WO2007077680A1 - Glass composition - Google Patents
Glass composition Download PDFInfo
- Publication number
- WO2007077680A1 WO2007077680A1 PCT/JP2006/322578 JP2006322578W WO2007077680A1 WO 2007077680 A1 WO2007077680 A1 WO 2007077680A1 JP 2006322578 W JP2006322578 W JP 2006322578W WO 2007077680 A1 WO2007077680 A1 WO 2007077680A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass
- glass composition
- component
- radiation shielding
- lead
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F1/00—Shielding characterised by the composition of the materials
- G21F1/02—Selection of uniform shielding materials
- G21F1/06—Ceramics; Glasses; Refractories
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/064—Glass compositions containing silica with less than 40% silica by weight containing boron
- C03C3/068—Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/08—Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
- C03C4/087—Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for X-rays absorbing glass
Definitions
- the present invention relates to a glass composition, and more particularly, to a glass composition containing a large amount of a rare earth oxide.
- radiation shielding glass is used to facilitate work and to protect people engaged in work from radiation.
- Such glass is required to have high transparency in the visible range and excellent shielding ability (absorption ability) against radiation. Since the shielding ability is proportional to the mass absorption coefficient and density of glass, lead glass has been used for a long time.
- radiation shielding glass containing a large amount of the lead component needs to take measures for environmental measures when it is manufactured, processed, and disposed of. Had the problem of becoming higher.
- radiation shielding glass containing a large amount of lead components generates “scratches” on the glass surface after the surface has been cleaned in order to remove dirt on the glass surface. It has also become a problem that the performance is significantly reduced.
- the glass may be cracked due to scratches that are easily scratched on the surface in processing steps such as polishing and cutting.
- Patent Document 1 listed below is a SiO—BaO glass having essentially no lead component and having a density of 3 . 01
- Patent Document 2 essentially contains no lead component, contains SiO and Al 2 O, and is suitable for lOOkV X-rays.
- Patent Document 1 Japanese Patent Laid-Open No. 6-127973
- Patent Document 2 Japanese Patent Laid-Open No. 2003-315489
- the present invention has been made in view of the problems as described above, and has high radiation shielding in a glass system that does not contain a lead component and contains a large amount of rare earth oxides.
- a glass composition having performance.
- rare earth oxide Ln O (Ln is Y, La, Gd, Dy, Yb,
- One or more selected from the group consisting of Lu has been found that a glass composition containing a large amount of) exhibits excellent radiation shielding ability similar to that of lead glass, and has a higher surface hardness and transparency than lead glass, and has led to the completion of the present invention. . More specifically, the present invention provides the following.
- the lead equivalent to 150 kV X-rays is 0.03 mmPb / mm or more, it can be suitably used even when handling high-energy radiation. Also, the total amount of Al 2 O and Z or Ga 2 O and Z or In 2 O exceeds 5%.
- the rare earth oxide LnO (Ln is selected from the group consisting of Y, La, Gd, Dy, Yb, Lu)
- Ln O (Ln is the group consisting of Y, La, Gd, Dy, Yb, Lu)
- One or more selected from the above. In an amount of 20 to 85%.
- the shielding ability of high-tech energy such as X-rays may be proportional to the density.
- high-tech energy such as X-rays
- LnO Ln is Y, La, Gd, Dy, Yb
- the glass density can be increased, so that a high radiation shielding ability can be easily obtained.
- Total amount of Z or PO is 5 to 70%, ZnO is 0 to 25%, RO is 0 to 10% (R is Ba, Sr, C
- Rn is Li, Na
- the glass composition according to (1) or (2) which contains each component in the range of 0 to 5%.
- RO represents at least one selected from the group consisting of Ba, Sr, Ca, Mg), Rn
- Rn represents one or more selected from the group consisting of Li, Na, K, and Cs).
- the glass composition is excellent in meltability of glass, stable against devitrification and having high surface strength, and can easily be produced.
- Ce 2 O is a component that contributes to improving the radiation shielding ability
- TiO is a component having an effect of improving the surface hardness of glass.
- the glass composition containing the above components is suitable as a radiation shielding glass. Used for.
- the density is 3.2 gZcm 3 or more, it is easy to obtain a high radiation shielding ability.
- the transmittance at a wavelength of 400 nm is 0% or more, and the transmittance at a wavelength of 550 nm is 80% or more. Glass composition.
- the transmittance power at a wavelength of 400 nm is 0% or more and the transmittance at a wavelength of 550 nm is 80% or more, X-rays, ⁇ -rays, etc. have high transparency in the visible region. It is possible to easily provide a glass composition that allows easy observation of the inside of a facility or the like when used as a shield for facilities that handle radiation.
- the Knoop hardness (HK) is 500 NZmm 2 or more, it is possible to easily provide a glass composition having high mechanical strength that hardly damages the glass surface.
- a radiation shielding glass which is the glass composition according to any one of (1) to (9).
- the glass composition has an excellent radiation shielding ability with a lead equivalent to 150 kV X-rays of 0.03 mmPbZmm or more, and has high transparency in the visible range and excellent transparency. Since the surface hardness is also high, it is more suitable as a radiation shielding glass.
- the glass composition of the present invention comprises, as glass components, Al 2 O and
- Rare earth oxide Ln O (Ln is one selected from the group consisting of Y, La, Gd, Dy, Yb, Lu)
- FIG. 1 is a diagram showing a spectral transmittance curve in the glass composition of Example 1.
- each component which comprises the glass composition of this invention is described below.
- the content of each component is described in mass% (also referred to as wt%).
- all the glass compositions represented by mass% are represented by mass% on the basis of oxides.
- the “oxide standard” means that the oxide, nitrate, etc. used as a raw material of the glass component of the present invention are all decomposed and changed into oxides when melted, and the mass of the generated oxides. This is a composition in which each component contained in the glass is described with the total of 100% by mass.
- Al O and Z or Ga O and Z or In O are responsible for the meltability and stability of the glass.
- the preferable range of the total content is 5% as a lower limit, and the upper limit is 35%, more preferably 30%, and most preferably 25%.
- the Al O component is particularly effective.
- Ln O component (Ln represents one or more selected from the group consisting of Y, La, Gd, Dy, Yb, Lu)
- the ) Is a component useful for achieving the object of the present invention because it increases the density of the glass and imparts a high radiation shielding ability to the glass. However, it contains excessive Ln O component
- the lower limit of the amount of LnO is 20%, more preferably 26%, and most preferably 35%.
- the upper limit is preferably 85%, more preferably 80%, and most preferably 75%.
- L n O components especially Gd O and Lu O components are more effective, so either or It is preferable to include both.
- SiO and Z or B 2 O and Z or GeO and Z or PO are glass
- the lower limit of the total amount is 5%, more preferably 8%, and the upper limit is preferably 70%, more preferably 65%.
- SiO and B 2 O are glass-forming oxides, which are small enough to easily obtain a stable glass.
- the lower limit of the total content of these components is preferably 5%, more preferably 8%, and most preferably 10%. Also, if the content of these components is too large, the radiation shielding ability tends to decrease. Therefore, in order to obtain a high radiation shielding ability, the upper limit of the content is preferably set to 70%, preferably 60%. Most preferred is 55%.
- SiO and B 2 O can achieve the object of the present invention even when introduced alone into glass.
- the GeO component functions in the same manner as the SiO component, a part or all of the SiO component is removed.
- the upper limit is preferably 30% or less, more preferably 20% or less, and most preferably 15% or less.
- the upper limit value is set to 20%, preferably 10%, and more preferably 5%.
- the ZnO component is an effective component for improving the meltability, stability, and chemical durability of the glass. However, if the amount is too large, devitrification is likely to occur and the radiation shielding ability is also reduced. Easy to do. Therefore, it is most preferable to set the upper limit to 25%, preferably 15%, and more preferably 10%.
- RO component (R represents one or more selected from the group consisting of Ba, Sr, Ca, Mg) is a component that is effective in improving the melting and stability of glass. Too much and glass It is easy to reduce the stability. Therefore, the upper limit of the total amount is preferably 10%, more preferably 8%, and most preferably 5%.
- the BaO component and the SrO component are particularly important because they are effective in improving the radiation shielding ability, which is the object of the present invention, in addition to the above effects.
- the BaO component is effective in improving the meltability, stability and radiation shielding ability of the glass, but if the amount is too large, the stability of the glass tends to be lowered. Therefore, it is most preferable to set the upper limit value to 10%, preferably 8%, and more preferably 5%.
- the SrO component is effective in improving the meltability, stability and radiation shielding ability of the glass, but if the amount is too large, the stability of the glass will be lowered. Therefore, it is most preferable to set the upper limit value to 10%, preferably 8%, and more preferably 5%.
- the CaO component is an effective component for improving the meltability of the glass. However, if the amount is too large, devitrification is likely to occur, and the radiation shielding ability tends to be lowered. Therefore, it is most preferable to set the upper limit to 5%, preferably 3%, and more preferably 1%.
- the MgO component is an effective component for improving the meltability of the glass. If the amount is too large, devitrification tends to occur, and the radiation shielding ability tends to decrease. Accordingly, it is most preferable to set the upper limit value to 5%, preferably 3%, and more preferably 1%.
- Rn O component (Rn represents one or more selected from the group consisting of Li, Na, K, and Cs.)
- This component is effective in improving the meltability and stability of the lath and is also effective in preventing coloring due to irradiation. However, if the amount is too large, the stability of the glass tends to deteriorate.
- the radiation shielding ability is also likely to be greatly reduced. Therefore, it is most preferable to set the upper limit of the total amount to 10%, preferably 5%, more preferably 3%.
- Combining two or more of 2 minutes can produce a great effect by preventing coloring caused by irradiation.
- the Li O component is a component that improves the meltability of the glass, but if the amount is too large, devitrification
- the upper limit value is set to 10%, preferably 5%, more preferably 3%.
- the Na 2 O component is a component that improves the meltability of the glass. Permeability is likely to occur, and the radiation shielding ability is likely to decrease. Therefore, the upper limit is 10%, and 5% is more preferable, and 3% is most preferable.
- the K 2 O component is a component that improves the meltability of the glass.
- the upper limit value is set to 10%, more preferably 8%, and more preferably 5%.
- the Cs O component improves the meltability of the glass and contributes to the improvement of radiation shielding ability.
- the upper limit value is set to 10%, preferably 8%, and more preferably 5%.
- Sb 2 O and As 2 O can be optionally added for glass melting defoaming
- the total amount of Sb 2 O and As 2 O is sufficiently effective at 5% or less. Also,
- the upper limit is set to 5% with the total amount of SbO and AsO.
- the Ce O component is a component that has an effect of preventing coloring due to irradiation of radiation.
