors have obtained the following knowledge. That is, the melt viscosity of a photosensitive resin composition containing a noinder, a polymerizable compound, and a photopolymerization initiator is 50. C is 40,000 to 120,000 Pa, s, 70. By setting C to 5,000 to 20,000 Pa's, the followability of the resist on the substrate is good and excellent development is achieved. It is a finding that a photosensitive layer can be formed which can satisfy both the properties and the miniaturization of the peeled piece when the resist is peeled off.
本発明は、本発明者らの前記知見に基づくものであり、前記課題を解決するための 手段としては、以下の通りである。即ち、  The present invention is based on the above findings of the present inventors, and means for solving the above problems are as follows. That is,
< 1 > バインダー、重合性化合物、及び光重合開始剤を含有してなり、溶融粘度 50。Cで 40, 000〜120, OOOPa,sであり、 70。Cで 5, 000〜20, OOOPa,sであ ることを特徴とする感光性榭脂組成物である。  <1> Contains a binder, a polymerizable compound, and a photopolymerization initiator, and has a melt viscosity of 50. C is 40,000-120, OOOPa, s, 70. It is a photosensitive resin composition characterized by having a C of 5,000 to 20, OOOPa, s.
< 2> バインダーが、質量平均分子量が 3, 000〜10, 000である共重合体 Aと、 質量平均分子量が 30, 000〜150, 000である共重合体 Bとを含み、前記共重合体 Aと前記共重合体 Bとの質量比が、 AZB= 10Z90〜90Z10である前記 < 1 >に 記載の感光性榭脂組成物である。  <2> The copolymer includes a copolymer A having a mass average molecular weight of 3,000 to 10,000, and a copolymer B having a mass average molecular weight of 30,000 to 150,000, The photosensitive resin composition according to <1>, wherein a mass ratio of A to the copolymer B is AZB = 10Z90 to 90Z10.
< 3 > 共重合体 Αと共重合体 Βとの質量比が、 A/B= 10Z90〜40Z60である 前記 < 2 >に記載の感光性榭脂組成物である。  <3> The photosensitive resin composition according to <2>, wherein a mass ratio of the copolymer Α to the copolymer で is A / B = 10Z90 to 40Z60.
<4> 共重合体 Αが、スチレン及びスチレン誘導体の少なくともいずれかに由来 する構造単位を有する前記く 3 >に記載の感光性榭脂組成物である。  <4> The photosensitive resin composition according to <3>, wherein the copolymer を has a structural unit derived from at least one of styrene and a styrene derivative.
< 5 > 共重合体 Bが、カルボキシル基を有するビュルモノマーを含む前記 < 3 > 力 < 4 >の 、ずれかに記載の感光性榭脂組成物である。  <5> The photosensitive resin composition according to any one of <3>, force <4>, wherein the copolymer B contains a butyl monomer having a carboxyl group.
< 6 > 重合性化合物が、ウレタン基及びァリール基の少なくともいずれかを有する モノマーを含む前記く 1 >から < 5 >のいずれかに記載の感光性榭脂組成物である  <6> The photosensitive resin composition according to any one of <1> to <5>, wherein the polymerizable compound includes a monomer having at least one of a urethane group and an aryl group.
< 7> 重合性化合物が、ポリアルキレンオキサイド鎖を有する化合物を含有し、該 ポリアルキレンオキサイド鎖が、エチレン基及びプロピレン基の少なくとも 、ずれかを 有する前記く 6 >に記載の感光性榭脂組成物である。 <7> The photosensitive resin composition according to <6>, wherein the polymerizable compound contains a compound having a polyalkylene oxide chain, and the polyalkylene oxide chain has at least one of an ethylene group and a propylene group. It is a thing.
< 8 > 光重合開始剤が、ハロゲンィ匕炭化水素誘導体、ホスフィンオキサイド、へキ サァリールビイミダゾール、ォキシム誘導体、有機過酸化物、チォ化合物、ケトン化合 物、ァシルホスフィンォキシドィ匕合物、芳香族ォ -ゥム塩、及びケトォキシムエーテル から選択される少なくとも 1種を含む前記 < 1 >から < 7 >の 、ずれかに記載の感光 性榭脂組成物である。 [0011] <9> 支持体上に、前記 <1>から <8>のいずれかに記載の感光性榭脂組成 物により形成された感光層を有することを特徴とする感光性転写フィルムである。 <8> The photopolymerization initiator is a halogenated hydrocarbon derivative, phosphine oxide, hexaarylbiimidazole, oxime derivative, organic peroxide, thio compound, ketone compound, acyl phosphine oxidoxide compound, The photosensitive resin composition according to any one of <1> to <7>, comprising at least one selected from an aromatic onium salt and a ketoxime ether. [0011] <9> A photosensitive transfer film comprising a photosensitive layer formed of the photosensitive resin composition according to any one of <1> to <8> on a support. .
<10> 感光層を 390〜420nmの波長のレーザ光で露光して現像する場合にお いて、該感光層の露光する部分の厚みを、該露光及び現像後において変化させな い前記露光に用いる光の最小エネルギー (感度)が、 0. l〜20miZcm2である前記 <9>に記載の感光性転写フィルムである。 <10> When the photosensitive layer is exposed and developed with a laser beam having a wavelength of 390 to 420 nm, the thickness of the exposed portion of the photosensitive layer is used for the exposure that is not changed after the exposure and development. The photosensitive transfer film according to <9>, wherein the minimum energy (sensitivity) of light is 0.1 to 20 miZcm 2 .
<11> 感光層の厚みが 1〜: LOO μ mである前記 <9>から < 10>のいずれかに 記載の感光性転写フィルムである。  <11> The photosensitive transfer film according to any one of <9> to <10>, wherein the photosensitive layer has a thickness of 1 to: LOO μm.
<12> 支持体が、合成樹脂を含み、かつ透明である前記く 9>からく 11 >のい ずれかに記載の感光性転写フィルムである。  <12> The photosensitive transfer film according to any one of <9> to <11>, wherein the support contains a synthetic resin and is transparent.
<13> 支持体が、長尺状である前記 < 9 >からく 12>のいずれかに記載の感 光性転写フィルムである。  <13> The light-sensitive transfer film according to any one of the above <9> Karaku 12>, wherein the support is long.
<14> 長尺状であり、ロール状に巻かれてなる前記 <9>から <13>のいずれ かに記載の感光性転写フィルムである。  <14> The photosensitive transfer film according to any one of <9> to <13>, which is long and wound in a roll shape.
<15> 感光層上に保護フィルムを有する前記 < 9 >からく 14 >のいずれかに記 載の感光性転写フィルムである。  <15> The photosensitive transfer film according to any one of <9>, <14>, which has a protective film on the photosensitive layer.
[0012] <16> 前記 <9>からく 15>のいずれかに記載の感光性転写フィルムにおける 該感光層を被処理基体上に積層した後、該感光層に対し、露光を行うことを含むこと を特徴とするパターン形成方法である。 <16> The photosensitive transfer film according to any one of <9> and 15>, wherein the photosensitive layer is laminated on a substrate to be processed, and then the photosensitive layer is exposed. This is a pattern forming method characterized by this.
<17> 露光が、光照射手段、及び前記光照射手段からの光を受光し出射する n 個(ただし、 nは 2以上の自然数)の 2次元状に配列された描素部を有し、パターン情 報に応じて前記描素部を制御可能な光変調手段を備えた露光ヘッドであって、該露 光ヘッドの走査方向に対し、前記描素部の列方向が所定の設定傾斜角度 Θをなす ように配置された露光ヘッドを用い、  <17> Exposure includes light irradiation means, and n (where n is a natural number of 2 or more) two-dimensionally arranged pixel parts that receive and emit light from the light irradiation means, An exposure head provided with a light modulation means capable of controlling the picture element portion according to pattern information, wherein the column direction of the picture element portion is a predetermined set inclination angle Θ with respect to the scanning direction of the exposure head. Using an exposure head arranged to form
前記露光ヘッドについて、使用描素部指定手段により、使用可能な前記描素部の うち、 N重露光 (ただし、 Nは 2以上の自然数)に使用する前記描素部を指定するェ 程と、  For the exposure head, a process of designating the pixel part to be used for N double exposure (where N is a natural number of 2 or more) of the usable pixel parts by means of a used pixel part specifying means;
前記露光ヘッドについて、描素部制御手段により、前記使用描素部指定手段によ り指定された前記描素部のみが露光に関与するように、前記描素部の制御を行うェ 程と、 The exposure head is controlled by the pixel part control unit and the used pixel part specifying unit. Controlling the pixel part so that only the specified pixel part is involved in exposure, and
前記感光層に対し、前記露光ヘッドを走査方向に相対的に移動させて露光を行う 工程と  Performing exposure by moving the exposure head relative to the photosensitive layer in a scanning direction; and
を含む前記く 16 >に記載のパターン形成方法である。該く 17 >に記載のパターン 形成方法においては、前記露光ヘッドについて、使用描素部指定手段により、使用 可能な前記描素部のうち、 N重露光 (ただし、 Nは 2以上の自然数)に使用する前記 描素部が指定され、描素部制御手段により、前記使用描素部指定手段により指定さ れた前記描素部のみが露光に関与するように、前記描素部が制御される。前記露光 ヘッドを、前記感光層に対し走査方向に相対的に移動させて露光が行われることに より、前記露光ヘッドの取付位置や取付角度のずれによる前記感光層の被露光面上 に形成される前記パターンの解像度のばらつきや濃度のむらが均される。この結果、 前記感光層への露光が高精細に行われる。例えば、その後、前記感光層を現像す ることにより、高精細なパターンが形成される。 The pattern forming method according to the above item 16>, including: In the pattern forming method described in 17>, the exposure head is subjected to N double exposure (where N is a natural number of 2 or more) of the usable pixel parts by means of the used pixel part specifying means. The pixel part to be used is specified, and the pixel part is controlled by the pixel part control unit so that only the pixel part specified by the used pixel part specifying unit is involved in the exposure. . By performing exposure by moving the exposure head relative to the photosensitive layer in the scanning direction, the exposure head is formed on the exposed surface of the photosensitive layer due to a shift in the mounting position or mounting angle of the exposure head. Variations in resolution and unevenness in density of the pattern are leveled. As a result, the photosensitive layer is exposed with high definition. For example, a high-definition pattern is formed by developing the photosensitive layer thereafter.
< 18 > 露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の 前記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ 領域の露光に関与する描素部のうち、前記ヘッド間つなぎ領域における N重露光を 実現するために使用する前記描素部を指定する前記 < 17 >に記載のパターン形成 方法である。該< 18 >に記載のパターン形成方法においては、露光が複数の露光 ヘッドにより行われ、使用描素部指定手段が、複数の前記露光ヘッドにより形成され る被露光面上の重複露光領域であるヘッド間つなぎ領域の露光に関与する描素部 のうち、前記ヘッド間つなぎ領域における N重露光を実現するために使用する前記 描素部が指定されることにより、前記露光ヘッドの取付位置や取付角度のずれによる 前記感光層の被露光面上のヘッド間つなぎ領域に形成される前記パターンの解像 度のばらつきや濃度のむらが均される。この結果、前記感光層への露光が高精細に 行われる。例えば、その後、前記感光層を現像することにより、高精細なパターンが 形成される。  <18> The exposure is performed by a plurality of exposure heads, and the used picture element designating unit is configured to perform drawing related to exposure of a head-to-head connection area, which is an overlapping exposure area on an exposed surface formed by the plurality of exposure heads. The pattern forming method according to <17>, wherein among the element parts, the image element part to be used for realizing N double exposure in the inter-head connection region is designated. In the pattern forming method according to <18>, the exposure is performed by a plurality of exposure heads, and the used pixel portion designating unit is an overlapped exposure region on an exposed surface formed by the plurality of exposure heads. Of the picture element parts involved in the exposure of the head-to-head connection area, the position of the exposure head and the mounting position of the exposure head can be determined by specifying the picture element part used for realizing the N-fold exposure in the head-to-head connection area. Variations in the resolution and density unevenness of the pattern formed in the connecting region between the heads on the exposed surface of the photosensitive layer due to the angle deviation are leveled. As a result, the photosensitive layer is exposed with high definition. For example, a high-definition pattern is then formed by developing the photosensitive layer.
< 19 > 露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の 前記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ 領域以外の露光に関与する描素部のうち、前記ヘッド間つなぎ領域以外の領域にお ける N重露光を実現するために使用する前記描素部を指定する前記 < 18 >に記載 のパターン形成方法である。該く 19 >に記載のパターン形成方法においては、露 光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光へッ ドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域以外の露 光に関与する描素部のうち、前記ヘッド間つなぎ領域以外における N重露光を実現 するために使用する前記描素部が指定されることにより、前記露光ヘッドの取付位置 や取付角度のずれによる前記感光層の被露光面上のヘッド間つなぎ領域以外に形 成される前記パターンの解像度のばらつきや濃度のむらが均される。この結果、前記 感光層への露光が高精細に行われる。例えば、その後、前記感光層を現像すること により、高精細なパターンが形成される。 <19> Exposure is performed by a plurality of exposure heads, Realizes N-fold exposure in areas other than the head-to-head connection area among the pixel parts involved in exposure other than the head-to-head connection area, which are overlapping exposure areas on the exposed surface formed by the exposure head. The pattern forming method according to <18>, wherein the pixel part to be used for designating is specified. In the pattern forming method according to the above item 19, the exposure is performed by a plurality of exposure heads, and the used pixel portion designating unit performs overlapping exposure on the exposed surface formed by the plurality of exposure heads. By specifying the pixel part to be used for realizing N double exposure in areas other than the head-to-head connection area among the pixel parts related to exposure other than the head-to-head connection area, the exposure is performed. Variations in the resolution and density unevenness of the pattern formed in areas other than the joint area between the heads on the exposed surface of the photosensitive layer due to deviations in the mounting position and mounting angle of the head are equalized. As a result, the photosensitive layer is exposed with high definition. For example, by developing the photosensitive layer thereafter, a high-definition pattern is formed.
< 20> 設定傾斜角度 Θ力 N重露光数の N、描素部の列方向の個数 s、前記描 素部の列方向の間隔 P、及び露光ヘッドを傾斜させた状態にぉ 、て該露光ヘッドの 走査方向と直交する方向に沿った描素部の列方向のピッチ δに対し、次式、 spsin Θ ≥Ν δ <20> Setting tilt angle Θ force N N number of double exposures, number s of pixel parts in the row direction, interval P of the pixel parts in the row direction, and exposure with the exposure head tilted For the pitch δ in the column direction of the pixel part along the direction orthogonal to the scanning direction of the head, the following equation is given: spsin Θ ≥ Ν δ
eal を満たす Θ  Satisfy eal
idealに対し、 θ≥ Θ の  For ideal, θ≥ Θ
ideal 関係を満たすように設定される前記 < 1 id  <1 id set to satisfy ideal relationship
7 >からく 19 >のいずれかに記載のパターン形成方法である。  The pattern forming method according to any one of 7> Karaku 19>.
< 21 > N重露光の N力 3以上の自然数である前記 < 17>から < 20>のいず れかに記載のパターン形成方法である。該く 21 >に記載のパターン形成方法にお いては、 N重露光の N力 3以上の自然数であることにより、多重描画が行われる。こ の結果、埋め合わせの効果により、前記露光ヘッドの取付位置や取付角度のずれに よる前記感光層の被露光面上に形成される前記パターンの解像度のばらつきや濃 度のむらが、より精密に均される。  <21> The pattern forming method according to any one of <17> to <20>, wherein the N force of N double exposure is a natural number of 3 or more. In the pattern forming method described in 21>, multiple drawing is performed by using a natural number of N force 3 or more in N double exposure. As a result, due to the effect of offsetting, variations in the resolution and density unevenness of the pattern formed on the exposed surface of the photosensitive layer due to deviations in the mounting position and mounting angle of the exposure head are more accurately and evenly distributed. Is done.
< 22> 使用描素部指定手段が、  <22> Use pixel part designation means
描素部により生成され、被露光面上の露光領域を構成する描素単位としての光点 位置を、被露光面上において検出する光点位置検出手段と、  A light spot position detecting means for detecting a light spot position as a pixel unit that is generated by the picture element unit and constitutes an exposure area on the exposed surface;
前記光点位置検出手段による検出結果に基づき、 N重露光を実現するために使用 する描素部を選択する描素部選択手段と を備える前記く 17>からく 21 >のいずれかに記載のパターン形成方法である。Based on the detection result by the light spot position detecting means, a pixel part selecting means for selecting a picture element part to be used for realizing N double exposure; The pattern forming method according to any one of the above items 17> to 21>.
< 23 > 使用描素部指定手段が、 N重露光を実現するために使用する使用描素 部を、行単位で指定する前記く 17 >からく 22 >のいずれかに記載のパターン形成 方法である。 <23> The pattern forming method according to any one of the above items 17> Karaku 22>, in which the used pixel part designation means designates the used pixel part used to realize N double exposure in units of lines. is there.
[0014] < 24> 光点位置検出手段が、検出した少なくとも 2つの光点位置に基づき、露光 ヘッドを傾斜させた状態における被露光面上の光点の列方向と前記露光ヘッドの走 查方向とがなす実傾斜角度 Θ 'を特定し、描素部選択手段が、前記実傾斜角度 Θ ' と設定傾斜角度 Θとの誤差を吸収するように使用描素部を選択する前記く 22>力 く 23 >の 、ずれかに記載のパターン形成方法である。  [0014] <24> The light spot position detecting means detects the light spot column direction on the surface to be exposed and the exposure head running direction when the exposure head is tilted based on at least two light spot positions detected. The actual inclination angle Θ 'formed by the image is determined, and the pixel part selection means selects the pixel part to be used so as to absorb the error between the actual inclination angle Θ' and the set inclination angle Θ. <23> The pattern forming method described in any of the above.
< 25 > 実傾斜角度 Θ 'が、露光ヘッドを傾斜させた状態における被露光面上の 光点の列方向と前記露光ヘッドの走査方向とがなす複数の実傾斜角度の平均値、 中央値、最大値、及び最小値のいずれかである前記く 24 >に記載のパターン形成 方法である。  <25> The actual inclination angle Θ ′ is an average value, a median value, and a plurality of actual inclination angles formed by the row direction of the light spots on the surface to be exposed and the scanning direction of the exposure head when the exposure head is inclined. 24. The pattern forming method according to 24>, wherein the pattern forming method is one of a maximum value and a minimum value.
< 26 > 描素部選択手段が、実傾斜角度 θ Ίこ基づき、 ttan 0 ' =Ν (ただし、 Νは Ν重露光数の Νを表す)の関係を満たす tに近 、自然数 Tを導出し、 m行 (ただし、 m は 2以上の自然数を表す)配列された描素部における 1行目から前記 T行目の前記 描素部を、使用描素部として選択する前記く 22>からく 25 >のいずれかに記載の パターン形成方法である。  <26> The pixel part selection means derives a natural number T near t satisfying the relationship of ttan 0 '= Ν (where 表 す represents Ν of the double exposure number) based on the actual inclination angle θ Ί. , M rows (where m represents a natural number greater than or equal to 2) The above-mentioned pixel portion from the first row to the T-th row in the arranged pixel portion is selected as the used pixel portion. 25. The pattern forming method according to any one of the above items.
< 27> 描素部選択手段が、実傾斜角度 θ Ίこ基づき、 ttan 0 ' =Ν (ただし、 Νは Ν重露光数の Νを表す)の関係を満たす tに近 、自然数 Tを導出し、 m行 (ただし、 m は 2以上の自然数を表す)配列された描素部における、 (T+ 1)行目力 m行目の前 記描素部を、不使用描素部として特定し、該不使用描素部を除いた前記描素部を、 使用描素部として選択する前記く 22 >からく 25 >のいずれかに記載のパターン形 成方法である。  <27> The pixel part selection means derives the natural number T near t satisfying the relationship of ttan 0 '= Ν (where Ν represents Ν of the double exposure number) based on the actual inclination angle θ Ί. , M line (where m represents a natural number greater than or equal to 2), the (T + 1) line power in the arranged pixel part is identified as an unused pixel part, 26. The pattern forming method according to any one of 22> kara 25>, wherein the pixel part excluding the unused pixel part is selected as a used pixel part.
[0015] < 28 > 描素部選択手段が、複数の描素部列により形成される被露光面上の重 複露光領域を少なくとも含む領域において、  [0015] <28> In the region including at least a double exposure region on the exposed surface formed by a plurality of pixel portion rows, the pixel portion selection means,
(1)理想的な N重露光に対し、露光過多となる領域、及び露光不足となる領域の合 計面積が最小となるように、使用描素部を選択する手段、 (2)理想的な N重露光に対し、露光過多となる領域の描素単位数と、露光不足となる 領域の描素単位数とが等しくなるように、使用描素部を選択する手段、 (1) Means for selecting a pixel part to be used so that the total area of an overexposed area and an underexposed area is minimized with respect to an ideal N double exposure. (2) Means for selecting a pixel part to be used so that the number of pixel units in an overexposed area is equal to the number of pixel units in an underexposed area for an ideal N double exposure,
(3)理想的な N重露光に対し、露光過多となる領域の面積が最小となり、かつ、露光 不足となる領域が生じないように、使用描素部を選択する手段、及び  (3) Means for selecting a pixel part to be used so that the area of an overexposed area is minimized and an underexposed area does not occur for an ideal N-fold exposure, and
(4)理想的な N重露光に対し、露光不足となる領域の面積が最小となり、かつ、露光 過多となる領域が生じな 、ように、使用描素部を選択する手段  (4) Means for selecting the pixel part to be used so that the area of the underexposed area is minimized and the overexposed area does not occur with respect to the ideal N double exposure.
のいずれかである前記く 22 >からく 27 >に記載のパターン形成方法である。 The pattern forming method according to any one of the above, wherein 22> Karaku 27>.
< 29 > 描素部選択手段が、複数の露光ヘッドにより形成される被露光面上の重 複露光領域であるヘッド間つなぎ領域において、  <29> In the connection area between the heads, which is the overlapping exposure area on the exposed surface formed by the plurality of exposure heads,
(1)理想的な N重露光に対し、露光過多となる領域、及び露光不足となる領域の合 計面積が最小となるように、前記ヘッド間つなぎ領域の露光に関与する描素部から、 不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として 選択する手段、  (1) For the ideal N double exposure, from the pixel part involved in the exposure of the inter-head connecting area, the total area of the overexposed and underexposed areas is minimized. Means for identifying an unused pixel part and selecting the pixel part excluding the unused pixel part as a used pixel part;
(2)理想的な N重露光に対し、露光過多となる領域の描素単位数と、露光不足となる 領域の描素単位数とが等しくなるように、前記ヘッド間つなぎ領域の露光に関与する 描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用 描素部として選択する手段、  (2) In relation to the ideal N double exposure, the number of pixel units in the overexposed area is equal to the number of pixel units in the underexposed area. A means for identifying an unused pixel part from the pixel part and selecting the pixel part excluding the unused pixel part as a used pixel part;
(3)理想的な N重露光に対し、露光過多となる領域の面積が最小となり、かつ、露光 不足となる領域が生じないように、前記ヘッド間つなぎ領域の露光に関与する描素部 から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部 として選択する手段、及び、  (3) For the ideal N-double exposure, the area of the overexposed area is minimized, and the pixel part involved in the exposure of the connecting area between the heads is used so that the underexposed area does not occur. A means for identifying an unused pixel part and selecting the pixel part excluding the unused pixel part as a used pixel part; and
(4)理想的な N重露光に対し、露光不足となる領域の面積が最小となり、かつ、露光 過多となる領域が生じないように、前記ヘッド間つなぎ領域の露光に関与する描素部 から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部 として選択する手段、  (4) For the ideal N-fold exposure, the area of the underexposed area is minimized, and the pixel part involved in the exposure of the connection area between the heads is used so that the overexposed area does not occur. A means for identifying an unused pixel part and selecting the pixel part excluding the unused pixel part as a used pixel part;
の!、ずれかである前記 < 22 >から < 28 >の!、ずれかに記載のパターン形成方法で ある。 of! The pattern forming method according to <22> to <28>, which is a deviation, from!
< 30> 不使用描素部が、行単位で特定される前記く 29 >に記載のパターン形 成方法である。 <30> The pattern shape according to the above <29>, in which unused pixel parts are specified in units of lines. It is a method of creation.
[0016] < 31 > 使用描素部指定手段において使用描素部を指定するために、使用可能 な前記描素部のうち、 N重露光の Nに対し、(N— 1)列毎の描素部列を構成する前 記描素部のみを使用して参照露光を行う前記 < 21 >から < 30>の 、ずれかに記載 のパターン形成方法である。該く 31 >に記載のパターン形成方法においては、使 用描素部指定手段において使用描素部を指定するために、使用可能な前記描素部 のうち、 N重露光の Nに対し、(N— 1)列毎の描素部列を構成する前記描素部のみ を使用して参照露光が行われ、略 1重描画の単純なパターンが得られる。この結果、 前記ヘッド間つなぎ領域における前記描素部が容易に指定される。  [0016] <31> In order to specify the used pixel part in the used pixel part specifying means, out of the usable picture element parts, N (N−1) column-by-column drawings are used for N of N multiple exposures. The pattern forming method according to any one of <21> to <30>, wherein the reference exposure is performed by using only the drawing element part constituting the element part row. In the pattern forming method described in 31>, in order to specify the used pixel part in the used pixel part specifying means, among the usable pixel parts, N— 1) Reference exposure is performed using only the pixel part constituting the pixel part column for each column, and a simple pattern of simple single drawing is obtained. As a result, the picture element portion in the head-to-head connection region is easily specified.
< 32> 使用描素部指定手段において使用描素部を指定するために、使用可能 な前記描素部のうち、 N重露光の Nに対し、 1ZN行毎の描素部行を構成する前記 描素部のみを使用して参照露光を行う前記く 21 >からく 30>の 、ずれかに記載の パターン形成方法である。該く 32>に記載のパターン形成方法においては、使用 描素部指定手段において使用描素部を指定するために、使用可能な前記描素部の うち、 N重露光の Nに対し、 1ZN行毎の描素部列を構成する前記描素部のみを使 用して参照露光が行われ、略 1重描画の単純なパターンが得られる。この結果、前記 ヘッド間つなぎ領域における前記描素部が容易に指定される。  <32> In order to specify the used pixel part in the used pixel part specifying means, among the usable pixel parts, for the N-exposure N, the above-mentioned pixel part row constituting each 1ZN line is configured. The pattern forming method according to any one of the above items 21> Karaku 30>, wherein reference exposure is performed using only the pixel part. In the pattern forming method described in 32>, in order to specify the used pixel part in the used pixel part specifying means, among the usable pixel parts, 1ZN lines for N of N double exposures. Reference exposure is performed using only the pixel parts constituting each pixel part sequence, and a simple pattern of approximately single drawing is obtained. As a result, the pixel portion in the head-to-head connection region is easily specified.
[0017] < 33 > 使用描素部指定手段が、光点位置検出手段としてスリット及び光検出器 、並びに描素部選択手段として前記光検出器と接続された演算装置を有する前記 < 17 >から < 32>のいずれかに記載のパターン形成方法である。  <33> From the above <17>, the used pixel part specifying means includes a slit and a photodetector as a light spot position detecting means, and an arithmetic unit connected to the photodetector as a pixel part selecting means <32> The pattern forming method according to any one of the above.
< 34> N重露光の N力 3以上 7以下の自然数である前記 < 17>から < 33 >の <34> N force of N double exposure 3 to 7 natural numbers from <17> to <33>
V、ずれかに記載のパターン形成方法である。 V is a pattern forming method described in any of the above.
[0018] < 35 > 光変調手段が、形成するパターン情報に基づいて制御信号を生成する パターン信号生成手段を更に有してなり、光照射手段から照射される光を該パター ン信号生成手段が生成した制御信号に応じて変調させる前記 < 17>から < 34>の [0018] <35> The light modulation means further includes a pattern signal generation means for generating a control signal based on the pattern information to be formed, and the pattern signal generation means outputs the light emitted from the light irradiation means. <17> to <34> to be modulated according to the generated control signal
V、ずれかに記載のパターン形成方法である。 V is a pattern forming method described in any of the above.
< 36 > パターン情報が表すパターンの所定部分の寸法が、指定された使用描素 部により実現できる対応部分の寸法と一致するように前記パターン情報を変換する 変換手段を有する前記く 17>からく 35>の 、ずれかに記載のパターン形成方法 である。 <36> The pattern information is converted so that the dimension of the predetermined part of the pattern represented by the pattern information matches the dimension of the corresponding part that can be realized by the specified used pixel part. The pattern forming method according to any one of the above items 17> to 35> having a conversion means.
[0019] く 37> 光変調手段力 空間光変調素子である前記 <17>から <36>のいずれ かに記載のパターン形成方法である。  <37> Light modulation means force The pattern forming method according to any one of <17> to <36>, which is a spatial light modulation element.
<38> 空間光変調素子が、デジタル 'マイクロミラー'デバイス (DMD)である前 記く 37 >に記載のパターン形成方法である。  <38> The pattern forming method according to 37, wherein the spatial light modulator is a digital 'micromirror' device (DMD).
<39> 描素部が、マイクロミラーである前記く 17>からく 38>のいずれかに記 載のパターン形成方法である。  <39> The pattern forming method according to any one of the above <17>, <38>, wherein the picture element portion is a micromirror.
[0020] <40> 光照射手段が、 2以上の光を合成して照射可能である前記く 17>からく 39 >の 、ずれかに記載のパターン形成方法である。該< 40 >に記載のパターン形 成方法においては、前記光照射手段が 2以上の光を合成して照射可能であることに より、露光が焦点深度の深い露光光で行われる。この結果、前記感光層への露光が 極めて高精細に行われる。例えば、その後、前記感光層を現像することにより、極め て高精細なパターンが形成される。  <40> The pattern forming method according to any one of the above items <17> to <39>, wherein the light irradiation means can irradiate by combining two or more lights. In the pattern forming method according to <40>, since the light irradiation unit can synthesize and irradiate two or more lights, exposure is performed with exposure light having a deep focal depth. As a result, the exposure of the photosensitive layer is performed with extremely high definition. For example, by developing the photosensitive layer thereafter, an extremely fine pattern can be formed.
<41> 光照射手段が、複数のレーザと、マルチモード光ファイバと、該複数のレ 一ザ力 それぞれ照射されたレーザビームを集光して前記マルチモード光ファイバ に結合させる集合光学系とを有する前記 < 17 >力ら < 40 >の 、ずれかに記載のパ ターン形成方法である。該く 41 >に記載のパターン形成方法においては、前記光 照射手段により、前記複数のレーザ力 それぞれ照射されたレーザビームが前記集 合光学系により集光され、前記マルチモード光ファイバに結合可能とすることにより、 露光が焦点深度の深い露光光で行われる。この結果、前記感光層への露光が極め て高精細に行われる。例えば、その後、前記感光層を現像することにより、極めて高 精細なパターンが形成される。  <41> The light irradiating means includes a plurality of lasers, a multimode optical fiber, and a collective optical system that collects the laser beams irradiated with the plurality of laser forces and couples the laser beams to the multimode optical fiber. The pattern forming method according to any one of the above <17> forces <40>. In the pattern forming method according to 41, the laser beam irradiated by each of the plurality of laser forces is collected by the collecting optical system and can be coupled to the multimode optical fiber. By doing so, exposure is performed with exposure light having a deep focal depth. As a result, the exposure of the photosensitive layer is performed with extremely high definition. For example, after that, the photosensitive layer is developed to form an extremely fine pattern.
[0021] <42> 露光が行われた後、感光層の現像を行う前記 <16>から <41>のいず れかに記載のパターン形成方法である。  <42> The pattern forming method according to any one of <16> to <41>, wherein the photosensitive layer is developed after the exposure.
発明の効果  The invention's effect
[0022] 本発明によると、従来における問題を解決することができ、基板上でのレジストの追 従性が良好であり、かつ、優れた現像性と、レジスト剥離時の剥離片の微細化とを両 立可能な感光性榭脂組成物、該感光性榭脂組成物により形成された感光層を有す る感光性転写フィルム、並びに該感光性転写フィルムを用いた高精細なパターンを 形成可能なパターン形成方法を提供することができる。 [0022] According to the present invention, the conventional problems can be solved, the followability of the resist on the substrate is good, excellent developability, and finer strips at the time of resist stripping. Both A photosensitive resin composition capable of standing, a photosensitive transfer film having a photosensitive layer formed from the photosensitive resin composition, and a pattern capable of forming a high-definition pattern using the photosensitive transfer film A forming method can be provided.
図面の簡単な説明 Brief Description of Drawings
[図 1]図 1は、パターン形成装置の一例の外観を示す斜視図である。 FIG. 1 is a perspective view showing an appearance of an example of a pattern forming apparatus.
[図 2]図 2は、パターン形成装置のスキャナの構成の一例を示す斜視図である。  FIG. 2 is a perspective view showing an example of the configuration of the scanner of the pattern forming apparatus.
[図 3A]図 3Aは、感光層の被露光面上に形成される露光済み領域を示す平面図で ある。 FIG. 3A is a plan view showing an exposed region formed on the exposed surface of the photosensitive layer.
[図 3B]図 3Bは、各露光ヘッドによる露光エリアの配列を示す平面図である。  FIG. 3B is a plan view showing an arrangement of exposure areas by each exposure head.
[図 4]図 4は、露光ヘッドの概略構成の一例を示す斜視図である。  FIG. 4 is a perspective view showing an example of a schematic configuration of an exposure head.
[図 5A]図 5Aは、露光ヘッドの詳細な構成の一例を示す上面図である。  FIG. 5A is a top view showing an example of a detailed configuration of an exposure head.
[図 5B]図 5Bは、露光ヘッドの詳細な構成の一例を示す側面図である。  FIG. 5B is a side view showing an example of a detailed configuration of the exposure head.
[図 6]図 6は、図 1のパターン形成装置の DMDの一例を示す部分拡大図である。  6 is a partially enlarged view showing an example of a DMD of the pattern forming apparatus in FIG.
[図 7A]図 7Aは、 DMDの動作を説明するための斜視図である。  FIG. 7A is a perspective view for explaining the operation of the DMD.
[図 7B]図 7Bは、 DMDの動作を説明するための斜視図である。  FIG. 7B is a perspective view for explaining the operation of the DMD.
[図 8]図 8は、露光ヘッドの取付角度誤差及びパターン歪みがある際に、被露光面上 のパターンに生じるむらの例を示した説明図である。  FIG. 8 is an explanatory view showing an example of unevenness that occurs in a pattern on an exposed surface when there is an attachment head angle error and pattern distortion.
[図 9]図 9は、 1つの DMDによる露光エリアと、対応するスリットとの位置関係を示した 上面図である。  FIG. 9 is a top view showing a positional relationship between an exposure area by one DMD and a corresponding slit.
[図 10]図 10は、被露光面上の光点の位置を、スリットを用いて測定する手法を説明 するための上面図である。  FIG. 10 is a top view for explaining a method for measuring the position of a light spot on a surface to be exposed using a slit.
[図 11]図 11は、選択されたマイクロミラーのみが露光に使用された結果、被露光面上 のパターンに生じるむらが改善された状態を示す説明図である。  [FIG. 11] FIG. 11 is an explanatory view showing a state in which unevenness generated in a pattern on an exposed surface is improved as a result of using only selected micromirrors for exposure.
[図 12]図 12は、隣接する露光ヘッド間に相対位置のずれがある際に、被露光面上の ノターンに生じるむらの例を示した説明図である。 [FIG. 12] FIG. 12 is an explanatory view showing an example of unevenness occurring in a no-turn on the exposed surface when there is a relative position shift between adjacent exposure heads.
[図 13]図 13は、隣接する 2つの露光ヘッドによる露光エリアと、対応するスリットとの位 置関係を示した上面図である。  FIG. 13 is a top view showing a positional relationship between an exposure area by two adjacent exposure heads and a corresponding slit.
[図 14]図 14は、被露光面上の光点の位置を、スリットを用いて測定する手法を説明 するための上面図である。 [FIG. 14] FIG. 14 illustrates a technique for measuring the position of a light spot on an exposed surface using a slit. It is a top view for doing.
[図 15]図 15は、図 12の例において選択された使用画素のみが実動され、被露光面 上のパターンに生じるむらが改善された状態を示す説明図である。  [FIG. 15] FIG. 15 is an explanatory diagram showing a state in which only the used pixels selected in the example of FIG. 12 are actually moved, and unevenness in the pattern on the exposed surface is improved.
[図 16]図 16は、隣接する露光ヘッド間に相対位置のずれ及び取付角度誤差がある 際に、被露光面上のパターンに生じるむらの例を示した説明図である。  FIG. 16 is an explanatory diagram showing an example of unevenness that occurs in a pattern on an exposed surface when there is a relative position shift and a mounting angle error between adjacent exposure heads.
[図 17]図 17は、図 16の例において選択された使用描素部のみを用いた露光を示す 説明図である。  FIG. 17 is an explanatory diagram showing exposure using only the used pixel portion selected in the example of FIG.
[図 18A]図 18Aは、倍率歪みの例を示した説明図である。  FIG. 18A is an explanatory view showing an example of magnification distortion.
[図 18B]図 18Bは、ビーム径歪みの例を示した説明図である。  FIG. 18B is an explanatory diagram showing an example of beam diameter distortion.
[図 19A]図 19Aは、単一露光ヘッドを用いた参照露光の第一の例を示した説明図で ある。  FIG. 19A is an explanatory view showing a first example of reference exposure using a single exposure head.
