WO2007080014A1 - Verfahren zur optischen fahrwerksvermessung - Google Patents

Verfahren zur optischen fahrwerksvermessung Download PDF

Info

Publication number
WO2007080014A1
WO2007080014A1 PCT/EP2006/068545 EP2006068545W WO2007080014A1 WO 2007080014 A1 WO2007080014 A1 WO 2007080014A1 EP 2006068545 W EP2006068545 W EP 2006068545W WO 2007080014 A1 WO2007080014 A1 WO 2007080014A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
determined
detected
radiation
points
Prior art date
Application number
PCT/EP2006/068545
Other languages
English (en)
French (fr)
Inventor
Volker Uffenkamp
Guenter Nobis
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US11/909,266 priority Critical patent/US20080186514A1/en
Priority to EP06819529A priority patent/EP1969309A1/de
Publication of WO2007080014A1 publication Critical patent/WO2007080014A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2513Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/275Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing wheel alignment
    • G01B11/2755Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing wheel alignment using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/10Wheel alignment
    • G01B2210/20Vehicle in a state of translatory motion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/10Wheel alignment
    • G01B2210/28Beam projector and related sensors, camera, inclinometer or other active sensing or projecting device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/10Wheel alignment
    • G01B2210/28Beam projector and related sensors, camera, inclinometer or other active sensing or projecting device
    • G01B2210/283Beam projectors and related sensors
    • G01B2210/286Projecting a light pattern on the wheel or vehicle body

Definitions

  • the invention relates to a method for the optical chassis measurement at a test station, in which detected by a plurality of optically distinguishable characteristic structures on a vehicle at least one wheel and a surrounding body panel reflected radiation from a measuring device by means of an image pickup device and by evaluation of the detected Radiation obtained position data at least the wheel plane and the wheel center are determined.
  • Such a method for optical chassis measurement is disclosed in DE 197 57 763 A1 and similarly also in EP 1 042 643 B1.
  • these known methods by means of cameras reference features at the test station and continue to record wheel characteristics and body features and on the basis of this information the driving axle and also determined wheel and Achsgeometriechal, according to DE 197 57 763 Al, the measurement in the state and in the process according to EP 1 042 643 Bl, the measurement takes place while driving past the measuring device.
  • the characteristics of room light is used in the test area, the characteristics of the wheel and the body in particular mounted marks or existing characteristic structures can be.
  • a special lighting for example by means of LEDs, with special retroreflective measuring marks on the wheel or the body can be mounted. Further details on the type and detection of the wheel and axle geometry data are made from the geometric information obtained by means of the marks and / or surface structures in these documents and other patent applications based thereon. In practice, it has become clear that obtaining accurate and reliable measurement The application of well-recognizable brands is favorable, but their adaptation to the wheel and body requires a considerable effort, although compared to other systems for chassis measurement with these known systems, the measurement could be greatly facilitated overall.
  • the object of the invention is to provide a method for the optical chassis measurement, with which the most accurate and reliable measurement results are obtained with the least possible effort.
  • an attachment and adaptation of measuring marks on the vehicle wheel or the body while using the measuring device with said measures from existing surface structures, the surface points used for the measurement reliably and clearly obtained and subjected to the evaluation, so that accurate measurement results are obtained, in particular
  • the accuracy can be increased by increasing the number of surface profiles, whereby an appropriate lower individual accuracy can be compensated by averaging using appropriate algorithms.
  • the omission of an adaptation of marks on the wheel and body considerably simplifies the operation of the wheel alignment system, inter alia because no restriction with regard to materials rial of the body, no removal of hubcaps and no additional labor for adaptation to the measurement are connected.
  • the evaluation is facilitated by selectively recording individual profiles or the entire surface structure of the object sections of interest of at least the wheel and the body section via the projection of the planes, and also by using a light-section method, a Gray code method with coded light projection or a phase shift method is used.
  • the measurement is advantageously carried out in such a way that for determining the wheel plane, the wheel center and possibly the body cutout around the wheel a plurality of surface points as SD point cloud, but at least three intersections between two surface profiles and rotationally symmetrical contours of the wheel, for example, the rim edge, be used.
  • An advantageous procedure in the measurement is that the measurement is carried out while driving past the vehicle and driving direction data is obtained on the basis of a detection of the direction of movement of body surface structures.
  • FIG. 1 is a schematic fragmentary view of a test station in the direction of travel with a measuring device and a part of a vehicle to be measured and - A -
  • Fig. 2 shows a detail of the test station of FIG. 1 in a side view.
  • the measuring instrument comprises an image recording device 11 equipped with image sensor 11.1 and imaging optics 11.2, in particular a camera arrangement with at least one camera in which processors for the image processing is integrated, and at least one measurement plane 12, which is generated by a projector 13. Furthermore, powerful computers are connected to the measuring instrument in accordance with the measuring effort. By means of the measuring device 10, various data, in particular a wheel suspension 9 can be determined.
  • one or more planes 12, 12 ' are projected by a radiation source 13. 1, in particular a laser, into the measurement space by means of a slit diaphragm in front of or in a projection optical unit 13. 2, which intersect the object surface and the profile lines 14, 14 'on the measurement object, ie the wheel and possibly the surrounding body generate.
  • the projected planes 12, 12 ' may also be generated by another type of projection device (e.g., beamer). Due to the geometrical arrangement of projection device 13 and camera 11, the camera records the intersection of plane 12, 12 'with the object as a profile line 14, 14', which is more or less curved as a function of the surface topography.
  • the principle of triangulation technique is applied.
  • Each profile point has a two-dimensional image coordinate. If the association between camera and projection device is known, the spatial position of the surface point is determined by the intersection of the image beam with the plane.
  • the spatial position of the surface point is determined by the intersection of the image beam with the plane.
  • Various methods are known, namely in particular light-section method, gray-code method (coded light approach) and phase shift method.
  • the acquisition of the profile lines can advantageously be done by obtaining a 3D point cloud.
  • Each vehicle wheel has on the basis of its components such as tires, rim, hubcap, valve or the like.
  • On a 3D surface structure that can be used to measure the wheel and axle geometry and each wheel house contour has, in particular in the area of the Radausschnitts characteristic features of which Loading state for each wheel can be derived.
  • the determination of at least two surface profiles from the surface structure allows the determination of the wheel geometry, if the two profiles cut, for example, the wheel rim, at least three times. With a small number of surface profiles, it is advantageous if the cuts are as perpendicular as possible to the edge of the rim. From the at least three rim edge points, the wheel plane and the wheel center can be calculated out. With this information track and camber and, if desired, further wheel and axle geometry data of interest can be obtained.
  • the determination of the movement of the body relative to the measuring device is required.
  • the direction of travel or the driving axis of the moving vehicle is determined from the path of movement of distinctive body structures.
  • the size of the object section can be adapted to different vehicle types and rim sizes according to the localization of the object structures of interest.

