WO2007078630A1 - Dentifrices comprenant des matières à base de silice biogénique - Google Patents
Dentifrices comprenant des matières à base de silice biogénique Download PDFInfo
- Publication number
- WO2007078630A1 WO2007078630A1 PCT/US2006/047061 US2006047061W WO2007078630A1 WO 2007078630 A1 WO2007078630 A1 WO 2007078630A1 US 2006047061 W US2006047061 W US 2006047061W WO 2007078630 A1 WO2007078630 A1 WO 2007078630A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silica
- dentifrice
- abrasive
- dentifrices
- weight
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/19—Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
- A61K8/25—Silicon; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q11/00—Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/20—Chemical, physico-chemical or functional or structural properties of the composition as a whole
- A61K2800/28—Rubbing or scrubbing compositions; Peeling or abrasive compositions; Containing exfoliants
Definitions
- This invention relates to unique dentifrices comprising unique abrasive biogenic silica materials.
- Such compositions exhibit excellent abrasive characteristics, either alone, or in combination with other types of abrasives, hi such combinations (with precipitated silica materials, as one example), simultaneously high pellicle film cleaning properties and moderate dentin abrasion levels are possible in order to accord the user a dentifrice that effectively cleans tooth surfaces while reducing the abrasion of the dentifrice, even at low levels of such biogenic silica additives.
- Such biogenic silica particles thus surprisingly accord beneficial properties within dentifrice compositions.
- Encompassed within this invention is the method of utilizing such biogenic silica products within dentifrices, either as the majority abrasive component, or in combination with any other type of commonly used abrasive material.
- An abrasive substance has typically been included in conventional dentifrice compositions in order to remove various deposits, including pellicle film, from the surface of teeth.
- Pellicle film is tightly adherent and often contains brown or yellow materials which impart a discoloration to the teeth. While cleaning is important, the abrasive should not be so aggressive so as to damage the teeth.
- an effective dentifrice abrasive material maximizes pellicle film removal while causing minimal abrasion and damage to the hard tooth tissues. Consequently, among other things, the p6 ⁇ M1MMi&e orm&a& ⁇ waiGe is nighiy sensitive to tne extent ot abrasion caused by the abrasive ingredient.
- the abrasive cleaning material has been introduced in flowable dry powder form to dentifrice compositions, or via redispersions of flowable dry powder forms of the polishing agent prepared before or at the time of formulating the dentifrice.
- slurry forms of such abrasives have been provided to facilitate storage, transport, and introduction within target dentifrice formulations.
- Synthetic low-structure silica products have been utilized for such a purpose due to the effectiveness such materials provide as abrasives, as well as low toxicity characteristics and compatibility with other dentifrice components, such as sodium fluoride, as one example.
- the objective is to obtain silica products which provide maximal cleaning with minimal impact to the hard tooth surfaces.
- Dental researchers are continually concerned with identifying abrasive materials that meet such objectives.
- Dentifrices and other like paste materials must exhibit proper rheological properties for improved control, such as viscosity build, stand up, brush sag, and the like.
- a stable paste that can meet a number of consumer requirements, including, and without limitation, the ability to be transferred out of a container (such as a tube) via pressure (i.e., squeezing of the tube) as a dimensionally stable paste and to removal of such pressure, the ability to be transferred in such a manner to a toothbrush-head easily and without continued flow out of the tube after such transference, the propensity to remain dimensionally stable on the brush prior to use and when applied to target teeth prior to brushing, and the exhibiting of proper mouthfeel for aesthetic purposes, at least, for the benefit of the user.
- dentifrices are comprised of a majority of one or more humectants (such as sorbitol, glycerin, polyethylene glycol, and the like) in order to permit proper suspension and delivery of the oral care product, an abrasive (such as, typically, precipitated silica) for proper mechanical cleaning and polishing of the subject teeth, water, and other active components (such as fluoride-based compounds for anticaries benefits) and other components to provide other function such as foam and sensory appeal.
- humectants such as sorbitol, glycerin, polyethylene glycol, and the like
- an abrasive such as, typically, precipitated silica
- active components such as fluoride-based compounds for anticaries benefits
- a number of water-insoluble, abrasive polishing agents have been used or described for dentifrice compositions. These abrasive polishing agents include natural and synthetic abrasive particulate materials.
- the generally known synthetic abrasive polishing agents include amorphous precipitated silica products and silica gels and precipitated calcium carbonate (PCC).
- Other abrasive polishing agents for dentifrices have included chalk, magnesium carbonate, dicalcium phosphate and its dihydrate forms, calcium pyrophosphate, zirconium silicate, potassium metaphosphate, magnesium orthophosphate, tricalcium phosphate, perlite, and the like.
- IgpilieffbMIyff iidlced precipitated low-structure silica products have been used as abrasive components in dentifrice formulations due to their cleaning ability, relative safeness, and compatibility with typical dentifrice ingredients, such as humectants, thickening agents, flavoring agents, anticaries agents, and so forth.
- synthetic precipitated silicas generally are produced by the destabilization and precipitation of amorphous silica from soluble alkaline silicate by the addition of a mineral acid and/or acid gases under conditions in which primary particles initially formed tend to associate with each other to form a plurality of aggregates (iJe., discrete clusters of primary particles), but without agglomeration into a three-dimensional gel structure.
- the resulting precipitate is separated from the aqueous fraction of the reaction mixture by filtering, washing, and drying procedures, and then the dried product is mechanically comminuted in order to provide a suitable particle size and size distribution.
- silica drying procedures are conventionally accomplished using spray drying, nozzle drying (e.g., tower or fountain), wheel drying, flash drying, rotary wheel drying, oven/fluid bed drying, and the like.
- certain conventional abrasive materials suffer to a certain extent from limitations associated with maximizing cleaning and minimizing dentin abrasion, not to mention complexity in terms of intensive manufacturing procedures, including issues relating to raw material transport, purchase, and ultimate modification.
- raw materials include silica sand and mineral acids (sulfuric, for example), that include their own difficulties in transport, utilization, purification, storage, and ultimate waste disposal.
- finished abrasive products exhibit excellent dental treatment llfe&i ⁇ MSptliM always iMsts ⁇ a general need to develop new types of dental abrasives (and dentifrices thereof) that are less complex to manufacture and/or incorporate within end- use formulations.
- new possible abrasive silicas for dentifrices that quire less complexity in manufacture, are available as a drop-in component within dentifrices with predictable rheological behavior and/or modification, and exhibits compatibility with other standard dentifrice components, all with excellent results in terms of dental abrasive qualities, could potentially reduce costs within the industry as well as provide improved film cleaning with tailored levels of abrasiveness, would be a particularly useful advancement in the dentifrice industry. To date, however, and again, such an improvement has not been forthcoming.
- biogenic silicas namely those derived from rice hulls
- PCR pellicle cleaning
- RDA radioactive dentin abrasion ratios
- combinations of rice hull derived silica and other dental abrasives appear to provide potential high levels pellicle film cleaning properties compared with a range of highly desirable lower radioactive dentin abrasion results thus providing the optimization of cleaning while providing a larger margin of abrasion protection to the ultimate user.
- It ' Mas''b ⁇ ei ⁇ &llzel that the utilization of such rice hull derived silica products within dentifrices provides surprisingly effective abrasion characteristics.
- the results are highly unexpected in that such combinations permit effective pellicle film cleaning with simultaneous low levels (though still effective) abrasion.
- the overall result has been found to provide the potential to hone the pellicle film cleaning and radioactive dentin abrasion characteristics of such overall abrasives.
- Such an ability meets a certain level of need within the dentifrice industry as the possibility of an abrasive or combination of abrasives that exhibit high pellicle film cleaning (PCR) properties with simultaneously lower radioactive dentin abrasion (RDA) results has been sought after for a long time.
- PCR pellicle film cleaning
- RDA radioactive dentin abrasion
- Miii ⁇ fle ⁇ iblI ts (llliiDE and RDA maybe tailored to suit a particular end-use desired result in accordance with the amount of rice hull silica introduced with a selected amount of other abrasive simultaneously present.
- an advantage of this invention is to provide a dentifrice comprising rice hull derived silica-containing abrasive materials wherein the dentifrice exhibits a range of ratios of PCR to RDA dependent upon the amount of such abrasives materials present as well.
- this invention encompasses a dentifrice comprising a rice hull silica derived abrasive and optionally including any other dental abrasive component, wherein said dentifrice exhibits a PCR:RDA of at most 0.70; or, alternatively, such a ratio in excess of 0.70 up to 0.80; and as a second alternative a ratio in excess of 0.80.
- synthetic precipitated silicas are prepared by admixing dilute alkali silicate solutions with strong aqueous mineral acids under conditions where aggregation to the sol and gel cannot occur, stirring and then filtering out the precipitated silica. The resulting precipitate is next washed, dried and comminuted to desired size.