[図 19B]図 19Bは、単一露光ヘッドを用いた参照露光の第一の例を示した説明図で ある。  FIG. 19B is an explanatory view showing a first example of reference exposure using a single exposure head.
[図 20]図 20は、複数露光ヘッドを用いた参照露光の第一の例を示した説明図である  FIG. 20 is an explanatory view showing a first example of reference exposure using a plurality of exposure heads.
[図 21A]図 21Aは、単一露光ヘッドを用いた参照露光の第二の例を示した説明図で ある。 FIG. 21A is an explanatory view showing a second example of reference exposure using a single exposure head.
[図 21B]図 21Bは、単一露光ヘッドを用いた参照露光の第二の例を示した説明図で ある。  FIG. 21B is an explanatory diagram showing a second example of reference exposure using a single exposure head.
[図 22]図 22は、複数露光ヘッドを用いた参照露光の第二の例を示した説明図である 発明を実施するための最良の形態  FIG. 22 is an explanatory view showing a second example of reference exposure using a plurality of exposure heads. BEST MODE FOR CARRYING OUT THE INVENTION
[0024] (感光性榭脂組成物) [Photosensitive resin composition]
本発明の感光性榭脂組成物は、ノ^ンダ一、重合性化合物、及び光重合開始剤を 少なくとも含有してなり、必要に応じて適宜選択したその他の成分を含む。  The photosensitive resin composition of the present invention contains at least a solder, a polymerizable compound, and a photopolymerization initiator, and includes other components appropriately selected as necessary.
[0025] 前記感光性榭脂組成物の溶融粘度は、 50°Cで 40, 000-120, OOOPa' sであり、[0025] The melt viscosity of the photosensitive resin composition is 40, 000-120, OOOPa's at 50 ° C,
45, 000〜: L 10, 000Pa,sであること力好まし!/、。また、 70°Cで 5, 000〜20, 000P a' sであり、 5, 500-18, 000であること力 S好ましい。前記溶融粘度が、 50°Cで 120 , OOOPa' sを超えたり、 70°Cで 20, OOOPa' sを超えると、基板上でのレジストの追従 性が悪くなる。また、前記溶融粘度が、 50°Cで 40, OOOPa' s未満であったり、 70°C で 5, OOOPa' s未満であると、膜自体の強度が十分でなぐテント性が悪ィ匕する。 前記溶融粘度は、例えば、前記感光性榭脂組成物からなる感光層の面同士のラミ ネートを繰り返し、厚み 150± 10 mとなるようにサンプルを調整後、感光層を 25°C 50%RHの環境で 24時間放置した後、レオメータ(動的粘弾性測定装置)(REOLO GCA社製、 DynAlyserDAR— 100)を用いて、周波数 1Ηζ、ギャップ 1. 5mmの条 件で測定することができる。 45, 000 ~: L 10,000 / pa, s / he is very good! Further, the force S is preferably 5,000 to 20,000 Pa's at 70 ° C and 5,500-18,000. The melt viscosity is 120 at 50 ° C. , If OOOPa's is exceeded or if it exceeds 20, OOOPa's at 70 ° C, the followability of the resist on the substrate will deteriorate. In addition, if the melt viscosity is less than 40, OOOPa's at 50 ° C or less than 5, OOOPa's at 70 ° C, the tentability is insufficient because the strength of the film itself is insufficient. . The melt viscosity is, for example, by repeating lamination of the photosensitive layer surfaces of the photosensitive resin composition, adjusting the sample so that the thickness becomes 150 ± 10 m, and then adjusting the photosensitive layer to 25 ° C 50% RH. After being allowed to stand for 24 hours in this environment, it can be measured using a rheometer (dynamic viscoelasticity measuring device) (REOLO GCA, DynAlyserDAR-100) under the conditions of frequency 1Ηζ and gap 1.5 mm.
[0026] <バインダー >  [0026] <Binder>
前記ノインダ一としては、特に制限はなぐ 目的に応じて適宜選択することができる 力 例えば、質量平均分子量が 3, 000〜10, 000である共重合体 Aと、質量平均分 子量が 30, 000〜150, 000である共重合体 Bとを含み、前記共重合体 Aと前記共 重合体 Bとの質量比力 AZB= 10Z90〜90Z10であることが好ましい。  The noinder is not particularly limited and can be appropriately selected according to the purpose. For example, the copolymer A having a mass average molecular weight of 3,000 to 10,000, and a mass average molecular weight of 30, It is preferable that the mass specific force of the copolymer A and the copolymer B is AZB = 10Z90 to 90Z10.
[0027] 前記質量平均分子量は、ポリスチレン換算の相対値であり、例えば、分子量既知の ポリスチレン標準混合試料を測定して得た較正曲線から求めることができる。  [0027] The mass average molecular weight is a relative value in terms of polystyrene, and can be determined from a calibration curve obtained by measuring a polystyrene standard mixed sample having a known molecular weight, for example.
[0028] 前記ノ インダ一としては、例えば、アルカリ性水溶液に対して膨潤性であることが好 ましぐアルカリ性水溶液に対して可溶性であることがより好ましい。  [0028] The above-mentioned noder is, for example, preferably swellable in an alkaline aqueous solution, more preferably soluble in an alkaline aqueous solution.
アルカリ性水溶液に対して膨潤性又は溶解性を示すバインダーとしては、例えば、 酸性基を有するものが好適に挙げられる。  As the binder exhibiting swellability or solubility with respect to the alkaline aqueous solution, for example, those having an acidic group are preferably exemplified.
[0029] 前記酸性基としては、特に制限はなぐ 目的に応じて適宜選択することができ、例え ば、カルボキシル基、スルホン酸基、リン酸基などが挙げられ、これらの中でもカルボ キシノレ基が好ましい。  [0029] The acidic group is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include a carboxyl group, a sulfonic acid group, and a phosphoric acid group. Among these, a carboxyxenore group is preferable. .
カルボキシル基を有するバインダーとしては、例えば、カルボキシル基を有するビ- ル共重合体、ポリウレタン榭脂、ポリアミド酸榭脂、変性エポキシ榭脂などが挙げられ 、これらの中でも、塗布溶媒への溶解性、アルカリ現像液への溶解性、合成適性、膜 物性の調整の容易さ等の観点力 カルボキシル基を有するビニル共重合体が好まし い。また、現像性の観点から、スチレン及びスチレン誘導体の少なくともいずれかの 共重合体も好ましい。 [0030] 前記カルボキシル基を有するビニル共重合体は、少なくとも( 1)カルボキシル基を 有するビニルモノマー、及び(2)これらと共重合可能なモノマーとの共重合により得る ことができ、例えば、特開 2005— 258431号公報の〔0164〕〜〔0205〕に記載され て 、る化合物などが挙げられる。 Examples of the binder having a carboxyl group include a vinyl copolymer having a carboxyl group, polyurethane resin, polyamic acid resin, and modified epoxy resin. Among these, solubility in a coating solvent, Viewpoints such as solubility in alkaline developer, suitability for synthesis, and ease of adjustment of film properties. Vinyl copolymers having a carboxyl group are preferred. From the viewpoint of developability, a copolymer of at least one of styrene and a styrene derivative is also preferable. [0030] The vinyl copolymer having a carboxyl group can be obtained by copolymerization with at least (1) a vinyl monomer having a carboxyl group, and (2) a monomer copolymerizable therewith. Examples of the compounds described in JP-A-2005-258431, [0164] to [0205].
[0031] 前記感光層における前記バインダーの含有量は、特に制限はなぐ 目的に応じて 適宜選択することができる力 例えば、 10〜90質量%が好ましぐ 20〜80質量%が より好ましぐ 40〜80質量%が特に好ましい。  [0031] The content of the binder in the photosensitive layer is not particularly limited. A force that can be appropriately selected according to the purpose. For example, 10 to 90% by mass is preferable, and 20 to 80% by mass is more preferable. 40-80 mass% is especially preferable.
前記含有量が 10質量%未満であると、アルカリ現像性やプリント配線板形成用基 板 (例えば、銅張積層板)との密着性が低下することがあり、 90質量%を超えると、現 像時間に対する安定性や、硬化膜 (テント膜)の強度が低下することがある。なお、前 記含有量は、前記バインダーと必要に応じて併用される高分子結合剤との合計の含 有量であってもよい。  If the content is less than 10% by mass, the alkali developability and the adhesion to a printed wiring board forming substrate (for example, a copper-clad laminate) may be deteriorated. The stability against image time and the strength of the cured film (tent film) may be reduced. The above content may be the total content of the binder and the polymer binder used in combination as necessary.
[0032] 前記バインダーがガラス転移温度 (Tg)を有する物質である場合、該ガラス転移温 度は、特に制限はなぐ 目的に応じて適宜選択することができるが、例えば、前記感 光性転写フィルムのタック及びエッジフュージョンの抑制、並びに前記支持体の剥離 性向上の、少なくともいずれかの観点から、 80°C以上が好ましぐ 100°C以上がより 好ましぐ 120°C以上が特に好ましい。  [0032] When the binder is a substance having a glass transition temperature (Tg), the glass transition temperature is not particularly limited and can be appropriately selected depending on the purpose. For example, the light-sensitive transfer film From at least one of the viewpoints of suppressing tack and edge fusion and improving the peelability of the support, 80 ° C or higher is preferable, 100 ° C or higher is more preferable, and 120 ° C or higher is particularly preferable.
前記ガラス転移温度が、 80°C未満であると、前記感光性転写フィルムのタックゃェ ッジフュージョンが増加したり、前記支持体の剥離性が悪ィ匕したりすることがある。  When the glass transition temperature is less than 80 ° C., the tack fusion of the photosensitive transfer film may increase or the peelability of the support may deteriorate.
[0033] 前記ノインダ一の酸価は、特に制限はなぐ 目的に応じて適宜選択することができ る力 例えば、 70〜250mgKOHZg力 s好ましく、 90〜200mgKOH/gがより好ま しぐ 100〜180mgKOH/gが特に好ましい。 [0033] The Noinda one acid value, especially the force limit Ru can be appropriately selected depending on the Nag purpose for example, preferably 70~250mgKOHZg force s, 90~200mgKOH / g and more preferred signaling 100~180MgKOH / g is particularly preferred.
前記酸価が、 70mgKOHZg未満であると、現像性が不足したり、解像性が劣り、 配線パターン等の永久パターンを高精細に得ることができないことがあり、 250mgK OHZgを超えると、ノ《ターンの耐現像液性及び密着性の少なくとも 、ずれかが悪ィ匕 し、高精細なパターンを得ることができな 、ことがある。  If the acid value is less than 70 mg KOHZg, developability may be insufficient or resolution may be inferior, and permanent patterns such as wiring patterns may not be obtained in high definition. At least the developer resistance and adhesion of the turn may be poor, and a high-definition pattern may not be obtained.
[0034] 一共重合体 A—  [0034] Monocopolymer A—
前記共重合体 Aとしては、質量平均分子量が 3, 000〜10, 000である限り、特に 制限はなぐ 目的に応じて適宜選択することができ、質量平均分子量は、 3, 000〜9 , 000力より好まし <、 3, 000〜8, 000力特に好まし!/、0 As the copolymer A, as long as the mass average molecular weight is 3,000 to 10,000, in particular No restrictions can be selected according to the purpose, and the weight average molecular weight is more preferable than 3,000 to 9,000 force <, 3,000 to 8,000 force is particularly preferable! /, 0
前記共重合体 Aの質量平均分子量が 3, 000未満であると、現像後の残膜率が低 下することがある。前記質量平均分子量が 10, 000を超えると、現像液に対する溶解 性が低下し、解像度が低下するとともに、剥離片の微細化が達成できなくなったり、 前記溶融粘度を本発明の範囲内とすることができずに、基板上でのレジストの追従 性が悪ィ匕することがある。  When the weight average molecular weight of the copolymer A is less than 3,000, the residual film ratio after development may be lowered. If the mass average molecular weight exceeds 10,000, the solubility in the developer is lowered, the resolution is lowered, and the fineness of the peeled piece cannot be achieved, or the melt viscosity is within the range of the present invention. In some cases, the followability of the resist on the substrate may be poor.
[0035] 前記共重合体 Aを構成する単量体としては、例えば、(メタ)アクリル酸、ビニル安息 香酸、マレイン酸、マレイン酸モノアルキルエステル、フマル酸、ィタコン酸、クロトン 酸、桂皮酸、アクリル酸ダイマー、水酸基を有する単量体 (例えば、 2—ヒドロキシェ チル (メタ)アタリレート等)と環状無水物(例えば、無水マレイン酸や無水フタル酸、シ クロへキサンジカルボン酸無水物)との付カ卩反応物、 ω—カルボキシーポリ力プロラタ トンモノ (メタ)アタリレート、(メタ)アクリル酸エステル類、クロトン酸エステル類、ビュル エステル類、マレイン酸ジエステル類、フマル酸ジエステル類、ィタコン酸ジエステル 類、(メタ)アクリルアミド類、ビュルエーテル類、ビュルアルコールのエステル類、スチ レン類 (例えば、スチレン、スチレン誘導体等)、(メタ)アクリロニトリル、ビュル基が置 換した複素環式基 (例えば、ビュルピリジン、ビュルピロリドン、ビュル力ルバゾール 等)、 Ν ビュルホルムアミド、 Ν ビュルァセトアミド、 Ν ビュルイミダゾール、ビ- ルカプロラタトン、 2—アクリルアミドー 2—メチルプロパンスルホン酸、リン酸モノ(2— アタリロイルォキシェチルエステル)、リン酸モノ(1—メチル 2—アタリロイルォキシ ェチルエステル)、及び官能基 (例えば、ウレタン基、ウレァ基、スルホンアミド基、フエ ノール基、イミド基等)を有するビュルモノマーなどが挙げられる。 [0035] Examples of the monomer constituting the copolymer A include (meth) acrylic acid, vinyl benzoic acid, maleic acid, maleic acid monoalkyl ester, fumaric acid, itaconic acid, crotonic acid, and cinnamic acid. , Acrylic acid dimer, monomer having a hydroxyl group (for example, 2-hydroxyethyl (meth) acrylate) and cyclic anhydride (for example, maleic anhydride, phthalic anhydride, cyclohexanedicarboxylic anhydride) Ω —Carboxy-poly-strength prolacton mono (meth) acrylate, (meth) acrylic acid esters, crotonic acid esters, bulle esters, maleic acid diesters, fumaric acid diesters, itacon Acid diesters, (meth) acrylamides, butyl ethers, esters of butyl alcohol, styrenes (eg Styrene, styrene derivatives, etc.), (meth) acrylonitrile, heterocyclic groups substituted with a bur group (for example, bulupyridine, bulupyrrolidone, bur force rubazole, etc.), Ν bureformamide, ビ ュ buracetoamide, Ν burimidazole , Bicaprolatatone, 2-acrylamido-2-methylpropanesulfonic acid, monophosphate (2-allyloyloxychetyl ester), monophosphate (1-methyl-2-allyloyloxyethyl ester), and Examples thereof include butyl monomers having a functional group (for example, a urethane group, a urea group, a sulfonamide group, a phenol group, an imide group).
[0036] また、前記共重合体 Αとしては、配線パターン等の永久パターンを高精細に形成す ることができる点、及び前記テント性を向上させる観点から、例えば、スチレン及びス チレン誘導体の少なくとも ヽずれかに由来する構造単位を有することが好ま 、。  [0036] Further, as the copolymer Α, from the viewpoint that a permanent pattern such as a wiring pattern can be formed with high definition and from the viewpoint of improving the tent property, for example, at least styrene and a styrene derivative are used. It is preferable to have a structural unit derived from one of them.
[0037] 前記共重合体 Aとしては、例えば、ベンジルメタタリレートとメタクリル酸との共重合 体、スチレンとアクリル酸との共重合体、メチルメタタリレートとメタクリル酸との共重合 体、スチレンとメタクリル酸との共重合体、スチレンと無水マレイン酸との共重合体、ベ ンジルメタタリレートとメタクリル酸とスチレンとの共重合体、メチルメタタリレートとメタク リル酸とスチレンとの共重合体、及びべンジルメタタリレートとメタクリル酸とメチルメタ タリレートと 2ェチルへキシルメタクリレーとの共重合体などが挙げられる。 [0037] Examples of the copolymer A include a copolymer of benzyl methacrylate and methacrylic acid, a copolymer of styrene and acrylic acid, a copolymer of methyl methacrylate and methacrylate, and styrene. Copolymer of styrene and methacrylic acid, copolymer of styrene and maleic anhydride, Copolymers of benzyl methacrylate, methacrylic acid, and styrene, copolymers of methyl methacrylate, methacrylate, and styrene, and benzyl methacrylate and methacrylate, methyl methacrylate, and 2-ethylhexyl. Examples thereof include a copolymer with metacryl.
[0038] 一共重合体 B— [0038] Monocopolymer B—
前記共重合体 Bとしては、質量平均分子量が 30, 000〜150, 000である限り、特 に制限はなぐ 目的に応じて適宜選択することができ、質量平均分子量は、 40, 000 〜130, 000力より好ましく、 40, 000〜120, 000力 ^特に好まし!/、。  The copolymer B is not particularly limited as long as the mass average molecular weight is 30,000 to 150,000, and can be appropriately selected according to the purpose. The mass average molecular weight is 40,000 to 130,000. 000 power more preferred, 40,000 to 120,000 power ^ especially preferred! / ,.
前記共重合体 Bの質量平均分子量が 30, 000未満であると、テント性などで要求さ れる硬化膜の強度が不足することがあり、 150, 000を超えると、現像性が悪ィ匕するこ とがある。  If the weight average molecular weight of the copolymer B is less than 30,000, the strength of the cured film required for tent properties may be insufficient, and if it exceeds 150,000, the developability will be poor. Sometimes.
[0039] 前記共重合体 Bを構成する単量体としては、例えば、(メタ)アクリル酸、ビニル安息 香酸、マレイン酸、マレイン酸モノアルキルエステル、フマル酸、ィタコン酸、クロトン 酸、桂皮酸、アクリル酸ダイマー、水酸基を有する単量体 (例えば、 2—ヒドロキシェ チル (メタ)アタリレート等)と環状無水物(例えば、無水マレイン酸や無水フタル酸、シ クロへキサンジカルボン酸無水物)との付カ卩反応物、 ω—カルボキシーポリ力プロラタ トンモノ (メタ)アタリレート、 (メタ)アクリル酸エステル類、クロトン酸エステル類、ビュル エステル類、マレイン酸ジエステル類、フマル酸ジエステル類、ィタコン酸ジエステル 類、(メタ)アクリルアミド類、ビュルエーテル類、ビュルアルコールのエステル類、スチ レン類 (例えば、スチレン、スチレン誘導体等)、(メタ)アクリロニトリル、ビュル基が置 換した複素環式基 (例えば、ビュルピリジン、ビュルピロリドン、ビュル力ルバゾール 等)、 Ν ビュルホルムアミド、 Ν ビュルァセトアミド、 Ν ビュルイミダゾール、ビ- ルカプロラタトン、 2—アクリルアミドー 2—メチルプロパンスルホン酸、リン酸モノ(2— アタリロイルォキシェチルエステル)、リン酸モノ(1—メチル 2—アタリロイルォキシ ェチルエステル)、及び官能基 (例えば、ウレタン基、ウレァ基、スルホンアミド基、フエ ノール基、イミド基等)を有するビュルモノマーなどが挙げられるが挙げられる。 [0039] Examples of the monomer constituting the copolymer B include (meth) acrylic acid, vinyl benzoic acid, maleic acid, maleic acid monoalkyl ester, fumaric acid, itaconic acid, crotonic acid, and cinnamic acid. , Acrylic acid dimer, monomer having a hydroxyl group (for example, 2-hydroxyethyl (meth) acrylate) and cyclic anhydride (for example, maleic anhydride, phthalic anhydride, cyclohexanedicarboxylic anhydride) Ω —Carboxy-poly-prolactonone (meth) acrylate, (meth) acrylic acid esters, crotonic acid esters, bulle esters, maleic acid diesters, fumaric acid diesters, itacon Acid diesters, (meth) acrylamides, butyl ethers, esters of butyl alcohol, styrenes (eg , Styrene, styrene derivatives, etc.), (meth) acrylonitrile, heterocyclic groups substituted with a bur group (for example, bulupyridine, bulupyrrolidone, bur force rubazole, etc.), ビ ュ buluformamide, ビ ュ buracetoamide, Ν bulu Imidazole, bicaprolatatone, 2-acrylamido-2-methylpropanesulfonic acid, monophosphate (2- allyloyloxychetyl ester), monophosphate (1-methyl-2- attaroyloxyethyl ester), And a butyl monomer having a functional group (for example, a urethane group, a urea group, a sulfonamide group, a phenol group, an imide group, etc.).
[0040] また、前記共重合体 Βとしては、配線パターン等の永久パターンを高精細に形成す ることができる点、及び前記テント性を向上させる観点から、例えば、カルボキシル基 を有するビュルモノマーを有することが好まし 、。 [0041] 前記共重合体 Bとしては、例えば、ベンジルメタタリレートとメタクリル酸との共重合 体、スチレンとアクリル酸との共重合体、メチルメタタリレートとメタクリル酸との共重合 体、スチレンとメタクリル酸との共重合体、スチレンと無水マレイン酸との共重合体、ベ ンジルメタタリレートとメタクリル酸とスチレンとの共重合体、メチルメタタリレートとメタク リル酸とスチレンとの共重合体、及びべンジルメタタリレートとメタクリル酸とメチルメタ タリレートと 2—ェチルへキシルメタタリレートとの共重合体などが挙げられる。 [0040] In addition, as the copolymer を, from the viewpoint that a permanent pattern such as a wiring pattern can be formed with high definition and from the viewpoint of improving the tent property, for example, a butyl monomer having a carboxyl group is used. Preferred to have. [0041] Examples of the copolymer B include a copolymer of benzyl methacrylate and methacrylic acid, a copolymer of styrene and acrylic acid, a copolymer of methyl methacrylate and methacrylate, and styrene. Copolymer of methacrylic acid, styrene, maleic anhydride, benzyl methacrylate, methacrylic acid, styrene, methyl methacrylate, methacrylic acid, and styrene. And polymers and copolymers of benzyl methacrylate, methacrylic acid, methyl methacrylate, and 2-ethylhexyl methacrylate.
[0042] 前記共重合体 Aと前記共重合体 Bとの質量比 (AZB)は、 AZB= 1θΖ90〜9θΖ 10である限り、特に制限はなぐ 目的に応じて適宜選択することができるが、 A/B = 10Z90〜80Z20であることが好ましぐ未露光膜破れを少なくする観点から、 ΑΖ Β= 10Ζ90〜40Ζ60であることがより好ましい。  [0042] The mass ratio (AZB) between the copolymer A and the copolymer B is not particularly limited as long as AZB = 1θΖ90 to 9θΖ10, and can be appropriately selected according to the purpose. From the viewpoint of reducing unexposed film breakage that is preferably / B = 10Z90 to 80Z20, it is more preferable that で Β = 10Ζ90 to 40Ζ60.
[0043] <重合性化合物 >  [0043] <Polymerizable compound>
前記重合性化合物としては、特に制限はなぐ 目的に応じて適宜選択することがで きるが、例えば、ウレタン基及びァリール基の少なくともいずれかを有するモノマー又 はオリゴマーが好適に挙げられる。また、これらは、重合性基を 2種以上有することが 好ましい。  The polymerizable compound is not particularly limited and may be appropriately selected according to the purpose. For example, a monomer or oligomer having at least one of a urethane group and an aryl group is preferably exemplified. These preferably have two or more polymerizable groups.
[0044] 前記重合性基としては、例えば、エチレン性不飽和結合 (例えば、(メタ)アタリロイ ル基、(メタ)アクリルアミド基、スチリル基、ビュルエステルやビュルエーテル等のビ- ル基、ァリルエーテルゃァリルエステル等のァリル基など)、重合可能な環状エーテ ル基 (例えば、エポキシ基、ォキセタン基等)などが挙げられ、これらの中でもェチレ ン性不飽和結合が好まし 、。  [0044] Examples of the polymerizable group include an ethylenically unsaturated bond (for example, a (meth) atalyl group, a (meth) acrylamide group, a styryl group, a beryl group such as a butyl ester or a butyl ether, a allylic ether or the like. Aryl groups such as aryl esters) and polymerizable cyclic ether groups (for example, epoxy groups, oxetane groups, etc.), among which ethylenically unsaturated bonds are preferred.
[0045] ウレタン基を有するモノマ一一  [0045] Monomers having urethane groups
前記ウレタン基を有するモノマーとしては、ウレタン基を有する限り、特に制限は無 く、 目的に応じて適宜選択することができる力 例えば、特開 2005— 258431号公 報の〔0210〕〜〔0262〕に記載されて 、る化合物などが挙げられる。  The monomer having a urethane group is not particularly limited as long as it has a urethane group, and can be appropriately selected according to the purpose. For example, [0210] to [0262] in JP-A-2005-258431 And the like.
[0046] ァリール基を有するモノマ  [0046] A monomer having an aryl group
前記ァリール基を有するモノマーとしては、ァリール基を有する限り、特に制限はな く、 目的に応じて適宜選択することができるが、例えば、ァリール基を有する多価アル コール化合物、多価アミンィ匕合物及び多価ァミノアルコールィ匕合物の少なくともいず れカと不飽和カルボン酸とのエステル又はアミドなどが挙げられ、例えば、特開 2005 - 258431号公報の〔0264〕〜〔0271〕に記載されて 、る化合物などが挙げられる。 The monomer having an aryl group is not particularly limited as long as it has an aryl group, and can be appropriately selected according to the purpose. For example, a polyhydric alcohol compound having an aryl group, a polyvalent amine compound. And at least one of polyamino amino alcohol compound Examples thereof include esters or amides of deca and unsaturated carboxylic acids, and examples thereof include compounds described in JP-A-2005-258431, [0264] to [0271].
[0047] ポリアルキレンオキサイド鎖を有する化合物 [0047] Compound having polyalkylene oxide chain
本発明の感光性榭脂組成物には、ポリアルキレンオキサイド鎖を有する化合物を含 有していてもよい。  The photosensitive resin composition of the present invention may contain a compound having a polyalkylene oxide chain.
前記ポリアルキレンオキサイド鎖を有する化合物としては、特に制限はなぐ単官能 モノマーであってもよ 、し、多官能モノマーであってもよ!/、。  The compound having a polyalkylene oxide chain may be a monofunctional monomer that is not particularly limited, or may be a polyfunctional monomer! /.
前記単官能モノマーとしては、例えば、下記構造式 (i)で表される化合物が好適に 挙げられる。  As the monofunctional monomer, for example, a compound represented by the following structural formula (i) is preferably exemplified.
[化 1]  [Chemical 1]
~ \ 構造式 ( i ) ~ \ Structural formula (i)
COO-(X-O)— R2 COO- (XO) — R 2
n  n
前記構造式 (i)において、 R1は、水素原子、又はメチル基を表す。 In the structural formula (i), R 1 represents a hydrogen atom or a methyl group.
Xは、炭素原子数が 2〜6のアルキレン基を表し、環状構造よりも鎖状構造を有して いることが好ましい。鎖状アルキレン基は、分岐を有していてもよい。該アルキレン基 としては、例えば、エチレン基、プロピレン基、テトラメチレン基、ペンタメチレン基、へ キサメチレン基、などが挙げられるが、これらの中でもエチレン基及びプロピレン基が 好ましい。  X represents an alkylene group having 2 to 6 carbon atoms, and preferably has a chain structure rather than a cyclic structure. The chain alkylene group may have a branch. Examples of the alkylene group include an ethylene group, a propylene group, a tetramethylene group, a pentamethylene group, and a hexamethylene group. Among these, an ethylene group and a propylene group are preferable.
nは、 1〜30の整数であって、 nが 2以上の場合、複数の(—X—O )は互いに同 一であっても、異なってもよく、(-X— 0-)は互いに異なる場合には、例えば、ェチ レン基とプロピレン基との組み合わせなどが好適に挙げられる。  n is an integer of 1 to 30, and when n is 2 or more, a plurality of (—X—O) may be the same or different from each other, and (−X—0-) are When they are different, for example, a combination of an ethylene group and a propylene group is preferably exemplified.
[0048] R2としては、例えば、アルキル基、ァリール基、ァラルキル基などが挙げられ、これ らの基は更に置換基により置換されて 、てもよ 、。 [0048] Examples of R 2 include an alkyl group, an aryl group, an aralkyl group, and the like, and these groups may be further substituted with a substituent.
前記アルキル基としては、炭素数が 1〜20のアルキル基としては、例えば、メチル 基、ェチル基、プロピル基、へキシル基、シクロへキシル基、 2—ェチルへキシル基、 ドデシル基、へキサデシル基、ォクタデシル基、などが挙げられる。該アルキル基は、 置換基を有してもよぐ分岐や環構造を有していてもよい。  Examples of the alkyl group having 1 to 20 carbon atoms include a methyl group, an ethyl group, a propyl group, a hexyl group, a cyclohexyl group, a 2-ethylhexyl group, a dodecyl group, and a hexadecyl group. Group, octadecyl group, and the like. The alkyl group may have a branch or ring structure which may have a substituent.
前記ァラルキル基としては、例えば、ベンジル基、フエネチル基、などが挙げられる 。該ァラルキル基は置換基を有していてもよい。 Examples of the aralkyl group include a benzyl group and a phenethyl group. . The aralkyl group may have a substituent.
前記ァリール基としては、例えば、フエニル基、ナフチル基、トリル基、キシリル基、 ェチルフヱ-ル基、メトキシフヱ-ル基、プロピルフヱ -ル基、ブチルフヱ-ル基、 t— ブチルフヱ-ル基、ォクチルフヱ-ル基、ノ -ルフヱ-ル基、クロロフヱ-ル基、シァノ フエ-ル基、ジブロモフヱ-ル基、トリブロモフヱ-ル基、ビフヱ-リル基、ベンジルフ ェニル基、 a ジメチルーベンジルフエ-ル基、などが挙げられる。該ァリール基は 置換基を有していてもよい。  Examples of the aryl group include a phenyl group, a naphthyl group, a tolyl group, a xylyl group, an ethyl file group, a methoxy file group, a propyl file group, a butyl file group, a t-butyl file group, and an octyl file. Groups, norphenyl groups, chlorophenol groups, cyanphenol groups, dibromophenol groups, tribromophenol groups, bibromophenyl groups, benzylphenyl groups, a dimethylbenzylphenyl groups, etc. Can be mentioned. The aryl group may have a substituent.
[0049] 前記アルキル基、ァラルキル基、及びァリール基における置換基としては、例えば、 ノ、ロゲン原子、ァリール基、ァルケ-ル基、アルコキシ基、シァノ基、などが挙げられ る。 [0049] Examples of the substituent in the alkyl group, the aralkyl group, and the aryl group include a hydrogen atom, a rogen atom, an aryl group, an alkyl group, an alkoxy group, and a cyan group.
前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、などが挙げられる。 前記ァリール基は、総炭素数 6〜20が好ましぐ 6〜14がより好ましい。該ァリール 基としては、例えば、フ -ル基、ナフチル基、アントラセ-ル基、メトキシフ -ル基 Examples of the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom. The aryl group preferably has a total carbon number of 6 to 20, more preferably 6 to 14. Examples of the aryl group include a full group, a naphthyl group, an anthracyl group, and a methoxyfur group.
、などが挙げられる。 , Etc.
前記ァルケ-ル基としては、総炭素数 2〜10が好ましぐ 2〜6がより好ましい。該ァ ルケニル基としては、例えば、ェチュル基、プロぺニル基、ブチリル基などが挙げら れる。  The alkenyl group preferably has a total carbon number of 2 to 10 and more preferably 2 to 6. Examples of the alkenyl group include an ethur group, a propenyl group, a butyryl group, and the like.
前記アルコキシ基としては、分岐していてもよい、総炭素数 1〜: LOが好ましぐ 1〜5 力 り好ましい。該アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルォ キシ基、 2—メチルプロピルォキシ基、ブトキシ基などが挙げられる。  The alkoxy group may be branched and the total number of carbon atoms is preferably 1 to 5 and more preferably 1 to 5 times. Examples of the alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, a 2-methylpropyloxy group, and a butoxy group.
[0050] 前記構造式 (i)で表される化合物としては、具体的には、下記構造式で表される化 合物、などが挙げられる。ただし、下記式中、 Rは水素原子又はメチル基を表す。 nは 1〜30の整数を表し、 m及び Lはそれぞれ 1以上の整数を表し、 m+Lは 1〜30の整 数を表す。 Meはメチル基、 Buはブチル基を表す。 [0050] Specific examples of the compound represented by the structural formula (i) include compounds represented by the following structural formula. However, in the following formula, R represents a hydrogen atom or a methyl group. n represents an integer of 1 to 30, m and L each represents an integer of 1 or more, and m + L represents an integer of 1 to 30. Me represents a methyl group, and Bu represents a butyl group.
[化 2] (CH2CH20) n-Me
Figure imgf000021_0001
C00- (CH2CH20)n-Bu
Figure imgf000021_0002
[Chemical 2] (CH 2 CH 2 0) n -Me
Figure imgf000021_0001
C00- (CH 2 CH 2 0) n -Bu
Figure imgf000021_0002
、C00- (CH2CH20> , C00- (CH 2 CH 2 0>
、C00- (CH2CH20 C9H19 , C00- (CH 2 CH 2 0 C 9 H 19
C00-(CH2CH20)m- (C3H60) L-MeC00- (CH 2 CH 2 0) m- (C 3 H 6 0) L -Me
[化 3] [Chemical 3]
Figure imgf000021_0003
[0051] また、ポリアルキレンオキサイド鎖を有する化合物において、エチレン基及びプロピ レン基の少なくともいずれかを有する化合物として、エチレン基又はプロピレン基の 数が 10〜30であるポリエチレングリコール、ポリプロピレングリコールも好適に挙げら れる。
Figure imgf000021_0003
[0051] In addition, in the compound having a polyalkylene oxide chain, as the compound having at least one of an ethylene group and a propylene group, polyethylene glycol and polypropylene glycol having 10 to 30 ethylene groups or propylene groups are also suitable. Is mentioned.
前記ポリアルキレンオキサイド鎖を有する化合物は、 1種単独で用いてもよいし、 2 種以上を併用してもよい。  The compound having a polyalkylene oxide chain may be used alone or in combination of two or more.
[0052] 前記多官能モノマーとしては、例えば、エチレングリコールジ (メタ)アタリレート、ェ チレン基の数が 2〜30であるポリエチレングリコールジ (メタ)アタリレート(例えば、ジ エチレングリコールジ (メタ)アタリレート、トリエチレングリコールジ (メタ)アタリレート、 テトラエチレングリコールジ (メタ)アタリレート、ポリエチレングリコール # 400ジメタタリ レート、ポリエチレングリコール # 600ジメタタリレート、ポリエチレングリコール # 100 0ジメタタリレート等)、プロピレングリコールジ (メタ)アタリレート、プロピレン基の数が 2 〜18であるポリプロピレングリコールジ (メタ)アタリレート(例えば、ジプロピレングリコ ールジ (メタ)アタリレート、トリプロピレングリコールジ (メタ)アタリレート、テトラプロピレ ングリコールジ (メタ)アタリレート、ドデカプロピレングリコールジ (メタ)アタリレート等) [0052] Examples of the polyfunctional monomer include ethylene glycol di (meth) acrylate and polyethylene glycol di (meth) acrylate having 2 to 30 ethylene groups (for example, diethylene glycol di (meth)). Acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol # 400 dimetatalate, polyethylene glycol # 600 dimetatalate, polyethylene glycol # 100 0 dimetatalate, etc.), propylene Glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate with 2 to 18 propylene groups (eg, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetra Ropire glycol di (meth) Atari rate, dodecamethylene glycol di (meth) Atari rate, etc.)
、エチレングリコール鎖 Zプロピレングリコール鎖を少なくとも各々一つずつ有するァ ルキレングリコール鎖のジ (メタ)アタリレート(例えば、国際公開第 01Z98832号パ ンフレットに記載の化合物等)、ポリブチレングリコールジ (メタ)アタリレートなどが挙 げられる。 , Ethylene glycol chain Z dialkyl (ethylene) chain di (meth) acrylate (for example, compounds described in WO 01Z98832 pamphlet), polybutylene glycol di (meta) ) Atarirate.
これらの中でも、その入手の容易さ等の観点から、エチレングリコールジ (メタ)アタリ レート、プロピレングリコールジ(メタ)アタリレート、エチレングリコール鎖 Zプロピレン グリコール鎖を少なくとも各々一つずつ有するアルキレングリコール鎖のジ (メタ)ァク リレートなどが好ましい。  Among these, from the viewpoint of availability, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, ethylene glycol chain Z and alkylene glycol chain each having at least one propylene glycol chain. Di (meth) acrylate is preferred.
[0053] 前記ポリアルキレンオキサイド鎖を有する化合物の前記重合性ィ匕合物中における 含有量は、 40質量%以下が好ましぐ 1〜30質量%がより好ましぐ 1〜25質量%が 更に好ましい。前記含有量が 0. 1質量%未満であると、剥離性や現像ラチチュード 改良の効果が不十分になる場合があり、 40質量%を超えると、解像、密着性、テント 性などが悪ィ匕する場合がある。 [0054] その他の重合性モノマ [0053] The content of the compound having a polyalkylene oxide chain in the polymerizable compound is preferably 40% by mass or less, more preferably 1 to 30% by mass, and even more preferably 1 to 25% by mass. preferable. If the content is less than 0.1% by mass, the effect of improving the peelability and development latitude may be insufficient, and if it exceeds 40% by mass, the resolution, adhesion, tent property, etc. are poor. There is a case to hesitate. [0054] Other polymerizable monomers
本発明のパターン形成方法には、前記感光性転写フィルムとしての特性を悪化さ せない範囲で、前記ウレタン基を含有するモノマー、ァリール基を有するモノマー以 外の重合性モノマーを併用してもょ 、。  In the pattern forming method of the present invention, a polymerizable monomer other than the monomer having a urethane group and the monomer having an aryl group may be used in combination as long as the characteristics as the photosensitive transfer film are not deteriorated. ,.
[0055] 前記ウレタン基を含有するモノマー、芳香環を含有するモノマー以外の重合性モノ マーとしては、例えば、不飽和カルボン酸 (例えば、アクリル酸、メタクリル酸、ィタコン 酸、クロトン酸、イソクロトン酸、マレイン酸等)と脂肪族多価アルコール化合物とのェ ステル、不飽和カルボン酸と多価アミンィ匕合物とのアミドなどが挙げられ、例えば、特 開 2005 - 258431号公報の [0274]〜〔0284〕に記載されて ヽる化合物などが挙 げられる。 [0055] As the polymerizable monomer other than the monomer containing a urethane group and the monomer containing an aromatic ring, for example, an unsaturated carboxylic acid (for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, Examples include esters of maleic acid and the like and aliphatic polyhydric alcohol compounds, amides of unsaturated carboxylic acids and polyhydric amine compounds, and examples include [0274]-[ [0284] and the like.
[0056] 前記感光層における重合性ィ匕合物の含有量は、例えば、 5〜90質量%が好ましく 、 15〜60質量%がより好ましぐ 20〜50質量%が特に好ましい。  [0056] The content of the polymerizable compound in the photosensitive layer is, for example, preferably 5 to 90% by mass, more preferably 15 to 60% by mass, and particularly preferably 20 to 50% by mass.
前記含有量が、 5質量%となると、テント膜の強度が低下することがあり、 90質量% を超えると、保存時のエッジフュージョン(ロール端部力 のしみだし故障)が悪化す ることがある。  If the content is 5% by mass, the strength of the tent film may be reduced, and if it exceeds 90% by mass, edge fusion during storage (extruding failure of the roll end force) may be deteriorated. is there.
また、重合性化合物中に前記重合性基を 2個以上有する多官能モノマーの含有量 は、 5〜: LOO質量%が好ましぐ 20〜: LOO質量%がより好ましぐ 40〜: LOO質量%が 特に好ましい。  In addition, the content of the polyfunctional monomer having two or more polymerizable groups in the polymerizable compound is preferably 5 to: LOO mass% is preferable 20 to: LOO mass% is more preferable 40 to: LOO mass % Is particularly preferred.
[0057] < <光重合開始剤 > > [0057] <<Photoinitiator>>
前記光重合開始剤としては、前記重合性化合物の重合を開始する能力を有する限 り、特に制限はなぐ公知の光重合開始剤の中から適宜選択することができるが、例 えば、紫外線領域力 可視の光線に対して感光性を有するものが好ましぐ光励起さ れた増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよぐ モノマーの種類に応じてカチオン重合を開始させるような開始剤であってもよい。 また、前記光重合開始剤は、約 300〜800nm (より好ましくは 330〜500nm)の範 囲内に少なくとも約 50の分子吸光係数を有する成分を少なくとも 1種含有して ヽるこ とが好ましい。  The photopolymerization initiator can be appropriately selected from known photopolymerization initiators that are not particularly limited as long as it has the ability to initiate the polymerization of the polymerizable compound. Those that have photosensitivity to visible light may have some effect with photo-excited sensitizers, and may be active agents that generate active radicals. Cationic polymerization is performed depending on the type of monomer. It may be an initiator that initiates. The photopolymerization initiator preferably contains at least one component having a molecular extinction coefficient of at least about 50 within a range of about 300 to 800 nm (more preferably 330 to 500 nm).
[0058] 前記光重合開始剤としては、例えば、ハロゲンィ匕炭化水素誘導体 (例えば、トリアジ ン骨格を有するもの、ォキサジァゾール骨格を有するもの等)、へキサァリールビイミ ダゾール、ォキシム誘導体、有機過酸化物、チォ化合物、ケトンィ匕合物、芳香族ォニ ゥム塩、メタ口セン類などが挙げられる。これらの中でも、感光層の感度、保存性、及 び感光層とプリント配線板形成用基板との密着性等の観点から、トリァジン骨格を有 するハロゲンィ匕炭化水素、ォキシム誘導体、ケトンィ匕合物、へキサァリールビイミダゾ ール系化合物が好ましぐ例えば、特開 2005— 258431号公報の〔0288〕〜〔030 9〕に記載されている化合物などが挙げられる。 [0058] Examples of the photopolymerization initiator include halogenated hydrocarbon derivatives (for example, triazide). Having skeleton, oxadiazole skeleton, etc.), hexarylbiimidazole, oxime derivatives, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, metaguchines Etc. Among these, from the viewpoints of the sensitivity and storage stability of the photosensitive layer and the adhesion between the photosensitive layer and the printed wiring board forming substrate, a halogenated hydrocarbon having a triazine skeleton, an oxime derivative, a ketone compound, Hexaarylbiimidazole compounds are preferred, for example, compounds described in [0288] to [0309] of JP-A-2005-258431.
[0059] 前記感光層における光重合開始剤の含有量は、 0. 1〜30質量%が好ましぐ 0. 5 〜20質量%がより好ましぐ 0. 5〜15質量%が特に好ましい。  [0059] The content of the photopolymerization initiator in the photosensitive layer is preferably from 0.1 to 30% by mass, more preferably from 0.5 to 20% by mass, and particularly preferably from 0.5 to 15% by mass.
[0060] < <その他の成分 > >  [0060] <<Other ingredients>>
前記その他の成分としては、例えば、増感剤、熱重合禁止剤、可塑剤、発色剤、着 色剤などが挙げられ、更に基体表面への密着促進剤及びその他の助剤類 (例えば、 顔料、導電性粒子、充填剤、消泡剤、難燃剤、レべリング剤、剥離促進剤、酸化防止 剤、香料、熱架橋剤、表面張力調整剤、連鎖移動剤等)を併用してもよぐ例えば、 特開 2005— 258431号公報の〔0312〕〜〔0336〕に記載されている化合物などが 挙げられる。これらの成分を適宜含有させることにより、目的とする感光性転写フィル ムの安定性、写真性、焼きだし性、膜物性等の性質を調整することができる。  Examples of the other components include sensitizers, thermal polymerization inhibitors, plasticizers, color formers, colorants, and the like, and adhesion promoters to the substrate surface and other auxiliary agents (for example, pigments). , Conductive particles, fillers, antifoaming agents, flame retardants, leveling agents, release accelerators, antioxidants, fragrances, thermal crosslinking agents, surface tension modifiers, chain transfer agents, etc.) Examples thereof include compounds described in JP-A-2005-258431, [0312] to [0336]. By appropriately containing these components, it is possible to adjust properties such as the stability, photographic properties, print-out properties, and film properties of the target photosensitive transfer film.
