WO2007079662A1 - Systeme de collecte optique par energie solaire - Google Patents

Systeme de collecte optique par energie solaire Download PDF

Info

Publication number
WO2007079662A1
WO2007079662A1 PCT/CN2007/000003 CN2007000003W WO2007079662A1 WO 2007079662 A1 WO2007079662 A1 WO 2007079662A1 CN 2007000003 W CN2007000003 W CN 2007000003W WO 2007079662 A1 WO2007079662 A1 WO 2007079662A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
mirror
spherical
aspherical
solar
Prior art date
Application number
PCT/CN2007/000003
Other languages
English (en)
French (fr)
Inventor
Hongcheng Zhang
Tianqing Chen
Tianshu Chen
Shuiju Wang
Original Assignee
Genius Electronic Optical (Xiamen) Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CNU2006200535360U external-priority patent/CN2874355Y/zh
Priority claimed from CNU2006200535341U external-priority patent/CN2869692Y/zh
Priority claimed from CNU2006200535337U external-priority patent/CN2874354Y/zh
Application filed by Genius Electronic Optical (Xiamen) Co., Ltd filed Critical Genius Electronic Optical (Xiamen) Co., Ltd
Priority to EP07701935A priority Critical patent/EP1970641A1/en
Priority to JP2008548918A priority patent/JP2009522607A/ja
Priority to AU2007204516A priority patent/AU2007204516A1/en
Publication of WO2007079662A1 publication Critical patent/WO2007079662A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/79Arrangements for concentrating solar-rays for solar heat collectors with reflectors with spaced and opposed interacting reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/86Arrangements for concentrating solar-rays for solar heat collectors with reflectors in the form of reflective coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Definitions

