WO2007077066A1 - Leiterplattenanordnung - Google Patents
Leiterplattenanordnung Download PDFInfo
- Publication number
- WO2007077066A1 WO2007077066A1 PCT/EP2006/069186 EP2006069186W WO2007077066A1 WO 2007077066 A1 WO2007077066 A1 WO 2007077066A1 EP 2006069186 W EP2006069186 W EP 2006069186W WO 2007077066 A1 WO2007077066 A1 WO 2007077066A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit board
- printed circuit
- sieve
- housing
- board assembly
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/0058—Laminating printed circuit boards onto other substrates, e.g. metallic substrates
- H05K3/0061—Laminating printed circuit boards onto other substrates, e.g. metallic substrates onto a metallic substrate, e.g. a heat sink
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2039—Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
- H05K7/205—Heat-dissipating body thermally connected to heat generating element via thermal paths through printed circuit board [PCB]
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0104—Properties and characteristics in general
- H05K2201/0116—Porous, e.g. foam
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10227—Other objects, e.g. metallic pieces
- H05K2201/10409—Screws
Definitions
- the invention relates to a printed circuit board assembly having a printed circuit board and a thermally and electrically conductive housing.
- the circuit board is attached to the housing.
- the circuit arrangement comprises a housing and a printed circuit board, which is Bestuckt with electrical components.
- the circuit board is part of a wall of the housing.
- the object of the invention is to provide a printed circuit board assembly which allows a particularly good removal of heat, which arises during operation of the printed circuit board.
- the invention is characterized by a Leiterplattenan- order with a printed circuit board and a thermally and electrically conductive housing.
- the circuit board is attached to the housing.
- the circuit board assembly includes an electrically insulating and thermally conductive screen-like body which mechanically and thermally couples the circuit board with the housing.
- the sieve-like body simply allows a flexible and thermally particularly favorable coupling between the circuit board and the housing.
- the housing has cooling ribs. This contributes to a quick removal of the heat from the housing in the Environment and thus to a quick removal of heat from the PCB in the environment at.
- the housing comprises a plastic / metal composite material.
- the plastic / metal composite material makes it easy to give the housing a given shape. Furthermore, the plastic / metal composite material, by a metal content in the plastic / metal composite material to specify the thermal and electrical properties of the housing.
- the sieve-like body is designed and arranged such that an overlap region is formed between the printed circuit board and the sieve-like body and extends over at least a majority of the area of the printed circuit board. This simply contributes to a particularly good removal of heat.
- the majority of the area may, for example, comprise 90% of the printed circuit board.
- the sieve-like body comprises a fabric. This can contribute to a stable and flexible screen-like body and a favorable manufacturing of the sieve-like body.
- the sieve-like body comprises a plastic. This allows depending on the nature of the plastic to specify the thermally conductive and electrically insulating properties of the tissue.
- the sieve-like body comprises a thermoplastic.
- Thermoplastics for example polyamide, allow a simple shaping of the sieve-like body.
- the sieve-like body comprises fluoroplastic and / or polyetheretherketone.
- Fluoroplastic or polyetheretherketone contribute to a very high thermal stability of the sieve-like body.
- the thermal load capacity of fluoroplastic for example, increases with increasing fluorine content. This allows a thermal load of up to 180 ° C with appropriate admixture of fluorine.
- a thermally conductive and electrically insulating medium is introduced into intermediate spaces of the sieve-like body. This simply contributes to a particularly good removal of heat.
- the medium comprises a viscous liquid.
- the viscous liquid may be, for example, a warming paste.
- FIG. 1 shows a first section through a printed circuit board arrangement
- FIG. 2 shows a second section through the printed circuit board arrangement according to FIG. 1.
- a printed circuit board arrangement (FIG. 1) comprises a printed circuit board 2, a housing 4 and a sieve-like body 10.
- the housing 4 preferably comprises a plurality of cooling ribs 6.
- the printed circuit board arrangement comprises recesses 12 into which fastening means 8 are introduced for fastening the printed circuit board 2 to the housing 4.