- the upper limit is preferably 10% or less, more preferably 3% or less, and most preferably 1% or less.
- the TiO component is a component effective in improving the stability of the glass and the hardness of the surface.
- the ZrO component is a component effective in improving the radiation shielding ability and the surface hardness of the glass.
- the SnO component is an optional component effective in improving the radiation shielding ability.
- the upper limit should be 15%.
- the preferred value is 10%, and the most preferred value is 5%.
- the Nb 2 O component is a component that is effective in improving the radiation shielding ability.
- the amount is too large, the stability of the glass tends to decrease, so 20% or less is preferred and 15% or less is more preferred and 10% or less is more preferred. Most preferably.
- the Ta O component is a component that is effective in improving the radiation shielding ability.
- the upper limit value is set to 20%, preferably 15%, and more preferably 10%.
- the WO component is a component that is effective in improving the radiation shielding ability.
- the amount is too large, the stability of the glass tends to decrease, so 25% or less is preferred and 20% or less is more preferred and 15% or less. Most preferably.
- glass composition of the present invention does not contain substantially. “Substantially free” as used herein means that it is not contained artificially unless it is mixed as an impurity.
- the glass composition of the present invention can have a density of 3.2 gZcm 3 or more.
- a more preferable density range is 3.3 gZcm 3 or more.
- the glass composition of the present invention is a glass composition having a thickness of 10 mm that is highly transparent in the visible region! /, And has a transmittance of 0% or more at 400 nm and a transmittance of 80% or less at 550 nm. Above.
- the glass composition of the present invention has a Knoop hardness (HK) of 500 NZmm 2 or more, more preferably 550 NZmm 2 , and most preferably 600 NZmm 2 .
- HK Knoop hardness
- the radiation shielding ability is represented by lead equivalent.
- the lead equivalent is expressed by the thickness of the lead plate with the same X-ray shielding ability. The larger this value, the better the radiation shielding ability.
- the lead equivalent for 150 kV X-rays was determined by converting the lead equivalent measured by a method according to JIS4501 to a thickness of 1 mm.
- the lead equivalent of the glass composition of the present invention is preferably 0.03 mmPb / mm or more, more preferably 0.05 mmPb / mm or more.
- the glass composition of the present invention has a lead equivalent to 150 kV of X-rays of 0.03 mm PbZmm or more, and is highly transparent in the visible region at a thickness of 10 mm at 400 nm.
- a transmittance of 0% or more, a transmittance at 550 nm of 80% or more, and a Knoop hardness of 500 NZmm 2 or more it is suitable as a radiation shielding glass with high radiation shielding ability and excellent transparency.
- the glass composition of the present invention is not particularly limited as long as it is a method for producing ordinary glass, but can be produced, for example, by the following method. Weigh out a predetermined amount of each starting material (oxide, carbonate, nitrate, phosphate, sulfate, fluoride salt, etc.) and mix uniformly. The mixed raw materials are put into a quartz crucible, alumina crucible, platinum crucible, platinum alloy crucible or iridium crucible and melted at 1100-1550 ° C for 1-10 hours in a melting furnace. Then, after stirring and homogenizing, the temperature is lowered to an appropriate temperature and placed in a mold or the like to produce glass.
- each starting material oxide, carbonate, nitrate, phosphate, sulfate, fluoride salt, etc.
- the mixed raw materials are put into a quartz crucible, alumina crucible, platinum crucible, platinum alloy crucible or iridium crucible and melted at 1
- the starting materials are weighed with the compositions of Examples 1 to 14 shown in Tables 1 and 2 (unit: wt%), mixed uniformly, and then placed in a platinum crucible and melted at 1300-1500 ° C for 2-4 hours. Then, it was poured into a mold and glass was produced.
- a lead-containing glass used as a radiation shielding glass was produced.
- a batch was prepared so as to have the composition of Comparative Example 1 shown in Table 2.
- a cullet was prepared by melting at 1300 ° C for 1 hour and 20 minutes using a quartz crucible. Thereafter, the cullet was put in a platinum crucible and melted at 1320 ° C for 2 hours and 30 minutes, and then poured into a mold to produce glass.
- Tables 1 and 2 show the density, transparency, Knoop hardness, and lead equivalent of Examples 1 to 14 and Comparative Example 1.
- the density was measured by the Archimedes method.
- the transmittance was measured according to the Japan Optical Glass Industry Association Standard JOGIS02. In the present invention, the transmittance is shown not the coloring degree. Specifically, a spectral transmittance of 200 to 800 nm was measured for a face-parallel polished product having a thickness of 10 ⁇ 0.1 mm according to JISZ8722. The transmittance T at wavelengths of 400 nm and 550 nm was determined and used as an index representing the transparency of the present invention.
- Knoop hardness (HK) was measured in accordance with JOGIS09 standard of Japan Optical Glass Industry Association. The lead equivalent was measured at a tube voltage of 150 kV according to JISZ4501.
- FIG. 1 shows the spectral transmittance curve of the glass composition of Example 1.
- the horizontal axis represents wavelength (nm) and the vertical axis represents spectral transmittance (%). These transmittances include reflection loss.
- the glass composition of the present invention has extremely high transparency over the entire visible range.
- the glass composition of the present invention has a greater transparency than existing lead glass. [0076] According to Tables 1 and 2, it can be seen that the surface hardness (Knoop hardness) of the glass composition of the present invention is 1.5 times higher than that of lead glass.
- the glass composition of the present invention has a high lead equivalent and has a radiation shielding ability equivalent to or higher than that of lead glass.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Glass Compositions (AREA)
Abstract
A radiation shielding glass free from lead component and containing rare earth oxides in large amounts that exhibits shielding capability comparable to that of lead glass and has high surface hardness, being extremely high in the transparency in visible region. There is provided a glass composition comprising more than 5% to 35%, by mass% on oxide basis, of the sum of Al2O3 and/or Ga2O3 and/or In2O3 and exhibiting a lead equivalent to 150 kV X-rays of 0.03 mmPb/mm or greater. The glass density can be increased by incorporating 20 to 90% of Ln2O3 (wherein Ln is at least one member selected from the group consisting of Y, La, Gd, Dy, Yb and Lu). Thus, there can be obtained a glass composition that has high radiation shielding capability and high surface hardness, being highly transparent in visible region.
Description
明 細 書 Specification
ガラス組成物 Glass composition
技術分野 Technical field
[0001] 本発明は、ガラス組成物に関し、さら〖こ詳しくは、希土類酸化物を多量に含有する ガラス組成物に関する。 [0001] The present invention relates to a glass composition, and more particularly, to a glass composition containing a large amount of a rare earth oxide.
背景技術 Background art
[0002] X線、 γ線等の放射線を取り扱う施設において、仕事をし易くするため、及び業務 に携わる人々を放射線から守るために、放射線遮蔽ガラスが使用されている。このよ うなガラスとしては、可視域に高い透明性と、放射線に対して優れた遮蔽能力(吸収 能力)が要求される。遮蔽能力はガラスの質量吸収係数と密度に比例するので、昔 から密度の大き 、鉛ガラスが使われて 、る。 [0002] In facilities that handle radiation such as X-rays and γ-rays, radiation shielding glass is used to facilitate work and to protect people engaged in work from radiation. Such glass is required to have high transparency in the visible range and excellent shielding ability (absorption ability) against radiation. Since the shielding ability is proportional to the mass absorption coefficient and density of glass, lead glass has been used for a long time.
[0003] しかし、鉛成分は有害物質であるため、鉛成分を多量に含む放射線遮蔽ガラスは、 その製造、加工、及び廃棄をする際に環境対策上の措置を講ずる必要があるため、 コストが高くなるという問題を有していた。また、鉛成分を多量に含む放射線遮蔽ガラ スは、ガラス表面の汚れを落とすために、表面をクリーニングした後、ガラス表面に「 ャケ」が発生し、この「ャケ」により、ガラスの透明性が著しく低下することも問題となつ ていた。 However, since the lead component is a harmful substance, radiation shielding glass containing a large amount of the lead component needs to take measures for environmental measures when it is manufactured, processed, and disposed of. Had the problem of becoming higher. In addition, radiation shielding glass containing a large amount of lead components generates “scratches” on the glass surface after the surface has been cleaned in order to remove dirt on the glass surface. It has also become a problem that the performance is significantly reduced.
[0004] また、表面硬度が低いため、研磨や切断等の加工工程において、表面にキズがつ き易ぐキズを原因としてガラスが割れることがあった。 [0004] Further, since the surface hardness is low, the glass may be cracked due to scratches that are easily scratched on the surface in processing steps such as polishing and cutting.
[0005] 従って、鉛成分を含まない放射線遮蔽ガラスが開発されており、下記の特許文献 1 には、本質的に鉛成分を含有せず、 SiO—BaO系のガラスであって、密度が 3. 01 [0005] Accordingly, radiation shielding glass containing no lead component has been developed. Patent Document 1 listed below is a SiO—BaO glass having essentially no lead component and having a density of 3 . 01
2 2
gZcm3以上である放射線遮蔽ガラスが開示されている。また、下記の特許文献 2に は、本質的には、鉛成分を含有せず、 SiOと Al Oを含有し、 lOOkVの X線に対す A radiation shielding glass of gZcm 3 or more is disclosed. Patent Document 2 below essentially contains no lead component, contains SiO and Al 2 O, and is suitable for lOOkV X-rays.
2 2 3 2 2 3
る鉛当量が、 0. 03mmPb/mm以上である放射線遮蔽ガラスが開示されている。 特許文献 1:特開平 6— 127973号公報 A radiation shielding glass having a lead equivalent of 0.03 mmPb / mm or more is disclosed. Patent Document 1: Japanese Patent Laid-Open No. 6-127973
特許文献 2:特開 2003— 315489号公報 Patent Document 2: Japanese Patent Laid-Open No. 2003-315489
発明の開示
発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0006] しカゝしながら、特許文献 1、 2の放射線遮蔽ガラスは、遮蔽能力が鉛ガラスに比べて 力なり低いため、主にエネルギーの低い放射線を取り扱う場所に使用が限定されて いた。 [0006] However, the radiation shielding glasses of Patent Documents 1 and 2 are limited to places where radiation with low energy is mainly handled because the shielding ability is much lower than that of lead glass.
[0007] 本発明は以上のような課題に鑑みてなされたものであり、鉛成分を含有せず希土 類酸ィ匕物を多量に含ませたガラス系にお 、て、高 、放射線遮蔽性能を有するガラス 組成物を提供する。 [0007] The present invention has been made in view of the problems as described above, and has high radiation shielding in a glass system that does not contain a lead component and contains a large amount of rare earth oxides. Provided is a glass composition having performance.
