WO2007077079A1 - Procedes de determination et de controle du niveau de remplissage d'un fluide dans un contenant selon le principe de la duree de parcours - Google Patents
Procedes de determination et de controle du niveau de remplissage d'un fluide dans un contenant selon le principe de la duree de parcours Download PDFInfo
- Publication number
- WO2007077079A1 WO2007077079A1 PCT/EP2006/069344 EP2006069344W WO2007077079A1 WO 2007077079 A1 WO2007077079 A1 WO 2007077079A1 EP 2006069344 W EP2006069344 W EP 2006069344W WO 2007077079 A1 WO2007077079 A1 WO 2007077079A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- echo
- determined
- useful
- signals
- function
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/22—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
- G01F23/28—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
- G01F23/284—Electromagnetic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/22—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
- G01F23/28—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
- G01F23/296—Acoustic waves
- G01F23/2962—Measuring transit time of reflected waves
Definitions
- the present invention relates to a method for detecting and monitoring the level of a medium in a container according to a transit time measurement method in which transmission signals are emitted in the direction of the medium and reflected at boundary layers of the medium reflection signals are received as useful echo signals.
- Corresponding methods for detecting and monitoring the level in a container are often used in the measuring devices of automation and process control technology.
- the Applicant produces and distributes such measuring devices under the names Prosonic, Levelflex and Micropilot, which operate according to the transit time measuring method and serve to determine and / or monitor a level of a medium in a container.
- ultrasound waves are transmitted as a measurement signal via a transducer in the direction of the medium freely radiating and after a distance-dependent transit time of the measurement signal reflected on the surface of the medium reflection signals are received again.
- microwaves are freely transmitted as a measuring signal via an antenna in the direction of the medium and after a distance-dependent transit time of the measuring signal reflected on the surface of the medium reflection signals are received again.
- Time Domain Reflectometry or the TDR measurement method (Time Domain Reflection) a high-frequency pulse along a Sommerfeldschen or Goubauschen waveguide or sent along a Koaxialwellenleiters, which is reflected back in a jump in the dielectric constant of the medium surrounding the waveguide, so-called DK value.
- Measurement signals reflected on the medium surface and after the distance-dependent Runtime of the signal can be received as useful echo signals again.
- the level of the medium in a container can be calculated with the aid of the known propagation speed of the respective transmitted waves.
- the distance of the measuring device to the medium surface can be determined. Taking into account the geometry of the container interior of the level of the medium is then determined as a relative or absolute size.
- the first determination method is based on a transit time measurement which requires a pulse train modulated signal for the distance covered;
- a second widely used method of determination is based on the determination of the frequency difference of the currently transmitted, continuously frequency-modulated high-frequency signal and the received, reflected high-frequency signal (FMCW - Frequency-Modulated Continuous Wave).
- FMCW Frequency-Modulated Continuous Wave
- the unevenness in the surface in, for example, bulk solids or solids are often due to the fact that the bulk material in the container is supplied or removed spatially limited only by pipes, whereby a coning of the bulk material is formed in the container.
- By an alternating, uneven supply and discharge of bulk material creates an uneven surface.
- only a portion of the level can be determined, as it comes through the rupture of the surface of the medium to a variety of useful echo signals with different maturities and different amplitudes. An exact determination of the level is not in these cases possible.
- the invention is based on the object, an improved and adapted
- the object is achieved by a method for detecting and monitoring the level of a medium in a container according to a transit time measurement method, wherein transmission signals are emitted in the direction of the medium and reflected at boundary layers of the medium reflection signals are received as useful echo signals, wherein from the received Reflection signals a dependent of the duration or the running distance Echofi ⁇ ntechnik is determined, wherein a ceremoniessfi ⁇ ntation given or formed by a determination of the Echofi ⁇ ntement, wherein the useful echo signals are determined by means of an evaluation algorithm 'in the Echofi ⁇ ntechnik with the aid of ceremoniessfi ⁇ ndiction and echo grouping in one formed group area are formed with an upper limit and a lower limit, based on a determination method, a measuring position representing the level in the group area of the echo grouping b is determined.
- the useful echo signals are determined by determining their vertices and / or inflection points.