[0061] (感光性転写フィルム)  [0061] (Photosensitive transfer film)
本発明の感光性転写フィルムは、前記支持体上に、本発明の感光性榭脂組成物 により形成された感光層を少なくとも有してなり、必要に応じて、保護フィルム、更に 必要に応じて、クッション層、酸素遮断層(PC層)などのその他の層を有してなる。 前記感光性転写フィルムの形態は、特に制限はなぐ目的に応じて適宜選択するこ とができ、例えば、前記支持体上に、前記感光層、前記保護フィルムをこの順に有し てなる形態、前記支持体上に、前記 PC層、前記感光層、前記保護フィルムをこの順 に有してなる形態、前記支持体上に、前記クッション層、前記 PC層、前記感光層、前 記保護フィルムをこの順に有してなる形態などが挙げられる。  The photosensitive transfer film of the present invention has at least a photosensitive layer formed of the photosensitive resin composition of the present invention on the support, and if necessary, a protective film, and further if necessary. , And other layers such as a cushion layer and an oxygen barrier layer (PC layer). The form of the photosensitive transfer film can be appropriately selected according to the purpose without any particular restriction. For example, the form having the photosensitive layer and the protective film in this order on the support, A form in which the PC layer, the photosensitive layer, and the protective film are provided in this order on a support, and the cushion layer, the PC layer, the photosensitive layer, and the protective film are provided on the support. The form etc. which have in order are mentioned.
なお、前記感光層は、単層であってもよいし、複数層であってもよい。  The photosensitive layer may be a single layer or a plurality of layers.
[0062] 〔感光層〕 前記感光層は、本発明の前記感光性榭脂組成物により形成される。 [Photosensitive layer] The photosensitive layer is formed by the photosensitive resin composition of the present invention.
前記感光層の形成方法としては、前記支持体の上に、本発明の前記感光性組成 物を、水又は溶剤に溶解、乳化又は分散させて感光性組成物溶液を調製し、該溶 液を直接塗布し、乾燥させることにより積層する方法が挙げられる。  As a method for forming the photosensitive layer, a photosensitive composition solution is prepared by dissolving, emulsifying, or dispersing the photosensitive composition of the present invention in water or a solvent on the support, and the solution is used. Examples of the method include a method of directly coating and laminating by drying.
[0063] 前記感光性組成物溶液の溶剤としては、特に制限はなく、目的に応じて適宜選択 することができ、例えば、メタノール、エタノール、 n—プロパノール、イソプロパノール 、 n—ブタノール、 sec ブタノール、 n—へキサノール等のアルコール類;アセトン、メ チルェチルケトン、メチルイソブチルケトン、シクロへキサノン、ジイソプチルケトンなど のケトン類;酢酸ェチル、酢酸ブチル、酢酸 n—ァミル、硫酸メチル、プロピオン酸 ェチル、フタル酸ジメチル、安息香酸ェチル、及びメトキシプロピルアセテートなどの エステル類;トルエン、キシレン、ベンゼン、ェチルベンゼンなどの芳香族炭化水素類 ;四塩化炭素、トリクロロエチレン、クロ口ホルム、 1, 1, 1—トリクロロェタン、塩化メチ レン、モノクロ口ベンゼンなどのハロゲン化炭化水素類;テトラヒドロフラン、ジェチル エーテノレ、エチレングリコーノレモノメチノレエーテノレ、エチレングリコーノレモノエチノレエ 一テル、 1ーメトキシー 2—プロパノールなどのエーテル類;ジメチルホルムアミド、ジメ チルァセトアミド、ジメチルスルホオキサイド、スルホランなどが挙げられる。これらは、 1種単独で使用してもよぐ 2種以上を併用してもよい。また、公知の界面活性剤を添 カロしてちょい。  [0063] The solvent of the photosensitive composition solution is not particularly limited and may be appropriately selected depending on the intended purpose. For example, methanol, ethanol, n-propanol, isopropanol, n-butanol, sec butanol, n —Alcohols such as hexanol; Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diisoptyl ketone; Ethyl acetate, butyl acetate, n-amyl acetate, methyl ethyl sulfate, ethyl ethyl propionate, phthalic acid Esters such as dimethyl, ethyl benzoate, and methoxypropyl acetate; aromatic hydrocarbons such as toluene, xylene, benzene, ethylbenzene; carbon tetrachloride, trichloroethylene, chloroform, 1, 1, 1-trichloroethane, Such as methylene chloride, monochrome benzene, etc. Rogenated hydrocarbons: Tetrahydrofuran, Jetyl etherenole, Ethylene glycol monomethino ethenore, Ethylene glycol eno monoethinore ether, ethers such as 1-methoxy-2-propanol; Dimethylformamide, dimethylacetamide, dimethylsulfoxide, sulfolane Etc. These may be used alone or in combination of two or more. Also, add a known surfactant.
[0064] 前記塗布の方法としては、特に制限はなぐ目的に応じて適宜選択することができ 、例えば、スピンコーター、スリットスピンコーター、ロールコーター、ダイ =1一ター、力 一テンコーターなどを用いて、前記支持体に直接塗布する方法が挙げられる。  [0064] The coating method can be appropriately selected according to the purpose without any particular limitation. For example, a spin coater, a slit spin coater, a roll coater, a die = 1 ter, a force tensor coater, or the like is used. And a method of directly applying to the support.
前記乾燥の条件は、各成分、溶媒の種類、使用割合等によっても異なるが、通常 6 0〜 110°Cの温度で 30秒間〜 15分間程度である。  The drying conditions vary depending on each component, the type of solvent, the ratio of use, etc., but are usually 60 to 110 ° C. for 30 seconds to 15 minutes.
[0065] 前記感光層の厚みは、特に制限はなぐ目的に応じて適宜選択することができるが 、例えば、 1〜: LOO 111カ 子ましく、 5〜70 m力より好ましい。  [0065] The thickness of the photosensitive layer can be appropriately selected according to the purpose for which there is no particular limitation. For example, 1 to: LOO 111 or more preferably 5 to 70 m force.
[0066] また、前記感光層を 390〜420nmの波長のレーザ光で露光して現像する場合に おいて、該感光層の露光する部分の厚みを、該露光及び現像後において変化させ ない前記露光に用いる光の最小エネルギー (感度)が、 0. l〜20mjZcm2であるこ とが好ましい。 [0066] Further, in the case where the photosensitive layer is exposed and developed with a laser beam having a wavelength of 390 to 420 nm, the thickness of the exposed portion of the photosensitive layer is not changed after the exposure and development. The minimum energy (sensitivity) of light used for the light is 0.1 to 20mjZcm 2 And are preferred.
[0067] ここで、「該感光層の露光する部分の厚みを該露光及び現像後において変化させ ない前記露光に用いる光の最小エネルギー」とは、いわゆる現像感度であり、例えば 、前記感光層を露光したときの前記露光に用いた光のエネルギー量 (露光量)と、前 記露光に続く前記現像処理により生成した前記硬化層の厚みとの関係を示すグラフ (感度曲線)から求めることができる。  [0067] Here, "the minimum energy of light used for the exposure that does not change the thickness of the exposed portion of the photosensitive layer after the exposure and development" is so-called development sensitivity. It can be determined from a graph (sensitivity curve) showing the relationship between the amount of light energy (exposure amount) used for the exposure when exposed and the thickness of the cured layer generated by the development process following the exposure. .
前記硬化層の厚みは、前記露光量が増えるに従い増加していき、その後、前記露 光前の前記感光層の厚みと略同一かつ略一定となる。前記現像感度は、前記硬化 層の厚みが略一定となったときの最小露光量を読み取ることにより求められる値であ る。  The thickness of the cured layer increases as the exposure amount increases, and then becomes substantially the same and substantially constant as the thickness of the photosensitive layer before the exposure. The development sensitivity is a value obtained by reading the minimum exposure when the thickness of the cured layer becomes substantially constant.
ここで、前記硬化層の厚みと前記露光前の前記感光層の厚みとの差が ± 1 μ m以 内であるとき、前記硬化層の厚みが露光 ·現像により変化していないとみなす。  Here, when the difference between the thickness of the cured layer and the thickness of the photosensitive layer before the exposure is within ± 1 μm, it is considered that the thickness of the cured layer is not changed by exposure / development.
前記硬化層及び前記露光前の前記感光層の厚みの測定方法としては、特に制限 はなく、目的に応じて適宜選択することができるが、膜厚測定装置、表面粗さ測定機 (例えば、サーフコム 1400D (東京精密社製) )などを用いて測定する方法が挙げら れる。  A method for measuring the thickness of the cured layer and the photosensitive layer before exposure is not particularly limited and may be appropriately selected depending on the intended purpose. However, a film thickness measuring device, a surface roughness measuring device (for example, Surfcom) 1400D (manufactured by Tokyo Seimitsu Co., Ltd.)) and the like.
[0068] 〔支持体及び保護フィルム〕  [Support and Protective Film]
前記支持体としては、特に制限はなぐ目的に応じて適宜選択することができるが、 前記感光層を剥離可能であり、かつ光の透過性が良好であるのが好ましぐ更に表 面の平滑性が良好であるのがより好まし 、。前記支持体及び保護フィルムとしては、 具体的に ίま、 f列え ίま、、特開 2005— 258431号公報の〔0342〕及び〔0344〕〜〔034 8〕に記載されている。  The support can be appropriately selected according to the purpose for which there is no particular limitation. However, it is preferable that the photosensitive layer can be peeled off and the light transmittance is good. Further, the surface is smooth. More preferred to have good sex. Specific examples of the support and the protective film are described in Japanese Patent Application Laid-Open No. 2005-258431, [0342] and [0344] to [034 8].
[0069] 前記支持体の厚みは、特に制限はなぐ目的に応じて適宜選択することができるが ゝ ί列; tは、、 4〜300 μ m力好ましく、 5〜175 μ m力 ^より好まし!/ヽ。  [0069] The thickness of the support can be appropriately selected depending on the purpose for which there is no particular limitation. However, t is preferably 4 to 300 μm force, more preferably 5 to 175 μm force ^. Ms./ !.
[0070] 〔その他の層〕  [0070] [Other layers]
前記その他の層としては、特に制限はなぐ目的に応じて適宜選択することができ、 例えば、クッション層、バリア層、剥離層、接着層、光吸収層、表面保護層等の層が 挙げられる。前記感光性転写フィルムは、これらの層を 1種単独で有していてもよぐ 2種以上を有していてもよぐまた、同種の層を 2層以上有していてもよい。 The other layers can be appropriately selected according to the purpose without any particular limitation, and examples thereof include layers such as a cushion layer, a barrier layer, a release layer, an adhesive layer, a light absorption layer, and a surface protective layer. The photosensitive transfer film may have one of these layers alone. It may have two or more types, and may have two or more layers of the same type.
[0071] 前記感光性転写フィルムは、例えば、円筒状の卷芯に巻き取って、長尺状でロー ル状に巻かれて保管されることが好ま U、。前記長尺状の感光性転写フィルムの長さ は、特に制限はなぐ例えば、 10-20, OOOmの範囲から適宜選択することができる 。また、ユーザーが使いやすいようにスリット加工し、 100〜1, OOOmの範囲の長尺 体をロール状にしてもよい。なお、この場合には、前記支持体が一番外側になるよう に巻き取られることが好ましい。また、前記ロール状の感光性転写フィルムをシート状 にスリットしてもよい。保管の際、端面の保護、エッジフュージョンを防止する観点から 、端面にはセパレーター (特に防湿性のもの、乾燥剤入りのもの)を設置することが好 ましぐまた梱包も透湿性の低 、素材を用いる事が好ま 、。 [0071] It is preferable that the photosensitive transfer film is wound around a cylindrical core, wound into a long roll, and stored. The length of the long photosensitive transfer film is not particularly limited, and can be appropriately selected from the range of 10-20, OOOm, for example. In addition, slitting may be performed for ease of use by the user, and a long body in the range of 100 to 1, OOOm may be rolled. In this case, it is preferable that the support is wound so that the outermost side is the outermost side. The roll-shaped photosensitive transfer film may be slit into a sheet shape. In order to protect the end face and prevent edge fusion during storage, it is preferable to install a separator (especially moisture-proof, with desiccant) on the end face, and the packaging is also low in moisture permeability. I prefer to use
[0072] (パターン形成方法) [Pattern Formation Method]
本発明のパターン形成方法は、本発明の感光性転写材料における感光層を基材 の表面に転写して積層体を形成する積層工程、及び露光工程を少なくとも含み、適 宜選択した現像工程、エッチング工程、レジスト剥離工程等のその他の工程を含む。  The pattern forming method of the present invention includes at least a laminating step of forming a laminate by transferring the photosensitive layer in the photosensitive transfer material of the present invention to the surface of the base material, and an exposure step, and an appropriately selected developing step and etching step. It includes other processes such as a process and a resist stripping process.
[0073] [積層工程] [0073] [Lamination process]
前記積層体の形成方法としては、特に制限はなぐ 目的に応じて適宜選択すること ができるが、前記基体上に前記感光性転写フィルムを、前記保護フィルムを剥離しな がら、加熱及び加圧の少なくともいずれかにより積層することが好ましい。  The method for forming the laminate is not particularly limited, and can be appropriately selected according to the purpose. However, the photosensitive transfer film is peeled off from the substrate, and the protective film is peeled off while heating and pressurizing. It is preferable to laminate at least one of them.
前記加熱温度は、特に制限はなぐ 目的に応じて適宜選択することができるが、例 えば、 15〜180°Cが好ましぐ 60〜140°Cがより好ましい。  The heating temperature is not particularly limited and can be appropriately selected according to the purpose. For example, 15 to 180 ° C is preferable, and 60 to 140 ° C is more preferable.
前記加圧の圧力は、特に制限はなぐ 目的に応じて適宜選択することができるが、 ί列; tは、、 0. 1〜1. OMPa力好ましく、 0. 2〜0. 8MPa力 ^より好まし!/ヽ。  The pressure of the pressurization is not particularly limited and can be appropriately selected depending on the purpose. However, the column is preferably 0.1 to 1. OMPa force, more preferably 0.2 to 0.8 MPa force ^ I like it!
[0074] 前記加熱及び加圧の少なくともいずれかを行う装置としては、特に制限はなぐ 目 的に応じて適宜選択することができ、例えば、ラミネーター、真空ラミネーターなどが 好適に挙げられる。 [0074] The apparatus for performing at least one of the heating and pressurization can be appropriately selected according to the purpose without particular limitation, and examples thereof include a laminator and a vacuum laminator.
[0075] 前記加熱及び加圧の少なくともいずれかを行う装置としては、特に制限はなぐ 目 的に応じて適宜選択することができ、例えば、ラミネーター(例えば、大成ラミネータ 社製、 VP— Π)などが好適に挙げられる。 [0076] 《基材〉〉 [0075] The apparatus for performing at least one of the heating and pressurization can be appropriately selected depending on the purpose, and for example, a laminator (for example, VP- 成 manufactured by Taisei Laminator Co., Ltd.) Are preferable. [0076] << Substrate >>
前記基材としては、特に制限はなぐ公知の材料の中から表面平滑性の高いもの 力も凸凹のある表面を有するものまで、フォトソルダーレジスト、配線パターン形成用 フォトレジスト、カラーレジストのそれぞれの目的に応じて適宜選択することができるが 、板状の基材 (基板)が好ましぐ具体的には、公知のプリント配線板形成用基板 (例 えば、銅張積層板)、ガラス板 (例えば、ソーダガラス板、酸ィ匕ケィ素をスパッタしたガ ラス板、石英ガラス板等)、合成樹脂性のフィルム、紙、金属板などが挙げられる。  As the base material, there are no particular restrictions on known materials, those having high surface smoothness, and those having a surface with a rough surface. For each purpose of a photo solder resist, a photoresist for forming a wiring pattern, and a color resist. The plate-like base material (substrate) is preferred, and specifically, a known printed wiring board forming substrate (for example, a copper-clad laminate), a glass plate (for example, Soda glass plate, glass plate sputtered with oxygen and quartz, quartz glass plate, etc.), synthetic resin film, paper, metal plate and the like.
[0077] 前記積層体は、基材上に前記感光層が形成されてなり、該感光層に対し、後述す る露光工程により露光した領域を硬化させ、後述する現像工程によりパターンを形成 することができる。  [0077] The laminate is formed by forming the photosensitive layer on a base material, and curing a region exposed by an exposure process described later on the photosensitive layer, and forming a pattern by a development process described later. Can do.
[0078] 〔露光工程〕  [Exposure process]
前記露光工程は、前記積層工程において形成された前記積層体の前記感光層に 対し、露光を行う工程である。  The exposure step is a step of exposing the photosensitive layer of the laminate formed in the lamination step.
前記露光としては、特に制限はなぐ目的に応じて適宜選択することができ、デジタ ル露光、アナログ露光等が挙げられる力 これらの中でもデジタル露光が好ましい。  The exposure can be appropriately selected according to the purpose for which there is no particular limitation, and powers such as digital exposure, analog exposure, etc. Among these, digital exposure is preferable.
[0079] 前記デジタル露光としては、例えば、前記感光層に対し、光照射手段、及び前記 光照射手段からの光を受光し出射する n個(ただし、 nは 2以上の自然数)の 2次元状 に配列された描素部を有し、パターン情報に応じて前記描素部を制御可能な光変調 手段を備えた露光ヘッドであって、該露光ヘッドの走査方向に対し、前記描素部の 列方向が所定の設定傾斜角度 Θをなすように配置された露光ヘッドを用い、前記露 光ヘッドについて、使用描素部指定手段により、使用可能な前記描素部のうち、 N重 露光 (ただし、 Nは 2以上の自然数)に使用する前記描素部を指定し、前記露光へッ ドについて、描素部制御手段により、前記使用描素部指定手段により指定された前 記描素部のみが露光に関与するように、前記描素部の制御を行い、前記感光層に 対し、前記露光ヘッドを走査方向に相対的に移動させて露光を行う方法が好ましい。  [0079] Examples of the digital exposure include, for example, a light irradiating unit and n light (n is a natural number of 2 or more) two-dimensional shape that receives and emits light from the light irradiating unit. An exposure head having light modulation means capable of controlling the drawing portion in accordance with pattern information, wherein the drawing portion of the drawing portion is aligned with respect to a scanning direction of the exposure head. Using an exposure head arranged such that the column direction forms a predetermined inclination angle Θ, the exposure head is designated by the use pixel part designation means, and the N-fold exposure (however, of the usable picture element parts) , N is a natural number greater than or equal to 2) and specifies the pixel part to be used, and for the exposure head, only the pixel part specified by the pixel part specifying unit is used by the pixel part control unit. Control the pixel part so that the Against the optical layer, a method of performing exposure by relatively moving the exposing head in the scanning direction is preferable.
[0080] なお、前記「N重露光」とは、前記感光層の被露光面上の露光領域の略すベての 領域において、前記露光ヘッドの走査方向に平行な直線が、前記被露光面上に照 射された N本の光点列 (画素列)と交わるような設定による露光を指す。ここで、「光点 列 (画素列)」とは、前記描素部により生成された描素単位としての光点 (画素)の並 びうち、前記露光ヘッドの走査方向となす角度がより小さい方向の並びを指すものと する。なお、前記描素部の配置は、必ずしも矩形格子状でなくてもよぐたとえば平行 四辺形状の配置等であってもよ 、。 Note that the “N-double exposure” means that a straight line parallel to the scanning direction of the exposure head is formed on the surface to be exposed in almost all regions of the exposure region on the surface to be exposed of the photosensitive layer. This refers to exposure with a setting that intersects the N light spots (pixel array) irradiated on. Where "light spot “Column (pixel column)” refers to an array of light spots (pixels) as pixel units generated by the pixel unit in a direction in which the angle formed with the scanning direction of the exposure head is smaller. Let's say. The arrangement of the picture element portions does not necessarily have to be a rectangular lattice, for example, an arrangement of parallelograms.
ここで、露光領域の「略すベての領域」と述べたのは、各描素部の両側縁部では、 描素部列を傾斜させたことにより、前記露光ヘッドの走査方向に平行な直線と交わる 使用描素部の描素部列の数が減るため、かかる場合に複数の露光ヘッドをつなぎ合 わせるように使用したとしても、該露光ヘッドの取付角度や配置等の誤差により、走査 方向に平行な直線と交わる使用描素部の描素部列の数がわずかに増減することが あるため、また、各使用描素部の描素部列間のつなぎの、解像度分以下のごくわず かな部分では、取付角度や描素部配置等の誤差により、走査方向と直交する方向に 沿った描素部のピッチが他の部分の描素部のピッチと厳密に一致せず、走査方向に 平行な直線と交わる使用描素部の描素部列の数が ± 1の範囲で増減することがある ためである。なお、以下の説明では、 Nが 2以上の自然数である N重露光を総称して 「多重露光」という。さらに、以下の説明では、本発明の露光装置又は露光方法を、 描画装置又は描画方法として実施した形態について、「N重露光」及び「多重露光」 に対応する用語として、「N重描画」及び「多重描画」という用語を用いるものとする。 前記 N重露光の Nとしては、 2以上の自然数であれば、特に制限はなぐ目的に応 じて適宜選択することができる力 3以上の自然数が好ましぐ 3以上 7以下の自然数 力 り好ましい。  Here, the “substantially all areas” of the exposure area is described as a straight line parallel to the scanning direction of the exposure head by tilting the pixel part rows at both side edges of each picture element part. Since the number of picture element parts in the used picture element part decreases, even if it is used to connect multiple exposure heads in such a case, scanning will occur due to errors in the mounting angle and arrangement of the exposure heads. The number of pixel parts in the used pixel part that intersects a straight line parallel to the direction may slightly increase or decrease, and the connection between the pixel parts in each used pixel part is less than the resolution. In the small part, due to errors such as the mounting angle and pixel part placement, the pixel part pitch along the direction perpendicular to the scanning direction does not exactly match the pixel part pitch of the other part, and scanning is not possible. The number of pixel parts in the used pixel part that intersects a straight line parallel to the direction increases or decreases within the range of ± 1. Because there is. In the following description, N multiple exposures where N is a natural number of 2 or more are collectively referred to as “multiple exposure”. Furthermore, in the following description, “N double exposure” and “multiple exposure” are used as terms corresponding to “N double exposure” and “multiple exposure” with respect to an embodiment in which the exposure apparatus or exposure method of the present invention is implemented as a drawing apparatus or drawing method. The term “multiple drawing” shall be used. N in the N-exposure is a natural number of 2 or more, a force that can be appropriately selected according to the purpose for which there is no particular limitation, a natural number of 3 or more is preferable, and a natural number of 3 or more and 7 or less is more preferable. .
<パターン形成装置 > <Pattern forming device>
本発明のパターン形成方法に係るパターン形成装置の一例について図面を参照 しながら説明する。  An example of a pattern forming apparatus according to the pattern forming method of the present invention will be described with reference to the drawings.
前記パターン形成装置としては、 Vヽゎゆるフラットベッドタイプの露光装置とされて おり、図 1に示すように、前記感光性転写フィルムにおける少なくとも前記感光層が積 層されてなる積層体 12 (以下、「感光材料 12」、「感光層 12」ということがある)を表面 に吸着して保持する平板状の移動ステージ 14を備えている。 4本の脚部 16に支持さ れた厚い板状の設置台 18の上面には、ステージ移動方向に沿って延びた 2本のガ イド 20が設置されている。ステージ 14は、その長手方向がステージ移動方向を向くよ うに配置されると共に、ガイド 20によって往復移動可能に支持されている。なお、この パターン形成装置 10には、ステージ 14をガイド 20に沿って駆動するステージ駆動装 置(図示せず)が設けられて 、る。 The pattern forming apparatus is a V-flat exposure apparatus of a flat bed type, and as shown in FIG. 1, a laminate 12 (hereinafter referred to as “laminated layer”) in which at least the photosensitive layer in the photosensitive transfer film is stacked. A plate-like moving stage 14 that adsorbs and holds the photosensitive material 12 on the surface (sometimes referred to as “photosensitive material 12” or “photosensitive layer 12”). On the upper surface of the thick plate-shaped installation base 18 supported by the four legs 16, there are two guides extending along the stage moving direction. Id 20 is installed. The stage 14 is arranged so that its longitudinal direction faces the stage moving direction, and is supported by the guide 20 so as to be reciprocally movable. The pattern forming apparatus 10 is provided with a stage driving device (not shown) for driving the stage 14 along the guide 20.
[0082] 設置台 18の中央部には、ステージ 14の移動経路を跨ぐようにコの字状のゲート 22 が設けられている。コの字状のゲート 22の端部の各々は、設置台 18の両側面に固 定されている。このゲート 22を挟んで一方の側にはスキャナ 24が設けられ、他方の 側には感光材料 12の先端及び後端を検知する複数 (たとえば 2個)のセンサ 26が設 けられている。スキャナ 24及びセンサ 26はゲート 22に各々取り付けられて、ステージ 14の移動経路の上方に固定配置されている。なお、スキャナ 24及びセンサ 26は、こ れらを制御する図示しな 、コントローラに接続されて 、る。  A U-shaped gate 22 is provided at the center of the installation base 18 so as to straddle the moving path of the stage 14. Each end of the U-shaped gate 22 is fixed to both side surfaces of the installation base 18. A scanner 24 is provided on one side of the gate 22, and a plurality of (for example, two) sensors 26 for detecting the front and rear ends of the photosensitive material 12 are provided on the other side. The scanner 24 and the sensor 26 are respectively attached to the gate 22 and fixedly arranged above the moving path of the stage 14. The scanner 24 and the sensor 26 are connected to a controller (not shown) for controlling them.
[0083] ここで、説明のため、ステージ 14の表面と平行な平面内に、図 1に示すように、互い に直交する X軸及び Y軸を規定する。  [0083] Here, for explanation, an X axis and a Y axis orthogonal to each other are defined in a plane parallel to the surface of the stage 14 as shown in FIG.
[0084] ステージ 14の走査方向に沿って上流側(以下、単に「上流側」ということがある。)の 端縁部には、 X軸の方向に向カゝつて開く「く」の字型に形成されたスリット 28が、等間 隔で 10本形成されている。各スリット 28は、上流側に位置するスリット 28aと下流側に 位置するスリット 28bと力もなつている。スリット 28aとスリット 28bとは互いに直交すると ともに、 X軸に対してスリット 28aは— 45度、スリット 28bは +45度の角度を有している  [0084] At the upstream edge along the scanning direction of the stage 14 (hereinafter, sometimes simply referred to as "upstream"), a "<" shape that opens in the direction of the X-axis Ten slits 28 are formed at regular intervals. Each slit 28 also has a force with a slit 28a located on the upstream side and a slit 28b located on the downstream side. The slit 28a and the slit 28b are orthogonal to each other, and the slit 28a has an angle of −45 degrees and the slit 28b has an angle of +45 degrees with respect to the X axis.
[0085] スリット 28の位置は、前記露光ヘッド 30の中心と略一致させられている。また、各ス リット 28の大きさは、対応する露光ヘッド 30による露光エリア 32の幅を十分覆う大きさ とされている。また、スリット 28の位置としては、隣接する露光済み領域 34間の重複 部分の中心位置と略一致させてもよい。この場合、各スリット 28の大きさは、露光済み 領域 34間の重複部分の幅を十分覆う大きさとする。 The position of the slit 28 is substantially matched with the center of the exposure head 30. In addition, the size of each slit 28 is set to sufficiently cover the width of the exposure area 32 by the corresponding exposure head 30. Further, the position of the slit 28 may be substantially coincident with the center position of the overlapping portion between the adjacent exposed regions 34. In this case, the size of each slit 28 is set to a size that sufficiently covers the width of the overlapping portion between the exposed regions 34.
[0086] ステージ 14内部の各スリット 28の下方の位置には、それぞれ、後述する使用描素 部指定処理において、描素単位としての光点を検出する光点位置検出手段としての 単一セル型の光検出器(図示せず)が組み込まれている。また、各光検出器は、後述 する使用描素部指定処理にお!、て、前記描素部の選択を行う描素部選択手段とし ての演算装置(図示せず)に接続されている。 [0086] At the position below each slit 28 in the stage 14, a single cell type as a light spot position detecting means for detecting a light spot as a pixel unit in a used pixel part specifying process to be described later. A photodetector (not shown) is incorporated. In addition, each photodetector is used as a pixel part selection means for selecting the pixel part to be used in the process of specifying the pixel part to be used, which will be described later. Connected to all the arithmetic units (not shown).
[0087] 露光時における前記パターン形成装置の動作形態はとしては、露光ヘッドを常に 移動させながら連続的に露光を行う形態であってもよいし、露光ヘッドを段階的に移 動させながら、各移動先の位置で露光ヘッドを静止させて露光動作を行う形態であ つてもよい。  [0087] The operation form of the pattern forming apparatus at the time of exposure may be a form in which exposure is continuously performed while the exposure head is constantly moved, or each pattern is moved while the exposure head is moved step by step. The exposure operation may be performed with the exposure head stationary at the destination position.
[0088] < <露光ヘッド > >  [0088] << Exposure head>>
各露光ヘッド 30は、後述する内部のデジタル 'マイクロミラ一'デバイス(DMD) 36 の各描素部 (マイクロミラー)列方向が、走査方向と所定の設定傾斜角度 Θをなすよ うに、スキャナ 24に取り付けられている。このため、各露光ヘッド 30による露光エリア 32は、走査方向に対して傾斜した矩形状のエリアとなる。ステージ 14の移動に伴い 、感光層 12には露光ヘッド 30ごとに帯状の露光済み領域 34が形成される。図 2及 び図 3Bに示す例では、 2行 5列の略マトリックス状に配列された 10個の露光ヘッドが 、スキャナ 24に備えられている。  Each exposure head 30 is connected to a scanner 24 so that each pixel portion (micromirror) row direction of an internal digital 'micromirror' device (DMD) 36 described later forms a predetermined set inclination angle Θ with the scanning direction. Is attached. Therefore, the exposure area 32 by each exposure head 30 is a rectangular area inclined with respect to the scanning direction. As the stage 14 moves, a strip-shaped exposed region 34 is formed for each exposure head 30 in the photosensitive layer 12. In the example shown in FIGS. 2 and 3B, the scanner 24 includes ten exposure heads arranged in a matrix of 2 rows and 5 columns.
なお、以下において、 m行目の n列目に配列された個々の露光ヘッドを示す場合は 、露光ヘッド 30 と表記し、 m行目の n列目に配列された個々の露光ヘッドによる露 mn  In the following, when the individual exposure heads arranged in the m-th column and the n-th column are indicated, they are represented as exposure heads 30, and the exposure by the individual exposure heads arranged in the m-th row and the n-th column mn
光エリアを示す場合は、露光エリア 32 と表記する。  When the light area is indicated, it is expressed as exposure area 32.
mn  mn
[0089] また、図 3A及び図 3Bに示すように、帯状の露光済み領域 34のそれぞれが、隣接 する露光済み領域 34と部分的に重なるように、ライン状に配列された各行の露光へ ッド 30の各々は、その配列方向に所定間隔 (露光エリアの長辺の自然数倍、本実施 形態では 2倍)ずらして配置されている。このため、 1行目の露光エリア 32 と露光ェ  In addition, as shown in FIGS. 3A and 3B, the exposure exposure of each row arranged in a line so that each of the strip-shaped exposed regions 34 partially overlaps the adjacent exposed region 34 is performed. Each of the nodes 30 is arranged with a predetermined interval (natural number times the long side of the exposure area, twice in this embodiment) in the arrangement direction. Therefore, the exposure area 32 in the first row and the exposure area
11 リア 32 との間の露光できない部分は、 2行目の露光エリア 32 により露光することが 11 The part that cannot be exposed to the rear 32 can be exposed by the exposure area 32 in the second row.
12 21 12 21
できる。  it can.
[0090] 露光ヘッド 30の各々は、図 4、図 5A及び図 5Bに示すように、入射された光を画像 データに応じて描素部ごとに変調する光変調手段 (描素部ごとに変調する空間光変 調素子)として、 DMD36 (米国テキサス 'インスツルメンッ社製)を備えている。この D MD36は、データ処理部とミラー駆動制御部とを備えた描素部制御手段としてのコン トローラに接続されている。このコントローラのデータ処理部では、入力された画像デ ータに基づいて、露光ヘッド 30ごとに、 DMD36上の使用領域内の各マイクロミラー を駆動制御する制御信号を生成する。また、ミラー駆動制御部では、画像データ処 理部で生成した制御信号に基づいて、露光ヘッド 30ごとに、 DMD36の各マイクロミ ラーの反射面の角度を制御する。 As shown in FIGS. 4, 5A, and 5B, each of the exposure heads 30 includes a light modulation unit that modulates incident light for each pixel part according to image data (modulation for each pixel part). DMD36 (made by Texas Instruments Inc., USA) as a spatial light modulator. This DMD 36 is connected to a controller as a pixel part control means having a data processing part and a mirror drive control part. In the data processing unit of this controller, each micromirror in the use area on the DMD 36 is determined for each exposure head 30 based on the input image data. A control signal for controlling the driving of is generated. Further, the mirror drive control unit controls the angle of the reflection surface of each micromirror of the DMD 36 for each exposure head 30 based on the control signal generated by the image data processing unit.
[0091] 図 4に示すように、 DMD36の光入射側には、光ファイバの出射端部 (発光点)が露 光エリア 32の長辺方向と一致する方向に沿って一列に配列されたレーザ出射部を 備えたファイバアレイ光源 38、ファイバアレイ光源 38から出射されたレーザ光を補正 して DMD上に集光させるレンズ系 40、このレンズ系 40を透過したレーザ光を DMD 36に向けて反射するミラー 42がこの順に配置されている。なお図 4では、レンズ系 4 0を概略的に示してある。  As shown in FIG. 4, on the light incident side of the DMD 36, a laser in which the emission end portion (light emitting point) of the optical fiber is arranged in a line along the direction that coincides with the long side direction of the exposure area 32. A fiber array light source 38 having an emission part, a lens system 40 for correcting the laser light emitted from the fiber array light source 38 and condensing it on the DMD, and reflecting the laser light transmitted through the lens system 40 toward the DMD 36 The mirrors 42 to be used are arranged in this order. In FIG. 4, the lens system 40 is schematically shown.
[0092] 上記レンズ系 40は、図 5A及び図 5Bに詳しく示すように、ファイバアレイ光源 38か ら出射されたレーザ光を平行光化する 1対の組合せレンズ 44、平行光化されたレー ザ光の光量分布が均一になるように補正する 1対の組合せレンズ 46、及び光量分布 が補正されたレーザ光を DMD36上に集光する集光レンズ 48で構成されている。  [0092] As shown in detail in Figs. 5A and 5B, the lens system 40 includes a pair of combination lenses 44 that collimate the laser light emitted from the fiber array light source 38 and a collimated laser. It is composed of a pair of combination lenses 46 that correct the light amount distribution of light so that it is uniform, and a condensing lens 48 that condenses the laser light whose light amount distribution has been corrected on the DMD 36.
[0093] また、 DMD36の光反射側には、 DMD36で反射されたレーザ光を感光層 12の被 露光面上に結像するレンズ系 50が配置されている。レンズ系 50は、 DMD36と感光 層 12の被露光面とが共役な関係となるように配置された、 2枚のレンズ 52及び 54か らなる。  Further, on the light reflection side of the DMD 36, a lens system 50 that forms an image of the laser light reflected by the DMD 36 on the exposed surface of the photosensitive layer 12 is disposed. The lens system 50 includes two lenses 52 and 54 arranged so that the DMD 36 and the exposed surface of the photosensitive layer 12 have a conjugate relationship.
[0094] 本実施形態では、ファイバアレイ光源 38から出射されたレーザ光は、実質的に 5倍 に拡大された後、 DMD36上の各マイクロミラーからの光線が上記のレンズ系 50によ つて約 5 μ mに絞られるように設定されて!、る。  In the present embodiment, the laser light emitted from the fiber array light source 38 is substantially magnified five times, and then the light from each micromirror on the DMD 36 is reduced by the lens system 50 described above. It is set to be reduced to 5 μm!
[0095] -光変調手段- 前記光変調手段としては、 n個(ただし、 nは 2以上の自然数)の 2次元状に配列さ れた前記描素部を有し、前記パターン情報に応じて前記描素部を制御可能なもので あれば、特に制限はなぐ目的に応じて適宜選択することができ、例えば、空間光変 調素子が好ましい。  -Light modulation means- The light modulation means has n (where n is a natural number of 2 or more) two-dimensionally arranged pixel parts, and according to the pattern information. Any device that can control the picture element portion can be appropriately selected according to the purpose without any particular restriction. For example, a spatial light modulator is preferable.
[0096] 前記空間光変調素子としては、例えば、デジタル ·マイクロミラー ·デバイス (DMD) 、 MEMS (Micro Electro Mechanical Systems)タイプの空間光変調素子(S LM ; Spetial Light Modulator)、電気光学効果により透過光を変調する光学素 子(PLZT素子)、液晶光シャツタ(FLC)などが挙げられ、これらの中でも DMDが好 適に挙げられる。 [0096] Examples of the spatial light modulator include a digital micromirror device (DMD), a MEMS (Micro Electro Mechanical Systems) type spatial light modulator (S LM), and transmission by an electro-optic effect. Optical element that modulates light (PLZT element), liquid crystal light shatter (FLC), etc., among which DMD is preferred.
[0097] また、前記光変調手段は、形成するパターン情報に基づ 、て制御信号を生成する パターン信号生成手段を有することが好ましい。この場合、前記光変調手段は、前記 パターン信号生成手段が生成した制御信号に応じて光を変調させる。  [0097] Preferably, the light modulation unit includes a pattern signal generation unit that generates a control signal based on pattern information to be formed. In this case, the light modulating means modulates light according to the control signal generated by the pattern signal generating means.
前記制御信号としては、特に制限はなぐ目的に応じて適宜選択することができ、 例えば、デジタル信号が好適に挙げられる。  The control signal can be appropriately selected according to the purpose for which there is no particular limitation. For example, a digital signal is preferably used.
[0098] 以下、前記光変調手段の一例について図面を参照しながら説明する。  Hereinafter, an example of the light modulation means will be described with reference to the drawings.