  • the present invention relates to a solar optical acquisition system.
  • BACKGROUND OF THE INVENTION Energy shortages have become a global issue. According to experts' estimates, the current use of energy on the earth, such as coal and natural gas, is only about 50 years old. The development of the use of energy outside the Earth, such as the efficient use of solar energy into energy resources, is now a problem that experts from all walks of life are conquering.
  • SUMMARY OF THE INVENTION It is an object of the present invention to provide a solar optical acquisition system that utilizes an optical system for collecting solar energy.
  • the solution of the present invention is: a solar optical acquisition system, which is provided with a spherical mirror in the optical path, the spherical mirror is coated with a reflective film; and in the reflected light path of the spherical mirror A light energy collector forms an optical system.
  • an aspheric correction lens is provided at the forefront of the optical system.
  • the aspheric correction lens is coated with an anti-reflection film.
  • the light energy collector is placed in front of the spherical mirror.
  • a spherical reflector disposed 45 degrees from the optical axis is disposed in front of the spherical mirror, and a light energy collector is disposed outside the optical path below the planar reflector.
  • a solar optical acquisition system is characterized in that an aspherical mirror is arranged in the optical path, and the aspherical mirror is coated with a reflective film; and a light energy collector is arranged in the reflected light path of the aspherical mirror to form an optical system.
  • an aspheric correction lens is provided at the forefront of the optical system.
  • the aspheric correction lens is coated with an anti-reflection film.
  • the light energy collector is placed in front of the spherical mirror.
  • a planar reflector disposed 45 degrees from the optical axis is disposed in front of the aspherical mirror, and a light energy collector is disposed outside the optical path below the planar reflector.
  • a solar optical acquisition system is a spherical mirror having two reflecting surfaces opposite to each other in an optical path, wherein the two spherical mirrors are coated with a reflecting film; wherein the spherical mirror is located in front of the spherical mirror and reflected in the spherical surface
  • the mirror center is provided with a through hole for the light reflected by the spherical mirror, and a light energy collector is disposed at a position opposite to the through hole of the reflecting surface of the spherical mirror to constitute an optical system.
  • An aspheric correction lens is provided in the optical path at the forefront of the optical system.
  • the aspheric correction lens is coated with an anti-reflection film.
  • a solar optical acquisition system is provided with an aspherical mirror opposite to two reflecting surfaces in the optical path, and the two aspherical mirrors are coated with a reflective film; wherein the small aspherical mirror is located in front of the aspherical mirror optical path A through hole for reflecting light passing through the small aspherical mirror is disposed at the center of the aspherical mirror, and a light energy collector is disposed at a position opposite to the through hole at the rear of the reflecting surface of the aspherical mirror to constitute an optical system.
  • An aspheric correction lens is provided in the optical path at the forefront of the optical system.
  • the aspheric correction lens is coated with an anti-reflection film.
  • a solar optical acquisition system is provided with spherical and aspherical mirrors opposite to each other in the optical path, and the two spherical and aspherical mirrors are coated with a reflective film; wherein the spherical or small aspherical mirror is located a front surface of the aspherical or spherical mirror, and a through hole for the passage of light reflected by the spherical surface or the small aspherical mirror at the center of the aspherical or spherical mirror, opposite to the rear of the aspheric or spherical mirror The position of the holes is provided with a light energy collector to constitute an optical system.
  • An aspheric correction lens is provided in the optical path at the forefront of the optical system.
  • the aspheric correction lens is coated with an anti-reflection film.
  • FIG. 1 is a schematic structural view (optical path diagram) of Embodiment 1 of the present invention.
  • Figure 2 is a graph showing chromatic aberration and spherical aberration according to Embodiment 1 of the present invention
  • Figure 3 is a dot-column diagram of Embodiment 1 of the present invention.
  • Figure 4 is a schematic structural view (optical path diagram) of Embodiment 2 of the present invention.
  • Figure 5 is a graph showing chromatic aberration and spherical aberration of Embodiment 2 of the present invention.
  • Figure 6 is a dot-column diagram of Embodiment 2 of the present invention.
  • Figure 7 is a schematic structural view (optical path diagram) of Embodiment 3 of the present invention.
  • Figure 8 is a graph showing chromatic aberration and spherical aberration of Embodiment 3 of the present invention.
  • Figure 9 is a dot-column diagram of Embodiment 3 of the present invention.
  • Figure 10 is a schematic structural view (optical path diagram) of Embodiment 4 of the present invention.
  • Figure 11 is a graph showing chromatic aberration and spherical aberration according to Embodiment 4 of the present invention
  • Figure 12 is a dot plot of the fourth embodiment of the present invention
  • Figure 13 is a schematic structural view (optical path diagram) of Embodiment 5 of the present invention.
  • Figure 14 is a graph of chromatic aberration and spherical aberration of the embodiment of the present invention.
  • Figure 15 is a dot plot of the fifth embodiment of the present invention.
  • Figure 16 is a schematic structural view (optical path diagram) of Embodiment 6 of the present invention.
  • Figure 17 is a graph showing chromatic aberration and spherical aberration in the sixth embodiment of the present invention.
  • Figure 18 is a dot plot of the sixth embodiment of the present invention.
  • Figure 19 is a schematic structural view (optical path diagram) of Embodiment 7 of the present invention.
  • Figure 20 is a graph of chromatic aberration and spherical aberration in the seventh embodiment of the present invention.
  • Figure 21 is a dot-column diagram of Embodiment I 7 of the present invention.
  • Figure 22 is a schematic view of the structure of the present invention, 8 (optical road map);
  • Figure 23 is a graph of chromatic aberration and spherical aberration of the implementation of the present invention: 8;
  • Figure 24 is a dot-column diagram of Embodiment 8 of the present invention.
  • Figure 25 is a schematic structural view (optical path diagram) of Embodiment 9 of the present invention.
  • Figure 26 is a chromatic aberration and spherical aberration-curve diagram of Embodiment 9 of the present invention.
  • Figure 27 is a dot-column diagram of Embodiment 9 of the present invention.
  • Figure 28 is a schematic structural view (optical path diagram) of Embodiment 10 of the present invention.
  • Figure 29 is a graph of chromatic aberration and spherical aberration of Embodiment 10 of the present invention.
  • Figure 30 is a dot-column diagram of Embodiment 10 of the present invention.
  • Figure 31 is a schematic structural view (optical path diagram) of Embodiment 11 of the present invention.
  • Figure 32 is a graph showing chromatic aberration and spherical aberration of Example 11 of the present invention.
  • Figure 33 is a dot-column diagram of Embodiment 11 of the present invention.
  • Figure 34 is a schematic view (light path diagram) of Embodiment 12 of the present invention.
  • Figure 35 is a graph showing chromatic aberration and spherical aberration of Embodiment 12 of the present invention.
  • Figure 36 is a dot-column diagram of Embodiment 12 of the present invention.