- a further or additional method for determining the useful echo signals is to determine a parabolic curve equation by a corresponding parabola adaptation function, which at least approximately corresponds to the shape and position of the current wanted echo signal or of several wanted echo signals. From the determined curve values, such. B. from the shape, the position and / or the vertex, an echo grouping is formed, indicating the range of the level. An exact value for the level is found by a determination method in such a way that a certain measurement position in the group area of the echo grouping is determined or specified.
- a preferred embodiment of the method provides, in particular, that in the evaluation algorithm, any desired echo signal, a first useful echo signal or a maximum useful echo signal having a maximum amplitude value in the echo function is determined as the initial echo. Starting from this initial echo, further useful echo signals are determined according to a specific search algorithm until an abort criterion is met. Starting from the initial echo, for example, first in a first direction and after fulfilling a termination criterion in a direction opposite to each other Wanted echo signals searched. Likewise, it is also possible to carry out a simultaneous or alternating search of useful echo signals in both directions.
- An expedient embodiment of the invention is that an iterative step width is specified or determined and that starting from the initial echo in an iterative search algorithm with each iterative step width further useful echo signals are searched in the echo function and grouped into an echo grouping in the group area.
- further useful echo signals are determined in certain time intervals, the so-called iterative step width. These useful echo signals are combined to form an echo grouping or an echo cluster. Subsequently, only the determined echo grouping is evaluated by signal technology to determine the fill level.
- the iterative step width is at least as large as the minimum signal width of a useful echo signal is selected.
- the iterative step width is chosen so large that a useful echo signal which belongs to the echo grouping can be recognized by the search algorithm.
- This value is an empirical value, which is mainly based on some sizes of the process equipment, e.g. the container size depends.
- a very advantageous variant of the method according to the invention is that a maximum width of the group area is specified.
- An abort criterion of the search algorithm is to specify a maximum search window in which, starting from the initial echo, it is possible to search for further useful echo signals.
- the iterative search algorithm is aborted when no new wanted echo signal is found within the iterative step width or when the maximum width for the group area is reached. If this maximum width of the group area or the maximum search window is exceeded, at least in a first direction of the search, the search algorithm automatically aborts the search for further wanted echo signals.
- the measuring position of a centroid of the group area of the echo grouping is determined during the determination process. If the echo grouping is determined by the search algorithm, in relation to the Evaluation curve, the surface integral of the useful echo signals, which are in the group area above the evaluation curve determined. From this area integral, the measuring position at which the area integral of the area integral to the left and right of the measuring position are the same is determined on the echo function in the group area.
- an advantageous embodiment of the method according to the invention is to be seen in that the upper limit and the upper limit of the range of the group range are determined by the most distant useful echo signals of the echo grouping.
- the upper limit and the upper limit of the group range are determined by the vertices of the most distant useful echo signals of the echo grouping.
- a complementary advantageous embodiment of the method according to the invention provides that for the upper limit, a maximum relative value of 100 percent and for the Oiter cramp a maximum relative value of 0 percent will specify. Normalizing the group range to a relative range of 0% (percent) to 100% (percent) normalizes the size of the group range, which can change in each measurement cycle of the instrument.
- the measurement position is specified by the operator as a value that lies between the upper limit and the upper limit of the group range.
- the operator of the measuring device By normalizing the determined group range to relative values of 0% to 100%, it is possible for the operator of the measuring device to set a specific division ratio of the group range as measuring position by the default value, although the size of the group range constantly changes.
- This default value is an empirical value of the operator or system operator depending on what he wants to focus on when determining the level. If the meter is to prevent the container from running empty, it will specify a default value in the range of 0% to 50%. However, if the job of the meter is to serve as the overfill safety system, a default value in the range of over 50% is assumed.
- FIG. 1 shows an embodiment of a measuring device for determining the level with a corresponding echo function
- FIG. 2 shows an echo function with an evaluation function of the measuring device
- Fig. 3 is an enlarged partial section A of Echofi ⁇ n Dictionary of Fig. 2 with Sketch of the iterative search algorithm to form the grouping of useful echo signals,
- Fig. 4 is an enlarged partial section A of the Echofi ⁇ n Dictionary of FIG. 2 with the sketch of the centroid as the measuring position, and
- FIG. 5 is an enlarged partial section A of Echofi ⁇ n Dictionary of FIG. 2 with sketching of the default value as a measuring position.
- a measuring device 1 operating according to the transit time measuring method for determining the level 9 of a medium 7 is shown, which is mounted on a container 5 in a socket 4.