DMD36は図 6に示すように、 SRAMセル (メモリセル) 56上〖こ、各々描素(ピクセ ル)を構成する描素部として、多数のマイクロミラー 58が格子状に配列されてなるミラ 一デバイスである。本実施形態では、 1024列 X 768行のマイクロミラー 58が配され てなる DMD36を使用する力 このうち DMD36に接続されたコントローラにより駆動 可能すなわち使用可能なマイクロミラー 58は、 1024列 X 256行のみであるとする。 DMD36のデータ処理速度には限界があり、使用するマイクロミラー数に比例して 1 ライン当りの変調速度が決定されるので、このように一部のマイクロミラーのみを使用 することにより 1ライン当りの変調速度が速くなる。各マイクロミラー 58は支柱に支えら れており、その表面にはアルミニウム等の反射率の高い材料が蒸着されている。なお 、本実施形態では、各マイクロミラー 58の反射率は 90%以上であり、その配列ピッチ は縦方向、横方向ともに 13. 7 mである。 SRAMセル 56は、ヒンジ及びヨークを含 む支柱を介して通常の半導体メモリの製造ラインで製造されるシリコンゲートの CMO Sのものであり、全体はモノリシック(一体型)に構成されている。  As shown in FIG. 6, the DMD 36 has a mirror structure in which a large number of micromirrors 58 are arranged in a lattice pattern as a pixel portion constituting each pixel (pixel). It is a device. In this embodiment, the power to use DMD36 in which micromirrors 58 of 1024 columns x 768 rows are arranged. Of these, micromirrors 58 that can be driven by a controller connected to DMD36, that is usable, are only 1024 columns x 256 rows. Suppose that The data processing speed of DMD36 is limited, and the modulation speed per line is determined in proportion to the number of micromirrors used. Thus, by using only some of the micromirrors in this way, Modulation speed increases. Each micromirror 58 is supported by a support column, and a material having high reflectivity such as aluminum is deposited on the surface thereof. In the present embodiment, the reflectance of each micromirror 58 is 90% or more, and the arrangement pitch thereof is 13.7 m in both the vertical direction and the horizontal direction. The SRAM cell 56 is a silicon gate CMOS manufactured on an ordinary semiconductor memory manufacturing line via a support including a hinge and a yoke, and is configured monolithically (integrated) as a whole.
[0099] DMD36の SRAMセル (メモリセル) 56〖こ、所望の 2次元パターンを構成する各点 の濃度を 2値で表した画像信号が書き込まれると、支柱に支えられた各マイクロミラー 58が、対角線を中心として DMD36が配置された基板側に対して ± α度 (たとえば ± 10度)のいずれかに傾く。図 7Αは、マイクロミラー 58がオン状態である + α度に 傾いた状態を示し、図 7Βは、マイクロミラー 58がオフ状態である α度に傾いた状 態を示す。このように、画像信号に応じて、 DMD36の各ピクセルにおけるマイクロミ ラー 58の傾きを、図 6に示すように制御することによって、 DMD36に入射したレーザ 光 Bはそれぞれのマイクロミラー 58の傾き方向へ反射される。 [0099] 56D SRAM cells (memory cells) of DMD36. When an image signal representing the density of each point constituting the desired two-dimensional pattern is written in binary, each micromirror 58 supported by the column is Inclined to one of ± α degrees (for example, ± 10 degrees) with respect to the substrate side on which the DMD 36 is disposed with the diagonal line as the center. FIG. 7 (b) shows a state tilted to + α degrees when the micromirror 58 is in the on state, and FIG. 7 (b) shows a state tilted to α degrees when the micromirror 58 is in the off state. In this way, the laser incident on the DMD 36 is controlled by controlling the inclination of the micro mirror 58 in each pixel of the DMD 36 in accordance with the image signal as shown in FIG. Light B is reflected in the tilt direction of each micromirror 58.
[0100] 図 6には、 DMD36の一部を拡大し、各マイクロミラー 58が + α度又は α度に制御 されている状態の一例を示す。それぞれのマイクロミラー 58のオンオフ制御は、 DM D36に接続された上記のコントローラによって行われる。また、オフ状態のマイクロミ ラー 58で反射したレーザ光 Bが進行する方向には、光吸収体(図示せず)が配置さ れている。  [0100] FIG. 6 shows an example of a state in which a part of the DMD 36 is enlarged and each micromirror 58 is controlled to + α degrees or α degrees. The on / off control of each micromirror 58 is performed by the controller connected to the DM D36. In addition, a light absorber (not shown) is arranged in the direction in which the laser beam B reflected by the off-state micromirror 58 travels.
[0101] -光照射手段- 前記光照射手段としては、特に制限はなぐ目的に応じて適宜選択することができ 、例えば、(超)高圧水銀灯、キセノン灯、カーボンアーク灯、ハロゲンランプ、複写機 用などの蛍光管、 LED,半導体レーザ等の公知光源、又は 2以上の光を合成して照 射可能な手段が挙げられ、これらの中でも 2以上の光を合成して照射可能な手段が 好ましい。  [0101] -Light irradiating means- The light irradiating means can be appropriately selected according to the purpose without particular limitation. For example, (ultra) high pressure mercury lamp, xenon lamp, carbon arc lamp, halogen lamp, copying machine For example, a fluorescent tube, a known light source such as an LED or a semiconductor laser, or a means capable of combining and irradiating two or more lights. Among these, a means capable of combining and irradiating two or more lights is preferable. .
前記光照射手段から照射される光としては、例えば、支持体を介して光照射を行う 場合には、該支持体を透過し、かつ用いられる光重合開始剤や増感剤を活性化す る電磁波、紫外から可視光線、電子線、 X線、レーザ光などが挙げられ、これらの中 でもレーザ光が好ましぐ 2以上の光を合成したレーザ (以下、「合波レーザ」と称する ことがある)がより好ましい。また支持体を剥離して力も光照射を行う場合でも、同様の 光を用いることができる。  The light emitted from the light irradiation means is, for example, an electromagnetic wave that passes through the support and activates the photopolymerization initiator and sensitizer used when the light is irradiated through the support. In particular, ultraviolet to visible light, electron beams, X-rays, laser light, etc. are mentioned, and among these, laser light is preferred. Laser that combines two or more lights (hereinafter sometimes referred to as “combined laser”) ) Is more preferable. Even when the support is peeled off and the light is irradiated with light, the same light can be used.
[0102] 前記紫外力も可視光線の波長としては、例えば、 300〜1500nmが好ましぐ 320 〜800mn力より好ましく、 330〜650mn力 ^特に好まし!/、。  [0102] As the wavelength of the visible light, the ultraviolet power is preferably 300 to 1500 nm, more preferably 320 to 800 mn, and particularly preferably 330 to 650 mn.
前記レーザ光の波長としては、例えば、 200〜1500nm力 S好ましく、 300〜800nm 力より好ましく、 330〜500mn力更に好ましく、 400〜450mn力 ^特に好まし!/、。  The wavelength of the laser light is, for example, 200 to 1500 nm force S, preferably 300 to 800 nm force, more preferably 330 to 500 mn force, and 400 to 450 mn force, particularly preferred! /.
[0103] 前記合波レーザを照射可能な手段としては、例えば、複数のレーザと、マルチモー ド光ファイバと、該複数のレーザ力 それぞれ照射したレーザビームを集光して前記 マルチモード光ファイバに結合させる集合光学系とを有する手段が好ま 、。  [0103] As means capable of irradiating the combined laser, for example, a plurality of lasers, a multimode optical fiber, and a laser beam irradiated with each of the plurality of laser forces are condensed and coupled to the multimode optical fiber. Preferred is a means having a collective optical system.
[0104] 前記合波レーザを照射可能な手段 (ファイバアレイ光源)としては、例えば、特開 20 05 258431号公報〔0109〕〜〔0146〕に記載の手段が挙げられる。  [0104] Examples of means (fiber array light source) capable of irradiating the combined laser include means described in JP-A No. 20 05 258431 [0109] to [0146].
[0105] < <使用描素部指定手段 > > 前記使用描素部指定手段としては、描素単位としての光点の位置を被露光面上に お!、て検出する光点位置検出手段と、前記光点位置検出手段による検出結果に基 づき、 N重露光を実現するために使用する描素部を選択する描素部選択手段とを少 なくとも備えることが好まし 、。 [0105] <<Used pixel part designation method>> The used pixel part specifying means includes a light spot position detecting means for detecting the position of a light spot as a pixel unit on the exposed surface, and a detection result by the light spot position detecting means. It is preferable to have at least a pixel part selection means for selecting a pixel part to be used for realizing N double exposure.
以下、前記使用描素部指定手段による、 N重露光に使用する描素部の指定方法 の例について説明する。  Hereinafter, an example of a method for designating a pixel part to be used for N double exposure by the used pixel part designation unit will be described.
[0106] (1)単一露光ヘッド内における使用描素部の指定方法 [0106] (1) Specification method of used pixel part in single exposure head
本実施形態(1)では、パターン形成装置 10により、感光材料 12に対して 2重露光 を行う場合であって、各露光ヘッド 30の取付角度誤差に起因する解像度のばらつき と濃度むらとを軽減し、理想的な 2重露光を実現するための使用描素部の指定方法 を説明する。  In the present embodiment (1), the pattern forming apparatus 10 performs double exposure on the photosensitive material 12, and the variation in resolution and density unevenness due to the mounting angle error of each exposure head 30 are reduced. We will explain how to specify the pixel parts to be used to achieve ideal double exposure.
[0107] 露光ヘッド 30の走査方向に対する描素部(マイクロミラー 58)の列方向の設定傾斜 角度 Θとしては、露光ヘッド 30の取付角度誤差等がない理想的な状態であれば、使 用可能な 1024列 X 256行の描素部を使用してちょうど 2重露光となる角度 Θ より  [0107] The set tilt angle Θ in the column direction of the pixel part (micromirror 58) with respect to the scanning direction of the exposure head 30 can be used as long as there is no mounting angle error of the exposure head 30 etc. From the angle Θ, which is exactly double exposure using a 1024 column x 256 row pixel part
ideal も、若干大きい角度を採用するものとする。  The ideal also uses a slightly larger angle.
この角度 Θ は、 N重露光の数 N、使用可能なマイクロミラー 58の列方向の個数 s  This angle Θ is the number of N exposures N, the number of usable micromirrors 58 in the row direction s
ideal  ideal
、使用可能なマイクロミラー 58の列方向の間隔 p、及び露光ヘッド 30を傾斜させた状 態においてマイクロミラーによって形成される走査線のピッチ δに対し、下記式 1、 spsin θ ≥Ν δ (式 1)  The following formula 1, spsin θ ≥ Ν δ (formula), with respect to the column spacing p of the usable micromirrors 58 and the pitch δ of the scanning lines formed by the micromirrors with the exposure head 30 inclined. 1)
iaeal  iaeal
により与えられる。本実施形態における DMD36は、上記のとおり、縦横の配置間 隔が等しい多数のマイクロミラー 58が矩形格子状に配されたものであるので、 pcos θ = δ (式 2)  Given by. As described above, the DMD 36 in the present embodiment is configured by arranging a large number of micromirrors 58 having equal vertical and horizontal arrangement intervals in a rectangular lattice shape, so that pcos θ = δ (Equation 2)
ideal  ideal
であり、上記式 1は、  And the above equation 1 is
stan Q =N (式 3)  stan Q = N (Formula 3)
ideal  ideal
となる。本実施形態(1)では、上記のとおり s = 256、 N = 2であるので、前記式 3より、 角度 Θ は約 0. 45度である。したがって、設定傾斜角度 Θとしては、たとえば 0. 5 ideal  It becomes. In the present embodiment (1), since s = 256 and N = 2 as described above, the angle Θ is about 0.45 degrees according to the equation 3. Therefore, the set tilt angle Θ is, for example, 0.5 ideal
0度程度の角度を採用するとよい。パターン形成装置 10は、調整可能な範囲内で、 各露光ヘッド 30すなわち各 DMD36の取付角度がこの設定傾斜角度 Θに近い角度 となるように、初期調整されているものとする。 An angle of about 0 degrees should be adopted. The pattern forming apparatus 10 is within an adjustable range so that the mounting angle of each exposure head 30, that is, each DMD 36 is an angle close to the set inclination angle Θ. It is assumed that initial adjustment is performed so that
[0108] 図 8は、上記のように初期調整されたパターン形成装置 10において、 1つの露光へ ッド 30の取付角度誤差、及びパターン歪みの影響により、被露光面上のパターンに 生じるむらの例を示した説明図である。以下の図面及び説明においては、各描素部 (マイクロミラー)により生成され、被露光面上の露光領域を構成する描素単位として の光点にっ 、て、第 m行目の光点 ¾τ (m)、第 n列目の光点を c (n)、第 m行第 n列の 光点を P (m, n)とそれぞれ表記するものとする。  [0108] FIG. 8 shows unevenness generated in the pattern on the exposed surface due to the effect of the mounting angle error of one exposure head 30 and the pattern distortion in the pattern forming apparatus 10 initially adjusted as described above. It is explanatory drawing which showed the example. In the following drawings and description, the light spot as the pixel unit generated by each pixel part (micromirror) and constituting the exposure region on the exposed surface, the light spot in the m-th row ¾τ (m), the light spot in the nth column is denoted as c (n), and the light spot in the mth row and the nth column is denoted as P (m, n).
[0109] 図 8の上段部分は、ステージ 14を静止させた状態で感光材料 12の被露光面上に 投影される、使用可能なマイクロミラー 58からの光点群のパターンを示し、下段部分 は、上段部分に示したような光点群のパターンが現れて 、る状態でステージ 14を移 動させて連続露光を行った際に、被露光面上に形成される露光パターンの状態を示 したものである。  [0109] The upper part of FIG. 8 shows the pattern of light spots from the usable micromirror 58 projected onto the exposed surface of the photosensitive material 12 with the stage 14 being stationary, and the lower part is The pattern of the light spot group as shown in the upper part appears, and the state of the exposure pattern formed on the exposed surface is shown when the stage 14 is moved in this state and continuous exposure is performed. Is.
なお、図 8では、説明の便宜のため、使用可能なマイクロミラー 58の奇数列による 露光パターンと偶数列による露光パターンを分けて示してあるが、実際の被露光面 上における露光パターンは、これら 2つの露光パターンを重ね合わせたものである。  In FIG. 8, for convenience of explanation, the exposure pattern by the odd-numbered columns of the micromirrors 58 that can be used and the exposure pattern by the even-numbered columns are shown separately. However, the actual exposure patterns on the exposed surface are shown in FIG. It is a superposition of two exposure patterns.
[0110] 図 8の例では、設定傾斜角度 0を上記の角度 0 よりも若干大きい角度を採用し [0110] In the example of Fig. 8, the set inclination angle 0 is set to a slightly larger angle than the above angle 0.
ideal  ideal
た結果として、また露光ヘッド 30の取付角度の微調整が困難であるために、実際の 取付角度と上記の設定傾斜角度 Θとが誤差を有する結果として、被露光面上のいず れの領域においても濃度むらが生じている。具体的には、奇数列のマイクロミラーに よる露光パターン及び偶数列のマイクロミラーによる露光パターンの双方で、複数の 描素部列により形成された、被露光面上の重複露光領域において、理想的な 2重露 光に対して露光過多となり、描画が冗長となる領域が生じ、濃度むらが生じている。  As a result of this, and because it is difficult to finely adjust the mounting angle of the exposure head 30, there is an error between the actual mounting angle and the set inclination angle Θ. Also in FIG. Specifically, in an overlapped exposure area on the exposed surface formed by a plurality of pixel part rows in both an exposure pattern by an odd-numbered micromirror and an exposure pattern by an even-numbered micromirror. In other words, overexposure occurs with double exposure, resulting in redundant drawing areas and uneven density.
[0111] さらに、図 8の例では、被露光面上に現れるパターン歪みの一例であって、被露光 面上に投影された各画素列の傾斜角度が均一ではなくなる「角度歪み」が生じてい る。このような角度歪みが生じる原因としては、 DMD36と被露光面間の光学系の各 種収差やアラインメントずれ、及び DMD36自体の歪みやマイクロミラーの配置誤差 等が挙げられる。 Further, the example of FIG. 8 is an example of pattern distortion appearing on the surface to be exposed, and “angular distortion” is generated in which the inclination angle of each pixel column projected on the surface to be exposed is not uniform. The Causes of this angular distortion include various aberrations and alignment deviations of the optical system between the DMD 36 and the exposed surface, distortion of the DMD 36 itself, and micromirror placement errors.
図 8の例に現れている角度歪みは、走査方向に対する傾斜角度が、図の左方の列 ほど小さく、図の右方の列ほど大きくなつている形態の歪みである。この角度歪みの 結果として、露光過多となっている領域は、図の左方に示した被露光面上ほど小さく 、図の右方に示した被露光面上ほど大きくなつている。 The angular distortion that appears in the example in Fig. 8 indicates that the tilt angle with respect to the scanning direction is It is a distortion of a form that is smaller and larger in the right column of the figure. As a result of this angular distortion, the overexposed area is smaller on the exposed surface shown on the left side of the figure and larger on the exposed surface shown on the right side of the figure.
[0112] 上記したような、複数の描素部列により形成された、被露光面上の重複露光領域に おける濃度むらを軽減するために、前記光点位置検出手段としてスリット 28及び光 検出器の組を用い、露光ヘッド 30ごとに実傾斜角度 Θ 'を特定し、該実傾斜角度 Θ ' に基づき、前記描素部選択手段として前記光検出器に接続された前記演算装置を 用いて、実際の露光に使用するマイクロミラーを選択する処理を行うものとする。 実傾斜角度 θ Ίま、光点位置検出手段が検出した少なくとも 2つの光点位置に基づ き、露光ヘッドを傾斜させた状態における被露光面上の光点の列方向と前記露光へ ッドの走査方向とがなす角度により特定される。  [0112] In order to reduce density unevenness in the overlapped exposure region on the exposed surface formed by a plurality of pixel part rows as described above, the slit 28 and the photodetector are used as the light spot position detecting means. The actual inclination angle Θ ′ is specified for each exposure head 30, and the arithmetic unit connected to the photodetector is used as the pixel part selection unit based on the actual inclination angle Θ ′. A process of selecting a micromirror to be used for actual exposure is performed. Based on at least two light spot positions detected by the light spot position detecting means until the actual tilt angle θ, the light spot column direction on the surface to be exposed and the exposure head when the exposure head is tilted. It is specified by the angle formed by the scanning direction.
以下、図 9及び図 10を用いて、前記実傾斜角度 Θ 'の特定、及び使用画素選択処 理について説明する。  Hereinafter, the actual inclination angle Θ ′ and the used pixel selection process will be described with reference to FIGS.
[0113] 一実傾斜角度 の特定 [0113] Specifying the actual inclination angle
図 9は、 1つの DMD36による露光エリア 32と、対応するスリット 28との位置関係を 示した上面図である。スリット 28の大きさは、露光エリア 32の幅を十分覆う大きさとさ れている。  FIG. 9 is a top view showing the positional relationship between the exposure area 32 by one DMD 36 and the corresponding slit 28. The size of the slit 28 is set to sufficiently cover the width of the exposure area 32.
本実施形態(1)の例では、露光エリア 32の略中心に位置する第 512列目の光点 列と露光ヘッド 30の走査方向とがなす角度を、上記の実傾斜角度 Θ 'として測定す る。具体的には、 DMD36上の第 1行目第 512列目のマイクロミラー 58、及び第 256 行目第 512列目のマイクロミラー 58をオン状態とし、それぞれに対応する被露光面 上の光点 P (l, 512)及び Ρ (256, 512)の位置を検出し、それらを結ぶ直線と露光 ヘッドの走査方向とがなす角度を実傾斜角度 Θ 'として特定する。  In the example of the present embodiment (1), the angle formed by the 512-th light spot array positioned substantially at the center of the exposure area 32 and the scanning direction of the exposure head 30 is measured as the actual inclination angle Θ ′. The Specifically, the micromirror 58 in the first row and the 512th column on the DMD 36 and the micromirror 58 in the 256th row and the 512th column are turned on, and the light spots on the exposure surface corresponding to each of them are turned on. The positions of P (l, 512) and Ρ (256, 512) are detected, and the angle formed by the straight line connecting them and the scanning direction of the exposure head is specified as the actual tilt angle Θ ′.
[0114] 図 10は、光点 Ρ (256, 512)の位置の検出手法を説明した上面図である。 FIG. 10 is a top view illustrating a method for detecting the position of the light spot 256 (256, 512).
まず、第 256行目第 512列目のマイクロミラー 58を点灯させた状態で、ステージ 14 をゆっくり移動させてスリット 28を Υ軸方向に沿って相対移動させ、光点 Ρ (256, 512 )が上流側のスリット 28aと下流側のスリット 28bの間に来るような任意の位置に、スリツ ト 28を位置させる。このときのスリット 28aとスリット 28bとの交点の座標を (XO, YO)と する。この座標 (XO, YO)の値は、ステージ 14に与えられた駆動信号が示す上記の 位置までのステージ 14の移動距離、及び、既知であるスリット 28の X方向位置力も決 定され、記録される。 First, with the micromirror 58 in the 256th row and the 512th column turned on, the stage 14 is slowly moved to move the slit 28 relatively along the axis direction, and the light spot Ρ (256, 512) is The slit 28 is positioned at an arbitrary position between the upstream slit 28a and the downstream slit 28b. At this time, the coordinates of the intersection of slit 28a and slit 28b are (XO, YO) and To do. The value of this coordinate (XO, YO) is determined and recorded by the movement distance of the stage 14 to the above position indicated by the drive signal given to the stage 14 and the known X-direction position force of the slit 28. The
[0115] 次に、ステージ 14を移動させ、スリット 28を Υ軸に沿って図 10における右方に相対 移動させる。そして、図 10において二点鎖線で示すように、光点 Ρ (256, 512)の光 が左側のスリット 28bを通過して光検出器で検出されたところでステージ 14を停止さ せる。このときのスリット 28aとスリット 28bとの交点の座標(XO, Y1)を、光点 P (256, 512)の位置として記録する。  [0115] Next, the stage 14 is moved, and the slit 28 is relatively moved to the right in FIG. Then, as indicated by a two-dot chain line in FIG. 10, the stage 14 is stopped when the light of the light spot 256 (256, 512) passes through the left slit 28b and is detected by the photodetector. The coordinates (XO, Y1) of the intersection of the slit 28a and the slit 28b at this time are recorded as the position of the light spot P (256, 512).
[0116] 次いで、ステージ 14を反対方向に移動させ、スリット 28を Y軸に沿って図 10におけ る左方に相対移動させる。そして、図 10において二点鎖線で示すように、光点 P (25 6, 512)の光が右側のスリット 28aを通過して光検出器で検出されたところでステー ジ 14を停止させる。このときのスリット 28aとスリット 28bとの交点の座標(XO, Y2)を 光点 P (256, 512)の位置として記録する。  [0116] Next, the stage 14 is moved in the opposite direction, and the slit 28 is relatively moved along the Y axis to the left in FIG. Then, as indicated by a two-dot chain line in FIG. 10, the stage 14 is stopped when the light at the light spot P (256, 512) passes through the right slit 28a and is detected by the photodetector. The coordinates (XO, Y2) of the intersection of the slit 28a and the slit 28b at this time are recorded as the position of the light spot P (256, 512).
[0117] 以上の測定結果から、光点 P (256, 512)の被露光面上における位置を示す座標  [0117] From the above measurement results, coordinates indicating the position of the light spot P (256, 512) on the exposed surface
(X, Y)を、 Χ=ΧΟ+ (Υ1— Y2)Z2、 Y= (Y1 +Y2)Z2の計算により決定する。同 様の測定により、 P (l, 512)の位置を示す座標も決定し、それぞれの座標を結ぶ直 線と、露光ヘッド 30の走査方向とがなす傾斜角度を導出し、これを実傾斜角度 Θ と して特定する。  (X, Y) is determined by calculating Χ = ΧΟ + (Υ1—Y2) Z2 and Y = (Y1 + Y2) Z2. By the same measurement, the coordinates indicating the position of P (l, 512) are also determined, and the inclination angle formed by the straight line connecting the coordinates and the scanning direction of the exposure head 30 is derived, and this is the actual inclination angle. It is specified as Θ.
[0118] -使用描素部の選択- このようにして特定された実傾斜角度 Θ 'を用い、前記光検出器に接続された前記 演算装置は、下記式 4  [0118] -Selection of used pixel part- Using the actual inclination angle Θ 'specified in this way, the arithmetic unit connected to the photodetector is represented by the following equation 4
ttan 0 (式 4)  ttan 0 (Equation 4)
の関係を満たす値 tに最も近!ヽ自然数 Tを導出し、 DMD36上の 1行目から T行目の マイクロミラーを、本露光時に実際に使用するマイクロミラーとして選択する処理を行 う。これにより、第 512列目付近の露光領域において、理想的な 2重露光に対して、 露光過多となる領域と、露光不足となる領域との面積合計が最小となるようなマイクロ ミラーを、実際に使用するマイクロミラーとして選択することができる。  A natural number T is derived that is closest to the value t satisfying the above relationship, and the micromirrors in the 1st to Tth rows on the DMD 36 are selected as the micromirrors that are actually used during the main exposure. As a result, in the exposure area near the 512th column, a micromirror that minimizes the total area of the overexposed area and the underexposed area for the ideal double exposure is actually realized. It can be selected as a micromirror to be used for.
[0119] ここで、上記の値 tに最も近い自然数を導出することに代えて、値 t以上の最小の自 然数を導出することとしてもよい。その場合、第 512列目付近の露光領域において、 理想的な 2重露光に対して、露光過多となる領域の面積が最小になり、かつ露光不 足となる領域が生じな 、ようなマイクロミラーを、実際に使用するマイクロミラーとして 選択することができる。 [0119] Here, instead of deriving the natural number closest to the above value t, the smallest self value equal to or greater than the value t is used. It is also possible to derive the number. In that case, in the exposure area in the vicinity of the 512th column, a micromirror that minimizes the area of the overexposed area and produces an insufficient exposure area for ideal double exposure. Can be selected as the actual micromirror to be used.
また、値 t以下の最大の自然数を導出することとしてもよい。その場合、第 512列目 付近の露光領域において、理想的な 2重露光に対して、露光不足となる領域の面積 が最小になり、かつ露光過多となる領域が生じないようなマイクロミラーを、実際に使 用するマイクロミラーとして選択することができる。  It is also possible to derive the maximum natural number less than the value t. In that case, in the exposure area near the 512th column, a micromirror that minimizes the area of the underexposed area and does not produce an overexposed area with respect to the ideal double exposure. It can be selected as a micromirror to be actually used.
[0120] 図 11は、上記のようにして実際に使用するマイクロミラーとして選択されたマイクロミ ラーが生成した光点のみを用いて行った露光において、図 8に示した被露光面上の むらがどのように改善されるかを示した説明図である。 FIG. 11 shows the unevenness on the exposed surface shown in FIG. 8 in the exposure performed using only the light spot generated by the micromirror selected as the micromirror actually used as described above. It is explanatory drawing which showed how it is improved.
この例では、上記の自然数 Tとして T= 253が導出され、第 1行目力も第 253行目 のマイクロミラーが選択されたものとする。選択されな力つた第 254行目から第 256行 目のマイクロミラーに対しては、前記描素部制御手段により、常時オフ状態の角度に 設定する信号が送られ、それらのマイクロミラーは、実質的に露光に関与しない。図 1 1に示すとおり、第 512列目付近の露光領域では、露光過多及び露光不足は、ほぼ 完全に解消され、理想的な 2重露光に極めて近い均一な露光が実現される。  In this example, it is assumed that T = 253 is derived as the natural number T and the micromirror on the 253rd line is selected as the first line force. For the micromirrors in the 254th to 256th lines that have not been selected, a signal for setting the angle in the always-off state is sent by the pixel part control means. Is not involved in exposure. As shown in Fig. 11, overexposure and underexposure are almost completely eliminated in the exposure area near the 512th column, and uniform exposure very close to ideal double exposure is realized.
[0121] 一方、図 11の左方の領域(図中の c (l)付近)では、前記角度歪みにより、被露光 面上における光点列の傾斜角度が中央付近(図中の c (512)付近)の領域における 光線列の傾斜角度よりも小さくなつている。したがって、 c (512)を基準として測定さ れた実傾斜角度 θ Ίこ基づいて選択されたマイクロミラーのみによる露光では、偶数 列による露光パターン及び奇数列による露光パターンのそれぞれにおいて、理想的 な 2重露光に対して露光不足となる領域がわずかに生じてしまう。 On the other hand, in the left region of FIG. 11 (near c (l) in the figure), the angle distortion of the light spot sequence on the exposed surface is near the center (c (512 in the figure)) due to the angular distortion. It is smaller than the angle of inclination of the ray train in the area of). Therefore, the exposure using only the micromirrors selected based on the actual inclination angle θ Ί measured with c (512) as a reference, is ideal for each of the even-numbered exposure pattern and the odd-numbered exposure pattern. A slight under-exposure area is generated for the double exposure.
し力しながら、図示の奇数列による露光パターンと偶数列による露光パターンとを重 ね合わせてなる実際の露光パターンにおいては、露光量不足となる領域が互いに補 完され、前記角度歪みによる露光むらを、 2重露光による埋め合わせの効果で最小と することができる。  However, in the actual exposure pattern in which the exposure pattern of the odd-numbered columns and the exposure pattern of the even-numbered columns are overlapped, the areas where the exposure amount is insufficient are compensated for each other, and the uneven exposure due to the angular distortion is performed. Can be minimized by the effect of offset by double exposure.
[0122] また、図 11の右方の領域(図中の c (1024)付近)では、前記角度歪みにより、被露 光面上における光線列の傾斜角度が、中央付近(図中の c (512)付近)の領域にお ける光線列の傾斜角度よりも大きくなつている。したがって、 c (512)を基準として測 定された実傾斜角度 θ Ίこ基づいて選択されたマイクロミラーによる露光では、図に 示すように、理想的な 2重露光に対して露光過多となる領域がわずかに生じてしまう。 し力しながら、図示の奇数列による露光パターンと偶数列による露光パターンとを重 ね合わせてなる実際の露光パターンにおいては、露光過多となる領域が互いに補完 され、前記角度歪による濃度むらを、 2重露光による埋め合わせの効果で最小とする ことができる。 [0122] Further, in the region on the right side of FIG. 11 (near c (1024) in the figure), the exposure is caused by the angular distortion. The tilt angle of the light beam on the optical surface is larger than the tilt angle of the light beam in the region near the center (near c (512) in the figure). Therefore, in the exposure with the micromirror selected based on the actual tilt angle θ measured with c (512) as the reference, as shown in the figure, the region is overexposed for the ideal double exposure. Will occur slightly. However, in the actual exposure pattern in which the exposure pattern of the odd-numbered columns and the exposure pattern of the even-numbered columns overlap each other, the overexposed areas are complemented with each other, and the density unevenness due to the angular distortion is It can be minimized by the effect of offset by double exposure.
本実施形態(1)では、上述のとおり、第 512列目の光線列の実傾斜角度 Θ 'が測 定され、該実傾斜角度 Θ を用い、前記式 (4)により導出された Tに基づいて使用す るマイクロミラー 58を選択したが、前記実傾斜角度 Θ 'の特定方法としては、複数の 描素部の列方向(光点列)と、前記露光ヘッドの走査方向とがなす複数の実傾斜角 度をそれぞれ測定し、それらの平均値、中央値、最大値、及び最小値のいずれかを 実傾斜角度 Θ 'として特定し、前記式 4等によって実際の露光時に実際に使用する マイクロミラーを選択する形態としてもょ 、。  In the present embodiment (1), as described above, the actual tilt angle Θ ′ of the 512th ray array is measured, and the actual tilt angle Θ is used to calculate T based on the T derived from the equation (4). However, as a method for specifying the actual inclination angle Θ ′, a plurality of image element row directions (light spot rows) and a scanning direction of the exposure head are used. The actual tilt angle is measured, and any one of the average value, median value, maximum value, and minimum value is specified as the actual tilt angle Θ '. As a form to select a mirror.
前記平均値又は前記中央値を実傾斜角度 Θ 'とすれば、理想的な N重露光に対し て露光過多となる領域と露光不足となる領域とのバランスがよい露光を実現すること ができる。例えば、露光過多となる領域と、露光量不足となる領域との合計面積が最 小に抑えられ、かつ、露光過多となる領域の描素単位数 (光点数)と、露光不足とな る領域の描素単位数 (光点数)とが等しくなるような露光を実現することが可能である また、前記最大値を実傾斜角度 Θ 'とすれば、理想的な N重露光に対して露光過 多となる領域の排除をより重要視した露光を実現することができ、例えば、露光不足 となる領域の面積を最小に抑え、かつ、露光過多となる領域が生じないような露光を 実現することが可能である。  When the average value or the median value is set to the actual inclination angle Θ ′, it is possible to realize exposure with a good balance between an overexposed area and an underexposed area with respect to an ideal N-fold exposure. For example, the total area of overexposed areas and underexposed areas is minimized, and the number of pixel units (number of light spots) in overexposed areas and underexposed areas It is possible to achieve an exposure that makes the number of pixel units (number of light spots) equal to the maximum number of pixels. It is possible to achieve exposure that places more importance on eliminating excessive regions, for example, to achieve exposure that minimizes the area of underexposed regions and prevents overexposed regions. Is possible.
さらに、前記最小値を実傾斜角度 Θ 'とすれば、理想的な N重露光に対して露光不 足となる領域の排除をより重要視した露光を実現することができ、例えば、露光過多 となる領域の面積を最小に抑え、かつ、露光不足となる領域が生じないような露光を 実現することが可能である。 Furthermore, if the minimum value is the actual inclination angle Θ ′, it is possible to realize exposure that places more emphasis on the exclusion of areas that are insufficient for the ideal N double exposure. Exposure that minimizes the area of the area to be exposed and does not produce underexposed areas. It is possible to realize.
[0124] 一方、前記実傾斜角度 Θ の特定は、同一の描素部の列(光点列)中の少なくとも 2 つの光点の位置に基づく方法に限定されない。例えば、同一描素部列 c (n)中の 1 つ又は複数の光点の位置と、該 c (n)近傍の列中の 1つ又は複数の光点の位置とか ら求めた角度を、実傾斜角度 Θ 'として特定してもよい。  On the other hand, the identification of the actual inclination angle Θ is not limited to the method based on the positions of at least two light spots in the same pixel part row (light spot row). For example, the angle obtained from the position of one or more light spots in the same pixel part sequence c (n) and the position of one or more light spots in a row in the vicinity of c (n), The actual inclination angle Θ ′ may be specified.
具体的には、 c (n)中の 1つの光点位置と、露光ヘッドの走査方向に沿って直線上 かつ近傍の光点列に含まれる 1つ又は複数の光点位置とを検出し、これらの位置情 報から、実傾斜角度 Θ 'を求めることができる。さらに、 c (n)列近傍の光点列中の少 なくとも 2つの光点(たとえば、 c (n)を跨ぐように配置された 2つの光点)の位置に基 づいて求めた角度を、実傾斜角度 Θ 'として特定してもよい。  Specifically, one light spot position in c (n) and one or a plurality of light spot positions included in a light spot row on the straight line and in the vicinity along the scanning direction of the exposure head are detected. The actual inclination angle Θ ′ can be obtained from these positional information. Furthermore, the angle obtained based on the position of at least two light spots in the light spot array in the vicinity of the c (n) line (for example, two light spots arranged so as to straddle c (n)) is obtained. The actual inclination angle Θ ′ may be specified.
[0125] 以上のように、パターン形成装置 10を用いた本実施形態(1)の使用描素部の指定 方法によれば、各露光ヘッドの取付角度誤差やパターン歪みの影響による解像度の ばらつきや濃度のむらを軽減し、理想的な N重露光を実現することができる。  [0125] As described above, according to the specification method of the used pixel portion of the present embodiment (1) using the pattern forming apparatus 10, the variation in resolution due to the effect of the mounting angle error or pattern distortion of each exposure head, Reduces density unevenness and achieves ideal N double exposure.
[0126] (2)複数露光ヘッド間における使用描素部の指定方法 < 1 >  [0126] (2) Specification method of used pixel part between multiple exposure heads <1>
本実施形態(2)では、パターン形成装置 10により、感光材料 12に対して 2重露光 を行う場合であって、複数の露光ヘッド 30により形成された被露光面上の重複露光 領域であるヘッド間つなぎ領域にぉ 、て、 2つの露光ヘッド (一例として露光ヘッド 30 と 30 )の X軸方向に関する相対位置の、理想的な状態からのずれに起因する解 In this embodiment (2), the pattern forming apparatus 10 performs double exposure on the photosensitive material 12, and is a head that is an overlapping exposure area on the exposed surface formed by the plurality of exposure heads 30. In the connection area, the solution caused by the deviation of the relative position of the two exposure heads (for example, exposure heads 30 and 30) in the X-axis direction from the ideal state.
12 21 12 21
像度のばらつきと濃度むらとを軽減し、理想的な 2重露光を実現するための使用描素 部の指定方法を説明する。  Describes how to specify the pixel part to be used in order to reduce the variation in image density and uneven density, and to realize ideal double exposure.
[0127] 各露光ヘッド 30すなわち各 DMD36の設定傾斜角度 Θとしては、露光ヘッド 30の 取付角度誤差等がない理想的な状態であれば、使用可能な 1024列 X 256行の描 素部マイクロミラー 58を使用してちょうど 2重露光となる角度 Θ を採用するものとす [0127] The set tilt angle Θ of each exposure head 30, that is, each DMD 36, can be used as long as there is no mounting angle error of the exposure head 30 and can be used. 58 and adopt an angle Θ that is exactly double exposure.
ideal  ideal
る。  The
この角度 Θ は、上記の実施形態(1)と同様にして前記式 1〜3から求められる。  This angle Θ is obtained from the above equations 1 to 3 in the same manner as in the above embodiment (1).
ideal  ideal
本実施形態(2)において、パターン形成装置 10は、各露光ヘッド 30すなわち各 DM D36の取付角度がこの角度 Θ となるように、初期調整されているものとする。  In the present embodiment (2), it is assumed that the pattern forming apparatus 10 is initially adjusted so that the mounting angle of each exposure head 30, that is, each DM D 36, becomes this angle Θ.
ideal  ideal
[0128] 図 12は、上記のように初期調整されたパターン形成装置 10において、 2つの露光 ヘッド(一例として露光ヘッド 30 と 30 )の X軸方向に関する相対位置の、理想的な FIG. 12 shows two exposures in the pattern forming apparatus 10 initially adjusted as described above. Ideal position relative to the X-axis direction of the head (exposing heads 30 and 30 as an example)
12 21  12 21
状態からのずれの影響により、被露光面上のパターンに生じる濃度むらの例を示し た説明図である。各露光ヘッドの X軸方向に関する相対位置のずれは、露光ヘッド 間の相対位置の微調整が困難であるために生じ得るものである。  FIG. 6 is an explanatory view showing an example of density unevenness generated in a pattern on an exposed surface due to the influence of deviation from the state. Deviations in the relative position of each exposure head in the X-axis direction can occur because it is difficult to fine-tune the relative position between exposure heads.
[0129] 図 12の上段部分は、ステージ 14を静止させた状態で感光材料 12の被露光面上に 投影される、露光ヘッド 30 と 30 が有する DMD36の使用可能なマイクロミラー 58 The upper part of FIG. 12 is a micromirror 58 that can be used by the DMD 36 of the exposure heads 30 and 30 that is projected onto the exposed surface of the photosensitive material 12 while the stage 14 is stationary.
12 21  12 21
力もの光点群のパターンを示した図である。図 12の下段部分は、上段部分に示した ような光点群のパターンが現れている状態でステージ 14を移動させて連続露光を行 つた際に、被露光面上に形成される露光パターンの状態を、露光エリア 32 と 32  It is the figure which showed the pattern of the light spot group of force. The lower part of Fig. 12 shows the exposure pattern formed on the exposed surface when the stage 14 is moved and continuous exposure is performed with the light spot group pattern shown in the upper part appearing. The state of exposure areas 32 and 32
12 21 につ 、て示したものである。  12 21 is shown here.