  • Aberration refers to the actual image and ideal image caused by the characteristic of the lens material or the geometry of the refractive (or reflective) surface in the optical system. Deviation.
  • the ideal image is an image made of an ideal optical system.
  • the actual optical system must have a certain size of imaging space and beam aperture. Also, since the imaging beam is mostly composed of light of different wavelengths, the refractive index of the same medium varies with wavelength. Therefore, the imaging of the actual optical system has a series of defects, which is the aberration.
  • the size of the aberration reflects the quality of the optical system.
  • Spherical aberration Concentric beam emitted by the point on the axis, after being refracted by the respective refractive surfaces of the optical system, the rays of light of different aperture angles are at different points, and have different deviations from the position of the ideal image point. This is the spherical image. Poor, referred to as spherical aberration. The value is different from the aperture on the axis The angle of light is represented by the difference between the image's image intercept and its paraxial image intercept. The smaller the spherical aberration, the better the uniformity of energy. On a chip, the light spots are evenly distributed on it, which is beneficial to the collection of energy.
  • Chromatic aberration Most optical systems are white light imaging.
  • White light is composed of monochromatic light of various wavelengths (colors).
  • the optical material has different refractive indices for different wavelengths of light, and after the white light is refracted than the first surface of the optical system, the various colored lights are separated and propagated in respective optical paths in the optical system, resulting in a difference in imaging position and size between the respective colored lights.
  • a colored circle is formed on the image surface.
  • aberrations caused by different color lights are called chromatic aberrations. The smaller the color difference, the better the energy collection.
  • Point map The optical design must correct the aberration of the optical system, but it is impossible to correct the aberration to a perfect degree. Therefore, it is necessary to select the optimal correction scheme for the aberration, and also to determine the degree of correction. Meet the usage requirements, that is, determine the aberration tolerance. After a lot of light emitted from one point passes through the optical system, the intersection of the image and the image plane is no longer concentrated at the same point, and a diffused pattern scattered in a certain range is formed, which is called a dot-column diagram. The intensity of the image quality can be measured by the intensity of the points in the dot map. When the point is high in concentration and high in density, the energy gathering effect is better.
  • the solar optical collecting structure of the present invention mainly comprises a spherical mirror 1 (or an aspheric mirror ⁇ ) and a light energy collector 3, and a spherical mirror 1 (or an aspheric mirror ⁇ ).
  • the upper layer is coated with a reflective film that reflects a useful portion of the sunlight to the light energy collector 3, and all unnecessary harmful portions (such as ultraviolet wavelengths below 400 nm) are all absorbed.
  • the spherical mirror 1 (or aspherical mirror ⁇ ) is placed in the solar light path, and the light energy collector 3 is placed on the optical axis in front of the spherical mirror 1 (or the aspherical mirror ⁇ ) to constitute a Optical system.
  • the optical system thus constructed has a chromatic aberration of 0 and a maximum spherical aberration of 2.46.
  • Fig. 2 is a graph showing chromatic aberration and spherical aberration; as shown in Fig. 3, a dot pattern formed for the optical system.
  • the solar optical acquisition structure mainly comprises a spherical mirror 1, a light energy collector 3 and an aspheric correction lens 4, and the spherical mirror 1 is coated with a reflective film, and the spherical mirror 1 is disposed.
  • the light energy collector 3 is placed on the optical axis in front of the spherical mirror 1 to form an optical system, and an aspherical correction lens 4 is added at the forefront of the optical system, the aspherical correction lens 4 is coated with an anti-reflection film.
  • the optical system thus constructed has a chromatic aberration of 0.023 and a maximum spherical aberration of 1, as shown in Fig. 5, which is a graph of chromatic aberration and spherical aberration; and a dot pattern formed for this optical system as shown in Fig. 6.
  • Example 3
  • the solar optical collection structure mainly includes an aspherical mirror 1, a light energy collector 3 and an aspheric correction lens 4, and the aspherical mirror 1 is coated with a reflective film,
  • the spherical mirror is placed in the solar light path, and the light energy collector 3 is placed on the optical axis in front of the aspherical mirror ⁇ to form an optical system, and an aspherical correction lens is added at the forefront of the optical system.
  • the aspheric correction lens 4 is coated with an anti-reflection film.
  • the optical system thus structured has a chromatic aberration of -0.048 and a maximum spherical aberration of 0.026, as shown in Fig. 8 as a graph of chromatic aberration and spherical aberration; as shown in Fig. 9, a dot pattern formed for the optical system is shown. .
  • Example 4
  • the solar optical collection structure of the present invention mainly comprises a spherical mirror 1, a planar reflector 5 and a light energy collector 3, and the spherical mirror 1 and the planar reflector 5 are coated with a reflection.
  • the spherical mirror 1 is placed in the solar light path, and the planar light reflecting plate 5 is placed at an angle of 45 degrees with respect to the optical axis on the optical axis in front of the spherical mirror 1, and the light energy collector 3 is placed below the planar light reflecting plate 5. Outside the light path.
  • the optical system thus constructed has a chromatic aberration of 0 and a maximum spherical aberration of -1.98, as shown in Fig. 11 as a graph of chromatic aberration and spherical aberration; as shown in Fig. 12, a dot pattern formed for the optical system is shown. .
  • Example 5
  • the solar optical collecting structure of the present invention mainly comprises an aspherical mirror ⁇ , a planar reflector 5 and a light energy collector 3, and is coated on the aspherical mirror ⁇ and the planar reflector 5 A reflective film that reflects a useful portion of the sunlight to the light energy collector 3, and absorbs all unnecessary harmful portions (such as ultraviolet wavelengths below 400 nm).
  • the aspherical mirror ⁇ is placed in the solar light path, and the planar reflector 5 is placed at an angle of 45 degrees with respect to the optical axis in front of the aspherical mirror ⁇ , and the light energy collector 3 is placed on the planar reflector 5 Outside the light path below.
  • the optical system thus constructed has a chromatic aberration of 0 and a maximum spherical aberration of 0.567, as shown in Fig. 14 as a graph of chromatic aberration and spherical aberration; as shown in Fig. 15, a dot pattern formed for the optical system.
  • Example 6
  • the solar optical acquisition structure mainly includes aspherical reflection.
  • the mirror ⁇ , the plane reflector 5, the light energy collector 3 and the aspheric correction lens 4 are coated with a reflective film on the aspherical mirror ⁇ and the planar reflector 5, and the aspherical mirror 1 is placed in the solar path.
  • the planar reflector 5 is placed at an angle of 45 degrees with respect to the optical axis in front of the aspherical mirror ⁇ , and the light energy collector 3 is disposed outside the optical path below the planar reflector 5, and the planar reflector 5 is
  • An aspherical correction lens 4 is disposed in the optical path behind the reflective surface, and the aspherical correction lens 4 is coated with an anti-reflection film.
  • the optical system thus constructed has a chromatic aberration of 0.03 and a maximum spherical aberration of -0.07, as shown in Fig. 17 as a graph of chromatic aberration and spherical aberration; as shown in Fig. 18, a dot pattern formed for the optical system is shown. .