- the measuring device 1 shown is a radar antenna which radiates freely into the process space 6 and comprises a regulating / evaluating unit 2 and a transmitting / receiving unit 3.
- the transmitting / receiving unit 3 is embodied in this exemplary embodiment as a horn antenna, however
- the transmitting / receiving element may be any known antenna shape, such as Staboder Planarantenne be configured.
- the control / evaluation unit 3 consists at least of a transmitter, which performs, for example, the generation, reception and signal processing of the measurement signals, and optionally a control / regulating circuit that controls and regulates the communication via a bus system and the power supply of the meter.
- a measurement signal is generated, for example, in the form of a high-frequency transmission signal S and emitted via the transmission / reception unit 3 in a predetermined emission characteristic in the direction of the medium 7. After a travel time t dependent on the traveled distance x, the measurement signals reflected on the surface 8 of the medium 7 are received again as reflection signal R by the transmitting / receiving unit 3 and the control / evaluation unit 2.
- the control / evaluation unit 2 determines from the reflection signals R an echo function 10 which represents amplitudes of the reflection signals R as a function of the distance x traveled or the corresponding transit time t.
- an echo function 10 which represents amplitudes of the reflection signals R as a function of the distance x traveled or the corresponding transit time t.
- an analog / digital conversion of the analogue echo function or the echo curve 10 a digitized envelope 11 is generated.
- the term of the echo function 10 is used, this term likewise implying the terms of the echo curve 10, the envelope function or the envelope curve 11.
- An echo function depicting the measuring situation in the container 5 is shown proportional to the running distance x of the measuring signal.
- the area 9a which is caused for example by Schüttkegelemme an uneven surface 8 of the medium 7 in the container 5, the reference lines corresponding reflection signals R in the Echofi ⁇ ntation 10 assigned, so that the cause-effect principle can be detected at a glance.
- the decay behavior 29 or the so-called ringing that arises due to multiple reflections in the transmitting / receiving unit 3 or the neck 4 and / or that can also arise due to buildup of formation at the transmitting / receiving unit 3 can be seen .
- the inventive method is not only alone, as shown explicitly in Fig. 1, implemented in free radiating microwave measuring devices 1, but an application of the method according to the invention in other transit time measurement systems, such as TDR measuring devices 1 or ultrasonic measuring devices 1 is executable.
- an evaluation curve 12 which is determined by a determination method, e.g. a mathematical Filterfi ⁇ ntechnik in the form of a sliding averaging, from the respective Echofi ⁇ ntechnik 10 or a determined during commissioning Echofi ⁇ ntechnik 10 is determined in the empty container 5.
- a determination method e.g. a mathematical Filterfi ⁇ ntechnik in the form of a sliding averaging
- interference signals and noise signals which may arise, for example, due to interference reflections on internals in the container, through multipath propagation and through multimode propagation, through foam and build-up of the medium and through turbulent media surfaces, are masked out.
- the excitation signal 25 with the decay behavior 29 of the echo function 10 is signal-wise separated from the measurement signal to be evaluated according to useful echo signals with the aid of the evaluation curve 12.
- this evaluation curve 12 is used as a reference or abort criterion for the search algorithm of useful echo signals 20 in the echo function 10. Consequently, it is possible to identify the useful echo signals 20 in the echo function 10 by means of the evaluation curve 12.
- the signal components which lie above the evaluation curve 12 are recognized as useful echo signals 20 by the evaluation algorithm.
- the section A of the echo function is the region 9a of the echo function 10 in which the determined or predetermined measuring position 13 of the filling level 9 lies.
- a first method step an initial echo 27 is determined.
- This initial echo 27 is, for example, based on the excitation signal 25, the first useful echo signal 22 or the maximum useful echo signal 21, whose vertices and or inflection points are above the evaluation curve 12.
- an approximate parabolic curve equation for example, which determines the vertex of useful echo signal 20 and approximately describes the curve shape of measured useful echo signal 20, is determined by an adaptation function.
- an iterative search algorithm is used to search for further useful echo signals 20 in an iterative step width 19.