- the printed circuit board 2 includes e- lectric and / or electronic components, such as capacitors and / or diodes and / or other electrical and / or electronic components.
- the fastening means 8 are preferably screws and the recesses 12 preferably have corresponding threads for the screws.
- the fastening means 8 may alternatively be rivets and / or other fastening means 8.
- the circuit board assembly comprises a cover 16, which is preferably formed from plastic.
- the mesh-like body 10 forms, together with the printed circuit board 2, an overlapping region 14.
- the overlapping region 14 preferably extends over a large part of the surface of the printed circuit board 2.
- the majority of the flat in this context means that almost the entire surface of the printed circuit board 2 is mechanically with the sieve-like Body is coupled, except gaps 18 ( Figure 2) of the sieve-like body 10th
- the sieve-like body 10 comprises a thermally conductive and electrically insulating material. Electrically insulating in this context means that the specific electrical resistance is greater than 10 6 ⁇ m. Thermally conductive in this context means that the thermal conductivity is greater than 1 W / Km.
- the sieve-like body 10 comprises plastic. The plastic can be processed easily and cheaply.
- Body 10 a thermoplastic.
- Thermoplastics such as polyamide, allow easy shaping of the sieve-like body 10.
- Further suitable thermoplastics are, for example, fluoroplastic and / or polyetheretherketone. Fluoroplastic and polyetheretherketone have a very high thermal stability. Furthermore, for example, with fluoroplastic by the addition of fluorine, the thermal capacity can be increased. This makes it possible to adjust the thermal capacity of the screen-like body 10 according to the use of the circuit board assembly. Fluoroplastic, for example, allows a thermal load of up to 180 ° C.
- the sieve-like body 10 is designed to be flexible, which means in this context that the sieve-like body 10 can be shaped with the appropriate force of a human.
- the flexibility of the sieve-like body 10 allows tolerance compensation between the housing 4 and the printed circuit board 2.
- the sieve-like body 10 may for example be formed from a fabric.
- the fabric can contribute to high flexibility and stability of the screen-like body 10.
- Suitable fabrics are widely used in the industry. For example, there are printing processes and / or filtration processes that use suitable fabrics. These fabrics are very cost effective compared to conventional thermal insulators.
- an electrically insulating and thermally conductive medium is preferably introduced.
- this medium is a viscous liquid.
- the viscous liquid is a warming paste. This contributes to a particularly good and rapid removal of the heat, which may arise during operation of the circuit board 2, toward the housing 4 at.
- the compound of the sieve-like body 10 and the medium contributes to a particularly good mechanical and thermal coupling of the printed circuit board 2 and the housing 4 at.
- the medium fills the interspaces 18 and any pores of the sieve-like body 10 and thus improves the thermal coupling by displacing the air from the interstices 10 and optionally from the pores.
- the mesh-like body 10 receives the viscous liquid in the spaces 18, thus preventing the viscous liquid from deliquescing.
- the housing 4 is preferably formed from a plastic / metal composite material.
- the plastic / metal composite material allows an accurate predetermination of the electrical and thermal properties of the housing 4 depending on a plastic and / or a metal content in the plastic / metal composite material. So can the thermal
- the thermal conductivity of the plastic / metal composite material are given greater than with pure plastic.
- the thermal conductivity of the plastic / metal composite may be over 10 W / mK.
- the thermal conductivity of most plastics, however, is below 1 W / mK This contributes to a particularly good removal of heat from the circuit board 2 in the environment.
- the plastic / metal composite material can be processed, for example in an injection molding process, like pure plastic. This allows a greater freedom in the design of the housing 4 than in the case 4 made of pure metal.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Structure Of Printed Boards (AREA)
Abstract
Eine Leiterplattenanordnung hat eine Leiterplatte (2) und ein thermisch und elektrisch leitendes Gehäuse (4). Die Leiterplatte (2) ist an dem Gehäuse (4) befestigt. Ferner hat die Leiterplattenanordnung einen elektrisch isolierenden und thermisch leitenden siebartigen Körper (10), der die Leiterplatte (2) mechanisch und thermisch mit dem Gehäuse (4) koppelt.