  • Example 7
  • the solar optical acquisition structure mainly includes a spherical mirror 1, a planar reflector 5, a light energy collector 3, and an aspheric correction lens 4, which are coated on the spherical mirror and the planar reflector 5.
  • a reflective film the spherical mirror is placed in the solar light path
  • the planar light reflecting plate 5 is placed at an angle of 45 degrees with respect to the optical axis on the optical axis in front of the spherical mirror 1
  • the light energy collector 3 is placed on the planar light reflecting plate.
  • an aspherical correction lens 4 is disposed in the optical path behind the reflecting surface of the other planar reflecting plate 5, and the aspherical correcting lens 4 is coated with an anti-reflection film.
  • the optical system thus structured has a chromatic aberration of 0.03 and a maximum spherical aberration of -0.11, as shown in Fig. 20, which is a graph of chromatic aberration and spherical aberration; as shown in Fig. 21, a dot pattern formed for the optical system is shown. .
  • Example 8
  • the solar optical collecting device of the present invention mainly comprises a spherical mirror 1, a spherical mirror 2 and a light energy collector 3, and is coated on both the spherical mirror 1 and the spherical mirror 2. It is plated with a reflective film that reflects a useful portion of the sunlight to the light energy collector 3, and absorbs all unnecessary harmful portions (such as ultraviolet wavelengths below 400 nm).
  • the large and small spherical mirrors 1, 2 are placed in the solar light path, the spherical mirror 2 is placed in front of the spherical mirror 1, and the center of the spherical mirror 1 is provided for the small spherical mirror 2 to reflect the light.
  • the through hole 11 is provided with a light energy collector 3 at a position opposite to the through hole at the rear of the reflecting surface of the spherical mirror 1 to constitute an optical system.
  • the optical system thus structured has a chromatic aberration of -0 and a maximum spherical aberration of -10.83, as shown in Fig. 23, which is a graph formed by chromatic aberration and spherical aberration; as shown in Fig. 24, a dot array formed for the optical system is shown.
  • Fig. 23 is a graph formed by chromatic aberration and spherical aberration; as shown in Fig. 24, a dot array formed for the optical system is shown.
  • the solar optical collecting device of the present invention mainly comprises an aspherical mirror, a spherical mirror 2 and a light energy collector 3, and in the aspherical mirror 1, And the spherical mirror 2 is coated with a reflective film, which can reflect a useful part of the sunlight to the light energy collector 3, and all unnecessary harmful parts (such as ultraviolet wavelength below 400 nm) are all absorbed. .
  • the aspherical mirror ⁇ and the small spherical mirror 2 are placed in the solar light path, the spherical mirror 2 is placed in front of the aspherical mirror ⁇ , and the spherical mirror 2 is provided in the center of the aspherical mirror 2 2 A through hole 11' through which the reflected light passes is provided with a light energy collector 3 at a position opposite to the through hole 11 at the rear of the aspherical mirror ⁇ reflecting surface to constitute an optical system.
  • the optical system thus structured has a chromatic aberration of -0 and a maximum spherical aberration of -3.10, as shown in Fig. 26, which is a graph formed by chromatic aberration and spherical aberration; as shown in Fig. 27, a dot array formed for the optical system is shown.
  • Fig. 26 is a graph formed by chromatic aberration and spherical aberration; as shown in Fig. 27, a dot array formed for the optical system is shown.
  • the solar optical collecting device of the present invention mainly comprises a spherical mirror 1, a spherical mirror 2, a light energy collector 3 and an aspheric correction lens 4, and a spherical mirror 1 and a spherical surface.
  • the mirror 2 is coated with a reflective film that reflects a useful portion of the sunlight to the light energy collector 3.
  • the size spherical mirrors 1, 2 are placed in the solar light path, the spherical mirror 2 is placed in front of the spherical mirror 1, and the center of the spherical mirror 1 is provided with a through hole for the small spherical mirror 2 to reflect light. 11 .
  • a light energy collector 3 is disposed at a position opposite to the through hole at the rear of the reflecting surface of the spherical mirror 1 to constitute an optical system.
  • An aspheric correction lens 4 is disposed in the foremost optical path of the optical system, and the aspheric correction lens 4 is coated with an anti-reflection film.
  • the optical system thus constructed has a chromatic aberration of -0.18 and a maximum spherical aberration of -0.52, as shown in Fig. 29, which is a graph formed by chromatic aberration and spherical aberration; as shown in Fig. 30, a dot array formed for the optical system is shown.
  • Fig. 29 which is a graph formed by chromatic aberration and spherical aberration; as shown in Fig. 30, a dot array formed for the optical system is shown.
  • the solar optical collecting device of the present invention mainly comprises an aspherical mirror 1, a spherical spherical mirror 2, a light energy collector 3 and an aspherical correcting lens 4, in an aspherical mirror.
  • the spherical mirror 2 is coated with a reflective film.
  • the aspherical mirror ⁇ and the small spherical mirror 2 are placed in the solar light path, the spherical mirror 2 is placed in front of the aspherical mirror 1, and the spherical mirror is provided in the center of the aspherical mirror ⁇ 2, the through hole 11 through which the reflected light passes, and the light energy collector 3 is disposed at a position opposite to the through hole 11 at the rear of the reflecting surface of the aspherical mirror V to constitute an optical system.
  • An aspheric correction lens 4 is disposed in the optical path of the forefront of the optical system, and the aspheric correction lens 4 is coated with an anti-reflection film.
  • the optical system thus constructed has a chromatic aberration of -0.22 and a maximum spherical aberration of -0.038, as shown in Fig. 32, which is a graph of chromatic aberration and spherical aberration; as shown in Fig. 33, a dot array formed for the optical system is shown.
  • Fig. 32 which is a graph of chromatic aberration and spherical aberration; as shown in Fig. 33, a dot array formed for the optical system is shown.
  • the solar optical collecting device of the present invention mainly comprises an aspherical mirror ⁇ , a small aspherical mirror 2, a light energy collector 3 and an aspheric correction lens 4, and an aspheric mirror.
  • ⁇ and the small aspherical mirror 2 are coated with a reflective film.
  • the aspherical mirrors 1', 2 are placed in the solar path, the small aspheric mirror 2 is placed in front of the aspherical mirror ⁇ , and the aspherical mirror is provided in the center of the aspherical mirror for small aspherical reflections.
  • the mirror 2 the through hole .11' through which the reflected light passes, is provided with a light energy collector 3 at a position opposite to the through hole 11 at the rear of the aspherical mirror ⁇ reflecting surface to constitute an optical system. Further, an aspherical correction lens 4 is disposed in the foremost optical path of the optical system, and the aspherical correction lens 4 is coated with an anti-reflection film. ⁇
  • the optical system thus structured has a chromatic aberration of -0.12 and a maximum spherical aberration of -0.029, as shown in Fig. 35, which is a graph formed by chromatic aberration and spherical aberration; as shown in Fig. 36, a dot array formed for the optical system is shown.
  • Fig. 35 which is a graph formed by chromatic aberration and spherical aberration; as shown in Fig. 36, a dot array formed for the optical system is shown.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lenses (AREA)
  • Optical Elements Other Than Lenses (AREA)