- the preferred biogenic silica material is derived from rice hulls, as is noted within U.S. Pat. No. 6,406,678.
- the manufacturing process for such silica products is described in full within that patent, which is herein incorporated by reference to that extent.
- the description itself of such a manufacturing process is thus as follows as provided within that reference:
- silica content of rice hulls is generally in the 13-15% range of dry weight.
- the rice hull silicas involve the necessary separation of the silica from the other impurities found in the biogenic material, primarily the hydrocarbons thereof. Following removal of the hydrocarbons, removal of small quantities of inorganic minerals that remain may be easily substantially removed.
- the end product is a finely divided white powder of highly pure amorphous silica.
- a first, but optional step, of the rice hull silica generation may be cleaning the rice hulls.
- this will include screening the hulls to remove stalks, clumps of dirt, leaves and other large bodies therefrom and thereafter washing the hulls, with water, in an aqueous based solution containing a surfactant to enhance wet-ability of the hulls. It is believed that washing the hulls with an aqueous based surfactant solution accelerates absorption of oxidizing solution of a following step, as finely dividing the hulls, by shredding, crushing or other conventional means is also believed to do. Therefore, in this production scheme, the hulls are screened, washed with a surfactant solution and finely divided to accelerate the process. It is however noted that these steps are non-essential, highly pure amorphous silica may be extracted from rice hulls without employing these steps, although duration of the following steps maybe increased.
- the optional step of soaking them in water which may be at elevated temperature.
- Such soaking the hulls in water which may be, and preferably is, at elevated temperature, removes various soluble impurities therefrom and increases porosity of the hulls (making them more susceptible to ⁇ efima ⁇ &Wtoy oiiliifi ⁇ g solution in the following step), and may also effect some beneficial changes in the lignin and cellulose contained in the hulls. It has been observed that soaking rice hulls at near the boiling point of water for 12 or more hours accelerates the subsequent step of reducing the organic materials of the hulls by soaking them in an aqueous based oxidizing solution.
- the first essential step of the rice hull silica production scheme is reducing the organic materials of the hulls by soaking them in an aqueous based solution .containing an oxidizing solute.
- This may be accomplished with any number of materials, including many chlorates, perchlorates, nitrates, permanganates and certain peroxide compounds (such as Fenton's reagent) while comprehended by the invention, although they are not preferred.
- Peracetic acid is a preferred oxidizing solute because its residue is easily removed in the final, optional, step of the process.
- hydrogen peroxide is the most preferred oxidizer because after it is spent water is its only remainder.
- the peroxide is not completely spent in processing the hulls, as will typically be the case, so as to ensure full reduction of the organic material of the hulls, the remaining oxygen spontaneously evolves over a short period of time, which evolution may be accelerated by heating, mechanical agitation, electrolytic or various other known means. Accordingly the process disclosed herein is one that is very environmentally friendly.
- the initial dosage of hydrogen peroxide (contained in an aqueous solution) of the preferred embodiment of the invention contains approximately 0.1 mole of hydrogen peroxide (about 3.4 grams of peroxide) per kilogram of hulls. It is noted that increasing the temperature of such solution speeds the effect it has on the hulls. Maintaining the temperature of said solution in the 90-100°C range, over a course of 6-8 hours, has been MMiifflflef ⁇ tfCflsilg a temperature in excess of 100°C will require the use of a pressure vessel. While reduction is possible to at least room temperature or below, it is noted that decreased temperature tends to increase time required for reduction exponentially thus, while comprehended, is not preferred. Initial dosage of hydrogen peroxide may be substantially less, so long as during reduction monitoring is had to insure that at least some non-reacted peroxide remains in solution for a sufficient period of time to accomplish desired reduction of the organic materials of the hulls.
- the hulls may be thoroughly rinsed with water and are preferably then dried to a water content of 10% or less water content by weight.
- Rinsing the hulls, if done, should be done with as pure a water as is practical, such as de-ionized or even distilled water, with very low iron or heavy metal content, lest the rinse water itself contribute undesirable impurities to the silica.
- Drying can be done by any conventional means, but drying with heated air is preferred since the process herein disclosed creates a readily available source of heat.
- the hulls are next "burned" (combusted, or oxidized, by heat in the presence of an oxygenated gas).
- the preferred temperature range at which the hulls are burned is from about 500-950°C. At temperatures substantially below that range the carbonaceous impurities of the hulls take an excessive length of time to oxidize fully, and at some point may not oxidize at all.
- silica is stable, quite porous and insoluble in water and acids (except hydrogen fluoride), it can be further washed, rinsed, flushed with wide variety of acids and other solutions designed to remove particular impurities, such as calcium compounds, which remain following oxidation.
- inventive rice hull derived silica abrasive compositions are ready-to-use additives in the preparation of oral cleaning compositions, such as dentifrices, toothpastes, and the like, particularly suited as a raw material in a toothpaste making process. If combined with other abrasives (such as any of the products offered by J.M.
- such an abrasive may be added in any amount, but generally for higher PCRrRDA ratios (in excess of 0.80), the amount is at most 20% by weight of the total amount of abrasive present, whereas lower ratios of such characteristics (greater than 0.70 up to 0.80), the amount is in excess of 20% and up to 50% by weight, and for less than a 0.70 ratio, the amount is in excess of 50% by weight of the rice hull derived silica.
- inventive rice hull derived silica abrasive compositions may be utilized alone as the cleaning agent component provided in the dentifrice compositions of this invention, although, at least for the high cleaning category materials, the moderately high to some consumers.
- a combination of the inventive composite materials with other abrasives physically blended therewith within a suitable dentifrice formulation is potentially preferred in this regard in order to accord targeted dental cleaning and abrasion results at a desired protective level.
- any number of other conventional types of abrasive additives maybe present within inventive dentifrices in accordance with this invention.
- abrasive particles include, for example, and without limitation, precipitated calcium carbonate (PCC), ground calcium carbonate (GCC), dicalcium phosphate or its dihydrate forms, silica gel (and of any structure), amorphous precipitated silica (by itself, and of any structure as well), perlite, titanium dioxide, calcium pyrophosphate, hydrated alumina, calcined alumina, insoluble sodium metaphosphate, insoluble potassium metaphosphate, insoluble magnesium carbonate, zirconium silicate, aluminum silicate, and so forth, can be introduced within the desired abrasive compositions to tailor the polishing characteristics of the target formulation (dentifrices, for example, etc.), if desired, as well.
- PCC precipitated calcium carbonate
- GCC ground calcium carbonate
- dicalcium phosphate or its dihydrate forms silica gel (and of any structure)
- silica gel and of any structure
- amorphous precipitated silica by itself, and of any structure as well
- perlite titanium
- the abrasives when incorporated into dentifrice compositions, are present at a level of from about 5% to about 50% by weight, more preferably from about 10% to about 35% by weight, particularly when the dentifrice is a toothpaste.
- Overall dentifrice or oral cleaning formulations incorporating the abrasive compositions of this invention conveniently can comprise the following possible ingredients and relative amounts thereof (all amounts in wt %): Dentifrice Formulation
- Liquid Vehicle humectant(s) (total) 5-70 deionized water 5-70 binder(s) 0.5-2.0 anticaries agent 0.1-2.0 chelating agent(s) 0.4-10 silica thickener* 3-15 surfactant(s) 0.5-2.5 abrasive 10-50 sweetening agent ⁇ 1.0 coloring agents ⁇ 1.0 flavoring agent ⁇ 5.0 preservative ⁇ 0.5
- inventive abrasive could be used in conjunction with other abrasive materials, such as precipitated silica, silica gel, dicalcium phosphate, dicalicum phosphate dihydrate, calcium metasilicate, calcium pyrophosphate, alumina, calcined alumina, aluminum silicate, precipitated and ground calcium carbonate, chalk, bentonite, particulate thermosetting resins and other suitable abrasive materials known to a person of ordinary skill in the art.
- abrasive materials such as precipitated silica, silica gel, dicalcium phosphate, dicalicum phosphate dihydrate, calcium metasilicate, calcium pyrophosphate, alumina, calcined alumina, aluminum silicate, precipitated and ground calcium carbonate, chalk, bentonite, particulate thermosetting resins and other suitable abrasive materials known to a person of ordinary skill in the art.
- the dentifrice may also contain one or more organoleptic enhancing agents.
- Organoleptic enhancing agents include humectants, sweeteners, surfactants, flavorants, colorants and thickening agents, (also sometimes known as binders, gums, or stabilizing agents),
- Humectants serve to add body or "mouth texture" to a dentifrice as well as preventing the dentifrice from drying out.
- Suitable humectants include polyethylene glycol (at a variety of different molecular weights), propylene glycol, glycerin (glycerol), % ⁇ ]MM ⁇ B/l ⁇ iM-,l ⁇ m ⁇ M f m ⁇ nitol, lactitol, and hydrogenated starch hydrolyzates, as well as mixtures of these compounds.
- Typical levels of humectants are from about 20 wt% to about 30 wt% of a toothpaste composition.
- Sweeteners may be added to the toothpaste composition to impart a pleasing taste to the product. Suitable sweeteners include saccharin (as sodium, potassium or calcium saccharin), cyclamate (as a sodium, potassium or calcium salt), acesulfane-K, thaumatin, neohisperidin dihydrochalcone, ammoniated glycyrrhizin, dextrose, levulose, sucrose, mannose, and glucose.
- saccharin as sodium, potassium or calcium saccharin
- cyclamate as a sodium, potassium or calcium salt
- acesulfane-K thaumatin
- neohisperidin dihydrochalcone ammoniated glycyrrhizin
- dextrose levulose
- sucrose mannose
- glucose glucose
- Surfactants are used in the compositions of the present invention to make the compositions more cosmetically acceptable.
- the surfactant is preferably a detersive material which imparts to the composition detersive and foaming properties.
- Suitable surfactants are safe and effective amounts of anionic, cationic, nonionic, zwitterionic, amphoteric and betaine surfactants such as sodium lauryl sulfate, sodium dodecyl benzene sulfonate, alkali metal or ammonium salts of lauroyl sarcosinate, myristoyl sarcosinate, palmitoyl sarcosinate, stearoyl sarcosinate and oleoyl sarcosinate,, polyoxyethylene sorbitan monostearate, isostearate and laurate, sodium lauryl sulfoacetate, N-lauroyl sarcosine, the sodium, potassium, and ethanolamine salts of N- lau
- Sodium lauryl sulfate is a preferred surfactant.
- the surfactant is typically present in the oral care compositions of the present invention in an amount of about 0.1 to about 15% by weight, preferably about 0.3% to about 5% by weight, such as from about 0.3 % to about 2%, by weight.
- Suitable flavoring agents include, but are not limited to, oil of wintergreen, oil of peppermint, oil of spearmint, oil of sassafras, and oil of clove, cinnamon, anethole, menthol, thymol, eugenol, eucalyptol, lemon, orange and other such flavor compounds to add fruit notes, spice notes, etc.
- These flavoring agents consist chemically of mixtures of aldehydes, ketones, esters, phenols, acids, and aliphatic, aromatic and other alcohols.
- Colorants may be added to improve the aesthetic appearance of the product. Suitable colorants are selected from colorants approved by appropriate regulatory bodies such as the FDA and those listed in the European Food and Pharmaceutical Directives and include pigments, such as TiO 2 , and colors such as FD&C and D&C dyes.
- Thickening agents are useful in the dentifrice compositions of the present invention to provide a gelatinous structure that stabilizes the toothpaste against phase separation.
- Suitable thickening agents include silica thickener; starch; glycerite of starch; gums such as gum karaya (sterculia gum), gum tragacanth, gum arabic, gum ghatti, gum acacia, xanthan gum, guar gum and cellulose gum; magnesium aluminum silicate (Veegum); carrageenan; sodium alginate; agar-agar; pectin; gelatin; cellulose compounds such as cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxymethyl cellulose, hydroxymethyl carboxypropyl cellulose, methyl cellulose, ethyl cellulose, and sulfated cellulose; natural and synthetic clays such as hectorite clays; as well as mixtures of these compounds.
- Typical levels of thickening agents or binders are from about 0 wt% to about 15 wt% of a toothpaste composition.
- therapeutic agents examples include fluoride sources, such as sodium fluoride, sodium monofluorophosphate, potassium monofluorophosphate, stannous fluoride, potassium fluoride, sodium fluorosilicate, ammonium fluorosilicate and the like; condensed phosphates such as tetrasodium pyrophosphate, tetrapotassium pyrophosphate, disodium dihydrogen pyrophosphate, trisodium monohydrogen pyrophosphate; tripolyphosphates, hexametaphosphates, trimetaphosphates and pyrophosphates, such as ; antimicrobial agents such as triclosan, bisguanides, such as alexidine, chlorhexidine and chlorhexidine gluconate; enzymes such as papain, bromelain, glucoamylase, amylase, dextranase, mutanase, lipases, pectinase,
- fluoride sources such as sodium flu
- Preservatives may also be optionally added to the compositions of the present invention to prevent bacterial growth.
- Suitable preservatives approved for use in oral compositions such as methylparaben, propylparaben and sodium benzoate, or combinations thereof, may be added in safe and effective amounts.
- ⁇ l ⁇ e ⁇ tlHiclII ⁇ siSosed herein may also a variety of additional ingredients such as desensitizing agents, healing agents, other caries preventative agents, chelating/sequestering agents, vitamins, amino acids, proteins, other anti-plaque/anti- calculus agents, opacifiers, antibiotics, anti-enzymes, enzymes, pH control agents, oxidizing agents, antioxidants, and the like
- the water provides the balance of the composition in addition to the additives mentioned.
- the water is preferably deionized and free of impurities.
- the dentifrice will usually comprise from about 0 to about 60 wt% of water, with some having narrower ranges (from all sources) of from about 5 to about 35%, and others may have even narrower ranges of between 20 wt% to about 35 wt%.
- silica thickeners for utilization within such a toothpaste formulation include, as a non-limiting example, an amorphous precipitated silica such as ZEODENT® 165 silica.
- amorphous precipitated silica such as ZEODENT® 165 silica.
- Other preferred (though non-limiting) silica thickeners are ZEODENT® 163 and/or 167 and ZEOFREE®153, 177, and/or 265 silicas, all available from J. M. Huber Corporation, Havre de Grace Md., U.S.A.
- a "dentifrice” has the meaning defined in Oral Hygiene Products and Practice, Morton Pader, Consumer Science and Technology Series, Vol. 6, Marcel Dekker, NY 1988, p. 200, which is incorporated herein by reference. Namely, a “dentifrice” is " . . . a substance used with a toothbrush to clean the accessible surfaces of the teeth. Dentifrices are primarily composed of water, detergent, humectant, binder, flavoring agents, and a finely powdered abrasive as the principal ingredient . . .
- a dentifrice is considered to be an abrasive-containing dosage form for delivering anti- caries agents to the teeth.”
- Dentifrice formulations contain ingredients which must be into the dentifrice formulation (e.g. anti-caries agents such as sodium fluoride, sodium phosphates, flavoring agents such as saccharin).
- Median particle size is determined using a Model LA-300 laser light scattering instrument available from Horiba Instruments, Boothwyn, Pennsylvania.
- the Brass Einlehner (BE) Abrasion test used to measure the hardness of the precipitated silicas/silica gels reported in this application is described in detail in U.S. Pat. No. 6,616,916, incorporated herein by reference, involves an Einlehner AT-1000 Abrader generally used as follows: (1) a Fourdrinier brass wire screen is weighed and exposed to the action of a 10% aqueous silica suspension for a fixed length of time; (2) the amount of abrasion is then determined as milligrams brass lost from the Fourdrinier wire screen per 100,000 revolutions. The result, measured in units of mg loss, can be characterized as the 10% brass Einlehner (BE) abrasion value.
- RDA Radioactive Dentin Abrasion
- PCR Pellicle Cleaning Ratio
- STRATOSILTM S-100 silica is derived from rice hulls and is available from International Silica Technologies, LLC, The Woodlands, Texas.
- Example 1 was obtained as an unmilled, spray dried sample of STRATOSIL S-100 as is demonstrated by its large particle size.
- Examples 2-4 were obtained as milled samples of STRATOSIL S-100.
- the very small particle size samples still had a very high Einlehner abrasion value of about 20-25 mg loss, compared to precipitated silica abrasives which typically have an Einlehner abrasion of about 3-8 mg loss.
- Toothpaste formulations were prepared using several of the above-described silica examples to demonstrate the optimum dental protection benefits.
- the glycerin, sodium carboxymethyl cellulose, polyethylene glycol and sorbitol were mixed together and stirred until the ingredients were dissolved to form a first admixture.
- the deionized water, sodium fluoride, tetrasodium pyrophosphate and sodium saccharin were also mixed together and stirred until these ingredients are dissolved to form a second admixture.
- These two admixtures were then combined with stirring. Thereafter, the optional color was added with stirring m-' ⁇ iffl ⁇ M! was placed in a Ross mixer (Model 130 LDM) and silica thickener, inventive abrasive silica and titanium dioxide were mixed in without vacuum.
- the dentifrice formulations are given in Table 2 below.
- the dentifrice formulation utilized was considered a suitable test dentifrice formulation for' the purposes of determining PCR and RDA measurements for the inventive cleaning abrasives.