- the iterative step width 19 is an empirical value that depends on parameters of the process plant, such as the geometry of the container 5, the filling / emptying processes or the type of medium 7. This iterative step width 19 is specified, so that the iterative step width
- the evaluation curve 12 represents the measurement situation in the empty container 5 and contains interference signals and signal components caused by the measurement method, this forms a kind of a Zero-line from which the amplitudes Amp of the useful echo signals 20 of the reflection signals R reflected at the surface 8 of the medium 7 can be determined.
- FIG. 4 shows the detail A of the echo function 10 and the evaluation curve 12 from FIG. 2 with an echo grouping 26 of useful echo signals 20 with a group region 16.
- a meaningful measuring position 13 in the group area 16 which represents the value of the level 9, must be determined.
- One possibility for this purpose is the determination method for determining the area centroid 24. In this determination method, the area of the wanted echo signals 20 of the echo function 10, which lies in the group area 16 above the evaluation function 12, is determined.
- the measuring position 13 in the group area 16 at which the area to the right of the measuring position 13 is the same as the area to the left of the measuring position 13 is determined as the centroid 24 the useful echo signals 20 is achieved that in approximately uniformly distributed useful echo signals 20 in the group region 16, an approximately equal level 9, as in a comparatively flattened surface 8 of the medium 7 is achieved.
- the accuracy of this measurement and estimation is also strongly dependent on the material properties, e.g. of the reflection behavior of the medium 7, the conglomerate formation and the geometry of the container 5 dependent.
- an echo grouping 26 having a group area 16 the determination of which is described in the description of FIG. 3, is shown.
- the group area 16 with the lower limit 17 and the upper limit 18 defines the area 9a in which the level 9 of the medium 7 can be found in the container 5.
- the determined group area 16 is divided into a relative value range, wherein the lower limit 17 represents, for example, a relative value of 0% and the upper limit corresponds to a relative value of 100%.
- a measuring position 13 within the group area 16 is specified by the plant operator. This default value 14 is based on an experience of the plant operator, which depends on the geometry of the container 5, the filling / emptying processes, the reflection behavior of the material and many other factors.
- the plant operator is enabled by the possibility of simply entering a relative default value, the measuring position that is of interest to him 13 of the filling level 9 in the determined group area 16 of the echo grouping 26 or the echo cluster.
- a relative default value the measuring position that is of interest to him 13 of the filling level 9 in the determined group area 16 of the echo grouping 26 or the echo cluster.
- other priorities can be defined here by the default value 14.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Thermal Sciences (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
Abstract
L'invention concerne des procédés de détermination et de contrôle du niveau de remplissage (9) d'un fluide (7) dans un contenant (5) selon le principe de la durée de parcours. Des signaux d'émission (S) sont émis en direction du fluide (7) et des signaux de réflexion (R) réfléchis sur des couches limites du fluide (7) sont reçus en tant que signaux d'écho utiles (20). A partir des signaux de réflexion reçus (R), une fonction d'écho (10) dépendant de la durée de parcours (t) ou de la distance de parcours (x) est déterminée. Une fonction d'évaluation (12) est prédéfinie ou formée par un procédé de détermination à partir de la fonction d'écho (10). Les signaux d'écho utiles (20) sont déterminés par l'intermédiaire d'un algorithme d'évaluation dans la fonction d'écho (10) à l'aide de la fonction d'évaluation (12) et sont formés en tant que groupage d'écho (26) dans une zone de groupe déterminée (16) avec une limite supérieure (18) et une limite inférieure (17). Au moyen d'un procédé de détermination, une position de mesure (13) représentant le niveau de remplissage (9) est déterminée dans la zone de groupe (16) du groupage d'écho (26).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005063079.0A DE102005063079B4 (de) | 2005-12-29 | 2005-12-29 | Verfahren zur Ermittlung und Überwachung des Füllstands eines Mediums in einem Behälter |