Description

太阳能光学采集系统
技术领域 本发明是关于一种太阳能光学采集系统。 背景技术 时下能源紧缺已成为全球性问题。据专家估算, 以目前能源的使 用需要, 在地球上现有的能源如煤、 天然气等仅够 50年左右的使用 量。开发使用地球之外能源,如将太阳能有效的利用转化为可支 ^能 源, 是现在各行各业专家正在攻克的难题。 发明内容 本发明的目的在于提供一种利用光学系统对太阳能进行采集的 太阳能光学采集系统。
为实现上述目的, 本发明的解决方案是: 一种太阳能光学采集系 统, 其是在光路中设有一球面反射镜, 球面反射镜上涂覆有反射膜; 另在球面反射镜的反射光路中设有一光能收集器构成一光学系统。
在光学系统最前方进一步设有一非球面校正透镜。
所述的非球面校正透镜上涂覆有增透膜。 '
光能收集器是设在球面反射镜的前方。
所述的球面反射镜前方设有一与光轴呈 45 度放置的平面反射 板, 位于此平面反射板的下方光路之外设有光能收集器。
一种太阳能光学采集系铳, 其是在光路中设有一非球面反射镜, 非球面反射镜上涂覆有反射膜;另在非球面反射镜的反射光路中设有 一光能收集器构成一光学系统。
在光学系统最前方进一步设有一非球面校正透镜。
所述的非球面校正透镜上涂覆有增透膜。
光能收集器是设在球面反射镜的前方。
所述的非球面反射镜前方设有一与光轴呈 45度放置的平面反射 板, 位于此平面反射板的下方光路之外设有光能收集器。
一种太阳能光学采集系统,其是在光路中设有两反射面相对的球 面反射镜, 两球面反射镜上涂覆有反射膜; 其中小球面反射镜位于球 面反射镜的前方,而在球面反射镜中心设有供小球面反射镜反射光线 通过的通孔,在球面反射镜反射面的后方相对通孔的位置设有光能收 集器以构成一光学系统。 在光学系统最前方光路中设有一非球面校正透镜。
所述非球面校正透镜上涂覆有增透膜。
一种太阳能光学采集系统,其是在光路中设有两反射面相对的非 球面反射镜, 两非球面反射镜上涂覆有反射膜; 其中小非球面反射镜 位于非球面反射镜光路的前方,而在非球面反射镜中心设有供小非球 面反射镜反射光线通过的通孔,在非球面反射镜反射面的后方相对通 孔的位置设有光能收集器以构成一光学系统。
在光学系统最前方光路中设有一非球面校正透镜。
所述非球面校正透镜上涂覆有增透膜。
一种太阳能光学采集系统,其是在光路中设有两反射面相对的球 面和非球面反射镜, 两球面和非球面反射镜上涂覆有反射膜; 其中小 球面或小非球面反射镜位于非球面或球面反射镜光路的前方,而在非 球面或球面反射镜中心设有供小球面或小非球面反射镜反射光线通 过的通孔,在非球面或球面反射镜反射面的后方相对通孔的位置设有 光能收集器以构成一光学系统。
在光学系统最前方光路中设有一非球面校正透镜。
所述非球面校正透镜上涂覆有增透膜。 '
采用上述方案后,由于本发明在太阳光的光路中设有由球面或非 球面反射镜配合光能收集器组合而成的光学采集系统,则太阳光光能 可^通过球面或非球面反射镜将光点有效的集中在光能收集器上实 现光能收集的功能, 同时在球面或非球面反射镜上涂镀有反射膜, 该 镀膜可以将太阳光中有用的部份反射至光能收集器,而无用有害的部 分(如紫外线波长 400纳米以下)全部吸收掉, 进而将其转化为可利 用能源。 附图说明 图 1是本发明实施例 1的结构示意图 (光路图);
图 2是本发明实施例 1的色差与球差曲线图;
图 3是本发明实施例 1的点列图;
图 4是本发明实施例 2的结构示意图 (光路图);
图 5是本发明实施例 2的色差与球差曲线图;
图 6是本发明实施例 2的点列图;
图 7是本发明实施例 3的结构示意图 (光路图);
图 8是本发明实施例 3的色差与球差曲线图;
图 9是本发明实施例 3的点列图;
图 10是本发明实施例 4的结构示意图 (光路图);
图 11是本发明实施例 4的色差与球差曲线图; 图 12是本发明实施 4的点列图;
图 13是本发明实施 5的结构示意图 (光路图);
图 14是本发明实施 '. 5的色差与球差曲线图;
图 15是本发明实施 5的点列图;
图 16是本发明实施 6的結构示意图 (光路图);
图 17是本发明实施 6的色差与球差曲线图;
图 18是本发明实施 6的点列图;
图 19是本发明实施 7的的结构示意图 (光路图);
图 20是本发明实施 7的色差与球差曲线图;
图 21是本发明实施 I 7的点列图;
图 22是本发明实施 , 8的结构示意图 (光路图);
图 23是本发明实施 : 8的色差与球差曲线图;
图 24是本发明实施例 8的点列图;
图 25是本发明实施例 9的结构示意图 (光路图);
图 26是本发明实施例 9的色差与球差—曲线图;
图 27是本发明实施例 9的点列图;
图 28是本发明实施例 10的结构示意图 (光路图);
•图 29是本发明实施例 10的色差与球差曲线图;
图 30是本发明实施例 10的点列图;
图 31是本发明实施例 11的的结构示意图 (光路图);
图 32是本发明实施例 11的色差与球差曲线图;
图 33是本发明实施例 11的点列图;
图 34是本发明实施例 12的的结枸示意图 (光路图);
图 35是本发明实施例 12的色差与球差曲线图;
图 36是本发明实施例 12的点列图。 具体实施方式 在陈述具体实施例之前, 需要说明光学设计中的几个参数概念: 像差: 指在光学系统中由透镜材料的特性或折射(或反射)表面 的几何形状引起实际像与理想像的偏差。理想像是由理想光学系统所 成的像。 实际的光学系统, 须有一定大小的成像空间和光束孔径, 同 时还由于成像光束多是由不同波长的光组成的,同一介质的折射率随 波长而异。因此实际光学系统的成像具有一系列的缺陷,这就是像差。 像差的大小反映了光学系统质量的优劣。
球差:由轴上点发出的同心光束,经光学系统各个折射面折射后, 不同孔径角的光线交光轴于不同点上,相对于理想象点的位置有不同 的偏离, 这就是球面像差, 简称球差。 其值由轴上点发出的不同孔径 角的光线经系统后的象方截距和其近轴光像方截距之差表示。球差越 小, 能量的均匀度越好, 在一个芯片上, 光点均匀地分布其上, 有利 于能量的收集。
色差: 光学系统大多是白光成像。 白光是各种不同波长(颜色) 的单色光组成的。 光学材料对不同波长的色光折射率不同, 白光比光 学系统第一表面折射后, 各种色光被分开, 在光学系统内以各自的光 路传播,造成各色光之间成像位置和大小的差异, 在像面上形成彩色 的弥散圆。 复色光成像时, 由不同色光而引起的像差称为色差。 色差 越小, 能量收集越佳。
点列图: 光学设计必须校正光学系统的像差, 但既不可能无必要 把像差校正到完全理想的程度, 因此需要选择像差的最佳校正方案, 也需要确定校正到怎样的程度才能满足使用要求 , 即确定像差容限。 由一点发出的许多光线经光学系统后,因.像差使其与像面的交点不再 集中于同一点, 而形成了一个散布在一定范围的弥散图形, 称为点列 图。用点列图中点的密集程度可以衡量系统成像质量的优劣。 点的集 中性高、 密度高时, 聚能效果更好。 实施例 1 :
如图 1-3所示, 本发明的太阳能光学采集结构, 其主要包括球面 反射镜 1 (或非球面反射镜 Γ )及光能收集器 3,在球面反射镜 1 (或 非球面反射镜 Γ )上涂镀有反射膜, 该膜可以将太阳光中有用的部 份反射至光能收集器 3 , 而无用有害的部分 (如紫外线波长 400纳米 以下)全部吸收掉。 球面反射镜 1 (或非球面反射镜 Γ )是置于太阳 光光路中,而光能收集器 3是置于球面反射镜 1(或非球面反射镜 Γ ) 的前方的光轴上以构成一光学系统。
如此结构的光学系统, 其形成的色差为 0, 而最大球差为 2.46, 见图 2所示为色差与球差形成的曲线图;如图 3所示为此光学系统形 成的点列图。 实施例 2:
如 4-6所示, 太阳能光学采集结构, 其主要包括球面反射镜 1、 光能收集器 3及非球面校正透镜 4,在球面反射镜 1上涂镀有反射膜, 球面反射镜 1是置于太阳光光路中,而光能收集器 3是置于球面反射 镜 1的前方的光轴上以构成一光学系统,在光学系统最前方再加设有 非球面校正透镜 4, 非球面校正透镜 4上涂覆有增透膜。