Abstract

Die Erfindung betrifft ein Verfahren zur optischen Fahrwerksvermessung an einem Prüfplatz, bei dem von mehreren optisch unterscheidbaren charakteristischen Strukturen an einem Fahrzeug zumindest eines Rades und eines umgebenden Karosserieausschnitts reflektierte Strahlung von einer Messvorrichtung mittels einer Bildaufnahmeeinrichtung erfasst und durch Auswertung von durch die erfasste Strahlung gewonnenen Positionsdaten zumindest die Radebene und der Radmittelpunkt ermittelt werden. Mit relativ wenig Aufwand werden zuverlässige Messergebnisse dadurch erhalten, dass zumindest auf das Rad (5) und die umgebende Karosserie mit von mindestens einer Strahlungsquelle der Messvorrichtung abgegebenem strukturiertem Licht mehrere Ebenen projiziert werden und der Schnitt der Ebenen mit dem Rad (5) und der umgebenden Karosserie oder einem Teilbereich daraus mittels mindestens einer Bildaufnahmeeinrichtung auf der Grundlage der geometrisch bekannten Zuordnung von der mindestens einen Strahlungsquelle und der mindestens einen Bildaufnahmeeinrichtung als Profillinien aufgenommen werden (3D Punktwolke), und dass ggf. aus Schnittpunkten der Profillinien und z.B. dem Felgenrand oder anderen rotationssymmetrischen Konturen am Rad sowie dem Radausschnitt die räumliche Lage charakteristischer Oberflächenpunkte bestimmt werden, aus denen unmittelbar die interessierenden Fahrwerksdaten bestimmt werden.

