WO2007074807A1 - Screw-type fluid machine - Google Patents

Screw-type fluid machine Download PDF

Info

Publication number
WO2007074807A1
WO2007074807A1 PCT/JP2006/325864 JP2006325864W WO2007074807A1 WO 2007074807 A1 WO2007074807 A1 WO 2007074807A1 JP 2006325864 W JP2006325864 W JP 2006325864W WO 2007074807 A1 WO2007074807 A1 WO 2007074807A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
oil
lubricating oil
screw
bearing
Prior art date
Application number
PCT/JP2006/325864
Other languages
French (fr)
Japanese (ja)
Inventor
Shinya Yamamoto
Ryosuke Koshizaka
Kentaro Ishihara
Masahiro Inagaki
Yuya Izawa
Original Assignee
Kabushiki Kaisha Toyota Jidoshokki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toyota Jidoshokki filed Critical Kabushiki Kaisha Toyota Jidoshokki
Priority to EP06843248A priority Critical patent/EP1967734A1/en
Priority to US12/159,186 priority patent/US20100233006A1/en
Publication of WO2007074807A1 publication Critical patent/WO2007074807A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/025Lubrication; Lubricant separation using a lubricant pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation

Definitions

  • the present invention relates to a screw type fluid machine such as a vacuum pump used in a semiconductor manufacturing process, for example.
  • a screw-type vacuum pump described in Patent Document 1 As a screw-type fluid machine, for example, a screw-type vacuum pump described in Patent Document 1 is known.
  • the screw-type vacuum pump of Patent Document 1 includes a pair of screw-shaped rotors that are adjacent to each other and are adjacent to each other in a casing. Each rotor is provided with a rotating shaft, and each rotating shaft is supported by a casing as a shaft holder via an upper bearing and a lower bearing.
  • Synchronous gears are respectively fixed to both rotary shafts, and these synchronous gears are meshed with each other.
  • a lubricating oil passage extending in the axial direction is formed inside each rotary shaft, and the lubricating oil passage functions as a centrifugal pump.
  • the lubricating oil passage has an inlet opening at the lower end of the rotating shaft and an outlet opening at the peripheral surface of the rotating shaft above the upper bearing.
  • Lubricating oil is stored in the casing, and the lower end of the rotating shaft is immersed in the stored lubricating oil. Further, a cooling water pipe is provided in the casing, and heat exchange is performed between the cooling water and the lubricating oil in the heat exchange.
  • the centrifugal pump When the vacuum pump is driven, the centrifugal pump is stored in the casing and sucks up the lubricating oil.
  • the lubricating oil When the lubricating oil is sucked up by the centrifugal pump, it is cooled by heat exchange by heat exchange.
  • the sucked-up lubricating oil exits from the outlet of the lubricating oil passage, flows down to the upper bearing, and cools the upper bearing. Thereafter, the lubricating oil flows down from the upper bearing along the rotating shaft and is stored again in the casing. Due to the flow of the lubricating oil, the upper and lower bearings and the rotating shaft are cooled.
  • Patent Document 1 Japanese Patent Laid-Open No. 4-314991
  • An object of the present invention is to provide a screw capable of suppressing an axial load force from being applied to a bearing portion even when the bearing portion is axially fixed to a rotating shaft and a shaft holder. It is to provide a fluid machine.
  • a screw-type fluid machine includes a housing, a pair of screw-like rotors housed in the housing and mated with each other, and the two rotors.
  • a pair of rotating shafts connected so as to be coaxial with each other, and a pair of cylindrical shaft holders extending in the housing.
  • Each rotating shaft has an end protruding from the housing.
  • Each shaft holder has a first end and a second end, and has a through-hole through which one of the rotating shafts is inserted.
  • First bearing portions are respectively attached to the through holes at the first end portions.
  • Second bearing portions are respectively attached to the through holes at the second end portions.
  • Each pair of the first and second bearing portions supports the corresponding rotation shaft so as to be rotatable with respect to the shaft holder.
  • Each pair of the first and second bearing portions is fixed in the axial direction with respect to the corresponding rotating shaft and the shaft holder.
  • Synchronous gears are provided at the end portions of the two rotating shafts that project the housing force.
  • a gear case houses the synchronous gear, and the gear case defines an oil storage space in which lubricating oil can be stored.
  • the cooling unit cools the lubricating oil using a cooling fluid.
  • the flow rate changing unit controls the flow rate of the cooling fluid.
  • a temperature sensor is provided in the oil storage space, Detect the temperature of the lubricating oil.
  • the control unit controls the flow rate changing unit according to the temperature detected by the temperature sensor so that the temperature of the lubricating oil in the oil storage space is maintained constant.
  • FIG. 1 is a longitudinal sectional view of a vacuum pump according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the vacuum pump of FIG. 1 along the line AA.
  • FIG. 3 is an enlarged view of a main part showing a base side bearing portion and an end side bearing portion in the vacuum pump of FIG.
  • FIG. 4 is a cross-sectional view of the vacuum pump shown in FIG. 1, taken along line BB.
  • FIG. 5 is an enlarged cross-sectional view of an oil supply pump portion in the vacuum pump of FIG.
  • the screw-type fluid machine is a vertical-type screw-type vacuum pump (hereinafter simply referred to as “vacuum pump”) 10 used for semiconductor manufacturing.
  • the vacuum pump 10 includes a housing 14 including an upper housing member 11, a rotor housing member 12, and a lower housing member 13, and the housing 14 forms an outer shell of the vacuum pump 10.
  • the upper housing member 11 is joined to the upper end of the rotor housing member 12, and the lower housing member 13 is joined to the lower end of the rotor housing member 12.
  • the upper housing member 11 is formed with a suction port 15 for sucking a compressive fluid so as to communicate with the inside of the housing 14.
  • the lower housing member 13 is provided with a discharge port 16 for discharging a compressive fluid so as to communicate with the inside of the housing 14.
  • the lower housing member 13 includes an extending portion 13a extending sideways, and a drive motor 17 as a driving source is installed on the extending portion 13a. Further, the lower housing member 13 is joined with a gear case 18 that covers the lower housing member 13 including the extending portion 13a downward.
  • a screw-like male rotor 21 and a screw-like female rotor 31 are housed in the housing 14, and both the rotors 21, 31 and the housing 14 are accommodated.
  • the male rotor 21 has an insertion hole 22 extending from the discharge port 16 toward the suction port 15 and a connecting hole 23 having a smaller diameter than the insertion hole 22 and extending upward from the upper end of the insertion hole 22. Yes.
  • a rotation shaft 25 that passes through the lower housing member 13 is fitted into the connection hole 23.
  • the male rotor 21 and the rotating shaft 25 are connected to each other using a stop plate 26 and a connecting bolt 27. For this reason, the male rotor 21 rotates integrally with the rotating shaft 25.
  • the female rotor 31 shown in FIG. 2 also has an insertion hole 32 and a connection hole 33, and is connected to the rotary shaft 35 using a stop plate 36 and a connection bolt 37.
  • Each rotor 21, 31 is coaxial with the corresponding rotary shaft 25, 35.
  • the lower housing member 13 has a pair of cylindrical shaft holders 28 and 38 that extend upwardly, and the base portions of both shaft holders 28 and 38 are connected to each other as shown in FIG. It has been In this embodiment, the shaft holders 28 and 38 are fixed to the lower housing member 13 by fixing bolts 41.
  • the shaft holder 28 is inserted into the insertion hole 22 of the male rotor 21, and a slight gap is formed between the outer peripheral surface of the shaft holder 28 and the inner peripheral surface of the insertion hole 22.
  • the shaft holder 38 is inserted into the insertion hole 32 of the female rotor 31, and a slight gap is also formed between the outer peripheral surface of the shaft holder 38 and the inner peripheral surface of the insertion hole 32.
  • a through hole 29 penetrating in the axial direction is formed at the center of the shaft holder 28, and a rotating shaft 25 for the male rotor 21 is passed through the through hole 29.
  • a pair of upper and lower bearing portions 42 and 43 made of rolling bearings are provided between the rotary shaft 25 and the shaft holder 28, a pair of upper and lower bearing portions 42 and 43 made of rolling bearings are provided.
  • the bearing portions 42 and 43 are disposed at the upper and lower portions of the shaft holder 28.
  • the upper bearing portion 42 is an end-side bearing portion or a second bearing portion
  • the lower rolling bearing 43 is a base-side bearing portion or a first bearing portion.
  • the upper end portion (second end portion) of the shaft holder 28 is provided with an upper diameter-enlarged hole 29 a having a diameter larger than the diameter of the through hole 29 following the through hole 29.
  • the end side bearing portion 42 is disposed in the upper diameter-expanded hole 29a.
  • a portion of the rotary shaft 25 between the end side bearing 42 and the base side bearing 43 has a diameter slightly larger than the diameter of the upper and lower end portions of the rotary shaft 25.
  • the portion of the rotating shaft 25 whose diameter changes forms an end portion side step portion 25a and a base portion side step portion 25b.
  • a seal member 30 is interposed between the rotary shaft 25 and the shaft holder 28 at a position above the end side bearing portion 42.
  • Lower end of shaft holder 28 (first The lower end diameter hole 29 b having a diameter larger than the diameter of the through hole 29 is provided at the end) following the through hole 29.
  • the base side bearing portion 43 is disposed in the lower diameter enlarged hole 29b.
  • each of the end side bearing portion 42 and the base portion side bearing portion 43 has a configuration in which two single-row rolling bearings are arranged side by side.
  • the end-side bearing portion 42 will be described in more detail.
  • the end-side bearing portion 42 is configured by a combined force of two angular ball bearings 42a and 42b. As shown in FIG. 3, the two bearings 42a and 42b are arranged in the upper diameter-expanded hole 29a in a state where they are combined on the back surface.
  • the outer rings of both the bearings 42a and 42b are press-fitted into the upper diameter expansion hole 29a and are fixed to the shaft holder 28.
  • the inner rings of both bearings 42a and 42b are press-fitted into the rotary shaft 25.
  • the inner ring of the angular ball bearing 42b is abutted against the end side step portion 25a of the rotary shaft 25, and the inner ring of the angular ball bearing 42a is angular by a nut 49a screwed into the rotary shaft 25. It is pressed against the inner ring of the ball bearing 42b.
  • the rolling elements of the anguilla ball bearings 42a and 42b are in a state where there is no gap between the inner and outer rings in both the axial direction and the radial direction.
  • the base-side bearing portion 43 is also disposed in the lower diameter enlarged hole 29b in a state where the angiular ball bearings 43a and 43b are combined on the back surface.
  • the outer rings of both bearings 43a and 43b are press-fitted into the lower diameter expansion hole 29b and fixed to the shaft holder 28.
  • the inner ring of the angular ball bearing 43a is abutted against the base side step portion 25b of the rotary shaft 25, and the inner ring of the angular bearing 43b is inserted into the inner ring of the angular ball bearing 43a by a nut 49b screwed into the rotary shaft 25. It is pressed against. Therefore, the rolling elements of the anguilla ball bearings 43a and 43b are in a state of no gap with the inner and outer rings in both the axial direction and the radial direction.
  • each of the end-side bearing portion 42 and the base-side bearing portion 43 is configured by the back combination of two angular ball bearings, the rotary shaft 25 is axially and radially relative to the shaft holder 28. It does not move in the direction. That is, the end-side bearing portion 42 and the base-side bearing portion 43 are fixed in the axial direction by the nuts 49a and 49b and the both step portions 25a and 25b.
  • These anguilla ball bearings 42 a, 42 b, 43 a, 43 b ensure a slight gap between the outer peripheral surface of the rotating shaft 25 and the inner peripheral surface of the through hole 29 of the shaft holding body 28. This gap forms a lubricating oil recovery path 48 (hereinafter simply referred to as oil recovery path 48).
  • the oil recovery path 48 is a path for passing the lubricating oil 62 toward the gear case 18 where the lubricating oil 62 as a cooling medium is brought into contact with the rotating shaft 25 and the shaft holding member 28 as cooling targets.
  • a long pipe 44 extending along the axis of the rotary shaft 25 is formed in the rotary shaft 25, and the long pipe 44 has a lower end force of the rotary shaft 25 and an end side bearing portion 42. It reaches to the lower side.
  • the rotary shaft 25 is also formed with a short pipe 45 extending in the radial direction of the rotary shaft 25 below the end side bearing portion 42.
  • the upper end of the long pipe 44 is located below the end side bearing part 42 and is connected to the short pipe 45.
  • the short pipe 45 opens at the peripheral surface of the rotary shaft 25 so as to communicate with the oil recovery path 48 at a position below the end side bearing portion 42.
