WO2007074191A2 - Efecto sinérgico entre un sistema cianogénico y otro inductor oxidativo para el tratamiento de tumores - Google Patents

Efecto sinérgico entre un sistema cianogénico y otro inductor oxidativo para el tratamiento de tumores Download PDF

Info

Publication number
WO2007074191A2
WO2007074191A2 PCT/ES2006/000702 ES2006000702W WO2007074191A2 WO 2007074191 A2 WO2007074191 A2 WO 2007074191A2 ES 2006000702 W ES2006000702 W ES 2006000702W WO 2007074191 A2 WO2007074191 A2 WO 2007074191A2
Authority
WO
WIPO (PCT)
Prior art keywords
linamarase
glucose oxidase
treatment
pharmaceutical composition
protein
Prior art date
Application number
PCT/ES2006/000702
Other languages
English (en)
French (fr)
Other versions
WO2007074191A3 (es
Inventor
Marta Izquierdo Rojo
Vega Garcia-Escudero Barreras
Ricardo Gargini
Original Assignee
Universidad Autonoma De Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Autonoma De Madrid filed Critical Universidad Autonoma De Madrid
Priority to US12/161,992 priority Critical patent/US20100028366A1/en
Priority to EP06841754A priority patent/EP2003197A2/en
Priority to CA002635375A priority patent/CA2635375A1/en
Priority to JP2008546495A priority patent/JP2009520773A/ja
Publication of WO2007074191A2 publication Critical patent/WO2007074191A2/es
Publication of WO2007074191A3 publication Critical patent/WO2007074191A3/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/44Oxidoreductases (1)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/45Transferases (2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/44Oxidoreductases (1)
    • A61K38/443Oxidoreductases (1) acting on CH-OH groups as donors, e.g. glucose oxidase, lactate dehydrogenase (1.1)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/47Hydrolases (3) acting on glycosyl compounds (3.2), e.g. cellulases, lactases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)