課題を解決するための手段 Means for solving the problem
[0008] 本発明者は上記課題を解決すべく鋭意研究を重ねた結果、 Al O及び [0008] As a result of intensive studies to solve the above problems, the present inventor has found that Al O and
2 3 Zまたは G a O及び/または In Oを含み、希土類酸化物 Ln O (Lnは Y, La, Gd, Dy, Yb, 2 3 Z or G a O and / or In O, rare earth oxide Ln O (Ln is Y, La, Gd, Dy, Yb,
2 3 2 3 2 3 2 3 2 3 2 3
Luからなる群より選択される 1種以上を示す。)を多量に含むガラス組成物は、鉛ガラ スと同様に優れる放射線遮蔽能力を示し、し力ゝも鉛ガラスより高い表面硬度と透明性 を有することを見出し、本発明を完成するに至った。より具体的には、本発明は以下 のようなものを提供する。 One or more selected from the group consisting of Lu. It has been found that a glass composition containing a large amount of) exhibits excellent radiation shielding ability similar to that of lead glass, and has a higher surface hardness and transparency than lead glass, and has led to the completion of the present invention. . More specifically, the present invention provides the following.
[0009] (1) 酸化物基準の質量%で、 Al O及び たは Ga O及び Oの合 [0009] (1) The mass percentage of the oxide, and the combination of Al 2 O and Ga 2 O and O
2 3 Zま 2 3 Z
2 3 Zまたは In 2 3 Z or In
2 3 計量を 5%を超えて 35%含有し、 150kVの X線に対する鉛当量は 0. 03mmPb/m m以上であるガラス組成物。 2 3 Glass composition containing more than 5% and 35% weighing, and lead equivalent to 150kV X-ray is 0.03mmPb / mm or more.
[0010] この態様によれば、 Al O及び [0010] According to this aspect, Al 2 O and
2 3 Zまたは Ga O及び 2 3 Z or Ga O and
2 3 Zまたは In Oの合計量を 5% 2 3% of total amount of Z or In O is 5%
2 3 twenty three
を超えて含有させることにより、表面強度の高いガラス組成物を容易に提供すること ができる。また、 150kVの X線に対する鉛当量が 0. 03mmPb/mm以上であるため 、高エネルギーの放射線を取り扱う場合においても、好適に用いることができる。また 、 Al O及び Zまたは Ga O及び Zまたは In Oの合計量を 5%超えて含有している By making it contain exceeding V, a glass composition with high surface strength can be easily provided. In addition, since the lead equivalent to 150 kV X-rays is 0.03 mmPb / mm or more, it can be suitably used even when handling high-energy radiation. Also, the total amount of Al 2 O and Z or Ga 2 O and Z or In 2 O exceeds 5%.
2 3 2 3 2 3 2 3 2 3 2 3
ので、希土類酸化物 Ln O (Lnは Y, La, Gd, Dy, Yb, Luからなる群より選択され The rare earth oxide LnO (Ln is selected from the group consisting of Y, La, Gd, Dy, Yb, Lu)
2 3 twenty three
る 1種以上を示す。)をより多量に含有させることが可能となり、ガラスの密度を大きく することができる。 Indicates one or more. ) Can be contained in a larger amount, and the density of the glass can be increased.
[0011] (2) 酸化物基準の質量%で、 Ln O (Lnは Y, La, Gd, Dy, Yb, Luからなる群 [0011] (2) Ln O (Ln is the group consisting of Y, La, Gd, Dy, Yb, Lu)
2 3 twenty three
より選択される 1種以上を示す。 )を 20〜85%含有する(1)に記載のガラス組成物。 One or more selected from the above. ) In an amount of 20 to 85%.
[0012] X線等のような高工ネルギ一の放射線に対する遮蔽能力は、密度に比例することが
知られている。本発明のガラス組成物によれば、 Ln O (Lnは Y, La, Gd, Dy, Yb, [0012] The shielding ability of high-tech energy such as X-rays may be proportional to the density. Are known. According to the glass composition of the present invention, LnO (Ln is Y, La, Gd, Dy, Yb,
2 3 twenty three
Luからなる群より選択される 1種以上を示す。)を多量に含有させることにより、ガラス の密度を大きくすることができるため、高い放射線遮蔽能力を容易に得ることができ る。 One or more selected from the group consisting of Lu. )), The glass density can be increased, so that a high radiation shielding ability can be easily obtained.
[0013] (3) 酸化物基準の質量%で、 SiO及び または B O及び [0013] (3)% by mass based on oxide, SiO and / or B 2 O and
2 Z 2 3 Zまたは GeO及び 2 Z 2 3 Z or GeO and
2 Z または P Oの合計量を 5〜70%、ZnOを 0〜25%、ROを 0〜10% (Rは Ba, Sr, C 2 Total amount of Z or PO is 5 to 70%, ZnO is 0 to 25%, RO is 0 to 10% (R is Ba, Sr, C
2 5 twenty five
a, Mgからなる群より選択される 1種以上を示す。)、 Rn Oを 0〜10% (Rnは Li, Na 1 or more selected from the group consisting of a and Mg. ), Rn O 0-10% (Rn is Li, Na
2 2
, K, Csからなる群より選択される 1種以上を示す。)、 Sb O及び As Oの合計量を One or more selected from the group consisting of, K, Cs. ), The total amount of Sb O and As O
2 3 2 3 2 3 2 3
0〜5%の範囲で各成分を含有する(1)または(2)に記載のガラス組成物。 The glass composition according to (1) or (2), which contains each component in the range of 0 to 5%.
[0014] この態様によれば、 SiO及び [0014] According to this embodiment, SiO and
2 Zまたは B O及び 2 Z or B O and
2 3 Zまたは GeO及び 2 3 Z or GeO and
2 Zまたは P O 2 Z or P O
2 2
、 ZnO、 RO (Rは Ba, Sr, Ca, Mgからなる群より選択される 1種以上を示す。)、 RnZnO, RO (R represents at least one selected from the group consisting of Ba, Sr, Ca, Mg), Rn
5 Five
0 (Rnは Li, Na, K, Csからなる群より選択される 1種以上を示す。)等の成分を含 0 (Rn represents one or more selected from the group consisting of Li, Na, K, and Cs).
2 2
有しているので、ガラスの溶融性に優れ、失透に対して安定で、しかも表面強度の高 、ガラス組成物を容易に作ることができる。 Therefore, the glass composition is excellent in meltability of glass, stable against devitrification and having high surface strength, and can easily be produced.
[0015] (4) 酸化物基準の質量%で、 Ce Oを 0〜 10%含有する(1)から(3)いずれかに [0015] (4) Containing 0 to 10% Ce 2 O in terms of mass% based on oxide (1) to (3)
2 3 twenty three
記載のガラス組成物。 The glass composition as described.
[0016] この態様によれば、 Ce Oは、放射線遮蔽能力の向上に寄与する成分であり、特 [0016] According to this aspect, Ce 2 O is a component that contributes to improving the radiation shielding ability,
2 3 twenty three
に、放射線の照射による着色を防ぐ効果を有する成分である。従って、長期間の使 用にお 、ても、ガラスに透明性を有するガラス組成物を容易に提供することができる In addition, it is a component having an effect of preventing coloring due to irradiation of radiation. Therefore, a glass composition having transparency in glass can be easily provided even when used for a long period of time.
[0017] (5) 酸ィ匕物基準の質量%で、 TiOを 0〜 15%含有する(1)から (4)いずれかに [0017] (5) Containing 0 to 15% of TiO in mass% based on acid oxide, (1) to (4)
2 2
記載のガラス組成物。 The glass composition as described.
[0018] この態様によれば、 TiOは、ガラスの表面硬さを向上させる効果を有する成分であ [0018] According to this aspect, TiO is a component having an effect of improving the surface hardness of glass.
2 2
り、ガラスの表面硬度の高 、ガラス組成物を容易に提供することができる。 Thus, a glass composition having a high glass surface hardness can be easily provided.
[0019] (6) 酸化物基準の質量%で、 ZrO、 SnO、 Nb O、 Ta O、 WOの 1種または 2 [0019] (6) Mass% based on oxide, one or two of ZrO, SnO, NbO, TaO, WO
2 2 2 5 2 5 3 2 2 2 5 2 5 3
種以上を合計 0〜30%含有する(1)から(5)いずれかに記載のガラス組成物。 The glass composition according to any one of (1) to (5), containing a total of 0 to 30% of seeds or more.
[0020] この態様によれば、上記成分は放射線遮蔽能力、及びガラスの表面硬さの向上に 効果があるため、上記成分を含有したガラス組成物は、放射線遮蔽ガラスとして好適
に用いられる。 [0020] According to this aspect, since the above components are effective in improving the radiation shielding ability and the surface hardness of the glass, the glass composition containing the above components is suitable as a radiation shielding glass. Used for.
[0021] (7) 密度が 3. 2gZcm3以上である(1)から(6)いずれかに記載のガラス組成物。 [0021] (7) The glass composition according to any one of (1) to (6), wherein the density is 3.2 gZcm 3 or more.
[0022] この態様によれば、密度が 3. 2gZcm3以上であるため、高い放射線遮蔽能力を得 易い。 [0022] According to this aspect, since the density is 3.2 gZcm 3 or more, it is easy to obtain a high radiation shielding ability.
[0023] (8) 厚みが 10mmの前記ガラス組成物において、 400nmの波長における透過率 力 0%以上、 550nmの波長における透過率が 80%以上である(1)から(7)いずれ かに記載のガラス組成物。 [0023] (8) In the glass composition having a thickness of 10 mm, the transmittance at a wavelength of 400 nm is 0% or more, and the transmittance at a wavelength of 550 nm is 80% or more. Glass composition.
[0024] この態様によれば、 400nmの波長における透過率力 0%以上、 550nmの波長に おける透過率が 80%以上であるため、可視域での透明性が高ぐ X線、 γ線等の放 射線を取り扱う施設の遮蔽として使用した場合の施設等の内部の観察がし易いガラ ス組成物を容易に提供することができる。 [0024] According to this aspect, since the transmittance power at a wavelength of 400 nm is 0% or more and the transmittance at a wavelength of 550 nm is 80% or more, X-rays, γ-rays, etc. have high transparency in the visible region. It is possible to easily provide a glass composition that allows easy observation of the inside of a facility or the like when used as a shield for facilities that handle radiation.
[0025] (9) ヌープ硬さが 500NZmm2以上である(1)から(8)いずれかに記載のガラス 組成物。 [0025] (9) The glass composition according to any one of (1) to (8), having a Knoop hardness of 500 NZmm 2 or more.