如此结构的光学系统, 其形成的色差为 0.023, 而最大球差为 1 , 见图 5所示为色差与球差形成的曲线图;如图 6所示为此光学系统形 成的点列图。 实施例 3:
如图 7-9所示, 太阳能光学采集结构, 其主要包括非球面反射镜 1,、 光能收集器 3及非球面校正透镜 4, 在非球面反射镜 1, 上涂镀 有反射膜, 非球面反射镜 是置于太阳光光路中, 而光能收集器 3 是置于非球面反射镜 Γ 的前方的光轴上以构成一光学系统, 在光学 系统最前方再加设有非球面校正透镜 4, 非球面校正透镜 4上涂覆有 增透膜。
如此结构的光学系统, 其形成的色差为 -0.048 , 而最大球差为 0.026, 见图 8所示为色差与球差形成的曲线图; 如图 9所示为此光 学系统形成的点列图。 实施例 4:
如图 10-12所示, 本发明的太阳能光学采集结构, 其主要包括球 面反射镜 1、 平面反光板 5及光能收集器 3 , 在球面反射镜 1及平面 反光板 5上涂镀有反射膜,该反射膜可以将太阳光中有用的部份反射 至光能收集器 3 , 而无用有害的部分(如紫外线波长 400纳米以下) 全部吸收掉。球面反射镜 1是置于太阳光光路中, 平面反光板 5与光 轴呈 45度放置于球面反射镜 1的前方的光轴上, 而光能收集器 3是 置于平面反光板 5下方的光路之外。
如此结构的光学系统, 其形成的色差为 0, 而最大球差为 -1.98, 见图 11所示为色差与球差形成的曲线图;如图 12所示为此光学系统 形成的点列图。 实施例 5:
如 13-15所示, 本发明的太阳能光学采集结构, 其主要包括非球 面反射镜 Γ、平面反光板 5及光能收集器 3 ,在非球面反射镜 Γ 及 平面反光板 5上涂镀有反射膜,该反射膜可以将太阳光中有用的部份 反射至光能收集器 3, 而无用有害的部分(如紫外线波长 400纳米以 下)全部吸收掉。 非球面反射镜 Γ 是置于太阳光光路中, 平面反光 板 5与光轴呈 45度放置于非球面反射镜 Γ 的前方的光轴上, 而光 能收集器 3是置于平面反光板 5下方的光路之外。
如此结构的光学系统, 其形成的色差为 0, 而最大球差为 0.567, 见图 14所示为色差与球差形成的曲线图;如图 15所示为此光学系统 形成的点列图。 实施例 6:
如图 16-18所示, 太阳能光学采集结构, 其主要包括非球面反射 镜 Γ、 平面反光板 5、 光能收集器 3及非球面校正透镜 4, 在非球面 反射镜 Γ 及平面反光板 5上涂镀有反射膜, 非球面反射镜 1, 是置 于太阳 光路中, 平面反光板 5与光轴呈 45度放置于非球面反射镜 Γ 的前方的光轴上, 而光能收集器 3是置于平面反光板 5下方的光 路之外,另平面反光板 5的反光面后方的光路中设有一非球面校正透 镜 4, 非球面校正透镜 4上涂覆有增透膜。
如此结构的光学系统,其形成的色差为 0.03,而最大球差为 -0.07, 见图 17所示为色差与球差形成的曲线图;如图 18所示为此光学系统 形成的点列图。 实施例 7:
如图 19-21所示, 太阳能光学采集结构, 其主要包括球面反射镜 1、 平面反光板 5、 光能收集器 3及非球面校正透镜 4, 在球面反射镜 及平面反光板 5上涂镀有反射膜, 球面反射镜是置于太阳光光路中, 平面反光板 5与光轴呈 45度放置于球面反射镜 1的前方的光轴上, 而光能收集器 3是置于平面反光板 5下方的光路之外,另平面反光板 5的反光面后方的光路中设有一非球面校正透镜 4, 非球面校正透镜 4上涂覆有增透膜。
如此结构的光学系统,其形成的色差为 0.03,而最大球差为 -0.11, 见图 20所示为色差与球差形成的曲线图;如图 21所示为此光学系统 形成的点列图。 实施例 8:
如图 22-24所示, 本发明的太阳能光学采集装置, 其主要包括球 面反射镜 1、 小球面反射镜 2及光能收集器 3 , 在球面反射镜 1及小 球面反射镜 2上均涂镀有反射膜,该反射膜可以将太阳光中有用的部 份反射至光能收集器 3, 而无用有害的部分(如紫外线波长 400纳米 以下)全部吸收掉。 大、 小球面反射镜 1、 2是置于太阳光光路中, 小球面反射镜 2是置于球面反射镜 1的前方,而在球面反射镜 1中心 设有供小球面反射镜 2反射光线通过的通孔 11 , 在球面反射镜 1反 射面的后方相对通孔的位置设有光能收集器 3以构成一光学系统。
如此结构的光学系统, 其形成的色差为 -0, 而最大球差为 -10.83, 见图 23所示为色差与球差形成的曲线图;如图 24所示为此光学系统 形成的点列图。 实施例 9:
如 25-27所示, 本发明的太阳能光学采集装置, 其主要包括非球 面反射镜 、 小球面反射镜 2及光能收集器 3, 在非球面反射镜 1, 及小球面反射镜 2上均涂镀有反射膜,该反射膜可以将太阳光中有用 的部份反射至光能收集器 3 , 而无用有害的部分(如紫外线波长 400 纳米以下)全部吸收掉。 非球面反射镜 Γ、 小球面反射镜 2是置于 太阳光光路中, 小球面反射镜 2是置于非球面反射镜 Γ 前方, 而在 非球面反射镜 Γ 中心设有供小球面反射镜 2反射光线通过的通孔 11' , 在非球面反射镜 Γ 反射面的后方相对通孔 11, 的位置设有光 能收集器 3以构成一光学系统。
如此结构的光学系统, 其形成的色差为 -0, 而最大球差为 -3.10, 见图 26所示为色差与球差形成的曲线图;如图 27所示为此光学系统 形成的点列图。 实施例 10:
如图 28-30所示, 本发明的太阳能光学采集装置, 其主要包括球 面反射镜 1、 小球面反射镜 2、 光能收集器 3及非球面校正透镜 4, 在球面反射镜 1及小球面反射镜 2上均涂镀有反射膜,该反射膜可以 将太阳光中有用的部份反射至光能收集器 3。 大小球面反射镜 1、 2 是置于太阳光光路中, 小球面反射镜 2是置于球面反射镜 1前方, 而 在球面反射镜 1中心设有供小球面反射镜 2反射光线通过的通孔 11 , 在球面反射镜 1反射面的后方相对通孔的位置设有光能收集器 3以构 成一光学系统。 在光学系统最前方光路中设有一非球面校正透镜 4, 非球面校正透镜 4上涂覆有增透膜。
如此结构的光学系统,其形成的色差为 -0.18,而最大球差为 -0.52, 见图 29所示为色差与球差形成的曲线图;如图 30所示为此光学系统 形成的点列图。 实施例 11:
如图 31-33所示, 本发明的太阳能光学采集装置, 其主要包括非 球面反射镜 1,、小球面反射镜 2、光能收集器 3及非球面校正透镜 4, 在非球面反射镜 Γ 及小球面反射镜 2上均涂镀有反射膜。 非球面反 射镜 Γ 及小球面反射镜 2是置于太阳光光路中, 小球面反射镜 2是 置于非球面反射镜 1, 前方, 而在非球面反射镜 Γ 中心设有供小球 面反射镜 2反射光线通过的通孔 11,, 在非球面反射镜 V 反射面的 后方相对通孔 11, 的位置设有光能收集器 3 以构成一光学系统。 在 光学系统最前方光路中设有一非球面校正透镜 4, 非球面校正透镜 4 上涂覆有增透膜。
如此结构的光学系统, 其形成的色差为 -0.22 , 而最大球差为 -0.038, 见图 32所示为色差与球差形成的曲线图; 如图 33所示为此 光学系统形成的点列图。 实施例 12:
如图 34-36所示, 本发明的太阳能光学采集装置, 其主要包括非 球面反射镜 Γ、 小非球面反射镜 2,、 光能收集器 3及非球面校正透 镜 4, 在非球面反射镜 Γ 及小非球面反射镜 2, 上均涂镀有反射膜。 大小非球面反射镜 1'、 2, 是置于太阳光光路中, 小非球面反射镜 2, 是置于非球面反射镜 Γ 前方, 而在非球面反射镜 Γ 中心设有供小 非球面反射镜 2, 反射光线通过的通孔 .11', 在非球面反射镜 Γ 反 射面的后方相对通孔 11, 的位置设有光能收集器 3 以构成一光学系 统。 另在光学系统最前方光路中设有一非球面校正透镜 4, 非球面校 正透镜 4上涂覆有增透膜。 ―
如此结构的光学系统, 其形成的色差为 -0.12 , 而最大球差为 -0.029, 见图 35所示为色差与球差形成的曲线图; 如图 36所示为此 光学系统形成的点列图。