なお、図 12では、説明の便宜のため、使用可能なマイクロミラー 58の 1列おきの露 光パターンを、画素列群 Aによる露光パターンと画素列群 Bによる露光パターンとに 分けて示してあるが、実際の被露光面上における露光パターンは、これら 2つの露光 パターンを重ね合わせたものである。  In FIG. 12, for convenience of explanation, every other column exposure pattern of the micromirrors 58 that can be used is divided into an exposure pattern based on the pixel column group A and an exposure pattern based on the pixel column group B. However, the actual exposure pattern on the exposed surface is a superposition of these two exposure patterns.
[0130] 図 12の例では、上記した X軸方向に関する露光ヘッド 30 と 30 との間の相対位 [0130] In the example of FIG. 12, the relative position between the exposure heads 30 and 30 in the X-axis direction described above.
12 21  12 21
置の、理想的な状態からのずれの結果として、画素列群 Aによる露光パターンと画素 列群 Bによる露光パターンとの双方で、露光エリア 32 と 32 の前記ヘッド間つなぎ  As a result of the deviation from the ideal state, the connection between the heads of the exposure areas 32 and 32 in both the exposure pattern by the pixel array group A and the exposure pattern by the pixel array group B is performed.
12 21  12 21
領域にお 、て、理想的な 2重露光の状態よりも露光量過多な部分が生じてしまって いる。  In the area, there is an overexposed part than the ideal double exposure state.
[0131] 上記したような、複数の前記露光ヘッドにより被露光面上に形成される前記ヘッド 間つなぎ領域に現れる濃度むらを軽減するために、本実施形態(2)では、前記光点 位置検出手段としてスリット 28及び光検出器の組を用い、露光ヘッド 30 と 30 力  [0131] In order to reduce density unevenness appearing in the inter-head connecting region formed on the exposed surface by the plurality of exposure heads as described above, in this embodiment (2), the light spot position detection is performed. Using a set of slit 28 and photodetector as means, exposure head 30 and 30 force
12 21 の光点群のうち、被露光面上に形成される前記ヘッド間つなぎ領域を構成する光点 のいくつかについて、その位置 (座標)を検出する。該位置 (座標)に基づいて、前記 描素部選択手段として前記光検出器に接続された演算装置を用いて、実際の露光 に使用するマイクロミラーを選択する処理を行うものとする。  The position (coordinates) of some of the light spots that constitute the inter-head connecting area formed on the exposed surface is detected from among the 12 21 light spot groups. Based on the position (coordinates), processing for selecting a micromirror to be used in actual exposure is performed using an arithmetic unit connected to the photodetector as the pixel part selection means.
[0132] 一位置 (座標)の検出 [0132] Detection of one position (coordinate)
図 13は、図 12と同様の露光エリア 32 及び 32 と、対応するスリット 28との位置関 係を示した上面図である。スリット 28の大きさは、露光ヘッド 30 と 30 による露光済 FIG. 13 shows the positional relationship between the exposure areas 32 and 32 similar to those in FIG. It is the top view which showed engagement. The size of the slit 28 is already exposed by the exposure heads 30 and 30.
12 21  12 21
み領域 34間の重複部分の幅を十分覆う大きさ、すなわち、露光ヘッド 30 と 30 に  Large enough to cover the width of the overlap between areas 34, i.e. exposure heads 30 and 30
12 21 より被露光面上に形成される前記ヘッド間つなぎ領域を十分覆う大きさとされている。  The size from 12 21 is sufficiently large to cover the connecting area between the heads formed on the exposed surface.
[0133] 図 14は、一例として露光エリア 32 の光点 P (256, 1024)の位置を検出する際の [0133] Fig. 14 shows an example when the position of the light spot P (256, 1024) in the exposure area 32 is detected.
21  twenty one
検出手法を説明した上面図である。  It is a top view explaining the detection method.
まず、第 256行目第 1024列目のマイクロミラーを点灯させた状態で、ステージ 14を ゆっくり移動させてスリット 28を Y軸方向に沿って相対移動させ、光点 P (256, 1024 )が上流側のスリット 28aと下流側のスリット 28bの間に来るような任意の位置に、スリツ ト 28を位置させる。このときのスリット 28aとスリット 28bとの交点の座標を (XO, Y0)と する。この座標 (XO, Y0)の値は、ステージ 14に与えられた駆動信号が示す上記の 位置までのステージ 14の移動距離、及び、既知であるスリット 28の X方向位置力も決 定され、記録される。  First, with the micromirror in the 256th row and the 1024th column turned on, the stage 14 is slowly moved to relatively move the slit 28 along the Y-axis direction, and the light spot P (256, 1024) is upstream. The slit 28 is positioned at an arbitrary position between the slit 28a on the side and the slit 28b on the downstream side. At this time, the coordinates of the intersection of the slit 28a and the slit 28b are (XO, Y0). The value of this coordinate (XO, Y0) is determined and recorded by the movement distance of the stage 14 to the above position indicated by the drive signal given to the stage 14 and the known X-direction position force of the slit 28. The
[0134] 次に、ステージ 14を移動させ、スリット 28を Y軸に沿って図 14における右方に相対 移動させる。そして、図 14において二点鎖線で示すように、光点 P (256, 1024)の 光が左側のスリット 28bを通過して光検出器で検出されたところでステージ 14を停止 させる。このときのスリット 28aとスリット 28bとの交点の座標(XO, Y1)を、光点 P (256 , 1024)の位置として記録する。  Next, the stage 14 is moved, and the slit 28 is relatively moved along the Y axis to the right in FIG. Then, as indicated by a two-dot chain line in FIG. 14, the stage 14 is stopped when the light at the light spot P (256, 1024) passes through the left slit 28b and is detected by the photodetector. The coordinates (XO, Y1) of the intersection of the slit 28a and the slit 28b at this time are recorded as the position of the light spot P (256, 1024).
[0135] 次いで、ステージ 14を反対方向に移動させ、スリット 28を Y軸に沿って図 14におけ る左方に相対移動させる。そして、図 14において二点鎖線で示すように、光点 P (25 6, 1024)の光が右側のスリット 28aを通過して光検出器で検出されたところでステー ジ 14を停止させる。このときのスリット 28aとスリット 28bとの交点の座標(XO, Y2)を、 光点 P (256, 1024)として記録する。  [0135] Next, the stage 14 is moved in the opposite direction, and the slit 28 is relatively moved along the Y axis to the left in FIG. Then, as indicated by a two-dot chain line in FIG. 14, the stage 14 is stopped when the light at the light spot P (256, 1024) passes through the right slit 28a and is detected by the photodetector. The coordinates (XO, Y2) of the intersection of the slit 28a and the slit 28b at this time are recorded as the light spot P (256, 1024).
[0136] 以上の測定結果から、光点 P (256, 1024)の被露光面における位置を示す座標 ( X, Y)を、 X=X0+ (Y1—Y2)Z2、 Υ= (Υ1 +Υ2)Ζ2の計算により決定する。  [0136] From the above measurement results, the coordinates (X, Y) indicating the position of the light spot P (256, 1024) on the exposed surface are: X = X0 + (Y1-Y2) Z2, Υ = (Υ1 + Υ2) Determined by calculation of Ζ2.
[0137] 不使用描素部の特定  [0137] Identification of unused pixel parts
図 12の例では、まず、露光エリア 32 の光点 Ρ (256, 1)の位置を、上記の光点位  In the example of Fig. 12, first, the position of light spot Ρ (256, 1) in exposure area 32 is
12  12
置検出手段としてスリット 28と光検出器の組により検出する。続いて、露光エリア 32  Detection is performed by a combination of a slit 28 and a photodetector as a position detection means. Next, exposure area 32
21 の第 256行目の光点行 r(256)上の各光点の位置を、 Ρ (256, 1024) , Ρ (256, 10 23) · · ·と順番に検出していき、露光エリア 32 の光点 P (256, 1)よりも大きい X座標 The position of each light spot on the light spot line r (256) of the 256th line of 21 is defined as Ρ (256, 1024), Ρ (256, 10 23) X coordinates larger than light spot P (256, 1) in exposure area 32
12  12
を示す露光エリア 32 の光点 P (256, n)が検出されたところで、検出動作を終了す When the light spot P (256, n) in the exposure area 32 indicating is detected, the detection operation ends.
21  twenty one
る。そして、露光エリア 32 の光点光点列 c (n+ l)から c (1024)を構成する光点に The Then, from the light spot light spot sequence c (n + l) to c (1024) in the exposure area 32
21  twenty one
対応するマイクロミラーを、本露光時に使用しないマイクロミラー(不使用描素部)とし て特定する。 The corresponding micromirror is specified as a micromirror (unused pixel part) that is not used during the main exposure.
例えば、図 12において、露光エリア 32 の光点 P (256, 1020)力 露光エリア 32  For example, in FIG. 12, the light spot P (256, 1020) force in the exposure area 32 Exposure area 32
21 1 の光点 P (256, 1)よりも大きい X座標を示し、その露光エリア 32 の光点 P (256, 1 21 Shows an X coordinate larger than light spot P (256, 1) of 1 and light spot P (256, 1) of exposure area 32
2 21 2 21
020)が検出されたところで検出動作が終了したとすると、図 15において斜線で覆わ れた部分 70に相当する露光エリア 32 の第 1021行力も第 1024行を構成する光点  020) is detected, the detection operation ends.In FIG. 15, the 1021 row power in the exposure area 32 corresponding to the portion 70 covered by the diagonal line is also the light spot that forms the 1024th row.
21  twenty one
に対応するマイクロミラー力 本露光時に使用しないマイクロミラーとして特定される。 次に、 N重露光の数 Nに対して、露光エリア 32 の光点 P (256, N)の位置が検出 The micromirror force corresponding to is specified as a micromirror that is not used during the main exposure. Next, the position of the light spot P (256, N) in the exposure area 32 is detected for the number N of N double exposures.
12  12
される。本実施形態(2)では、 N = 2であるので、光点 P (256, 2)の位置が検出され る。 Is done. In this embodiment (2), since N = 2, the position of the light spot P (256, 2) is detected.
続いて、露光エリア 32  Next, exposure area 32
21の光点列のうち、上記で本露光時に使用しないマイクロミラ 一に対応する光点列として特定されたものを除き、最も右側の第 1020列を構成する 光点の位置を、 P (l, 1020)力も順番に P (l, 1020)、 P (2, 1020) · · ·と検出して いき、露光エリア 32 の光点 P (256, 2)よりも大きい X座標を示す光点 P (m, 1020)  Except for the 21 light spot sequences identified above as the light spot train corresponding to the micromirror that is not used during the main exposure, the positions of the light spots that make up the rightmost 1020th column are represented by P (l , 1020) The force is also detected in order as P (l, 1020), P (2, 1020) ..., and light spot P indicating an X coordinate larger than light spot P (256, 2) in exposure area 32 (m, 1020)
12  12
が検出されたところで、検出動作を終了する。 When is detected, the detection operation is terminated.
その後、前記光検出器に接続された演算装置において、露光エリア 32  Thereafter, in an arithmetic unit connected to the photodetector, an exposure area 32
12の光点 P ( 12 light spots P (
256, 2)の X座標と、露光エリア 32 の光点 P (m, 1020)及び P (m— 1, 1020)の X 256, 2) and X of the light spots P (m, 1020) and P (m—1, 1020) in the exposure area 32
21  twenty one
座標とが比較され、露光エリア 32 の光点 P (m, 1020)の X座標の方が露光エリア 3 The X coordinate of the light spot P (m, 1020) in the exposure area 32 is the exposure area 3
21  twenty one
2 の光点 P (256, 2)の X座標に近い場合は、露光エリア 32 の光点 P (l, 1020) If the X coordinate of light spot P (256, 2) of 2 is close, light spot P (l, 1020) of exposure area 32
12 21 12 21
力も P (m— 1, 1020)に対応するマイクロミラーが本露光時に使用しないマイクロミラ 一として特定される。 The micromirror corresponding to the force P (m-1, 1020) is also identified as the micromirror that is not used during the main exposure.
また、露光エリア 32 の光点 P (m—1, 1020)の X座標の方が露光エリア 32 の光  In addition, the X coordinate of the light spot P (m–1, 1020) in the exposure area 32 is the light in the exposure area 32.
21 12 点 P (256, 2)の X座標に近い場合は、露光エリア 32 の光点 P (l, 1020)力も P (m  21 When close to the X coordinate of 12 point P (256, 2), the light spot P (l, 1020) force of exposure area 32 is also P (m
21  twenty one
- 2, 1020)に対応するマイクロミラー力 本露光に使用しないマイクロミラーとして特 定される。 さらに、露光エリア 32 の光点 P (256, N— 1)すなわち光点 P (256, 1)の位置と、 -Micromirror force corresponding to 2, 1020) Specified as a micromirror not used in this exposure. Furthermore, the position of the light spot P (256, N-1) in the exposure area 32, that is, the light spot P (256, 1),
12  12
露光エリア 32 の次列である第 1019列を構成する各光点の位置についても、同様  The same applies to the position of each light spot that constitutes column 1019, which is the next column of exposure area 32.
21  twenty one
の検出処理及び使用しないマイクロミラーの特定が行われる。  Detection processing and micromirrors that are not used are identified.
[0139] その結果、たとえば、図 15において網掛けで覆われた領域 72を構成する光点に対 応するマイクロミラーが、実際の露光時に使用しないマイクロミラーとして追加される。 これらのマイクロミラーには、常時、そのマイクロミラーの角度をオフ状態の角度に設 定する信号が送られ、それらのマイクロミラーは、実質的に露光に使用されない。  As a result, for example, micromirrors corresponding to the light spots that form the shaded area 72 in FIG. 15 are added as micromirrors that are not used during actual exposure. These micromirrors are always signaled to set their micromirror angle to the off-state angle, and these micromirrors are essentially not used for exposure.
[0140] このように、実際の露光時に使用しないマイクロミラーを特定し、該使用しないマイク 口ミラーを除いたものを、実際の露光時に使用するマイクロミラーとして選択すること により、露光エリア 32 と 32 の前記ヘッド間つなぎ領域において、理想的な 2重露  [0140] Thus, by identifying micromirrors that are not used during actual exposure and selecting those that are not used as microphone mirrors during actual exposure, exposure areas 32 and 32 are selected. Ideal double dew in the area between the heads
12 21  12 21
光に対して露光過多となる領域、及び露光不足となる領域の合計面積を最小とする ことができ、図 15の下段に示すように、理想的な 2重露光に極めて近い均一な露光 を実現することができる。  The total area of areas that are overexposed and underexposed to light can be minimized, and uniform exposure very close to ideal double exposure is achieved, as shown in the lower part of Fig. 15. can do.
[0141] なお、上記の例においては、図 15において網掛けで覆われた領域 72を構成する 光点の特定に際し、露光エリア 32 の光点 P (256, 2)の X座標と、露光エリア 32 の [0141] In the above example, the X coordinate of the light spot P (256, 2) of the exposure area 32 and the exposure area are determined when specifying the light spot that constitutes the shaded area 72 in FIG. 32 of
12 21 光点 P (m, 1020)及び P (m— 1, 1020)の X座標との比較を行わずに、ただちに、 露光エリア 32 の光点 P (l, 1020)力ら P (m— 2, 1020)に対応するマイクロミラー  12 21 Without comparing P (m, 1020) and P (m—1, 1020) with the X-coordinates, the light spot P (l, 1020) force in the exposure area 32 immediately increases P (m— 2, 1020)
21  twenty one
を、本露光時に使用しないマイクロミラーとして特定してもよい。その場合、前記ヘッド 間つなぎ領域にぉ 、て、理想的な 2重露光に対して露光過多となる領域の面積が最 小になり、かつ露光不足となる領域が生じないようなマイクロミラーを、実際に使用す るマイクロミラーとして選択することができる。  May be specified as a micromirror that is not used during the main exposure. In that case, a micromirror that minimizes the area of the overexposed region with respect to the ideal double exposure and does not generate an underexposed region in the connecting region between the heads. It can be selected as a micromirror to be actually used.
また、露光エリア 32 の光点 P (l, 1020)力ら P (m— 1, 1020)に対応するマイクロ  In addition, the light spot P (l, 1020) force in the exposure area 32 corresponds to P (m— 1, 1020).
21  twenty one
ミラーを、本露光に使用しないマイクロミラーとして特定してもよい。その場合、前記へ ッド間つなぎ領域において、理想的な 2重露光に対して露光不足となる領域の面積 が最小になり、かつ露光過多となる領域が生じないようなマイクロミラーを、実際に使 用するマイクロミラーとして選択することができる。  You may identify a mirror as a micromirror which is not used for this exposure. In that case, in the connecting area between the heads, a micromirror that minimizes the area of the area that is underexposed with respect to the ideal double exposure and that does not cause an overexposed area is actually used. It can be selected as the micromirror to be used.
さらに、前記ヘッド間つなぎ領域において、理想的な 2重描画に対して露光過多と なる領域の描素単位数 (光点数)と、露光不足となる領域の描素単位数 (光点数)と が等しくなるように、実際に使用するマイクロミラーを選択することとしてもよい。 Furthermore, in the connecting area between the heads, the number of pixel units (number of light spots) in an overexposed area and the number of pixel units (number of light spots) in an underexposed area with respect to an ideal double drawing. The micromirrors that are actually used may be selected so as to be equal.
[0142] 以上のように、パターン形成装置 10を用いた本実施形態(2)の使用描素部の指定 方法によれば、複数の露光ヘッドの X軸方向に関する相対位置のずれに起因する解 像度のばらつきと濃度むらとを軽減し、理想的な N重露光を実現することができる。  [0142] As described above, according to the method for designating the used picture element portion of the present embodiment (2) using the pattern forming apparatus 10, the solution caused by the relative position shift in the X-axis direction of the plurality of exposure heads. It reduces image variability and density unevenness, and realizes ideal N double exposure.
[0143] (3)複数露光ヘッド間における使用描素部の指定方法 < 2 > [3] (3) How to specify the pixel part to be used between multiple exposure heads <2>
本実施形態(3)では、パターン形成装置 10により、感光材料 12に対して 2重露光 を行う場合であって、複数の露光ヘッド 30により形成された被露光面上の重複露光 領域であるヘッド間つなぎ領域にぉ 、て、 2つの露光ヘッド (一例として露光ヘッド 30 と 30 )の X軸方向に関する相対位置の理想的な状態からのずれ、並びに各露光 In this embodiment (3), the pattern forming apparatus 10 performs double exposure on the photosensitive material 12, and is a head that is an overlapped exposure region on the exposed surface formed by a plurality of exposure heads 30. In the connection area, the relative position of the two exposure heads (for example, exposure heads 30 and 30) in the X-axis direction deviates from the ideal state, as well as each exposure.
12 21 12 21
ヘッドの取付角度誤差、及び 2つの露光ヘッド間の相対取付角度誤差に起因する解 像度のばらつきと濃度むらとを軽減し、理想的な 2重露光を実現するための使用描素 部の指定方法を説明する。  Designation of the pixel part to be used to realize ideal double exposure by reducing the variation in resolution and density unevenness caused by the head mounting angle error and the relative mounting angle error between the two exposure heads A method will be described.
[0144] 各露光ヘッド 30すなわち各 DMD36の設定傾斜角度としては、露光ヘッド 30の取 付角度誤差等がない理想的な状態であれば、使用可能な 1024列 X 256行の描素 部(マイクロミラー 58)を使用してちょうど 2重露光となる角度 Θ よりも若干大きい角 [0144] The set tilt angle of each exposure head 30, that is, each DMD 36, can be used as long as there is no mounting angle error of the exposure head 30 and the 1024 columns x 256 rows of usable pixel parts (micrometers). Angle slightly larger than angle Θ, which is exactly double exposure using mirror 58)
ideal  ideal
度を採用するものとする。  The degree shall be adopted.
この角度 Θ は、前記式 1〜3を用いて上記(1)の実施形態と同様にして求められ  This angle Θ is obtained in the same manner as in the above embodiment (1) using the above equations 1-3.
ideal  ideal
る値であり、本実施形態では、上記のとおり s = 256、 N= 2であるので、角度 Θ は  In this embodiment, since s = 256 and N = 2 as described above, the angle Θ is
ideal 約 0. 45度である。したがって、設定傾斜角度 Θとしては、たとえば 0. 50度程度の角 度を採用するとよい。パターン形成装置 10は、調整可能な範囲内で、各露光ヘッド 3 0すなわち各 DMD36の取付角度がこの設定傾斜角度 Θに近い角度となるように、 初期調整されて ヽるものとする。  ideal About 0.45 degrees. Therefore, for example, an angle of about 0.50 degrees may be adopted as the set inclination angle Θ. It is assumed that the pattern forming apparatus 10 is initially adjusted so that the mounting angle of each exposure head 30, that is, each DMD 36 is close to the set inclination angle Θ within an adjustable range.
[0145] 図 16は、上記のように各露光ヘッド 30すなわち各 DMD36の取付角度が初期調 整されたパターン形成装置 10において、 2つの露光ヘッド(一例として露光ヘッド 30 と 30 )の取付角度誤差、並びに各露光ヘッド 30 と 30 間の相対取付角度誤差[0145] FIG. 16 shows a mounting angle error between two exposure heads (for example, exposure heads 30 and 30) in the pattern forming apparatus 10 in which the mounting angles of each exposure head 30, that is, each DMD 36 are initially adjusted as described above. And relative mounting angle error between each exposure head 30 and 30
2 21 12 21 2 21 12 21
及び相対位置のずれの影響により、被露光面上のパターンに生じるむらの例を示し た説明図である。  FIG. 6 is an explanatory diagram showing an example of unevenness that occurs in a pattern on an exposed surface due to the influence of a shift in relative position.
[0146] 図 16の例では、図 12の例と同様の、 X軸方向に関する露光ヘッド 30 と 30 の相 対位置のずれの結果として、一列おきの光点群 (画素列群 A及び B)による露光パタ ーンの双方で、露光エリア 32 と 32 の被露光面上の前記露光ヘッドの走査方向と [0146] In the example of FIG. 16, the phases of the exposure heads 30 and 30 in the X-axis direction are the same as the example of FIG. As a result of the misalignment, the exposure head scanning direction on the exposed surface in the exposure areas 32 and 32 is determined in both the exposure patterns of every other light spot group (pixel array group A and B).
12 21  12 21
直交する座標軸上で重複する露光領域にお!、て、理想的な 2重露光の状態よりも露 光量過多な領域 74が生じ、これが濃度むらを引き起こしている。  In the overlapping exposure areas on the orthogonal coordinate axes, there is an area 74 where the amount of exposure is excessive compared to the ideal double exposure state, which causes uneven density.
さらに、図 16の例では、各露光ヘッドの設定傾斜角度 Θを前記式(1)を満たす角 度 Θ よりも若干大きくしたことによる結果、及び各露光ヘッドの取付角度の微調整 ideal  Further, in the example of FIG. 16, the result of setting the tilt angle Θ of each exposure head slightly larger than the angle Θ satisfying the above equation (1) and fine adjustment of the mounting angle of each exposure head ideal
が困難であるために、実際の取付角度が上記の設定傾斜角度 0からずれてしまった ことの結果として、被露光面上の前記露光ヘッドの走査方向と直交する座標軸上で 重複する露光領域以外の領域でも、一列おきの光点群 (画素列群 A及び B)による露 光パターンの双方で、複数の描素部列により形成された、被露光面上の重複露光領 域である描素部列間つなぎ領域において、理想的な 2重露光の状態よりも露光過多 となる領域 76が生じ、これがさらなる濃度むらを引き起こしている。  As a result of the fact that the actual mounting angle has deviated from the above-mentioned set inclination angle 0 because of the difficulty of the exposure, the exposure area other than the overlapping exposure area on the coordinate axis perpendicular to the scanning direction of the exposure head on the exposed surface In this area, both of the exposure patterns of every other light spot group (pixel array groups A and B) and the pixel that is an overlapped exposure region on the exposed surface formed by a plurality of pixel part rows. In the connecting region between sub-rows, a region 76 is formed which is overexposed than the ideal double exposure state, and this causes further density unevenness.
[0147] 本実施形態(3)では、まず、各露光ヘッド 30 と 30 の取付角度誤差及び相対取 In this embodiment (3), first, the mounting angle error of each of the exposure heads 30 and 30 and the relative position are adjusted.
12 21  12 21
付角度のずれの影響による濃度むらを軽減するための使用画素選択処理を行う。 具体的には、前記光点位置検出手段としてスリット 28及び光検出器の組を用い、 露光ヘッド 30 と 30 のそれぞれについて、実傾斜角度 Θ 'を特定し、該実傾斜角  Use pixel selection processing is performed to reduce density unevenness due to the influence of the angle difference. Specifically, a set of the slit 28 and the photodetector is used as the light spot position detecting means, and the actual inclination angle Θ ′ is specified for each of the exposure heads 30 and 30, and the actual inclination angle is determined.
12 21  12 21
度 θ Ίこ基づき、前記描素部選択手段として光検出器に接続された演算装置を用い て、実際の露光に使用するマイクロミラーを選択する処理を行うものとする。  Based on the angle θ, processing for selecting a micromirror used for actual exposure is performed using an arithmetic unit connected to a photodetector as the pixel portion selection means.
[0148] 一実傾斜角度 0 ,の特定 [0148] Specifying the real inclination angle 0
実傾斜角度 Θ 'の特定は、露光ヘッド 30 ついては露光エリア 32 内の光点 P (l,  The actual inclination angle Θ ′ is specified by the light spot P (l,
12 12  12 12
1)と P (256, 1)の位置を、露光ヘッド 30 については露光エリア 32 内の光点 P (l  The positions of 1) and P (256, 1) and the light spot P (l
21 21  21 21
, 1024)と P (256, 1024)の位置を、それぞれ上述した実施形態(2)で用いたスリツ ト 28と光検出器の組により検出し、それらを結ぶ直線の傾斜角度と、露光ヘッドの走 查方向とがなす角度を測定することにより行われる。  , 1024) and P (256, 1024) are detected by the combination of the slit 28 and the photodetector used in the above-described embodiment (2), respectively, the inclination angle of the straight line connecting them, and the exposure head This is done by measuring the angle between the running direction.
[0149] 不使用描素部の特定 [0149] Identification of unused pixel parts
そのようにして特定された実傾斜角度 Θ 'を用いて、光検出器に接続された演算装 置は、上述した実施形態(1)における演算装置と同様、下記式 4  The arithmetic device connected to the photodetector using the actual inclination angle Θ ′ thus specified is similar to the arithmetic device in the above-described embodiment (1), as shown in the following equation 4
ttan 0 (式 4) の関係を満たす値 tに最も近い自然数 Tを、露光ヘッド 30 と 30 のそれぞれについ ttan 0 (Equation 4) The natural number T that is closest to the value t that satisfies this relationship is assigned to each of the exposure heads 30 and 30.
12 21  12 21
て導出し、 DMD36上の第 (Τ+ 1)行目力も第 256行目のマイクロミラーを、本露光 に使用しないマイクロミラーとして特定する処理を行う。  Then, the (Τ + 1) line force on the DMD 36 is also identified as the micromirror that is not used for the main exposure.
例えば、露光ヘッド 30 については Τ= 254、露光ヘッド 30 については Τ= 255  For example, 露 光 = 254 for exposure head 30 and Τ = 255 for exposure head 30
12 21  12 21
が導出されたとすると、図 17において斜線で覆われた部分 78及び 80を構成する光 点に対応するマイクロミラー力 本露光に使用しないマイクロミラーとして特定される。 これにより、露光エリア 32 と 32 のうちヘッド間つなぎ領域以外の各領域において  Is derived, the micromirror force corresponding to the light spots constituting the portions 78 and 80 covered with diagonal lines in FIG. 17 is specified as a micromirror that is not used in the main exposure. As a result, in each of the exposure areas 32 and 32 other than the connection area between the heads.
12 21  12 21
、理想的な 2重露光に対して露光過多となる領域、及び露光不足となる領域の合計 面積を最小とすることができる。  The total area of the overexposed and underexposed areas with respect to the ideal double exposure can be minimized.
[0150] ここで、上記の値 tに最も近い自然数を導出することに代えて、値 t以上の最小の自 然数を導出することとしてもよい。その場合、露光エリア 32 と 32 の、複数の露光へ [0150] Here, instead of deriving the natural number closest to the above value t, the smallest natural number equal to or greater than the value t may be derived. In that case, to multiple exposures in exposure areas 32 and 32
12 21  12 21
ッドにより形成された被露光面上の重複露光領域であるヘッド間つなぎ領域以外の 各領域において、理想的な 2重露光に対して露光量過多となる面積が最小になり、 かつ露光量不足となる面積が生じな 、ようになすことができる。  In each area other than the head-to-head connection area, which is the overlapping exposure area on the exposed surface formed by the head, the area where the overexposure is excessive for the ideal double exposure is minimized, and the exposure is insufficient This can be done without creating an area.
あるいは、値 t以下の最大の自然数を導出することとしてもよい。その場合、露光ェ リア 32 32  Or it is good also as deriving the maximum natural number below value t. In that case, exposure area 32 32
12と 21の、複数の露光ヘッドにより形成された被露光面上の重複露光領域 であるヘッド間つなぎ領域以外の各領域にぉ 、て、理想的な 2重露光に対して露光 不足となる領域の面積が最小になり、かつ露光過多となる領域が生じないようになす ことができる。  Areas that are underexposed for ideal double exposure in areas 12 and 21 other than the joint area between the heads, which are overlapping exposure areas on the exposed surface formed by multiple exposure heads Therefore, it is possible to prevent an area that is overexposed and has a minimum area.
複数の露光ヘッドにより形成された被露光面上の重複露光領域であるヘッド間つ なぎ領域以外の各領域において、理想的な 2重露光に対して、露光過多となる領域 の描素単位数 (光点数)と、露光不足となる領域の描素単位数 (光点数)とが等しくな るように、本露光時に使用しな 、マイクロミラーを特定することとしてもよ!/、。  The number of pixel units in the overexposed area for the ideal double exposure in each area other than the joint area between the heads, which is the overlapping exposure area on the exposed surface formed by multiple exposure heads ( It is also possible to specify a micromirror that is not used during the main exposure so that the number of pixel units (number of light spots) in the underexposed area is equal to the number of light spots!
[0151] その後、図 17において斜線で覆われた領域 78及び 80を構成する光点以外の光 点に対応するマイクロミラーに関して、図 12から図 15を用いて説明した本実施形態( 3)と同様の処理がなされ、図 17において斜線で覆われた領域 82及び網掛けで覆わ れた領域 84を構成する光点に対応するマイクロミラーが特定され、本露光時に使用 しな 、マイクロミラーとして追加される。 これらの露光時に使用しないものとして特定されたマイクロミラーに対して、前記描 素部素制御手段により、常時オフ状態の角度に設定する信号が送られ、それらのマ イク口ミラーは、実質的に露光に関与しない。 [0151] Thereafter, with respect to the micromirror corresponding to the light spot other than the light spots constituting the regions 78 and 80 covered by the oblique lines in FIG. 17, this embodiment (3) described with reference to FIGS. The same processing was performed, and micromirrors corresponding to the light spots constituting the shaded area 82 and the shaded area 84 in FIG. 17 were identified and added as micromirrors that are not used during the main exposure. Is done. With respect to the micromirrors identified as not being used at the time of exposure, the pixel unit control means sends a signal for setting the angle of the always-off state, and these microphone mirrors substantially Not involved in exposure.
[0152] 以上のように、パターン形成装置 10を用いた本実施形態(3)の使用描素部の指定 方法によれば、複数の露光ヘッドの X軸方向に関する相対位置のずれ、並びに各露 光ヘッドの取付角度誤差、及び露光ヘッド間の相対取付角度誤差に起因する解像 度のばらつきと濃度むらとを軽減し、理想的な N重露光を実現することができる。  [0152] As described above, according to the method for designating the used picture element portion of the present embodiment (3) using the pattern forming apparatus 10, the relative position shift in the X-axis direction of the plurality of exposure heads, and Variations in resolution and density unevenness due to the mounting angle error of the optical head and the relative mounting angle error between the exposure heads can be reduced, and ideal N-fold exposure can be realized.
[0153] 以上、パターン形成装置 10による使用描素部指定方法ついて詳細に説明したが、 上記実施形態(1)〜(3)は一例に過ぎず、本発明の範囲を逸脱することなく種々の 変更が可能である。  As described above, the method for designating the used pixel part by the pattern forming apparatus 10 has been described in detail. However, the above embodiments (1) to (3) are merely examples, and various methods can be used without departing from the scope of the present invention. It can be changed.
[0154] また、上記の実施形態(1)〜(3)では、被露光面上の光点の位置を検出するため の手段として、スリット 28と単一セル型の光検出器の組を用いた力 これに限られず V、かなる形態のものを用いてもよぐたとえば 2次元検出器等を用いてもょ 、。  [0154] In the above embodiments (1) to (3), as a means for detecting the position of the light spot on the surface to be exposed, a set of the slit 28 and the single cell type photodetector is used. The force that was used is not limited to this, V, or any other form can be used. For example, a two-dimensional detector can be used.
[0155] さらに、上記の実施形態(1)〜(3)では、スリット 28と光検出器の組による被露光面 上の光点の位置検出結果から実傾斜角度 Θ 'を求め、その実傾斜角度 θ Ίこ基づい て使用するマイクロミラーを選択したが、実傾斜角度 Θ 'の導出を介さずに使用可能 なマイクロミラーを選択する形態としてもよい。さらには、たとえばすべての使用可能 なマイクロミラーを用いた参照露光を行い、参照露光結果の目視による解像度や濃 度のむらの確認等により、操作者が使用するマイクロミラーを手動で指定する形態も 、本発明の範囲に含まれるものである。  Further, in the above embodiments (1) to (3), the actual inclination angle Θ ′ is obtained from the position detection result of the light spot on the exposed surface by the combination of the slit 28 and the photodetector, and the actual inclination angle is obtained. Although a micromirror to be used is selected based on θ Ί, a usable micromirror may be selected without going through the derivation of the actual inclination angle Θ ′. In addition, for example, the reference exposure using all available micromirrors is performed, and the micromirror used by the operator is manually specified by checking the resolution and density unevenness by visual observation of the reference exposure result. It is included in the scope of the present invention.
[0156] なお、被露光面上に生じ得るパターン歪みには、上記の例で説明した角度歪みの 他にも、種々の形態が存在する。  It should be noted that there are various forms of pattern distortion that can occur on the exposed surface, in addition to the angular distortion described in the above example.
一例としては、図 18Aに示すように、 DMD36上の各マイクロミラー 58からの光線 力 異なる倍率で露光面上の露光エリア 32に到達してしまう倍率歪みの形態がある また、別の例として、図 18Bに示すように、 DMD36上の各マイクロミラー 58からの 光線力、異なるビーム径で被露光面上の露光エリア 32に到達してしまうビーム径歪 みの形態もある。これらの倍率歪み及びビーム径歪みは、主として、 DMD36と被露 光面間の光学系の各種収差やアラインメントずれに起因して生じる。 As an example, as shown in FIG. 18A, there is a form of magnification distortion that reaches the exposure area 32 on the exposure surface at different magnifications from the light power from each micromirror 58 on the DMD 36. As shown in FIG. 18B, there is a form of beam diameter distortion that reaches the exposure area 32 on the exposed surface with different beam diameters, the light power from each micromirror 58 on the DMD 36. These magnification distortion and beam diameter distortion are mainly related to DMD36 and exposure. This is caused by various aberrations and alignment deviation of the optical system between the optical surfaces.
さらに別の例として、 DMD36上の各マイクロミラー 58からの光線力 異なる光量で 被露光面上の露光エリア 32に到達してしまう光量歪みの形態もある。この光量歪み は、各種収差やアラインメントずれのほか、 DMD36と被露光面間の光学要素(たと えば 1枚レンズである図 5A及び図 5Bのレンズ 52及び 54)の透過率の位置依存性や 、 DMD36自体による光量むらに起因して生じる。これらの形態のパターン歪みも、 被露光面上に形成されるパターンに解像度や濃度のむらを生じさせる。  As another example, there is a form of light amount distortion that reaches the exposure area 32 on the surface to be exposed with a different light amount from each micromirror 58 on the DMD 36. In addition to various aberrations and misalignment, this distortion of light intensity includes the positional dependency of the transmittance of the optical element between the DMD 36 and the exposed surface (for example, the single lens 52 and 54 in FIGS. 5A and 5B), This is caused by unevenness in the amount of light due to the DMD 36 itself. These forms of pattern distortion also cause unevenness in resolution and density in the pattern formed on the exposed surface.
[0157] 上記の実施形態(1)〜(3)によれば、本露光に実際に使用するマイクロミラーを選 択した後の、これらの形態のパターン歪みの残留要素も、上記の角度歪みの残留要 素と同様、多重露光による埋め合わせの効果で均すことができ、解像度や濃度のむ らを、各露光ヘッドの露光領域全体にわたって軽減することができる。  [0157] According to the above embodiments (1) to (3), after selecting the micromirrors actually used for the main exposure, the residual elements of the pattern distortion of these forms are also the above-mentioned angular distortion. As with the residual elements, it can be leveled by the effect of multiple exposure, and the unevenness in resolution and density can be reduced over the entire exposure area of each exposure head.
[0158] < <参照露光 > >  [0158] <<Reference exposure>>
上記の実施形態(1)〜(3)の変更例として、使用可能なマイクロミラーのうち、(N— 1)列おきのマイクロミラー列、又は全光点行のうち 1ZN行に相当する隣接する行を 構成するマイクロミラー群のみを使用して参照露光を行 、、均一な露光を実現できる ように、前記参照露光に使用されたマイクロミラー中、実際の露光時に使用しないマ イク口ミラーを特定することとしてもよ 、。  As a modified example of the above embodiments (1) to (3), among available micromirrors, every (N-1) micromirror columns or adjacent to 1ZN rows of all light spot rows The reference exposure is performed using only the group of micromirrors that make up the row, and the microphone mirror that is not used during actual exposure is identified among the micromirrors used for the reference exposure so that uniform exposure can be achieved. You can do it.
前記参照露光手段による参照露光の結果をサンプル出力し、該出力された参照露 光結果に対し、解像度のばらつきや濃度のむらを確認し、実傾斜角度を推定するな どの分析を行う。前記参照露光の結果の分析は、操作者の目視による分析であって ちょい。  The result of the reference exposure by the reference exposure means is output as a sample, and the output reference exposure result is subjected to analysis such as confirmation of resolution variation and density unevenness and estimation of the actual inclination angle. The analysis of the result of the reference exposure is a visual analysis by the operator.
[0159] 図 19A及び図 19Bは、単一露光ヘッドを用い、(N—1)列おきのマイクロミラーの みを使用して参照露光を行う形態の一例を示した説明図である。  FIG. 19A and FIG. 19B are explanatory views showing an example of a form in which reference exposure is performed using only (N-1) rows of micromirrors using a single exposure head.