Definitions

  • the present invention relates to a composition and method capable of killing tumor cells, which comprises the synergistic activity established between the cyanogenic and oxidative stress inducing systems.
  • the linamarase-linamarin system is based on the use of a gene of plant origin (linamarase, lis) that encodes a ⁇ -glucosidase that is capable of transforming the harmless linamarin substrate (lin, 2-hydroxy-isobutyronitrile- ⁇ -D-glucopyranoside ) to produce acetone cyanhydrine and glucose (Cortés, et al., 1998, Hughes, et al 1992; Cortés, et al., 2002).
  • Acetone cyanhydrine is unstable at pH higher than 6 and temperatures greater than 3O 0 C, transforming spontaneously into acetone and cyanide (Selmar, et al., 1987).
  • the linamarase gene is introduced into the target cells by means of retroviral vectors, (eg derived from murine leukemia virus, MLV) adenoviral (eg derived from Ad5) or non-viral (plasmid transfection).
  • retroviral vectors eg derived from murine leukemia virus, MLV
  • adenoviral eg derived from Ad5
  • non-viral plasmid transfection
  • the cyanide has the ability to bind and activate the cytochrome c oxidase enzyme, blocking the electron transport chain of the oxidative phosphorylation, negatively influencing the mitochondrial respiration function. This causes an increase in the production of reactive oxygen species (ROS) in the mitochondria while blocking the energy production in the form of adenosine triphosphate (ATP) via oxidative phosphorylation.
  • ROS reactive oxygen species
  • the technique of the present invention is based on the fact that the combination of both systems, // s / lin and GO, has not been described previously. Based on this synergistic activity, the therapeutic power of the linamarase / linamarin system is enhanced, since the levels of oxidative stress achieved in the tumor cells considerably increase when the glucose oxidase system is used in combination with the linamarase / linamarin system.
  • a vector is used to introduce the linamarase gene and the glucose oxidase enzyme into the tumor cell.
  • this combination causes the change of the type of death from necrosis to apoptosis independent of caspases but by a mechanism different from those known so far since it is independent of AIF and PARP (PolyfADP-Ribose] polymerase).
  • the present invention offers several possibilities regarding the inclusion of the glucose oxidase system.
  • the glucose oxidase gene could be introduced into tumor cells through a viral or non-viral vector.
  • Another possible improvement would be the inoculation of the purified enzyme by means of controlled release systems or by the use of
  • This system counteracts the possible known resistance mechanisms of tumor cells to death.
  • this invention based on one of its aspects on a local injection of adenovirus, allows both tumor cells that are actively dividing and the vast majority that are quiescent to be infected.
  • This also includes the infection of the tumor stem cells that are thought to be the initiators of the tumor and responsible for metastases and recurrences, the main cause of cancer mortality. Additionally, this system, because the production of cyanide and peroxide is mostly extracellular, compensates for the low infection rates in vivo.
  • a first aspect of the present invention refers to a system capable of producing the death of tumor cells by activation of caspase independent apoptosis, comprising:
  • compositions of the invention a) a cyanogenic system comprising the enzymatic activity exerted by the linamarase on the linamarin and an oxidative stress inducing system comprising the oxidative activity exerted by the glucose oxidase enzyme combined in a single composition, (hereinafter single composition) or b) a cyanogenic system comprising the enzymatic activity exerted by linamarase on the linamarin and an oxidative stress inducing system comprising the oxidative activity exerted by the glucose oxidase enzyme present in independent compositions, (hereinafter compositions of the invention)
  • a single composition is understood as one which comprises at least the essential elements (in the form of vectors, proteins or others) of the cyanogenic system and the oxidative stress system and is capable of causing the death of tumor cells by caspase independent apoptosis activation.
  • compositions of the invention are understood to mean at least two compositions where at least one of them comprises at least one indispensable element (in the form of a vector, protein or others) of the cyanogenic system and the other comprises at least one indispensable element (in the form of a vector, protein or others) of the oxidative stress system and whose combination produces the death of tumor cells by activation of independent caspase apoptosis.
  • the composition of the invention when referring to the single composition or the compositions of the invention, the composition of the invention will be discussed.
  • the cyanogenic system of the composition of the invention comprises the linamarase-linamarin system. That is, the enzymatic activity exerted by linamarase on linamarin, which acts as a substrate for the reaction.
  • composition of the invention comprises the activity of the glucose oxidase enzyme. That is, the oxidative activity exerted by the glucose oxidase enzyme on the glucose that acts as a substrate.
  • composition of the invention comprises the linamarase-linamarin system and the oxidative stress inducing system of the composition of the invention comprises the enzyme glucose oxidase.
  • the composition of the invention comprises the linamarase gene and the glucose oxidase gene combined in a single viral or non-viral vector.
  • the composition of the invention comprises the linamarase gene and the glucose oxidase gene in independent, viral or non-viral vectors.
  • the composition of the invention comprises the linamarase gene, introduced into a viral or non-viral vector, and the purified glucose oxidase protein or the like, fragments or derivatives of said protein.
  • the composition of the invention comprises the glucose oxidase gene, introduced into a viral or non-viral vector, and the purified linamarase protein or the like, fragments or derivatives of said protein.
  • the composition of the invention comprises the glucose oxidase protein and the linamarase protein or the like, fragments or derivatives of said proteins.
  • the composition of the invention comprises the purified glucose oxidase protein and / or the purified linamarase protein as well as analogs, fragments or derivatives of said proteins and a controlled release system of said proteins.
  • the composition of the invention comprises the recombinant purified glucose oxidase protein and / or the recombinant purified linamarase protein as well as analogs, fragments or derivatives of said proteins bound to antibodies directed against tumor antigens.
  • a sixth aspect of the present invention comprises a vector, viral or non-viral, capable of producing the death of tumor cells by activation of apoptosis independent of caspases, which comprises a cyanogenic system and an oxidative stress inducing system.
  • a preferred aspect of the present invention comprises a vector, viral or non-viral, capable of producing the death of tumor cells by activation of apoptosis independent of caspases, which comprises the combination of the linamarase and glucose oxidase genes or any modification thereof, and either natural or by genetic engineering, in a single vector.
  • the present invention comprises at least two vectors, viral or non-viral, comprising the genes linamarase and glucose oxidase or any modification thereof, whether natural or by genetic engineering, in independent vectors whose combination is capable of causing the death of tumor cells by activation of caspase independent apoptosis .
  • Another embodiment of the present invention comprises an adenoviral and / or retroviral vector comprising the linamarase and / or glucose oxidase genes.
  • a seventh aspect of the present invention it comprises the use of the vector / s of the present invention for the preparation of a pharmaceutical composition for the treatment of tumors.
  • composition of the invention for its use in therapy.
  • composition of the invention refers to the use of the composition of the invention for the preparation of a pharmaceutical composition for the treatment of tumors.
  • an eighth aspect of the present invention comprises but is not limited to a pharmaceutical composition intended for the treatment of breast cancer, lung cancer, head and neck cancer, pancreas cancer, prostate cancer, colon cancer, melanomas, osteosarcomas, adenocarcinomas, leukemias or glioblastoma.
  • a ninth aspect of the present invention comprises an in vitro method or In vivo (hereinafter method of the invention) capable of producing the death of tumor cells by activation of apoptosis independent of caspases, which comprises the combination of two systems: a cyanogenic system and an oxidative stress inducing system.
  • the cyanogenic system of the method of the invention comprises the linamarase-linamarin system.
  • the oxidative stress inducing system of the method of the invention comprises the activity of the glucose oxidase enzyme.
  • the oxidative stress inducing system of the method of the invention comprises the activity of the glucose oxidase enzyme and the cyanogenic system of the method of the invention comprises the linamarase-linamarin system.
  • any of the compositions of the invention are used in the embodiment of the method of the invention.
  • any of the pharmaceutical compositions or vectors of the invention are used for carrying out the method of the invention
  • analogs, derivatives or fragments of the linamarase or glucose oxidase proteins are understood to be those that are capable of producing the synergistic effect claimed in the present invention.
  • FIG. 1 Images of confocal microscopy of cells that have red mitochondria by transfection of plasmid pdsRed2-mito, and nucleus in blue by staining with To-Pro-3. Representative images of the mitochondrial pattern of the untreated control cells (A), linamarin treated cells (500 ⁇ g / ml) were shown at 48 h (B) and 72 h (C) after treatment was initiated, glucose oxidase treated cells ( 5 mUE / ml) (D) and cells treated with the combined therapy with glucose oxidase (5 mUE / ml) and linamarin (500 ⁇ g / ml) at 24 h (E and F) or at 48 h (G) of the treatment .
  • Figures (A) and (B) show the analysis of cell survival / death as a function of the mitochondrial activity of W & W / Zs cells.
  • Figure (A) shows the study of the decrease in intracellular ATP levels. The estimate was made over time in W&W // S cells treated with linamarin (500 ⁇ g / ml) and / or glucose oxidase (5 mUE / ml). The values show the mean ⁇ the standard deviations of the percentage of relative light units (RLU) of two independent samples for each point with respect to the value obtained from the cells without try.
  • Figure Ia (B) shows the production of extracellular hydrogen peroxide.
  • Figure 4 Characterization of the type of death of the system in W & W / Zs cells by flow cytometry marking with annexin V-FITC and propidium iodide.
  • FIG. 5 Study of the location of IDA by immunofluorescence in W&W // S cells.
  • the cores were marked with To-Pro-3.
  • the cells were treated with 5 mUE / ml glucose oxidase (A) or glucose oxidase and 500 ⁇ g / ml linamarin (B).
  • FIG. 7 Study of the therapeutic action of the system in immunodeficient mice.
  • the mice were inoculated with W&W // S (AH) cells or with W&W (I and J) cells on both flanks of which one was treated with 0.1 mg / g (A), 0.25 mg / g (B ) and 0.35 mg / g of linamarin (C); or with the combination therapy with 0.1 mUE / ml of GO and 0.1 mg / g (D), 0.25 mg / g (E) and 0.35 mg / g of linamarin (F).