Description

Verfahren zur optischen Fahrwerksvermessung
Die Erfindung bezieht sich auf ein Verfahren zur optischen Fahrwerksvermessung an einem Prüfplatz, bei dem von mehreren optisch unterscheidbaren charakteristischen Strukturen an einem Fahrzeug zu- mindest eines Rades und eines umgebenden Karosserieausschnittes reflektierte Strahlung von einer Messvorrichtung mittels einer Bildaufnahmeeinrichtung erfasst und durch Auswertung von durch die erfasste Strahlung gewonnenen Positionsdaten zumindest die Radebene und der Radmittelpunkt ermittelt werden.
Stand der Technik
Ein derartiges Verfahren zur optischen Fahrwerksvermessung ist in der DE 197 57 763 Al und ähnlich auch in der EP 1 042 643 B 1 angegeben. Bei diesen bekannten Verfahren werden mit Hilfe von Kameras Bezugsmerkmale am Prüfplatz und weiterhin Radmerkmale und Karosseriemerkmale erfasst und auf der Basis dieser Informationen die Fahrachse und weiterhin Rad- und Achsgeometriedaten ermittelt, wobei nach der DE 197 57 763 Al die Messung im Stand und bei dem Verfahren nach der EP 1 042 643 Bl die Messung während der Vorbeifahrt an der Messvorrichtung erfolgt. Zum Erfassen der Merkmale wird Raumlicht im Prüfplatzbereich genutzt, wobei die Merkmale insbesondere des Rades und der Karosserie angebrachte Marken oder vorhandene charakteristische Strukturen sein können. Es kann aber auch an der Messvorrichtung eine spezielle Beleuchtung beispielsweise mittels Leuchtdioden vorgesehen sein, wobei auch spezielle retroreflektierende Messmarken am Rad bzw. der Karosserie angebracht sein können. Auch sind nähere Angaben zu der Art und Erfassung der Rad- und Achsgeometriedaten aus den mittels der Marken und/oder Oberflächenstrukturen gewonnenen geometrischen Informationen in diesen Druckschriften und darauf basierenden weiteren Patentanmeldungen gemacht. In der Praxis hat sich gezeigt, dass für die Gewinnung genauer und zuverlässiger Mess- ergebnisse die Anbringung gut erfassbarer Marken günstig ist, deren Adaption an Rad und Karosserie jedoch einen nicht unerheblichen Aufwand verlangt, obwohl gegenüber anderen Systemen zur Fahr- werksvermessung mit diesen bekannten Systemen die Messung insgesamt erheblich erleichtert werden konnte.
Vorteile der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur optischen Fahrwerksvermessung bereit zu stellen, mit dem möglichst genaue und zuverlässige Messergebnisse bei möglichst geringem Auf- wand erhalten werden.
Diese Aufgabe wird mit den Merkmalen des Anspruches 1 gelöst. Hierbei ist vorgesehen, dass zumindest auf das Rad und die umgebende Karosserie mit von mindestens einer Strahlungsquelle der Messvorrichtung abgegebenem strukturiertem Licht z.B. mit einer Schlitzblende vor oder in einer Projekti- onsoptik mehrere Ebenen projiziert werden und der Schnitt der Ebenen mit dem Rad und der umgebenden Karosserie oder einem Teilbereich daraus mittels mindestens einer Bildaufnahmeeinrichtung auf der Grundlage der geometrisch bekannten Zuordnung von der mindestens einen Strahlungsquelle und der mindestens einen Bildaufnahmeeinrichtung als Profillinien aufgenommen werden, wobei die Aufnahme über die Gewinnung einer 3D Punktwolke erfolgt, und dass ggf. aus Schnittpunkten der Profillinien und z.B. dem Felgenrand oder anderen rotationssymmetrischen Konturen am Rad sowie dem Radausschnitt als Positionsdaten die räumliche Lage charakteristischer Oberflächenpunkte bestimmt werden, aus denen unmittelbar die interessierenden Fahrwerksdaten bestimmt werden.