  • the long pipe 44 and the short pipe 45 constitute an oil supply path 46 that supplies the lubricating oil 62 to the oil recovery path 48.
  • the oil supply passage 46 and the oil recovery passage 48 constitute an oil circulation passage.
  • each element on the female rotor 31 side is equivalent to each element on the male rotor 21 side.
  • the structure is basically the same. That is, as shown in FIG. 2, the rotating shaft 35 is inserted through the through hole 39 of the shaft holder 38.
  • the shaft holder 38 is provided with an upper diameter-expanded hole 39a and a lower diameter-expanded hole 39b, similar to the shaft holder 28.
  • An end-side bearing portion 52 and a base-side bearing portion 53 are disposed in the upper diameter-expanded hole 39a and the lower diameter-expanded hole 39b, respectively.
  • the bearing portions 52, 53 are connected to the rotary shaft 35 and the shaft holder 38. Arranged between.
  • the end portion side bearing portion 52 is configured by a rear combination of two anguillar ball bearings 52a and 52b, and is pressed downward by a nut 59a. Further, a sealing member 40 is disposed above the end side bearing portion 52.
  • the base side bearing portion 53 is constituted by a rear combination of two anguilla ball bearings 53a and 53b, and is pressed upward by a nut 59b, like the base side bearing portion 43 of the male rotor 21.
  • an oil supply path 56 composed of a long pipe 54 and a short pipe 55 is formed on the rotating shaft 35 on the female rotor 31 side. Further, the gap forming the oil recovery path 58 is connected to the rotary shaft 35 and the shaft. It is formed between the holding body 38.
  • the shaft diameters of the rotary shafts 25 and 35 are the same, and the end side bearings 42 and 52 and the base side bearings 43 and 53 use the same specification angular bearings.
  • the male rotor 21 will be described in detail.
  • the male rotor 21 includes five teeth 24, and these teeth 24 are arranged at equal intervals in the circumferential direction of the male rotor 21.
  • the teeth 24 extend in a spiral shape from the upper end to the lower end of the male rotor 21. Then, as shown in FIG. 2, the teeth 24 are formed such that the lead angle decreases as the force moves from the upper end to the lower end.
  • the tooth grooves 34 in the female rotor 31 are formed so as to correspond to the teeth 24 of the male rotor 21, and the number of tooth grooves 34 is six. . That is, since the number of teeth 24 of the male rotor 21 is smaller than the number of tooth grooves 34 of the female rotor 31, when both the rotors 21 and 31 rotate synchronously, the rotational speed of the male rotor 21 is The rotation speed becomes higher than the rotation speed, and the rotation speed of the female rotor 31 becomes lower than the rotation speed of the male rotor 21.
  • Such screw type rotors 21 and 31 are referred to as a gradual change type.
  • the rotating shaft 25 of the male rotor 21 extends so as to penetrate the lower housing member 13, and the lower end of the rotating shaft 25 is located in the gear case 18. .
  • a synchronous gear 47 is attached to a portion of the rotary shaft 25 located in the gear case 18.
  • the rotating shaft 35 of the female rotor 31 also extends so as to penetrate the lower housing member 13, and the lower end of the rotating shaft 35 is located in the gear case 18.
  • a synchronous gear 57 is attached to a part of the rotating shaft 35 located in the gear case 18. Both synchronous gears 47 and 57 are meshed with each other.
  • the synchronous gear 47 on the male rotor 21 side is meshed with an intermediate gear 50 provided in the gear case 18.
  • the intermediate gear 50 is meshed with the drive gear 20 provided on the drive shaft 19 of the drive motor 17 in the gear case 18.
  • An oil storage chamber 61 that forms an oil storage space is formed in the lower portion of the gear case 18, and the lubricating oil 62 is stored in the oil storage chamber 61.
  • a cylindrical protrusion 63 is formed in a portion of the bottom plate portion 18a of the gear case 18 facing the lower end of the rotating shaft 25.
  • the protrusion 63 has a bottomed round hole 63a.
  • a trochoid oil supply pump 70 is disposed as an oil supply unit.
  • the oil supply pump 70 has an outer rotor 72 made of an internal gear and an inner rotor 71 made of an external gear, and the inner one-portion 71 is arranged inside the outer rotor 72.
  • the outer peripheral surface of the outer rotor 72 is fitted to the inner peripheral surface of the round hole 63a in a rotatable state.
  • the lower end of the rotating shaft 25 is fitted and fixed in the through hole 71a of the inner rotor 71.
  • the inner rotor 71 is eccentric with respect to the outer rotor 72.
  • the upper end opening of the cylindrical protrusion 63 is closed by the upper cover 73, and the upper cover 73 covers the inner rotor 71 and the outer rotor 72 .
  • the oil supply pump 70 has an oil suction part 75 and an oil discharge part 76.
  • the oil suction part 75 communicates with the oil storage chamber 61.
  • the oil discharge section 76 communicates with the oil supply path 46 of the rotary shaft 25 through a guide path 77 formed on the bottom surface of the round hole 63a.
  • the lubricating oil 62 stored in the oil storage chamber 61 is sucked into the oil pump 70, specifically, the space between the rotors 71 and 72, through the oil suction portion 75. It is. Lubricating oil is conveyed through the space between the rotors 71 and 72 to the oil discharge section 76, and is supplied from the oil discharge section 76 to the oil supply path 46 through the guide path 77.
  • a cylindrical protrusion 64 is formed at the bottom plate portion 18 a of the gear case 18 facing the lower end of the rotating shaft 35.
  • the protrusion 64 defines a bottomed round hole 64a.
  • a trochoid oil supply pump 80 as an oil supply device is disposed in the round hole 64a.
  • the oil supply pump 80 has an inner rotor 81 and an outer rotor 82.
  • the outer peripheral surface of the outer rotor 82 is fitted to the inner peripheral surface of the round hole 64a in a rotatable state, and the inner rotor 81 is connected to the rotary shaft 35.
  • the inner rotor 81 and the outer rotor 82 are covered with an upper cover 83.
  • the oil supply pump 80 has an oil suction portion that communicates with the oil storage chamber 61 and an oil discharge portion that communicates with the oil supply passage 56 through the guide passage 87.
  • the vacuum pump 10 has a configuration for cooling the lubricating oil 62 stored in the gear case 18. That is, the bottom plate portion 18a of the gear case 18 is formed with a plurality of cooling passages 88 through which cooling water as a cooling fluid passes.
  • the cooling water passage 88 extends so as to pass through the bottom plate portion 18a, and the cooling oil passes through the cooling water passage 88, whereby the lubricating oil 62 stored in the gear case 18 is cooled.
  • the cooling water passage 88 functions as a cooling unit that cools the lubricating oil 62 using the cooling fluid.
  • the upstream portion of the cooling water passage 88 is connected to an upstream piping 89 having a solenoid valve 91 as a flow rate changing portion, and the downstream portion of the cooling water passage 88 is a downstream piping.
  • the solenoid valve 91 is controlled to open and close the upstream pipe 89 by a control device 92 as a control unit.
  • the control device 92 is connected to a temperature sensor 93 that directly measures the temperature of the lubricating oil 62 in the gear case 18.
  • the temperature sensor 93 is disposed in the gear case 18, that is, in the oil storage chamber 61.
  • the control device 92 controls the electromagnetic valve 91 based on a detection signal from a temperature sensor 93 that maintains the temperature of the lubricating oil 62 in the gear case 18 constant.
  • the compressive fluid sucked into the working chamber is transported toward the discharge port 16 while being compressed by both the rotors 21, 31, and discharged from the discharge port 16.
  • a closed space such as a room or a container, these closed spaces can be evacuated.
  • the rotary shafts 25 and 35 are rotated at high speeds in opposite directions.
  • the oil supply pumps 70 and 80 provided at the ends of the rotary shafts 25 and 35 suck the lubricating oil 62 stored in the oil storage chamber 61 from the respective oil suction portions, and each oil Discharge from the discharge part.
  • the discharged lubricating oil 62 flows into the lower ends of the long pipes 44 and 54 of the rotary shafts 25 and 35 through the planned passages 77 and 87 connected to the respective oil discharge portions, and passes through the short pipes 45 and 55, respectively. As a result, it reaches the lower side of the end side bearing portions 42 and 52.
  • the lubricating oil 62 stored in the gear case 18 is cooled by the cooling water passing through the cooling water passage 88. That is, in this embodiment, the lubricating oil 62 is cooled using the cooling water so that the temperature of the lubricating oil 62 provided for cooling by the operation of the oil supply pumps 70 and 80 is kept constant.
  • the control device 92 monitors the temperature of the lubricating oil 62 through the temperature sensor 93 and controls the electromagnetic valve 91 so that the temperature of the lubricating oil 62 is maintained at a preset cooling temperature.
  • the control device 92 opens and closes the electromagnetic valve 91 according to the temperature of the lubricating oil 62 detected by the temperature sensor 93 to adjust the flow of the cooling water in the cooling water passage 88.
  • the control device 92 opens the solenoid valve 91 and passes the cooling water through the cooling water passage 88 to prevent the temperature of the lubricating oil 62 in the gear case 18 from rising. To do.
  • the control device 92 closes the solenoid valve 91 so that the cooling water does not pass through the cooling water passage 88 and cools the lubricating oil 62 with the cooling water. Do not do it. In this case, the heat of the lubricating oil 62 collected in the oil storage chamber 61 prevents the temperature of the lubricating oil 62 stored in the oil storage chamber 61 from decreasing.
  • the vacuum pump 10 By passing the lubricating oil 62 maintained at a constant temperature through the oil recovery passages 48, 58, the temperature difference between the rotary shafts 25, 35 and the shaft holders 28, 38 is suitably suppressed, and the rotary shaft 25 The thermal expansion of 35 is suppressed. As a result, the thermal expansion of the rotary shafts 25 and 35 is preferably suppressed from applying an axial load to the bearings 42a, 42b, 43a, 43b, 52a, 52b, 53a and 53b.
  • the vacuum pump 10 according to this embodiment has the following advantages.
  • the control device 92 controls the solenoid valve 91. Thereby, the flow rate of the cooling water is adjusted so that the lubricating oil 62 stored in the oil storage chamber 61 is maintained at a constant temperature.
  • the rotary shafts 25 and 35 and the shaft holders 28 and 38 can be cooled. As a result, it is possible to suppress the occurrence of a temperature difference between the rotating shaft 25 and the shaft holder 28 and the occurrence of a temperature difference between the rotating shaft 35 and the shaft holder 38.
  • Anguilla ball bearings 42a, 42b, 43a, 43b, 52a, 52b, 53a, 53b are fixed to the rotary shafts 25, 35 and the shaft holders 28, 38 so as not to move in the axial direction.
  • the occurrence of a temperature difference between the rotary shafts 25 and 35 and the shaft holders 28 and 38 is suppressed, so that the axial directions of the rotary shafts 25 and 35 relative to the shaft holders 28 and 38 are reduced.
  • the thermal expansion force that causes the displacement to S is suppressed. Therefore, it is possible to suitably suppress the axial load force S from being applied to the bearings 42a, 42b, 43a, 43b, 52a, 52b, 53a, 53b.
  • Each bearing 42a, 42b, 43a, 43b, 52a, 52b, 53a, 53b can be restrained from applying a load force S, thus improving the reliability of each bearing and the power consumption of the vacuum pump 10. Can also be reduced.
  • Oil pumps 70 and 80 may be gear pumps instead of trochoid pumps.
  • the lead angle of the teeth of the male rotor and the female rotor tooth groove may be constant! /.
  • each bearing portion may be configured by a force front combination or a parallel combination formed by a back combination of two angular ball bearings.
  • each bearing portion is not limited to an angular ball bearing, and may be constituted by a general deep groove type rolling bearing.
  • the number of rolling bearings is not particularly limited, and each bearing portion may be constituted by three or more rolling bearings.
  • the back combination of an anguilla ball bearing is preferred to prevent the side shaft of the rotating shaft from swinging against the shaft holder.
  • a thermostat may be used, or a flow rate control valve whose opening degree can be adjusted by proportional control may be used.
  • the short pipes 45 and 55 may be provided on the upper side of the end side bearing portions 42 and 52, and the lubricating oil may be supplied from the upper side of the end side bearing portions 42 and 52.
  • the lubricating oil is affected by the sliding heat of the end side bearing portions 42 and 52, but if the lubricating oil is cooled in consideration of the influence of the sliding heat, the effect almost the same as that of the above embodiment is obtained. Obtainable.
  • the shaft holder 28 on the male rotor side 21 and the shaft holder 38 on the female rotor 31 side may be completely separate from each other. In this case, both shaft holders 28 and 38 can be easily manufactured and the vacuum pump can be assembled.
  • the screw type fluid machine of the present invention is not limited to the screw type vacuum pump, but may be applied to a screw type compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