この例では、本露光時は 2重露光とするものとし、したがって N = 2である。まず、図 19 Aに実線で示した奇数列の光点列に対応するマイクロミラーのみを使用して参照 露光を行い、参照露光結果をサンプル出力する。前記サンプル出力された参照露光 結果に基づき、解像度のばらつきや濃度のむらを確認したり、実傾斜角度を推定し たりすることで、本露光時において使用するマイクロミラーを指定することができる。 例えば、図 19Bに斜線で覆って示す光点列に対応するマイクロミラー以外のマイク 口ミラーが、奇数列の光点列を構成するマイクロミラー中、本露光において実際に使 用されるものとして指定される。偶数列の光点列については、別途同様に参照露光 を行って、本露光時に使用するマイクロミラーを指定してもよいし、奇数列の光点列 に対するパターンと同一のパターンを適用してもよい。 In this example, the main exposure is assumed to be double exposure, and therefore N = 2. First, reference exposure is performed using only the micromirrors corresponding to the odd-numbered light spot arrays indicated by solid lines in FIG. 19A, and the reference exposure results are output as samples. Based on the reference exposure result output from the sample, it is possible to specify a micromirror to be used in the main exposure by confirming variations in resolution and uneven density, or estimating the actual tilt angle. For example, a microphone aperture mirror other than the micromirror corresponding to the light spot array shown by hatching in FIG. 19B is designated as actually used in the main exposure among the micromirrors constituting the odd light spot array. Is done. For even-numbered light spot arrays, a separate reference exposure may be performed in the same manner to specify a micromirror to be used during the main exposure, or the same pattern as that for odd-numbered light spot arrays may be applied. Good.
このようにして本露光時に使用するマイクロミラーを指定することにより、奇数列及び 偶数列双方のマイクロミラーを使用した本露光においては、理想的な 2重露光に近い 状態が実現できる。  By specifying the micromirrors used during the main exposure in this way, a state close to an ideal double exposure can be realized in the main exposure using both the odd-numbered and even-numbered micromirrors.
[0160] 図 20は、複数の露光ヘッドを用い、(N—1)列おきのマイクロミラーのみを使用して 参照露光を行う形態の一例を示した説明図である。  FIG. 20 is an explanatory view showing an example of a form in which reference exposure is performed using only a plurality of (N-1) micromirrors using a plurality of exposure heads.
この例では、本露光時は 2重露光とするものとし、したがって N = 2である。まず、図 20に実線で示した、 X軸方向に関して隣接する 2つの露光ヘッド(一例として露光へ ッド 30 と 30 )の奇数列の光点列に対応するマイクロミラーのみを使用して、参照 In this example, the main exposure is assumed to be double exposure, and therefore N = 2. First, reference is made by using only micromirrors corresponding to odd-numbered light spot rows of two exposure heads adjacent to each other in the X-axis direction (for example, exposure heads 30 and 30) shown by a solid line in FIG.
12 21 12 21
露光を行い、参照露光結果をサンプル出力する。前記出力された参照露光結果に 基づき、 2つの露光ヘッドにより被露光面上に形成されるヘッド間つなぎ領域以外の 領域における解像度のばらつきや濃度のむらを確認したり、実傾斜角度を推定したり することで、本露光時にお!、て使用するマイクロミラーを指定することができる。  Exposure is performed, and a reference exposure result is output as a sample. Based on the output result of the reference exposure, the two exposure heads check resolution variations and density unevenness in areas other than the head-to-head connection area formed on the exposed surface, and estimate the actual inclination angle. Therefore, it is possible to specify the micromirror to be used during the main exposure.
例えば、図 20に斜線で覆って示す領域 86及び網掛けで示す領域 88内の光点列 に対応するマイクロミラー以外のマイクロミラー力 奇数列の光点を構成するマイクロ ミラー中、本露光時において実際に使用されるものとして指定される。偶数列の光点 列については、別途同様に参照露光を行って、本露光時に使用するマイクロミラーを 指定してもよいし、奇数列目の画素列に対するパターンと同一のパターンを適用して ちょい。  For example, the micromirror force other than the micromirror corresponding to the light spot array in the area 86 shown by hatching in FIG. Designated as actually used. For even-numbered light spot arrays, a separate reference exposure may be performed in the same manner, and the micromirror used for the main exposure may be designated, or the same pattern as that for the odd-numbered pixel lines may be applied. .
このようにして本露光時に実際に使用するマイクロミラーを指定することにより、奇数 列及び偶数列双方のマイクロミラーを使用した本露光においては、 2つの露光ヘッド により被露光面上に形成される前記ヘッド間つなぎ領域以外の領域にぉ 、て、理想 的な 2重露光に近い状態が実現できる。  In this way, by specifying the micromirrors that are actually used during the main exposure, in the main exposure using both the odd-numbered and even-numbered micromirrors, the two exposure heads form the surface to be exposed. A state close to ideal double exposure can be achieved in areas other than the head-to-head connection area.
[0161] 図 21A及び図 21Bは、単一露光ヘッドを用い、全光点行数の IZN行に相当する 隣接する行を構成するマイクロミラー群のみを使用して参照露光を行う形態の一例を 示した説明図である。 [0161] FIGS. 21A and 21B use a single exposure head and correspond to IZN rows for all light spot rows It is explanatory drawing which showed an example of the form which performs reference exposure using only the micromirror group which comprises an adjacent line.
この例では、本露光時は 2重露光とするものとし、したがって N = 2である。まず、図 21 Aに実線で示した 1行目から 128 ( = 256/2)行目の光点に対応するマイクロミラ 一のみを使用して参照露光を行い、参照露光結果をサンプル出力する。前記サンプ ル出力された参照露光結果に基づき、本露光時において使用するマイクロミラーを 旨定することができる。  In this example, the main exposure is assumed to be double exposure, and therefore N = 2. First, reference exposure is performed using only a micromirror corresponding to the light spot in the first to 128 (= 256/2) rows shown by the solid line in FIG. 21A, and the reference exposure result is output as a sample. Based on the reference exposure result outputted from the sample, the micromirror to be used in the main exposure can be specified.
例えば、図 21 Bに斜線で覆つて示す光点群に対応するマイクロミラー以外のマイク 口ミラーが、第 1行目から第 128行目のマイクロミラー中、本露光時にお 、て実際に使 用されるものとして指定され得る。第 129行目から第 256行目のマイクロミラーについ ては、別途同様に参照露光を行って、本露光時に使用するマイクロミラーを指定して もよいし、第 1行目から第 128行目のマイクロミラーに対するパターンと同一のパター ンを適用してもよ 、。  For example, a microphone mouth mirror other than the micromirror corresponding to the light spot group indicated by hatching in FIG. 21B is actually used during the main exposure in the micromirrors in the first to 128th rows. Can be specified as For the micromirrors in the 129th to 256th lines, a separate reference exposure may be performed in the same manner, and the micromirror to be used during the main exposure may be designated, or the first to 128th lines may be designated. You can apply the same pattern as for the micromirror.
このようにして本露光時に使用するマイクロミラーを指定することにより、全体のマイ クロミラーを使用した本露光においては、理想的な 2重露光に近い状態が実現できる 図 22は、複数の露光ヘッドを用い、 X軸方向に関して隣接する 2つの露光ヘッド( 一例として露光ヘッド 30 と 30 )について、それぞれ全光点行数の 1ZN行に相当  By specifying the micromirror to be used during the main exposure in this way, it is possible to achieve a state close to ideal double exposure in the main exposure using the entire micromirror. Used, two adjacent exposure heads in the X-axis direction (for example, exposure heads 30 and 30) are equivalent to 1ZN rows of the total number of light spots
12 21  12 21
する隣接する行を構成するマイクロミラー群のみを使用して参照露光を行う形態の一 例を示した説明図である。 FIG. 10 is an explanatory diagram showing an example of a form in which reference exposure is performed using only micromirror groups constituting adjacent rows.
この例では、本露光時は 2重露光とするものとし、したがって N = 2である。まず、図 22に実線で示した第 1行目力も第 128 ( = 256Z2)行目の光点に対応するマイクロ ミラーのみを使用して、参照露光を行い、参照露光結果をサンプル出力する。前記 サンプル出力された参照露光結果に基づき、 2つの露光ヘッドにより被露光面上に 形成されるヘッド間つなぎ領域以外の領域における解像度のばらつきや濃度のむら を最小限に抑えた本露光が実現できるように、本露光時において使用するマイクロミ ラーを指定することができる。  In this example, the main exposure is assumed to be double exposure, and therefore N = 2. First, the first line force indicated by the solid line in FIG. 22 is also subjected to reference exposure using only the micromirror corresponding to the light spot of the 128th (= 256Z2) line, and the reference exposure result is output as a sample. Based on the reference exposure result output from the sample, the main exposure can be realized with minimal variation in resolution and density unevenness in areas other than the joint area between the heads formed on the exposed surface by the two exposure heads. In addition, it is possible to specify a micromirror to be used during the main exposure.
例えば、図 22に斜線で覆って示す領域 90及び網掛けで示す領域 92内の光点列 に対応するマイクロミラー以外のマイクロミラー力 第 1行目から第 128行目のマイクロ ミラー中、本露光時において実際に使用されるものとして指定される。第 129行目か ら第 256行目のマイクロミラーについては、別途同様に参照露光を行って、本露光に 使用するマイクロミラーを指定してもよ 、し、第 1行目から第 128行目のマイクロミラー に対するパターンと同一のパターンを適用してもよい。 For example, in FIG. 22, a light spot array in a region 90 indicated by hatching and a region 92 indicated by shading Micromirror force other than micromirrors corresponding to is designated as the actual one used during the main exposure in the micromirrors in the 1st to 128th lines. For the micromirrors in the 129th to 256th lines, a separate reference exposure may be performed in the same manner to specify the micromirror to be used for the main exposure, and the first to 128th lines are designated. The same pattern as that of the micromirror may be applied.
このようにして本露光時に使用するマイクロミラーを指定することにより、 2つの露光 ヘッドにより被露光面上に形成される前記ヘッド間つなぎ領域以外の領域において 理想的な 2重露光に近い状態が実現できる。  By specifying the micromirror to be used during the main exposure in this way, a state close to ideal double exposure is realized in areas other than the joint area between the heads formed on the exposed surface by the two exposure heads. it can.
[0163] 以上の実施形態(1)〜(3)及び変更例においては、いずれも本露光を 2重露光と する場合について説明した力 これに限定されず、 2重露光以上のいかなる多重露 光としてもよい。特に 3重露光力 7重露光程度とすることにより、高解像度を確保し、 解像度のばらつき及び濃度むらが軽減された露光を実現することができる。  [0163] In the above embodiments (1) to (3) and the modified examples, the power described in the case where the main exposure is double exposure is not limited to this, and any multiple exposure over double exposure is possible. It is good. In particular, by setting the triple exposure power to approximately seven exposures, it is possible to achieve exposure with high resolution and reduced resolution variation and density unevenness.
[0164] また、上記の実施形態及び変更例に係る露光装置には、さらに、画像データが表 す 2次元パターンの所定部分の寸法が、選択された使用画素により実現できる対応 部分の寸法と一致するように、画像データを変換する機構が設けられて ヽることが好 ましい。そのように画像データを変換することによって、所望の 2次元パターンどおり の高精細なパターンを被露光面上に形成することができる。  [0164] In addition, in the exposure apparatus according to the embodiment and the modification example described above, the size of the predetermined portion of the two-dimensional pattern represented by the image data matches the size of the corresponding portion that can be realized by the selected use pixel. It is preferable that a mechanism for converting image data is provided. By converting the image data in this way, it is possible to form a high-definition pattern on the exposed surface according to the desired two-dimensional pattern.
[0165] [現像工程]  [0165] [Development process]
前記現像工程は、前記露光工程により前記パターン形成材料における感光層を露 光し、該感光層の露光した領域を硬化させた後、未硬化領域を除去することにより現 像し、ノターンを形成する工程である。  The developing step exposes the photosensitive layer in the pattern forming material in the exposing step, cures the exposed region of the photosensitive layer, and then removes the uncured region to form an image, thereby forming a no-turn. It is a process.
[0166] 前記現像工程は、例えば、現像手段により好適に実施することができる。 [0166] The development step can be preferably carried out, for example, by a developing means.
前記現像手段としては、現像液を用いて現像することができる限り特に制限はなぐ 目的に応じて適宜選択することができるが、例えば、前記現像液を噴霧する手段、前 記現像液を塗布する手段、前記現像液に浸漬させる手段などが挙げられる。これら は、 1種単独で使用してもよぐ 2種以上を併用してもよい。  The developing means is not particularly limited as long as it can be developed using a developer, and can be appropriately selected according to the purpose. For example, the means for spraying the developer, and applying the developer And means for immersing in the developer. These may be used alone or in combination of two or more.
また、前記現像手段は、前記現像液を交換する現像液交換手段、前記現像液を供 給する現像液供給手段などを有して ヽてもよ ヽ。 [0167] 前記現像液としては、特に制限はなぐ 目的に応じて適宜選択することができるが、 例えば、アルカリ性液、水系現像液、有機溶剤などが挙げられ、これらの中でも、弱 アルカリ性の水溶液が好ましい。該弱アルカリ性液の塩基成分としては、例えば、水 酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸リチウム、炭酸ナトリウム、炭酸 カリウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、リン酸ナトリウム 、リン酸カリウム、ピロリン酸ナトリウム、ピロリン酸カリウム、硼砂などが挙げられる。 In addition, the developing unit may include a developing solution replacing unit that replaces the developing solution, a developing solution supply unit that supplies the developing solution, and the like. [0167] The developer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include alkaline solutions, aqueous developers, organic solvents, etc. Among these, weakly alkaline aqueous solutions are mentioned. preferable. Examples of the basic component of the weak alkaline liquid include lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium phosphate, phosphorus Examples include potassium acid, sodium pyrophosphate, potassium pyrophosphate, and borax.
[0168] 前記弱アルカリ性の水溶液の pHとしては、例えば、約 8〜12が好ましぐ約 9〜11 力 り好ましい。前記弱アルカリ性の水溶液としては、例えば、 0. 1〜5質量%の炭酸 ナトリウム水溶液又は炭酸カリウム水溶液などが挙げられる。  [0168] The pH of the weak alkaline aqueous solution is more preferably about 9 to 11 force, for example, preferably about 8 to 12. Examples of the weak alkaline aqueous solution include 0.1 to 5% by mass of sodium carbonate aqueous solution or potassium carbonate aqueous solution.
前記現像液の温度としては、前記感光層の現像性に合わせて適宜選択することが できるが、例えば、約 25°C〜40°Cが好ましい。  The temperature of the developer can be appropriately selected according to the developability of the photosensitive layer, and for example, about 25 ° C. to 40 ° C. is preferable.
[0169] 前記現像液は、界面活性剤、消泡剤、有機塩基 (例えば、エチレンジァミン、ェタノ ールァミン、テトラメチルアンモ -ゥムハイドロキサイド、ジエチレントリァミン、トリェチ レンペンタミン、モルホリン、トリエタノールアミン等)や、現像を促進させるため有機溶 剤(例えば、アルコール類、ケトン類、エステル類、エーテル類、アミド類、ラタトン類 等)などと併用してもよい。また、前記現像液は、水又はアルカリ水溶液と有機溶剤を 混合した水系現像液であってもよぐ有機溶剤単独であってもよ 、。  [0169] The developer is a surfactant, an antifoaming agent, an organic base (for example, ethylenediamine, ethanolamine, tetramethylammonium hydroxide, diethylenetriamine, triethylenepentamine, morpholine, triethanolamine, etc.) In order to accelerate development, an organic solvent (for example, alcohols, ketones, esters, ethers, amides, latatones, etc.) may be used in combination. The developer may be an aqueous developer obtained by mixing water or an alkaline aqueous solution and an organic solvent, or may be an organic solvent alone.
[0170] [エッチング工程]  [0170] [Etching process]
前記エッチング工程としては、公知のエッチング処理方法の中力 適宜選択した方 法により行うことができる。  The etching step can be performed by a method appropriately selected from among known etching methods.
[0171] 前記エッチング処理に用いられるエッチング液としては、特に制限はなぐ 目的に 応じて適宜選択することができるが、例えば、前記金属層が銅で形成されている場合 には、塩化第二銅溶液、塩化第二鉄溶液、アルカリエッチング溶液、過酸化水素系 エッチング液などが挙げられ、これらの中でも、エッチングファクターの点力 塩ィ匕第 二鉄溶液が好ましい。  [0171] The etching solution used for the etching treatment can be appropriately selected according to the purpose without any particular restriction. For example, when the metal layer is formed of copper, cupric chloride is used. Examples thereof include a solution, a ferric chloride solution, an alkaline etching solution, and a hydrogen peroxide-based etching solution. Among these, the point of the etching factor salty ferric solution is preferable.
前記エッチング工程によりエッチング処理した後に前記パターンを剥離片として除 去することにより、前記基体の表面に永久パターンを形成することができる。  A permanent pattern can be formed on the surface of the substrate by removing the pattern as a strip after the etching process.
前記永久パターンとしては、特に制限はなぐ 目的に応じて適宜選択することがで き、例えば、配線パターンなどが好適に挙げられる。 The permanent pattern is not particularly limited and can be appropriately selected according to the purpose. For example, a wiring pattern etc. are mentioned suitably.
[0172] 〔レジスト剥離工程〕  [Resist stripping step]
前記レジスト剥離工程としては、前記パターンを剥離処理した後、剥離片として除 去する工程である限り、特に制限はなぐ公知のレジスト剥離処理方法の中から適宜 選択した方法により行うことができる。  The resist stripping step can be performed by a method appropriately selected from known resist stripping methods without particular limitation as long as it is a step of stripping the pattern and then stripping it as strips.
本発明の感光性榭脂組成物カゝらなる感光層は、前記レジスト剥離工程において生 じる剥離片が極めて微細であり、剥離不良などを防止でき、該剥離片による装置の 汚染を防止できる。  In the photosensitive layer comprising the photosensitive resin composition of the present invention, the strips produced in the resist stripping process are extremely fine, and can prevent stripping failure and the like, and can prevent contamination of the apparatus by the stripping pieces. .
[0173] 前記レジスト剥離処理に用いられる剥離液としては、特に制限はなぐ 目的に応じ て適宜選択することができるが、例えば、 1〜10質量%の水酸ィ匕ナトリウム水溶液、 1 〜: LO質量0 /0水酸ィ匕カリウム水溶液等の無機アルカリ水溶液や、 1〜20質量0 /0ァミン 系有機アルカリ水溶液などが挙げられ、これらの中でも、 1〜: LO質量%の無機アル力 リ水溶液が好ましい。 [0173] The stripping solution used for the resist stripping treatment is not particularly limited and may be appropriately selected depending on the purpose. For example, 1 to 10% by mass of sodium hydroxide aqueous solution, 1 to: LO mass inorganic alkali aqueous solution and the like 0/0 Mizusani匕aqueous potassium and 1 to 20 mass 0/0 Amin organic alkaline aqueous solution. among these,. 1 to: LO wt% of an inorganic Al force Li solution Is preferred.
[0174] 前記レジスト剥離工程により生じる剥離片としては、該剥離片における最大の辺の 長さが 5cm以下であることが好ましい。前記剥離片の最大の辺の長さが、 5cmを超え ると、剥離不良を生じたり、装置の搬送系に支障をきたして搬送不良の原因となること がある。  [0174] The strips produced by the resist stripping step preferably have a maximum side length of 5 cm or less. If the length of the maximum side of the peeling piece exceeds 5 cm, it may cause a peeling failure or cause trouble in the transportation system of the apparatus.
[0175] 〔プリント配線板の製造方法〕  [Manufacturing Method of Printed Wiring Board]
本発明のパターン形成方法は、プリント配線板の製造、特にスルーホール又はビア ホールなどのホール部を有するプリント配線板の製造に好適に使用することができる 。以下、本発明のパターン形成方法を利用したプリント配線板の製造方法の一例に ついて説明する。  The pattern forming method of the present invention can be suitably used for the production of a printed wiring board, particularly for the production of a printed wiring board having a hole portion such as a through hole or a via hole. Hereinafter, an example of a method for producing a printed wiring board using the pattern forming method of the present invention will be described.
[0176] プリント配線板の製造方法  [0176] Method for producing printed wiring board
スルーホール又はビアホールなどのホール部を有するプリント配線板の製造方法と しては、(1)前記基体としてホール部を有するプリント配線板形成用基板上に、前記 感光性転写フィルムを、その感光層が前記基体側となる位置関係にて積層して積層 体を形成し、(2)前記積層体の前記基体とは反対の側から、所望の領域に光照射を 行 、感光層を硬化させ、 (3)前記積層体力 前記感光性転写フィルムにおける支持 体、クッション層及びバリア層を除去し、(4)前記積層体における感光層を現像して、 該積層体中の未硬化部分を除去することによりパターンを形成することができる。 As a method for producing a printed wiring board having a hole portion such as a through hole or a via hole, (1) the photosensitive transfer film is formed on a substrate for forming a printed wiring board having a hole portion as the base, and the photosensitive layer thereof. Are stacked in a positional relationship on the substrate side, and (2) a desired region is irradiated from the opposite side of the laminate to the substrate to cure the photosensitive layer, (3) The laminate strength The support in the photosensitive transfer film The pattern can be formed by removing the body, cushion layer and barrier layer, (4) developing the photosensitive layer in the laminate, and removing the uncured portion in the laminate.
[0177] その後、プリント配線板を得るには、前記形成したパターンを用いて、前記プリント 配線板形成用基板をエッチング処理又はメツキ処理する方法 (例えば、公知のサブト ラタティブ法又はアディティブ法 (例えば、セミアディティブ法、フルアディティブ法)) により処理すればよい。これらの中でも、工業的に有利なテンティングでプリント配線 板を形成するためには、前記サブトラクティブ法が好ましい。前記処理後プリント配線 板形成用基板に残存する硬化榭脂は剥離させ、また、前記セミアディティブ法の場 合は、剥離後さらに銅薄膜部をエッチングすることにより、所望のプリント配線板を製 造することができる。また、多層プリント配線板も、前記プリント配線板の製造法と同様 に製造が可能である。 [0177] Thereafter, in order to obtain a printed wiring board, a method of etching or plating the printed wiring board forming substrate using the formed pattern (for example, a known subtractive method or additive method (for example, Semi-additive method and full additive method)). Among these, the subtractive method is preferable in order to form a printed wiring board with industrially advantageous tenting. After the treatment, the cured resin remaining on the printed wiring board forming substrate is peeled off. In the case of the semi-additive method, the copper thin film portion is further etched after the peeling to produce a desired printed wiring board. can do. A multilayer printed wiring board can also be manufactured in the same manner as the printed wiring board manufacturing method.
[0178] 次に、前記感光性転写フィルムを用いたスルーホールを有するプリント配線板の製 造方法について、更に説明する。  [0178] Next, a method for producing a printed wiring board having through holes using the photosensitive transfer film will be further described.
[0179] まずスルーホールを有し、表面が金属メツキ層で覆われたプリント配線板形成用基 板を用意する。前記プリント配線板形成用基板としては、例えば、銅張積層基板及び ガラス一エポキシなどの絶縁基材に銅メツキ層を形成した基板、又はこれらの基板に 層間絶縁膜を積層し、銅メツキ層を形成した基板 (積層基板)を用いることができる。  First, a printed wiring board forming substrate having through holes and having a surface covered with a metal plating layer is prepared. As the printed wiring board forming substrate, for example, a copper clad laminated substrate and a substrate in which a copper plating layer is formed on an insulating base material such as glass-epoxy, or an interlayer insulating film is laminated on these substrates, and a copper plating layer is formed. A formed substrate (laminated substrate) can be used.
[0180] 次に、前記感光性転写フィルム上に保護フィルムを有する場合には、該保護フィル ムを剥離して、前記感光性転写フィルムにおける感光層が前記プリント配線板形成 用基板の表面に接するようにして加圧ローラを用いて圧着する (積層工程)。これによ り、前記プリント配線板形成用基板と前記積層体とをこの順に有する積層体が得られ る。  [0180] Next, when a protective film is provided on the photosensitive transfer film, the protective film is peeled off, and the photosensitive layer in the photosensitive transfer film is in contact with the surface of the printed wiring board forming substrate. In this way, pressure bonding is performed using a pressure roller (lamination process). Thereby, a laminate having the printed wiring board forming substrate and the laminate in this order is obtained.
前記感光性転写フィルムの積層温度としては、特に制限はなぐ例えば、室温(15 〜30°C)、又は加熱下(30〜180°C)が挙げられ、これらの中でも、加温下(60〜14 0°C)が好ましい。  The lamination temperature of the photosensitive transfer film is not particularly limited, for example, room temperature (15 to 30 ° C.) or under heating (30 to 180 ° C.). Among these, under heating (60 to 140 ° C) is preferred.
前記圧着ロールのロール圧としては、特に制限はなぐ例えば、 0. l〜lMPaが好 ましい。  The roll pressure of the crimping roll is not particularly limited, for example, 0.1 to lMPa is preferable.
前記圧着の速度としては、特に制限はなぐ l〜3mZ分が好ましい。 また、前記プリント配線板形成用基板を予備加熱しておいてもよぐまた、減圧下で 積層してちょい。 The crimping speed is preferably 1 to 3 mZ, which is not particularly limited. Alternatively, the printed wiring board forming substrate may be preheated or laminated under reduced pressure.
[0181] 前記積層体の形成は、前記プリント配線板形成用基板上に前記感光性転写フィル ムを積層してもよぐまた、前記感光性転写フィルム製造用の感光性榭脂組成物溶液 などを前記プリント配線板形成用基板の表面に直接塗布し、乾燥させること〖こより前 記プリント配線板形成用基板上に感光層、バリア層、クッション層及び支持体を積層 してちよい。  [0181] The laminate may be formed by laminating the photosensitive transfer film on the printed wiring board forming substrate, or a photosensitive resin composition solution for manufacturing the photosensitive transfer film. The photosensitive layer, the barrier layer, the cushion layer, and the support may be laminated on the printed wiring board forming substrate before the coating is applied directly to the surface of the printed wiring board forming substrate and dried.
[0182] 次に、前記積層体の基体とは反対側の面から、光を照射して感光層を硬化させる。  [0182] Next, the photosensitive layer is cured by irradiating light from the surface of the laminate opposite to the substrate.
該露光を行った後、前記積層体から前記支持体を剥離する (剥離工程)。  After the exposure, the support is peeled from the laminate (peeling step).
[0183] 次に、前記プリント配線板形成用基板上の感光層の未硬化領域を、適当な現像液 にて溶解除去して、配線パターン形成用の硬化層とスルーホールの金属層保護用 硬化層のパターンを形成し、前記プリント配線板形成用基板の表面に金属層を露出 させる(現像工程)。  [0183] Next, the uncured region of the photosensitive layer on the printed wiring board forming substrate is dissolved and removed with an appropriate developer to cure the hardened layer for forming the wiring pattern and the metal layer for protecting the through hole. A layer pattern is formed to expose the metal layer on the surface of the printed wiring board forming substrate (development process).
[0184] また、現像後に必要に応じて後加熱処理や後露光処理によって、硬化部の硬化反 応を更に促進させる処理をおこなってもよ 、。現像は上記のようなウエット現像法であ つてもよく、ドライ現像法であってもよい。  [0184] Further, after development, if necessary, post-heating treatment or post-exposure processing may be performed to further accelerate the curing reaction of the cured portion. The development may be a wet development method as described above or a dry development method.
[0185] 次いで、前記プリント配線板形成用基板の表面に露出した金属層をエッチング液 で溶解除去する(エッチング工程)。スルーホールの開口部は、硬化榭脂組成物 (テ ント膜)で覆われているので、エッチング液がスルーホール内に入り込んでスルーホ ール内の金属メツキを腐食することなぐスルーホールの金属メツキは所定の形状で 残ることになる。これにより、前記プリント配線板形成用基板に配線パターンが形成さ れる。  Next, the metal layer exposed on the surface of the printed wiring board forming substrate is removed by dissolution with an etching solution (etching step). Since the opening of the through hole is covered with a cured resin composition (tent film), the metal coating of the through hole prevents the etching solution from entering the through hole and corroding the metal plating in the through hole. Will remain in the prescribed shape. Thereby, a wiring pattern is formed on the printed wiring board forming substrate.
[0186] 前記エッチング液としては、特に制限はなぐ 目的に応じて適宜選択することができ る力 例えば、前記金属層が銅で形成されている場合には、塩化第二銅溶液、塩ィ匕 第二鉄溶液、アルカリエッチング溶液、過酸ィ匕水素系エッチング液などが挙げられ、 これらの中でも、エッチングファクターの点から塩ィ匕第二鉄溶液が好ましい。  [0186] The etching solution is not particularly limited, and can be appropriately selected according to the purpose. For example, when the metal layer is formed of copper, a cupric chloride solution, salt solution Examples thereof include a ferric solution, an alkaline etching solution, a hydrogen peroxide-based etching solution, and the like. Among these, a salty ferric solution is preferable from the viewpoint of an etching factor.
[0187] 次に、強アルカリ水溶液などにて前記硬化層を剥離片として、前記プリント配線板 形成用基板から除去する(レジスト剥離工程)。前記レジスト剥離工程において剥離 片が生じるが、本発明の感光性榭脂組成物力もなる感光層により形成されたパター ンの剥離片は極めて微小であるため、剥離不良がなぐ該剥離片による装置の汚染 を防止できる。 [0187] Next, the cured layer is removed from the printed wiring board forming substrate with a strong alkaline aqueous solution or the like as a strip (resist stripping step). Stripping in the resist stripping process Although a piece is formed, the peeling piece of the pattern formed by the photosensitive layer having the photosensitive resin composition power of the present invention is extremely small, and therefore, contamination of the apparatus by the peeling piece without peeling failure can be prevented.
[0188] 前記強アルカリ水溶液における塩基成分としては、特に制限はなぐ例えば、水酸 化ナトリウム、水酸ィ匕カリウムなどが挙げられる。  [0188] The base component in the strong alkaline aqueous solution is not particularly limited, and examples thereof include sodium hydroxide and potassium hydroxide.
前記強アルカリ水溶液の pHとしては、例えば、約 12〜14が好ましぐ約 13〜14が より好まし 、。  The pH of the strong alkaline aqueous solution is, for example, preferably about 13-14, more preferably about 12-14.
前記強アルカリ水溶液としては、特に制限はなぐ例えば、 1〜10質量%の水酸ィ匕 ナトリウム水溶液又は水酸ィ匕カリウム水溶液などが挙げられる。  The strong alkaline aqueous solution is not particularly limited, and examples thereof include 1 to 10% by mass of sodium hydroxide aqueous solution or potassium hydroxide aqueous solution.
[0189] また、プリント配線板は、多層構成のプリント配線板であってもよい。  [0189] The printed wiring board may be a multilayer printed wiring board.
なお、前記感光性転写フィルムは上記のエッチングプロセスのみでなぐメツキプロ セスに使用してもよい。前記メツキ法としては、例えば、硫酸銅メツキ、ピロリン酸銅メッ キ等の銅メツキ、ハイフローはんだメツキ等のはんだメツキ、ワット浴 (硫酸ニッケル— 塩化ニッケル)メツキ、スルファミン酸ニッケル等のニッケルメツキ、ハード金メッキ、ソ フト金メッキ等の金メッキなどが挙げられる。  The photosensitive transfer film may be used in a plating process that involves only the etching process described above. Examples of the plating method include copper plating such as copper sulfate plating and copper pyrophosphate plating, solder plating such as high flow solder plating, watt bath (nickel sulfate-nickel chloride) plating, nickel plating such as nickel sulfamate, and hard plating. Gold plating such as gold plating and soft gold plating can be used.
[0190] 本発明のパターン形成方法は、本発明の感光性転写フィルムを用いるため、各種 パターンの形成、配線パターン等の永久パターンの形成、カラーフィルタ、柱材、リブ 材、スぺーサ一、隔壁等の液晶構造部材の製造、ホログラム、マイクロマシン、プル ーフなどの製造に好適に使用することができ、特に高精細な配線パターンの形成に 好適に使用することができる。  [0190] Since the pattern transfer method of the present invention uses the photosensitive transfer film of the present invention, formation of various patterns, formation of permanent patterns such as wiring patterns, color filters, pillar materials, rib materials, spacers, It can be suitably used for the production of liquid crystal structural members such as partition walls, the production of holograms, micromachines, proofs, etc., and can be particularly suitably used for the formation of high-definition wiring patterns.
実施例  Example
[0191] 以下、実施例により本発明を更に具体的に説明するが、本発明はこれらに限定さ れるものではない。  [0191] Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto.
[0192] (実施例 1) [0192] (Example 1)
感光性転写フィルムの製造  Manufacture of photosensitive transfer film
前記支持体として 16 μ m厚のポリエチレンテレフタレートフィルムに、下記の組成か らなる感光性榭脂組成物溶液を塗布し乾燥させて、 15 m厚の感光層を形成し、次 いで、該感光層の上に、前記保護フィルムとして 20 μ m厚のポリプロピレンフィルムを ラミネートで積層し、前記感光性転写フィルムを製造した。 A 16 μm thick polyethylene terephthalate film as the support is coated with a photosensitive resin composition solution having the following composition and dried to form a 15 m thick photosensitive layer, and then the photosensitive layer. A 20 μm thick polypropylene film as the protective film The photosensitive transfer film was manufactured by laminating.
[0193] [感光性榭脂組成物溶液の組成]  [Composition of photosensitive resin composition solution]
下記表 1に示す組成力もなるバインダー w · · · 20質量部  Binders with the compositional power shown in Table 1 below · · · 20 parts by mass
ΒΡΕ500(新中村ィ匕学製) ' · · 10質量部  ΒΡΕ500 (manufactured by Shin-Nakamura) · 10 parts by mass
UAT1 (新中村化学製) . . .10質量部  UAT1 (manufactured by Shin-Nakamura Chemical).. .10 parts by mass
Ν—メチルアタリドン · · ·〇. 11質量部  Ν—Methyl Ataridon ····· 11 parts by mass
2, 2,一ビス(ο クロ口フエ-ル)一 4, 4,, 5, 5,一テトラフエ-ルビイミ ダゾール · ' · 2. 17質量部  2, 2, 1 bis (ο black mouth) 1, 4, 4, 5, 5, 1 tetraphenyl imidazole · '· 2.17 parts by mass
2—メルカプトべンズイミダゾール' · ·0. 23質量部  2-Mercaptobenzimidazole '·· 0.23 parts by mass
マラカイトグリーンシユウ酸塩… 0. 02質量部  Malachite green oxalate… 0.02 parts by mass
ロイコクリスタルバイオレット · · ·〇. 26質量部  Leuco crystal violet ·····. 26 parts by mass
メチルェチルケトン. · · 40質量部  Methyl ethyl ketone 40 mass parts
1ーメトキシ 2—プロパノール' · · 20質量部  1-methoxy 2-propanol '· · 20 parts by mass
*:共重合体 Α及び共重合体 Βを含む。各共重合体の質量平均分子量、質量比、組 成を下記表 1に示す。  *: Including copolymer Α and copolymer Β. The weight average molecular weight, mass ratio, and composition of each copolymer are shown in Table 1 below.
[0194] 次に、前記基体として、表面を研磨、水洗、乾燥した銅張積層板 (スルーホールな し、銅厚み 12 m)の表面に、前記感光性転写フィルムの保護フィルムを剥がしなが ら、該感光性転写フィルムの感光層が前記銅張積層板に接するようにしてラミネータ 一(MODEL8B— 720— PH、大成ラミネーター (株)製)を用いて圧着させ、前記銅 張積層板と、前記感光層と、前記ポリエチレンテレフタレートフィルム (支持体)とがこ の順に積層された積層体を調製した。  [0194] Next, the protective film of the photosensitive transfer film is peeled off from the surface of a copper-clad laminate (no through-hole, copper thickness: 12 m) whose surface is polished, washed and dried as the substrate. And laminator (MODEL8B-720-PH, manufactured by Taisei Laminator Co., Ltd.) so that the photosensitive layer of the photosensitive transfer film is in contact with the copper-clad laminate, the copper-clad laminate, A laminate in which the photosensitive layer and the polyethylene terephthalate film (support) were laminated in this order was prepared.
圧着条件は、圧着ロール温度 105°C、圧着ロール圧力 0. 3MPa、ラミネート速 度 lmZ分とした。  The crimping conditions were a crimping roll temperature of 105 ° C, a crimping roll pressure of 0.3 MPa, and a laminating speed of lmZ.
前記積層体における前記感光性転写フィルムの感光層について、溶融粘度、基板 上の追従性、未露光膜破れ、現像性、感度、解像度、エッジラフネス、剥離片サイズ 、及びテント性を以下の方法により評価した。  About the photosensitive layer of the photosensitive transfer film in the laminate, the melt viscosity, followability on the substrate, unexposed film breakage, developability, sensitivity, resolution, edge roughness, peeled piece size, and tent property are as follows. evaluated.
[0195] <溶融粘度 > [0195] <Melt viscosity>
感光層の面同士のラミネートを繰り返し、厚み 150± 10 mとなるようにサンプルを 調整後、感光層を 25°C50%RHの環境で 24時間放置した後、レオメータ(動的粘弹 性測定装置)(REOLOGCA社製、 DynAlyserDAR— 100)を用いて、周波数 1Hz 、ギャップ 1. 5mmの条件で測定した。結果を表 2に示す。 Repeat the lamination of the photosensitive layer surfaces, and prepare the sample so that the thickness is 150 ± 10 m. After adjustment, the photosensitive layer is allowed to stand in an environment of 25 ° C and 50% RH for 24 hours, and then a rheometer (dynamic viscosity measuring device) (REOLOGCA, DynAlyserDAR-100) is used with a frequency of 1 Hz and a gap of 1.5 mm. It measured on condition of this. The results are shown in Table 2.
[0196] <現像性 > [0196] <Developability>
前記積層体力 前記支持体を剥がし取り、銅張積層板上の前記感光層の全面に 3 0°Cの 1質量%炭酸ナトリウム水溶液を 0. 15MPaの圧力にてスプレーし、炭酸ナトリ ゥム水溶液のスプレー開始力 銅張積層板上の感光層が溶解除去されるまでに要し た時間を測定し、これを最短現像時間とした。該最短現像時間を、以下の基準により 評価した。結果を表 3に示す。  The laminate strength is peeled off, and a 1 mass% sodium carbonate aqueous solution at 30 ° C. is sprayed at a pressure of 0.15 MPa over the entire surface of the photosensitive layer on the copper clad laminate, Spray start force The time required for the photosensitive layer on the copper clad laminate to be dissolved and removed was measured, and this was taken as the shortest development time. The shortest development time was evaluated according to the following criteria. The results are shown in Table 3.
[0197] 評価基準 [0197] Evaluation criteria
〇· · · 30秒以下  ○ · · · 30 seconds or less
△ · · · 30秒を越え 60秒以下  △ · · · Over 30 seconds and less than 60 seconds
Χ · · · 60秒を超える  Χ Over 60 seconds
[0198] <感度 > [0198] <Sensitivity>