- ZEODENT ® 165 is an amorphous, precipitated high structure silica thickening agent available from J.M. Huber Corporation, Havre de Grace, Maryland; CARBOWAX ® 600 is a polyethylene glycol available from the Dow Chemical Company, Midland, Michigan; and CEKOL ® 2000 is a CMC available from the Noviant Group, Arnhem, the Netherlands. Tllki ⁇ nlMci ⁇ iln ⁇ lations prepared above were evaluated for PCR and RDA properties, according to the methods described above; the measurements for each dentifrice formulation are provided in Table 3 below.
- the RDA values are independent of the silica particle size, essentially having about the same RDA for particles between 48 ⁇ m and 4 ⁇ m.
- the particle hardness of the STRATOSIL silica demonstrated by the Einlehner Abrasion value, is not correlated to toothpaste RDA and the RDA is independent of the silica loading level in the toothpaste.
- the PCR values and the PCR/RDA ratio tend to increase as the silica particle size decreases as well as with increased loading of this rice hull silica derived material therein.
- CEKOL ® 2000 CMC g 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.200
- Example 5 silica, g 20 0 0 0 0 0 0 0 0 0 0 0
- Example 6 silica, g 0 20 0 0 0 0 0 0 0 0 0
- Example 7 silica, g 0 0 20 0 0 0 0 0 0 0
- Example 8 silica, g 0 0 0 20 0 0 0 0 0
- Example 9 silica, g 0 0 0 0 0 20 0 0 0
- Example 10 silica, g 0 0 0 0 0 0 20 0 0
- Example 11 silica, g 0 0 0 0 0 0 0 20 0
- Example 12 silica, g 0 0 0 0 0 0 0 0 20
- Flavor g 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 fl ⁇ i!d ⁇ rttfflcli!
- ZEODENT 114 is a less abrasive silica, than ZEODENT 119 silica, demonstrated by their Einlehner values.
- Toothpaste Formulations 6-8 contained blends of STRATOSIL rice hull silica and ZEODENT 119 silica in the same ratios as Toothpaste Formulations 9-11 containing the rice hull silica and ZEODENT 114 silica.
- a higher PCR/RDA ratio is obtained when the less abrasive ZEODENT 114 was used.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Birds (AREA)
- Epidemiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Cosmetics (AREA)
Abstract
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BRPI0620807A BRPI0620807A2 (pt) | 2005-12-30 | 2006-12-08 | dentifrício |
EP06839261A EP1973609A1 (fr) | 2005-12-30 | 2006-12-08 | Dentifrices comprenant des matières à base de silice biogénique |
CN200680050050.4A CN101351243B (zh) | 2005-12-30 | 2006-12-08 | 含有生物来源二氧化硅材料的洁齿剂 |
JP2008548540A JP2009522262A (ja) | 2005-12-30 | 2006-12-08 | 生物起源のシリカ材料を含む歯磨剤 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US32388105A | 2005-12-30 | 2005-12-30 | |
US11/323,881 | 2005-12-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007078630A1 true WO2007078630A1 (fr) | 2007-07-12 |
Family
ID=38228541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2006/047061 WO2007078630A1 (fr) | 2005-12-30 | 2006-12-08 | Dentifrices comprenant des matières à base de silice biogénique |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1973609A1 (fr) |
JP (1) | JP2009522262A (fr) |
CN (1) | CN101351243B (fr) |
BR (1) | BRPI0620807A2 (fr) |
WO (1) | WO2007078630A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007078631A2 (fr) * | 2005-12-30 | 2007-07-12 | J.M. Huber Corporation | Dentifrices comprenant des matières à base de silice biogénique |
WO2009140577A1 (fr) * | 2008-05-16 | 2009-11-19 | Colgate-Palmolive Company | Compositions buccales et leurs utilisations |
WO2020219511A1 (fr) * | 2019-04-26 | 2020-10-29 | Basf Se | Composition d'hygiène buccale |
WO2022157636A1 (fr) * | 2021-01-20 | 2022-07-28 | Karpinska Trojanowska Malgorzata | Pâte dentifrice blanchissante et son procédé de production |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105853261A (zh) * | 2016-03-29 | 2016-08-17 | 陈晓影 | 一种洁牙粉及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5676932A (en) * | 1995-05-02 | 1997-10-14 | J.M. Huber Corporation | Silica abrasive compositions |
US20010031245A1 (en) * | 1996-05-31 | 2001-10-18 | Smithkline Beecham Corporation | Compositions |