[0026] この様態によれば、ヌープ硬さ(HK)が 500NZmm2以上であるため、ガラスの表 面に傷つき難くて機械的強度の高いガラス組成物を容易に提供することができる。 [0026] According to this aspect, since the Knoop hardness (HK) is 500 NZmm 2 or more, it is possible to easily provide a glass composition having high mechanical strength that hardly damages the glass surface.
[0027] (10) (1)から(9)いずれか〖こ記載のガラス組成物である放射線遮蔽ガラス。 [0027] (10) A radiation shielding glass which is the glass composition according to any one of (1) to (9).
[0028] この様態によれば、ガラス組成物は、 150kVの X線に対する鉛当量が 0. 03mmP bZmm以上と放射線遮蔽能力に優れ、また可視域での透明性が高くて透過性に優 れ、表面硬度も高いので、放射線遮蔽ガラスとしてより適している。 [0028] According to this aspect, the glass composition has an excellent radiation shielding ability with a lead equivalent to 150 kV X-rays of 0.03 mmPbZmm or more, and has high transparency in the visible range and excellent transparency. Since the surface hardness is also high, it is more suitable as a radiation shielding glass.
発明の効果 The invention's effect
[0029] 本発明のガラス組成物は、ガラス成分として、 Al O及び [0029] The glass composition of the present invention comprises, as glass components, Al 2 O and
2 3 Zまたは Ga O及び 2 3 Z or Ga O and
2 3 Zま たは In Oの合計量を 5%を超えて含有しているため、ガラスの表面強度が高ぐまた Since the total amount of 2 3 Z or In O exceeds 5%, the surface strength of the glass increases.
2 3 twenty three
希土類酸化物 Ln O (Lnは Y, La, Gd, Dy, Yb, Luからなる群より選択される 1種 Rare earth oxide Ln O (Ln is one selected from the group consisting of Y, La, Gd, Dy, Yb, Lu)
2 3 twenty three
以上を示す。)をより多量に含有させることを可能とするため、ガラスの密度を大きくし 、鉛当量を大きくすることが容易に可能となり、鉛成分を含有しなくても、鉛成分を含 有するガラスに匹敵する放射線遮蔽能力を有するガラス組成物を提供することがで きる。 The above is shown. )) In a larger amount, it is possible to easily increase the density of the glass and increase the lead equivalent, and even if it does not contain a lead component, it is comparable to a glass containing a lead component. It is possible to provide a glass composition having a radiation shielding ability.
図面の簡単な説明
[0030] [図 1]実施例 1のガラス組成物における分光透過率曲線を示す図である。 Brief Description of Drawings FIG. 1 is a diagram showing a spectral transmittance curve in the glass composition of Example 1.
発明を実施するための形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0031] 次に、本発明のガラス組成物において、具体的な実施態様について説明する。 [0031] Next, specific embodiments of the glass composition of the present invention will be described.
[0032] [ガラス成分] [0032] [Glass component]
本発明のガラス組成物を構成する各成分の組成範囲を以下に述べる。本明細書 中において、各成分の含有率は特に断りがない場合は全て質量% (wt%とも記載す る)で記載されるものとする。なお、本願明細書中において質量%で表されるガラス 組成は全て酸ィ匕物基準での質量%で表されたものである。ここで、「酸化物基準」と は、本発明のガラス構成成分の原料として使用される酸化物、硝酸塩等が溶融時に 全て分解され酸化物へ変化すると仮定した場合に、当該生成酸化物の質量の総和 を 100質量%として、ガラス中に含有される各成分を表記した組成である。 The composition range of each component which comprises the glass composition of this invention is described below. In the present specification, unless otherwise specified, the content of each component is described in mass% (also referred to as wt%). In the specification of the present application, all the glass compositions represented by mass% are represented by mass% on the basis of oxides. Here, the “oxide standard” means that the oxide, nitrate, etc. used as a raw material of the glass component of the present invention are all decomposed and changed into oxides when melted, and the mass of the generated oxides. This is a composition in which each component contained in the glass is described with the total of 100% by mass.
[0033] <必須成分、任意成分にっ 、て > [0033] <Essential and optional ingredients>
Al O及び Zまたは Ga O及び Zまたは In Oの成分は、ガラスの溶融性と安定性 The components of Al O and Z or Ga O and Z or In O are responsible for the meltability and stability of the glass.
2 3 2 3 2 3 2 3 2 3 2 3
の向上に効果があり、さらにガラスの表面の硬さの向上にも効果がある。また、 Al O This is effective in improving the hardness of the glass and also in improving the hardness of the glass surface. Al O
2 3 及び Zまたは Ga O及び 2 3 and Z or Ga O and
2 3 Zまたは In Oの成分が入ることにより、より多くの Ln O成 2 3 By adding Z or In O component, more Ln O component
2 3 2 3 分をガラスに取り込ませることが可能となり、その結果、ガラスの密度が向上し、放射 線遮蔽能力がより高くなり易い。上記の効果を得るにはその合計量が 5%超えること が必要であるが、 35%を超えるとガラスの安定性が大きく損なわれ易い。従って、そ の合計の含有量の好ましい範囲は 5%を下限とし、上限としては 35%、より好ましく 3 0%、最も好ましくは 25%である。これらの成分のうち、特に Al O成分は最も効果が It is possible to incorporate 2 3 2 3 minutes into the glass, and as a result, the density of the glass is improved and the radiation shielding ability tends to be higher. In order to obtain the above effects, the total amount needs to exceed 5%, but if it exceeds 35%, the stability of the glass is likely to be greatly impaired. Accordingly, the preferable range of the total content is 5% as a lower limit, and the upper limit is 35%, more preferably 30%, and most preferably 25%. Of these components, the Al O component is particularly effective.
2 3 twenty three
大き 、ので、少なくとも 5%を超えて含有させるのが好まし 、。 Large, so it is preferable to contain more than 5%.
[0034] Ln O成分(Lnは Y, La, Gd, Dy, Yb, Luからなる群より選択される 1種以上を示 [0034] Ln O component (Ln represents one or more selected from the group consisting of Y, La, Gd, Dy, Yb, Lu)
2 3 twenty three
す。 )は、ガラスの密度を大きくし、ガラスに高い放射線遮蔽能力を付与するため、本 発明の目的を達成するのに有用な成分である。しかし、 Ln O成分を過剰に含有す The ) Is a component useful for achieving the object of the present invention because it increases the density of the glass and imparts a high radiation shielding ability to the glass. However, it contains excessive Ln O component
2 3 twenty three
るとガラスの安定性が損なわれ易ぐ少なすぎると本発明の目的を満たすことが困難 となる。よって、 Ln O量の下限は 20%、より好ましくは 26%、最も好ましくは 35%と Then, if the stability of the glass is easily impaired and too small, it becomes difficult to satisfy the object of the present invention. Therefore, the lower limit of the amount of LnO is 20%, more preferably 26%, and most preferably 35%.
2 3 twenty three
し、上限としては好ましくは 85%、より好ましくは 80%、最も好ましくは 75%である。 L n O成分の内、特に Gd Oと Lu Oの成分はより効果的であるので、どちらかまたは
両方を含有させるのが好ま 、。 The upper limit is preferably 85%, more preferably 80%, and most preferably 75%. Of the L n O components, especially Gd O and Lu O components are more effective, so either or It is preferable to include both.
[0035] SiO及び Zまたは B O及び Zまたは GeO及び Zまたは P Oの成分は、ガラス [0035] The components of SiO and Z or B 2 O and Z or GeO and Z or PO are glass
2 2 3 2 2 5 2 2 3 2 2 5
形成酸化物で、失透がなく透明性の高いガラスを得るのに特に有用であるが、含有 量が多すぎるとガラスの放射線遮蔽能力が低下し易ぐ少なすぎるとガラスの安定性 が低下し易い。よってこれら合計量の下限は 5%、より好ましくは 8%、上限として好ま しくは 70%、より好ましくは 65%である。 It is a useful oxide for forming highly transparent glass with devitrification. However, if the content is too high, the radiation shielding ability of the glass tends to decrease, and if it is too low, the stability of the glass decreases. easy. Therefore, the lower limit of the total amount is 5%, more preferably 8%, and the upper limit is preferably 70%, more preferably 65%.
[0036] SiO及び B Oの成分はガラス形成酸化物で、安定したガラスを容易に得るのに少 [0036] The components of SiO and B 2 O are glass-forming oxides, which are small enough to easily obtain a stable glass.
2 2 3 2 2 3
なくともいずれかが含まれることが好ましい。安定したガラスを得るためには、これら成 分の合計の含有量の下限値は好ましくは 5%、より好ましくは 8%、最も好ましくは 10 %とする。また、これらの成分の含有量が多すぎると、放射線遮蔽能力が減少し易い ので、高い放射線遮蔽能力を得るためには、含有量の上限を 70%とすることが好ま しぐ 60%とすることがより好ましぐ 55%とすることが最も好ましい。 It is preferable that at least one of them is included. In order to obtain a stable glass, the lower limit of the total content of these components is preferably 5%, more preferably 8%, and most preferably 10%. Also, if the content of these components is too large, the radiation shielding ability tends to decrease. Therefore, in order to obtain a high radiation shielding ability, the upper limit of the content is preferably set to 70%, preferably 60%. Most preferred is 55%.
[0037] SiO及び B Oの成分は、単独でガラス中に導入しても本発明の目的を達成するこ [0037] The components of SiO and B 2 O can achieve the object of the present invention even when introduced alone into glass.
2 2 3 2 2 3
とができるが、同時に使用することにより、ガラスの溶融性、安定性及び化学的耐久 性が向上するので、同時に使用することが好まし 、。 However, the simultaneous use improves the meltability, stability and chemical durability of the glass.
[0038] GeO成分は、 SiO成分と同様な働きをするので、 SiO成分の一部または全部を [0038] Since the GeO component functions in the same manner as the SiO component, a part or all of the SiO component is removed.
2 2 2 2 2 2
置換することが可能である力 高価であるため、上限値を 30%以下とすることが好ま しぐ 20%以下とすることがより好ましぐ 15%以下とすることが最も好ましい。 Since the power that can be replaced is expensive, the upper limit is preferably 30% or less, more preferably 20% or less, and most preferably 15% or less.
[0039] P O成分は、 SiOまたは B Oの成分と同様な働きをするので、 SiOまたは B O [0039] Since the P 2 O component functions in the same manner as the SiO or B 2 O component, SiO or B 2 O
2 5 2 2 3 2 2 3 の成分の一部または全部を置換することが可能である。し力しその量が多すぎるとガ ラスの分相傾向が強くなる。従って、上限値を 20%とすることが好ましぐ 10%とする ことがより好ましぐ 5%とすることが最も好ましい。 It is possible to replace some or all of the components of 2 5 2 2 3 2 2 3. However, if the amount is too large, the glass phase separation tendency becomes strong. Therefore, it is most preferable to set the upper limit value to 20%, preferably 10%, and more preferably 5%.