Hierbei entfällt eine Anbringung und Adaption von Messmarken am Fahrzeugrad bzw. der Karosserie, während mittels der Messvorrichtung mit den genannten Maßnahmen aus vorhandenen Oberflächenstrukturen die für die Messung herangezogenen Oberflächenpunkte zuverlässig und eindeutig gewonnen und der Auswertung unterzogen werden, so dass genaue Messergebnisse erhalten werden, insbesondere wenn leistungsfähige Prozessoren und Rechner in Verbindung mit Bildaufnahmeeinrichtung- en, beispielsweise Kameras, für die Bilderfassung und Auswertung verwendet werden. Die Genauig- keit kann erhöht werden, indem die Anzahl der Oberflächenprofile erhöht wird, wobei durch Anwendung entsprechender Algorithmen eine gegebenenfalls geringere Einzelgenauigkeit durch Mittelung kompensiert werden kann. Der Verzicht auf eine Adaption von Marken an Rad und Karosserie vereinfacht die Bedienung des Achsmesssystems wesentlich, u.a. weil keine Einschränkung bezüglich Mate- rial der Karosserie, kein Entfernen von Radkappen und kein zusätzlicher Arbeitsaufwand zur Adaption mit der Messung verbunden sind.
Die Auswertung wird dabei dadurch begünstigt, dass über die Projektion der Ebenen gezielt Einzel- profile oder die gesamte Oberflächenstruktur der interessierenden Objektausschnitte zumindest des Rades und des Karosserieausschnitts aufgenommen werden, und ferner dadurch, dass ein Lichtschnittverfahren, ein Gray-Code- Verfahren mit codiertem Lichtansatz oder ein Phasenshift- Verfahren angewandt wird.
Die Messung erfolgt vorteilhaft in der Weise, dass zum Bestimmen der Radebene, des Radmittelpunktes und ggf. des Karosserieausschnitts um das Rad eine Vielzahl von Oberflächenpunkten als SD- Punktwolke, mindestens jedoch drei Schnittpunkte zwischen zwei Oberflächenprofilen und rotationssymmetrischen Konturen des Rades, beispielsweise des Felgenrandes, herangezogen werden.
Ein wichtiger Anwendungsfall besteht darin, dass aus der Kante des Radausschnitts der Beladungszustand des Rades und aus der Radebene und dem Radmittelpunkt Spur und Sturz bestimmt werden.
Weitere Vorteile für die Messung ergeben sich dadurch, dass bei der Abtastung signifikante Oberflächenmerkmale am Rad wie Ventil, Lochbild, Beschriftung, Schmutz und/oder eine Beschädigung detektiert werden und dass auf der Grundlage dieser Oberflächenmerkmale bei rotierendem Rad (z.B. beim Abrollen auf der Fahrbahn) ein Felgenschlag erfasst und bei der weiteren Auswertung berücksichtigt wird.
Eine vorteilhafte Vorgehensweise bei der Messung besteht darin, dass die Messung während einer Vorbeifahrt des Fahrzeugs durchgeführt wird und Fahrtrichtungsdaten aufgrund einer Erfassung der Bewegungsrichtung von Karosserie-Oberflächenstrukturen gewonnen werden.
Zeichnungen
Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeich- nungen näher erläutert. Es zeigen:
Fig. 1 eine schematische ausschnittsweise Ansicht eines Prüfplatzes in Fahrtrichtung mit einer Messvorrichtung und einem Teil eines zu vermessenden Fahrzeugs und - A -
Fig. 2 einen Ausschnitt des Prüfplatzes nach Fig. 1 in einer seitlichen Ansicht.
Offenbarung der Erfindung Die Fig. 1 zeigt ein seitlich eines Fahrzeuges im Bereich eines Rades 5 aufgestelltes Messinstrument einer Messvorrichtung 10. Das Messinstrument umfasst eine mit Bildsensor 11.1 und Abbildungsoptik 11.2 ausgerüstete Bildaufnahmeeinrichtung 11 , insbesondere eine Kameraanordnung mit mindestens einer Kamera, in der vorteilhaft Prozessoren für die Bildverarbeitung integriert sind, und mindestens eine Messebene 12, die von einem Projektor 13 erzeugt wird. An das Messinstrument sind des Weite- ren dem Messaufwand entsprechend leistungsfähige Rechner angeschlossen. Mittels der Messvorrichtung 10 lassen sich verschiedene Daten insbesondere einer Radaufhängung 9 bestimmen.