US20030097966A1 (en) * | 1996-05-06 | 2003-05-29 | Agritec, Inc. | Precipitated silicas, silica gels with and free of deposited carbon from caustic biomass ash solutions and processes |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4349534A (en) * | 1981-11-16 | 1982-09-14 | Colgate-Palmolive Company | Dentifrice composition |
-
2006
- 2006-12-08 JP JP2008548540A patent/JP2009522262A/ja active Pending
- 2006-12-08 BR BRPI0620807A patent/BRPI0620807A2/pt not_active IP Right Cessation
- 2006-12-08 EP EP06839261A patent/EP1973609A1/fr not_active Withdrawn
- 2006-12-08 WO PCT/US2006/047061 patent/WO2007078630A1/fr active Application Filing
- 2006-12-08 CN CN200680050050.4A patent/CN101351243B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5676932A (en) * | 1995-05-02 | 1997-10-14 | J.M. Huber Corporation | Silica abrasive compositions |
US20030097966A1 (en) * | 1996-05-06 | 2003-05-29 | Agritec, Inc. | Precipitated silicas, silica gels with and free of deposited carbon from caustic biomass ash solutions and processes |
US20010031245A1 (en) * | 1996-05-31 | 2001-10-18 | Smithkline Beecham Corporation | Compositions |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007078631A2 (fr) * | 2005-12-30 | 2007-07-12 | J.M. Huber Corporation | Dentifrices comprenant des matières à base de silice biogénique |
WO2007078631A3 (fr) * | 2005-12-30 | 2008-05-02 | Huber Corp J M | Dentifrices comprenant des matières à base de silice biogénique |
WO2009140577A1 (fr) * | 2008-05-16 | 2009-11-19 | Colgate-Palmolive Company | Compositions buccales et leurs utilisations |
AU2009246207B2 (en) * | 2008-05-16 | 2012-08-30 | Colgate-Palmolive Company | Oral compositions and uses thereof |
CN102099004B (zh) * | 2008-05-16 | 2014-08-06 | 高露洁-棕榄公司 | 口腔用组合物及其应用 |
US10213627B2 (en) | 2008-05-16 | 2019-02-26 | Colgate-Palmolive Company | Oral compositions and uses therof |
WO2020219511A1 (fr) * | 2019-04-26 | 2020-10-29 | Basf Se | Composition d'hygiène buccale |
WO2022157636A1 (fr) * | 2021-01-20 | 2022-07-28 | Karpinska Trojanowska Malgorzata | Pâte dentifrice blanchissante et son procédé de production |
Also Published As
Publication number | Publication date |
---|---|
JP2009522262A (ja) | 2009-06-11 |
EP1973609A1 (fr) | 2008-10-01 |
CN101351243B (zh) | 2013-07-10 |
CN101351243A (zh) | 2009-01-21 |
BRPI0620807A2 (pt) | 2016-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070154412A1 (en) | Dentifrices comprising biogenic silica materials | |
US20080159967A1 (en) | Dentifrices comprising biogenic silica materials and at least one calcium phosphate | |
CA2588187C (fr) | Substances a base de silice ayant une haute capacite nettoyante et un faible pouvoir d'abrasion et dentifrice contenant lesdites substances | |
US20070224133A1 (en) | High-cleaning silica materials made via product morphology control under high shear conditions | |
CA2588387C (fr) | Matiere de silice a pouvoir nettoyant eleve et dentifrice la contenant | |
CA2666244C (fr) | Materiaux a base de silice a fort pouvoir nettoyant, a faible abrasion et tres brillants pour dentifrices | |
KR20070086588A (ko) | 생성물 형태 조절을 통해 제조된 고 세정 실리카 물질 및이러한 물질을 함유하는 치약 | |
WO2006057717A1 (fr) | Materiaux siliceux modifiant la viscosite, possedant des niveaux abrasifs et nettoyants faibles et dentrifrices les contenant | |
EP1814506A1 (fr) | Materiaux siliceux a abrasion moderee/haut pouvoir nettoyant et dentifrice contenant ces materiaux | |
US20070154413A1 (en) | Dentifrices comprising biogenic silica materials | |
WO2007078630A1 (fr) | Dentifrices comprenant des matières à base de silice biogénique | |
US20080159968A1 (en) | Dentifrices comprising biogenic silica materials and calcium carbonate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680050050.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2440/KOLNP/2008 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008548540 Country of ref document: JP Ref document number: 2006839261 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: PI0620807 Country of ref document: BR Kind code of ref document: A2 Effective date: 20080630 |