[0040] ZnO成分は、ガラスの溶融性、安定性、化学耐久性の向上には効果的な成分であ るが、その量が多すぎると失透が発生し易くなり、放射線遮蔽能力も低下し易い。従 つて、上限値を 25%とすることが好ましぐ 15%とすることがより好ましぐ 10%とする ことが最も好ましい。 [0040] The ZnO component is an effective component for improving the meltability, stability, and chemical durability of the glass. However, if the amount is too large, devitrification is likely to occur and the radiation shielding ability is also reduced. Easy to do. Therefore, it is most preferable to set the upper limit to 25%, preferably 15%, and more preferably 10%.
[0041] RO成分 (Rは Ba, Sr, Ca, Mgからなる群より選択される 1種以上を示す。 )は、ガラ スの溶融性と安定性の向上に効果がある成分である力 その量が多すぎると、ガラス
の安定性を低下させ易くする。従って、合計量で上限値を 10%とすることが好ましぐ 8%とすることがより好ましぐ 5%とすることが最も好ましい。また、 RO成分の内、特に BaO成分と SrO成分は上記の効果以外に、本発明の目的である放射線の遮蔽能力 の向上にも効果があるので、特に重要である。 [0041] RO component (R represents one or more selected from the group consisting of Ba, Sr, Ca, Mg) is a component that is effective in improving the melting and stability of glass. Too much and glass It is easy to reduce the stability. Therefore, the upper limit of the total amount is preferably 10%, more preferably 8%, and most preferably 5%. Of the RO components, the BaO component and the SrO component are particularly important because they are effective in improving the radiation shielding ability, which is the object of the present invention, in addition to the above effects.
[0042] BaO成分はガラスの溶融性、安定性及び放射線遮蔽能力の向上に効果があるが 、その量が多すぎるとガラスの安定性がかえって低くなり易い。従って、上限値を 10 %とすることが好ましぐ 8%とすることがより好ましぐ 5%とすることが最も好ましい。 [0042] The BaO component is effective in improving the meltability, stability and radiation shielding ability of the glass, but if the amount is too large, the stability of the glass tends to be lowered. Therefore, it is most preferable to set the upper limit value to 10%, preferably 8%, and more preferably 5%.
[0043] SrO成分はガラスの溶融性、安定性及び放射線遮蔽能力の向上に効果があるが、 その量が多すぎるとガラスの安定性がかえって低くなる。従って、上限値を 10%とす ることが好ましぐ 8%とすることがより好ましぐ 5%とすることが最も好ましい。 [0043] The SrO component is effective in improving the meltability, stability and radiation shielding ability of the glass, but if the amount is too large, the stability of the glass will be lowered. Therefore, it is most preferable to set the upper limit value to 10%, preferably 8%, and more preferably 5%.
[0044] CaO成分は、ガラスの溶融性を改善させるのには効果的な成分であるが、その量 が多すぎると失透が発生し易くなり、放射線遮蔽能力も低下し易い。従って、上限値 を 5%とすることが好ましぐ 3%とすることがより好ましぐ 1%とすることが最も好まし い。 [0044] The CaO component is an effective component for improving the meltability of the glass. However, if the amount is too large, devitrification is likely to occur, and the radiation shielding ability tends to be lowered. Therefore, it is most preferable to set the upper limit to 5%, preferably 3%, and more preferably 1%.
[0045] MgO成分は、ガラスの溶融性の改善には効果的な成分である力 その量が多すぎ ると失透が発生し易くなり、放射線遮蔽能力も低下し易い。従って、上限値を 5%とす ることが好ましぐ 3%とすることがより好ましぐ 1%とすることが最も好ましい。 [0045] The MgO component is an effective component for improving the meltability of the glass. If the amount is too large, devitrification tends to occur, and the radiation shielding ability tends to decrease. Accordingly, it is most preferable to set the upper limit value to 5%, preferably 3%, and more preferably 1%.
[0046] Rn O成分 (Rnは Li, Na, K, Csからなる群より選択される 1種以上を示す。 )は、ガ [0046] The Rn O component (Rn represents one or more selected from the group consisting of Li, Na, K, and Cs.)
2 2
ラスの溶融性と安定性の向上に効果があると共に、放射線照射による着色の防止に も効果がある成分である。しかし、その量が多すぎると、ガラスの安定性が悪くなり易く This component is effective in improving the meltability and stability of the lath and is also effective in preventing coloring due to irradiation. However, if the amount is too large, the stability of the glass tends to deteriorate.
、放射線遮蔽能力も大きく低下し易い。従って、合計量の上限値を 10%とすることが 好ましぐ 5%とすることがより好ましぐ 3%とすることが最も好ましい。また、 Rn O成 The radiation shielding ability is also likely to be greatly reduced. Therefore, it is most preferable to set the upper limit of the total amount to 10%, preferably 5%, more preferably 3%. Rn O
2 分を 2種以上組み合わせると、放射線照射による着色の防止により大きな効果が得ら れる。 Combining two or more of 2 minutes can produce a great effect by preventing coloring caused by irradiation.
[0047] Li O成分は、ガラスの溶融性を改善する成分であるが、その量が多すぎると、失透 [0047] The Li O component is a component that improves the meltability of the glass, but if the amount is too large, devitrification
2 2
が発生し易くなり、放射線遮蔽能力も低下し易い。従って、上限値を 10%とすること が好ましぐ 5%とすることがより好ましぐ 3%とすることが最も好ましい。 Is likely to occur, and the radiation shielding ability is likely to be reduced. Therefore, it is most preferable to set the upper limit value to 10%, preferably 5%, more preferably 3%.
[0048] Na O成分は、ガラスの溶融性を改善する成分であるが、その量が多すぎると、失
透が発生し易くなり、放射線遮蔽能力も低下し易い。従って、上限値を 10%とするこ と力 子ましく、 5%とすることがより好ましぐ 3%とすることが最も好ましい。 [0048] The Na 2 O component is a component that improves the meltability of the glass. Permeability is likely to occur, and the radiation shielding ability is likely to decrease. Therefore, the upper limit is 10%, and 5% is more preferable, and 3% is most preferable.
[0049] K O成分は、ガラスの溶融性を改善する成分であるが、その量が多すぎると、失透 [0049] The K 2 O component is a component that improves the meltability of the glass.
2 2
が発生し易くなり、放射線遮蔽能力も低下し易い。従って、上限値を 10%とすること が好ましぐ 8%とすることがより好ましぐ 5%とすることが最も好ましい。 Is likely to occur, and the radiation shielding ability is likely to be reduced. Therefore, it is most preferable to set the upper limit value to 10%, more preferably 8%, and more preferably 5%.
[0050] Cs O成分は、ガラスの溶融性を改善し、さらに放射線遮蔽能力の向上にも寄与す [0050] The Cs O component improves the meltability of the glass and contributes to the improvement of radiation shielding ability.
2 2
る成分であるが、その量が多すぎると、失透が発生し易くなる。従って、上限値を 10 %とすることが好ましぐ 8%とすることがより好ましぐ 5%とすることが最も好ましい。 However, if the amount is too large, devitrification tends to occur. Therefore, it is most preferable to set the upper limit value to 10%, preferably 8%, and more preferably 5%.
[0051] Sb O、 As Oの成分は、ガラス溶融の脱泡のために任意に添加することができる [0051] The components of Sb 2 O and As 2 O can be optionally added for glass melting defoaming
2 3 2 3 2 3 2 3
成分である。 Sb O及び As Oの合計量で、 5%以下で十分に効果を有する。また、 It is an ingredient. The total amount of Sb 2 O and As 2 O is sufficiently effective at 5% or less. Also,
2 3 2 3 2 3 2 3
As O成分は、ガラスを製造、加工、及び廃棄をする際に環境対策上の措置を講ず As O component does not take environmental measures when manufacturing, processing and disposing of glass
2 3 twenty three
る必要がある。従って、 Sb O及び As Oの合計量で、上限値を 5%とすることが好ま It is necessary to Therefore, it is preferable to set the upper limit to 5% with the total amount of SbO and AsO.
2 3 2 3 2 3 2 3
しぐ 3%とすることがより好ましぐ 1%とすることが最も好ましい。 It is most preferable to set it to 3%, more preferably 1%.
[0052] Ce O成分は、放射線の照射による着色を防ぐ効果がある成分である。任意に添 [0052] The Ce O component is a component that has an effect of preventing coloring due to irradiation of radiation. Optional
2 3 twenty three
加することができる成分であるが、その量が多すぎると、ガラスの吸収端が長波長側 にシフトし、可視域での透明性の低下を招くことがある。従って、上限値を 10%以下 とすることが好ましぐ 3%以下とすることがより好ましぐ 1%以下とすることが最も好ま しい。 Although it is a component that can be added, if the amount is too large, the absorption edge of the glass shifts to the longer wavelength side, which may lead to a decrease in transparency in the visible region. Therefore, the upper limit is preferably 10% or less, more preferably 3% or less, and most preferably 1% or less.
[0053] TiO成分は、ガラスの安定性と表面の硬さの向上に効果がある成分である。任意 [0053] The TiO component is a component effective in improving the stability of the glass and the hardness of the surface. Any
2 2
に添加することができる成分である力 その量が多すぎるとガラスの安定性が低くなる 傾向にある。従って、 15%以下とすることが好ましぐ 10%以下とすることがより好まし ぐ 5%以下とすることが最も好ましい。 Power that is a component that can be added to the glass If the amount is too large, the stability of the glass tends to be low. Therefore, 15% or less is preferable, 10% or less is more preferable, and 5% or less is more preferable.
[0054] ZrO成分は、放射線の遮蔽能力とガラスの表面硬さの向上に効果がある成分であ [0054] The ZrO component is a component effective in improving the radiation shielding ability and the surface hardness of the glass.
2 2
る。任意に添加することができる成分であるが、その量が多すぎるとガラスの安定性を 低下させ易くする。従って、上限値を 20%とすることが好ましぐ 15%とすることがより 好ましぐ 10%とすることが最も好ましい。 The Although it is a component that can be optionally added, if the amount is too large, the stability of the glass is easily lowered. Therefore, it is most preferable to set the upper limit to 20%, preferably 15%, more preferably 10%.
[0055] SnO成分は、放射線の遮蔽能力の向上に効果がある任意成分である力 その量 [0055] The SnO component is an optional component effective in improving the radiation shielding ability.