  • W&W // S (AH) cells or with W&W (I and J) cells on both flanks of which one was treated with 0.1 mg / g (A), 0.25 mg / g (B ) and 0.35 mg / g of linamarin (C); or with the combination therapy with 0.1 mUE / ml of GO and 0.1 mg / g (D), 0.25 mg / g (
  • the present invention relates, among other aspects, to the composition and method for the treatment of tumor cells, which comprises the synergistic activity established between two systems: cyanogenic and oxidative stress inducer.
  • the cyanogenic system comprises the enzymatic activity exerted by the linamarase on the linamarin, which acts as a substrate of the reaction.
  • the oxidative stress inducing system comprises the oxidative activity exerted by the glucose oxidase enzyme on the glucose that acts as a substrate.
  • the W & W / Zs cells were stably transfected with the plasmid pdsRed2-mito (Clontech) that contains the gene of a fluorescent red protein that carries a transport signal peptide to the mitochondria.
  • pdsRed2-mito Clontech
  • Fig. 1 A filamentous mitochondrial pattern
  • Fig. 1 B and C the disruption of this matrix occurs, acquiring a dotted pattern
  • Intracellular energy levels in the form of ATP decrease when there is a blockage of the mitochondrial electron transport chain since this is the fundamental source of obtaining energy from the cells.
  • the levels of H 2 O 2 were studied (Fig. 3 B) produced extracellularly in the combined therapy.
  • the amount of H2O2 present in the culture medium of W&W // S cells was analyzed at 48 h in a treatment with 0.5 mg / ml of linamarin, in the presence of 5 mUE / ml of glucose oxidase or in Ia combination of both treatments, although positive results were also obtained using other concentrations.
  • the combined system // s / lin / GO unexpectedly transformed the pattern of death due to cyanide characteristic necrosis (// s / lin) into an apoptosis independent of ATP that also advances cell death about 48 hours, therefore that the therapy is more effective. Since most apoptotic mechanisms, such as apoptosome formation, are dependent on ATP, it is important to determine the proteins that are involved in death in this model.
  • caspases were analyzed for which a death analysis was performed by flow cytometry marking with annexin V-FITC and propidium iodide in the presence of pan-caspasse inhibitor Z-VAD-fmk (100 ⁇ M) (table 4 and figure 4). It was observed that the inhibition of caspases does not produce any effect in the combined therapy // s / lin / GO, so it can be concluded that apoptosis is independent of caspases. As a control, UV irradiated cells (12.5 J / m 2 ) were used, which causes a typical death due to caspase-dependent apoptosis.
  • DIQ 5-isoquinolinediol
  • AIF is a protein that resides in the mitochondria and when activated, it translocates to the nucleus where it activates apoptosis. The possible translocation of IDA was analyzed by
  • the annexin V-FITC and propidium iodide test was performed by flow cytometry.
  • the pattern of death of the system was characterized by adding 5 mUE / ml of glucose oxidase and the combined therapy (5 mUE / ml of GO and 500 ⁇ g / ml of linamarin) at 48 hours, followed by the control of untreated cells and cells incubated with 500 ⁇ g / ml of linamarin at 96 hours.
  • another group of cells underwent the same conditions when but 10 mM of N-acetyl cysteine (NAC) was added.
  • N-acetyl cysteine N-acetyl cysteine
  • the cells treated with the combined therapy were studied at 48 hours in the absence and presence of 100 ⁇ M of Z-VAD-fmk, followed by the control of treatment of the cells with UV under the same conditions. Finally, the cells treated with the combined therapy were shown at 48 hours in the absence and presence of 300 ⁇ M of 1,5-isoquinolinediol (DIQ), observing that the pattern of death is not modified by inhibiting PARP-1 ( Figure 4).
  • DIQ 1,5-isoquinolinediol
  • the toxicity of glucose oxidase was evaluated in Swiss mice of about 20 grams in weight, inoculated intraperitoneally and intravenously with different amounts of the purified enzyme. The doses of 1 and 0.5 EU / g of animal weight had a lethal effect in the first 24 h post-administration.
  • mice were treated with a daily dose of intratumoral linamarin at different concentrations (0.5; 0.35; 0.25 or 0.10 mg lin / g of animal weight ).
  • the increase in the doses of linamarin not only did not improve the therapeutic results but also caused the death of three of the four animals with the daily dose of 0.35 mg lin / g on the fifth day of treatment (Fig. 7 C) and of all animals treated with 0.5 mg lin / g between the fourth and fifth day of treatment.
  • plasmid, retroviral and adenoviral vectors were used as a way of introducing the plant gene of the linamarase into the tumor cell. Once said gene was found inside the cancer cell, it was expressed by synthesizing the enzyme linamarase.
  • the enzyme linamarase was secreted naturally to the cell outside, where it was found with its linamarin substrate, and catalyzed the reaction whereby linamarin, introduced into the animal by injection, decomposed into glucose and cyanhydric acetone which spontaneously gave rise to two compounds, acetone and cyanide, the latter responsible for the death of the tumor cell.
  • Example 1 Main steps taken to carry out an aspect of the present invention.
  • Example 2 Obtaining a cell line that stably expresses the linamarase.
  • W&W canine glioblastoma cells (Wodinsky, et al., 1969) were transfected with the plasmid pILE (6.9 Kb) which presents the CMV promoter (588 bp), followed by an intron and a polycloning region in Ia that the epolis gene (linamarase that carries the extracellular export signal of human erythropoietin) (1625 bp) was cloned, followed by an IRES (568 bp) and the pac gene (puromycin resistance) (602 bp) and the signal SV40 polyadenylation.
  • cationic lipids Lypofectamine Plus
  • the cells were washed with PBS supplemented with 1% bovine serum albumin and propidium iodide was added to a final concentration of 20 ⁇ g / ml, incubating at room temperature for 1 hour. Data acquisition and analysis was performed using a FACSCalibur flow cytometer (DB Biosciences) with the CeII Quest program.
  • Example 5 Analysis of the structural modifications of the mitochondria during the treatment.
  • Transfection was performed analogously to the previous section and clones were selected for resistance to neomycin (0.75 and 1.5 mg / ml respectively).
  • the cells from stable expression clones of the protein were seeded in multi-well plates on coverslips (2.5x10 4 ) and treated with linamarin (50, 200 or 500 ⁇ g / ml) and glucose oxidase (5 mUE / ml) . After the appropriate incubation time for each experiment (24, 48 or 72 h), the cells were fixed with 4% paraformaldehyde. Staining of the nuclei was performed with To-Pro-3 (Molecular Probes) with a 1/500 dilution for 30 min. The changes were displayed
  • Example 6 Analysis of the cell viability by MTT.
  • the mitochondrial enzyme activity as indicative of cell viability was determined by the use of tetrazolium salts.
  • 10 5 cells / tube culture tubes with a flat side and screw cap were sown to prevent the release of HCN; Nunc) or 10 4 cells / well of 24-well plates closed with parafilm.
  • fresh culture medium supplemented with the concentration of linamarin (between 50 and 500 ⁇ g / ml) and glucose oxidase (5 mUE / ml) necessary for each experiment was added.
  • the medium was supplemented with N-acetyl cysteine (10 mM), 1,5-isoquinolinediol (300 ⁇ M) or Z-VAD-fmk (100 ⁇ M). After the stipulated time in each experiment
  • MTT 3- [4,5-dimethylthiazo-2-yl] -2,5-diphenyl tetrazolium bromide. After 1.5 h of incubation, the medium was removed and 3 ml (for the tubes) or 1 ml (for the 24-well plates) of dimethyl sulfoxide was added to dissolve the formazan. After 10 minutes, the absorbance of the samples at 540 nm was determined.
  • MTT is a tetrazolium salt soluble in an aqueous medium (yellow in color) that is transformed by mitochondrial dehydrogenases in formazan, an insoluble compound in an aqueous medium (purple).
  • Example 7 Immunofluorescences.
  • the cells were seeded on coverslips in 24-well plates and were treated according to the requirements of each experiment. After the appropriate incubation time for each assay, the cells were fixed with 4% paraformaldehyde for 30 minutes at room temperature or methanol at -2O 0 C for 10 min. The samples were subsequently permeabilized 10 min with PBS supplemented with 0.1% triton X or 100% sodium dodecyl sulfate (SDS) and blocked by incubating 30 min with PBS with 0.1% triton X-100 and 1% of bovine serum albumin, or PBS with 0.01% SDS and 10% fetal calf serum.
  • PBS triton X
  • SDS sodium dodecyl sulfate
  • the antibodies used were anti-linamarase (1/200, assigned by Monica Hughes) and anti-AIF (1/50, CeII Signaling Technology)
  • the secondary antibody used was rabbit anti-IgG fluorescein-coupled (1/50, Amersham Pharmacia Biotech).
  • the nuclei were then stained by incubating for 30 minutes with a 1/500 dilution of To-Pro-3 (Molecular Probes).
  • the samples were washed twice with PBS and once with distilled H 2 O and were mounted on slides using Mowiol-DABCO or Polong GoId Antifade (Invitrogen) as the mounting medium.
  • Example 8 Determination of the concentration of extracellular peroxide.
  • Example 9 Measurement of ATP. 10 5 W & W / Zs cells were seeded in screw cap and flat side tubes (Nunc). After 24 h, the medium was changed by adding linamarin (500 ⁇ g / ml) and glucose oxidase (5 mUE / ml) where appropriate. After 4, 8, 12, 24, 48 or 72 hours, the cells were centrifuged and processed following the instructions of the ATP Bioluminescence Assay Kit
  • apoptotic cells were considered to be those that had a positive marking only for annexin V-FITC and late apoptosis or necrosis when they had a positive staining for both annexin-V-FITC and propidium iodide.
  • Example 11 Obtaining primary cultures of glioblastoma explants from patients.
  • Biopsies of the tumors from experimental animals or patients were kept in MEM medium at 20% SFT at 4 0 C until processing. The samples were cut into pieces of approximately 1 mm 3 under sterile conditions. MEM was then added with 20% SFT supplemented with collagenase (106 EU / ml), 0.1 M HEPES buffer pH 7.4, fungizone (0.5 ⁇ g / ml) and DNase (0.02%) and incubated for 16 h at room temperature. The large undigested fragments were then removed by decantation and the cells were collected by centrifugation. The cells were seeded in MEM with 20% SFT until a culture was established. Once the culture was established, after several passes, the medium was replaced by DMEM with 10% SFT.
  • Example 12 Therapy in a model of xenotransplantation with immunodeficient mice tumor cells.
  • mice (nude strain), athymic, weighing approximately 20 grams and 2 months of age were used. These were inoculated with
  • 1-2x10 6 cells subcutaneously on both flanks of the mice by injection in a volume of 50 ⁇ l in complete PBS (supplemented with calcium and magnesium ions) with 0.1% glucose.
  • Tumor size (pi ⁇ / 6 x height x width x length) was measured with a gauge.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicinal Preparation (AREA)

Abstract

La presente invención se refiere a un sistema capaz de producir la muerte de células tumorales por activación de apoptosis independiente de caspasas, que comprende: I- Un sistema cianogénico que comprenda la actividad enzimática ejercida por la linamarasa sobre la linamarina y un sistema inductor de estrés oxidativo que comprenda la actividad oxidativa por la enzima glucosa oxidasa combinados en una composición única o II- Un sistema cianogénico que comprenda la actividad enzimática ejercida por la linamarasa sobre la linamarina y un sistema inductor de estrés oxidativo que comprenda la actividad oxidativa ejercida por la enzima glucosa oxidasa presentes en composiciones independientes.