A vacuum pump has rotating shafts individually connected to a pair of screw-like rotors and also has a pair of shaft holding bodies extending in the housing. The shaft holding bodies support the rotating shafts by base bearing sections and end bearing sections. Each pair of the base bearing section and the end bearing section is fixed in the axial direction relative to a corresponding rotating shaft and shaft holding body. Lubricant oil is contained in a oil containing space in a gear case attached to the housing. A cooling water path in which cooling water for cooling the lubricant oil flows is formed in the gear case. An electromagnetic valve controls the flow rate of the cooling water in the cooling water path. A temperature sensor is provided in the oil containing space and measures the temperature of the lubricant oil. According to the temperature measured by the temperature sensor, a control device controls the magnetic valve in order that the temperature of the lubricant oil in the oil containing space is maintained constant. Application of an axial load on the bearing sections is suppressed even if the bearing sections are fixed in the axial direction to the rotating shafts and the shaft holding bodies.

Description

明 細 書  Specification
スクリュー式流体機械  Screw fluid machine
技術分野  Technical field
[0001] この発明は、例えば半導体製造プロセスにおいて使用される真空ポンプ等のスクリ ユー式流体機械に関する。  [0001] The present invention relates to a screw type fluid machine such as a vacuum pump used in a semiconductor manufacturing process, for example.
背景技術  Background art
[0002] スクリュー式流体機械としては、例えば、特許文献 1に記載されたスクリュー型真空 ポンプが知られている。この特許文献 1のスクリュー型真空ポンプは、ケーシング内に ぉ 、て隣り合って相互に嚙合する一対のスクリュー状のロータを備えて 、る。各ロー タには回転軸が備えられており、各回転軸は軸保持体としてのケーシングに対して上 軸受及び下軸受を介して支持されて!ヽる。  [0002] As a screw-type fluid machine, for example, a screw-type vacuum pump described in Patent Document 1 is known. The screw-type vacuum pump of Patent Document 1 includes a pair of screw-shaped rotors that are adjacent to each other and are adjacent to each other in a casing. Each rotor is provided with a rotating shaft, and each rotating shaft is supported by a casing as a shaft holder via an upper bearing and a lower bearing.
[0003] 両回転軸には同期歯車がそれぞれ固定され、それら同期歯車は互いに嚙合してい る。各回転軸の内部には軸方向に延びる潤滑油通路が形成され、潤滑油通路は遠 心ポンプとして機能する。潤滑油通路は、回転軸の下端に開口する入口と、上軸受 の上方において回転軸の周面に開口する出口とを有する。潤滑油通路の入口付近 には熱交^^が備えられている。ケーシング内には潤滑油が貯留されており、回転 軸の下端は貯留された潤滑油内に浸っている。さらに、ケーシング内には冷却水配 管が設けられており、前記熱交^^において、冷却水と潤滑油との間での熱交換が 行われる。  [0003] Synchronous gears are respectively fixed to both rotary shafts, and these synchronous gears are meshed with each other. A lubricating oil passage extending in the axial direction is formed inside each rotary shaft, and the lubricating oil passage functions as a centrifugal pump. The lubricating oil passage has an inlet opening at the lower end of the rotating shaft and an outlet opening at the peripheral surface of the rotating shaft above the upper bearing. There is a heat exchanger near the entrance of the lubricant passage. Lubricating oil is stored in the casing, and the lower end of the rotating shaft is immersed in the stored lubricating oil. Further, a cooling water pipe is provided in the casing, and heat exchange is performed between the cooling water and the lubricating oil in the heat exchange.
[0004] 真空ポンプが駆動されると、遠心ポンプがケーシングに貯留されて 、る潤滑油を吸 い上げる。潤滑油は、遠心ポンプに吸い上げられるとき、熱交^^により熱交換され て冷却される。吸い上げられた潤滑油は、潤滑油通路の出口から出て上軸受へ流下 し、上軸受を冷却する。その後、潤滑油は、上軸受から回転軸に沿って流下してケー シング内に再び貯留される。このような潤滑油の流動により、上下の軸受及び回転軸 等が冷却される。摺動等に起因して回転軸が熱膨張すると、回転軸をケーシングに 対して支持する軸受に対し、軸方向への負荷がかかる。しかし、軸受及び回転軸を 潤滑油によって冷却することにより、そのような熱膨張が抑制され、軸受に負荷がか 力ることが抑制される。 [0004] When the vacuum pump is driven, the centrifugal pump is stored in the casing and sucks up the lubricating oil. When the lubricating oil is sucked up by the centrifugal pump, it is cooled by heat exchange by heat exchange. The sucked-up lubricating oil exits from the outlet of the lubricating oil passage, flows down to the upper bearing, and cools the upper bearing. Thereafter, the lubricating oil flows down from the upper bearing along the rotating shaft and is stored again in the casing. Due to the flow of the lubricating oil, the upper and lower bearings and the rotating shaft are cooled. When the rotating shaft thermally expands due to sliding or the like, an axial load is applied to the bearing that supports the rotating shaft with respect to the casing. However, by cooling the bearing and rotating shaft with lubricating oil, such thermal expansion is suppressed and the bearing is loaded. Force is suppressed.
[0005] し力しながら、単に熱交 を用いて潤滑油を冷却するだけでは、潤滑油の温度 を真空ポンプの運転状況に応じてきめ細力べ調整することができない。そのため、実 際には、回転軸の熱膨張を十分に抑制することができず、軸受に力かる軸方向への 負荷を十分に抑制できない。  [0005] However, if the lubricating oil is simply cooled using heat exchange, the temperature of the lubricating oil cannot be finely adjusted according to the operating condition of the vacuum pump. Therefore, in practice, the thermal expansion of the rotating shaft cannot be sufficiently suppressed, and the axial load applied to the bearing cannot be sufficiently suppressed.
[0006] ケーシングに対する回転軸の軸方向への変位が許容されるように、軸受をケ一シン グと回転軸との間に設ければ、回転軸の熱膨張に起因して軸受に軸方向の負荷が 力かることを防止できる。しかし、このような構成を採用した場合には、回転軸の横振 れゃ縦振れを抑制することができず、振動や騒音が発生し易くなる。 [0006] If the bearing is provided between the casing and the rotary shaft so that the axial displacement of the rotary shaft relative to the casing is allowed, the axial direction of the bearing due to the thermal expansion of the rotary shaft It is possible to prevent the load from being applied. However, in the case of adopting such a configuration, if the horizontal axis of the rotating shaft does not suppress vertical vibration, vibration and noise are likely to occur.
特許文献 1:特開平 4-314991号公報  Patent Document 1: Japanese Patent Laid-Open No. 4-314991
発明の開示  Disclosure of the invention
[0007] 本発明の目的は、軸受部を回転軸及び軸保持体に対して軸方向に固定した場合 であっても、軸受部に軸方向への負荷力かかることを抑制することができるスクリュー 式流体機械を提供することにある。  [0007] An object of the present invention is to provide a screw capable of suppressing an axial load force from being applied to a bearing portion even when the bearing portion is axially fixed to a rotating shaft and a shaft holder. It is to provide a fluid machine.
[0008] 上記課題を達成するため、本発明の一態様に従うスクリュー式流体機械は、ハウジ ングと、前記ハウジングに収容され、相互に嚙合される一対のスクリュー状のロータと 、前記両ロータに対しそれぞれ同軸となるように連結される一対の回転軸と、前記ハ ウジング内を延びる一対の筒状の軸保持体とを備える。各回転軸は前記ハウジング から突出する端部を有する。各軸保持体は、第 1端部及び第 2端部を有するとともに 、前記両回転軸の一方が挿通される貫通孔を有する。第 1軸受部が前記第 1端部に おいて前記貫通孔にそれぞれ装着される。第 2軸受部が前記第 2端部において前記 貫通孔にそれぞれ装着される。前記第 1及び第 2軸受部の各対は、対応する前記回 転軸を前記軸保持体に対して回転可能に支持する。第 1及び第 2軸受部の各対は、 対応する前記回転軸及び前記軸保持体に対して軸方向に固定される。同期ギヤは 前記ハウジング力 突出する前記両回転軸の前記端部にそれぞれ設けられる。ギヤ ケースは前記同期ギヤを収容し、前記ギヤケースは潤滑油を貯留し得る油貯留空間 を画定する。冷却部は冷却流体を用いて前記潤滑油を冷却する。流量変更部は前 記冷却流体の流量を制御する。温度センサは前記油貯留空間内に設けられ、前記 潤滑油の温度を検知する。制御部は前記油貯留空間内の潤滑油の温度が一定に 維持されるように、前記温度センサによって検知された温度に応じて前記流量変更 部を制御する。 [0008] In order to achieve the above object, a screw-type fluid machine according to an aspect of the present invention includes a housing, a pair of screw-like rotors housed in the housing and mated with each other, and the two rotors. A pair of rotating shafts connected so as to be coaxial with each other, and a pair of cylindrical shaft holders extending in the housing. Each rotating shaft has an end protruding from the housing. Each shaft holder has a first end and a second end, and has a through-hole through which one of the rotating shafts is inserted. First bearing portions are respectively attached to the through holes at the first end portions. Second bearing portions are respectively attached to the through holes at the second end portions. Each pair of the first and second bearing portions supports the corresponding rotation shaft so as to be rotatable with respect to the shaft holder. Each pair of the first and second bearing portions is fixed in the axial direction with respect to the corresponding rotating shaft and the shaft holder. Synchronous gears are provided at the end portions of the two rotating shafts that project the housing force. A gear case houses the synchronous gear, and the gear case defines an oil storage space in which lubricating oil can be stored. The cooling unit cools the lubricating oil using a cooling fluid. The flow rate changing unit controls the flow rate of the cooling fluid. A temperature sensor is provided in the oil storage space, Detect the temperature of the lubricating oil. The control unit controls the flow rate changing unit according to the temperature detected by the temperature sensor so that the temperature of the lubricating oil in the oil storage space is maintained constant.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]本発明の一実施形態に係る真空ポンプの縦断面図である。  FIG. 1 is a longitudinal sectional view of a vacuum pump according to an embodiment of the present invention.
[図 2]図 1の真空ポンプの A-A線に沿った断面図である。  2 is a cross-sectional view of the vacuum pump of FIG. 1 along the line AA.
[図 3]図 1の真空ポンプにおける基部側軸受部及び端部側軸受部を示す要部拡大 図である。  FIG. 3 is an enlarged view of a main part showing a base side bearing portion and an end side bearing portion in the vacuum pump of FIG.
[図 4]図 1の真空ポンプの B-B線に沿った断面図である。  4 is a cross-sectional view of the vacuum pump shown in FIG. 1, taken along line BB.