DE102005063079.0 | 2005-12-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007077079A1 true WO2007077079A1 (fr) | 2007-07-12 |
Family
ID=37808233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2006/069344 WO2007077079A1 (fr) | 2005-12-29 | 2006-12-05 | Procedes de determination et de controle du niveau de remplissage d'un fluide dans un contenant selon le principe de la duree de parcours |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102005063079B4 (fr) |
WO (1) | WO2007077079A1 (fr) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8567251B2 (en) | 2007-09-20 | 2013-10-29 | Vega Grieshaber Kg | Detailfunction based measurement |
DE102012011165A1 (de) | 2012-06-05 | 2013-12-05 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung und Verfahren zur Erfassung eines Gegenstandes sowie Behälter für Flüssigkeiten |
US9952083B2 (en) | 2013-10-10 | 2018-04-24 | Apm Automation Solutions Ltd | Movable system for measuring a content of a bin |
US9952084B2 (en) | 2013-10-10 | 2018-04-24 | Apm Automation Solutions Ltd | Increasing signal to noise ratio of acoustic echoes by a group of spaced apart acoustic transceiver arrays |
US9952318B2 (en) | 2013-10-10 | 2018-04-24 | Apm Automation Solutions Ltd | Group of spaced apart acoustic transceiver arrays and a method for measuring a content of a bin |
US10168199B2 (en) | 2013-07-23 | 2019-01-01 | Endress+Hauser Se+Co.Kg | Method for ascertaining and monitoring fill level of a medium in a container using a travel time measuring method |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2128576B1 (fr) | 2008-05-27 | 2016-12-28 | VEGA Grieshaber KG | Procédé de détection de double parole basé sur les propriétés acoustiques spectrales |
DE102009045204A1 (de) * | 2009-09-30 | 2011-04-28 | Endress + Hauser Gmbh + Co. Kg | Verfahren zur Bestimmung und/oder Überwachung mindestens einer physikalischen Prozessgröße |
EP2442129B1 (fr) | 2010-10-18 | 2016-03-23 | Siemens Aktiengesellschaft | Procédé de traitement d'un profil d'amplitude d'écho généré par un système de télémétrie par impulsion-écho |
DK2759813T3 (da) | 2013-01-25 | 2016-06-06 | Sick Ag | Method and sensor for measuring the fill level of layered media |
DE102018102366A1 (de) | 2018-02-02 | 2019-08-08 | Endress+Hauser SE+Co. KG | Füllstandsmessgerät |
DE102022202133A1 (de) * | 2022-03-02 | 2023-09-07 | Skf Lubrication Systems Germany Gmbh | Füllstandsmesssystem und Verfahren |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4308373A1 (de) * | 1993-03-16 | 1994-09-22 | Siemens Ag | Verfahren zur Erkennung und Separation von Nutz- und Störechos im Empfangssignal von Abstandssensoren, welche nach dem Impuls-Echo-Prinzip arbeiten |
GB2338132A (en) * | 1998-06-02 | 1999-12-08 | Federal Ind Ind Group Inc | Echo ranging system |
EP1278048A2 (fr) * | 2001-07-11 | 2003-01-22 | VEGA Grieshaber KG | Procédé et dispositif de mesure du niveau d' un liquide |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2342995B (en) | 1998-10-21 | 2003-02-19 | Federal Ind Ind Group Inc | Improvements in pulse-echo measurement systems |
DE10105652A1 (de) | 2001-02-08 | 2002-08-14 | Grieshaber Vega Kg | Verfahren und Vorrichtung zur Grobunterscheidung eines Füllgutes in einem Behälter in Flüssigkeit oder Schüttgut |
-
2005
- 2005-12-29 DE DE102005063079.0A patent/DE102005063079B4/de active Active
-
2006
- 2006-12-05 WO PCT/EP2006/069344 patent/WO2007077079A1/fr active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4308373A1 (de) * | 1993-03-16 | 1994-09-22 | Siemens Ag | Verfahren zur Erkennung und Separation von Nutz- und Störechos im Empfangssignal von Abstandssensoren, welche nach dem Impuls-Echo-Prinzip arbeiten |
GB2338132A (en) * | 1998-06-02 | 1999-12-08 | Federal Ind Ind Group Inc | Echo ranging system |
EP1278048A2 (fr) * | 2001-07-11 | 2003-01-22 | VEGA Grieshaber KG | Procédé et dispositif de mesure du niveau d' un liquide |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8567251B2 (en) | 2007-09-20 | 2013-10-29 | Vega Grieshaber Kg | Detailfunction based measurement |