Description

EFECTO SINÉRGICO ENTRE UN SISTEMA CIANOGÉNICO Y OTRO INDUCTOR OXIDATIVO PARA EL TRATAMIENTO DE TUMORES
La presente invención se refiere a una composición y método capaz de matar células tumorales, que comprende Ia actividad sinérgica establecida entre los sistemas cianogénico e inductor del estrés oxidativo.
ESTADO DE LATÉCNICA ANTERIOR
El sistema linamarasa-linamarina se basa en Ia utilización de un gen de origen vegetal (linamarasa, lis) que codifica una β-glucosidasa que es capaz de transformar el sustrato inocuo linamarina (lin, 2-hydroxi-isobutironitrilo-β- D-glucopiranósido) para producir acetona cianhídrina y glucosa (Cortés, et al., 1998, Hughes, et al 1992; Cortés, et al., 2002). La acetona cianhídrina es inestable a pH superior a 6 y temperaturas mayores de 3O0C, transformándose espontáneamente en acetona y cianuro (Selmar, et al., 1987). El gen de Ia linamarasa se introduce en las células diana por medio de vectores retrovirales, (ej. derivados del virus de leucemia murina, MLV) adenovirales (ej. derivados del Ad5) o bien no virales (transfección de plásmidos). Cuando este gen se expresa en células de mamífero, Ia linamarasa se transporta al exterior celular donde se encuentra con su sustrato linamarina y se produce cianuro (Cortés, et al., 2002). El cianuro tiene Ia capacidad de difundir libremente a través de las membranas celulares (Wisler, et al., 1991 ) y afecta no sólo a las células que producen linamarasa sino a las de su alrededor, por Io que el sistema está asociado a un efecto colateral que incrementa el potencial terapéutico. El cianuro tiene Ia capacidad de unirse e ¡nactivar Ia enzima citocromo c oxidasa, bloqueando Ia cadena transportadora de electrones de Ia fosforilación oxidativa, influyendo negativamente en Ia función de respiración mitocondrial. Esto provoca un incremento en Ia producción de especies reactivas de oxigeno (ROS) en Ia mitocondria a Ia vez que bloquea Ia producción de energía en forma de Adenosín trifosfato (ATP) vía fosforilación oxidativa.
La rápida depleción de los niveles intracelulares de ATP, por bloqueo de Ia fosforilación oxidativa, induce muerte celular por necrosis. Sin embargo, el estrés oxidativo que provoca este bloqueo es limitado, por Io que en Ia presente invención se ha combinado esta terapia con un tratamiento local con glucosa oxidasa (GO) que cataliza Ia conversión de glucosa en ácido glucónico generando peróxido de hidrógeno (H2O2). El incremento de H2O2 promueve Ia generación de especies reactivas de oxígeno (ROS) cuyo exceso influye negativamente sobre las células tumorales.
Hasta Ia actualidad hay diversa literatura que describe Ia utilización del sistema linamarasa/linamarina en terapia génica. Por otra parte, el efecto citotóxico de Ia glucosa oxidasa ya ha sido descrito y hay combinaciones terapéuticas contra tumores malignos basadas en conjugados enzima- anticuerpo en las que una de las enzimas es glucosa oxidasa y Ia otra una peroxidasa.
Sin embargo, tomando como base Ia exposición y conocimientos anteriores y como se puede comprobar en Ia exposición posterior, Ia técnica de Ia presente invención se basa en el hecho de que Ia combinación de ambos sistemas, //s/lin y GO, no ha sido descrita con anterioridad. Basados en dicha actividad sinérgica se consigue potenciar el poder terapéutico del sistema linamarasa/linamarina, ya que los niveles de estrés oxidativo conseguidos en las células tumorales aumenta considerablemente al utilizarse el sistema de Ia glucosa oxidasa en combinación con el sistema linamarasa/linamarina.
Así, en un aspecto de Ia presente invención, se utiliza un vector para introducir en Ia célula tumoral el gen de Ia linamarasa, y Ia enzima glucosa oxidasa. Con ello se consigue tener en el entorno de Ia célula tumoral dos sistemas, uno cianogénico y otro inductor del estrés oxidativo, que al actuar sinérgicamente van a adelantar Ia muerte de las células tumorales por activación de apoptosis independiente de caspasas.
La combinación de ambos sistemas, //s/lin y GO, provoca una clara reacción sinérgica que desemboca en Ia producción de ROS como consecuencia, por un lado, del bloqueo de Ia fosforilación oxidativa causada por el cianuro y, por otro, del H2O2 producido por Ia glucosa oxidasa. Así, como el estrés oxidativo es una señal iniciadora de muerte celular, se utiliza como estrategia para el tratamiento contra el cáncer.
La importancia de esta técnica radica en que Ia combinación de ambos sistemas supera ampliamente el efecto observado por Ia mera adición de respuestas cuando ambos sistemas actuaban por separado, provocando un marcado sinergismo en Ia producción de estrés oxidativo. El hecho de combinar ambos sistemas supone un adelanto temporal evidente en Ia muerte de las células tumorales respecto a Ia muerte observada, en dichas células, cuando éstas eran tratadas únicamente mediante el sistema //s/lin o sólo por Ia adición de GO.
Adicionalmente, esta combinación provoca el cambio del tipo de muerte de necrosis a apoptosis independiente de caspasas pero mediante un mecanismo distinto de los conocidos hasta el momento ya que es independiente de AIF y PARP (PolyfADP-Ribose] polimerase).
Además, Ia presente invención ofrece varias posibilidades respecto a Ia inclusión del sistema de Ia glucosa oxidasa. Por un lado se podría introducir el gen de Ia glucosa oxidasa en las células tumorales a través de un vector viral o no viral. Otra posible mejora sería Ia inoculación del enzima purificado por medio de sistemas de liberación controlada o mediante Ia utilización de
Ia proteína recombinante unida a anticuerpos dirigidos contra antígenos tu morales.
La mayoría de las terapias tradicionales, como quimioterapia y radioterapia, fracasan debido a que las células tumorales acumulan mutaciones que les confieren resistencia a dichos tratamientos, en especial a los que promueven muerte por apoptosis dependiente de caspasas, como mutaciones en los genes que corresponden a las caspasas, p53, etc. Por ello es necesario desarrollar nuevas terapias que sean capaces de superar Ia resistencia adquirida por las células tumorales, por ejemplo sistemas que generen un tipo de muerte independiente de caspasas como el que se describe en Ia presente invención. El incremento extraordinario de estrés oxidativo provocado por el sistema de terapia combinada //s/lin/GO en las células, es una estrategia capaz de provocar Ia rápida fragmentación mitocondrial, Io cual promueve Ia liberación de factores proapoptóticos que convergen en Ia inducción de Ia muerte celular por un proceso de apoptosis independiente de caspasas. Este sistema contrarresta los posibles mecanismos de resistencia conocidos de las células tumorales a Ia muerte. Además, esta invención, al basarse uno de sus aspectos en una inyección local de adenovirus, permite que se infecten tanto las células tumorales que se están dividiendo activamente como Ia gran mayoría que están quiescentes. Esto incluye también Ia infección de las células troncales tumorales que se piensa que pueden ser las iniciadoras del tumor y responsables de las metástasis y recidivas, principal causa de mortalidad por cáncer. Adicionalmente, este sistema, debido a que Ia producción de cianuro y peróxido es mayoritariamente extracelular, compensa las bajas tasas de infección in vivo.
Así mismo, al afectar tanto a las células que producen Ia linamarasa como a las que Ie rodean, evita que alguna célula tumoral escape a Ia terapia.
DESCRIPCIÓN DE LA INVENCIÓN BREVE DESCRIPCIÓN DE LA INVENCIÓN
Un primer aspecto de Ia presente invención se refiere a un sistema capaz de producir Ia muerte de células tumorales por activación de apoptosis independiente de caspasas, que comprende:
a) un sistema cianogénico que comprenda Ia actividad enzimática ejercida por Ia linamarasa sobre Ia linamarina y un sistema inductor de estrés oxidativo que comprenda Ia actividad oxidativa ejercida por Ia enzima glucosa oxidasa combinados en una composición única, (en adelante composición única) o b) un sistema cianogénico que comprenda Ia actividad enzimática ejercida por Ia linamarasa sobre Ia linamarina y un sistema inductor de estrés oxidativo que comprenda Ia actividad oxidativa ejercida por Ia enzima glucosa oxidasa presentes en composiciones independientes, (en adelante composiciones de Ia invención)
En el marco de Ia presente invención se entiende por composición única aquella que comprenda al menos los elementos indispensables (en forma de vectores, proteínas u otros) del sistema cianogénico y del sistema de estrés oxidativo y sea capaz de provocar Ia muerte de células tumorales por activación de apoptosis independiente de caspasas.
En el marco de Ia presente invención se entiende por composiciones de Ia invención al menos dos composiciones donde al menos una de ellas comprenda al menos un elemento indispensable (en forma de vector, proteína u otros) del sistema cianogénico y Ia otra comprenda al menos un elemento indispensable (en forma de vector, proteína u otros) del sistema de estrés oxidativo y cuya combinación produzca Ia muerte de células tumorales por activación de apoptosis independiente de caspasas. En el marco de Ia presente invención cuando se refiera indistintamente a Ia composición única o las composiciones de Ia invención se hablará de Ia composición de Ia invención.
En un aspecto preferente de Ia invención, el sistema cianogénico de Ia composición de Ia invención comprende el sistema linamarasa-linamarina. Es decir, Ia actividad enzimática ejercida por Ia linamarasa sobre Ia linamarina, Ia cual actúa como sustrato de Ia reacción.
En otro aspecto de Ia invención, el sistema inductor del estrés oxidativo de
Ia composición de Ia invención comprende Ia actividad de Ia enzima glucosa oxidasa. Es decir, Ia actividad oxidativa ejercida por Ia enzima glucosa oxidasa sobre Ia glucosa que actúa como sustrato.
En un segundo aspecto de Ia presente invención el sistema cianogénico de
Ia composición de Ia invención comprende el sistema linamarasa-linamarina y el sistema inductor del estrés oxidativo de Ia composición de Ia invención comprende Ia enzima glucosa oxidasa.
En un tercer aspecto de Ia presente invención, Ia composición de Ia invención comprende el gen de Ia linamarasa y el gen de Ia glucosa oxidasa combinados en un único vector viral o no viral.
En un cuarto aspecto de Ia presente invención, Ia composición de Ia invención comprende el gen de Ia linamarasa y el gen de Ia glucosa oxidasa en vectores, virales o no virales, independientes.
En un quinto aspecto de Ia presente invención, Ia composición de Ia invención comprende el gen de Ia linamarasa, introducido en un vector viral o no viral, y Ia proteína glucosa oxidasa purificada o análogos, fragmentos o derivados de dicha proteína. En un aspecto preferente Ia composición de Ia invención comprende el gen de Ia glucosa oxidasa, introducido en un vector viral o no viral, y Ia proteína linamarasa purificada o análogos, fragmentos o derivados de dicha proteína.
En un aspecto más preferente de Ia invención Ia composición de Ia invención comprende Ia proteína glucosa oxidasa y Ia proteína linamarasa o análogos, fragmentos o derivados de dichas proteínas.
En un realización preferente de Ia presente invención, Ia composición de Ia invención comprende Ia proteína glucosa oxidasa purificada y/o Ia proteína linamarasa purificada así como análogos, fragmentos o derivados de dichas proteínas y un sistema de liberación controlada de dichas proteínas.
En una realización más preferente de Ia presente invención, Ia composición de Ia invención comprende Ia proteína glucosa oxidasa purificada recombinante y/o Ia proteína linamarasa purificada recombinante así como análogos, fragmentos o derivados de dichas proteínas unidas a anticuerpos dirigidos frente antígenos tumorales.
Un sexto aspecto de Ia presente invención comprende un vector, viral o no viral, capaz de producir Ia muerte de células tumorales por activación de apoptosis independiente de caspasas, que comprende un sistema cianogénico y un sistema inductor de estrés oxidativo.
Un aspecto preferente de Ia presente invención comprende un vector, viral o no viral, capaz de producir Ia muerte de células tumorales por activación de apoptosis independiente de caspasas, que comprende Ia combinación de los genes linamarasa y glucosa oxidasa o cualquier modificación de ellos, ya sea natural o por ingeniería genética, en un vector único.