[図 5]図 1の真空ポンプにおける給油ポンプ部の拡大断面図である。  FIG. 5 is an enlarged cross-sectional view of an oil supply pump portion in the vacuum pump of FIG.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 以下、本発明を具体ィ匕した一実施形態を図 1〜図 5にしたがって説明する。図 1に 示されるように、本実施形態に係るスクリュー式流体機械は、半導体製造に用いられ る縦置き式のスクリュー型真空ポンプ (以下、単に「真空ポンプ」と表記する。) 10であ る。真空ポンプ 10は、上部ハウジング部材 11と、ロータハウジング部材 12と、下部ハ ウジング部材 13とを含むハウジング 14を備え、ハウジング 14により真空ポンプ 10の 外殻が形成されている。  Hereinafter, an embodiment embodying the present invention will be described with reference to FIGS. As shown in FIG. 1, the screw-type fluid machine according to the present embodiment is a vertical-type screw-type vacuum pump (hereinafter simply referred to as “vacuum pump”) 10 used for semiconductor manufacturing. . The vacuum pump 10 includes a housing 14 including an upper housing member 11, a rotor housing member 12, and a lower housing member 13, and the housing 14 forms an outer shell of the vacuum pump 10.
[0011] 具体的には、ロータハウジング部材 12の上端に上部ハウジング部材 11が接合され 、ロータハウジング部材 12の下端に下部ハウジング部材 13が接合されている。上部 ハウジング部材 11には圧縮性流体を吸入するための吸入口 15がハウジング 14の内 部と連通するように形成されている。下部ハウジング部材 13には圧縮性流体を吐出 するための吐出口 16がハウジング 14の内部と連通するように備えられている。なお、 下部ハウジング部材 13は側方へ向けて延設される延設部 13aを備えており、延設部 13a上に駆動源としての駆動モータ 17が設置されている。さらに、この下部ハウジン グ部材 13には、延設部 13aを含む下部ハウジング部材 13を下方力 覆うギヤケース 18が接合されている。  Specifically, the upper housing member 11 is joined to the upper end of the rotor housing member 12, and the lower housing member 13 is joined to the lower end of the rotor housing member 12. The upper housing member 11 is formed with a suction port 15 for sucking a compressive fluid so as to communicate with the inside of the housing 14. The lower housing member 13 is provided with a discharge port 16 for discharging a compressive fluid so as to communicate with the inside of the housing 14. The lower housing member 13 includes an extending portion 13a extending sideways, and a drive motor 17 as a driving source is installed on the extending portion 13a. Further, the lower housing member 13 is joined with a gear case 18 that covers the lower housing member 13 including the extending portion 13a downward.
[0012] ハウジング 14内には、図 2に示されるように、相互に嚙合するスクリュー状の雄ロー タ 21とスクリュー状の雌ロータ 31とが収容され、この両ロータ 21、 31とハウジング 14 とにより作動室が形成されている。雄ロータ 21は、吐出口 16から吸入口 15へ向かつ て延びる挿入孔 22と、この挿入孔 22よりも小径でかつ挿入孔 22の上端から上方へ 向かって延びる連結孔 23とを有している。連結孔 23には、下部ハウジング部材 13を 貫く回転軸 25が嵌挿されている。雄ロータ 21と回転軸 25とは、止板 26と連結用ボル ト 27とを用いて互いに連結されている。このため、雄ロータ 21は回転軸 25と一体的 に回転する。同様に、図 2に示される雌ロータ 31も挿入孔 32及び連結孔 33を備え、 止板 36と連結用ボルト 37とを用いて回転軸 35に連結されている。各ロータ 21、 31 は対応する回転軸 25、 35と同軸である。 As shown in FIG. 2, a screw-like male rotor 21 and a screw-like female rotor 31 are housed in the housing 14, and both the rotors 21, 31 and the housing 14 are accommodated. Thus, a working chamber is formed. The male rotor 21 has an insertion hole 22 extending from the discharge port 16 toward the suction port 15 and a connecting hole 23 having a smaller diameter than the insertion hole 22 and extending upward from the upper end of the insertion hole 22. Yes. A rotation shaft 25 that passes through the lower housing member 13 is fitted into the connection hole 23. The male rotor 21 and the rotating shaft 25 are connected to each other using a stop plate 26 and a connecting bolt 27. For this reason, the male rotor 21 rotates integrally with the rotating shaft 25. Similarly, the female rotor 31 shown in FIG. 2 also has an insertion hole 32 and a connection hole 33, and is connected to the rotary shaft 35 using a stop plate 36 and a connection bolt 37. Each rotor 21, 31 is coaxial with the corresponding rotary shaft 25, 35.
[0013] 下部ハウジング部材 13は、上方へ向力つて延びる一対の筒状の軸保持体 28、 38 を有しており、図 2のとおり両軸保持体 28、 38の基部は互いに繋がって一体ィヒされ ている。この実施形態では、軸保持体 28、 38は下部ハウジング部材 13に対して固 定用ボルト 41により固定されて 、る。軸保持体 28は雄ロータ 21の揷入孔 22に挿入 され、軸保持体 28の外周面と挿入孔 22の内周面との間には、僅かな間隙が形成さ れている。軸保持体 38は雌ロータ 31の揷入孔 32に挿入され、軸保持体 38の外周 面と挿入孔 32の内周面との間にも僅かな間隙が形成されている。  [0013] The lower housing member 13 has a pair of cylindrical shaft holders 28 and 38 that extend upwardly, and the base portions of both shaft holders 28 and 38 are connected to each other as shown in FIG. It has been In this embodiment, the shaft holders 28 and 38 are fixed to the lower housing member 13 by fixing bolts 41. The shaft holder 28 is inserted into the insertion hole 22 of the male rotor 21, and a slight gap is formed between the outer peripheral surface of the shaft holder 28 and the inner peripheral surface of the insertion hole 22. The shaft holder 38 is inserted into the insertion hole 32 of the female rotor 31, and a slight gap is also formed between the outer peripheral surface of the shaft holder 38 and the inner peripheral surface of the insertion hole 32.
[0014] 軸保持体 28の中心には軸方向に貫かれた貫通孔 29が形成され、この貫通孔 29 には雄ロータ 21用の回転軸 25が揷通されている。回転軸 25と軸保持体 28との間に は、ころがり軸受よりなる上下一対の軸受部 42、 43が設けられている。軸受部 42、 4 3は軸保持体 28の上部及び下部に配置されている。この実施形態では、上側の軸 受部 42を端部側軸受部或いは第 2軸受部とし、下側のころがり軸受 43を基部側軸 受部或いは第 1軸受部としている。軸保持体 28の上端部 (第 2端部)には、貫通孔 2 9の径より大き 、径を有する上部拡径孔 29aが貫通孔 29に続 、て設けられて 、る。こ の上部拡径孔 29a内に、前記端部側軸受部 42が配置されている。なお、回転軸 25 における端部側軸受 42と基部側軸受 43との間の部位は、回転軸 25における上下の 端部の径よりも僅かに大きい径を有している。図 3に示すように、径が変化する回転 軸 25の部位は、端部側段部 25a及び基部側段部 25bを形成して 、る。  A through hole 29 penetrating in the axial direction is formed at the center of the shaft holder 28, and a rotating shaft 25 for the male rotor 21 is passed through the through hole 29. Between the rotary shaft 25 and the shaft holder 28, a pair of upper and lower bearing portions 42 and 43 made of rolling bearings are provided. The bearing portions 42 and 43 are disposed at the upper and lower portions of the shaft holder 28. In this embodiment, the upper bearing portion 42 is an end-side bearing portion or a second bearing portion, and the lower rolling bearing 43 is a base-side bearing portion or a first bearing portion. The upper end portion (second end portion) of the shaft holder 28 is provided with an upper diameter-enlarged hole 29 a having a diameter larger than the diameter of the through hole 29 following the through hole 29. The end side bearing portion 42 is disposed in the upper diameter-expanded hole 29a. A portion of the rotary shaft 25 between the end side bearing 42 and the base side bearing 43 has a diameter slightly larger than the diameter of the upper and lower end portions of the rotary shaft 25. As shown in FIG. 3, the portion of the rotating shaft 25 whose diameter changes forms an end portion side step portion 25a and a base portion side step portion 25b.
[0015] 図 1及び図 2に示すように、端部側軸受部 42の上方位置において、回転軸 25と軸 保持体 28との間には、シール部材 30が介装されている。軸保持体 28の下端部 (第 1 端部)には、貫通孔 29の径より大きい径を有する下部拡径孔 29bが貫通孔 29に続 いて設けられている。この下部拡径孔 29b内に、前記基部側軸受部 43が配置されて いる。 As shown in FIGS. 1 and 2, a seal member 30 is interposed between the rotary shaft 25 and the shaft holder 28 at a position above the end side bearing portion 42. Lower end of shaft holder 28 (first The lower end diameter hole 29 b having a diameter larger than the diameter of the through hole 29 is provided at the end) following the through hole 29. The base side bearing portion 43 is disposed in the lower diameter enlarged hole 29b.
[0016] これらの軸受部 42、 43は軸保持体 28に対して回転軸 25を回転自在に支持するた めに備えられている。この実施形態では、端部側軸受部 42及び基部側軸受部 43の 各々は単列のころがり軸受を 2個並設した構成となっている。  These bearing portions 42 and 43 are provided to rotatably support the rotary shaft 25 with respect to the shaft holder 28. In this embodiment, each of the end side bearing portion 42 and the base portion side bearing portion 43 has a configuration in which two single-row rolling bearings are arranged side by side.
[0017] 端部側軸受部 42についてさらに詳しく説明すると、端部側軸受部 42は、 2つのアン ギユラ玉軸受 42a、 42bの組み合わせ力 構成されている。図 3に示すように、両軸受 42a、 42bは背面組み合わせされた状態で、上部拡径孔 29aに配置されている。両 軸受 42a、 42bの外輪は上部拡径孔 29aに圧入され、軸保持体 28に対して固定され ている。また、両軸受 42a、 42bの内輪は、回転軸 25に圧入されている。  [0017] The end-side bearing portion 42 will be described in more detail. The end-side bearing portion 42 is configured by a combined force of two angular ball bearings 42a and 42b. As shown in FIG. 3, the two bearings 42a and 42b are arranged in the upper diameter-expanded hole 29a in a state where they are combined on the back surface. The outer rings of both the bearings 42a and 42b are press-fitted into the upper diameter expansion hole 29a and are fixed to the shaft holder 28. The inner rings of both bearings 42a and 42b are press-fitted into the rotary shaft 25.
[0018] アンギユラ玉軸受 42bの内輪は、回転軸 25の端部側段部 25aに突き当てられてお り、アンギユラ玉軸受 42aの内輪は、回転軸 25に螺入されたナット 49aによりアンギュ ラ玉軸受 42bの内輪に押し付けられている。これらの結果、アンギユラ玉軸受 42a、 4 2bの転動体は、軸方向及びラジアル方向の何れにおいても、内外輪と隙間のない 状態にある。  [0018] The inner ring of the angular ball bearing 42b is abutted against the end side step portion 25a of the rotary shaft 25, and the inner ring of the angular ball bearing 42a is angular by a nut 49a screwed into the rotary shaft 25. It is pressed against the inner ring of the ball bearing 42b. As a result, the rolling elements of the anguilla ball bearings 42a and 42b are in a state where there is no gap between the inner and outer rings in both the axial direction and the radial direction.
[0019] 一方、基部側軸受部 43においても、図 3に示すように、アンギユラ玉軸受 43a、 43b が背面組み合わせされた状態で、下部拡径孔 29bに配置されている。両軸受 43a、 43bの外輪は下部拡径孔 29bに圧入され、軸保持体 28に対して固定されている。ァ ンギユラ玉軸受 43aの内輪は、回転軸 25の基部側段部 25bに突き当てられており、 アンギユラ玉軸受 43bの内輪は、回転軸 25に螺入されたナット 49bによりアンギユラ 玉軸受 43aの内輪に押し付けられている。したがって、アンギユラ玉軸受 43a、 43bの 転動体は、軸方向及びラジアル方向の何れにおいても、内外輪と隙間のない状態に ある。  On the other hand, as shown in FIG. 3, the base-side bearing portion 43 is also disposed in the lower diameter enlarged hole 29b in a state where the angiular ball bearings 43a and 43b are combined on the back surface. The outer rings of both bearings 43a and 43b are press-fitted into the lower diameter expansion hole 29b and fixed to the shaft holder 28. The inner ring of the angular ball bearing 43a is abutted against the base side step portion 25b of the rotary shaft 25, and the inner ring of the angular bearing 43b is inserted into the inner ring of the angular ball bearing 43a by a nut 49b screwed into the rotary shaft 25. It is pressed against. Therefore, the rolling elements of the anguilla ball bearings 43a and 43b are in a state of no gap with the inner and outer rings in both the axial direction and the radial direction.