DE102012011165A1 (de) | 2012-06-05 | 2013-12-05 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung und Verfahren zur Erfassung eines Gegenstandes sowie Behälter für Flüssigkeiten |
US10168199B2 (en) | 2013-07-23 | 2019-01-01 | Endress+Hauser Se+Co.Kg | Method for ascertaining and monitoring fill level of a medium in a container using a travel time measuring method |
US9952083B2 (en) | 2013-10-10 | 2018-04-24 | Apm Automation Solutions Ltd | Movable system for measuring a content of a bin |
US9952084B2 (en) | 2013-10-10 | 2018-04-24 | Apm Automation Solutions Ltd | Increasing signal to noise ratio of acoustic echoes by a group of spaced apart acoustic transceiver arrays |
US9952318B2 (en) | 2013-10-10 | 2018-04-24 | Apm Automation Solutions Ltd | Group of spaced apart acoustic transceiver arrays and a method for measuring a content of a bin |
Also Published As
Publication number | Publication date |
---|---|
DE102005063079A1 (de) | 2007-07-05 |
DE102005063079B4 (de) | 2018-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102005063079B4 (de) | Verfahren zur Ermittlung und Überwachung des Füllstands eines Mediums in einem Behälter | |
EP0668488B1 (fr) | Dispositif de mesure du niveau de remplissage d'un réservoir | |
DE102007042042B4 (de) | Verfahren zur Ermittlung und Überwachung des Füllstands eines Mediums in einem Behälter nach einem Laufzeitmessverfahren | |
EP2418465B1 (fr) | Profilage d'amplitude dans des appareils de mesure du niveau de remplissage | |
DE60027644T2 (de) | Messung der dielektrizitätskonstante eines prozessproduktes mittels eines schwachstrom-radar-füllstandsmessumformers | |
DE102006062606A1 (de) | Verfahren zur Ermittlung und Überwachung des Füllstands eines Mediums in einem Behälter nach einem Laufzeitverfahren | |
DE102012107146A1 (de) | Verfahren zur Bestimmung und/oder Überwachung des Füllstands eines Mediums in einem Behälter | |
DE102012003373B4 (de) | Verfahren zur Überwachung und Verfahren zum Betreiben eines nach dem Radar-Prinzip arbeitenden Füllstandmesssystems und entsprechendes Füllstandmesssystem | |
DE102010044182A1 (de) | Verfahren zum Einstellen eines Messgeräts | |
WO2011076478A2 (fr) | Procédé de détermination et de surveillance du niveau de remplissage d'un contenant, renfermant un fluide, selon un procédé de mesure du temps de propagation | |
DE102016222776A1 (de) | Radarvorrichtung für Fahrzeuge und Zielbestimmungsverfahren für diese | |
EP2128576A1 (fr) | Procédé de détection de double parole basé sur les propriétés acoustiques spectrales | |
DE102012025064A1 (de) | Verfahren zum Aufrechterhalten eines Warnsignals in einem Kraftfahrzeug aufgrund der Präsenz eines Zielobjekts in einem Warnbereich, insbesondere einem Totwinkelbereich, entsprechendes Fahrerassistenzsystem und Kraftfahrzeug | |
EP2331916A1 (fr) | Appareil de mesure de niveau de remplissage à hyperfréquence | |
DE102014101904A1 (de) | Effiziente Dispersionskorrektur für FMCW-Radar in einem Rohr | |
DE102005003152A1 (de) | Verfahren zur Überprüfung der ordnungsgemäßen Funktion eines Füllstandmessgeräts | |
EP2527805A1 (fr) | Dispositif d'évaluation et procédé de détermination d'une grandeur caractéristique pour la position d'une surface limite dans un récipient | |
EP3025128B1 (fr) | Procédé pour déterminer et surveiller le niveau d'un fluide dans un récipient selon un procédé de mesure du temps de propagation | |
DE102014112228A1 (de) | Verfahren zur Vermeidung von Phasensprüngen | |
DE19961855B4 (de) | Verfahren und Vorrichtung zur Bestimmung des Füllstands eines Füllguts in einem Behälter | |
EP3695197B1 (fr) | Procédé de détermination du niveau de remplissage d'un produit contenu dans un récipient | |
EP1039273B1 (fr) | Procédé de mesure du niveau d' un fluide | |
EP3746753B1 (fr) | Procédé de détection d'états d'erreur potentiels sur un dispositif de mesure de remplissage à base de fmcw | |
EP1358450A2 (fr) | Procede et dispositif de detection grossiere d'une matiere de remplissage dans un recipient dans du liquide ou une matiere deversable | |
DE102018119976A1 (de) | Füllstandsmessgerät |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |
Ref document number: 06830390 Country of ref document: EP Kind code of ref document: A1 |