Claims

权 利 要 求
1、 一种太阳能光学采集系统, 其特征在于: 是在光路中设有一 球面反射镜,球面反射镜上涂覆有反射膜; 另在球面反射镜的反射光 路中设有一光能收集器构成一光学系统。
2、 如权利要求 1所述的太阳能光学采集系统, 其特征在于: 在 光学系统最前方进一步设有一非球面校正透镜。
3、 如权利要求 2所述的太阳能光学采集系统, 其特征在于: 非 球面校正透镜上涂覆有增透膜。
4、 如权利要求 1、 2或 3所述的太阳能光学采集系统, 其特征在 于: 光能收集器是设在球面反射镜的前方。
5、如权利要求 1、 2或 3所述的太阳能光学采集系统, 其特征在 于: 球面反射镜前方设有一与光轴呈 45度放置的平面反射板, 位于 此平面反射板的下方光路之外设有光能收集器。
6、 一种太阳能光学采集系统, 其特征在于: 是在光路中设有一 非球面反射镜, 非球面反射镜上涂覆有反射膜; 另在非球面反射镜的 反射光路中设有一光能收集器构成一光学系统。
7、 在光学系统最前方进一步设有一非球面校正透镜。
8、 如权利要求 7所述的太阳能光学采集系统, 其特征在于: 非 球面校正透镜上涂覆有增透膜。
9、如权利要求 6、 7或 8所述的太阳能光学采集系统, 其特征在 于: 光能收集器是设在球面反射镜的前方。
10、 如权利要求 6、 7或 8所述的太阳能光学采集系统, 其特征 在于: 非球面反射镜前方设有一与光轴呈 45度放置的平面反射板, 位于此平面反射板的下方光路之外设有光能收集器。
11、 一种太阳能光学采集系统, 其特征在于: 是在光路中设有两 反射面相对的球面反射镜, 两球面反射镜上涂覆有反射膜; 其中小球 面反射镜位于球面反射镜的前方,而在球面反射镜中心设有供小球面 反射镜反射光线通过的通孔,在球面反射镜反射面的后方相对通孔的 位置设有光能收集器以构成一光学系统。
12、 如权利要求 11所述的太阳能光学采集系统 , 其特征在于: 在光学系统最前方光路中设有一非球面校正透镜。
13、 如权利要求 12所述的太阳能光学采集系统, 其特征在于: 所述非球面校正透镜上涂覆有增透膜。
14、 一种太阳能光学采集系统, 其特征在于: 是在光路中设有两 反射面相对的非球面反射镜,'两非球面反射镜上涂覆有反射膜; 其中 小非球面反射镜位于非球面反射镜光路的前方,而在非球面反射镜中 心设有供小非球面反射镜反射光线通过的通孔,在非球面反射镜反射 面的后方相对通孔的位置设有光能收集器以构成一光学系统。
15、 如权利要求 14所述的太阳能光学采集系统, 其特征在于: 在光学系统最前方光路中设有一非球面校正透镜。
16、 如权利要求 15所述的太阳能光学采集系统, 其特征在于: 非球面校正透镜上涂覆有增透膜。
17、 一种太阳能光学采集系统, 其特征在于: 是在光路中设有两 反射面相对的球面和非球面反射镜,两球面和非球面反射镜上涂覆有 反射膜;其中小球面或小非球面反射镜位于非球面或球面反射镜光路 的前方,而在非球面或球面反射镜中心设有供小球面或小非球面反射 镜反射光线通过的通孔,在非球面或球面反射镜反射面的后方相对通 孔的位置设有光能收集器以构成一光学系统。
18、 如权利要求 17所述的太阳能光学采集系统, 其特征在于: 在光学系统最前方光路中设有一非球面校正透镜。
19、 如权利要求 18所述的太阳能光学采集系统, 其特征在于: 非球面校正透镜上涂覆有增透膜。
PCT/CN2007/000003 2006-01-06 2007-01-04 Systeme de collecte optique par energie solaire WO2007079662A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07701935A EP1970641A1 (en) 2006-01-06 2007-01-04 Solar energy optical collection system
JP2008548918A JP2009522607A (ja) 2006-01-06 2007-01-04 太陽エネルギー光学採集システム
AU2007204516A AU2007204516A1 (en) 2006-01-06 2007-01-04 Solar energy optical collection system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CNU2006200535360U CN2874355Y (zh) 2006-01-06 2006-01-06 太阳能光学采集结构
CN200620053534.1 2006-01-06
CN200620053533.7 2006-01-06
CNU2006200535341U CN2869692Y (zh) 2006-01-06 2006-01-06 太阳能光学采集装置
CN200620053536.0 2006-01-06
CNU2006200535337U CN2874354Y (zh) 2006-01-06 2006-01-06 一种太阳能光学采集结构

Publications (1)

Publication Number Publication Date
WO2007079662A1 true WO2007079662A1 (fr) 2007-07-19

Family

ID=38255979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/000003 WO2007079662A1 (fr) 2006-01-06 2007-01-04 Systeme de collecte optique par energie solaire

Country Status (4)

Country Link
EP (1) EP1970641A1 (zh)
JP (1) JP2009522607A (zh)
AU (1) AU2007204516A1 (zh)
WO (1) WO2007079662A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010030566A1 (de) 2009-06-26 2010-12-30 Peter Dr.-Ing. Draheim Solarthermievorrichtung und Solarthermieverfahren

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4307936A (en) * 1979-09-17 1981-12-29 Tsurunosuke Ochiai System for collecting solar energy
US4788555A (en) * 1985-07-29 1988-11-29 Schultz Donald G Combined solar and signal receptor device
CN1156502A (zh) * 1994-07-19 1997-08-06 阿努泰克Pty有限公司 改进的太阳能收集器
US6225551B1 (en) * 1999-09-02 2001-05-01 Midwest Research Institute Multi-facet concentrator of solar setup for irradiating the objects placed in a target plane with solar light
CN1580667A (zh) * 2003-10-31 2005-02-16 赵小峰 太阳能汇聚利用装置
WO2005050103A1 (en) * 2003-11-20 2005-06-02 Aparna .T.A A large lens solar energy concentrator

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617933B2 (ja) * 1986-01-28 1994-03-09 清水建設株式会社 太陽光採光装置
JPH01114666A (ja) * 1987-10-27 1989-05-08 Tohoku Electric Power Co Inc 太陽熱機関用集熱装置
JPH0727425A (ja) * 1991-02-25 1995-01-27 Showa Device Plant Kk 集光装置、および蓄熱装置
JP2790584B2 (ja) * 1992-12-10 1998-08-27 修一 増永 双眼反射望遠鏡
JP3267877B2 (ja) * 1995-09-29 2002-03-25 レイセオン・カンパニー 赤外線映像システム用非球面素子
JPH09248741A (ja) * 1996-03-12 1997-09-22 Nikon Corp 研磨方法
JP2002098415A (ja) * 2000-09-22 2002-04-05 Mitaka Koki Co Ltd 太陽光集光装置
JP2003167196A (ja) * 2001-12-04 2003-06-13 Nikon Corp 反射屈折光学系
JP2005076967A (ja) * 2003-08-29 2005-03-24 Sanden Corp 太陽熱集熱装置
JP2005106432A (ja) * 2003-10-01 2005-04-21 Mikio Takano ソーラ集光集熱器
JP2005114190A (ja) * 2003-10-03 2005-04-28 Tomohiro Omura 集光調理器具

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4307936A (en) * 1979-09-17 1981-12-29 Tsurunosuke Ochiai System for collecting solar energy
US4788555A (en) * 1985-07-29 1988-11-29 Schultz Donald G Combined solar and signal receptor device
CN1156502A (zh) * 1994-07-19 1997-08-06 阿努泰克Pty有限公司 改进的太阳能收集器
US6225551B1 (en) * 1999-09-02 2001-05-01 Midwest Research Institute Multi-facet concentrator of solar setup for irradiating the objects placed in a target plane with solar light
CN1580667A (zh) * 2003-10-31 2005-02-16 赵小峰 太阳能汇聚利用装置
WO2005050103A1 (en) * 2003-11-20 2005-06-02 Aparna .T.A A large lens solar energy concentrator

Also Published As

Publication number Publication date
AU2007204516A1 (en) 2007-07-19
JP2009522607A (ja) 2009-06-11
EP1970641A1 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
US6552852B2 (en) Catoptric and catadioptric imaging systems
US6717736B1 (en) Catoptric and catadioptric imaging systems
TWI417638B (zh) 一種具有降低尺寸大小並提高對比度之投影機
WO2023093551A1 (zh) 点云投影系统
JP2007531060A5 (zh)
KR20070012371A (ko) 극자외선을 갖는 고 개구수 이미지용 반사굴절 이미지시스템
CN201936009U (zh) 光学测距系统
CN113568263B (zh) 一种基于菲涅尔透镜提高准直效率的照明系统
CN106644945A (zh) 防止镜片膜层腐蚀和污染的平凸镜多通吸收池
CN202948196U (zh) 一种用于双波段成像的紫外光路镜片组合装置
WO2007079662A1 (fr) Systeme de collecte optique par energie solaire
US7796340B2 (en) Method and apparatus for maximum light intensity for an optical illumination system
CN102279473B (zh) 星模拟器光学系统
CN2869692Y (zh) 太阳能光学采集装置
CN106154362B (zh) 一种小f数多波长标准球面参考透镜组
CN110596005A (zh) 一种新型环形平凹面镜光学多通吸收池
CN110596007B (zh) 一种多元件的平面镜光学多通吸收池
CN208805602U (zh) 一种滤光装置
CN101004292B (zh) 太阳能光学采集系统
CN109541736B (zh) 一种基于多层梯度折射率透膜的布儒斯特角起偏器
US10859789B2 (en) Curved pattern marker and optical tracking device including marker
RU77457U1 (ru) Объектив
TW200829950A (en) Solar energy optical collection system
WO2021109362A1 (zh) 透镜及车灯照明系统
CN110596006B (zh) 一种折叠形光学多通吸收池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007701935

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008548918

Country of ref document: JP

Ref document number: 2007204516

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2007204516

Country of ref document: AU

Date of ref document: 20070104

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2007204516

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2007701935

Country of ref document: EP