Description
Beschreibung
Leiterplattenanordnung
Die Erfindung betrifft eine Leiterplattenanordnung mit einer Leiterplatte und einem thermisch und elektrisch leitenden Gehäuse. Die Leiterplatte ist an dem Gehäuse befestigt.
Aus der DE 10 2005 017 838 Al ist eine Schaltungsanordnung, ein Schaltungsgehausesystem sowie ein Verfahren zum Herstellen eines Schaltungsgehausesystems und einer Schaltungsanordnung bekannt. Die Schaltungsanordnung umfasst ein Gehäuse und eine Leiterplatte, die mit elektrischen Bauelementen bestuckt ist. Die Leiterplatte ist Teil einer Wand des Gehäuses.
Die Aufgabe der Erfindung ist es, eine Leiterplattenanordnung zu schaffen, die einen besonders guten Abtransport der Warme ermöglicht, die beim Betrieb der Leiterplatte entsteht.
Die Aufgabe wird gelost durch die Merkmale der unabhängigen
Ansprüche. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteranspruchen gekennzeichnet.
Die Erfindung zeichnet sich aus durch eine Leiterplattenan- Ordnung mit einer Leiterplatte und einem thermisch und elektrisch leitenden Gehäuse. Die Leiterplatte ist an dem Gehäuse befestigt. Ferner umfasst die Leiterplattenanordnung einen elektrisch isolierenden und thermisch leitenden siebartigen Korper, der die Leiterplatte mechanisch und thermisch mit dem Gehäuse koppelt. Der siebartige Korper ermöglicht einfach eine flexible und thermisch besonders gunstige Kopplung zwischen der Leiterplatte und dem Gehäuse.
In einer vorteilhaften Ausgestaltung der Leiterplattenanord- nung weist das Gehäuse Kuhlrippen auf. Dies tragt zu einem schnellen Abtransport der Warme von dem Gehäuse in die
Umgebung und damit zu einem schnellen Abtransport der Warme von der Leiterplatte in die Umgebung bei.
In einer weiteren vorteilhaften Ausgestaltung der Leiterplat- tenanordnung umfasst das Gehäuse einen Kunststoff/Metall- Verbundwerkstoff . Der Kunststoff/Metall-Verbundwerkstoff ermöglicht einfach, dem Gehäuse eine vorgegebene Form zu geben. Ferner ermöglicht der Kunststoff/Metall-Verbundwerkstoff, durch einen Metallanteil in dem Kunststoff/Metall- Verbundwerkstoff die thermischen und elektrischen Eigenschaften des Gehäuses vorzugeben.
In einer weiteren vorteilhaften Ausgestaltung der Leiterplattenanordnung ist der siebartige Korper so ausgebildet und an- geordnet, dass zwischen der Leiterplatte und dem siebartigen Korper ein Uberlappungsbereich gebildet ist, der sich zumindest über einen Großteil der Flache der Leiterplatte erstreckt. Dies tragt einfach zu einem besonders guten Abtransport der Warme bei. Der Großteil der Flache kann beispiels- weise 90 % der Leiterplatte umfassen.
In einer weiteren vorteilhaften Ausgestaltung der Leiterplattenanordnung umfasst der siebartige Korper ein Gewebe. Dies kann zu einem stabilen und flexiblen siebartigen Korper und zu einem gunstigen Herstellen des siebartigen Korpers beitragen .
In einer weiteren vorteilhaften Ausgestaltung der Leiterplattenanordnung umfasst der siebartige Korper einen Kunststoff. Dies ermöglicht abhangig von der Art des Kunststoffs die thermisch leitenden und elektrisch isolierenden Eigenschaften des Gewebes vorzugeben.
In einer weiteren vorteilhaften Ausgestaltung der Leiterplat- tenanordnung umfasst der siebartige Korper einen Thermoplasten. Thermoplaste, beispielsweise Polyamid, ermöglichen eine einfache Formgebung des siebartigen Korpers.
In diesem Zusammenhang ist es besonders vorteilhaft, wenn der siebartige Korper Fluorkunststoff und/oder Polyetheretherke- ton umfasst. Fluorkunststoff bzw. Polyetheretherketon tragen zu einer sehr hohen thermischen Belastbarkeit des siebartigen Korpers bei. Die thermische Belastbarkeit von Fluorkunststoff beispielsweise steigt mit zunehmendem Fluorgehalt. Dies ermöglicht bei entsprechender Beimischung von Fluor eine thermische Belastung von bis zu 180° C.
In einer weiteren vorteilhaften Ausgestaltung der Leiterplattenanordnung ist in Zwischenräume des siebartigen Korpers ein thermisch leitendes und elektrisch isolierendes Medium eingebracht. Dies tragt einfach zu einem besonders guten Abtransport der Warme bei .
In diesem Zusammenhang ist es besonders gunstig, wenn das Medium eine zähflüssige Flüssigkeit umfasst. Dies ermöglicht einfach ein Einbringen und ein gleichmaßiges Verteilen des Mediums. Die zähflüssige Flüssigkeit kann beispielsweise eine Warmeleitpaste sein.
Eine vorteilhafte Ausgestaltung der Erfindung ist im Folgenden anhand von schematischen Zeichnungen naher erläutert.
Es zeigen:
Figur 1 einen ersten Schnitt durch eine Leiterplattenanordnung,
Figur 2 einen zweiten Schnitt durch die Leiterplattenanordnung gemäß Figur 1.
Elemente gleicher Konstruktion oder Funktion sind figuren- übergreifend mit den gleichen Bezugszeichen gekennzeichnet.
Eine Leiterplattenanordnung (Figur 1) umfasst eine Leiterplatte 2, ein Gehäuse 4 und einen siebartigen Korper 10. Das Gehäuse 4 umfasst vorzugsweise mehrere Kuhlrippen 6. Ferner umfasst die Leiterplattenanordnung Ausnehmungen 12, in die Befestigungsmittel 8 eingebracht sind zum Befestigen der Leiterplatte 2 an dem Gehäuse 4. Die Leiterplatte 2 umfasst e- lektrische und/oder elektronische Bauelemente, beispielsweise Kondensatoren und/oder Dioden und/oder weitere elektrische und/oder elektronische Bauelemente.
Die Befestigungsmittel 8 sind bevorzugt Schrauben und die Ausnehmungen 12 weisen bevorzugt entsprechende Gewinde für die Schrauben auf. Die Befestigungsmittel 8 können alternativ auch Nieten und/oder andere Befestigungsmittel 8 sein.
Vorzugsweise umfasst die Leiterplattenanordnung einen Deckel 16, der bevorzugt aus Kunststoff gebildet ist.
Der siebartige Korper 10 bildet zusammen mit der Leiterplatte 2 einen Uberlappungsbereich 14. Der Uberlappungsbereich 14 erstreckt sich vorzugsweise über einen Großteil der Flache der Leiterplatte 2. Der Großteil der Flache bedeutet in diesem Zusammenhang, dass nahezu die ganze Flache der Leiterplatte 2 mechanisch mit dem siebartigen Korper gekoppelt ist, ausgenommen Zwischenräume 18 (Figur 2) des siebartigen Korpers 10.
Der siebartige Korper 10 umfasst ein thermisch leitendes und elektrisch isolierendes Material. Elektrisch isolierend be- deutet in diesem Zusammenhang, dass der spezifische elektrische Widerstand großer ist als 106 Ωm. Thermisch leitend bedeutet in diesem Zusammenhang, dass die thermische Leitfähigkeit großer als 1 W/Km ist. Vorzugsweise umfasst der siebartige Korper 10 Kunststoff. Der Kunststoff lasst sich einfach und gunstig verarbeiten. Bevorzugt umfasst der siebartige
Korper 10 einen Thermoplasten. Thermoplaste, beispielsweise Polyamid, ermöglichen eine einfache Formgebung des
siebartigen Korpers 10. Weitere geeignete Thermoplasten sind beispielsweise Fluorkunststoff und/oder Polyetheretherketon . Fluorkunststoff und Polyetheretherketon weisen eine sehr große thermische Belastbarkeit auf. Ferner kann beispielsweise bei Fluorkunststoff durch die Beimengung von Fluor die thermische Belastbarkeit erhöht werden. Dies ermöglicht, die thermische Belastbarkeit des siebartigen Korpers 10 entsprechend der Verwendung der Leiterplattenanordnung anzupassen. Fluorkunststoff ermöglicht beispielsweise eine thermische Be- lastung von bis zu 180° C.
Bevorzugt ist der siebartige Korper 10 flexibel ausgebildet, das bedeutet in diesem Zusammenhang, dass sich der siebartige Korper 10 mit angemessenem Kraftaufwand eines Menschen ver- formen lasst. Die Flexibilität des siebartigen Korpers 10 ermöglicht einen Toleranzausgleich zwischen dem Gehäuse 4 und der Leiterplatte 2.
Der siebartige Korper 10 kann beispielsweise aus einem Gewebe gebildet sein. Das Gewebe kann zu einer hohen Flexibilität und Stabilität des siebartigen Korpers 10 beitragen. Geeignete Gewebe werden vielfach in der Industrie verwendet. Beispielsweise gibt es Druckverfahren und/oder Filtrierverfahren, bei denen geeignete Gewebe verwendet werden. Diese Gewe- be sind im Vergleich zu herkömmlichen thermischen Isolatoren sehr kostengünstig.
In die Zwischenräume 18 des siebartigen Korpers 10 ist vorzugsweise ein elektrisch isolierendes und thermisch leitendes Medium eingebracht. Bevorzugt ist dieses Medium eine zähflüssige Flüssigkeit. Diese kann in einem Dispensverfahren schnell, einfach und gleichmaßig auf den siebartigen Korper 10 aufgebracht werden. Es ist auch denkbar, ein Medium zu verwenden, das wahrend des Verarbeitens des Mediums zahflus- sig ist und das danach ausgehartet wird und/oder das von selbst aushärtet. Vorzugsweise ist die zähflüssige Flüssigkeit eine Warmeleitpaste . Dies tragt zu einem besonders guten
und schnellen Abtransport der Warme, die beim Betrieb der Leiterplatte 2 entstehen kann, hin zu dem Gehäuse 4 bei.
Die Verbindung des siebartigen Korpers 10 und des Mediums tragt zu einer besonders guten mechanischen und thermischen Kopplung der Leiterplatte 2 und des Gehäuses 4 bei. Das Medium füllt die Zwischenräume 18 und eventuell vorhandene Poren des siebartigen Korpers 10 aus und verbessert so durch verdrangen der Luft aus den Zwischenräumen 10 und gegebenenfalls aus den Poren die thermische Kopplung. Der siebartige Korper 10 nimmt die zähflüssige Flüssigkeit in den Zwischenräumen 18 auf und verhindert so, dass die zähflüssige Flüssigkeit zerfließt.
Das Gehäuse 4 ist bevorzugt aus einem Kunststoff/Metall- Verbundwerkstoff gebildet. Der Kunststoff/Metall- Verbundwerkstoff ermöglicht ein genaues Vorgeben der elektrischen und thermischen Eigenschaften des Gehäuses 4 abhangig von einem Kunststoff- und/oder einem Metallanteil in dem Kunststoff/Metall-Verbundwerkstoff . So kann die thermische
Leitfähigkeit des Kunststoff/Metall-Verbundwerkstoffs großer vorgegeben werden als bei reinem Kunststoff. Beispielsweise kann die thermische Leitfähigkeit des Kunststoff/Metall- Verbundwerkstoffs über 10 W/mK betragen. Die thermische Leit- fahigkeit der meisten Kunststoff liegt hingegen unter 1 W/mK Dies tragt zu einem besonders guten Abtransport der Warme von der Leiterplatte 2 in die Umgebung bei. Ferner kann der Kunststoff/Metall-Verbundwerkstoff, beispielsweise in einem Spritzgießverfahren, wie reiner Kunststoff verarbeitet wer- den. Dies ermöglicht einen größeren Gestaltungsspielraum bei der Formgebung des Gehäuses 4 als bei dem Gehäuse 4 aus reinem Metall.
Claims
1. Leiterplattenanordnung mit einer Leiterplatte (2) und einem thermisch und elektrisch leitenden Gehäuse (4), an dem die Leiterplatte (2) befestigt ist, und mit einem elektrisch isolierenden und thermisch leitenden siebartigen Korper (10), der die Leiterplatte (2) mechanisch und thermisch mit dem Gehäuse (4) koppelt.
2. Leiterplattenanordnung nach Anspruch 1, bei der das Gehäuse (4) Kuhlrippen (6) aufweist.
3. Leiterplattenanordnung nach einem der vorstehenden Ansprüche, bei der das Gehäuse (4) einen Kunststoff/Metall- Verbundwerkstoff umfasst.
4. Leiterplattenanordnung nach einem der vorstehenden Ansprüche, bei der der siebartige Korper (10) so ausgebildet und angeordnet ist, dass zwischen der Leiterplatte (2) und dem siebartigen Korper (10) ein Uberlappungsbereich (14) gebildet ist, der sich zumindest über einen Großteil der Flache der Leiterplatte (2) erstreckt.
5. Leiterplattenanordnung nach einem der vorstehenden Anspru- che, bei der der siebartige Korper (10) ein Gewebe umfasst.
6. Leiterplattenanordnung nach einem der vorstehenden Ansprüche, bei der siebartige Korper (10) einen Kunststoff umfasst.
7. Leiterplattenanordnung nach Anspruch 6, bei der der siebartige Korper (10) einen Thermoplasten umfasst.
8. Leiterplattenanordnung nach Anspruch 7, bei der der siebartige Korper (10) Fluorkunststoff und/oder Polyetheretherke- ton umfasst.
9. Leiterplattenanordnung nach einem der vorstehenden Ansprüche, bei der in Zwischenräume (18) des siebartigen Korpers (10) ein thermisch leitendes und elektrisch isolierendes Medium eingebracht ist.
10. Leiterplattenanordnung nach Anspruch 9, bei der das Medium eine zähflüssige Flüssigkeit umfasst.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005062957 | 2005-12-29 | ||
DE102005062957.1 | 2005-12-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007077066A1 true WO2007077066A1 (de) | 2007-07-12 |
Family
ID=37982441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2006/069186 WO2007077066A1 (de) | 2005-12-29 | 2006-12-01 | Leiterplattenanordnung |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2007077066A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015032993A1 (de) | 2013-09-09 | 2015-03-12 | Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg | Leiterplattenanordnung, verfahren zum herstellen einer leiterplattenanordnung und kühlerlüftermodul |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5357040A (en) * | 1993-02-24 | 1994-10-18 | The Center For Innovative Technology | Fine powders of ketone-containing aromatic polymers and process of manufacture |
US5599611A (en) * | 1992-07-31 | 1997-02-04 | International Business Machines Corporation | Prepreg and cured laminate fabricated from a toughened polycyanurate |
WO1999005722A1 (en) * | 1997-07-28 | 1999-02-04 | Parker-Hannifin Corporation | Double-side, thermally conductive adhesive tape for plastic-packaged electronic components |
JP2003170531A (ja) * | 2001-12-10 | 2003-06-17 | Taisei Plas Co Ltd | 金属と樹脂の複合体及びその製造方法 |
DE102005017838A1 (de) * | 2004-04-16 | 2005-11-03 | Thomas Hofmann | Schaltungsanordnung, Schaltungsgehäusesystem sowie Verfahren zum Herstellen eines Schaltungsgehäusesystems und einer Schaltungsanordnung |
-
2006
- 2006-12-01 WO PCT/EP2006/069186 patent/WO2007077066A1/de active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5599611A (en) * | 1992-07-31 | 1997-02-04 | International Business Machines Corporation | Prepreg and cured laminate fabricated from a toughened polycyanurate |
US5357040A (en) * | 1993-02-24 | 1994-10-18 | The Center For Innovative Technology | Fine powders of ketone-containing aromatic polymers and process of manufacture |
WO1999005722A1 (en) * | 1997-07-28 | 1999-02-04 | Parker-Hannifin Corporation | Double-side, thermally conductive adhesive tape for plastic-packaged electronic components |
JP2003170531A (ja) * | 2001-12-10 | 2003-06-17 | Taisei Plas Co Ltd | 金属と樹脂の複合体及びその製造方法 |
DE102005017838A1 (de) * | 2004-04-16 | 2005-11-03 | Thomas Hofmann | Schaltungsanordnung, Schaltungsgehäusesystem sowie Verfahren zum Herstellen eines Schaltungsgehäusesystems und einer Schaltungsanordnung |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015032993A1 (de) | 2013-09-09 | 2015-03-12 | Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg | Leiterplattenanordnung, verfahren zum herstellen einer leiterplattenanordnung und kühlerlüftermodul |
DE102013217993A1 (de) | 2013-09-09 | 2015-03-12 | Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg | Leiterplattenanordnung, Verfahren zum Herstellen einer Leiterplattenanordnung und Kühlerlüftermodul |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102006039260B4 (de) | Kühlanordnung, Elektronikmodul und Audioverstärker | |
DE112015003987T5 (de) | Schaltungsbaugruppe, elektrischer Verteiler und Herstellungsverfahren für eine Schaltungsbaugruppe | |
DE19742458C1 (de) | Kunststoffgehäuse zur Aufnahme einer elektrischen Leiterplatte | |
DE19728291A1 (de) | Verbindungselement zum elektrischen Verbinden einer Leiterplattenanschlußzone mit einem metallischen Gehäuseteil | |
DE4416460C2 (de) | Schaltungsanordnung, insbesondere zur Gebläsesteuerung für Kraftfahrzeuge | |
DE102013226904A1 (de) | Elektronische Steuervorrichtung für ein Fahrzeug | |
DE102007057533A1 (de) | Kühlkörper und Verfahren zur Herstellung eines Kühlkörpers | |
EP2455680B1 (de) | Elektrischer Durchlauferhitzer | |
EP0883332B1 (de) | Steuergerät | |
EP3120442B1 (de) | Elektromotor, insbesondere aussenläufermotor, sowie zwischenisolierteil für einen elektromotor | |
EP2716145B1 (de) | Leiterplatte für elektrische bauelemente und leiterplattensystem | |
DE3627372C2 (de) | ||
DE4429983C1 (de) | Elektrisches oder elektronisches Gerät für ein Kraftfahrzeug | |
WO2007077066A1 (de) | Leiterplattenanordnung | |
DE102009054758B4 (de) | Gehäuse für ein elektrisches Gerät | |
DE102008058025B4 (de) | Schaltungsträger | |
EP3981229A1 (de) | VERFAHREN ZUR HERSTELLUNG EINES EIN STEUERGERÄT UMSCHLIEßENDEN GEHÄUSES | |
EP1601239B1 (de) | Kühlanordnung für ein elektrisches oder elektronisches Bauteil und Verfahren zu deren Montage | |
WO2020025443A1 (de) | Lüfter mit kühlkörper aus wärmeleitfähigem kunststoff | |
EP1298976B1 (de) | Verfahren zur Herstellung einer elektromagnetischen Abschirmung | |
EP1467432A1 (de) | Kontaktadapter für die Kontaktierung einer Antennenstruktur eines Fahrzeuges | |
DE19810396C2 (de) | Kunststoffgußgehäuse einer elektronischen Baugruppe mit einem elektrischen Steckverbinder | |
EP3358683B1 (de) | Elektrische steckkupplungsvorrichtung in deren gehäuse ein elektronisches bauteil angeordnet ist. | |
DE102012108859B4 (de) | Elektronikmodul | |
DE102017208027A1 (de) | Steuergerät für einen elektromechanischen Wankstabilisator eines Kraftfahrzeugs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06819887 Country of ref document: EP Kind code of ref document: A1 |