En aún otro aspecto de Ia presente invención comprende al menos dos vectores, virales o no virales, que comprendan los genes linamarasa y glucosa oxidasa o cualquier modificación de ellos, ya sea natural o por ingeniería genética, en vectores independientes cuya combinación sea capaz de producir Ia muerte de células tumorales por activación de apoptosis independiente de caspasas,.
Otra realización de Ia presente invención comprende un vector adenoviral y/o retroviral que comprende los genes linamarasa y/o glucosa oxidasa.
En un séptimo aspecto de Ia presente invención comprende el uso del vector/es de Ia presente invención para Ia elaboración de una composición farmacéutica destinada al tratamiento de tumores.
En un aspecto preferente de Ia presente invención se refiere a Ia composición de Ia invención para su uso en terapia.
En un aspecto aún más preferente de Ia presente invención se refiere al uso de Ia composición de Ia invención para Ia elaboración de una composición farmacéutica para el tratamiento de tumores.
En otra realización de Ia presente invención se refiere a cualquiera de las composiciones farmacéuticas mencionadas anteriormente y un vehículo farmacéuticamente aceptable.
En un octavo aspecto de Ia presente invención, comprende pero no se limita a una composición farmacéutica destinado al tratamiento del cáncer de mama, cáncer de pulmón, cáncer de cabeza y cuello, cáncer de páncreas, cáncer de próstata, cáncer de colon, melanomas, osteosarcomas, adenocarcinomas, leucemias o glioblastoma.
Un noveno aspecto de Ia presente invención comprende un método in vitro o ¡n vivo (en adelante método de Ia invención) capaz de producir Ia muerte de células tumorales por activación de apoptosis independiente de caspasas, que comprende Ia combinación de dos sistemas: un sistema cianogénico y un sistema inductor de estrés oxidativo.
En un aspecto preferido de Ia invención el sistema cianogénico del método de Ia invención comprende el sistema linamarasa-linamarina.
En un aspecto más preferido el sistema inductor de estrés oxidativo del método de Ia invención comprende Ia actividad de Ia enzima glucosa oxidasa.
En un aspecto aún más preferido de Ia invención el sistema inductor de estrés oxidativo del método de Ia invención comprende Ia actividad de Ia enzima glucosa oxidasa y el sistema cianogénico del método de Ia invención comprende el sistema linamarasa-linamarina.
En aún otro aspecto de Ia invención, en Ia realización del método de Ia invención se utilizan cualquiera de las composiciones de Ia invención.
En un aspecto preferido de Ia invención, para Ia realización del método de Ia invención se utilizan cualquiera de las composiciones farmacéuticas o vectores de Ia invención
En el marco de Ia presente invención se entiende por análogos, derivados o fragmentos de las proteínas linamarasa o glucosa oxidasa aquellos que sean capaces de producir el efecto sinérgico reivindicado en Ia presente invención.
A Io largo de todas las descripciones y reivindicaciones de Ia especificación,
Ia palabra "comprende" y las variaciones de Ia misma, no pretenden excluir otros aspectos de Ia presente invención , que resultarán evidentes para un experto en Ia materia a Ia vista de Ia descripción.
La exposición detallada de los modos de realización, ejemplos y de las figuras que siguen se proporcionan a modo de ilustración y no pretenden ser limitantes de Ia presente invención.
DESCRIPCIÓN DE LAS FIGURAS
Figura 1. Imágenes de microscopía confocal de células que poseen mitocondrias rojas por transfección del plásmido pdsRed2-mito, y núcleo en color azul por tinción con To-Pro-3. Se mostraron imágenes representativas del patrón mitocondrial de las células control sin tratar (A), células tratadas con linamarina (500 μg/ml) a las 48 h (B) y 72 h (C) de iniciarse el tratamiento, células tratadas glucosa oxidasa (5 mUE/ml) (D) y células tratadas con Ia terapia combinada con glucosa oxidasa (5 mUE/ml) y linamarina (500 μg/ml) a las 24 h (E y F) o a las 48 h (G) del tratamiento.
Figura 2. En las figuras (A) y (B) se muestra el análisis de Ia supervivencia / muerte celular en función de Ia actividad mitocondrial de las células W&W/Zs.
Se representa el porcentaje de supervivencia a Io largo del tiempo de las células tratadas con linamarina (A) y con linamarina y 5 mUE/ml de glucosa oxidasa (B). En las figuras (C) y (D) se muestra Ia supervivencia de las células cuando se añade un antioxidante (NAC 10 mM) en el tratamiento.
Figura 3. En Ia figura (A) se muestra el estudio de Ia disminución de los niveles de ATP intracelulares. La estimación se hizo a Io largo del tiempo en células W&W//S tratadas con linamarina (500 μg/ml) y/o glucosa oxidasa (5 mUE/ml). Los valores muestran Ia media ± las desviaciones estándar del porcentaje de unidades relativas de luz (RLU) de dos muestras independientes para cada punto respecto al valor obtenido de las células sin tratar. En Ia figura (B) se muestra Ia producción de peróxido de hidrógeno extracelular.
Figura 4. Caracterización del tipo de muerte del sistema en células W&W/Zs por citometría de flujo marcando con anexina V-FITC y yoduro de propidio.
Figura 5. Estudio de Ia localización de AIF por inmunofluorescencia en células W&W//S. Los núcleos se marcaron con To-Pro-3. Las células fueron tratadas con 5 mUE/ml de glucosa oxidasa (A) o glucosa oxidasa y 500 μg/ml de linamarina (B).
Figura 6. Estudio de Ia infección por adeno//s de las células de explantes de pacientes. Detección de linamarasa por inmunofluorescencia en las células procedentes de los pacientes GB-LP-1 (A), GB-LP-2 (B), GB-LP-3 (C), GB- LP- 4 (D), GB-LP-5 (E) y GB-RC-1 (F), infectadas con adeno/fe. Estudio del porcentaje de supervivencia por MTT de las células GB-LP-1 frente a Ia infección con adeno//s en presencia o ausencia de 500 μg/ml de linamarina a distintas multiplicidades de infección (MOI) (G). Producción de cianuro en μg/ml de las células GB-LP-1 infectadas a distintas MOI en presencia de 500 μg/ml de linamarina (H). Las gráficas (G y H), representan las medias ± las desviaciones estándar de 3 muestras independientes.
Figura 7. Estudio de Ia acción terapéutica del sistema en ratones inmunodeficientes. Los ratones fueron inoculados con células W&W//S (A-H) o con células W&W (I y J) en ambos flancos de los cuales uno fue tratado con 0,1 mg/g (A), 0,25 mg/g (B) y 0,35 mg/g de linamarina (C); o bien con Ia terapia combinada con 0,1 mUE/ml de GO y 0,1 mg/g (D), 0,25 mg/g (E) y 0,35 mg/g de linamarina (F). Estudio de Ia eficacia del tratamiento de tumores W&W/Zs con 0,25 mg/g de Nn y 0,1 mUE/ml de GO (G) e imagen representativa de uno de los ratones del grupo (H). Estudio de la terapia combinada utilizando adeno//s en ratones con tumores de W&W tratados con con 0,25 mg/g de lin y 0,1 mUE/ml de GO (I) e imagen representativa de uno de los ratones del grupo (J). Las gráficas muestran Ia media ± los errores estándar de los volúmenes expresados en mm3 de 4 ratones (A, C1 E y F), 6 ratones (B y D), 8 ratones (G) y 10 ratones (I) a Io largo del tiempo.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La presente invención se refiere, entre otros aspectos, a Ia composición y método destinado al tratamiento de células tumorales, que comprende Ia actividad sinérgica establecida entre dos sistemas: cianogénico e inductor del estrés oxidativo.
El sistema cianogénico comprende Ia actividad enzimática ejercida por Ia linamarasa sobre Ia linamarina, Ia cual actúa como sustrato de Ia reacción. El sistema inductor de estrés oxidativo comprende Ia actividad oxidativa ejercida por Ia enzima glucosa oxidasa sobre Ia glucosa que actúa como sustrato.
Con el fin de estudiar Ia dinámica mitocondrial ocurrida como consecuencia del estrés oxidativo provocado por Ia actividad del sistema reivindicado, se transfectaron establemente las células W&W/Zs con el plásmido pdsRed2- mito (Clontech) que contiene el gen de Ia una proteína roja fluorescente que lleva un péptido señal de transporte a Ia mitocondria. Esto permitió visualizar las mitocondrias de células tratadas con linamarina y glucosa oxidasa por microscopía de fluorescencia. De este modo se pudo comprobar que mientras las células sin tratar presentaban un patrón mitocondrial filamentoso (Fig. 1 A), en las tratadas con linamarina se produce Ia disrupción de esta matriz adquiriendo un patrón punteado (Fig. 1 B y C).
Este efecto comienza a observarse a las 48 horas del tratamiento con linamarina (Fig.1 B) y se hace más marcado a las 72 horas observándose un ligero hinchamiento de los fragmentos (Fig. 1 C). El tratamiento sólo con glucosa oxidasa no provocó ningún cambio estructural en Ia mayoría de las mitocondrias (Fig. 1 D). Sin embargo, cuando se combinan ambos tratamientos de linamarina y glucosa oxidasa se observó un patrón punteado de mitocondrias hinchadas desde las 24 horas (Fig. 1 E) en las cuales se observa un alto porcentaje de células con una morfología nuclear fragmentada característica de apoptosis (Fig. 1 F). A las 48 horas, las pocas células que quedan adheridas al sustrato presentaron un pronunciado hinchamiento de las mitocondrias (Fig. 1 G).
El análisis de Ia supervivencia de las células por MTT (basado en Ia evaluación de Ia formación de los cristales de formazan a partir del tetrazolio por célula vivas) mostró que en el tratamiento con linamarina las células empiezan a disminuir ligeramente su viabilidad a las 48 horas de un modo proporcional a Ia concentración de linamarina (Fig. 2 A). Sin embargo, no es hasta las 96 horas cuando se observó una drástica disminución de Ia supervivencia y sólo a altas concentraciones de linamarina (200 a 500 μg/ml). Cuando se realizó una terapia combinada con linamarina y glucosa oxidasa Ia viabilidad celular empezó a disminuir a las 24 horas a altas concentraciones de linamarina (500 μg/ml) y a las 48 horas Ia supervivencia es prácticamente cero (Fig. 2 B). Esto demuestra que Ia terapia combinada provoca un adelantamiento de Ia muerte de aproximadamente 48 horas incrementando Ia agresividad del sistema, Io cual se traduce en una mayor eficiencia terapéutica.
El éxito de Ia terapia linamarasa/linamarina/glucosa oxidasa es debido a que
Ia combinación de ambos sistemas provoca un sinergismo en Ia producción de estrés oxidativo. Para confirmar esta hipótesis observamos el comportamiento de las células en Ia terapia cuando añadimos 10 mM de N- acetil cisteína (NAC) en el medio, aunque también se encontraron los mismos resultados a otras concentraciones, que es un potente agente antioxidante. En el ensayo de viabilidad celular por MTT se puede observar que mientras que Ia adición de NAC no provocó ningún efecto en Ia terapia por linamarasa/linamarina (Fig. 2 C), en el caso de Ia combinación //s/lin/GO sí se produce una marcada inhibición de Ia muerte (Fig. 2 D). Resultados similares se obtuvieron en Ia muerte con anexina V-FITC/yoduro de propidio (Fig. 4, tabla 3).
Los niveles de energía intracelulares en forma de ATP disminuyen cuando se produce un bloqueo de Ia cadena de transporte de electrones mitocondrial ya que ésta es Ia fuente fundamental de obtención de energía de las células. Al analizar los niveles de ATP intracelulares observamos que
Ia adición de glucosa oxidasa provocó una disminución moderada y transitoria de ATP a las 6 horas (Fig. 3 A) que remite totalmente a las 24 horas, momento a partir del cual los niveles coinciden con las células control. Este efecto se debe a que el máximo de producción de H2O2 por Ia glucosa oxidasa se produce a tiempos cortos ya que las células tienen Ia capacidad de detoxificar el peróxido y que Ia glucosa oxidasa se inactiva a Io largo del tiempo por las proteínas del suero. La adición de linamarina causó una progresiva y rápida depleción de ATP que se hace casi total a las 48 horas como consecuencia del bloqueo de Ia respiración mitocondrial a nivel del citocromo c por el cianuro producido. En Ia combinación de ambos tratamientos se observó que ocurre una bajada inicial de los niveles a las 6 horas debido a Ia producción de peróxido por Ia glucosa oxidasa, a partir de las 12 horas los niveles de ATP bajan de forma paralela al tratamiento con linamarina, si bien los niveles son un poco más bajos debido al sinergismo de ambos tratamientos. Estos resultados demostraron que tanto Ia muerte por linamarina, que ocurre entre las 72 y 96 horas, como Ia muerte por Ia combinación de linamarina y glucosa oxidasa, que se produce entre las 24 y 48 horas, se desencadenan por un mecanismo independiente de energía ya que en estos intervalos de tiempo los niveles de ATP son muy bajos.