[0020] 端部側軸受部 42及び基部側軸受部 43の各々が、 2つのアンギユラ玉軸受の背面 組み合わせにより構成されているので、回転軸 25は軸保持体 28に対して軸方向及 びラジアル方向へ移動することがない。つまり、端部側軸受部 42及び基部側軸受部 43は、ナット 49a、 49b及び前記両段部 25a、 25bにより軸方向に固定されている。 [0021] これらのアンギユラ玉軸受 42a、 42b、 43a、 43bは、回転軸 25の外周面と軸保持 体 28の貫通孔 29の内周面との間に僅かな間隙を確保している。この間隙は潤滑油 回収路 48 (以下、単に油回収路 48とする)を形成している。油回収路 48は、冷却対 象である回転軸 25及び軸保持部材 28に、冷却媒体である潤滑油 62を接触させるほ 力 ギヤケース 18へ向けて潤滑油 62を通すための通路である。 [0020] Since each of the end-side bearing portion 42 and the base-side bearing portion 43 is configured by the back combination of two angular ball bearings, the rotary shaft 25 is axially and radially relative to the shaft holder 28. It does not move in the direction. That is, the end-side bearing portion 42 and the base-side bearing portion 43 are fixed in the axial direction by the nuts 49a and 49b and the both step portions 25a and 25b. These anguilla ball bearings 42 a, 42 b, 43 a, 43 b ensure a slight gap between the outer peripheral surface of the rotating shaft 25 and the inner peripheral surface of the through hole 29 of the shaft holding body 28. This gap forms a lubricating oil recovery path 48 (hereinafter simply referred to as oil recovery path 48). The oil recovery path 48 is a path for passing the lubricating oil 62 toward the gear case 18 where the lubricating oil 62 as a cooling medium is brought into contact with the rotating shaft 25 and the shaft holding member 28 as cooling targets.
[0022] 一方、回転軸 25には、同回転軸 25の軸芯に沿って延びる長管路 44が形成されて おり、この長管路 44は回転軸 25の下端力も端部側軸受部 42の下側にまで達してい る。回転軸 25にはまた、端部側軸受部 42の下側において、回転軸 25の径方向に延 びる短管路 45が形成されている。長管路 44の上端は、端部側軸受部 42の下側に 位置し、短管路 45と接続されている。短管路 45は、端部側軸受部 42の下側の位置 で、油回収路 48に連通するように回転軸 25の周面に開口している。長管路 44及び 短管路 45は、潤滑油 62を油回収路 48に供給する油供給路 46を構成している。そし て、この油供給路 46と油回収路 48とは、油循環用通路を構成している。  On the other hand, a long pipe 44 extending along the axis of the rotary shaft 25 is formed in the rotary shaft 25, and the long pipe 44 has a lower end force of the rotary shaft 25 and an end side bearing portion 42. It reaches to the lower side. The rotary shaft 25 is also formed with a short pipe 45 extending in the radial direction of the rotary shaft 25 below the end side bearing portion 42. The upper end of the long pipe 44 is located below the end side bearing part 42 and is connected to the short pipe 45. The short pipe 45 opens at the peripheral surface of the rotary shaft 25 so as to communicate with the oil recovery path 48 at a position below the end side bearing portion 42. The long pipe 44 and the short pipe 45 constitute an oil supply path 46 that supplies the lubricating oil 62 to the oil recovery path 48. The oil supply passage 46 and the oil recovery passage 48 constitute an oil circulation passage.
[0023] ここまで、雄ロータ 21側の軸保持体 28、回転軸 25、軸受部 42、 43等の各要素に ついて説明した力 雌ロータ 31側の各要素は雄ロータ 21側の各要素と基本的に同 じ構成となっている。即ち、図 2に示されるとおり、軸保持体 38の貫通孔 39に回転軸 35が挿通される。そして、軸保持体 38には、軸保持体 28と同様に、上部拡径孔 39a 及び下部拡径孔 39bが設けられている。上部拡径孔 39a及び下部拡径孔 39b内に はそれぞれ端部側軸受部 52及び基部側軸受部 53が配置され、それら軸受部 52、 5 3は、回転軸 35と軸保持体 38との間に配置されている。  [0023] So far, the force described for each element of the shaft holder 28, the rotary shaft 25, the bearings 42, 43, etc. on the male rotor 21 side. Each element on the female rotor 31 side is equivalent to each element on the male rotor 21 side. The structure is basically the same. That is, as shown in FIG. 2, the rotating shaft 35 is inserted through the through hole 39 of the shaft holder 38. The shaft holder 38 is provided with an upper diameter-expanded hole 39a and a lower diameter-expanded hole 39b, similar to the shaft holder 28. An end-side bearing portion 52 and a base-side bearing portion 53 are disposed in the upper diameter-expanded hole 39a and the lower diameter-expanded hole 39b, respectively. The bearing portions 52, 53 are connected to the rotary shaft 35 and the shaft holder 38. Arranged between.
[0024] 端部側軸受部 52は、雄ロータ 21の端部側軸受部 42と同様に、 2個のアンギユラ玉 軸受 52a、 52bの背面組み合わせにより構成され、ナット 59aにより下方へ押し付けら れる。さらに、端部側軸受部 52の上方位置には、シール部材 40が配置されている。 基部側軸受部 53は、雄ロータ 21の基部側軸受部 43と同様に、 2個のアンギユラ玉 軸受 53a、 53bの背面組み合わせにより構成され、ナット 59bにより上方へ押し付けら れる。  [0024] Similar to the end portion side bearing portion 42 of the male rotor 21, the end portion side bearing portion 52 is configured by a rear combination of two anguillar ball bearings 52a and 52b, and is pressed downward by a nut 59a. Further, a sealing member 40 is disposed above the end side bearing portion 52. The base side bearing portion 53 is constituted by a rear combination of two anguilla ball bearings 53a and 53b, and is pressed upward by a nut 59b, like the base side bearing portion 43 of the male rotor 21.
[0025] また、雌ロータ 31側の回転軸 35には、長管路 54及び短管路 55から構成される油 供給路 56が形成されている。さらに、油回収路 58を形成する間隙が、回転軸 35と軸 保持体 38との間に形成されている。因みに、両回転軸 25、 35の軸径は同じであり、 また、端部側軸受部 42、 52及び基部側軸受部 43、 53は同じ仕様のアンギユラ玉軸 受を使用している。 In addition, an oil supply path 56 composed of a long pipe 54 and a short pipe 55 is formed on the rotating shaft 35 on the female rotor 31 side. Further, the gap forming the oil recovery path 58 is connected to the rotary shaft 35 and the shaft. It is formed between the holding body 38. Incidentally, the shaft diameters of the rotary shafts 25 and 35 are the same, and the end side bearings 42 and 52 and the base side bearings 43 and 53 use the same specification angular bearings.
[0026] ここで、雄ロータ 21について詳述する。図 4に示されるように、雄ロータ 21は 5本の 歯 24を備えており、それらの歯 24は雄ロータ 21の周方向において等間隔に配置さ れている。また、歯 24は、雄ロータ 21の上端から下端へ向けて螺旋状に延びている 。そして、歯 24は、図 2に示されるように、上端から下端へ向力うのに従いリード角が 減少するように形成されて ヽる。  [0026] Here, the male rotor 21 will be described in detail. As shown in FIG. 4, the male rotor 21 includes five teeth 24, and these teeth 24 are arranged at equal intervals in the circumferential direction of the male rotor 21. The teeth 24 extend in a spiral shape from the upper end to the lower end of the male rotor 21. Then, as shown in FIG. 2, the teeth 24 are formed such that the lead angle decreases as the force moves from the upper end to the lower end.
[0027] 他方、雌ロータ 31における歯溝 34は、図 4に示されるように、雄ロータ 21の歯 24に 対応するように形成されており、歯溝 34の数は 6個となっている。すなわち、雄ロータ 21の歯 24の数が雌ロータ 31の歯溝 34の数よりも少ないので、両ロータ 21、 31が同 期回転した場合には、雄ロータ 21の回転速度が雌ロータ 31の回転速度より大きくな り、雌ロータ 31の回転速度が雄ロータ 21の回転速度より小さくなる。このようなスクリュ 一型ロータ 21、 31は徐変式と称される。  On the other hand, as shown in FIG. 4, the tooth grooves 34 in the female rotor 31 are formed so as to correspond to the teeth 24 of the male rotor 21, and the number of tooth grooves 34 is six. . That is, since the number of teeth 24 of the male rotor 21 is smaller than the number of tooth grooves 34 of the female rotor 31, when both the rotors 21 and 31 rotate synchronously, the rotational speed of the male rotor 21 is The rotation speed becomes higher than the rotation speed, and the rotation speed of the female rotor 31 becomes lower than the rotation speed of the male rotor 21. Such screw type rotors 21 and 31 are referred to as a gradual change type.
[0028] 図 1及び図 2に示すように、雄ロータ 21の回転軸 25は下部ハウジング部材 13を貫 通するように延びており、その回転軸 25の下端はギヤケース 18内に位置している。こ の回転軸 25のギヤケース 18内に位置する部位には、同期ギヤ 47が取り付けられて いる。一方、雌ロータ 31の回転軸 35も同様に下部ハウジング部材 13を貫通するよう に延びており、その回転軸 35の下端はギヤケース 18内に位置している。この回転軸 35のギヤケース 18内に位置する部位には、同期ギヤ 57が取り付けられている。両同 期ギヤ 47、 57は互いに嚙合している。  As shown in FIGS. 1 and 2, the rotating shaft 25 of the male rotor 21 extends so as to penetrate the lower housing member 13, and the lower end of the rotating shaft 25 is located in the gear case 18. . A synchronous gear 47 is attached to a portion of the rotary shaft 25 located in the gear case 18. On the other hand, the rotating shaft 35 of the female rotor 31 also extends so as to penetrate the lower housing member 13, and the lower end of the rotating shaft 35 is located in the gear case 18. A synchronous gear 57 is attached to a part of the rotating shaft 35 located in the gear case 18. Both synchronous gears 47 and 57 are meshed with each other.
[0029] そして、図 1に示されるように、雄ロータ 21側の同期ギヤ 47は、ギヤケース 18内に 設けられた中間ギヤ 50と嚙合している。この中間ギヤ 50は、駆動モータ 17の駆動軸 19に備えられる駆動ギヤ 20とギヤケース 18内において嚙合している。そして、ギヤ ケース 18内の下部には、油貯留空間を構成する油貯留室 61が形成されており、この 油貯留室 61に潤滑油 62が貯留されている。  As shown in FIG. 1, the synchronous gear 47 on the male rotor 21 side is meshed with an intermediate gear 50 provided in the gear case 18. The intermediate gear 50 is meshed with the drive gear 20 provided on the drive shaft 19 of the drive motor 17 in the gear case 18. An oil storage chamber 61 that forms an oil storage space is formed in the lower portion of the gear case 18, and the lubricating oil 62 is stored in the oil storage chamber 61.
[0030] 回転軸 25の下端と対向するギヤケース 18の底板部 18aの部位には、円筒状の突 起部 63が形成されている。図 5に示すように、この突起部 63は、有底の丸孔 63aを 画定している。そして、この丸孔 63a内には、油供給部としてのトロコイド式の給油ポ ンプ 70が配置されている。給油ポンプ 70は、内歯歯車よりなるアウターロータ 72と、 外歯歯車よりなるインナーロータ 71とを有し、アウターロータ 72の内側にインナ一口 ータ 71が配置されている。アウターロータ 72の外周面は、丸孔 63aの内周面に回転 可能な状態で嵌合している。インナーロータ 71の貫通孔 71aには、回転軸 25の下端 が嵌め合い固定されている。 [0030] A cylindrical protrusion 63 is formed in a portion of the bottom plate portion 18a of the gear case 18 facing the lower end of the rotating shaft 25. As shown in FIG. 5, the protrusion 63 has a bottomed round hole 63a. Defined. In the round hole 63a, a trochoid oil supply pump 70 is disposed as an oil supply unit. The oil supply pump 70 has an outer rotor 72 made of an internal gear and an inner rotor 71 made of an external gear, and the inner one-portion 71 is arranged inside the outer rotor 72. The outer peripheral surface of the outer rotor 72 is fitted to the inner peripheral surface of the round hole 63a in a rotatable state. The lower end of the rotating shaft 25 is fitted and fixed in the through hole 71a of the inner rotor 71.