2 2
が多すぎるとガラスの安定性を低下させ易くする。従って、上限値を 15%とすることが
好ましぐ 10%とすることがより好ましぐ 5%とすることが最も好ましい。 If the amount is too large, the stability of the glass tends to be lowered. Therefore, the upper limit should be 15%. The preferred value is 10%, and the most preferred value is 5%.
[0056] Nb O成分は、放射線の遮蔽能力の向上に効果がある成分である。任意に添加す [0056] The Nb 2 O component is a component that is effective in improving the radiation shielding ability. Add arbitrarily
2 5 twenty five
ることができる成分であるが、その量が多すぎるとガラスの安定性が低下し易いので、 20%以下とすることが好ましぐ 15%以下とすることがより好ましぐ 10%以下とする ことが最も好ましい。 However, if the amount is too large, the stability of the glass tends to decrease, so 20% or less is preferred and 15% or less is more preferred and 10% or less is more preferred. Most preferably.
[0057] Ta O成分は、放射線の遮蔽能力の向上に効果がある成分である。任意に添加す [0057] The Ta O component is a component that is effective in improving the radiation shielding ability. Add arbitrarily
2 5 twenty five
ることができる成分であるが、その量が多すぎるとガラスの安定性を低下させ易くする 。従って、上限値を 20%とすることが好ましぐ 15%とすることがより好ましぐ 10%と することが最も好ましい。 However, if the amount is too large, the stability of the glass tends to be lowered. Therefore, it is most preferable to set the upper limit value to 20%, preferably 15%, and more preferably 10%.
[0058] WO成分は、放射線の遮蔽能力の向上に効果がある成分である。任意に添加する [0058] The WO component is a component that is effective in improving the radiation shielding ability. Add arbitrarily
3 Three
ことができる成分であるが、その量が多すぎるとガラスの安定性が低下し易いので、 2 5%以下とすることが好ましぐ 20%以下とすることがより好ましぐ 15%以下とするこ とが最も好ましい。 However, if the amount is too large, the stability of the glass tends to decrease, so 25% or less is preferred and 20% or less is more preferred and 15% or less. Most preferably.
[0059] なお、ガラスの安定性をより向上させるため、 ZrO、 SnO、 Nb O、 Ta O、 WO [0059] In order to further improve the stability of the glass, ZrO, SnO, NbO, TaO, WO
2 2 2 5 2 5 3 の 1種または 2種以上の合計量の上限値を 30%とすることが好ましぐ 20%とすること 力 り好ましぐ 10%とすることが最も好ましい。さらに、これらの成分のうち、 ZrOと It is preferable to set the upper limit of the total amount of one or more of 2 2 2 5 2 5 3 to 30%, preferably 20%, and most preferably 10%. Furthermore, of these ingredients, ZrO and
2 2
WOの成分は化学耐久性の向上に効果がより大きいので、どちら力、または両者をSince the WO component is more effective in improving chemical durability, either force or both
3 Three
同時に含有させた方が好ましい。 It is preferable to contain them simultaneously.
[0060] <含有させるべきでない成分について > [0060] <About ingredients that should not be included>
他の成分を本発明のガラス組成物の特性を損なわな!/、範囲で必要に応じ、添加す ることができる。ただし、 Tiを除く V, Cr, Mn, Fe, Co, Ni, Cu, Ag及び Mo等の各 遷移金属成分は、それぞれを単独または複合して少量含有した場合においても、ガ ラスが着色し、可視域の特定の波長に吸収を生じさせる。従って、本発明のガラス組 成物においては、実質的に含まないことが好ましい。ここでいう実質的に含まないこと とは、不純物として混入される場合を除き、人為的に含有させないことを意味する。 Other components can be added as needed within the range without impairing the properties of the glass composition of the present invention. However, glass is colored even when transition metal components such as V, Cr, Mn, Fe, Co, Ni, Cu, Ag, and Mo other than Ti are contained alone or in combination in small amounts. Causes absorption at specific wavelengths in the visible range. Therefore, it is preferable that the glass composition of the present invention does not contain substantially. “Substantially free” as used herein means that it is not contained artificially unless it is mixed as an impurity.
[0061] Pb, Th, Cd, Tl, Osの各成分は、近年有害な化学物資として使用を控える傾向に あるため、ガラスの製造工程のみならず、加工工程、及び製品化後の処分に至るま で環境対策上の措置が必要とされる。従って、環境上の影響を重視する場合には実
質的に含まな 、ことが好まし 、。 [0061] The components of Pb, Th, Cd, Tl, and Os have tended to be refrained from being used as harmful chemical substances in recent years. Until then, environmental measures are required. Therefore, if the environmental impact is important, Qualitatively preferred.
[0062] また、本発明のガラス組成物は、密度が 3. 2gZcm3以上のものを得ることができる[0062] Further, the glass composition of the present invention can have a density of 3.2 gZcm 3 or more.
。さらに好ましい密度の範囲は 3. 3gZcm3以上である。 . A more preferable density range is 3.3 gZcm 3 or more.
[0063] 本発明のガラス組成物は、可視域での透明性が高ぐ厚み 10mmのガラス組成物 にお!/、て 400nmにおける透過率力 0%以上で、 550nmにおける透過率が 80%以 上である。 [0063] The glass composition of the present invention is a glass composition having a thickness of 10 mm that is highly transparent in the visible region! /, And has a transmittance of 0% or more at 400 nm and a transmittance of 80% or less at 550 nm. Above.
[0064] また、本発明のガラス組成物は、ヌープ硬さ(HK)が 500NZmm2以上であり、より 好ましくは 550NZmm2であり、最も好ましくは 600NZmm2である。 In addition, the glass composition of the present invention has a Knoop hardness (HK) of 500 NZmm 2 or more, more preferably 550 NZmm 2 , and most preferably 600 NZmm 2 .
[0065] 本発明にお ヽて、放射線遮蔽能力は鉛当量で表される。鉛当量とは X線の遮蔽能 力が等しい鉛板の厚みで表され、この値が大きいほど放射線遮蔽能力が優れること を意味する。本発明のガラス組成物について 150kVの X線に対する鉛当量は、 JIS4 501に準じた方法で測定した鉛当量を厚み lmmに換算して求めた。本発明のガラス 組成物の鉛当量は 0. 03mmPb/mm以上とすることが好ましぐ 0. 05mmPb/m m以上とすることがより好まし 、。 In the present invention, the radiation shielding ability is represented by lead equivalent. The lead equivalent is expressed by the thickness of the lead plate with the same X-ray shielding ability. The larger this value, the better the radiation shielding ability. Regarding the glass composition of the present invention, the lead equivalent for 150 kV X-rays was determined by converting the lead equivalent measured by a method according to JIS4501 to a thickness of 1 mm. The lead equivalent of the glass composition of the present invention is preferably 0.03 mmPb / mm or more, more preferably 0.05 mmPb / mm or more.
[0066] このように、本発明のガラス組成物は、 150kVの X線に対する鉛当量が 0. 03mm PbZmm以上であり、可視域での透明性が高ぐ厚み 10mmのガラス組成物におい て 400nmにおける透過率力 0%以上で、 550nmにおける透過率が 80%以上であ り、また、ヌープ硬さが 500NZmm2以上であるので、放射線遮蔽能力が高くて、透 過性に優れる放射線遮蔽ガラスとして適して 、る。 [0066] Thus, the glass composition of the present invention has a lead equivalent to 150 kV of X-rays of 0.03 mm PbZmm or more, and is highly transparent in the visible region at a thickness of 10 mm at 400 nm. With a transmittance of 0% or more, a transmittance at 550 nm of 80% or more, and a Knoop hardness of 500 NZmm 2 or more, it is suitable as a radiation shielding glass with high radiation shielding ability and excellent transparency. And
[0067] [製造方法] [0067] [Production method]
本発明のガラス組成物は、通常のガラスを製造する方法であれば、特に限定されな いが、例えば、以下の方法により製造することができる。各出発原料 (酸化物、炭酸 塩、硝酸塩、リン酸塩、硫酸塩、フッ化物塩等)を所定量秤量し、均一に混合する。混 合した原料を石英坩堝、アルミナ坩堝、白金坩堝、白金合金坩堝またはイリジウム坩 堝に投入し、熔解炉で 1100〜1550°Cで 1〜10時間熔解する。その後、撹拌、均質 化した後、適当な温度に下げて金型等に铸込み、ガラスを製造する。 The glass composition of the present invention is not particularly limited as long as it is a method for producing ordinary glass, but can be produced, for example, by the following method. Weigh out a predetermined amount of each starting material (oxide, carbonate, nitrate, phosphate, sulfate, fluoride salt, etc.) and mix uniformly. The mixed raw materials are put into a quartz crucible, alumina crucible, platinum crucible, platinum alloy crucible or iridium crucible and melted at 1100-1550 ° C for 1-10 hours in a melting furnace. Then, after stirring and homogenizing, the temperature is lowered to an appropriate temperature and placed in a mold or the like to produce glass.
実施例 Example
[0068] 以下、実施例及び比較例を用いて本発明をさらに詳細に説明するが、本発明は以
下の実施例に限定されるものではない。 [0068] Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. It is not limited to the following examples.
[0069] <実施例 1〜14> [0069] <Examples 1 to 14>
表 1、 2に示す実施例 1から 14の組成(単位は wt%)で出発原料を秤量し、均一に 混合した後、白金坩堝に入れて 1300〜1500°Cで 2〜4時間熔解する。その後、金 型に铸込み、ガラスを作製した。 The starting materials are weighed with the compositions of Examples 1 to 14 shown in Tables 1 and 2 (unit: wt%), mixed uniformly, and then placed in a platinum crucible and melted at 1300-1500 ° C for 2-4 hours. Then, it was poured into a mold and glass was produced.
[0070] <比較例 1 > [0070] <Comparative Example 1>
比較例として放射線遮蔽用ガラスとして使われている鉛含有ガラスを作製した。 As a comparative example, a lead-containing glass used as a radiation shielding glass was produced.
[0071] 表 2に示した比較例 1の組成になるようにバッチを調合した。先ず石英坩堝を使つ て 1300°Cで 1時間 20分間熔解し、カレットを作製した。その後、カレットを白金坩堝 に入れて 1320°Cで 2時間 30分間熔解してから、金型に铸込み、ガラスを作製した。 [0071] A batch was prepared so as to have the composition of Comparative Example 1 shown in Table 2. First, a cullet was prepared by melting at 1300 ° C for 1 hour and 20 minutes using a quartz crucible. Thereafter, the cullet was put in a platinum crucible and melted at 1320 ° C for 2 hours and 30 minutes, and then poured into a mold to produce glass.
[0072] 表 1、 2に実施例 1〜14と比較例 1の密度、透明性、ヌープ硬さ、鉛当量を示した。 [0072] Tables 1 and 2 show the density, transparency, Knoop hardness, and lead equivalent of Examples 1 to 14 and Comparative Example 1.
密度は、アルキメデス法により測定を行った。透過率測定については、日本光学硝 子工業会規格 JOGIS02に準じて行った。なお、本発明においては、着色度ではなく 透過率を示した。具体的には、厚さ 10±0. 1mmの対面平行研磨品を JISZ8722に 準じ、 200〜800nmの分光透過率を測定した。波長 400nmと 550nmにおける透過 率 Tを求めて本発明の透明性を表す指標とした。ヌープ硬さ (HK)の測定は日本光 学硝子工業会規格 JOGIS09に準じて行った。鉛当量は、 JISZ4501に準じて、管電 圧 150kVで測定した。 The density was measured by the Archimedes method. The transmittance was measured according to the Japan Optical Glass Industry Association Standard JOGIS02. In the present invention, the transmittance is shown not the coloring degree. Specifically, a spectral transmittance of 200 to 800 nm was measured for a face-parallel polished product having a thickness of 10 ± 0.1 mm according to JISZ8722. The transmittance T at wavelengths of 400 nm and 550 nm was determined and used as an index representing the transparency of the present invention. Knoop hardness (HK) was measured in accordance with JOGIS09 standard of Japan Optical Glass Industry Association. The lead equivalent was measured at a tube voltage of 150 kV according to JISZ4501.
[0073] [表 1]
[0073] [Table 1]
実お §例 Actual §Example
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Si02 13.7 10.8 13.1 13.4 14,5 17.2 4.3 13.6Si0 2 13.7 10.8 13.1 13.4 14,5 17.2 4.3 13.6
B203 15.8 16.1 6.5 6.7 16.8 20.0 8.2 15.8B 2 0 3 15.8 16.1 6.5 6.7 16.8 20.0 8.2 15.8
Ge02 一 ― ― —— ― — 0.5 — 2O5 ― ― ― 一 ― 一 3.4 一Ge0 2 one - - - - - 0.5 -. 2O 5 - - - A - A 3.4 one
PbO 一 一 ― 一 ― 一 一 ―PbO 1-1-1-
Al203 15.4 12.0 12.7 13.0 16.4 19.5 ― 11.5Al 2 0 3 15.4 12.0 12.7 13.0 16.4 19.5 ― 11.5
Ga203 ― ― ― ― ― 12.8 ―Ga 2 0 3 ― ― ― ― ― 12.8 ―
ZnO 一 一 ― ― ― ― ― 0.61Single ZnO ― ― ― ― ― 0.61
BaO 一 7.0 ― ― ― ― ― ―BaO 1 7.0 ― ― ― ― ― ―
SrO 一 1.0 ― ― ― 一 ― ―SrO One 1.0 ― ― ― One ― ―
K20 一 一 ― ― 一 ― ― 1.7K 2 0 One ― ― One ― ― 1.7
Na20 一 ― ― ― ― ― ― 0.7Na 2 0 One ― ― ― ― ― ― 0.7
Li20 ― ― 一 ― ― 一 一 ―Li 2 0 ― ― One ― ― One One ―
Ti02 ― ― 一 一 ― 一 ― 0,3Ti0 2 ― ― 1 ― 1 ― 0,3
Zr02 一 ― ― ― 一 一 一 0.3Zr0 2 1---1 1 1 0.3
Y203 一 ― 一 ― ― 43.2 5.4 ― し a203 5.0 一 ― 20.8 52.4 ― 7.7 一Y 2 0 3 One ― One ― ― 43.2 5.4 ― and a 2 0 3 5.0 One ― 20.8 52.4 ― 7.7 One
Gd203 55.0 53.0 67.7 46.2 ― ― 34.4 54.4 し u203 一 一 ― ― ― 18.9 ―Gd 2 0 3 55.0 53.0 67.7 46.2 ― ― 34.4 54.4 and u 2 0 3 Same ― ― ― 18.9 ―
W03 ― ― ― ― ― ― ― 0.4W0 3 ― ― ― ― ― ― ― 0.4
Nb205 ― ― ― ― ― ― 一 0.6Nb 2 0 5 ― ― ― ― ― ― One 0.6
Ta205 ― ― ― ― ― 一 0.6Ta 2 0 5 ― ― ― ― ― One 0.6
Ce203 ― ― ― ― 一 ― 一 0.2Ce 2 0 3 ― ― ― ― One ― One 0.2
Sb203 0.1 一 ― ― 一 ― ―Sb 2 0 3 0.1 One ― ― One ― ―
As203 ― 0.1 ― ― ― 一 ― ― 密度 As 2 0 3 ― 0.1 ― ― ― One ― ― Density
4.21 4.46 5.09 4.90 3.86 3.38 5.80 4.22 4.21 4.46 5.09 4.90 3.86 3.38 5.80 4.22
(g/cm3) (g / cm 3 )
ヌープ硬さ Knoop hardness
660 610 690 680 630 660 700 670 660 610 690 680 630 660 700 670
(N/mm2) (N / mm 2 )
87/82 86/79 82/68 85/74 87/82 85/79 82/65 86/80 鉛当量 87/82 86/79 82/68 85/74 87/82 85/79 82/65 86/80 Lead equivalent
0.17 0.19 0.22 0.21 0.12 0.05 0.25 0.17 0.17 0.19 0.22 0.21 0.12 0.05 0.25 0.17
(mmPb/mm) (mmPb / mm)
※
は波長 550nmにおける透過率/波長 400 n mにおける透過率を示す。 2]
実お £例 比較例 * Indicates transmittance at a wavelength of 550 nm / transmittance at a wavelength of 400 nm. 2] Actual example Comparison example
9 10 11 12 13 14 1 9 10 11 12 13 14 1
Si02 17.0 20.5 11.8 10.0 10.0 10.2 35.4Si0 2 17.0 20.5 11.8 10.0 10.0 10.2 35.4
B203 7.4 7.9 8.2 11.6 12.1 12.2 ―B 2 0 3 7.4 7.9 8.2 11.6 12.1 12.2 ―
Ge02 ― ― —— ― ― — —Ge0 2 ― ― —— ― ― — —
P2O5 一 ― ― 一 ― ― ―P 2 O 5 One ― ― One ― ― ―
PbO ― ― ― ― ― ― 58.0PbO ― ― ― ― ― ― 58.0
Al203 14.4 11.6 10.7 6.8 5.3 5.5 ―Al 2 0 3 14.4 11.6 10.7 6.8 5.3 5.5 ―
Ga203 ― ― ― 一 ― ― ― Ga 2 0 3 ― ― ― One ― ― ―
ZnO ― ― 1.6 4.3 4.8 4.4 ― ZnO ― ― 1.6 4.3 4.8 4.4 ―
BaO ― ― ― ― ― ― ―BaO ― ― ― ― ― ― ― BaO
SrO ― 一 ― ― ― 一 ―SrO ― One ― ― ― One ―
K20 ― ― ― ― 一 0.1 1.8K 2 0 ― ― ― ― One 0.1 1.8
Na20 一 ― 一 ― ― 0.3 1.8Na 2 0 One ― One ― ― 0.3 1.8
Li20 ― ― ― ― ― 0.2 ―Li 2 0 ― ― ― ― ― 0.2 ―
Ti02 ― 一 ― ― ― 一 3.1Ti0 2 ― One ― ― ― One 3.1
Zr02 1.8 4.7 4.0 2.5 2.9 1.7 ―Zr0 2 1.8 4.7 4.0 2.5 2.9 1.7 ―
Y203 一 一 ― 一 一 一 一Y 2 0 3 One One ― One One One One
La203 ― ― 12.8 13.0 13.0 13.2 La 2 0 3 ― ― 12.8 13.0 13.0 13.2
Gd203 59.0 54.9 47.5 43.5 43.6 44.1 一 Gd 2 0 3 59.0 54.9 47.5 43.5 43.6 44.1 One
し u203 一 一 ― ― ― ― ― wo3 ― ― 3.0 7.7 7.7 7.8 一U 2 0 3 1 ― ― ― ― ― wo 3 ― ― 3.0 7.7 7.7 7.8 1
Nb205 一 ― 一 ― ― ― ― Nb 2 0 5 One ― One ― ― ― ―
Ta205 一 ― ― 一 ― ― ― Ta 2 0 5 One ― ― One ― ― ―
Ce203 ― 一 ― ― ― ― ― Ce 2 0 3 ― One ― ― ― ― ―
Sb203 0.4 0.4 0.4 0.6 0.6 0.3 ― Sb 2 0 3 0.4 0.4 0.4 0.6 0.6 0.3 ―
As203 ― ― ― ― ― ― ― 密度 As 2 0 3 ― ― ― ― ― ― ― Density
4.60 4.45 4.97 5.00 5.05 5.04 4.33 4.60 4.45 4.97 5.00 5.05 5.04 4.33
(g/cm3) (g / cm 3 )
ヌープ硬さ Knoop hardness
670 670 670 670 680 670 390 670 670 670 670 680 670 390
(N/mm2) (N / mm 2 )
T /Τ9ΐ)400πΓΙ1 85/80 85/80 85/76 85/66 85/66 85/68 85/50 T / Τ9ΐ) 400πΓΙ1 85/80 85/80 85/76 85/66 85/66 85/68 85/50
鉛当量 Lead equivalent
0.19 0.18 0.21 0.22 0.23 0.23 0.20 0.19 0.18 0.21 0.22 0.23 0.23 0.20
※
は波長 550n mにおける透過率/波長 400 n mにおける透過率を示す。 図 1に実施例 1のガラス組成物における分光透過率曲線を示す。横軸に波長 (nm) 、縦軸に分光透過率(%)を示す。なお、これらの透過率には反射損失が含まれてい る。図 1に示すように、本発明のガラス組成物は全可視域にわたって極めて高い透明 性を有することが分かる。また、表 1と表 2に見られるように本発明のガラス組成物は 既存の鉛ガラスを上回る透明性を有することが分力る。
[0076] 表 1、 2によると、本発明のガラス組成物の表面硬さ(ヌープ硬さ)は鉛ガラスより 1. 5 倍以上高いことが分かる。 * Indicates transmittance at a wavelength of 550 nm / transmittance at a wavelength of 400 nm. FIG. 1 shows the spectral transmittance curve of the glass composition of Example 1. The horizontal axis represents wavelength (nm) and the vertical axis represents spectral transmittance (%). These transmittances include reflection loss. As shown in FIG. 1, it can be seen that the glass composition of the present invention has extremely high transparency over the entire visible range. Moreover, as seen in Tables 1 and 2, the glass composition of the present invention has a greater transparency than existing lead glass. [0076] According to Tables 1 and 2, it can be seen that the surface hardness (Knoop hardness) of the glass composition of the present invention is 1.5 times higher than that of lead glass.