Además, en Ia presente invención se estudiaron los niveles de H2O2 (Fig. 3 B) producidos extracelularmente en Ia terapia combinada. Para ello se analizó Ia cantidad de H2O2 presente en el medio de cultivo de células W&W//S a las 48 h en un tratamiento con 0,5 mg/ml de linamarina, en presencia de 5 mUE/ml de glucosa oxidasa o en Ia combinación de ambos tratamientos, aunque también se obtuvieron resultados positivos utilizando otras concentraciones. Se observó que mientras el tratamiento con linamarina o con glucosa oxidasa no producían variaciones significativas en Ia concentración de H2O2 extracelular respecto al control (aproximadamente 20 μM), Ia combinación de ambos tratamientos producía un incremento sinérgico en Ia producción de peróxido a nivel extracelular de 65,9 μM. Estos datos confirman Ia hipótesis de que el éxito de Ia terapia combinada se debe al sinergismo en Ia producción de estrés oxidativo.
Por otro lado, el sistema combinado //s/lin/GO transformó inesperadamente el patrón de muerte por necrosis característico del cianuro (//s/lin) en una apoptosis independiente de ATP que además adelanta Ia muerte celular unas 48 h, por Io que Ia terapia resulta más efectiva. Ya que Ia mayoría de los mecanismos apoptóticos, como Ia formación del apoptosoma, son dependientes de ATP, es importante determinar las proteínas qué están implicadas en Ia muerte en el presente modelo. En primer lugar se analizó Ia implicación de las caspasas para Io cual se realizó un análisis de muerte por citometría de flujo marcando con anexina V-FITC y yoduro de propidio en presencia del inhibidor de pan-caspasas Z-VAD-fmk (100 μM) (tabla 4 y figura 4). Se observó que Ia inhibición de caspasas no produce ningún efecto en Ia terapia combinada //s/lin/GO, por Io que se puede concluir que Ia apoptosis es independiente de caspasas. Como control se utilizaron células irradiadas con UV (12,5 J/m2), que provoca una muerte típica por apoptosis dependiente de caspasas. Se comprobó que Ia adición de Z-VAD-fmk (100 μM) provocó Ia inhibición total de Ia apoptosis inducida por radiación UV tanto por análisis del contenido en ADN (tabla 1) como por marcación con anexina V-FITC y yoduro de propidio (figura 4). A continuación se estudió Ia contribución de Ia proteína PARP-1 (PoIy[ADP- Ribose] polimerase) en el sistema combinado. Esta proteína constituye un sensor de daño al DNA que se encuentra en el núcleo y tras su activación se transloca a Ia mitocondria donde activa proteínas apoptóticas como AIF (Hong, et al., 2004). Esta vía constituye uno de los posibles mecanismos de apoptosis generada por ROS. Para estudiar Ia contribución de esta proteína en nuestro sistema combinado se utilizó un inhibidor específico de PARP, el 1 ,5-isoquinolinediol (DIQ) (tabla 5). Se observó que Ia apoptosis producida por //s/lin/GO no está mediada por Ia vía de activación de AIF que depende de PARP, ya que no es inhibida por DIQ.
No obstante, Ia activación de AIF podría producirse por un mecanismo que fuese independiente de PARP-1 (Cregan, 2004). AIF es una proteína que reside en Ia mitocondria y cuando se activa, se transloca al núcleo donde activa Ia apoptosis. Se analizó Ia posible translocación de AIF por
¡nmunofluorescencia con anticuerpos específicos contra AIF de células W&W//S tratadas con Ia terapia. Se observó que las células control tratadas con GO presentan un patrón de AIF típicamente mitocondrial (Fig. 5 A) y cuando son tratadas con linamarina y GO (Fig. 5 B) se produce una fragmentación de los filamentos mitocondriales pero AIF permanece en Ia mitocondria sin translocarse al núcleo. Esto demuestra que el sistema //s/lin/GO provoca una apoptosis que es independiente de Ia muerte mediada por AIF.
En paralelo se realizó el ensayo de anexina V-FITC y yoduro de propidio por citometría de flujo. Se caracterizó el patrón de muerte del sistema al añadir 5 mUE/ml de glucosa oxidasa y Ia terapia combinada (5 mUE/ml de GO y 500 μg/ml de linamarina) a las 48 horas, seguida del control de células sin tratar y de las células incubadas con 500 μg/ml de linamarina a las 96 horas. Además, otro grupo de células se sometieron a las mismas condiciones cuando pero se les añadieron 10 mM de N-acetil cisteína (NAC). Posteriormente, se estudiaron las células tratadas con Ia terapia combinada a las 48 horas en ausencia y presencia de 100 μM de Z-VAD-fmk, seguido del control de tratamiento de las células con UV en las mismas condiciones. Finalmente se mostraron las células tratadas con Ia terapia combinada a las 48 horas en ausencia y presencia de 300 μM de 1 ,5-isoquinolinediol (DIQ), observándose que el patrón de muerte no se modifica al inhibir PARP-1 (figura 4).
En base a estos resultados se pudo concluir que Ia muerte que desencadena Ia terapia combinada //s/lin/GO se produce por un mecanismo de apoptosis que es independiente de caspasas, de PARP-1 y de AIF.
Para estudiar Ia potencialidad del uso de nuestra terapia en pacientes se evaluó Ia aplicabilidad del sistema linamarasa/linamarina en explantes obtenidos de seis glioblastomas de pacientes. En primer lugar se estudió Ia susceptibilidad de estos explantes a Ia infección por el adenovirus portador del gen de Ia linamarasa (adeno//s). Para ello, estos cultivos fueron infectados con adeno//s y se analizó Ia expresión de Ia linamarasa por ¡nmunofluorescencia con anticuerpos específicos contra Ia linamarasa (Fig. 6 A-F). Se comprobó que 5 de los 6 explantes eran eficientemente infectados por adeno//s, produciéndose una expresión de linamarina muy activa que provocaba incluso agregados filamentosos en las células en prácticamente el 100% de las células infectadas a una multiplicidad de infección (MOI) de 100. Sólo uno de los explantes (GB-LP-5, Fig. 6 E) presentó menos de un 5% de células que expresaban linamarasa a MOI: 100. Esto podría deberse a que estas células presentaran una baja expresión de CAR (Coxsackie- adenovirus receptor) que es el receptor de los adenovirus.
Adicionalmente se analizó el comportamiento de Ia terapia //s/lin en uno de los explantes (GB-LP-1 ). Estas células fueron infectadas con adeno//s (MOI:
0, 1 , 12, 100 y 500) y se estudió Ia supervivencia y Ia producción de cianuro tras la adición de 500 μig/ml linamarina (Fig. 6 G y H, respectivamente). Estas células se infectaron eficientemente por adeno//s, Io cual les hizo muy sensibles al tratamiento con linamarina incluso a muy bajas multiplicidades de infección (MOI: 1). Adicionalmente, no se detectó toxicidad por el vector incluso a multiplicidades de infección muy altas (MOI: 100 y 500).
Se evaluó Ia toxicidad de Ia glucosa oxidasa en ratones Swiss de unos 20 gramos de peso, inoculados intraperitoneal e intravenosamente con distintas cantidades del enzima purificado. Las dosis de 1 y 0,5 UE/g de peso del animal presentaron un efecto letal en las primeras 24 h post-administración.
Sin embargo, dosis diarias de entre 0,25 y 0,1 UE/g de peso, no presentaron ningún efecto nocivo. Esto nos permitió fijar un rango de Ia dosis óptima de GO para Ia terapia combinada en este tipo de animales.
Por otro lado se evaluó un rango de dosis para Ia linamarina en ratones ínmunodeficientes (desnudos) de unos 20 gramos inoculados con células tumorales W&W que expresaban establemente Ia linamarasa (W&W//S). Cuando el tumor alcanzó un tamaño aproximado de 50 mm3, los ratones fueron tratados con una dosis diaria de linamarina intratumoral a distintas concentraciones (0,5; 0,35; 0,25 ó 0,10 mg lin/g de peso del animal). La dosis de 0,1 mg lin/g no presentó ningún efecto terapéutico (n=4) (Fig 7 A), sin embargo con 0,25 mg lin/g conseguimos una reducción significativa del crecimiento del tumor tratado frente al no tratado a partir del décimo día de tratamiento (p=0,05; n=6) (Fig. 7 B). El incremento de las dosis de linamarina no sólo no mejoró los resultados terapéuticos sino que provocó Ia muerte de tres de los cuatro animales con Ia dosis diaria de 0,35 mg lin/g en el quinto día de tratamiento (Fig. 7 C) y de todos los animales tratados con 0,5 mg lin/g entre el cuarto y quinto día de tratamiento.
Con el fin de mejorar estos resultados incrementando el estrés oxidativo al igual que en cultivos celulares, se introdujo con el tratamiento con linamarina, 0,1 UE/g de glucosa oxidasa. Los resultados mejoraron ostensiblemente en todos los casos (Fig. 7 D-F) e incluso disminuyendo Ia toxicidad a dosis altas de linamarina (0,35 mg lin/g, Fig. 7 F). Los mejores resultados terapéuticos se obtuvieron con el tratamiento diario de 0,25 mg lin y 0,1 UE GO/g donde las diferencias entre tumor tratado y no tratado se hicieron significativas desde el 8o día de tratamiento (Fig 7 E; p=0,05; n=6), aunque también se consiguieron resultados farmacológicamente positivos con otras concentraciones de glucosa oxidasa. Estos resultados nos permiten afirmar que dicha actividad sinergica consigue potenciar el poder terapéutico del sistema linamarasa/linamarina y por tanto constituye un sistema farmacológico más eficaz.
Otra aproximación realizada para Ia presente invención Ia constituyó Ia utilización de adenovirus portadores del gen de Ia linamarasa (adeno//s) en tumores de células W&W inducidos en ratón ¡nmunodeficientes. Se inocularon subcutáneamente 106 células en ambos flancos en ratones (n=18). Parte de los animales (n=8) recibieron células W&W/Ás que ya expresaban Ia linamarasa, mientras que otros (n=10) fueron inoculados con las células W&W y sólo cuando el tumor se hubo desarrollado, fue infectado localmente con adeno//s. Los animales inoculados con W&W//S fueron tratados diariamente con 0,25 mg lin y 0,1 UE GO/g en el tumor más grande en el inicio del tratamiento (aproximadamente 50 mm3) (Fig. 7 G y H). Los animales que presentaban tumores de W&W fueron tratados con ciclos de infección con 109 Ul de adeno//s, seguidos por un tratamiento de dos días con 0,25 mg lin y 0,1 UE GO/g (Fig. 7 I y J). La progresión de los tumores fue evaluada cada dos días. Los resultados nos mostraron que existían diferencias significativas (p=00,5) entre tumor tratado y no tratado a partir del séptimo día de tratamiento en el caso de tumores que ya expresaban el gen de Ia linamarasa (Fig. 7 G) y a partir del día decimoprimero de tratamiento en el caso de infección por adeno//s (Fig. 7 I) Io cual demostró Ia eficiencia del tratamiento con adenovirus. El sistema se ensayó en glioblastomas inducidos en los flancos de ratones inmunodeficientes y en perros. A estos últimos se les implantaron, mediante procedimientos de estereotaxia, células de glioblastoma en su cerebro, originándoseles así un tumor, que es tratado con el procedimiento reivindicado.
En Ia presente invención se utilizaron vectores plasmídicos, retrovirales y adenovirales como forma de introducir en Ia célula tumoral el gen vegetal de Ia linamarasa. Una vez que dicho gen se encontró en el interior de Ia célula cancerígena éste se expresó sintetizándose Ia enzima linamarasa. La enzima linamarasa se secretó de forma natural al exterior celular, donde se encontró con su sustrato linamarina, y catalizó Ia reacción por Ia cual Ia linamarina, introducida en el animal mediante inyección, se descompuso en glucosa y acetona cianhídrica Ia cual espontáneamente dio lugar a dos compuestos, acetona y cianuro, este último responsable de Ia muerte de Ia célula tumoral. No obstante otras formas de llevar a cabo Ia muerte de células tumorales por activación de apoptosis independiente de caspasas que comprenda Ia combinación de los sistemas cianogénico e inductor del estrés oxidativo caerían dentro del alcance de Ia presente invención. Adicionalmente, las dosis de Lin y de GO utilizadas en Ia descripción detallada de Ia presente invención y en las tablas sólo se exponen con Ia única finalidad de ilustrar y afirmar Ia potencialidad y eficacia de Ia invención, no obstante otras dosis terapéuticamente eficaces también entrarían a formar parte del alcance de Ia presente invención.
EJEMPLOS DE LA REALIZACIÓN DE LA INVENCIÓN:
Ejemplo 1. Principales pasos realizados para llevar a cabo un aspecto de Ia presente invención.