前記調製した積層体における感光性転写フィルムの感光層に対し、前記支持体側 から、以下に説明するパターン形成装置を用いて、 0. ImiZcm2力も 21/2倍間隔で lOOmiZcm2までの光エネルギー量の異なる光を照射して露光し、前記感光層の一 部の領域を硬化させた。室温にて 10分間静置した後、前記積層体から前記支持体 を剥がし取り、銅張積層板上の感光層の全面に、 30°Cの 1質量%炭酸ナトリウム水 溶液をスプレー圧 0. 15MPaにて前記現像性の評価にぉ 、て求めた最短現像時間 の 2倍の時間スプレーし、未硬化の領域を溶解除去して、残った硬化領域の厚みを 測定した。次いで、光の照射量と、硬化層の厚さとの関係をプロットして感度曲線を 得た。該感度曲線から、硬化領域の厚みが露光前の感光層と同じ 15 mとなった時 の光エネルギー量を、感光層を硬化させるために必要な光エネルギー量 (感度)とし た。結果を表 3に示す。 The photosensitive layer of the photosensitive transfer film in the laminate described above prepared from said support side, a patterning device, which is described below, the light energy of 0. ImiZcm 2 force at 2 1/2 times intervals until LOOmiZcm 2 Exposure was performed by irradiating light of different amounts, and a part of the photosensitive layer was cured. After standing at room temperature for 10 minutes, the support was peeled from the laminate, and a 1 mass% sodium carbonate aqueous solution at 30 ° C was sprayed to the entire surface of the photosensitive layer on the copper clad laminate at a pressure of 0.15 MPa. In the evaluation of the developability, spraying was performed for twice the minimum development time obtained in the above, the uncured area was dissolved and removed, and the thickness of the remaining cured area was measured. Next, a sensitivity curve was obtained by plotting the relationship between the amount of light irradiation and the thickness of the cured layer. From the sensitivity curve, the light energy amount (sensitivity) required for curing the photosensitive layer was determined as the amount of light energy when the thickness of the cured region was 15 m, which was the same as that of the photosensitive layer before exposure. The results are shown in Table 3.
[0199] < <パターン形成装置 > > [0199] <<Pattern forming device>>
前記光照射手段として特開 2005— 258431号公報に記載の合波レーザ光源と、 前記光変調手段として図 6に概略図を示した主走査方向にマイクロミラー 58が 1024 個配列されたマイクロミラー列が、副走査方向に 768組配列された内、 1024個 X 25 6列のみを駆動するように制御した DMD36と、図 5A及び図 5Bに示した光を前記感 光性転写フィルムに結像する光学系とを有する露光ヘッド 30を備えたパターン形成 装置 10を用いた。 As the light irradiating means, a combined laser light source described in JP-A-2005-258431, and as the light modulating means, a micromirror 58 is 1024 in the main scanning direction schematically shown in FIG. Among the 768 array of arrayed micromirrors arranged in the sub-scanning direction, DMD36 controlled to drive only 1024 x 256 6 columns, and the light shown in FIG. 5A and FIG. A pattern forming apparatus 10 provided with an exposure head 30 having an optical system that forms an image on a conductive transfer film was used.
[0200] 各露光ヘッド 30すなわち各 DMD36の設定傾斜角度としては、使用可能な 1024 列 X 256行のマイクロミラー 58を使用してちょうど 2重露光となる角度 Θ よりも若干  [0200] The tilt angle of each exposure head 30, ie each DMD 36, is slightly larger than the angle Θ that is exactly double exposure using the available 1024 rows x 256 rows micromirror 58
ideal  ideal
大き 、角度を採用した。この角度 0 は、 N重露光の数 N、使用可能なマイクロミラ  Adopted the size and angle. This angle 0 is the number of N exposures N, the available micromirrors
ideal  ideal
一 58の列方向の個数 s、使用可能なマイクロミラー 58の列方向の間隔 p、及び露光 ヘッド 30を傾斜させた状態においてマイクロミラーによって形成される走査線のピッ チ δに対し、下記式 1、  (1) The number s in the column direction of 58, the interval p in the column direction of the usable micromirrors 58, and the pitch δ of the scanning line formed by the micromirrors when the exposure head 30 is tilted, ,
spsin θ ≥Ν δ (式 1)  spsin θ ≥Ν δ (Equation 1)
iaeal  iaeal
により与えられる。本実施形態における DMD36は、上記のとおり、縦横の配置間 隔が等しい多数のマイクロミラー 58が矩形格子状に配されたものであるので、 pcos θ = δ (式 2)  Given by. As described above, the DMD 36 in the present embodiment is configured by arranging a large number of micromirrors 58 having equal vertical and horizontal arrangement intervals in a rectangular lattice shape, so that pcos θ = δ (Equation 2)
ideal  ideal
であり、上記式 1は、  And the above equation 1 is
stan Q =N (式 3)  stan Q = N (Formula 3)
ideal  ideal
であり、 s = 256, N = 2であるので、角度 0 は約 0. 45度である。したがって、設  Since s = 256, N = 2, the angle 0 is about 0.45 degrees. Therefore, the setting
ideal  ideal
定傾斜角度 Θとしては、たとえば 0. 50度を採用した。  As the constant inclination angle Θ, for example, 0.50 degrees was adopted.
[0201] まず、 2重露光における解像度のばらつきと露光むらを補正するため、被露光面の 露光パターンの状態を調べた。結果を図 16に示した。図 16においては、ステージ 14 を静止させた状態で感光性転写フィルム 12の被露光面上に投影される、露光ヘッド 30 と 30 が有する DMD36の使用可能なマイクロミラー 58からの光点群のパター [0201] First, in order to correct the variation in resolution and uneven exposure in double exposure, the state of the exposure pattern on the exposed surface was examined. The results are shown in FIG. In FIG. 16, the pattern of the light spot group from the micromirror 58 that can be used by the DMD 36 of the exposure heads 30 and 30 projected onto the exposed surface of the photosensitive transfer film 12 with the stage 14 stationary.
12 21  12 21
ンを示した。また、下段部分に、上段部分に示したような光点群のパターンが現れて いる状態でステージ 14を移動させて連続露光を行った際に、被露光面上に形成さ れる露光パターンの状態を、露光エリア 32 と 32 について示した。なお、図 16では  Showed. The state of the exposure pattern formed on the exposed surface when the stage 14 is moved and continuous exposure is performed with the light spot group pattern shown in the upper part appearing in the lower part. Are shown for exposure areas 32 and 32. In Figure 16,
12 21  12 21
、説明の便宜のため、使用可能なマイクロミラー 58の 1列おきの露光パターンを、画 素列群 Aによる露光パターンと画素列群 Bによる露光パターンとに分けて示したが、 実際の被露光面上における露光パターンは、これら 2つの露光パターンを重ね合わ せたものである。 For convenience of explanation, the exposure pattern for every other column of the micromirrors 58 that can be used is shown separately for the exposure pattern by the pixel column group A and the exposure pattern by the pixel column group B. The exposure pattern on the surface overlaps these two exposure patterns. It is
[0202] 図 16に示したとおり、露光ヘッド 30 と 30 の間の相対位置の、理想的な状態から  [0202] From the ideal state of the relative position between exposure heads 30 and 30, as shown in FIG.
12 21  12 21
のずれの結果として、画素列群 Aによる露光パターンと画素列群 Bによる露光パター ンとの双方で、露光エリア 32 と 32 の前記露光ヘッドの走査方向と直交する座標  As a result of the shift, the coordinates orthogonal to the scanning direction of the exposure head in the exposure areas 32 and 32 in both the exposure pattern by the pixel column group A and the exposure pattern by the pixel column group B.
12 21  12 21
軸上で重複する露光領域にお!、て、理想的な 2重露光の状態よりも露光過多な領域 が生じていることが判る。  It can be seen that there are overexposed areas in the overlapping exposure areas on the axis than in the ideal double exposure state.
[0203] 前記光点位置検出手段としてスリット 28及び光検出器の組を用い、露光ヘッド 30 [0203] A set of a slit 28 and a photodetector is used as the light spot position detecting means, and an exposure head 30 is used.
12 ついては露光エリア 32 内の光点 P (l, 1)と P (256, 1)の位置を、露光ヘッド 30  12, the positions of the light spots P (l, 1) and P (256, 1) in the exposure area 32
12 21 については露光エリア 32 内の光点 P (l, 1024)と P (256, 1024)の位置を検出し  For 12 21, the positions of light spots P (l, 1024) and P (256, 1024) within the exposure area 32 are detected.
21  twenty one
、それらを結ぶ直線の傾斜角度と、露光ヘッドの走査方向とがなす角度を測定した。  The angle formed by the inclination angle of the straight line connecting them and the scanning direction of the exposure head was measured.
[0204] 実傾斜角度 Θ 'を用いて、下記式 4 [0204] Using the actual inclination angle Θ ', the following equation 4
ttan 0 (式 4)  ttan 0 (Equation 4)
の関係を満たす値 tに最も近い自然数 Tを、露光ヘッド 30 と 30 のそれぞれについ  The natural number T that is closest to the value t that satisfies this relationship is assigned to each of the exposure heads 30 and 30.
12 21  12 21
て導出した。露光ヘッド 30 については T= 254、露光ヘッド 30 については Τ= 25  Derived. T = 254 for exposure head 30, 、 = 25 for exposure head 30
12 21  12 21
5がそれぞれ導出された。その結果、図 17において斜線で覆われた部分 78及び 80 を構成するマイクロミラーが、本露光時に使用しないマイクロミラーとして特定された。  5 were derived respectively. As a result, the micromirrors constituting the portions 78 and 80 covered with diagonal lines in FIG. 17 were identified as micromirrors that are not used during the main exposure.
[0205] その後、図 17において斜線で覆われた領域 78及び 80を構成する光点以外の光 点に対応するマイクロミラーに関して、同様にして図 17にお 、て斜線で覆われた領 域 82及び網掛けで覆われた領域 84を構成する光点に対応するマイクロミラーが特 定され、本露光時に使用しないマイクロミラーとして追加された。 Thereafter, regarding the micromirror corresponding to the light spots other than the light spots constituting the areas 78 and 80 covered by the oblique lines in FIG. 17, the area 82 covered by the oblique lines in FIG. In addition, micromirrors corresponding to the light spots constituting the shaded area 84 were identified and added as micromirrors not used during the main exposure.
これらの露光時に使用しないものとして特定されたマイクロミラーに対して、前記描 素部素制御手段により、常時オフ状態の角度に設定する信号が送られ、それらのマ イク口ミラーは、実質的に露光に関与しな 、ように制御した。  For the micromirrors identified as not used at the time of exposure, a signal for setting the angle of the always-off state is sent by the pixel unit control means, and these microphone mirrors are substantially It was controlled so that it was not involved in exposure.
これにより、露光エリア 32 と 32 のうち、複数の前記露光ヘッドで形成された被露  As a result, the exposure areas formed by a plurality of the exposure heads in the exposure areas 32 and 32.
12 21  12 21
光面上の重複露光領域であるヘッド間つなぎ領域以外の各領域にお!、て、理想的 な 2重露光に対して露光過多となる領域、及び露光不足となる領域の合計面積を最 小とすることができる。  Minimize the total area of overexposed and underexposed areas for ideal double exposure in each area other than the head-to-head connection area, which is the overlapping exposure area on the optical surface. It can be.
[0206] <解像度 > 前記現像性の評価方法と同じ方法及び条件で前記積層体を作製し、室温 (23°C、[0206] <Resolution> The laminate is produced under the same method and conditions as the developability evaluation method, and the room temperature (23 ° C,
55%RH)にて 10分間静置した。得られた積層体のポリエチレンテレフタレートフィル ム (支持体)上から、前記パターン形成装置を用いて、ライン Zスペース = 1Z1でラ イン幅 10 m〜50 μ mまで 1 μ m刻みで各線幅の露光を行う。この際の露光量は、 前記感度の測定で求めた前記感光性転写フィルムの感光層を硬化させるために必 要な光エネルギー量である。室温にて 10分間静置した後、前記積層体からポリェチ レンテレフタレートフィルム (支持体)を剥がし取る。銅張積層板上の感光層の全面に(55% RH) for 10 minutes. From the polyethylene terephthalate film (support) of the resulting laminate, using the pattern forming device, exposure of each line width in 1 μm increments from 10 m to 50 μm line width with line Z space = 1Z1. I do. The amount of exposure at this time is the amount of light energy required to cure the photosensitive layer of the photosensitive transfer film obtained by measuring the sensitivity. After standing at room temperature for 10 minutes, the polyethylene terephthalate film (support) is peeled off from the laminate. On the entire surface of the photosensitive layer on the copper clad laminate
30°Cの 1質量%炭酸ナトリウム水溶液をスプレー圧 0. 15MPaにて最短現像時間の1% sodium carbonate aqueous solution at 30 ° C with spray pressure 0.15MPa and the shortest development time
2倍の時間スプレーし、未硬化領域を溶解除去する。この様にして得られた硬化榭脂 ノ ターン付き銅張積層板の表面を光学顕微鏡で観察し、硬化樹脂パターンのライン にッマリ、ョレ等の異常が無ぐかつスペース形成可能な最小のライン幅を測定し、こ れを解像度とした。該解像度は数値が小さいほど良好である。結果を表 3に示す。 Spray for twice the time to dissolve away uncured areas. The surface of the copper clad laminate with a cured resin pattern obtained in this way is observed with an optical microscope, and the cured resin pattern line is free from defects such as toughness and distortion, and is the smallest line that can form a space. The width was measured and used as the resolution. The smaller the numerical value, the better the resolution. The results are shown in Table 3.
[0207] <エッジラフネス >  [0207] <Edge roughness>
前記積層体に、前記パターン形成装置を用いて、前記露光ヘッドの走査方向と直 交する方向の横線パターンが形成されるように照射して露光し、前記感光層の一部 の領域を前記解像度の測定と同様にしてパターンを形成した。得られたパターンのう ち、ライン幅 30 mのラインの任意の 5箇所について、レーザ顕微鏡 (VK— 9500、 キーエンス (株)製;対物レンズ 50倍)を用いて観察し、視野内のエッジ位置のうち、 最も膨らんだ箇所(山頂部)と、最もくびれた箇所 (谷底部)との差を絶対値として求め 、観察した 5箇所の平均値を算出し、これをエッジラフネスとした。該エッジラフネスは 、値が小さい程、良好な性能を示すため好ましい。結果を表 3に示す。  Using the pattern forming apparatus, the laminated body is irradiated and exposed so as to form a horizontal line pattern in a direction perpendicular to the scanning direction of the exposure head, and a partial region of the photosensitive layer is exposed to the resolution. A pattern was formed in the same manner as the above measurement. Of the obtained patterns, any five points on a line with a line width of 30 m were observed using a laser microscope (VK-9500, manufactured by Keyence Corporation; objective lens 50 ×), and the edge position in the field of view was observed. Of these, the difference between the most swollen part (mountain peak) and the most constricted part (valley bottom) was obtained as an absolute value, and the average value of the five observed points was calculated, and this was used as edge roughness. As the edge roughness, a smaller value is preferable because good performance is exhibited. The results are shown in Table 3.
[0208] <テント性 >  [0208] <Tent characteristics>
前記基体として、表面を研磨、水洗、乾燥した銅張積層板 (4mm径のスルーホー ル 100個、銅厚み 12 m)を用いた以外は、前記現像性の評価方法と同じ方法及び 条件により積層体を調製した。前記積層体に、前記パターン形成装置を用いて全面 露光し、現像を行った。その後、スルーホールの貫通穴上に形成された硬化榭脂パ ターンの破れの有無を光学顕微鏡で観察した。結果を表 3に示す。  The laminated body was subjected to the same method and conditions as the developability evaluation method, except that a copper-clad laminate (100 pieces of 4 mm diameter through holes, copper thickness 12 m) was used as the substrate. Was prepared. The entire surface of the laminate was exposed using the pattern forming apparatus and developed. Thereafter, the presence or absence of breakage of the cured resin pattern formed on the through hole was observed with an optical microscope. The results are shown in Table 3.
[0209] <剥離片サイズ > 前記解像度の測定において形成したパターンを有する前記積層体を用いて、該積 層体における露出した銅張積層板の表面に、塩ィ匕鉄エツチャント (塩化第二鉄含有 エッチング溶液、 40° ボーメ、液温 40°C)を 0. 25MPaで、 36秒スプレーして、硬化 層で覆われていない露出した領域の銅層を溶解除去することによりエッチング処理を 行った。次いで、前記基体上の硬化榭脂パターンに 3質量%の水酸ィ匕ナトリウム水溶 液 (40°C)をスプレーしてレジスト剥離処理を行い、剥離片を除去した。除去された前 記剥離片のサイズを測定し、最大の剥離片について、最も大きな辺の長さを光学顕 微鏡により測定した。結果を表 3に示す。 [0209] <Peeling piece size> Using the laminate having the pattern formed in the measurement of the resolution, on the surface of the exposed copper-clad laminate in the laminate, a salted pig iron etchant (ferric chloride-containing etching solution, 40 ° Baume, Etching was performed by spraying at a liquid temperature of 40 ° C at 0.25 MPa for 36 seconds to dissolve and remove the exposed copper layer not covered with the hardened layer. Next, a 3% by weight aqueous solution of sodium hydroxide and sodium hydroxide (40 ° C.) was sprayed onto the cured resin pattern on the substrate to perform a resist stripping process, and stripped pieces were removed. The size of the peeled piece removed was measured, and the length of the largest side of the largest peeled piece was measured with an optical microscope. The results are shown in Table 3.
[0210] <基板上の追従性 > [0210] <Trackability on substrate>
前記基体 (基板)として、表面を研磨、水洗、乾燥し、ライン Zスペース = 1Z1で、 ライン幅 50 μ m、エッチング深さ 8 μ mでノヽーフェッチラインを形成した銅張積層板( 銅厚み 16 μ m)上に、前記現像性の評価方法と同じ条件で前記積層体を作製し、得 られた積層体のポリエチレンテレフタレートフィルム (支持体)上から、前記パターン形 成装置を用いて、前記ハーフエッチラインと垂直に、ライン Zスペース = 30 mのラ インが形成されるように照射して露光し、前記解像度の測定と同様にしてパターンを 形成した。次いで、前記剥離片サイズの評価方法と同様にしてエッチング処理を行つ た後、前記基板の表面を光学顕微鏡により観察し、以下の基準で評価を行なった。 結果を表 2に示す。  As the substrate (substrate), a copper-clad laminate (copper thickness) with a surface polished, washed and dried, with a line Z space = 1Z1, a line width of 50 μm, an etching depth of 8 μm and a no fetch line formed. 16 μm) on the same conditions as in the evaluation method for developability, the laminate was prepared, and the obtained laminate was used on the polyethylene terephthalate film (support). Irradiation was performed so as to form a line with Z space = 30 m perpendicular to the half-etched line, and a pattern was formed in the same manner as the resolution measurement. Next, after performing an etching process in the same manner as the peeling piece size evaluation method, the surface of the substrate was observed with an optical microscope and evaluated according to the following criteria. The results are shown in Table 2.
〇· · 'ノヽ一フェッチ部分もレジストが追従しているためパターンの断線がない X · · 'ハーフエッチ部分のレジスト追従が十分でなくパターンの断線がある [0211] <未露光膜破れ >  ○ 'No pattern breaks because the resist is also following in the first fetch part X · ·' There is not enough resist tracking in the half-etched part, and there is a pattern break [0211] <Unexposed film breaks>
前記積層体における銅張積層板に対し、前記圧着条件で、感光層を両面にラミネ ートした以外は前記積層体と同様にして、未露光膜破れの評価用の積層体を調製し 、得られた積層体を、室温(25°C、 50%RH)にて 5日間保管した。この保管後の積 層体から、支持体を剥離して、前記穴部分の感光層が剥離して破れた個数をカウン トし、未露光膜破れの評価を行った。前記直径 l〜6mmの各穴部において、 30穴が 全く破れな力つた穴部のうちの最大のものの直径を、未露光膜破れの値とした。結果 を表 2に示す。 [0212] (実施例 2〜6) A laminated body for evaluation of unexposed film breakage was prepared in the same manner as in the laminated body except that the photosensitive layer was laminated on both surfaces under the pressure bonding conditions with respect to the copper clad laminated board in the laminated body. The obtained laminate was stored at room temperature (25 ° C., 50% RH) for 5 days. The substrate was peeled from the layered product after storage, and the number of peeled and broken photosensitive layers in the hole portion was counted, and evaluation of unexposed film breakage was performed. In each hole portion having a diameter of 1 to 6 mm, the diameter of the largest hole portion in which 30 holes were not broken at all was defined as the unexposed film tear value. The results are shown in Table 2. [0212] (Examples 2 to 6)
実施例 1において、バインダーの共重合体 A及び共重合体 Bを、表 1に示す組成及 び質量比とした以外は実施例 1と同様にして、溶融粘度、基板上の追従性、未露光 膜破れ、現像性、感度、解像度、エッジラフネス、剥離片サイズ、及びテント性を評価 した。結果を表 2及び表 3に示す。  In Example 1, except that the binder copolymer A and copolymer B were changed to the compositions and mass ratios shown in Table 1, in the same manner as in Example 1, the melt viscosity, the followability on the substrate, unexposed Film tear, developability, sensitivity, resolution, edge roughness, peeled piece size, and tent properties were evaluated. The results are shown in Tables 2 and 3.
[0213] (実施例 7)  [0213] (Example 7)
実施例 1において、前記露光装置を、光源として超高圧水銀灯を備えた露光装置 に代え、フォトマスクを用いて露光を行った以外は、実施例 1と同様にして、溶融粘度 、基板上の追従性、未露光膜破れ、現像性、感度、解像度、エッジラフネス、剥離片 サイズ、及びテント性を評価した。結果を表 2及び表 3に示す。  In Example 1, the exposure apparatus was replaced with an exposure apparatus having an ultra-high pressure mercury lamp as a light source, and the exposure was performed using a photomask. , Unexposed film breakage, developability, sensitivity, resolution, edge roughness, peeled piece size, and tent properties were evaluated. The results are shown in Tables 2 and 3.
[0214] (実施例 8) [0214] (Example 8)
実施例 1のパターン形成装置において、前記式 3に基づき N= 1として設定傾斜角 度 Θを算出し、前記式 4に基づき ttan 0 ' = 1の関係を満たす値 tに最も近い自然数 Tを導出し、 N重露光 (N= l)を行ったこと以外は、実施例 1と同様にして、溶融粘度 、基板上の追従性、未露光膜破れ、現像性、感度、解像度、エッジラフネス、剥離片 サイズ、及びテント性を評価した。結果を表 2及び表 3に示す。  In the pattern forming apparatus of the first embodiment, the set inclination angle Θ is calculated with N = 1 based on Equation 3 above, and the natural number T closest to the value t satisfying the relationship of ttan 0 ′ = 1 is derived based on Equation 4 above. In the same manner as in Example 1 except that N exposure (N = l) was performed, melt viscosity, followability on substrate, unexposed film breakage, developability, sensitivity, resolution, edge roughness, peeling The piece size and tent property were evaluated. The results are shown in Tables 2 and 3.
なお、最短現像時間は 10秒であり、感光層を硬化させるために必要な光エネルギ 一直 ίま 3mj/ cm (?あつ 7こ。  The shortest development time is 10 seconds, and the light energy required to cure the photosensitive layer is approximately 3 mj / cm (?
[0215] (比較例 1〜5) [0215] (Comparative Examples 1 to 5)
実施例 1において、バインダーの共重合体 A及び共重合体 Bを、表 1に示す組成と した以外は実施例 1と同様にして、溶融粘度、基板上の追従性、未露光膜破れ、現 像性、感度、解像度、エッジラフネス、剥離片サイズ、及びテント性を評価した。結果 を表 2及び表 3に示す。  In Example 1, except that the copolymer A and the copolymer B of the binder were changed to the compositions shown in Table 1, in the same manner as in Example 1, the melt viscosity, the followability on the substrate, the unexposed film was broken, Image quality, sensitivity, resolution, edge roughness, peeled piece size, and tentability were evaluated. The results are shown in Tables 2 and 3.
[0216] [表 1] 質量平均分子量 共重合体 A 共重合体 B [0216] [Table 1] Weight average molecular weight Copolymer A Copolymer B
A/B  A / B
A B AA St MAA MMA EHA BzMA 実施例 1 8000 100000 10/90 37.0 63.0 28.8 55.0 11.7 4.5 実施例 2 8000 100000 50/50 37.0 63.0 28.8 55.0 11.7 4.5 実施例 3 8000 100000 80/20 37.0 63.0 28.8 55.0 11.7 4.5 実施例 4 4000 100000 10/90 37.0 63.0 28.8 55.0 11.7 4.5 実施例 5 8000 100000 10/90 29.0 71.0 28.8 55.0 11.7 4.5 実施例 6 8000 100000 10/90 37.0 63.0 30.0 0.0 0.0 70.0 実施例 7 8000 100000 10/90 37.0 63.0 28.8 55.0 11.7 4.5 実施例 8 8000 100000 10/90 37.0 63.0 28.8 55.0 11.7 4.5 比較例 1 - 100000 0/100 - - 28.8 55.0 11.7 4.5 比較例 2 8000 100000 5/95 37.0 63.0 28.8 55.0 11.7 4.5 比較例 3 8000 100000 95/5 37.0 63.0 28.8 55.0 11.7 4.5 比較例 4 15000 100000 10/90 37.0 63.0 28.8 55.0 11.7 4.5 比較例 5 8000 20000 10/90 37.0 63.0 28.8 55.0 11.7 4.5  AB AA St MAA MMA EHA BzMA Example 1 8000 100000 10/90 37.0 63.0 28.8 55.0 11.7 4.5 Example 2 8000 100000 50/50 37.0 63.0 28.8 55.0 11.7 4.5 Example 3 8000 100000 80/20 37.0 63.0 28.8 55.0 11.7 4.5 Implementation Example 4 4000 100000 10/90 37.0 63.0 28.8 55.0 11.7 4.5 Example 5 8000 100000 10/90 29.0 71.0 28.8 55.0 11.7 4.5 Example 6 8000 100000 10/90 37.0 63.0 30.0 0.0 0.0 70.0 Example 7 8000 100000 10/90 37.0 63.0 28.8 55.0 11.7 4.5 Example 8 8000 100000 10/90 37.0 63.0 28.8 55.0 11.7 4.5 Comparative Example 1-100000 0/100--28.8 55.0 11.7 4.5 Comparative Example 2 8000 100000 5/95 37.0 63.0 28.8 55.0 11.7 4.5 Comparative Example 3 8000 100000 95/5 37.0 63.0 28.8 55.0 11.7 4.5 Comparative Example 4 15000 100000 10/90 37.0 63.0 28.8 55.0 11.7 4.5 Comparative Example 5 8000 20000 10/90 37.0 63.0 28.8 55.0 11.7 4.5
AA:アクリル酸 AA: Acrylic acid
St:スチレン  St: Styrene
MAA:メタクリル酸  MAA: Methacrylic acid
MMA:メチルメタタリレート  MMA: Methyl metatalylate
EHT: 2 ェチルへキシルアタリレ  EHT: 2 Ethylhexyl Atarire
BzMA:ベンジルメタタリレート  BzMA: benzylmetatalylate
[表 2] [Table 2]
溶融粘度(Pa- s) 基板上の 未露光膜破れ Melt viscosity (Pa-s) Unexposed film break on substrate
50°C 70。C 追従性 ^mm  50 ° C 70. C followability ^ mm
実施例 1 110000 18000 〇 6以上 Example 1 110000 18000 ○ 6 or more
実施例 2 55000 8000 o 5 Example 2 55000 8000 o 5
実施例 3 50000 6000 〇 4 Example 3 50000 6000 〇 4
実施例 4 100000 11000 〇 6以上 Example 4 100000 11000 〇 6 or more
実施例 5 110000 18000 o 6以上 Example 5 110000 18000 o 6 or more
実施例 6 110000 18000 〇 6以上 Example 6 110000 18000 〇 6 or more
実施例 7 110000 18000 o 6以上 Example 7 110000 18000 o 6 or more
実施例 8 110000 18000 〇 6以上 Example 8 110000 18000 ○ 6 or more
比較例 1 180000 45000 X 6以上 Comparative Example 1 180000 45000 X 6 or more
比較例 2 160000 35000 X 6以上 Comparative Example 2 160000 35000 X 6 or more
比較例 3 38000 4000 〇 2 Comparative Example 3 38000 4000 ○ 2
比較例 4 170000 40000 X 6以上 Comparative Example 4 170000 40000 X 6 or more
比較例 5 20000 1500 O 1 ίΐ Comparative Example 5 20000 1500 O 1 ίΐ
3] 感度 解像度 エッジラフネス 剥離片サイズ 現像性 テン Μΐ 3] Sensitivity Resolution Edge roughness Peeling strip size Developability Ten Μΐ
(mJ/ cm ί (iim) (U m) (cm) (mJ / cm ί (iim) (U m) (cm)
実施例 1 〇 10 15 1.0 2 〇 実施例 2 〇 10 15 1.3 2 〇 実施例 3 〇 10 15 1.4 2 〇 実施例 4 〇 10 15 1.2 2 〇 実施例 5 〇 10 15 1.2 2 〇 実施例 6 〇 10 15 1.3 2 〇 実施例 7 〇 5 15 1.5 2 〇 実施例 8 〇 10 15 1.6 2 〇 比較例 1 X 10 30 1.2 5 〇 比較例 2 X 10 30 1.2 5 〇 比較例 3 〇 10 15 1.6 2 X 比較例 4 〇 10 20 1.2 5 〇 比較例 5 X 10 15 1.3 5 X [0219] 表 2及び表 3の結果から、溶融粘度が、 50°Cで 40, 000〜120, OOOPa' sであり、 70°Cで 5, 000-20, OOOPa' sである実施例 1〜8では、基板上の追従性が良好で あることが判った。特に、共重合体 Aと共重合体 Bとの質量比が、 AZB= 10Z90〜 40/60である実施例 1及び実施例 4〜8では、未露光膜破れも少な 、ことが判った また、本発明の感光性榭脂組成物から感光層を形成した実施例 1〜8は、比較例 1 〜5と比較して、エッチング剥離片が小さぐ現像性にも優れることが判った。 Example 1 ○ 10 15 1.0 2 ○ Example 2 ○ 10 15 1.3 2 ○ Example 3 ○ 10 15 1.4 2 ○ Example 4 ○ 10 15 1.2 2 ○ Example 5 ○ 10 15 1.2 2 ○ Example 6 ○ 10 15 1.3 2 ○ Example 7 ○ 5 15 1.5 2 ○ Example 8 ○ 10 15 1.6 2 ○ Comparative Example 1 X 10 30 1.2 5 ○ Comparative Example 2 X 10 30 1.2 5 ○ Comparative Example 3 ○ 10 15 1.6 2 X Comparison Example 4 ○ 10 20 1.2 5 ○ Comparative Example 5 X 10 15 1.3 5 X [0219] From the results of Table 2 and Table 3, Example 1 in which the melt viscosity is 40,000 to 120, OOOPa's at 50 ° C and 5,000-20, OOOPa's at 70 ° C. In ~ 8, it was found that the followability on the substrate was good. In particular, it was found that in Example 1 and Examples 4 to 8 in which the mass ratio of the copolymer A and the copolymer B was AZB = 10Z90 to 40/60, there was little unexposed film breakage. It turned out that Examples 1-8 which formed the photosensitive layer from the photosensitive resin composition of this invention are excellent also in the developability which an etching peeling piece is small compared with Comparative Examples 1-5.
更に、 2重露光における解像度のばらつきと露光むらを補正した実施例 1〜6の配 線パターンは高精細であり、エッジラフネスも小さぐまた、エッチング性に優れること が判った。  Furthermore, it was found that the wiring patterns of Examples 1 to 6 in which the variation in resolution and the exposure unevenness in the double exposure were corrected were high definition, the edge roughness was small, and the etching property was excellent.
[0220] (実施例 9) [0220] (Example 9)
感光性榭脂組成物溶液の組成を下記のように変えた以外は、実施例 1と同様にし て感光性転写フィルムを製造し、積層体を調製した。  A photosensitive transfer film was produced in the same manner as in Example 1 except that the composition of the photosensitive resin composition solution was changed as follows, and a laminate was prepared.
前記積層体における前記感光性転写フィルムの感光層について、実施例 1と同様 にして、溶融粘度、基板上の追従性、未露光膜破れ、現像性、感度、解像度、エッジ ラフネス、剥離片サイズ、及びテント性を評価した。これらの結果を表 6及び表 7に示 す。  For the photosensitive layer of the photosensitive transfer film in the laminate, as in Example 1, melt viscosity, followability on the substrate, unexposed film breakage, developability, sensitivity, resolution, edge roughness, peeled piece size, And the tent property was evaluated. These results are shown in Tables 6 and 7.
[0221] [感光性榭脂組成物溶液の組成]  [0221] [Composition of photosensitive resin composition solution]
下記表 4に示す組成力もなるバインダー (*)… 139. 6質量部  Binder with compositional power shown in Table 4 below (*)… 139. 6 parts by mass
下記構造式 (1)で表される化合物 (第一工業製薬製、ニューフロンティア ΒΡΕΜ - 10F)- - - 39. 7質量部  Compound represented by the following structural formula (1) (Daiichi Kogyo Seiyaku, New Frontier ΒΡΕΜ-10F)---39.7 parts by mass
下記構造式 (2)で表される化合物 (第一工業製薬製、ニューフロンティア GX870 2θ· · · 35. 7質量部  Compound represented by the following structural formula (2) (Daiichi Kogyo Seiyaku Co., Ltd., New Frontier GX870 2θ ··· 35. 7 parts by mass
下記構造式(3)で表される化合物 (東亞合成製、ァロニックス M270) · · ·4. 2質 量部  Compound represented by the following structural formula (3) (Toagosei, Alonix M270) · · · 4. Mass part
下記構造式 (4)で表される化合物 (新中村化学製、 ΝΚエステル 4G)… 26. 5質 量部  Compound represented by the following structural formula (4) (manufactured by Shin-Nakamura Chemical Co., Ltd., ΝΚester 4G)… 26.
下記構造式 (5)で表される化合物 (新中村ィ匕学製、 ΝΚエステル 23θ · · · 5. 6質 2, 2,一ビス(o クロ口フエ-ル)一 4, 4,, 5, 5,一テトラフエ-ルビイミ Compound represented by the following structural formula (5) (manufactured by Shin-Nakamura Engineering Co., Ltd. 2, 2, one screw (o black mouth file) one, four, four, five, five, one tetraphenyl
ダゾール ·'·18.5質量部 Dozole '18.5 parts by mass
Ν—ブチルークロロアタリドン ···〇.99質量部  Ν—Butyl-chloroataridon ···· 99 parts by mass
フエノキサジン ···〇.03質量部  Phenoxazine .... 03 parts by mass
ロイコクリスタルバイオレット. · · 1.10質量部  Leuco Crystal Violet. 1.10 parts by mass
ビクトリアピュアブル ナフタレンスルホン酸塩' · ·0.19質量部  Victoria Pure Naphthalenesulfonate '· 0.19 parts by mass
下記構造式 (6)で表される化合物 · · · 0.37質量部  Compound represented by the following structural formula (6): 0.37 parts by mass
メチルェチルケトン ··· 248.8質量部  Methyl ethyl ketone 248.8 parts by mass
テトラヒドロフラン ··· 72.7質量部  Tetrahydrofuran 72.7 parts by mass
1ーメトキシ 2 プロパノール' · ·406質量部  1-methoxy 2-propanol '·· 406 parts by mass
*:共重合体 Α及び共重合体 Βを含む。各共重合体の質量平均分子量、 *: Including copolymer Α and copolymer Β. The weight average molecular weight of each copolymer,
成を下記表 4に示す。 The results are shown in Table 4 below.
[化 4] [Chemical 4]
構造式(i)
Figure imgf000069_0001
Structural formula (i)
Figure imgf000069_0001
ただし、前記構造式(1)中、 m+nは 10を表す。  However, in the structural formula (1), m + n represents 10.
[化 5] [Chemical 5]
構造式(2〕
Figure imgf000069_0002
Structural formula (2)
Figure imgf000069_0002
ただし、前記構造式(2)中、 m+nは 20を表す。  However, m + n represents 20 in the structural formula (2).
[化 6]
Figure imgf000069_0003
構造式 (3) ただし、前記構造式 (3)中、 nは 12を表す。 [化 7]
[Chemical 6]
Figure imgf000069_0003
Structural formula (3) In the structural formula (3), n represents 12. [Chemical 7]
Figure imgf000070_0001
Figure imgf000070_0001
[0223] (実施例 10〜14及び比較例 6〜9)  [Examples 10 to 14 and Comparative Examples 6 to 9]
実施例 9において、バインダーの共重合体 A及び共重合体 Bを、表 4に示す組成及 び質量比とした以外は実施例 9と同様にして、溶融粘度、基板上の追従性、未露光 膜破れ、現像性、感度、解像度、エッジラフネス、剥離片サイズ、及びテント性を評価 した。結果を表 6及び表 7に示す。  In Example 9, except that the binder copolymer A and copolymer B were changed to the compositions and mass ratios shown in Table 4, in the same manner as in Example 9, the melt viscosity, followability on the substrate, unexposed Film tear, developability, sensitivity, resolution, edge roughness, peeled piece size, and tent properties were evaluated. The results are shown in Tables 6 and 7.
[0224] (実施例 15) [Example 15]
実施例 9において、質量平均分子量が 20, 000のバインダーの共重合体 Cを、表 5 に示す組成及び質量比で更に用いた以外は実施例 9と同様にして、溶融粘度、基板 上の追従性、未露光膜破れ、現像性、感度、解像度、エッジラフネス、剥離片サイズ 、及びテント性を評価した。結果を表 6及び表 7に示す。  In Example 9, the copolymer V of the binder having a mass average molecular weight of 20,000 was used in the same manner as in Example 9 except that the copolymer and mass ratio shown in Table 5 were used. , Unexposed film breakage, developability, sensitivity, resolution, edge roughness, peeled piece size, and tent property were evaluated. The results are shown in Tables 6 and 7.
[0225] (実施例 16及び実施例 18) [Example 16 and Example 18]
実施例 9において、バインダーの共重合体 A及び共重合体 Bを、表 5に示す組成及 び質量比とした以外は実施例 9と同様にして、溶融粘度、基板上の追従性、未露光 膜破れ、現像性、感度、解像度、エッジラフネス、剥離片サイズ、及びテント性を評価 した。結果を表 6及び表 7に示す。  In Example 9, except that the binder copolymer A and copolymer B were changed to the compositions and mass ratios shown in Table 5, in the same manner as in Example 9, the melt viscosity, followability on the substrate, unexposed Film tear, developability, sensitivity, resolution, edge roughness, peeled piece size, and tent properties were evaluated. The results are shown in Tables 6 and 7.
[0226] (実施例 17) [Example 17]
実施例 9において、構造式 (3)で表される化合物、構造式 (4)で表される化合物、 及び構造式 (5)で表される化合物を用いな ヽ代わりに、構造式 (2)で表される化合 物を 72質量部用いた以外は実施例 9と同様にして、溶融粘度、基板上の追従性、未 露光膜破れ、現像性、感度、解像度、エッジラフネス、剥離片サイズ、及びテント性を 評価した。結果を表 6及び表 7に示す。 In Example 9, the compound represented by the structural formula (3), the compound represented by the structural formula (4), In the same manner as in Example 9, except that 72 parts by mass of the compound represented by the structural formula (2) was used instead of the compound represented by the structural formula (5), Followability, unexposed film breakage, developability, sensitivity, resolution, edge roughness, peeled piece size, and tent property were evaluated. The results are shown in Tables 6 and 7.
[表 4] [Table 4]
Figure imgf000071_0001
Figure imgf000071_0001
AA:アクリル酸  AA: Acrylic acid
St:スチレン  St: Styrene
MAA:メタクリル酸  MAA: Methacrylic acid
MMA:メチルメタタリレート  MMA: Methyl metatalylate
[表 5] [Table 5]
Figure imgf000071_0002
Figure imgf000071_0002
AA:アクリル酸  AA: Acrylic acid
St:スチレン  St: Styrene
MAA:メタクリル酸  MAA: Methacrylic acid
MMA:メチルメタタリレート  MMA: Methyl metatalylate
BzMA:ベンジルメタタリレート [0229] [表 6] BzMA: benzylmetatalylate [0229] [Table 6]
Figure imgf000072_0001
Figure imgf000072_0001
[0230] [表 7] [0230] [Table 7]
感度 解像度 エッジラフネス 剥離片サイズ Sensitivity Resolution Edge roughness Peeling piece size
現像性 テン Μΐ Developability Ten Μΐ
(mJ/ cm ) ( m) (U m) 、cm) (mJ / cm) (m) (U m), cm)
実施例 9 〇 10 15 1.3 2 〇 実施例 10 〇 10 15 1.2 2 〇 実施例 11 〇 10 15 1.4 2 〇 実施例 12 〇 10 15 1.3 2 〇 実施例 13 〇 10 15 1.2 2 〇 実施例 14 〇 10 17 1.2 2 〇 実施例 15 〇 10 15 1.1 2 X 実施例 16 〇 10 15 1.1 2 〇 実施例 17 〇 10 15 1.3 2 〇 実施例 18 〇 10 15 1.1 2 〇 比較例 6 X 10 30 1.2 5 〇 比較例 7 X 10 20 1.2 5 〇 比較例 8 X 12 25 1.2 5 〇 比較例 9 〇 13 25 1.3 2 X 表 6及び表 7の結果力ら、溶融粘度力 50。Cで 40, 000〜120, OOOPa'sであり、 70°Cで 5, 000-20, OOOPa'sである実施例 9〜18では、基板上の追従性が良好 であり、感度及び解像度にも優れることが判った。特に、共重合体 Aと共重合体 Bとの 質量比が、 AZB=10Z90〜40Z60であり、共重合体 Cを用いていない実施例 9、 実施例 12〜14、及び実施例 16〜18では、未露光膜破れも少ないことが判った。 また、本発明の感光性榭脂組成物から感光層を形成した実施例 9〜18は、比較例 6〜9と比較して、エッチング剥離片が小さぐ現像性にも優れることが判った。  Example 9 ○ 10 15 1.3 2 ○ Example 10 ○ 10 15 1.2 2 ○ Example 11 ○ 10 15 1.4 2 ○ Example 12 ○ 10 15 1.3 2 ○ Example 13 ○ 10 15 1.2 2 ○ Example 14 ○ 10 17 1.2 2 ○ Example 15 ○ 10 15 1.1 2 X Example 16 ○ 10 15 1.1 2 ○ Example 17 ○ 10 15 1.3 2 ○ Example 18 ○ 10 15 1.1 2 ○ Comparative Example 6 X 10 30 1.2 5 ○ Comparison Example 7 X 10 20 1.2 5 〇 Comparative Example 8 X 12 25 1.2 5 〇 Comparative Example 9 〇 13 25 1.3 2 X From the results shown in Table 6 and Table 7, the melt viscosity is 50. Examples 9 to 18, which are 40,000 to 120, OOOPa's at C and 5,000-20, OOOPa's at 70 ° C, have good followability on the substrate, and excellent sensitivity and resolution. understood. In particular, the mass ratio of the copolymer A and the copolymer B is AZB = 10Z90 to 40Z60, and the copolymer C is not used in Example 9, Examples 12 to 14, and Examples 16 to 18. It was also found that there was little tearing of the unexposed film. Moreover, it turned out that Examples 9-18 which formed the photosensitive layer from the photosensitive resin composition of this invention are excellent also in the developability which an etching peeling piece is small compared with Comparative Examples 6-9.
産業上の利用可能性 Industrial applicability
本発明の感光性榭脂組成物は、基板上でのレジストの追従性が良好であり、かつ、 優れた現像性と、エッチング時の剥離片の微細化とを両立可能な感光層を形成可能 であるため、該感光性榭脂組成物により形成された感光層を有する感光性転写フィ ルムは、高精細な各種パターンの形成などに好適に使用することができ、特に高精 細な永久パターンの形成に好適に使用することができる。  The photosensitive resin composition of the present invention can form a photosensitive layer that has good resist followability on the substrate and that has both excellent developability and finer strips during etching. Therefore, the photosensitive transfer film having a photosensitive layer formed of the photosensitive resin composition can be suitably used for forming various high-definition patterns, and particularly a highly precise permanent pattern. It can be used suitably for formation of.

Claims

請求の範囲 The scope of the claims
[1] バインダー、重合性化合物、及び光重合開始剤を含有してなり、溶融粘度が、 50 。Cで 40, 000〜120, OOOPa,sであり、 70。Cで 5, 000〜20, OOOPa,sであることを 特徴とする感光性榭脂組成物。  [1] It contains a binder, a polymerizable compound, and a photopolymerization initiator, and has a melt viscosity of 50. C is 40,000-120, OOOPa, s, 70. A photosensitive resin composition characterized by having a C of 5,000 to 20, OOOPa, s.
[2] バインダー力 質量平均分子量が 3, 000〜10, 000である共重合体 Aと、質量平 均分子量が 30, 000〜150, 000である共重合体 Bとを含み、前記共重合体 Aと前 記共重合体 Bとの質量比が、 A/B= 10Z90〜90Z10である請求項 1に記載の感 光性榭脂組成物。  [2] Binder strength Copolymer A having a weight average molecular weight of 3,000 to 10,000, and copolymer B having a weight average molecular weight of 30,000 to 150,000, the copolymer 2. The photosensitive resin composition according to claim 1, wherein the mass ratio of A to the copolymer B is A / B = 10Z90 to 90Z10.
[3] 共重合体 Αと共重合体 Βとの質量比が、 AZB= 10Z90〜40Z60である請求項 2 に記載の感光性榭脂組成物。  [3] The photosensitive resin composition according to claim 2, wherein the mass ratio of the copolymer Α to the copolymer Β is AZB = 10Z90 to 40Z60.
[4] 共重合体 Αが、スチレン及びスチレン誘導体の少なくともいずれかに由来する構造 単位を有する請求項 2から 3のいずれかに記載の感光性榭脂組成物。 [4] The photosensitive resin composition according to any one of [2] to [3], wherein the copolymer has a structural unit derived from at least one of styrene and a styrene derivative.
[5] 共重合体 Bが、カルボキシル基を有するビュルモノマーを含む請求項 2から 4のい ずれかに記載の感光性榭脂組成物。 [5] The photosensitive resin composition according to any one of claims 2 to 4, wherein the copolymer B contains a butyl monomer having a carboxyl group.
[6] 重合性化合物が、ウレタン基及びァリール基の少なくともいずれかを有するモノマ 一を含む請求項 1から 5のいずれかに記載の感光性榭脂組成物。 6. The photosensitive resin composition according to any one of claims 1 to 5, wherein the polymerizable compound contains a monomer having at least one of a urethane group and an aryl group.
[7] 光重合開始剤が、ハロゲン化炭化水素誘導体、ホスフィンオキサイド、へキサァリー ルビイミダゾール、ォキシム誘導体、有機過酸化物、チォ化合物、ケトンィ匕合物、ァシ ルホスフィンォキシドィ匕合物、芳香族ォ -ゥム塩、及びケトォキシムエーテル力 選択 される少なくとも 1種を含む請求項 1から 6のいずれかに記載の感光性榭脂組成物。 [7] The photopolymerization initiator is a halogenated hydrocarbon derivative, phosphine oxide, hexyl biimidazole, oxime derivative, organic peroxide, thio compound, ketone compound, acyl phosphine oxidoxide compound, 7. The photosensitive resin composition according to claim 1, comprising at least one selected from an aromatic onium salt and a ketoxime ether power.
[8] 支持体上に、請求項 1から 7のいずれかに記載の感光性榭脂組成物により形成さ れた感光層を有することを特徴とする感光性転写フィルム。 [8] A photosensitive transfer film comprising a photosensitive layer formed of the photosensitive resin composition according to any one of claims 1 to 7 on a support.
[9] 感光層を 390〜420nmの波長のレーザ光で露光して現像する場合において、該 感光層の露光する部分の厚みを、該露光及び現像後にお 、て変化させな!/、前記露 光に用いる光の最小エネルギー (感度)が、 0. l〜20mjZcm2である請求項 8に記 載の感光性転写フィルム。 [9] When the photosensitive layer is exposed and developed with a laser beam having a wavelength of 390 to 420 nm, the thickness of the exposed portion of the photosensitive layer must not be changed after the exposure and development! / The photosensitive transfer film according to claim 8, wherein the minimum energy (sensitivity) of light used for light is 0.1 to 20 mjZcm 2 .
[10] 請求項 8から 9のいずれかに記載の感光性転写フィルムにおける該感光層を被処 理基体上に積層した後、該感光層に対し、露光を行うことを含むことを特徴とするパ ターン形成方法。 [10] The method further comprises exposing the photosensitive layer after laminating the photosensitive layer on the substrate to be processed in the photosensitive transfer film according to any one of claims 8 to 9. Pa Turn formation method.
[11] 露光が、光照射手段、及び前記光照射手段からの光を受光し出射する n個 (ただし 、 nは 2以上の自然数)の 2次元状に配列された描素部を有し、パターン情報に応じ て前記描素部を制御可能な光変調手段を備えた露光ヘッドであって、該露光ヘッド の走査方向に対し、前記描素部の列方向が所定の設定傾斜角度 Θをなすように配 置された露光ヘッドを用い、  [11] The exposure includes light irradiation means, and n (where n is a natural number of 2 or more) two-dimensionally arranged pixel parts that receive and emit light from the light irradiation means, An exposure head provided with a light modulation means capable of controlling the picture element portion in accordance with pattern information, wherein the column direction of the picture element portion forms a predetermined set inclination angle Θ with respect to the scanning direction of the exposure head. Using the exposure head
前記露光ヘッドについて、使用描素部指定手段により、使用可能な前記描素部の うち、 N重露光 (ただし、 Nは 2以上の自然数)に使用する前記描素部を指定し、 前記露光ヘッドについて、描素部制御手段により、前記使用描素部指定手段によ り指定された前記描素部のみが露光に関与するように、前記描素部の制御を行い、 前記感光層に対し、前記露光ヘッドを走査方向に相対的に移動させて行う請求項 10に記載のパターン形成方法。  With respect to the exposure head, the used pixel part specifying means designates the pixel part to be used for N double exposure (where N is a natural number of 2 or more) out of the usable pixel parts, and the exposure head The pixel part is controlled by the pixel part control unit so that only the pixel part specified by the used pixel part specifying unit is involved in exposure, and 11. The pattern forming method according to claim 10, wherein the exposure head is relatively moved in the scanning direction.
[12] 露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光 ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域の露 光に関与する描素部のうち、前記ヘッド間つなぎ領域における N重露光を実現する ために使用する前記描素部を指定する請求項 11に記載のパターン形成方法。  [12] The exposure is performed by a plurality of exposure heads, and the used pixel portion specifying means is involved in the exposure of the inter-head connection region, which is an overlapping exposure region on the exposed surface formed by the plurality of exposure heads. 12. The pattern forming method according to claim 11, wherein among the picture element parts, the picture element part used for realizing N double exposure in the inter-head connecting region is designated.
[13] 露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光 ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域以外 の露光に関与する描素部のうち、前記ヘッド間つなぎ領域以外の領域における N重 露光を実現するために使用する前記描素部を指定する請求項 12に記載のパターン 形成方法。  [13] The exposure is performed by a plurality of exposure heads, and the used picture element designation means is involved in exposure other than the inter-head connection region, which is an overlapping exposure region on the exposed surface formed by the plurality of exposure heads. 13. The pattern forming method according to claim 12, wherein, in the picture element part, the picture element part used for realizing N double exposure in an area other than the inter-head connection area is designated.
[14] 設定傾斜角度 Θ力 N重露光数の N、描素部の列方向の個数 s、前記描素部の列 方向の間隔 p、及び露光ヘッドを傾斜させた状態にお!、て該露光ヘッドの走査方向 と直交する方向に沿った描素部の列方向のピッチ δに対し、次式、 spsin θ ≥Ν δ  [14] Set tilt angle Θ force N N number of double exposures, number s of pixel portions in the row direction, interval p of the pixel portions in the row direction, and the exposure head in a tilted state! For the pitch δ in the column direction of the pixel portion along the direction orthogonal to the scanning direction of the exposure head, the following equation is given: spsin θ ≥Ν δ
ideal を満たす 0 に対し、 の関係を満たすように設定される請求項 11から 13  Claims 11 to 13 are set so as to satisfy the relationship of 0 for 0 satisfying ideal
iaeal meal  iaeal meal
の!、ずれかに記載のパターン形成方法。  No !, the pattern forming method described in any one of the above.
[15] 使用描素部指定手段が、 [15] Use pixel part designation means
描素部により生成されて被露光面上の露光領域を構成する描素単位としての光点 位置を、被露光面上において検出する光点位置検出手段と、 前記光点位置検出手段による検出結果に基づき、 N重露光を実現するために使用 する描素部を選択する描素部選択手段と Light spot as a pixel unit generated by the pixel unit and constituting the exposure area on the exposed surface A light spot position detecting means for detecting the position on the surface to be exposed, and a picture element selecting means for selecting a picture element part to be used for realizing the N double exposure based on a detection result by the light spot position detecting means. When
を備える請求項 11から 14の 、ずれかに記載のパターン形成方法。 The pattern forming method according to claim 11, further comprising:
露光が行われた後、感光層の現像を行う請求項 10から 15のいずれかに記載のパ ターン形成方法。  16. The pattern forming method according to claim 10, wherein the photosensitive layer is developed after the exposure.
PCT/JP2006/322305 2006-01-13 2006-11-08 Photosensitive resin composition, photosensitive transfer film, and method for pattern formation WO2007080698A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007553838A JPWO2007080698A1 (en) 2006-01-13 2006-11-08 Photosensitive resin composition, photosensitive transfer film, and pattern forming method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006006600 2006-01-13
JP2006-006600 2006-01-13
JP2006-059223 2006-03-06
JP2006059223 2006-03-06

Publications (1)

Publication Number Publication Date
WO2007080698A1 true WO2007080698A1 (en) 2007-07-19

Family

ID=38256111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322305 WO2007080698A1 (en) 2006-01-13 2006-11-08 Photosensitive resin composition, photosensitive transfer film, and method for pattern formation

Country Status (3)

Country Link
JP (1) JPWO2007080698A1 (en)
KR (1) KR20080085173A (en)
WO (1) WO2007080698A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136333A1 (en) * 2022-01-14 2023-07-20 旭化成株式会社 Photosensitive resin composition, photosensitive resin laminate, and resist pattern formation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003215793A (en) * 2002-01-23 2003-07-30 Hitachi Chem Co Ltd Photosensitive film for circuit formation and manufacturing method for printed wiring board
JP2004317595A (en) * 2003-04-11 2004-11-11 Fuji Photo Film Co Ltd Dry film photoresist

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003215793A (en) * 2002-01-23 2003-07-30 Hitachi Chem Co Ltd Photosensitive film for circuit formation and manufacturing method for printed wiring board
JP2004317595A (en) * 2003-04-11 2004-11-11 Fuji Photo Film Co Ltd Dry film photoresist

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136333A1 (en) * 2022-01-14 2023-07-20 旭化成株式会社 Photosensitive resin composition, photosensitive resin laminate, and resist pattern formation method

Also Published As

Publication number Publication date
KR20080085173A (en) 2008-09-23
JPWO2007080698A1 (en) 2009-06-11

Similar Documents

Publication Publication Date Title
JP5144495B2 (en) Photosensitive composition, photosensitive film, photosensitive laminate, permanent pattern forming method, and printed circuit board
WO2007102289A1 (en) Photosensitive composition, photosensitive film, method for permanent pattern formation using said photosensitive composition, and printed board
WO2007000885A1 (en) Permanent patterning method
JP2007264483A (en) Pattern forming material and pattern forming method
WO2007032195A1 (en) Pattern forming material, pattern forming apparatus and pattern forming process
WO2007015393A1 (en) Method for manufacturing color filter, color filter and liquid crystal display
WO2006059534A1 (en) Pattern forming material and pattern forming method
JP2008020629A (en) Pattern forming material, and pattern forming apparatus and pattern forming method
JP4783678B2 (en) PHOTOSENSITIVE COMPOSITION AND METHOD FOR PRODUCING THE SAME, PHOTOSENSITIVE FILM, PHOTOSENSITIVE LAMINATE, PERMANENT PATTERN FORMING METHOD, AND PRINTED BOARD
JP2007316451A (en) Photosensitive composition, photosensitive film and printed circuit board
WO2007010748A1 (en) Patterning method
WO2006059532A1 (en) Material for pattern formation, apparatus for pattern formation, and method for pattern formation
JP2008009404A (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2006284842A (en) Pattern forming method
JP2008003558A (en) Pattern forming material, pattern forming method and pattern
JP4651524B2 (en) Pattern forming material, pattern forming apparatus and pattern forming method
WO2007072641A1 (en) Pattern-forming material, pattern-forming apparatus and pattern-forming method
JP5063764B2 (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP4657955B2 (en) Photosensitive composition, photosensitive film, permanent pattern forming method, and printed circuit board
JP2008251918A (en) Permanent pattern forming method and printed circuit board
JP2007256832A (en) Pattern forming material and pattern-forming method
WO2006025389A1 (en) Pattern-forming material, pattern-forming apparatus and pattern-forming method
WO2006137241A1 (en) Patterning method
WO2007080698A1 (en) Photosensitive resin composition, photosensitive transfer film, and method for pattern formation
JP2008015364A (en) Photosensitive composition, photosensitive film, permanent pattern forming method, and printed circuit board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087017443

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007553838

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200680053832.3

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 06823209

Country of ref document: EP

Kind code of ref document: A1