[0077] 表 1、 2によると、本発明のガラス組成物は鉛当量が高く、鉛ガラスと同等またはそ れ以上の放射線遮蔽能力を有することが分力る。
[0077] According to Tables 1 and 2, the glass composition of the present invention has a high lead equivalent and has a radiation shielding ability equivalent to or higher than that of lead glass.
Claims
[1] 酸化物基準の質量%で、 Al O及び [1]% by mass based on oxide, Al 2 O and
2 3 Zまたは Ga O及び 2 3 Z or Ga O and
2 3 Zまたは In Oの合計量 2 3 Total amount of Z or In O
2 3 を 5%を超えて 35%含有し、 150kVの X線に対する鉛当量は 0. 03mmPbZmm以 上であるガラス,袓成物。 Glass and composites containing more than 5% and 35% of 2 3 and lead equivalent to 150kV X-ray is 0.03mmPbZmm or more.
[2] 酸化物基準の質量%で、 Ln O (Lnは Y, La, Gd, Dy, Yb, Luからなる群より選 [2] Oxide-based mass%, Ln O (Ln is selected from the group consisting of Y, La, Gd, Dy, Yb, Lu)
2 3 twenty three
択される 1種以上を示す。 )を 20〜85%含有する請求項 1に記載のガラス組成物。 Indicates one or more selected. 2) The glass composition according to claim 1, comprising 20 to 85%.
[3] 酸化物基準の質量%で、 SiO及び Zまたは B O及び eO及び [3]% by mass on oxide basis, SiO and Z or B 2 O and eO and
2 3 Zまたは G 2 3 Z or G
2 2 Zまた は P Oの合計量を 5〜70%、ZnOを 0〜25%、ROを 0〜10% (Rは Ba, Sr, Ca, 2 2 The total amount of Z or PO is 5 to 70%, ZnO is 0 to 25%, RO is 0 to 10% (R is Ba, Sr, Ca,
2 5 twenty five
Mgからなる群より選択される 1種以上を示す。)、 Rn Oを 0〜10% (Rnは Li, Na, K One or more selected from the group consisting of Mg. ), Rn O 0-10% (Rn is Li, Na, K
2 2
, Csからなる群より選択される 1種以上を示す。)、 Sb O及び As Oの合計量を 0〜 , One or more selected from the group consisting of Cs. ), The total amount of Sb O and As O is 0 ~
2 3 2 3 2 3 2 3
5%の範囲で各成分を含有する請求項 1または 2に記載のガラス組成物。 The glass composition according to claim 1 or 2, comprising each component in a range of 5%.
[4] 酸化物基準の質量%で、 Ce Oを 0〜10%含有する請求項 1から 3いずれかに記 [4] The content according to any one of claims 1 to 3, wherein CeO is contained in an amount of 0% by mass based on oxide.
2 3 twenty three
載のガラス組成物。 Glass composition.
[5] 酸化物基準の質量%で、 TiOを 0〜15%含有する請求項 1から 4いずれかに記載 [5] The composition according to any one of claims 1 to 4, wherein 0 to 15% of TiO is contained by mass% based on the oxide.
2 2
のガラス組成物。 Glass composition.
[6] 酸化物基準の質量%で、 ZrO、 SnO、 Nb O、 Ta O、 WOの 1種または 2種以 [6]% by mass based on oxide, one or more of ZrO, SnO, NbO, TaO, WO
2 2 2 5 2 5 3 2 2 2 5 2 5 3
上を合計 0〜30%含有する請求項 1から 5いずれかに記載のガラス組成物。 The glass composition according to any one of claims 1 to 5, which contains a total of 0 to 30% of the above.
[7] 密度が 3. 2gZcm3以上である請求項 1から 6いずれかに記載のガラス組成物。 7. The glass composition according to any one of claims 1 to 6, wherein the density is 3.2 gZcm 3 or more.
[8] 厚みが 10mmの前記ガラス組成物において、 400nmの波長における透過率力 0[8] In the glass composition having a thickness of 10 mm, the transmittance force at a wavelength of 400 nm is 0.
%以上、 550nmの波長における透過率が 80%以上である請求項 1から 7いずれか に記載のガラス組成物。 The glass composition according to any one of claims 1 to 7, wherein the transmittance at a wavelength of 550 nm is 80% or more.
[9] ヌープ硬さが 500NZmm2以上である請求項 1から 81/、ずれかに記載のガラス組成 物。 [9] The glass composition according to any one of claims 1 to 81 /, wherein the Knoop hardness is 500 NZmm 2 or more.
[10] 請求項 1から 9 、ずれか〖こ記載のガラス組成物である放射線遮蔽ガラス。
[10] A radiation shielding glass which is the glass composition according to any one of claims 1 to 9.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007552874A JPWO2007077680A1 (en) | 2005-12-28 | 2006-11-13 | Glass composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-377610 | 2005-12-28 | ||
JP2005377610 | 2005-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007077680A1 true WO2007077680A1 (en) | 2007-07-12 |
Family
ID=38228038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/322578 WO2007077680A1 (en) | 2005-12-28 | 2006-11-13 | Glass composition |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2007077680A1 (en) |
WO (1) | WO2007077680A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101805121A (en) * | 2009-02-13 | 2010-08-18 | 肖特公开股份有限公司 | The not no barium glass and the application thereof of saturating X-ray |
CN102408195A (en) * | 2010-09-26 | 2012-04-11 | 海洋王照明科技股份有限公司 | Borate luminescent glass and preparation method thereof |
US8178595B2 (en) | 2009-02-13 | 2012-05-15 | Schott Ag | X-ray opaque barium-free glasses and uses thereof |
US8268065B2 (en) | 2009-02-13 | 2012-09-18 | Schott Ag | X-ray opaque barium-free glasses and uses thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06127973A (en) * | 1992-10-14 | 1994-05-10 | Nippon Electric Glass Co Ltd | Radiation shielding glass |
JPH07138044A (en) * | 1993-11-12 | 1995-05-30 | Ask:Kk | Transparent neutron shielding glass |
JPH08119667A (en) * | 1994-10-19 | 1996-05-14 | Toshiba Glass Co Ltd | Neutron shielding glass |
JPH10226533A (en) * | 1997-02-10 | 1998-08-25 | Nikon Corp | Radiation shielding glass |
JP2001348248A (en) * | 2000-06-02 | 2001-12-18 | Hoya Corp | Glass for cathode ray tube, method for manufacturing the same and glass panel for cathode ray tube |
JP2003315489A (en) * | 2002-04-23 | 2003-11-06 | Nippon Electric Glass Co Ltd | Radiation shielding material |
-
2006
- 2006-11-13 WO PCT/JP2006/322578 patent/WO2007077680A1/en active Application Filing
- 2006-11-13 JP JP2007552874A patent/JPWO2007077680A1/en not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06127973A (en) * | 1992-10-14 | 1994-05-10 | Nippon Electric Glass Co Ltd | Radiation shielding glass |
JPH07138044A (en) * | 1993-11-12 | 1995-05-30 | Ask:Kk | Transparent neutron shielding glass |
JPH08119667A (en) * | 1994-10-19 | 1996-05-14 | Toshiba Glass Co Ltd | Neutron shielding glass |
JPH10226533A (en) * | 1997-02-10 | 1998-08-25 | Nikon Corp | Radiation shielding glass |
JP2001348248A (en) * | 2000-06-02 | 2001-12-18 | Hoya Corp | Glass for cathode ray tube, method for manufacturing the same and glass panel for cathode ray tube |
JP2003315489A (en) * | 2002-04-23 | 2003-11-06 | Nippon Electric Glass Co Ltd | Radiation shielding material |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101805121A (en) * | 2009-02-13 | 2010-08-18 | 肖特公开股份有限公司 | The not no barium glass and the application thereof of saturating X-ray |
JP2010189263A (en) * | 2009-02-13 | 2010-09-02 | Schott Ag | Barium-free radiopaque glass and the use thereof |
DE102009008953A1 (en) | 2009-02-13 | 2010-10-07 | Schott Ag | X-ray opaque barium-free glass and its use |
DE102009008953B4 (en) * | 2009-02-13 | 2010-12-30 | Schott Ag | X-ray opaque barium-free glass and its use |
US8178595B2 (en) | 2009-02-13 | 2012-05-15 | Schott Ag | X-ray opaque barium-free glasses and uses thereof |
US8268065B2 (en) | 2009-02-13 | 2012-09-18 | Schott Ag | X-ray opaque barium-free glasses and uses thereof |
US8268739B2 (en) | 2009-02-13 | 2012-09-18 | Schott Ag | X-ray opaque barium-free glasses and uses thereof |
CN102408195A (en) * | 2010-09-26 | 2012-04-11 | 海洋王照明科技股份有限公司 | Borate luminescent glass and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPWO2007077680A1 (en) | 2009-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008088019A (en) | Glass composition | |
JPWO2007043280A1 (en) | Radiation shielding glass | |
EP2495223B1 (en) | Optical glass and core material for optical fiber | |
JP2009096662A (en) | Glass composition | |
EP1382582B1 (en) | An optical glass | |
JP2016121035A (en) | Optical glass, preform and optical element | |
JP7075895B2 (en) | Optical glass, preforms and optics | |
JP2007290899A (en) | Glass composition | |
JP2016121034A (en) | Optical glass, preform and optical element | |
JP2016074557A (en) | Optical glass and optical element | |
JP5956117B2 (en) | Optical glass, preform and optical element | |
JP2016088774A (en) | Optical glass, preform and optical element | |
JP2024003105A (en) | Optical glass, preform, and optical element | |
EP0657391B1 (en) | Lead-free glasses exhibiting characteristics of crystal | |
JP2016088835A (en) | Optical glass, preform and optical element | |
JP5698442B2 (en) | Optical glass and optical element | |
JP6829548B2 (en) | Optical glass | |
JP2009007194A (en) | Glass composition | |
WO2007077680A1 (en) | Glass composition | |
JP2008088021A (en) | Glass composition | |
JPWO2007077681A1 (en) | Glass composition | |
JP2012091983A (en) | Optical glass and optical element | |
JP2008088020A (en) | Glass composition | |
JP7133658B2 (en) | optical glass | |
JP2007292558A (en) | Glass composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 2007552874 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06823352 Country of ref document: EP Kind code of ref document: A1 |