Verificación de Ia eficacia de Ia terapia en Ia línea celular Wodinsky & Waker, cultivadas "in vitro", introduciendo el gen de Ia linamarasa por medio del vector adenovirus y Ia linamarina por vía intratumoral
Ejemplo 2. Obtención de una línea celular que exprese establemente Ia linamarasa.
Las células de glioblastoma de canino W&W (Wodinsky, et al., 1969) fueron transfectadas con el plásmido pILE (6,9 Kb) el cual presenta el promotor de CMV (588 pb), seguido de un intrón y una región de policlonaje en Ia que se clonó el gen epolis (linamarasa que lleva Ia señal de exportación extracelular de Ia eritropoietina humana) (1625 pb), seguido de un IRES (568 pb) y el gen pac (resistencia a puromicina) (602 pb) y Ia señal de poliadenilación de SV40.
Para Ia transfección se utilizaron lípidos catiónicos, Lípofectamina Plus
(Invitrogene) siguiendo las indicaciones de Ia casa comercial. Se emplearon 2 μg de ADN, 12 μl de Lipofectamina y 8 μl del reactivo Plus. A continuación se obtuvo un césped de expresión estable de Ia linamarasa por selección con 1 μg/ml de puromicina, el cual denominamos W&W//S, y fue utilizado para el resto de experimentos.
Ejemplo 3. Análisis del contenido de ADN.
Se sembraron 2-5x105 células W&W/Zs en botellas de 25 cm2. Pasadas 24 horas fueron tratadas con linamarina (500 μg/ml) y glucosa oxidasa (5 mUE/ml). Transcurrido el tiempo indicado en cada ensayo, las células se recogieron y se lavaron 2 veces con PBS. El precipitado de células se resuspendió en 300 μl de PBS a 40C. Posteriormente fueron fijadas añadiendo lentamente 700 μl de etanol absoluto a -2O0C en agitación. Pasadas más de 24 h las células fueron lavadas con PBS suplementado con albúmina de suero bovino al 1 % y se les añadió yoduro de propidio a una concentración final de 20 μg/ml, incubándolo a temperatura ambiente durante 1 hora. La adquisición y análisis de datos se realizó mediante un citómetro de flujo FACSCalibur (DB Biosciences) con el programa CeII Quest.
Ejemplo 4. Infección con adenovirus.
Se sembraron 105 células (W&W y explantes de pacientes) en tubos con un lado plano y tampón de rosca (Nunc) o bien 5x104 células sobre cubreobjetos en placas de 24 pocilios, y simultáneamente fueron infectadas con adeno//s (Crucell) a distintas multiplicidades de infección (MOI: 0; 0,2; 1 ; 10; 100 ó 500). Para las células sembradas en tubos, pasadas 24 horas se realizó un cambio de medio añadiendo 0,5 mg/ml de linamarina si correspondía. A las 96 horas de Ia adición de linamarina se realizó un ensayo de viabilidad celular con MTT. Las células sembradas en cubres, pasadas 48 h desde Ia infección, fueron procesadas para realizar una inmunofluorescencia para detectar Ia linamarasa.
Ejemplo 5. Análisis de las modificaciones estructurales de Ia mitocondria durante el tratamiento.
Para el estudio de las modificaciones estructurales de Ia mitocondria durante Ia terapia se transfectaron las células W&W y W&W//S con el plásmido pDsRed2-mito (Clontech, BD Bioscience) que contiene el gen de una proteína fluorescente roja que se expresa exclusivamente en mitocondrias.
La transfección se realizó de manera análoga al anterior apartado y se seleccionaron clones por resistencia a neomicina (0,75 y 1 ,5 mg/ml respectivamente). Las células procedentes de clones de expresión estable de Ia proteína se sembraron en placas multi-pocillos sobre cubreobjetos (2,5x104) y se trataron con linamarina (50, 200 ó 500 μg/ml) y glucosa oxidasa (5 mUE/ml). Transcurrido el tiempo de incubación adecuado para cada experimento (24, 48 ó 72 h), las células se fijaron con paraformaldehido al 4%. Se realizó una tinción de los núcleos con To-Pro-3 (Molecular Probes) con una dilución 1/500 durante 30 min. Se visualizaron los cambios
, estructurales de Ia mitocondria con un sistema confocal Radiance2000 (BioRad) acoplado a microscopio invertido Axiovert S100 TV (Zeiss) tomando 3 planos consecutivos a una distancia de 0,2 μm en los filtros rojo y azul, que fueron mezclados.
Ejemplo 6. Análisis de Ia viabilidad celular por MTT.
La actividad enzimática mitocondrial como indicativo de viabilidad celular, se determinó mediante el uso de sales de tetrazolio. En este ensayo se sembraron 105 células/tubo (tubos de cultivo con un lado plano y tapón de rosca para evitar Ia salida de HCN; Nunc) o bien 104 células/pocilio de placas de 24 pocilios cerradas con parafilm. Tras 24 horas de incubación se añadió medio de cultivo fresco suplementado con Ia concentración de linamarina (entre 50 y 500 μg/ml) y glucosa oxidasa (5 mUE/ml) necesarias para cada experimento. En los ensayos donde correspondiera el medio fue suplementado con N-acetil cisteína (10 mM), 1 ,5-isoquinolinediol (300 μM) o Z-VAD-fmk (100 μM). Pasado el tiempo estipulado en cada experimento
(entre 12 y 96 h) se retiró el medio de cultivo y se añadió medio fresco con 200 μg/mL de MTT (bromuro de 3-[4,5-dimetiltiazo-2-il]-2,5-difenil tetrazolio). Tras 1 ,5 h de incubación se retiró el medio y se añadió 3 mi (para los tubos) ó 1 mi (para las placas de 24 pocilios) de dimetil sulfóxido para disolver el formazán. Pasados 10 minutos se determinó Ia absorbancia de las muestras a 540 nm. El MTT es una sal de tetrazolio soluble en medio acuoso (de color amarillo) que es transformada por las deshidrogenasas mitocondriales en formazán, compuesto insoluble en medio acuoso (de color morado).
Ejemplo 7. Inmunofluorescencias. Las células se sembraron sobre cubreobjetos en placas de 24 pocilios y fueron tratadas según los requerimientos de cada experimento. Pasado el tiempo de incubación apropiado para cada ensayo las células se fijaron con paraformaldehido al 4% durante 30 minutos a temperatura ambiente o metanol a -2O0C durante 10 min. Posteriormente las muestras se permeabilizaron 10 min con PBS suplementado con tritón X-100 o dodecil sulfato de sodio (SDS) al 0,1 % y se bloquearon incubando 30 min con PBS con tritón X-100 al 0,1% y con 1 % de albúmina de suero bovino, o bien PBS con 0,01 % SDS y un 10% de suero fetal de ternera. Posteriormente se incubaron durante 45 min con el anticuerpo primario a temperatura ambiente o toda Ia noche a 40C. Los anticuerpos usados fueron anti-linamarasa (1/200, cedido por Monica Hughes) y anti-AIF (1/50, CeII Signaling Technology). El anticuerpo secundario utilizado fue anti-lgG de conejo acoplado a fluoresceína (1/50, Amersham Pharmacia Biotech). Posteriormente se tiñeron los núcleos incubando durante 30 minutos con una dilución 1/500 de To-Pro-3 (Molecular Probes). Las muestras se lavaron 2 veces con PBS y una con H2O destilada y fueron montadas sobre portaobjetos utilizando como medio de montaje Mowiol-DABCO o Polong GoId Antifade (Invitrogen).
Ejemplo 8. Determinación de Ia concentración de peróxido extracelular.
Las muestras a analizar se diluyeron en 1 mi de tampón fosfato 0,1 M pH 7,4. Posteriormente se añadieron 3,7 UE/ml de peroxidasa (Sigma-Aldrich, St. Louis, USA) y 0,1 mg/ml de orto-dianisidina (Sigma-Aldrich, St. Louis,
USA). Las muestras se incubaron a temperatura ambiente durante 30 min y se determinaron las absorbancias a 436 nm. La concentración de H2O2 se obtuvo por interpolación de los datos obtenidos en una recta patrón realizada con concentraciones ascendentes de H2O2.
Ejemplo 9. Medida de ATP. Se sembraron 105 células W&W/Zs en tubos de tapón de rosca y lado plano (Nunc). Pasadas 24 h se les cambió el medio añadiendo linamarina (500 μg/ml) y glucosa oxidasa (5 mUE/ml) en los casos que correspondiera. Transcurridas 4, 8, 12, 24, 48 ó 72 h, las células fueron centrifugadas y procesadas siguiendo las instrucciones del Kit ATP Bioluminescence Assay
Kit CLS II, de Roche Applied Science. La luminiscencia fue analizada con un luminómetro Monolight 2010 (Analytical Luminiscence Laboratory, San Diego) y expresada en unidades relativas de luz (URL).
Ejemplo 10. Análisis del tipo de muerte por citometría de flujo (Anexina
V-FITC/IP).
Se sembraron 105 células W&W/Zs en tubos de tapón de rosca y lado plano (Nunc). Pasadas 24 h se les añadieron distintas cantidades de linamarina (50, 200 ó 500 μg/ml) y glucosa oxidasa (5 mUE/ml) en los casos especificados. En los ensayos donde correspondiera, el medio fue suplementado con N-acetil cisteína (10 mM), 1 ,5-isoquinolinediol (300 μM) o Z-VAD-fmk (100 μM). Transcurrido el tiempo determinado para cada ensayo (30, 48, 72 ó 96 h) las células se precipitaron, se lavaron con tampón fosfato salino (PBS) y fueron tripsinizadas. Se centrifugaron 5 min a 1200 rpm y el preicipitado de células fue lavado primero con PBS y luego con tampón de unión (Hepes/NaOH 0,1 M pH 7,4, NaCI 1 ,4 M y CaCI2 25 mM). Las células volvieron a precipitarse y se resuspendieron en 100 μl de tampón de unión suplementado con 5 μl de anexina V-FITC y 2,5 μg/ml de yoduro de propidio. Las muestras fueron incubadas 15 min en oscuridad. La adquisición y análisis de datos se realizó mediante un citómetro de flujo FACSCalibur (DB Biosciences) con el programa CeII Quest. Se consideraron células apoptóticas tempranas aquellas que presentaban una marcación positiva sólo para anexina V-FITC y apoptosis tardía o necrosis cuando presentaban una tinción positiva tanto para anexina-V-FITC como para yoduro de propidio. Ejemplo 11. Obtención de cultivos primarios de explantes de glioblastomas de pacientes.
Las biopsias de los tumores procedentes de animales de experimentación o de pacientes se mantuvieron en medio MEM al 20% SFT a 40C hasta su procesamiento. Las muestras se cortaron en trozos de 1 mm3 aproximadamente en condiciones de esterilidad. Posteriormente se les añadió MEM con 20% de SFT suplementado con colagenasa (106 UE/ml), tampón HEPES 0,1 M pH 7,4, fungizona (0,5 μg/ml) y DNAsa (0,02%) y se incubó durante 16 h a temperatura ambiente. A continuación se eliminaron los fragmentos grandes no digeridos por decantación y se recogieron las células por centrifugación. Las células se sembraron en MEM con 20% de SFT hasta establecer un cultivo. Una vez establecido el cultivo, tras varios pases, el medio fue sustituido por DMEM con 10% de SFT.
Ejemplo 12. Terapia en un modelo de xenotransplante con células tumorales ratones inmunodeficientes.
Se utilizaron ratones inmunodeficientes (cepa nude), atímicos, de un peso aproximado de 20 gramos y 2 meses de edad. Estos fueron inoculados con
1-2x106 células (W&W o W&W/Zs) subcutáneamente en ambos flancos de los ratones mediante una inyección en un volumen de 50 μl en PBS completo (suplementado con iones calcio y magnesio) con 0,1 % glucosa. Se midió el tamaño de los tumores (pi π/6 x alto x ancho x largo) con un calibrador.
Un grupo grande de ratones (n=8) fueron inoculados con 1-2x106 células W&W//S como se describió anteriormente. Cuando los tumores alcanzaron 30-50 mm3 de media, los tumores de un flanco fueron tratados diariamente con 0,25 mg de linamarina y 0,1 UE de glucosa oxidasa/g de peso del animal. Cuando los tumores no tratados alcanzaron un tamaño en torno a
2000 mm3 los animales fueron sacrificados y se consideró el final del tratamiento. Se realizó un análisis estadístico de los datos por Ia t de student considerando un nivel de significación del 5%.
Para el tratamiento con adenovirus portadores del gen de Ia linamarasa, cuando los tumores de los ratones inoculados con células W&W (n=10), alcanzaban un tamaño de 30-50% se realizaban ciclos de tratamiento en uno de los flancos. El primer día del ciclo se inocularon 109 Ul de adeno//s repartiéndolos por todo el tumor con ayuda de una jeringuilla. A las 24 h se realizó un tratamiento de dos días con 0,25 mg/g de linamarina suplementados con 0,1 UE/g de glucosa oxidasa. Este ciclo se repitió hasta que los tumores no tratados alcanzaron un tamaño en torno a 2000 mm3. Los animales fueron sacrificados y se consideró el final del tratamiento. Se realizó un análisis estadístico de los datos por Ia t de student considerando un nivel de significación del 5%.
Tabla 1. Estudio del contenido en ADN por citometría de flujo marcando con yoduro de propidio.
Figure imgf000028_0001
Tabla 2. Caracterización del tipo de muerte del sistema
Figure imgf000029_0001
Tabla 3. Estudio de Ia inhibición de Ia muerte por Ia adición de un antioxidante.
Figure imgf000029_0002
Tabla 4. Estudio del patrón muerte por Ia inhibición de caspasas.
Figure imgf000030_0001
Tabla 5. Estudio del patrón de muerte por inhibición de PARP
Figure imgf000030_0002