[0031] インナーロータ 71はアウターロータ 72に対して偏心している。インナーロータ 71が 回転すると、それに伴いアウターロータ 72も回転する。円筒状突起部 63の上端開口 は上カバー 73によって塞がれており、この上カバー 73がインナーロータ 71及びァゥ ターロータ 72を覆っている。また、給油ポンプ 70は、油吸入部 75と油吐出部 76とを 有している。油吸入部 75は前記油貯留室 61に連通している。油吐出部 76は、回転 軸 25の前記油供給路 46に対し、丸孔 63aの底面に形成された案内路 77を介して連 通している。 The inner rotor 71 is eccentric with respect to the outer rotor 72. When the inner rotor 71 rotates, the outer rotor 72 rotates accordingly. The upper end opening of the cylindrical protrusion 63 is closed by the upper cover 73, and the upper cover 73 covers the inner rotor 71 and the outer rotor 72 . The oil supply pump 70 has an oil suction part 75 and an oil discharge part 76. The oil suction part 75 communicates with the oil storage chamber 61. The oil discharge section 76 communicates with the oil supply path 46 of the rotary shaft 25 through a guide path 77 formed on the bottom surface of the round hole 63a.
[0032] 回転軸 25の回転に伴い、油貯留室 61に貯留されている潤滑油 62が、油吸入部 7 5を通じて給油ポンプ 70内、具体的には両ロータ 71、 72間の空間に吸い込まれる。 潤滑油は、両ロータ 71、 72間の空間を搬送されて油吐出部 76に至り、そしてその油 吐出部 76から案内路 77を通じて油供給路 46に供給される。  [0032] As the rotary shaft 25 rotates, the lubricating oil 62 stored in the oil storage chamber 61 is sucked into the oil pump 70, specifically, the space between the rotors 71 and 72, through the oil suction portion 75. It is. Lubricating oil is conveyed through the space between the rotors 71 and 72 to the oil discharge section 76, and is supplied from the oil discharge section 76 to the oil supply path 46 through the guide path 77.
[0033] 一方、図 2に示すように、回転軸 35の下端と対向するギヤケース 18の底板部 18a の部位には、円筒状の突起部 64が形成されている。この突起部 64は、有底の丸孔 6 4aを画定している。そして、この丸孔 64a内には、油供給装置としてのトロコイド式の 給油ポンプ 80が配置されている。給油ポンプ 80の詳細構成は図示しないが、上記 給油ポンプ 70と同等である。すなわち、給油ポンプ 80は、インナーロータ 81とァウタ 一ロータ 82とを有している。アウターロータ 82の外周面は、丸孔 64aの内周面に回 転可能な状態で嵌合し、又、インナーロータ 81は回転軸 35に連結されている。イン ナーロータ 81及びアウターロータ 82は上カバー 83によって覆われている。また、図 示しないが、給油ポンプ 80は、油貯留室 61に連通する油吸入部と、案内路 87を通 じて油供給路 56に連通する油吐出部とを有している。回転軸 35と共にインナーロー タ 81が回転すると、それに伴いアウターロータ 82が回転し、油貯留室 61内の潤滑油 62が、油吸入部、両ロータ 81、 82間の空間、油吐出部、及び案内路 87を通じて、油 供給路 56に供給される。 On the other hand, as shown in FIG. 2, a cylindrical protrusion 64 is formed at the bottom plate portion 18 a of the gear case 18 facing the lower end of the rotating shaft 35. The protrusion 64 defines a bottomed round hole 64a. A trochoid oil supply pump 80 as an oil supply device is disposed in the round hole 64a. Although the detailed configuration of the oil pump 80 is not shown, it is equivalent to the oil pump 70 described above. That is, the oil supply pump 80 has an inner rotor 81 and an outer rotor 82. The outer peripheral surface of the outer rotor 82 is fitted to the inner peripheral surface of the round hole 64a in a rotatable state, and the inner rotor 81 is connected to the rotary shaft 35. The inner rotor 81 and the outer rotor 82 are covered with an upper cover 83. Although not shown, the oil supply pump 80 has an oil suction portion that communicates with the oil storage chamber 61 and an oil discharge portion that communicates with the oil supply passage 56 through the guide passage 87. When the inner rotor 81 rotates together with the rotating shaft 35, the outer rotor 82 rotates accordingly, and the lubricating oil in the oil storage chamber 61 is rotated. 62 is supplied to the oil supply path 56 through the oil suction section, the space between the rotors 81 and 82, the oil discharge section, and the guide path 87.
[0034] ところでこの実施形態に係る真空ポンプ 10は、ギヤケース 18に貯留される潤滑油 6 2を冷却するための構成を備えている。すなわち、ギヤケース 18の底板部 18aには、 冷却流体としての冷却水が通過する複数の冷却用通路 88が形成されて 、る。冷却 水通路 88は底板部 18aを貫通するように延びており、冷却水がこの冷却水通路 88を 通過することにより、ギヤケース 18内に貯留された潤滑油 62が冷却される。冷却水 通路 88は、冷却流体を用いて潤滑油 62を冷却する冷却部として機能する。  Incidentally, the vacuum pump 10 according to this embodiment has a configuration for cooling the lubricating oil 62 stored in the gear case 18. That is, the bottom plate portion 18a of the gear case 18 is formed with a plurality of cooling passages 88 through which cooling water as a cooling fluid passes. The cooling water passage 88 extends so as to pass through the bottom plate portion 18a, and the cooling oil passes through the cooling water passage 88, whereby the lubricating oil 62 stored in the gear case 18 is cooled. The cooling water passage 88 functions as a cooling unit that cools the lubricating oil 62 using the cooling fluid.
[0035] 図 1に示されるように、冷却水通路 88の上流部は、流量変更部としての電磁弁 91 を備えた上流側配管 89に接続され、冷却水通路 88の下流部は下流側配管 90に接 続されている。電磁弁 91は、制御部としての制御装置 92によって、上流側配管 89を 開閉するように制御される。制御装置 92は、ギヤケース 18内の潤滑油 62の温度を 直接測定する温度センサ 93に接続されている。温度センサ 93はギヤケース 18内、 すなわち油貯留室 61内に配置されている。制御装置 92は、ギヤケース 18内の潤滑 油 62の温度を一定に維持すベぐ温度センサ 93からの検知信号に基づいて電磁弁 91を制御する。  As shown in FIG. 1, the upstream portion of the cooling water passage 88 is connected to an upstream piping 89 having a solenoid valve 91 as a flow rate changing portion, and the downstream portion of the cooling water passage 88 is a downstream piping. Connected to 90. The solenoid valve 91 is controlled to open and close the upstream pipe 89 by a control device 92 as a control unit. The control device 92 is connected to a temperature sensor 93 that directly measures the temperature of the lubricating oil 62 in the gear case 18. The temperature sensor 93 is disposed in the gear case 18, that is, in the oil storage chamber 61. The control device 92 controls the electromagnetic valve 91 based on a detection signal from a temperature sensor 93 that maintains the temperature of the lubricating oil 62 in the gear case 18 constant.
[0036] 次に、この実施形態に係る真空ポンプ 10の作用について説明する。駆動モータ 17 が回転されると、駆動モータ 17の回転が駆動ギヤ 20及び中間ギヤ 50を介して、雄口 ータ 21の同期ギヤ 47に伝達される。すると、両同期ギヤ 47、 57が同期回転して、回 転軸 25、 35とともにロータ 21、 31が回転する。雄ロータ 21の歯 24と雌ロータ 31の歯 溝 34とが嚙み合った状態で両ロータ 21、 31が回転することにより、吸入口 15から圧 縮性流体が作動室内に吸引される。作動室に吸引された圧縮性流体は、両ロータ 2 1、 31により圧縮されつつ吐出口 16へ向けて移送されて、吐出口 16から吐出される 。部屋あるいは容器などの閉空間に吸入口 15が接続されている場合は、これらの閉 空間を真空状態とすることができる。  Next, the operation of the vacuum pump 10 according to this embodiment will be described. When the drive motor 17 is rotated, the rotation of the drive motor 17 is transmitted to the synchronous gear 47 of the male port motor 21 through the drive gear 20 and the intermediate gear 50. Then, both synchronous gears 47 and 57 rotate synchronously, and the rotors 21 and 31 together with the rotating shafts 25 and 35 rotate. When both the rotors 21 and 31 rotate while the teeth 24 of the male rotor 21 and the tooth grooves 34 of the female rotor 31 are in contact with each other, the compressive fluid is sucked into the working chamber from the suction port 15. The compressive fluid sucked into the working chamber is transported toward the discharge port 16 while being compressed by both the rotors 21, 31, and discharged from the discharge port 16. When the suction port 15 is connected to a closed space such as a room or a container, these closed spaces can be evacuated.
[0037] 真空ポンプ 10が運転状態にあるときは、回転軸 25、 35は互いに反対方向へ高速 回転されている。回転軸 25、 35の端部に設けられた給油ポンプ 70、 80は、油貯留 室 61に貯留されている潤滑油 62をそれぞれの油吸入部より吸入し、それぞれの油 吐出部より吐出する。吐出された潤滑油 62は、それぞれの油吐出部と連通された案 内路 77、 87を通じて回転軸 25、 35の長管路 44、 54の下端にそれぞれ流れ込み、 短管路 45、 55を通過して端部側軸受部 42、 52の下側へ達する。 [0037] When the vacuum pump 10 is in an operating state, the rotary shafts 25 and 35 are rotated at high speeds in opposite directions. The oil supply pumps 70 and 80 provided at the ends of the rotary shafts 25 and 35 suck the lubricating oil 62 stored in the oil storage chamber 61 from the respective oil suction portions, and each oil Discharge from the discharge part. The discharged lubricating oil 62 flows into the lower ends of the long pipes 44 and 54 of the rotary shafts 25 and 35 through the planned passages 77 and 87 connected to the respective oil discharge portions, and passes through the short pipes 45 and 55, respectively. As a result, it reaches the lower side of the end side bearing portions 42 and 52.
[0038] 端部側軸受部 42、 52の下側に達した潤滑油 62は、油回収路 48、 58を通り下方へ 向力 ときに、回転軸 25、 35及び軸保持体 28、 38を冷却する。回転軸 25、 35及び 軸保持体 28、 38力冷去 Pされることにより、回転軸 25、 35と軸保持体 28、 38との温度 差が抑制される。潤滑油 62は、回転軸 25、 35及び軸保持体 28、 38の冷却を行った 後、ギヤケース 18内の油貯留室 61に回収される。そして、潤滑油 62は再び油貯留 室 61より給油ポンプ 70、 80へ移送され、上記と同じ動作が繰り返される。なお、潤滑 油 62は、油貯留室 61に回収される途中で同期ギヤ 47、 57を経由することによって、 同期ギヤ 47、 57の潤滑も行う。  [0038] When the lubricating oil 62 that has reached the lower side of the end side bearing portions 42, 52 passes through the oil recovery passages 48, 58 and is directed downward, the rotating shafts 25, 35 and the shaft holders 28, 38 are Cooling. The temperature difference between the rotary shafts 25 and 35 and the shaft holders 28 and 38 is suppressed by cooling off the rotary shafts 25 and 35 and the shaft holders 28 and 38. The lubricating oil 62 is recovered in the oil storage chamber 61 in the gear case 18 after cooling the rotary shafts 25 and 35 and the shaft holders 28 and 38. The lubricating oil 62 is again transferred from the oil storage chamber 61 to the oil supply pumps 70 and 80, and the same operation as described above is repeated. The lubricating oil 62 also lubricates the synchronous gears 47 and 57 by passing through the synchronous gears 47 and 57 while being collected in the oil storage chamber 61.