Wie Fig. 2 zeigt, werden von einer Strahlungsquelle 13.1, insbesondere einem Laser, mittels einer Schlitzblende vor oder in einer Projektionsoptik 13.2 eine bzw. mehrere Ebenen 12, 12' in den Mess- räum projiziert, die die Objektoberfläche schneiden und die Profillinien 14, 14' auf dem Messobjekt, also dem Rad und gegebenenfalls der dieses umgebenden Karosserie erzeugen. Die projizierten Ebenen 12, 12' können auch durch eine andere Art einer Projektionseinrichtung (z.B. Beamer) erzeugt werden. Durch die geometrische Anordnung von Projektionsvorrichtung 13 und Kamera 11 nimmt die Kamera den Schnitt der Ebene 12, 12' mit dem Objekt als eine Profϊllinie 14, 14' auf, die in Abhän- gigkeit der Oberflächentopographie mehr oder weniger gekrümmt ist. Zur dreidimensionalen Bestimmung der Höhenprofile aus digitalen Bildern wird das Prinzip der Triangulationstechnik angewandt. Zu jedem Profilpunkt gibt es eine zweidimensionale Bildkoordinate. Ist die Zuordnung zwischen Kamera und Projektionseinrichtung bekannt, wird durch den Schnittpunkt des Bildstrahls mit der Ebene die räumliche Lage des Oberflächenpunktes bestimmt. Durch entsprechende Strukturierung des Lichts können entweder gezielt Einzelprofile aufgenommen werden oder die gesamte Oberflächenstruktur des Objektes, d.h. des Rades und gegebenenfalls der betreffenden Karosserieabschnitte. Verschiedene Verfahren sind bekannt, nämlich insbesondere Lichtschnittverfahren, Gray-Code- Verfahren (codierter Lichtansatz) und Phasenshift- Verfahren. Die Erfassung der Profillinien kann vorteilhaft über die Gewinnung einer 3D-Punktwolke erfolgen.
Jedes Fahrzeugrad weist anhand seiner Bauteile wie Reifen, Felge, Radkappe, Ventil oder dgl. eine 3D-Oberflächenstruktur auf, die zur Messung der Rad- und Achsgeometrie herangezogen werden kann und jede Radhauskontur weist insbesondere im Bereich des Radausschnitts charakteristische Merkmale auf, aus denen der Beladungszustand für das jeweilige Rad abgeleitet werden kann. Die Erfassung von mindestens zwei Oberflächenprofilen aus der Oberflächenstruktur erlaubt die Bestimmung der Radgeometrie, wenn die beiden Profile z.B. die Radfelge, mindestens dreimal schneiden. Bei einer geringen Anzahl von Oberflächenprofilen ist es vorteilhaft, wenn die Schnitte möglichst senkrecht zum Felgenrand verlaufen. Aus den mindestens drei Felgenrandpunkten lassen sich die Radebene sowie der Radmittelpunkt herausrechnen. Mit diesen Informationen können Spur und Sturz und gewünschtenfalls weitere interessierende Rad- und Achsgeometriedaten gewonnen werden.
Signifikante Oberflächenmerkmale am Rad wie Ventil, Lochbild, Beschriftung oder auch weitere Merkmale, wie Schmutz und Beschädigung, lassen sich detektieren. Daraus lässt sich ein möglicher Felgenschlag bei rotierendem Rad (z.B. beim Abrollen auf der Fahrbahn) ermitteln und bei der Auswertung berücksichtigen.
Erfolgt eine Messung in der Vorbeifahrt, ist die Bestimmung der Bewegung der Karosserie relativ zur Messvorrichtung erforderlich. Aus der Bewegungsbahn markanter Karosseriestrukturen wird die Fahr- richtung bzw. die Fahrachse des bewegten Fahrzeuges ermittelt.
In der Regel wird zu Beginn einer Messung ein größerer Objektausschnitt mit einem Teil der Karosserie und dem Rad erfasst. Zur Verringerung des erforderlichen Messaufwandes kann die Größe des Objektausschnitts nach Lokalisierung der interessierenden Objektstrukturen an verschiedene Fahr- zeugtypen und Felgengrößen angepasst werden.

Claims

A n s p r ü c h e
1. Verfahren zur optischen Fahrwerksvermessung an einem Prüfplatz, bei dem von mehreren optisch unterscheidbaren charakteristischen Strukturen an einem Fahrzeug zumindest eines Rades und eines umgebenden Karosserieausschnitts reflektierte Strahlung von einer Messvorrichtung mittels einer Bildaufnahmeeinrichtung erfasst und durch Auswertung von durch die erfasste Strahlung gewonnenen Positionsdaten zumindest die Radebene und der Radmittelpunkt ermittelt werden, dadurch gekennzeichnet, dass zumindest auf das Rad (5) und die umgebende Karosserie mit von mindestens einer
Strahlungsquelle der Messvorrichtung abgegebenem strukturiertem Licht mehrere Ebenen (12, 12') projiziert werden und der Schnitt der Ebenen (12) mit dem Rad (5) und der umgebenden Karosserie oder einem Teilbereich daraus mittels mindestens einer Bildaufnahmeeinrichtung auf der Grundlage der geometrisch bekannten Zuordnung von der mindestens einen Strah- lungsquelle und der mindestens einen Bildaufnahmeeinrichtung als Profillinien (14, 14') aufgenommen werden, und dass ggf. aus Schnittpunkten der Profillinien (14, 14') und dem Felgenrand oder anderen rotationssymmetrischen Konturen am Rad sowie dem Radausschnitt der Karosserie als Positionsdaten die räumliche Lage charakteristischer Oberflächenpunkte bestimmt werden, aus de- nen die interessierenden Fahrwerksdaten bestimmt werden.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass über die Projektion der Ebenen gezielt Einzelprofile oder die gesamte Oberflächenstruktur der interessierenden Objektausschnitte zumindest des Rades (5) und des Karosserieausschnitts aufgenommen werden.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein Lichtschnittverfahren, ein Gray-Code- Verfahren mit codiertem Lichtansatz oder ein Phasenshift- Verfahren angewandt wird.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zum Bestimmen der Radebene, des Radmittelpunktes und ggf. des Karosserieausschnitts um das Rad eine Vielzahl von Oberflächenpunkten als 3D-Punktwolke, mindestens jedoch drei Schnittpunkte zwischen zwei Oberflächenprofilen und rotationssymmetrischen Konturen des Rades herangezogen werden
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass aus der Kante des Radausschnitts der Beladungszustand des Rades und aus der Radebene und dem Radmittelpunkt Spur und Sturz bestimmt werden.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei der Abtastung signifikante Oberflächenmerkmale am Rad wie Ventil, Lochbild, Be- schriftung, Schmutz und/oder eine Beschädigung detektiert werden und dass auf der Grundlage dieser Oberflächenmerkmale bei rotierendem Rad ein Felgenschlag er- fasst und bei der weiteren Auswertung berücksichtigt wird.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Messung während einer Vorbeifahrt des Fahrzeugs durchgeführt wird und Fahrtrichtungsdaten aufgrund einer Erfassung der Bewegungsrichtung von Karosserie-Oberflächenstrukturen gewonnen werden.
PCT/EP2006/068545 2005-12-29 2006-11-16 Verfahren zur optischen fahrwerksvermessung WO2007080014A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/909,266 US20080186514A1 (en) 2005-12-29 2006-11-16 Method For Optical Chassis Measurement
EP06819529A EP1969309A1 (de) 2005-12-29 2006-11-16 Verfahren zur optischen fahrwerksvermessung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005063083A DE102005063083A1 (de) 2005-12-29 2005-12-29 Verfahren zur optischen Fahrwerksvermessung
DE102005063083.9 2005-12-29

Publications (1)

Publication Number Publication Date
WO2007080014A1 true WO2007080014A1 (de) 2007-07-19

Family

ID=37691731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/068545 WO2007080014A1 (de) 2005-12-29 2006-11-16 Verfahren zur optischen fahrwerksvermessung

Country Status (4)

Country Link
US (1) US20080186514A1 (de)
EP (1) EP1969309A1 (de)
DE (1) DE102005063083A1 (de)
WO (1) WO2007080014A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005063051A1 (de) * 2005-12-29 2007-07-05 Robert Bosch Gmbh Verfahren zur optischen Fahrwerksvermessung
DE102006048725A1 (de) 2006-10-16 2008-04-17 Robert Bosch Gmbh Verfahren zum Ermitteln der Drehachse eines Fahrzeugrades
DE102007021328A1 (de) * 2007-05-07 2008-11-13 Robert Bosch Gmbh Verfahren und Vorrichtung zur Fahrwerksvermessung
EP2329221B1 (de) * 2008-09-12 2015-10-14 Robert Bosch GmbH Targetanordnung, satz von target-anordnungen und vorrichtung zur optischen achsvermessung
CN102901457B (zh) * 2012-10-18 2015-04-15 北京航空航天大学 一种列车车轮直径动态测量方法及系统
EP2972076B1 (de) 2013-03-15 2023-08-16 Hunter Engineering Company Verfahren zur bestimmung von parametern eines rotierenden objektes in einem projizierten muster
AT512762B1 (de) * 2013-08-01 2015-01-15 Avl List Gmbh Verfahren und Anordnung zur Fahrdynamikbewertung
US9811747B2 (en) * 2014-03-10 2017-11-07 Nissan Motor Co., Ltd. Traffic light detecting device and traffic light detecting method
CN105181358A (zh) * 2015-08-28 2015-12-23 石家庄华燕交通科技有限公司 一种车辆四轮定位检测装置
DE102017206625A1 (de) * 2017-04-20 2018-10-25 Robert Bosch Gmbh Verfahren und Vorrichtung zur Fahrwerksvermessung
US11781860B2 (en) 2018-04-30 2023-10-10 BPG Sales and Technology Investments, LLC Mobile vehicular alignment for sensor calibration
AU2019263751A1 (en) 2018-04-30 2020-12-17 BPG Sales and Technology Investments, LLC Vehicular alignment for sensor calibration
US11835646B2 (en) 2018-04-30 2023-12-05 BPG Sales and Technology Investments, LLC Target alignment for vehicle sensor calibration
US11243074B2 (en) 2018-04-30 2022-02-08 BPG Sales and Technology Investments, LLC Vehicle alignment and sensor calibration system
US11597091B2 (en) 2018-04-30 2023-03-07 BPG Sales and Technology Investments, LLC Robotic target alignment for vehicle sensor calibration
DE102019131863A1 (de) * 2019-11-25 2021-05-27 Dürr Assembly Products GmbH Verwendung einer Vorrichtung zur photogrammetrischen Vermessung von Objekten zur Bestimmung von Position und/oder Orientierung von Teilen eines Fahrzeugs
CN114604175B (zh) * 2021-11-26 2023-10-13 中科云谷科技有限公司 用于确定工程车辆的方法、处理器、装置及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280843A (ja) * 1996-04-10 1997-10-31 Anzen Motor Car Co Ltd 車両車輪の非接触式アライメント測定装置
DE19757760A1 (de) * 1997-12-23 1999-07-01 Bosch Gmbh Robert Vorrichtung zum Bestimmen der Rad- und/oder Achsgeometrie von Kraftfahrzeugen
WO2000071972A1 (en) * 1999-05-19 2000-11-30 Gieffe Immobiliare S.N.C. Di Gianfranco Crosta & C. Measuring angles of wheels using transition points of reflected laser lines
FR2808082A1 (fr) * 2000-04-20 2001-10-26 Renault Automation Comau Procede d'acquisition de donnees geometriques relatives a l'avancement d'un vehicule automobile. procede et dispositif de reglage faisant application
EP1505367A2 (de) * 2003-08-05 2005-02-09 Siemens Aktiengesellschaft Verfahren zur Bestimmung der Achsgeometrie und Sensor zu dessen Durchführung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4745469A (en) * 1987-02-18 1988-05-17 Perceptron, Inc. Vehicle wheel alignment apparatus and method
US5969246A (en) * 1995-10-10 1999-10-19 Snap-On Technologies, Inc. Apparatus and method for determining axial stability
WO1997047943A1 (fr) * 1996-06-14 1997-12-18 Kabushiki Kaisya Saginomiya Seisakusyo Dispositif pour controler l'alignement des roues et controle de l'alignement des roues
DE19757763A1 (de) * 1997-12-23 1999-07-01 Bosch Gmbh Robert Vorrichtung zum Bestimmen der Rad- und/oder Achsgeometrie von Kraftfahrzeugen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280843A (ja) * 1996-04-10 1997-10-31 Anzen Motor Car Co Ltd 車両車輪の非接触式アライメント測定装置
DE19757760A1 (de) * 1997-12-23 1999-07-01 Bosch Gmbh Robert Vorrichtung zum Bestimmen der Rad- und/oder Achsgeometrie von Kraftfahrzeugen
WO2000071972A1 (en) * 1999-05-19 2000-11-30 Gieffe Immobiliare S.N.C. Di Gianfranco Crosta & C. Measuring angles of wheels using transition points of reflected laser lines
FR2808082A1 (fr) * 2000-04-20 2001-10-26 Renault Automation Comau Procede d'acquisition de donnees geometriques relatives a l'avancement d'un vehicule automobile. procede et dispositif de reglage faisant application
EP1505367A2 (de) * 2003-08-05 2005-02-09 Siemens Aktiengesellschaft Verfahren zur Bestimmung der Achsgeometrie und Sensor zu dessen Durchführung

Also Published As

Publication number Publication date
US20080186514A1 (en) 2008-08-07
EP1969309A1 (de) 2008-09-17
DE102005063083A1 (de) 2007-07-05

Similar Documents

Publication Publication Date Title
WO2007080014A1 (de) Verfahren zur optischen fahrwerksvermessung
EP1969308B1 (de) Verfahren zur optischen fahrwerksvermessung
EP1875164B1 (de) Verfahren zum bestimmen der rad- und/oder achsgeometrie von kraftfahrzeugen
EP1042643B1 (de) Vorrichtung zum bestimmen der rad- und/oder achsgeometrie von kraftfahrzeugen
EP3183721A1 (de) Verfahren und achsenzähl-vorrichtung zur berührungslosen achsenzählung eines fahrzeugs sowie achsenzählsystem für den strassenverkehr
EP2989594B1 (de) Vorrichtung und verfahren zum erkennen von beschriftungen auf fahrzeugreifen
EP2064517B1 (de) Verfahren zum auffinden eines geometriedetails zur bestimmung der räumlichen lage einer radfelge zu einem messgerät sowie verfahren und vorrichtung zur bestimmung der räumlichen lage einer radfelge zu einem messgerät
WO2010031627A1 (de) Verfahren und messanordnung zum bestimmen der rad- oder achsgeometrie eines fahrzeugs
DE10333802B4 (de) Verfahren und Vorrichtung zum Prüfen von Reifen
DE102007021328A1 (de) Verfahren und Vorrichtung zur Fahrwerksvermessung
EP1505367A2 (de) Verfahren zur Bestimmung der Achsgeometrie und Sensor zu dessen Durchführung
DE102010002258A1 (de) Verfahren und Vorrichtung zum Bestimmen von Abständen an einem Fahrzeug
WO2008015063A1 (de) Verfahren zum bestimmen der drehachse und des drehzentrums eines fahrzeugrads
WO2021104573A1 (de) Verfahren zur bestimmung von parametern der fahrwerkgeometrie eines fahrzeugs
EP2839239B1 (de) Verfahren zur bestimmung der orientierung mindestens einer fahrschiene eines messplatzes und vorrichtung zur durchführung des verfahren
WO2018046504A1 (de) System und verfahren zum erfassen von eigenschaften mindestens eines rades eines schienenfahrzeugs
WO2008046706A1 (de) Verfahren zum vermessen der rad- oder achsgeometrie eines fahrzeugs
DE202016104124U1 (de) System zum Ermitteln von Eigenschaften mindestens eines Rades eines Schienenfahrzeugs
EP3407010A1 (de) Vorrichtung und verfahren zur messung der profiltiefe eines reifens
DE102017208810A1 (de) Vorrichtung und Verfahren zur Messung der Profiltiefe eines Reifens
EP3800622B1 (de) Verfahren und vorrichtung zum aufzeichnen einer verkehrssituation bei der vorbeifahrt eines fahrzeugs an einem aufzeichnungsgerät
EP3275762B1 (de) System und verfahren zum ermitteln von eigenschaften mindestens eines rades eines schienenfahrzeugs
DE69733672T2 (de) Verfahren zum messen der orientierung einer oberfläche
AT525772A1 (de) Verfahren und Vorrichtung zum Vermessen eines Gleises

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006819529

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11909266

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2006819529

Country of ref document: EP