Claims

REIVINDICACIONES
1. Sistema capaz de producir Ia muerte de células tumorales por activación de apoptosis independiente de caspasas, que comprende: un sistema cianogénico y un sistema inductor de estrés oxidativo.
2. Sistema capaz de producir Ia muerte de células tumorales por activación de apoptosis independiente de caspazas según Ia reivindicación 1 , que comprende:
a. un sistema cianogénico y un sistema inductor de estrés oxidativo combinados en una composición única o b. un sistema cianogénico y un sistema inductor de estrés oxidativo presentes en composiciones independientes.
3. Sistema, según Ia reivindicación 2, donde dicho sistema cianogénico comprende el sistema linamarasa-linamarina.
4. Sistema, según Ia reivindicación 2, donde dicho sistema inductor de estrés oxidativo comprende Ia actividad de Ia enzima glucosa oxidasa.
5. Sistema, según Ia reivindicación 2, donde dicho sistema cianogénico comprende el sistema linamarasa-linamarina y donde dicho sistema inductor de estrés oxidativo comprende Ia actividad de Ia enzima glucosa oxidasa.
6. Sistema, según Ia reivindicación 2, que comprende el gen de Ia linamarasa y el gen de Ia glucosa oxidasa combinados en un único vector viral o no viral.
7. Sistema, según Ia reivindicación 2, que comprende el gen de Ia linamarasa y el gen de Ia glucosa oxidasa en vectores, virales o no virales, independientes.
8. Composición, según Ia reivindicación 2.a, que comprende el gen de Ia linamarasa, introducido en un vector viral o no viral, y Ia proteína glucosa oxidasa purificada o análogos, fragmentos o derivados de dicha proteína.
9. Composición, según Ia reivindicación 2.b, que comprende el gen de Ia linamarasa, introducido en un vector viral o no viral, y Ia proteína glucosa oxidasa purificada o análogos, fragmentos o derivados de dicha proteína.
10. Composición, según Ia reivindicación 2.a, que comprende el gen de Ia glucosa oxidasa, introducido en un vector, viral o no viral, y Ia proteína linamarasa purificada o análogos, fragmentos o derivados de dicha proteína.
11. Composición, según Ia reivindicación 2.b, que comprende el gen de Ia glucosa oxidasa introducido en un vector, viral o no viral, y Ia proteína linamarasa purificada o análogos, fragmentos o derivados de dicha proteína.
12. Composición, según Ia reivindicación 2.a, que comprende Ia proteína glucosa oxidasa purificada y Ia proteína linamarasa purificada o análogos, fragmentos o derivados de dichas proteínas.
13. Composición, según Ia reivindicación 2.b, que comprende Ia proteína glucosa oxidasa purificada y Ia proteína linamarasa purificada o análogos, fragmentos o derivados de dichas proteínas.
14. Composición, según cualquiera de las reivindicaciones 2-13, para su uso en terapia.
15. Uso de Ia composición según cualquiera de las reivindicaciones 2-13, para Ia elaboración de una composición farmacéutica para el tratamiento de tumores.
16. Composición farmacéutica, según cualquiera de las reivindicaciones 14-15, y un vehículo farmacéuticamente aceptable.
17. Composición farmacéutica, según cualquiera de las reivindicaciones 14-15, que además comprenda un sistema de liberación controlada.
18. Composición farmacéutica que comprende una composición según cualquiera de las reivindicaciones 8-13, donde cualquiera de dichas proteínas o ambas están unidas a anticuerpos dirigidos frente antígenos tumorales.
19. Composición farmacéutica, según las reivindicaciones 16-18, destinado al tratamiento del cáncer de mama.
20. Composición farmacéutica, según las reivindicaciones 16-18, destinado al tratamiento del cáncer de pulmón.
21. Composición farmacéutica, según las reivindicaciones 16-18, destinado al tratamiento del cáncer de cabeza y cuello.
22. Composición farmacéutica, según las reivindicaciones 16-18, destinado al tratamiento de cáncer de páncreas.
23. Composición farmacéutica, según las reivindicaciones 16-18, destinado al tratamiento del cáncer de próstata.
24. Composición farmacéutica, según las reivindicaciones 16-18, destinado al tratamiento del cáncer de colon.
25. Composición farmacéutica, según las reivindicaciones 16-18, destinado al tratamiento de melanomas.
26. Composición farmacéutica, según las reivindicaciones 16-18, destinado al tratamiento de osteosarcomas.
27. Composición farmacéutica, según las reivindicaciones 16-18, destinado al tratamiento de adenocarcinomas.
28. Composición farmacéutica, según las reivindicaciones 16-18, destinado al tratamiento de leucemias.
29. Composición farmacéutica, según las reivindicaciones 16-18, destinado al tratamiento de glioblastoma.
30. Método, in vitro, para producir Ia muerte de células tumorales por activación de apoptosis independiente de caspasas que comprende Ia combinación del sistema cianogénico y de un sistema inductor de estrés oxidativo.
31. Método, según Ia reivindicación 29, donde el sistema cianogénico comprende el sistema linamarasa-linamarina.
32. Método, según Ia reivindicación 29, donde el sistema inductor de estrés oxidativo comprende Ia actividad de Ia enzima glucosa oxidasa.
33. Método, según Ia reivindicación 29, donde el sistema inductor de estrés oxidativo comprende Ia actividad de Ia enzima glucosa oxidasa y el sistema cianogénico comprende el sistema linamarasa- linamarina.
34. Método según cualquiera de las reivindicaciones 29-32, donde se utilice un vector/es que comprendan los genes de Ia linamarasa y/o Ia enzima glucosa oxidasa.
35. Método según cualquiera de las reivindicaciones 29-32, donde se utilicen cualquiera de las proteínas purificadas linamarasa y/o glucosa oxidasa o derivados, análogos o fragmentos de dichas proteínas.
36. Método según Ia reivindicación anterior donde cualquiera de dichas proteínas u ambas proteínas se inserten en un sistema de liberación controlada.
37. Método, según cualquiera de las reivindicaciones 34-35, donde cualquiera de dichas proteínas o ambas proteínas se unan a anticuerpos específicos frente a antígenos tumorales.
PCT/ES2006/000702 2005-12-23 2006-12-22 Efecto sinérgico entre un sistema cianogénico y otro inductor oxidativo para el tratamiento de tumores WO2007074191A2 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/161,992 US20100028366A1 (en) 2005-12-23 2006-12-22 Synergistic effect between a cyanogenic system and another oxidative inducing system for treating tumors
EP06841754A EP2003197A2 (en) 2005-12-23 2006-12-22 Synergistic effect between a cyanogenic system and another oxidative inducer for the treatment of tumours
CA002635375A CA2635375A1 (en) 2005-12-23 2006-12-22 Synergistic effect between a cyanogenic system and another oxidative inducer for the treatment of tumours
JP2008546495A JP2009520773A (ja) 2005-12-23 2006-12-22 腫瘍を治療するためのシアン化物生成系ともう1つの酸化的誘導系との間の相乗効果

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200503173 2005-12-23
ES200503173A ES2304276B1 (es) 2005-12-23 2005-12-23 Efecto sinergico entre un sistema cianogenico y otro inductor oxidativo para el tratamiento de tumores.

Publications (2)

Publication Number Publication Date
WO2007074191A2 true WO2007074191A2 (es) 2007-07-05
WO2007074191A3 WO2007074191A3 (es) 2008-10-30

Family

ID=38218338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2006/000702 WO2007074191A2 (es) 2005-12-23 2006-12-22 Efecto sinérgico entre un sistema cianogénico y otro inductor oxidativo para el tratamiento de tumores

Country Status (7)

Country Link
US (1) US20100028366A1 (es)
EP (1) EP2003197A2 (es)
JP (1) JP2009520773A (es)
CN (1) CN101395268A (es)
CA (1) CA2635375A1 (es)
ES (1) ES2304276B1 (es)
WO (1) WO2007074191A2 (es)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114452385A (zh) * 2022-01-04 2022-05-10 中山大学附属第七医院(深圳) 一种具有光动力联合饥饿治疗功能的配位聚合物纳米材料及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0943680A1 (en) * 1998-03-17 1999-09-22 Boehringer Ingelheim International GmbH Suicide gene therapy system for the treatment of brain tumours
US20020106348A1 (en) * 2000-07-12 2002-08-08 Peng Huang Cancer therapeutics involving the administration of 2-methoxyestradiol and an agent that increases intracellular superoxide anion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Also Published As

Publication number Publication date
WO2007074191A3 (es) 2008-10-30
CA2635375A1 (en) 2007-07-05
ES2304276A1 (es) 2008-10-01
CN101395268A (zh) 2009-03-25
ES2304276B1 (es) 2009-07-28
JP2009520773A (ja) 2009-05-28
US20100028366A1 (en) 2010-02-04
EP2003197A2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
Chang et al. Mitochondrial transplantation regulates antitumour activity, chemoresistance and mitochondrial dynamics in breast cancer
ES2943672T3 (es) Uso de campos eléctricos alternos para aumentar la permeabilidad de la membrana celular
Wang et al. The protective role of mitochondrial ferritin on erastin-induced ferroptosis
Zhou et al. Melanin-like nanoparticles decorated with an autophagy-inducing peptide for efficient targeted photothermal therapy
Fan et al. Modulation of intracellular oxygen pressure by dual‐drug nanoparticles to enhance photodynamic therapy
Li et al. Mitochondria-based aircraft carrier enhances in vivo imaging of carbon quantum dots and delivery of anticancer drug
Shteinfer‐Kuzmine et al. Selective induction of cancer cell death by VDAC 1‐based peptides and their potential use in cancer therapy
Porter et al. Does apoptosis‐inducing factor (AIF) have both life and death functions in cells?
Butt et al. A novel plant toxin, persin, with in vivo activity in the mammary gland, induces Bim-dependent apoptosis in human breast cancer cells
Gao et al. Developing Nanoceria‐Based pH‐Dependent Cancer‐Directed Drug Delivery System for Retinoblastoma
Theriot et al. Dendro [C 60] fullerene DF-1 provides radioprotection to radiosensitive mammalian cells
CN101300014A (zh) 通过靶向转运生物活性物质到线粒体中而对有机体产生作用的方法、实现该方法的药物组合物及用于此目的的化合物
Xiao et al. Dichloroacetate (DCA) enhances tumor cell death in combination with oncolytic adenovirus armed with MDA-7/IL-24
Bokara et al. Retroviral expression of arginine decarboxylase attenuates oxidative burden in mouse cortical neural stem cells
Tang et al. Synergistic effects of autophagy/mitophagy inhibitors and magnolol promote apoptosis and antitumor efficacy
Jo et al. The protective role of ferulic acid against cisplatin-induced ototoxicity
An et al. Amino acid metabolism abnormity and microenvironment variation mediated targeting and controlled glioma chemotherapy
Shteinfer-Kuzmine et al. Mitochondrial VDAC1-based peptides: Attacking oncogenic properties in glioblastoma
Hearst et al. The design and delivery of a PKA inhibitory polypeptide to treat SCA 1
Ding et al. Robust anticancer efficacy of a biologically synthesized tumor acidity-responsive and autophagy-inducing functional Beclin 1
Hu et al. A ROS responsive nanomedicine with enhanced photodynamic therapy via dual mechanisms: GSH depletion and biosynthesis inhibition
Yip et al. Potential utility of BimS as a novel apoptotic therapeutic molecule
Han et al. Enhancing Apoptosome Assembly via Mito‐Biomimetic Lipid Nanocarrier for Cancer Therapy
ES2304276B1 (es) Efecto sinergico entre un sistema cianogenico y otro inductor oxidativo para el tratamiento de tumores.
JP2002544166A (ja) 癌治療のためのセレン含有プロドラッグ

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008546495

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1399/MUMNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2635375

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006841754

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200680053290.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12161992

Country of ref document: US