[0039] また、ギヤケース 18内に貯留された潤滑油 62は、冷却水通路 88を通る冷却水によ り冷却される。すなわち、この実施形態では、給油ポンプ 70、 80の動作によって冷却 に供される潤滑油 62の温度を一定に保つように、冷却水を用いて潤滑油 62を冷却 する。具体的には、制御装置 92は、温度センサ 93を通じて潤滑油 62の温度を監視 し、潤滑油 62の温度が予め設定された冷却温度に維持されるように電磁弁 91を制 御する。制御装置 92は、温度センサ 93によって検出された潤滑油 62の温度に応じ て電磁弁 91を開閉して、冷却水通路 88内の冷却水の流れを調整する。つまり、制御 装置 92は、潤滑油 62の温度が高くなりそうな場合には、電磁弁 91を開き、冷却水を 冷却水通路 88に通して、ギヤケース 18内の潤滑油 62の温度上昇を防止する。また 、制御装置 92は、潤滑油 62の温度が低くなりそうな場合には、電磁弁 91を閉じて冷 却水通路 88に冷却水を通さないようし、冷却水による潤滑油 62の冷却を行わないよ うにする。この場合、油貯留室 61に回収される潤滑油 62が持つ熱により、同油貯留 室 61に貯留された潤滑油 62の温度低下が妨げられる。  Further, the lubricating oil 62 stored in the gear case 18 is cooled by the cooling water passing through the cooling water passage 88. That is, in this embodiment, the lubricating oil 62 is cooled using the cooling water so that the temperature of the lubricating oil 62 provided for cooling by the operation of the oil supply pumps 70 and 80 is kept constant. Specifically, the control device 92 monitors the temperature of the lubricating oil 62 through the temperature sensor 93 and controls the electromagnetic valve 91 so that the temperature of the lubricating oil 62 is maintained at a preset cooling temperature. The control device 92 opens and closes the electromagnetic valve 91 according to the temperature of the lubricating oil 62 detected by the temperature sensor 93 to adjust the flow of the cooling water in the cooling water passage 88. In other words, when the temperature of the lubricating oil 62 is likely to rise, the control device 92 opens the solenoid valve 91 and passes the cooling water through the cooling water passage 88 to prevent the temperature of the lubricating oil 62 in the gear case 18 from rising. To do. In addition, when the temperature of the lubricating oil 62 is likely to be low, the control device 92 closes the solenoid valve 91 so that the cooling water does not pass through the cooling water passage 88 and cools the lubricating oil 62 with the cooling water. Do not do it. In this case, the heat of the lubricating oil 62 collected in the oil storage chamber 61 prevents the temperature of the lubricating oil 62 stored in the oil storage chamber 61 from decreasing.
[0040] 一定の温度に保たれた潤滑油 62を油回収路 48、 58に通すことにより、回転軸 25、 35と軸保持体 28、 38との温度差が好適に抑制され、回転軸 25、 35の熱膨張が抑 帘 Uされる。これ【こより、回転軸 25、 35の熱膨張【こ起因して軸受 42a、 42b、 43a, 43b 、 52a、 52b、 53a、 53bに軸方向への負荷が力かることが好適に抑制される。 この実施形態に係る真空ポンプ 10は以下の利点を有する。 [0040] By passing the lubricating oil 62 maintained at a constant temperature through the oil recovery passages 48, 58, the temperature difference between the rotary shafts 25, 35 and the shaft holders 28, 38 is suitably suppressed, and the rotary shaft 25 The thermal expansion of 35 is suppressed. As a result, the thermal expansion of the rotary shafts 25 and 35 is preferably suppressed from applying an axial load to the bearings 42a, 42b, 43a, 43b, 52a, 52b, 53a and 53b. The vacuum pump 10 according to this embodiment has the following advantages.
(1)温度センサ 93による潤滑油 62の温度の検出結果に基づき、制御装置 92が電磁 弁 91を制御する。それにより、油貯留室 61に貯留された潤滑油 62が一定の温度に 保たれるように、冷却水の流量が調整される。温度が一定に保たれた潤滑油 62を油 回収路 48、 58に通すことにより、回転軸 25、 35及び軸保持体 28、 38を冷却するこ とができる。結果として、回転軸 25と軸保持体 28との間の温度差の発生、及び回転 軸 35と軸保持体 38との間の温度差の発生を抑制することができる。  (1) Based on the detection result of the temperature of the lubricating oil 62 by the temperature sensor 93, the control device 92 controls the solenoid valve 91. Thereby, the flow rate of the cooling water is adjusted so that the lubricating oil 62 stored in the oil storage chamber 61 is maintained at a constant temperature. By passing the lubricating oil 62 maintained at a constant temperature through the oil recovery passages 48 and 58, the rotary shafts 25 and 35 and the shaft holders 28 and 38 can be cooled. As a result, it is possible to suppress the occurrence of a temperature difference between the rotating shaft 25 and the shaft holder 28 and the occurrence of a temperature difference between the rotating shaft 35 and the shaft holder 38.
(2)アンギユラ玉軸受 42a、 42b、 43a、 43b、 52a, 52b、 53a、 53bは、回転軸 25、 35及び軸保持体 28、 38に対し、軸方向へ移動不能に固定されている。しかし、本実 施形態では、回転軸 25、 35と軸保持体 28、 38との間の温度差の発生が抑制される ことにより、軸保持体 28、 38に対する回転軸 25、 35の軸方向への変位を招く熱膨張 力 S抑帘 Uされて ヽる。このため、軸受 42a、 42b, 43a, 43b, 52a, 52b, 53a, 53bに 軸方向への負荷力 Sかかることを好適に抑制することが可能となる。  (2) Anguilla ball bearings 42a, 42b, 43a, 43b, 52a, 52b, 53a, 53b are fixed to the rotary shafts 25, 35 and the shaft holders 28, 38 so as not to move in the axial direction. However, in this embodiment, the occurrence of a temperature difference between the rotary shafts 25 and 35 and the shaft holders 28 and 38 is suppressed, so that the axial directions of the rotary shafts 25 and 35 relative to the shaft holders 28 and 38 are reduced. The thermal expansion force that causes the displacement to S is suppressed. Therefore, it is possible to suitably suppress the axial load force S from being applied to the bearings 42a, 42b, 43a, 43b, 52a, 52b, 53a, 53b.
(3)各軸受 42a、 42b、 43a、 43b、 52a, 52b、 53a、 53bに負荷力 S力力ることを抑帘 lj できるので、各軸受の信頼性が向上し、真空ポンプ 10の消費電力も低減できる。 (3) Each bearing 42a, 42b, 43a, 43b, 52a, 52b, 53a, 53b can be restrained from applying a load force S, thus improving the reliability of each bearing and the power consumption of the vacuum pump 10. Can also be reduced.
(4)各軸受 42a、 42b、 43a、 43b、 52a, 52b、 53a、 53bに負荷力 S力力ることを抑帘 lj できるので、端部側軸受部 42、 52と基部側軸受部 43、 53との間の距離を大きく設 定することができるなど、回転軸 25、 35に対する軸受部 43、 53の配置の自由度が 向上する。 (4) Since it is possible to suppress the load force S from being applied to each bearing 42a, 42b, 43a, 43b, 52a, 52b, 53a, 53b, the end side bearing portions 42, 52 and the base side bearing portion 43, The degree of freedom of arrangement of the bearing portions 43 and 53 with respect to the rotary shafts 25 and 35 is improved, for example, the distance between them can be set large.
(5)軸受 42a、 42b、 43a、 43b、 52a, 52b、 53a、 53b力回転軸 25、 35及び軸保持 体 28、 38に固定されているので、回転軸 25、 35の横振れや縦振れを防止すること ができ、回転軸 25、 35の回転速度に関係なく真空ポンプ 10における振動や騒音を 抑帘 Uすることができる。  (5) Since the bearings 42a, 42b, 43a, 43b, 52a, 52b, 53a, 53b are fixed to the rotary shafts 25, 35 and the shaft holders 28, 38, the horizontal and vertical runout of the rotary shafts 25, 35 The vibration and noise in the vacuum pump 10 can be suppressed regardless of the rotational speed of the rotary shafts 25 and 35.
(6)端部側軸受部 42、 52の下側にて潤滑油 62を油回収路 48、 58へ供給するように したので、油回収路 48、 58に供給される潤滑油 62は、端部側軸受部 42、 52の摺動 熱の影響を受けに《なり、油回収路 48、 58における潤滑油 62の温度管理が容易と なる。  (6) Since the lubricating oil 62 is supplied to the oil recovery passages 48 and 58 below the end side bearing portions 42 and 52, the lubricating oil 62 supplied to the oil recovery passages 48 and 58 is Due to the influence of sliding heat of the side bearings 42 and 52, the temperature control of the lubricating oil 62 in the oil recovery passages 48 and 58 becomes easy.
(7)潤滑油 62が油貯留室 61に回収される途中で同期ギヤ 47、 57を経由することに よって、同期ギヤ 47、 57の潤滑も行うことができる。 (7) In the middle of the recovery of the lubricating oil 62 to the oil storage chamber 61, the synchronous oil 47, 57 Therefore, the synchronization gears 47 and 57 can be lubricated.
[0042] なお、本発明は、上記の実施形態に限定されるものではなぐ発明の趣旨の範囲 内で例えば以下のような変更が可能である。  It should be noted that the present invention is not limited to the above-described embodiment, and modifications such as the following can be made within the scope of the gist of the invention.
給油ポンプ 70、 80は、トロコイドポンプに代えて、ギヤポンプであってもよい。  Oil pumps 70 and 80 may be gear pumps instead of trochoid pumps.
[0043] 雄ロータの歯及び雌ロータ歯溝のリード角は一定であってもよ!/、。  [0043] The lead angle of the teeth of the male rotor and the female rotor tooth groove may be constant! /.
上記の実施形態では、各軸受部が 2つのアンギユラ玉軸受の背面組み合わせによ つて構成された力 正面組み合わせ又は並列組み合わせによって構成されてもょ ヽ 。また、各軸受部はアンギユラ玉軸受に限らず、一般的な深みぞ式のころがり軸受に よって構成されてもよい。さらに、ころがり軸受の数も特に限定されず、各軸受部は 3 つ以上のころがり軸受によって構成されてもよい。なお、軸保持体に対する回転軸の 横振れ防止のためには、アンギユラ玉軸受の背面組み合わせが好ま 、。  In the above embodiment, each bearing portion may be configured by a force front combination or a parallel combination formed by a back combination of two angular ball bearings. Further, each bearing portion is not limited to an angular ball bearing, and may be constituted by a general deep groove type rolling bearing. Further, the number of rolling bearings is not particularly limited, and each bearing portion may be constituted by three or more rolling bearings. In addition, the back combination of an anguilla ball bearing is preferred to prevent the side shaft of the rotating shaft from swinging against the shaft holder.
[0044] 開閉切替型の電磁弁 91に代えて、サーモスタットを用いてもよぐあるいは、比例制 御により開度調整が可能な流量制御弁を用いてもょ 、。  [0044] Instead of the open / close switching type electromagnetic valve 91, a thermostat may be used, or a flow rate control valve whose opening degree can be adjusted by proportional control may be used.
短管路 45、 55を端部側軸受部 42、 52の上側に設けて、端部側軸受部 42、 52の 上側から潤滑油を供給するようにしてもよい。この場合、潤滑油は端部側軸受部 42、 52の摺動熱の影響を受けるが、この摺動熱の影響を考慮して潤滑油を冷却すれば 、前記実施形態とほぼ同等の効果を得ることができる。  The short pipes 45 and 55 may be provided on the upper side of the end side bearing portions 42 and 52, and the lubricating oil may be supplied from the upper side of the end side bearing portions 42 and 52. In this case, the lubricating oil is affected by the sliding heat of the end side bearing portions 42 and 52, but if the lubricating oil is cooled in consideration of the influence of the sliding heat, the effect almost the same as that of the above embodiment is obtained. Obtainable.
[0045] 雄ロータ側 21の軸保持体 28と雌ロータ 31側の軸保持体 38とを互いに完全な別部 材としてもよい。この場合、両軸保持体 28、 38の製作及び真空ポンプの組立が容易 となる。  [0045] The shaft holder 28 on the male rotor side 21 and the shaft holder 38 on the female rotor 31 side may be completely separate from each other. In this case, both shaft holders 28 and 38 can be easily manufactured and the vacuum pump can be assembled.
[0046] 本発明のスクリュー式流体機械は、スクリュー型真空ポンプに限らず、スクリュー型 圧縮機に適用されてもよい。  [0046] The screw type fluid machine of the present invention is not limited to the screw type vacuum pump, but may be applied to a screw type compressor.

Claims

請求の範囲 The scope of the claims
[1] ハウジングと、  [1] a housing;
前記ハウジングに収容され、相互に嚙合される一対のスクリュー状のロータと、 前記両ロータに対しそれぞれ同軸となるように連結される一対の回転軸であって、 各回転軸は前記ハウジング力 突出する端部を有することと、  A pair of screw-shaped rotors housed in the housing and mated with each other; and a pair of rotating shafts connected to the two rotors so as to be coaxial with each other, each rotating shaft protruding from the housing force Having an end,
前記ハウジング内を延びる一対の筒状の軸保持体であって、各軸保持体は、第 1 端部及び第 2端部を有するとともに、前記両回転軸の一方が挿通される貫通孔を有 することと、  A pair of cylindrical shaft holders extending in the housing, each shaft holder having a first end and a second end, and having a through-hole through which one of the rotating shafts is inserted. To do
前記第 1端部において前記貫通孔にそれぞれ装着される第 1軸受部と、 前記第 2端部において前記貫通孔にそれぞれ装着される第 2軸受部であって、前 記第 1及び第 2軸受部の各対は、対応する前記回転軸を前記軸保持体に対して回 転可能に支持し、第 1及び第 2軸受部の各対は、対応する前記回転軸及び前記軸 保持体に対して軸方向に固定されることと、  A first bearing portion mounted in the through hole at the first end portion; and a second bearing portion mounted in the through hole at the second end portion, the first and second bearings. Each pair of parts rotatably supports the corresponding rotating shaft with respect to the shaft holder, and each pair of the first and second bearing parts supports the corresponding rotating shaft and the shaft holder. Fixed in the axial direction,
前記ハウジング力 突出する前記両回転軸の前記端部にそれぞれ設けられる同期 ギヤと、  A synchronous gear provided at each of the ends of the two rotating shafts protruding from the housing force;
前記同期ギヤが収容されるギヤケースであって、該ギヤケースは潤滑油を貯留し得 る油貯留空間を画定することと、  A gear case in which the synchronous gear is housed, the gear case defining an oil storage space in which lubricating oil can be stored;
冷却流体を用いて前記潤滑油を冷却する冷却部と、  A cooling unit that cools the lubricating oil using a cooling fluid;
前記冷却流体の流量を制御する流量変更部と、  A flow rate changing unit for controlling the flow rate of the cooling fluid;
前記油貯留空間内に設けられ、前記潤滑油の温度を検知する温度センサと、 前記油貯留空間内の潤滑油の温度が一定に維持されるように、前記温度センサに よって検知された温度に応じて前記流量変更部を制御する制御部と  A temperature sensor that is provided in the oil storage space and detects the temperature of the lubricating oil; and a temperature detected by the temperature sensor so that the temperature of the lubricating oil in the oil storage space is maintained constant. And a control unit for controlling the flow rate changing unit according to
を備えるスクリュー式流体機械。  A screw type fluid machine comprising:
[2] 前記第 1及び第 2軸受部の各々は、少なくとも 2つのころがり軸受の組み合わせによ り構成されて ヽる請求項 1に記載のスクリュー式流体機械。 [2] The screw type fluid machine according to [1], wherein each of the first and second bearing portions is configured by a combination of at least two rolling bearings.
[3] 前記ころがり軸受はアンギユラ玉軸受を含む請求項 2に記載のスクリュー式流体機 械。 [3] The screw type fluid machine according to claim 2, wherein the rolling bearing includes an anguilla ball bearing.
[4] 前記冷却部は、前記冷却流体の通過を許容するように前記ギヤケース内を延びる 冷却水通路を含む請求項 1〜3の何れか一項に記載のスクリュー式流体機械。 [4] The cooling section extends in the gear case so as to allow the cooling fluid to pass therethrough. The screw type fluid machine according to any one of claims 1 to 3, comprising a cooling water passage.
[5] 前記油貯留空間内の潤滑油を用いて前記軸保持体及び前記回転軸を冷却すべく 、前記回転軸によってそれぞれ駆動される油供給部をさらに備える請求項 1〜4の何 れか一項に記載のスクリュー式流体機械。 [5] Any one of claims 1 to 4, further comprising oil supply units respectively driven by the rotary shaft to cool the shaft holder and the rotary shaft using the lubricating oil in the oil storage space. The screw type fluid machine according to one item.
[6] 前記各軸保持体の内周面とそれに対応する前記回転軸の外周面との間には間隙 が設けられ、前記回転軸には、同回転軸の前記端部に開口する入口と前記間隙に 連通する出口とを有する油供給路が形成され、前記油供給部は各回転軸の前記端 部に設けられるポンプであって、該ポンプは前記油貯留空間内の潤滑油を対応する 回転軸の油供給路の入口に供給する請求項 5に記載のスクリュー式流体機械。 [6] A gap is provided between the inner peripheral surface of each shaft holder and the corresponding outer peripheral surface of the rotary shaft, and the rotary shaft has an inlet opening at the end of the rotary shaft. An oil supply passage having an outlet communicating with the gap is formed, and the oil supply portion is a pump provided at the end portion of each rotating shaft, and the pump corresponds to lubricating oil in the oil storage space. The screw-type fluid machine according to claim 5, wherein the screw-type fluid machine is supplied to an inlet of an oil supply passage of the rotary shaft.
PCT/JP2006/325864 2005-12-26 2006-12-26 Screw-type fluid machine WO2007074807A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06843248A EP1967734A1 (en) 2005-12-26 2006-12-26 Screw-type fluid machine
US12/159,186 US20100233006A1 (en) 2005-12-26 2006-12-26 Screw-type fluid machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-372225 2005-12-26
JP2005372225A JP2007170341A (en) 2005-12-26 2005-12-26 Screw type fluid machine

Publications (1)

Publication Number Publication Date
WO2007074807A1 true WO2007074807A1 (en) 2007-07-05

Family

ID=38218027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325864 WO2007074807A1 (en) 2005-12-26 2006-12-26 Screw-type fluid machine

Country Status (4)

Country Link
US (1) US20100233006A1 (en)
EP (1) EP1967734A1 (en)
JP (1) JP2007170341A (en)
WO (1) WO2007074807A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115853780A (en) * 2022-11-10 2023-03-28 江阴华西节能技术有限公司 Variable-pitch screw vacuum pump

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101065288B1 (en) * 2008-09-11 2011-09-16 주식회사 에스백 Vacuum pump of cooling
GB201107451D0 (en) * 2011-05-05 2011-06-15 Howden Compressors Ltd Fluid machine
KR101406474B1 (en) 2012-11-08 2014-06-12 주식회사 포스코 Metal pump of plating facilities
EP2935919A1 (en) * 2012-12-20 2015-10-28 Aktiebolaget SKF Machine arrangement
DE102014107709A1 (en) * 2014-06-02 2015-12-03 Pfeiffer Vacuum Gmbh vacuum pump
US10495090B2 (en) * 2015-08-27 2019-12-03 Ingersoll-Rand Company Rotor for a compressor system having internal coolant manifold
DE102016011443A1 (en) * 2016-09-21 2018-03-22 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Screw compressor for a commercial vehicle
DE102019205258A1 (en) * 2019-04-11 2020-10-15 Gardner Denver Nash Llc Screw compressors

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04314991A (en) 1991-02-01 1992-11-06 Hitachi Ltd Lubricating oil cooling structure for screw vacuum pump
JPH10141260A (en) * 1996-11-12 1998-05-26 Dia Shinku Kk Oil circulating-type mechanical pump
JPH11182478A (en) * 1997-12-24 1999-07-06 Kobe Steel Ltd Screw type refrigerating machine
JPH11508015A (en) * 1995-06-21 1999-07-13 ジヒ・インダストリー・コンサルト・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Multi-stage screw spindle compressor
JP2000064975A (en) * 1998-06-17 2000-03-03 Boc Group Plc:The Improvement of vacuum pump
WO2004074690A1 (en) * 2003-02-24 2004-09-02 Rietschle Thomas Schopfheim Gmbh Rotary piston pump
JP2005248741A (en) * 2004-03-02 2005-09-15 Tadahiro Omi Vacuum pump

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4780061A (en) * 1987-08-06 1988-10-25 American Standard Inc. Screw compressor with integral oil cooling
FR2637655B1 (en) * 1988-10-07 1994-01-28 Alcatel Cit SCREW PUMP TYPE ROTARY MACHINE
JPH08100779A (en) * 1994-10-04 1996-04-16 Matsushita Electric Ind Co Ltd Vacuum pump
DE19963172A1 (en) * 1999-12-27 2001-06-28 Leybold Vakuum Gmbh Screw-type vacuum pump has shaft-mounted rotors each with central hollow chamber in which are located built-in components rotating with rotor and forming relatively narrow annular gap through which flows cooling medium
US6793466B2 (en) * 2000-10-03 2004-09-21 Ebara Corporation Vacuum pump
JP4056691B2 (en) * 2000-11-02 2008-03-05 株式会社神戸製鋼所 Bearing cooling method and bearing cooling device
DE10156179A1 (en) * 2001-11-15 2003-05-28 Leybold Vakuum Gmbh Cooling a screw vacuum pump
JP2007126993A (en) * 2005-11-01 2007-05-24 Toyota Industries Corp Vacuum pump

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04314991A (en) 1991-02-01 1992-11-06 Hitachi Ltd Lubricating oil cooling structure for screw vacuum pump
JPH11508015A (en) * 1995-06-21 1999-07-13 ジヒ・インダストリー・コンサルト・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Multi-stage screw spindle compressor
JPH10141260A (en) * 1996-11-12 1998-05-26 Dia Shinku Kk Oil circulating-type mechanical pump
JPH11182478A (en) * 1997-12-24 1999-07-06 Kobe Steel Ltd Screw type refrigerating machine
JP2000064975A (en) * 1998-06-17 2000-03-03 Boc Group Plc:The Improvement of vacuum pump
WO2004074690A1 (en) * 2003-02-24 2004-09-02 Rietschle Thomas Schopfheim Gmbh Rotary piston pump
JP2005248741A (en) * 2004-03-02 2005-09-15 Tadahiro Omi Vacuum pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115853780A (en) * 2022-11-10 2023-03-28 江阴华西节能技术有限公司 Variable-pitch screw vacuum pump
CN115853780B (en) * 2022-11-10 2023-09-12 江阴华西节能技术有限公司 Variable pitch screw vacuum pump

Also Published As

Publication number Publication date
US20100233006A1 (en) 2010-09-16
JP2007170341A (en) 2007-07-05
EP1967734A1 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
WO2007074807A1 (en) Screw-type fluid machine
KR101860009B1 (en) Scroll fluid machine
EP1975412A2 (en) Shaft seal device for oil-free rotary compressor
WO2016173319A1 (en) Scroll compressor
JP2011174453A (en) Scroll compressor
US6663367B2 (en) Shaft seal structure of vacuum pumps
JP5145252B2 (en) Scroll compressor and refueling method of scroll compressor
US6685453B2 (en) Fluid transfer machine with drive shaft lubrication and cooling
JP2007192096A (en) Rotary gas compressor
CN107923395A (en) Screw compressor
US6589026B2 (en) Fluid machinery having a helical mechanism with through holes for ventilation
JPH10281089A (en) Vacuum pump
JP2009257337A (en) Scroll type fluid machine
JP2007162679A (en) Fluid machine
JP2007247567A (en) Scroll compressor
JP2020094557A (en) Fluid machine
JP2006322340A (en) Method and device for cooling bearing part of vacuum pump
JP3270257B2 (en) Roots type vacuum pump
US11835046B2 (en) Main bearing housing assembly and scroll compressor having the main bearing housing assembly
JP2001329985A (en) Cooling structure for vacuum pump
JP4935511B2 (en) Scroll compressor
JP5463340B2 (en) Scroll compressor
JP7186055B2 (en) scroll compressor
KR950013896B1 (en) Scroll type compressor
JP2005139977A (en) Scroll type fluid machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006843248

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE