WO2007069621A1 - Novel composition and method for production thereof - Google Patents

Novel composition and method for production thereof Download PDF

Info

Publication number
WO2007069621A1
WO2007069621A1 PCT/JP2006/324800 JP2006324800W WO2007069621A1 WO 2007069621 A1 WO2007069621 A1 WO 2007069621A1 JP 2006324800 W JP2006324800 W JP 2006324800W WO 2007069621 A1 WO2007069621 A1 WO 2007069621A1
Authority
WO
WIPO (PCT)
Prior art keywords
hyaluronic acid
composition
acid composition
present
molecular weight
Prior art date
Application number
PCT/JP2006/324800
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuaki Kakehi
Yuki Matsuno
Yuji Matsuzaki
Junichi Kumada
Original Assignee
Tokyo Cemical Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Cemical Industry Co., Ltd. filed Critical Tokyo Cemical Industry Co., Ltd.
Priority to JP2007550185A priority Critical patent/JPWO2007069621A1/en
Publication of WO2007069621A1 publication Critical patent/WO2007069621A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0072Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/735Mucopolysaccharides, e.g. hyaluronic acid; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/16Emollients or protectives, e.g. against radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin

Definitions

  • the present invention relates to a method for producing a hyaluronic acid composition having high resistance to hyaluronidase (enzymatic degradation) in hyaluronic acid applied to pharmaceuticals and cosmetics.
  • Hyaluronic acid is a kind of mucopolysaccharide in which a disaccharide in which D-glucuronic acid ⁇ -1,3 bonds are linked to N-acetylyl D-darcosamine in succession by ⁇ 8-1,4 bonds.
  • Hyaluronic acid is present as a component in connective tissues such as joints, vitreous, umbilical cord, cartilage, skin, trachea, and bird's chicken crown, and functions important for tissue flexibility, structure maintenance, and cell metabolism regulation. Plays.
  • hyaluronic acid is a very large polymer substance, and its solution has strong viscoelasticity and water retention, so it has a wide range of uses such as cosmetics, wound treatments, eye drops, and arthritis treatments.
  • Hyaluronic acid is known to have excellent biocompatibility even when transplanted or injected into a living body without having a polydisperse species or organ specificity due to its molecular weight. ing.
  • hyaluronic acid is susceptible to enzymatic degradation, there is a problem that it disappears at an early stage even if it is placed in the living body, and it is prepared by methods such as chemical modification and chemical cross-linking in order to solve the problem.
  • Techniques for imparting enzyme resistance as modified hyaluronic acid have been studied (Patent Documents 1 to 10).
  • modified hyaluronic acid with improved biostability in vivo uses chemically reactive substances, so it inherently holds risks such as toxicity and biocompatibility due to new modifications. There was still a problem left to be solved.
  • Sodium hyaluronate is recovered by dissolving hyaluronate in an aqueous sodium chloride solution containing ethanol and adding an organic solvent.
  • Patent Document 1 Japanese Patent Laid-Open No. 3-105003
  • Patent Document 2 European publication 0341745
  • Patent Document 3 US Patent No. 4,582,865
  • Patent Document 4 Japanese Patent Publication No. 6-37575
  • Patent Document 5 JP-A-7-97401
  • Patent Document 6 JP-A-60-130601
  • Patent Document 7 JP-A-6-73103
  • Patent Document 8 JP-A-5-58881
  • Patent Document 9 European publication 0216453
  • Patent Document 10 International Publication W095Z25751 Pamphlet
  • hyaluronic acid When hyaluronic acid is used as a pharmaceutical or cosmetic product, the chemical cross-linking modification improves the stability of mammalian-derived hyaluronidase and other degrading enzymes. I could't ignore it. Accordingly, a hyaluronic acid composition having high stability against hyaluronic acid-degrading enzymes and the ability to perform such structural modification has been desired.
  • the inventors have found a method for producing a hyaluronic acid composition exhibiting resistance to hydrolysis by mammalian-derived hyaluronan-dase, and have arrived at the present invention.
  • the present invention uses (1) a precipitation step in which an organic solvent such as ethanol is added, without using (1) a quaternary ammonium salt such as salt cetyl pyridinium in the production process. It has the following features:
  • the gist of the present invention is as follows.
  • a hyaluronic acid composition obtained by the following steps ⁇ 1> to ⁇ 3>.
  • the arsenic content is 2ppm or less as measured by the arsenic test method described in the Japanese Pharmacopoeia.
  • a glycosaminodarican decomposition inhibitor comprising a hyaluronic acid composition as an active ingredient.
  • a medicament comprising the hyaluronic acid composition according to (1) or (2).
  • a cosmetic comprising the hyaluronic acid composition according to (1) or (2).
  • a hyaluronic acid composition having a hyaluronan-dase degradation resistance derived from a mammal can be obtained.
  • FIG. 1 is a chart in which the capillary electrophoresis force after treatment with a guinea pig testis-derived hyaluronan-dase is also obtained.
  • the broken line shows the chart before the enzyme reaction, and the solid line shows the chart after the enzyme reaction.
  • FIG. 2 is a chart obtained from capillary Pillar electrophoretic treatment after treatment with a hygiene testis-derived hyal-mouth-dase of the composition of the present invention.
  • the broken line shows the chart before the enzyme reaction, and the solid line shows the chart after the enzyme reaction.
  • FIG. 3 is a chart in which capillary electrophoresis force was also obtained after treatment of hyaluronic acid, a hyaluronic acid derived from hygiene testis, which has been promoted as a pharmaceutical product.
  • the broken line shows the chart before the enzyme reaction, and the solid line shows the chart after the enzyme reaction.
  • FIG. 4 Treatment of microorganism-derived hyaluronan-dase (Streptomyces hyalurolyticus) of the composition of the present invention It is the chart from which the capillary electrophoresis force after treatment was also obtained. The broken line shows the chart before the enzyme reaction, and the solid line shows the chart after the enzyme reaction.
  • FIG. 5 is a chart showing the capillary electrophoresis force after treatment of the composition of the present invention with a microorganism-derived hyaluronan-dase (Streptococcus dysgalactiae).
  • the broken line shows the chart before the enzyme reaction, and the solid line shows the chart after the enzyme reaction.
  • FIG. 6 is a chart obtained by capillary electrophoresis after subjecting the composition of the present invention to EDTA (edetic acid) treatment and then to testicular-derived hyaluronidase treatment.
  • the broken line shows the chart before the enzyme reaction, and the solid line shows the chart after the enzyme reaction.
  • FIG. 7 is a chart showing the capillary electrophoresis force obtained after treating the composition of the present invention with urea or guanidine hydrochloride and then treating with a ashi or a hygiene testis-derived hyal-mouth-dase.
  • the broken line shows the chart before the enzyme reaction
  • the solid line shows the chart after the enzyme reaction.
  • FIG. 8 is a chart obtained by capillary electrophoresis after treatment of the composition of the present invention and the control substance 1 with a honey or a testicle-derived hyaluronidase, respectively.
  • the broken line shows the chart before the enzyme reaction, and the solid line shows the chart after the enzyme reaction.
  • FIG. 9 A chart obtained from a single capillary electrophoresis after treating a mixture of conventional hyaluronic acid and the composition of the present invention with a ushi or hydrange testis-derived hyaluronidase.
  • the broken line shows the chart before the enzyme reaction, and the solid line shows the chart after the enzyme reaction.
  • composition of the present invention comprises hyaluronic acid which is known to have a polydisperse physical property, and has the characteristics described in the following (a) to (d).
  • composition of the present invention is co-existing under standard conditions with a whip testis-derived or Hedgei testis-derived hyal-mouth-dase, followed by boiling for 5 minutes, centrifugation, and the supernatant.
  • disaccharide analysis is carried out by capillary electrophoresis, it has the property that no degradation is observed.
  • "under standard conditions” means 0.1 mol / l acetate buffer (pH 4.0, 0.1 mol / l NaCl) with respect to ultrapure water containing the composition of the present invention at 100 g / 100 1 10 / z 1, with 10% ultrapure water containing Hushi testis-derived hyaluronan-dase or Hedge testis-derived hyaluronan-dase (l, 000unit / ml) at 37 ° C for 10 hours This refers to the conditions for keeping warm.
  • centrifugation in this property refers to centrifugation for 5 minutes under the condition of 12,000 Xg and 24 degrees.
  • disaccharide analysis by capillary electrophoresis in this property refers to the analysis method described in Measurement Example 9 described later.
  • composition of the present invention has a protein content of less than 0.1%.
  • the protein content in this property refers specifically to the content measured by the Raleigh method.
  • the protein content can be measured by the Raleigh method by the method described in Measurement Example 5.
  • composition of the present invention has a heavy metal content of 20 ppm or less.
  • the heavy metal content in this property has a feature that it is 20 ppm or less as a result of measurement according to the second method of heavy metal test method of the Japanese Pharmacopoeia 14. General test method. The specific method of measurement is described in Measurement Example 6.
  • composition of the present invention has an arsenic content of 2 ppm or less.
  • the arsenic content in this property has a feature that it is 2 ppm or less as a result of measurement according to the third arsenic test method of the Japanese Pharmacopoeia 14. General Test Method. The specific method of measurement is described in Measurement Example 7.
  • composition of the present invention preferably further has any of the following properties.
  • Glucuronic acid content is 30% or more and less than 50%
  • composition of the present invention is a white cotton-like powder.
  • the dried product of the composition of the present invention has the properties of a white cotton-like powder.
  • Loss on drying (60 ° C., reduced pressure 5 hours, phosphorus pentoxide) of the composition of the present invention is 5% or more and less than 9%
  • the weight loss on drying of the composition of the present invention is 5% or more and less than 9%. Show. Such loss on drying can be measured by the method described in Measurement Example 1 according to Japanese Pharmacopoeia14.
  • composition of the present invention has a pH of 5.8 to 6.5.
  • the pH of the composition of the present invention is 5.8 to 6.5.
  • the powerful pH can be determined by the method described in Measurement Example 2 according to the pH test method of Japanese Pharmacopoeia14.
  • the intrinsic viscosity of the composition of the present invention is 12.9 dl / g or more and less than 13.9 dl / g.
  • the intrinsic viscosity of the composition of the present invention is 12.9 dl / g or more and less than 13.9 dl / g.
  • Such intrinsic viscosity can be measured using an Ubbelohde viscometer according to the first method of viscosity measurement in the Japanese Pharmacopoeia 14. General Test Method.
  • the weight average molecular weight of the composition of the present invention is 600,000 or more and 1.2 million or less.
  • the weight average molecular weight of the composition of the present invention is from 600,000 to 1,200,000. Such weight average molecular weight can be calculated according to the following formula from the value of intrinsic viscosity according to Biochem. Biophys. Acta. 42, 476 (1960).
  • the glucuronic acid content of the composition of the present invention is 30% or more and less than 50%. is there.
  • composition of the present invention has a glucuronic acid content of 30% or more and less than 50% as measured by the force rubazole sulfate method.
  • the glucuronic acid content can be measured by the following method using the force rubazole sulfate method.
  • the sample is dried, about 50 mg thereof is accurately weighed, and purified water is added to dissolve to make a total volume of 1000 ml.
  • a standard solution of D-Dalcronolaton is prepared, and the amount of glucuronic acid can be calculated from the calibration curve force (D-Dalcronolaton is multiplied by 1.10 2 to The amount of acid). The ratio of the obtained glucuronic acid amount in the sample is calculated.
  • composition of the present invention can be obtained, for example, by the following steps (1) to (3).
  • composition of the present invention can be prepared from an extract obtained by degrading protein such as vital tissue strength.
  • biological tissues include chicken crown, umbilical cord, skin, trachea and the like, and any of them can be used as mince. I also like the ease of handling and handling of chicken crowns.
  • proteolytic enzymes that degrade vital tissue include pronase, protease, proteinase, papain, and trypsin, and any of them can be used. However, the ability of pronase to exhibit the desired degradability is particularly preferable.
  • the reaction conditions and reaction time for the proteolytic enzyme can be appropriately adjusted by those skilled in the art according to the protein degrading enzyme used.
  • a temperature condition of about 35 to 60 ° C., preferably about pH 7 to 8 is preferred.
  • the amount of proteolytic enzyme used can be adjusted by those skilled in the art depending on the type, and it is preferable to use 200,000 units or more per kg of living tissue. By using a large amount of proteolytic enzyme, the proteolytic enzyme treatment time can be reduced to 5 hours or less.
  • the degradation product obtained in (1) is subjected to molecular weight fractionation.
  • the molecular weight cutoff is 6,000 to 50,000. 8,000 to 30,000 is more preferred, and 10,000 to 20,000 is the most preferred range.
  • the fractional molecular weight can be appropriately adjusted by those skilled in the art according to the average molecular weight of the hyaluronic acid composition to be obtained.
  • the undegraded tissue Prior to the fractionation step based on the strong molecular weight, for example, by using a technique such as filtration, the undegraded tissue is removed or contacted with celite, activated carbon, etc., and the molecular weight is 1,000 or less.
  • a technique such as filtration
  • the treatment for removing loose impurities By carrying out the treatment for removing loose impurities, a hyaluronic acid composition with fewer impurities can be obtained.
  • a hyaluronic acid composition with fewer impurities can be obtained.
  • the hyaluronic acid composition can be recovered from the fraction subjected to molecular weight fractionation by a known method.
  • the hyaluronic acid composition obtained by freeze-drying can be prevented from being modified, and the operation is simple.
  • the powerful method for preparing the composition of the present invention is characterized in that the quaternary ammonium salt and the organic solvent (alcohols) do not come into contact with the composition of the present invention before and after purification. is there
  • the inhibitor of the present invention comprises the composition of the present invention as an active ingredient.
  • the composition of the present invention has resistance to the degradation activity of the guinea pig testicular-derived hyaluronan-dase and the hygiene testis-derived hyaluronan-idase. Therefore, the composition of the present invention can be used as a glycosaminodarlican degradation inhibitor derived from such glycosaminodarican degrading enzyme activity.
  • the inhibitor of the present invention includes hyaluronic acid, chondroitin sulfate (chondroitin sulfate A, chondroitin sulfate B, chondroitin sulfate C, chondroitin sulfate D, chondroitin sulfate E), keratan sulfate, heparin, heparan sulfate, dermatan sulfate. It is useful as a decomposition inhibitor of hyaluronic acid, chondroitin sulfate, and dermatan sulfate, which are the targets of mammalian type endo hyaluro-dase (EC 3.2.1.35). is there.
  • the amount of the inhibitor of the present invention used is a weight ratio with respect to the other glycosaminodaricans. Forces exemplified by 0.01% to 80%, preferably 0.1% to 30%, more preferably 0.5% to 20%, depending on the coexisting enzyme concentration (concentration of glycosaminodarlican-degrading enzyme whose activity should be suppressed) It can be used after adjusting appropriately.
  • the inhibitor of the present invention can be added to pharmaceuticals, foods, and cosmetics to utilize the glycosaminodarican degradation inhibitory action of the present invention composition.
  • the present invention composition is considered to be formed by hyaluronic acid.
  • Hyaluronic acid is already listed in the pharmacopoeia as a sodium salt, and is also used as a medicine. Therefore, the safety
  • Drying loss is determined according to the Japanese Pharmacopoeia 14 by accurately measuring sample O.lg and using phosphorus pentoxide as the desiccant, and the amount after drying at 95 ° C for 3 hours under reduced pressure.
  • the sample is pre-stretched to a constant weight and placed in a force bottle, and the surface of the sample is flattened and the mass is reduced to 0.
  • Weigh to the order of lmg. Place the sample bottle into the vacuum dryer prepared at 95 ° C. Add an appropriate amount of phosphorus pentoxide, reduce the pressure in the vacuum dryer to O.lkPa, and dry for 3 hours. After drying, gradually reduce the pressure in the vacuum dryer to atmospheric pressure, quickly transfer the force bottle and lid to a desiccator and allow to cool to room temperature. After cooling, cover the force bottle and remove it from the desiccator, and weigh it to the order of 0.1 mg. The weight loss is calculated as a percentage by mass from the amount of sample before and after drying.
  • the pH is determined by the pH electrode method according to the pH test method of Japanese Pharmacopoeia 14 by adding 50 ml of freshly boiled and cooled distilled water to sample O.lg.
  • pH is measured using a roughness force Ji glass electrode and the P H meter soaked several hours or more in order water.
  • the sample was dissolved in 0.05 mol / l Tris buffer (pH 8.0, 0.1 mol / l containing sodium chloride), diluted to 0.02 g / dl to 0.1 g / dl, and the concentration was changed to 10
  • Tris buffer pH 8.0, 0.1 mol / l containing sodium chloride
  • the concentration was changed to 10
  • the weight average molecular weight was calculated from the intrinsic viscosity [r?] Based on the description of C. Laurent, A. Pietuszklewicz, M. Ryan, Biochim. Biophys. Act a. 42,476 (1960).
  • Protein is measured by the Raleigh method. Precisely weigh about 0.08 g of the sample, and add exactly 2 ml of dilute sodium hydroxide reagent to dissolve it. Accurately measure 1 ml of sample solution, accurately place 5 ml of alkaline copper reagent, leave it at 25 ° C for 10 minutes, leave it at 25 ° C for 0.5 minute, leave it at 25 ° C for 60 minutes, and measure the absorbance at a wavelength of 750 nm. . Bullying cow blood Prepare a standard solution of clean albumin and calculate the amount of protein in the sample solution using this calibration curve.
  • 0.5 g of the sample is weighed in a magnetic crucible, and gently heated with a lid covered and weakly carbonized. After cooling, add 2 ml of nitric acid and 5 drops of sulfuric acid, heat carefully until no white smoke is formed, then ignite at 500-600 ° C to incinerate. After cooling, add 2 ml of hydrochloric acid, evaporate to dryness in a water bath, moisten the residue with 3 drops of hydrochloric acid, add 10 ml of hot water and warm for 2 minutes.
  • Arsenic weighs 0.5g of sample and puts it in a magnetic crucible.
  • a solution (10 ml) obtained by diluting an ethanol (95%) solution of magnesium nitrate hexahydrate 50-fold with pure water was added, and the ethanol was ignited and burned, and then gradually heated. After that, it is ignited by igniting.
  • After cooling add 3 ml of hydrochloric acid to the residue and warm to dissolve in a water bath to make the sample solution.
  • the sample solution is reacted using an arsenic test apparatus, and the content is measured by observing the color of the solution.
  • the color observed in the standard solution prepared in advance (a solution containing arsenic at 2 ppm) is darker, and if a color is observed, it indicates that it contains arsenic at a higher concentration.
  • the glucuronic acid content is measured using the force rubazole sulfate method. Dried the sample and about 5
  • Omg was precisely weighed and purified water was added to dissolve, making the total volume 1000 ml. Take 1 ml of this solution in a test tube, add 5 ml of sodium borate and sulfuric acid reagent while cooling in ice water, mix and heat for 10 minutes in a water bath. Immediately cool in ice water and add 0.2 ml of force rubazole reagent. Mix, heat in water bath for 15 minutes, allow to cool, and measure absorbance at 530 nm. A standard solution of D-Dalcronolatone was prepared in advance, and the calibration curve force was also used to calculate the amount of dalc carboxylic acid. (D-Dalcronolaton is multiplied by 1.102 to give the amount of glucuronic acid) Calculate the proportion of the glucuronic acid obtained in the sample.
  • Measurement Example 9 Disaccharide analysis by capillary electrophoresis
  • the electrophoresis buffer is 50 nmol / l borate buffer (pH 8.5), lOOmmol / 1 SDS (sodium dodecyl sulfate), and analyzed at a temperature of 25 ° C in a single tube.
  • the capillary was washed with ultrapure water for 2 minutes by the pressurization method, and then washed with the electrophoresis buffer for 2 minutes by the pressurization method, and the inside of the capillary was filled with the electrophoresis buffer.
  • An analytical sample was introduced into the capillary for 10 seconds by the pressurization method, and then a voltage was applied. The applied voltage was 20 kV and the analysis time was 10 minutes. Detect UV absorption at 200nm wavelength and examine enzymatic degradation.
  • Celite to this mixture (gemtuzumab write super one 3H: Hakusan Ltd.) 2 kg of activated carbon (Shirasagi - Yu Gold: Takeda Seiyaku) 2 kg was added, using a spark color filter (manufactured by Nissen), No .5277 (Azumi filter paper manufactured by ) And Z-800 (Azumi filter paper
  • Hyaluronic acid shown in Table 3 below was used as a control substance. [0071] [Table 3]
  • composition of the present invention is resistant to urchin testis-derived hyaluronan-dase.
  • Example 2 The experiment similar to that of Example 2 was performed in place of the Hushi testis-derived hyaluronan-dase in Example 2 instead of the Hygi testis-derived hyaluronidase (manufactured by Roche) (FIG. 2).
  • composition of the present invention exhibits resistance to hygiene testis-derived hyaluronan-dase.
  • Example 2 The same substance as in Example 2 was used as a control.
  • composition of the present invention was also decomposed in the same manner as the control.
  • Hyaluronan-dase is known to inhibit the enzymatic activity of metal ions.
  • the composition of the present invention is resistant to enzymatic degradation by hyaluro-dase derived from testes of ushi and hedges, regardless of the influence of metal ions. That is, 10 ⁇ l of lOOmmol / 1 edetic acid (chelating agent) was added to 100 ⁇ l of ultrapure water containing 100 ⁇ g of the composition of the present invention and treated at 25 ° C. for 10 hours. The sample was decomposed and analyzed according to Measurement Example 9 (Fig. 6). As a control, hyaluronic acid derived from Streptcoccus zooepidemi cus manufactured by Nacalai Testa Co. As a result, no degradation products were observed.
  • the hyaluronan-dase resistance of the composition of the present invention was not due to contamination with metal ions.
  • composition of the present invention has been isolated without any treatment such as treatment with a quaternary ammonium salt or fractionation with an organic solvent. Therefore, it is highly possible that the existing form in the chicken crown is maintained, and it is manufactured without damaging the three-dimensional higher order structure caused by hydrogen bonding. Therefore, it was known in protein studies and the like that it was known to cleave hydrogen bonds, and the effect of hydrogen bonds on hyaluronan-dase resistance was confirmed by treatment with urea or guanidine hydrochloride.
  • composition of the present invention was treated with guanidine hydrochloride, degradation products were observed.
  • composition of the present invention is attributed to hydrogen bonds in the hyaluronic acid molecule. That is, the composition of the present invention is considered to differ from conventional hyaluronic acid in terms of the three-dimensional structure due to hydrogen bonding.
  • composition of the present invention and the control substance 1 obtained in Preparation Example 2 were treated with hyaluronan-dase according to Examples 2 and 3, decomposed by the method described in Measurement Example 9, and their degradability was compared. ( Figure 8).
  • control substance 1 was decomposed by both the testicular-derived hyaluronan-dase and the hygiene testis-derived hyaluronan-dase.
  • composition of the present invention with a quaternary ammonium salt and an organic solvent eliminates the resistance to hyaluro-dase, and there is a difference in the characteristics of the product depending on the intensive manufacturing process. It was found that this occurred.
  • the hyaluronic acid composition having resistance to mammalian hyaluronan-dase obtained according to the present invention avoids adverse effects on biocompatibility resulting from alteration of the molecular structure of hyaluronic acid, and is a practical degradation. It has superiority in enzyme stability and can be applied in the fields of pharmaceuticals, quasi drugs, cosmetics, and foods.

Abstract

Disclosed are: a hyaluronic acid composition which is purified by, in a purification process, subjecting a biological tissue to a treatment with a protease and a molecular weight fractionation and concentrating or lyophilizing the resulting product without performing a treatment with a quaternary ammonium salt or an organic solvent (e.g., an alcohol); a hyaluronic acid composition having a resistance against the activity of a mammalian hyaluronidase; an inhibitor of the decomposition of a glucosaminoglycan comprising the composition as an active ingredient; and a pharmaceutical, food or cosmetic comprising the composition as an active ingredient.

Description

明 細 書  Specification
新規組成物及びその製造法  NOVEL COMPOSITION AND METHOD FOR PRODUCING THE SAME
技術分野  Technical field
[0001] 本発明は医薬品及びィ匕粧品への適用がなされているヒアルロン酸において、ヒア ルロニダーゼに対する耐性 (酵素分解性)が高 、ヒアルロン酸組成物を製造する方 法に関する。  [0001] The present invention relates to a method for producing a hyaluronic acid composition having high resistance to hyaluronidase (enzymatic degradation) in hyaluronic acid applied to pharmaceuticals and cosmetics.
背景技術  Background art
[0002] ヒアルロン酸は、 N—ァセチルー D—ダルコサミンに D—グルクロン酸 β— 1, 3結合 した二糖が ι8—1, 4結合で連続して結合したムコ多糖類の一種である。ヒアルロン酸 は関節、硝子体、臍帯、軟骨、皮膚、気管、鳥類の鶏冠などの結合組織中にその構 成成分として存在し、組織の柔軟性、構造維持、細胞の代謝調節などに重要な機能 を果たしている。また、ヒアルロン酸は非常に大きい高分子物質であり、その溶液は 強い粘弾性を持ち、保水作用を有するところから、化粧品、創傷治療剤、眼薬、関節 炎治療薬等広い用途がある。  [0002] Hyaluronic acid is a kind of mucopolysaccharide in which a disaccharide in which D-glucuronic acid β-1,3 bonds are linked to N-acetylyl D-darcosamine in succession by ι8-1,4 bonds. Hyaluronic acid is present as a component in connective tissues such as joints, vitreous, umbilical cord, cartilage, skin, trachea, and bird's chicken crown, and functions important for tissue flexibility, structure maintenance, and cell metabolism regulation. Plays. In addition, hyaluronic acid is a very large polymer substance, and its solution has strong viscoelasticity and water retention, so it has a wide range of uses such as cosmetics, wound treatments, eye drops, and arthritis treatments.
[0003] ヒアルロン酸は、分子量にっ 、て多分散性である力 種及び臓器特異性をもたず、 生体に移植または注入した場合であっても優れた生体適合性を示すことが知られて いる。しかし、ヒアルロン酸は酵素による分解を受けやすいため、生体内に留置しても 早期に消失してしまうという問題があり、力かる問題を解決するために化学修飾、化 学架橋等の手法により調製した修飾ヒアルロン酸として酵素耐性を付与する技術が 検討されてきた (特許文献 1〜10)。  [0003] Hyaluronic acid is known to have excellent biocompatibility even when transplanted or injected into a living body without having a polydisperse species or organ specificity due to its molecular weight. ing. However, since hyaluronic acid is susceptible to enzymatic degradation, there is a problem that it disappears at an early stage even if it is placed in the living body, and it is prepared by methods such as chemical modification and chemical cross-linking in order to solve the problem. Techniques for imparting enzyme resistance as modified hyaluronic acid have been studied (Patent Documents 1 to 10).
[0004] し力しながら生体内での生物安定性の改善された修飾ヒアルロン酸は、化学的反 応性物質を用いるため、新たな修飾による毒性 ·生体不適合性等の危険性を本質的 に抱え込まざるを得な 、と 、う課題が残って 、た。 [0004] However, modified hyaluronic acid with improved biostability in vivo uses chemically reactive substances, so it inherently holds risks such as toxicity and biocompatibility due to new modifications. There was still a problem left to be solved.
[0005] 一方、ヒアルロン酸の製造における一般的な精製法としては、動物組織抽出又は 発酵法とも次のような工程が例示される。 [0005] On the other hand, as a general purification method in the production of hyaluronic acid, the following steps are exemplified for both animal tissue extraction and fermentation methods.
(1)結合組織あるいは培地を含んで 、る粗精製物にエタノールのような有機溶媒を 加え、更に有機溶媒を使用して沈降物を収集し完全に洗浄する。 (2)ヒアルロン酸ナトリウム沈降物を塩ィ匕ナトリウム水溶液に再溶解させ、活性炭を加 える。 (1) Add an organic solvent such as ethanol to the crude product containing connective tissue or medium, and collect the precipitate using an organic solvent and thoroughly wash it. (2) Redissolve sodium hyaluronate precipitate in sodium chloride aqueous solution and add activated carbon.
(3)得られた懸濁液はケイソゥ土濾過助剤を使用して濾過し、活性炭、微生物及び 他の不溶性物質を除去する。  (3) The resulting suspension is filtered using diatomaceous earth filter aid to remove activated carbon, microorganisms and other insoluble materials.
(4)清澄な濾液を塩化セチルピリジ-ゥムで処理し、不溶性のヒアルロン酸のセチル ピリジニゥム塩を形成する。  (4) Treat the clear filtrate with cetylpyridinum chloride to form insoluble cetylpyridinium salt of hyaluronic acid.
(5)セチルピリジ-ゥム塩を収集し、エタノールを含有する塩ィ匕ナトリウム水溶液に溶 解させ、例えばエタノールのような有機溶媒を添加することによりヒアルロン酸ナトリウ ムを回収する。  (5) Collect cetyl pyridinium salt, dissolve it in an aqueous sodium chloride solution containing ethanol, and recover sodium sodium hyaluronate by adding an organic solvent such as ethanol.
(5)再度、ヒアルロン酸ナトリウムを塩化ナトリウム水溶液に再溶解させる。  (5) Redissolve sodium hyaluronate again in an aqueous sodium chloride solution.
(6)塩化セチルピリジ-ゥムを添カ卩して再びヒアルロン酸のセチルピリジ-ゥム塩を形 成する。  (6) Add cetyl pyridinium chloride to form cetyl pyridinium salt of hyaluronic acid again.
(7)エタノールを含む塩化ナトリウム水溶液にヒアルロン酸塩を溶解させ、有機溶媒 を添加することによりヒアルロン酸ナトリウムを回収する。  (7) Sodium hyaluronate is recovered by dissolving hyaluronate in an aqueous sodium chloride solution containing ethanol and adding an organic solvent.
(8)塩ィ匕ナトリウム水溶液中に沈降物を溶解させ、得られた溶液を例えばフロリジル のようなケィ酸マグネシウム吸着剤と接触させて不純物及び残留セチルピリジニゥム イオンを除去する。  (8) Dissolve the precipitate in an aqueous solution of sodium chloride and contact the resulting solution with a magnesium silicate adsorbent such as Florisil to remove impurities and residual cetylpyridinium ions.
(9)溶液を濾過滅菌し、無菌エタノールのような無菌有機溶媒を添加することによりヒ アルロン酸ナトリウムを沈降し取得する。  (9) The solution is sterilized by filtration, and sodium hyaluronate is precipitated and obtained by adding a sterile organic solvent such as sterile ethanol.
[0006] しかし、このような第四級アンモ-ゥム塩と有機溶媒による精製方法は煩雑であり、 また、第四級アンモ-ゥム塩ゃ有機溶媒の残留を防ぐための操作も必要とされてい た。  [0006] However, such a purification method using a quaternary ammonium salt and an organic solvent is complicated, and the quaternary ammonium salt requires an operation for preventing the organic solvent from remaining. It had been.
[0007] 特許文献 1 :特開平 3— 105003号公報  [0007] Patent Document 1: Japanese Patent Laid-Open No. 3-105003
特許文献 2:欧州公開 0341745号公報  Patent Document 2: European publication 0341745
特許文献 3 :米国特許 4, 582,865号公報  Patent Document 3: US Patent No. 4,582,865
特許文献 4:特公平 6— 37575号公報  Patent Document 4: Japanese Patent Publication No. 6-37575
特許文献 5:特開平 7— 97401号公報  Patent Document 5: JP-A-7-97401
特許文献 6:特開昭 60— 130601号公報 特許文献 7:特開平 6 - 73103号公報 Patent Document 6: JP-A-60-130601 Patent Document 7: JP-A-6-73103
特許文献 8:特開平 5 - 58881号公報  Patent Document 8: JP-A-5-58881
特許文献 9:欧州公開 0216453号公報  Patent Document 9: European publication 0216453
特許文献 10:国際公開 W095Z25751号パンフレット  Patent Document 10: International Publication W095Z25751 Pamphlet
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] ヒアルロン酸を医薬品やィ匕粧品などとして利用する際に、化学的架橋ゃィ匕学的修 飾を行うと、哺乳類由来ヒアルロニダーゼ等の分解酵素に対する安定性は増すが、 生体への影響を無視することはできな力つた。従って、このような構造改変を行うこと なぐし力もヒアルロン酸分解酵素に対して安定性が高いヒアルロン酸組成物が望ま れていた。 [0008] When hyaluronic acid is used as a pharmaceutical or cosmetic product, the chemical cross-linking modification improves the stability of mammalian-derived hyaluronidase and other degrading enzymes. I couldn't ignore it. Accordingly, a hyaluronic acid composition having high stability against hyaluronic acid-degrading enzymes and the ability to perform such structural modification has been desired.
課題を解決するための手段  Means for solving the problem
[0009] 本発明者は、上記課題を達成するべぐヒアルロン酸自体の酵素安定性について 鋭意検討してきた。その結果、ヒアルロン酸の製造工程の違いにより生物安定性 (酵 素に対する耐性)の異なるヒアルロン酸組成物が得られると ヽぅ知見を得た。 [0009] The inventor has intensively studied the enzyme stability of begu hyaluronic acid itself, which achieves the above-mentioned problems. As a result, we have obtained knowledge that hyaluronic acid compositions with different biostability (resistance to enzymes) can be obtained due to differences in the production process of hyaluronic acid.
すなわち、哺乳類由来のヒアル口-ダーゼによる加水分解への抵抗性を示すヒアル ロン酸組成物の製造法を見出し、本発明に想到した。  That is, the inventors have found a method for producing a hyaluronic acid composition exhibiting resistance to hydrolysis by mammalian-derived hyaluronan-dase, and have arrived at the present invention.
[0010] 本発明は、製造工程において(1)塩ィ匕セチルピリジ-ゥム等の第四級アンモ-ゥム 塩を用いな 、こと(2)エタノール等の有機溶媒を添加する沈殿工程を用いな 、と!/、う 特長を有する。 [0010] The present invention uses (1) a precipitation step in which an organic solvent such as ethanol is added, without using (1) a quaternary ammonium salt such as salt cetyl pyridinium in the production process. It has the following features:
[0011] 本発明の要旨は、以下の通りである。 [0011] The gist of the present invention is as follows.
(1) 下記の〈1〉〜く 3〉の工程により得られるヒアルロン酸組成物。  (1) A hyaluronic acid composition obtained by the following steps <1> to <3>.
く 1〉生体組織をタンパク質分解酵素で処理してタンパク質を分解する工程; く 2X1〉によって得た分解産物を分子量で分画して画分を得る工程; く 3X2〉によって得た画分力 ヒアルロン酸組成物を回収する工程。  1) Process of degrading proteins by treating biological tissue with proteolytic enzymes; 2) Obtaining fractions by decomposing the degradation products obtained by 2X1> by molecular weight; 3) Fracturing power obtained by 3X2> Recovering the acid composition;
(2) 下記の性質を有するヒアルロン酸組成物。  (2) A hyaluronic acid composition having the following properties.
(a)標準条件下で、ゥシ精巣由来又はヒッジ精巣由来のヒアルロニダーゼと共存さ せた後、 5分間煮沸処理し、遠心分離した上清をキヤビラリ一電気泳動で二糖分析 すると、分解が認められない; ( a ) Under standard conditions, coexist with Hushi testis or Hedgei testis-derived hyaluronidase, boil for 5 minutes, and centrifuge the supernatant to be subjected to disaccharide analysis by capillary single electrophoresis Then no decomposition is allowed;
(b)ローリー法で分析すると、タンパク質含量が 0.1%未満;  (b) When analyzed by the Raleigh method, the protein content is less than 0.1%;
(c)日本薬局方記載の重金属試験法による重金属測定で、重金属含量が 20ppm 以下;  (c) Heavy metal content of 20ppm or less as determined by the heavy metal test method described in the Japanese Pharmacopoeia;
(d)日本薬局方記載の砒素試験法による砒素測定で、砒素含量が 2ppm以下。 (d) The arsenic content is 2ppm or less as measured by the arsenic test method described in the Japanese Pharmacopoeia.
(3) 下記の〈1〉〜く 3〉の工程を含むヒアルロン酸組成物の製造方法。 (3) A method for producing a hyaluronic acid composition comprising the following steps <1> to <3>.
く 1〉生体組織をタンパク質分解酵素で処理してタンパク質を分解する工程; く 2X1〉によって得た分解産物を分子量で分画して画分を得る工程; く 3X2〉によって得た画分力 ヒアルロン酸組成物を回収する工程。  1) Process of degrading proteins by treating biological tissue with proteolytic enzymes; 2) Obtaining fractions by decomposing the degradation products obtained by 2X1> by molecular weight; 3) Fracturing power obtained by 3X2> Recovering the acid composition;
(4) ヒアルロン酸組成物を有効成分とする、グリコサミノダリカン分解抑制剤。  (4) A glycosaminodarican decomposition inhibitor comprising a hyaluronic acid composition as an active ingredient.
(5) ヒアルロン酸組成物のグリコサミノダリカン分解抑制剤としての使用。  (5) Use of a hyaluronic acid composition as a glycosaminodarican decomposition inhibitor.
(6) (1)又は(2)記載のヒアルロン酸組成物を含む医薬。  (6) A medicament comprising the hyaluronic acid composition according to (1) or (2).
(7) (1)又は(2)記載のヒアルロン酸組成物を含む食品。  (7) A food containing the hyaluronic acid composition according to (1) or (2).
(8) (1)又は(2)記載のヒアルロン酸組成物を含む化粧品。  (8) A cosmetic comprising the hyaluronic acid composition according to (1) or (2).
発明の効果  The invention's effect
[0012] 本発明により、ほ乳類由来のヒアル口-ダーゼ分解耐性を有するヒアルロン酸組成 物が得られる。  [0012] According to the present invention, a hyaluronic acid composition having a hyaluronan-dase degradation resistance derived from a mammal can be obtained.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]本発明組成物のゥシ精巣由来ヒアル口-ダーゼ処理後のキヤピラリー電気泳動 力も得られたチャートである。破線は酵素反応前、実線は酵素反応後のチャートを示 す。  [0013] FIG. 1 is a chart in which the capillary electrophoresis force after treatment with a guinea pig testis-derived hyaluronan-dase is also obtained. The broken line shows the chart before the enzyme reaction, and the solid line shows the chart after the enzyme reaction.
[図 2]本発明組成物のヒッジ精巣由来ヒアル口-ダーゼ処理後のキヤピラリー電気泳 動から得られたチャートである。破線は酵素反応前、実線は酵素反応後のチャートを 示す。  FIG. 2 is a chart obtained from capillary Pillar electrophoretic treatment after treatment with a hygiene testis-derived hyal-mouth-dase of the composition of the present invention. The broken line shows the chart before the enzyme reaction, and the solid line shows the chart after the enzyme reaction.
[図 3]医薬品として上巿されているヒアルロン酸のヒッジ精巣由来ヒアルロニダーゼ処 理後にキヤピラリー電気泳動力も得られたチャートである。破線は酵素反応前、実線 は酵素反応後のチャートを示す。  FIG. 3 is a chart in which capillary electrophoresis force was also obtained after treatment of hyaluronic acid, a hyaluronic acid derived from hygiene testis, which has been promoted as a pharmaceutical product. The broken line shows the chart before the enzyme reaction, and the solid line shows the chart after the enzyme reaction.
[図 4]本発明組成物の微生物由来ヒアル口-ダーゼ(Streptomyces hyalurolyticus)処 理後のキヤピラリー電気泳動力も得られたチャートである。破線は酵素反応前、実線 は酵素反応後のチャートを示す。 [Fig. 4] Treatment of microorganism-derived hyaluronan-dase (Streptomyces hyalurolyticus) of the composition of the present invention It is the chart from which the capillary electrophoresis force after treatment was also obtained. The broken line shows the chart before the enzyme reaction, and the solid line shows the chart after the enzyme reaction.
[図 5]本発明組成物の微生物由来ヒアル口-ダーゼ(Streptococcus dysgalactiae )処 理後のキヤピラリー電気泳動力も得られたチャートである。破線は酵素反応前、実線 は酵素反応後のチャートを示す。  FIG. 5 is a chart showing the capillary electrophoresis force after treatment of the composition of the present invention with a microorganism-derived hyaluronan-dase (Streptococcus dysgalactiae). The broken line shows the chart before the enzyme reaction, and the solid line shows the chart after the enzyme reaction.
[図 6]本発明組成物を EDTA (ェデト酸)処理した後、精巣由来ヒアルロニダーゼ処理 をおこなった後のキヤピラリー電気泳動から得られたチャートである。破線は酵素反 応前、実線は酵素反応後のチャートを示す。  FIG. 6 is a chart obtained by capillary electrophoresis after subjecting the composition of the present invention to EDTA (edetic acid) treatment and then to testicular-derived hyaluronidase treatment. The broken line shows the chart before the enzyme reaction, and the solid line shows the chart after the enzyme reaction.
[図 7]本発明組成物の尿素又は塩酸グァ-ジン処理した後、ゥシ又はヒッジ精巣由来 ヒアル口-ダーゼ処理を行った後のキヤピラリー電気泳動力 得られたチャートである FIG. 7 is a chart showing the capillary electrophoresis force obtained after treating the composition of the present invention with urea or guanidine hydrochloride and then treating with a ashi or a hygiene testis-derived hyal-mouth-dase.
。破線は酵素反応前、実線は酵素反応後のチャートを示す。 . The broken line shows the chart before the enzyme reaction, and the solid line shows the chart after the enzyme reaction.
[図 8]本発明組成物と対照物質 1をそれぞれ、ゥシ又はヒッジ精巣由来ヒアルロニダ ーゼ処理した後のキヤピラリー電気泳動から得られたチャートである。破線は酵素反 応前、実線は酵素反応後のチャートを示す。  FIG. 8 is a chart obtained by capillary electrophoresis after treatment of the composition of the present invention and the control substance 1 with a honey or a testicle-derived hyaluronidase, respectively. The broken line shows the chart before the enzyme reaction, and the solid line shows the chart after the enzyme reaction.
[図 9]従来のヒアルロン酸と本発明組成物との混合物をゥシ又はヒッジ精巣由来ヒア ルロニダーゼ処理をおこなった後のキヤビラリ一電気泳動から得られたチャートであ る。破線は酵素反応前、実線は酵素反応後のチャートを示す。  [FIG. 9] A chart obtained from a single capillary electrophoresis after treating a mixture of conventional hyaluronic acid and the composition of the present invention with a ushi or hydrange testis-derived hyaluronidase. The broken line shows the chart before the enzyme reaction, and the solid line shows the chart after the enzyme reaction.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下、本発明のヒアルロン酸組成物について詳説する。 Hereinafter, the hyaluronic acid composition of the present invention will be described in detail.
[0015] < 1 > 本発明組成物 [0015] <1> Composition of the present invention
本発明組成物は、分子量が多分散性の物性を示すことで知られて ヽるヒアルロン 酸からなり、下記の (a)〜(d)記載の特性を有することを特長とする。  The composition of the present invention comprises hyaluronic acid which is known to have a polydisperse physical property, and has the characteristics described in the following (a) to (d).
[0016] (a)標準条件下で、ゥシ精巣由来又はヒッジ精巣由来のヒアルロニダーゼと共存さ せた後、キヤビラリ一電気泳動法により処理後の組成物を二糖分析すると、分解が認 められない。 [0016] (a) Under the standard conditions, when coexisting with the hyaluronidase derived from the urchin testis or the Hedgei testis, the digestion analysis of the treated composition by the capillary single electrophoresis method showed degradation. Absent.
(b)タンパク質含量が 0.1%未満  (b) Protein content less than 0.1%
(c)重金属含量が 20ppm以下  (c) Heavy metal content of 20 ppm or less
(d)砒素含量が 2ppm以下 以下、上記 (a)力 (d)の各特性について説明する。 (d) Arsenic content is 2ppm or less Hereinafter, each characteristic of the above (a) force (d) will be described.
[0017] (a)本発明組成物は、ゥシ精巣由来又はヒッジ精巣由来のヒアル口-ダーゼと標準条 件下で共存させた後、 5分間煮沸処理し、遠心分離を行い、上清をキヤビラリ一電気 泳動による二糖分析を行うと、分解が認められない特性を有する。  [0017] (a) The composition of the present invention is co-existing under standard conditions with a whip testis-derived or Hedgei testis-derived hyal-mouth-dase, followed by boiling for 5 minutes, centrifugation, and the supernatant. When disaccharide analysis is carried out by capillary electrophoresis, it has the property that no degradation is observed.
[0018] 本発明における「標準条件下」とは、本発明組成物を 100 g/100 1で含む超純水 に対して 0.1mol/l酢酸緩衝液 (pH4.0、 0.1mol/lの NaClを含有する) 10 /z 1、ゥシ精巣 由来ヒアル口-ダーゼ又はヒッジ精巣由来ヒアル口-ダーゼ(l,000unit/ml)を含む超 純水 10 1を添カ卩し、 37度で 10時間保温する条件をいう。  [0018] In the present invention, "under standard conditions" means 0.1 mol / l acetate buffer (pH 4.0, 0.1 mol / l NaCl) with respect to ultrapure water containing the composition of the present invention at 100 g / 100 1 10 / z 1, with 10% ultrapure water containing Hushi testis-derived hyaluronan-dase or Hedge testis-derived hyaluronan-dase (l, 000unit / ml) at 37 ° C for 10 hours This refers to the conditions for keeping warm.
[0019] 本特性における「遠心分離」とは、 12,000 X g、 24度条件下で、 5分間の遠心処理を いう。  [0019] The "centrifugation" in this property refers to centrifugation for 5 minutes under the condition of 12,000 Xg and 24 degrees.
また、本特性における「キヤピラリー電気泳動による二糖分析」とは、後述の測定例 9に記載された分析手法を指称する。  In addition, “disaccharide analysis by capillary electrophoresis” in this property refers to the analysis method described in Measurement Example 9 described later.
[0020] (b)本発明組成物は、タンパク質含量が 0.1%未満である。 [0020] (b) The composition of the present invention has a protein content of less than 0.1%.
本特性におけるタンパク質含量は、特にローリー法により測定した含量を指称する 。ローリー法によるタンパク質含量の測定は、測定例 5記載の方法により行うことがで きる。  The protein content in this property refers specifically to the content measured by the Raleigh method. The protein content can be measured by the Raleigh method by the method described in Measurement Example 5.
[0021] (c)本発明組成物は、重金属含量が 20ppm以下である。  [0021] (c) The composition of the present invention has a heavy metal content of 20 ppm or less.
本特性における重金属含量は、特に日本局薬局方 14·一般試験法の重金属試験 法第 2法に従って測定した結果、 20ppm以下である特長を有する。測定の具体的方 法は、測定例 6に記載する。  The heavy metal content in this property has a feature that it is 20 ppm or less as a result of measurement according to the second method of heavy metal test method of the Japanese Pharmacopoeia 14. General test method. The specific method of measurement is described in Measurement Example 6.
[0022] (d)本発明組成物は、砒素含量が 2ppm以下である。 [0022] (d) The composition of the present invention has an arsenic content of 2 ppm or less.
本特性における砒素含量は、特に日本局薬局方 14·一般試験法の砒素試験法第 3法に従って測定した結果、 2ppm以下である特長を有する。測定の具体的方法は、 測定例 7に記載する。  The arsenic content in this property has a feature that it is 2 ppm or less as a result of measurement according to the third arsenic test method of the Japanese Pharmacopoeia 14. General Test Method. The specific method of measurement is described in Measurement Example 7.
また、本発明組成物は、更に下記何れかの性質を有することが好ましい。  The composition of the present invention preferably further has any of the following properties.
[0023] (e)性状は白色綿状粉末 [0023] (e) Properties are white cotton powder
(β乾燥減量 (60度、減圧 5時間、五酸化リン)は 5%以上 9%未満  (β drying loss (60 degrees, reduced pressure 5 hours, phosphorus pentoxide) is 5% or more and less than 9%
(g)pHが 5.8〜6.5 (h)極限粘度が 12.9以上 13.9未満 (g) pH 5.8-6.5 (h) Intrinsic viscosity is 12.9 or more and less than 13.9
(0重量平均分子量が 60万以上 120万以下  (0 weight average molecular weight 600,000 to 1.2 million
(j)グルクロン酸含量が 30%以上 50%未満  (j) Glucuronic acid content is 30% or more and less than 50%
[0024] (e)本発明組成物の性状は、白色綿状粉末である。 [0024] (e) The composition of the present invention is a white cotton-like powder.
本発明組成物の乾燥物は、白色綿状粉末の性状を有する。  The dried product of the composition of the present invention has the properties of a white cotton-like powder.
[0025] (1)本発明組成物の乾燥減量 (60度、減圧 5時間、五酸化リン)は 5%以上 9%未満である 本発明組成物の乾燥減量は、 5%以上 9%未満を示す。かかる乾燥減量の測定は、 日本薬局方 14に準じて、測定例 1記載の方法により求めることができる。 (1) Loss on drying (60 ° C., reduced pressure 5 hours, phosphorus pentoxide) of the composition of the present invention is 5% or more and less than 9% The weight loss on drying of the composition of the present invention is 5% or more and less than 9%. Show. Such loss on drying can be measured by the method described in Measurement Example 1 according to Japanese Pharmacopoeia14.
[0026] (g)本発明組成物の pHは 5.8〜6.5である。 [0026] (g) The composition of the present invention has a pH of 5.8 to 6.5.
本発明組成物の pHは、 5.8〜6.5である。力かる pHは、日本薬局方 14の pH試験法 に準じて、測定例 2記載の方法により求めることができる。  The pH of the composition of the present invention is 5.8 to 6.5. The powerful pH can be determined by the method described in Measurement Example 2 according to the pH test method of Japanese Pharmacopoeia14.
[0027] (h)本発明組成物の極限粘度は 12.9dl/g以上 13.9dl/g未満である。 [0027] (h) The intrinsic viscosity of the composition of the present invention is 12.9 dl / g or more and less than 13.9 dl / g.
本発明組成物の極限粘度は 12.9dl/g以上 13.9dl/g未満である。かかる極限粘度は ウベローデ粘度計を用いて、日本薬局方 14·一般試験法の粘度測定第 1法に従い測 定することができる。  The intrinsic viscosity of the composition of the present invention is 12.9 dl / g or more and less than 13.9 dl / g. Such intrinsic viscosity can be measured using an Ubbelohde viscometer according to the first method of viscosity measurement in the Japanese Pharmacopoeia 14. General Test Method.
[0028] (0本発明組成物の重量平均分子量は 60万以上 120万以下である。 (0) The weight average molecular weight of the composition of the present invention is 600,000 or more and 1.2 million or less.
本発明組成物の重量平均分子量は、 60万以上 120万以下である。かかる重量平均 分子量は Biochem. Biophys. Acta. 42, 476(1960)に従い、極限粘度の数値から下記 計算式に従って算出できる。  The weight average molecular weight of the composition of the present invention is from 600,000 to 1,200,000. Such weight average molecular weight can be calculated according to the following formula from the value of intrinsic viscosity according to Biochem. Biophys. Acta. 42, 476 (1960).
[0029] (式 1) [0029] (Formula 1)
[ τ? ] = 3.6 Χ 10"4Μ°· 78 は極限粘度を示し、 Μは重量平均分子量を示す) [0030] (j)本発明組成物のグルクロン酸含量は 30%以上 50%未満である。 [τ?] = 3.6 Χ 10 " 4 Μ ° · 78 indicates intrinsic viscosity, Μ indicates weight average molecular weight) [0030] (j) The glucuronic acid content of the composition of the present invention is 30% or more and less than 50%. is there.
本発明組成物は、力ルバゾール硫酸法により測定したグルクロン酸含量のが 30% 以上 50%未満である。力ルバゾール硫酸法によるグルクロン酸含量の測定は、以下 の方法により行うことができる。  The composition of the present invention has a glucuronic acid content of 30% or more and less than 50% as measured by the force rubazole sulfate method. The glucuronic acid content can be measured by the following method using the force rubazole sulfate method.
[0031] すなわち、試料を乾燥し、その約 50mgを精密に量り、精製水を加え溶解し、全量を 1000mlとする。この溶液 lmlを試験管に取り、氷水中に冷却しながらホウ酸ナトリウム' 硫酸試薬を 5mlカ卩ぇ混和し、水浴中に 10分間加熱する。直ちに氷水中で冷却し、力 ルバゾール試薬 0.2mlを加え混和し、水浴中に 15分間加熱し、放冷し、 530nmにおけ る吸光度を測定する。あら力じめ D—ダルクロノラタトンの標準溶液を作成しておき、こ の検量線力らグルクロン酸の量を算出することができる (D -ダルクロノラタトン量に 1.10 2を乗じ、グルクロン酸の量とする)。得られたグルクロン酸量カゝら試料の中の割合を算 出する。 [0031] That is, the sample is dried, about 50 mg thereof is accurately weighed, and purified water is added to dissolve to make a total volume of 1000 ml. Take 1 ml of this solution in a test tube and cool it in ice water. Mix 5 ml of sulfuric acid reagent and heat in a water bath for 10 minutes. Immediately cool in ice water, add 0.2 ml of strong rubazole reagent, mix, heat in water bath for 15 minutes, allow to cool, and measure absorbance at 530 nm. A standard solution of D-Dalcronolaton is prepared, and the amount of glucuronic acid can be calculated from the calibration curve force (D-Dalcronolaton is multiplied by 1.10 2 to The amount of acid). The ratio of the obtained glucuronic acid amount in the sample is calculated.
[0032] < 2> 本発明組成物の調製  [0032] <2> Preparation of the composition of the present invention
本発明組成物は、例えば以下の(1)〜(3)の工程によって得ることができる。  The composition of the present invention can be obtained, for example, by the following steps (1) to (3).
[0033] (1)生体組織をタンパク質分解酵素で処理してタンパク質を分解する工程; [0033] (1) A process of degrading protein by treating a biological tissue with a proteolytic enzyme;
(2)分解産物を分子量で分画する工程;  (2) a step of fractionating degradation products by molecular weight;
(3)ヒアルロン酸組成物を回収する工程。  (3) A step of recovering the hyaluronic acid composition.
[0034] (1)生体組織のタンパク質分解酵素によるタンパク質分解工程  [0034] (1) Proteolytic process of biological tissue with proteolytic enzymes
本発明組成物は、生体組織力ゝらタンパク質を分解した抽出物から調製することがで きる。  The composition of the present invention can be prepared from an extract obtained by degrading protein such as vital tissue strength.
生体組織としては、例えば鶏冠、臍帯、皮膚、気管等があげられ、何れもミンチにし て使用することができる。鶏冠が取り扱 、の容易性の面力も好ま 、。  Examples of biological tissues include chicken crown, umbilical cord, skin, trachea and the like, and any of them can be used as mince. I also like the ease of handling and handling of chicken crowns.
[0035] 力かる生体組織を分解するタンパク質分解酵素としては、例えばプロナーゼ、プロ テアーゼ、プロティナーゼ、パパイン、トリプシン等が挙げられ、何れも使用することが できる。しかし、その中でも殊にプロナーゼが所望の分解性を示すこと力も好ましい。  [0035] Examples of proteolytic enzymes that degrade vital tissue include pronase, protease, proteinase, papain, and trypsin, and any of them can be used. However, the ability of pronase to exhibit the desired degradability is particularly preferable.
[0036] タンパク質分解酵素による反応の条件、反応時間は、当業者であれば使用するタ ンパク質分解酵素に合わせて適宜調整することができる。例えばプロナーゼをタンパ ク質分解酵素として使用する場合には、 pH7〜8程度が好ましぐ 35〜60度程度の温 度条件が好ましい。タンパク質分解酵素の使用量は、その種類により、当業者であれ ば調節し得る力 生体組織 lkgに対して 20万単位以上を使用することが好ましい。か カゝる量のタンパク質分解酵素を使用することで、タンパク質分解酵素による処理時間 を 5時間以下に短縮することが可能である。  [0036] The reaction conditions and reaction time for the proteolytic enzyme can be appropriately adjusted by those skilled in the art according to the protein degrading enzyme used. For example, when pronase is used as a protein degrading enzyme, a temperature condition of about 35 to 60 ° C., preferably about pH 7 to 8 is preferred. The amount of proteolytic enzyme used can be adjusted by those skilled in the art depending on the type, and it is preferable to use 200,000 units or more per kg of living tissue. By using a large amount of proteolytic enzyme, the proteolytic enzyme treatment time can be reduced to 5 hours or less.
[0037] (2)分解産物を分子量により分画する工程  [0037] (2) Step of fractionating degradation products by molecular weight
(1)で得られた分解産物を分子量分画する。分画分子量は、 6,000〜50,000が挙げ られ、 8,000〜30,000がより好ましぐ 10,000〜20,000が最も好ましい範囲として挙げら れる。かかる分画分子量は、入手の目的とするヒアルロン酸組成物の平均分子量に 応じて、当業者であれば適宜調節することが可能である。 The degradation product obtained in (1) is subjected to molecular weight fractionation. The molecular weight cutoff is 6,000 to 50,000. 8,000 to 30,000 is more preferred, and 10,000 to 20,000 is the most preferred range. The fractional molecular weight can be appropriately adjusted by those skilled in the art according to the average molecular weight of the hyaluronic acid composition to be obtained.
[0038] 力かる分子量分画の手法としては、例えば限外濾過、ゲル濾過等、既知の手法を 適宜用いることができる。大量の試料も比較的容易に処理できることから、限外濾過 が好ましい。 [0038] As a method of exerting molecular weight fractionation, known methods such as ultrafiltration and gel filtration can be appropriately used. Ultrafiltration is preferred because a large amount of sample can be processed relatively easily.
[0039] なお、力かる分子量により分画する工程に先立ち、例えば濾過等の手法を用いて、 未分解組織を除去したり、又はセライトや活性炭などに接触させて、分子量 1,000以 下の 、わゆる夾雑物を除去する処理を行うことで、より夾雑物の少な!/、ヒアルロン酸 組成物を得ることができる。かかる処理は、当業者であれば適宜目的にあわせて選 択し適用することが可能である。  [0039] Prior to the fractionation step based on the strong molecular weight, for example, by using a technique such as filtration, the undegraded tissue is removed or contacted with celite, activated carbon, etc., and the molecular weight is 1,000 or less. By carrying out the treatment for removing loose impurities, a hyaluronic acid composition with fewer impurities can be obtained. Those skilled in the art can appropriately select and apply such processing according to the purpose.
[0040] (3)ヒアルロン酸組成物を回収する工程  [0040] (3) Step of recovering the hyaluronic acid composition
分子量分画を行った分画からのヒアルロン酸組成物の回収は、既知の方法により 行うことができる。既知の方法の中でも特に、凍結乾燥が得られたヒアルロン酸組成 物の変性を回避でき、また操作も簡易なため好ま 、。  The hyaluronic acid composition can be recovered from the fraction subjected to molecular weight fractionation by a known method. Among known methods, the hyaluronic acid composition obtained by freeze-drying can be prevented from being modified, and the operation is simple.
[0041] 力かる本発明組成物の調製法においては、精製の前後を問わず、第四級アンモ- ゥム塩及び有機溶媒 (アルコール類)と本発明組成物が接触しない点が、特長である  [0041] The powerful method for preparing the composition of the present invention is characterized in that the quaternary ammonium salt and the organic solvent (alcohols) do not come into contact with the composition of the present invention before and after purification. is there
[0042] 例えば、鶏冠力 のヒアルロン酸の製造における一般的な精製法と本発明における 組成物の製造法の違いは下記表 1のようにまとめられる。 [0042] For example, the difference between the general purification method in the production of chicken crown strength hyaluronic acid and the production method of the composition in the present invention is summarized in Table 1 below.
[0043] [表 1] [0043] [Table 1]
Figure imgf000010_0001
Figure imgf000010_0001
[0044] < 3 >本発明抑制剤 本発明抑制剤は、本発明組成物を有効成分とする。 [0044] <3> Inhibitor of the present invention The inhibitor of the present invention comprises the composition of the present invention as an active ingredient.
[0045] 本発明組成物はゥシ精巣由来ヒアル口-ダーゼ及びヒッジ精巣由来ヒアル口ニダ一 ゼの分解活性に対する耐性を有している。従って、本発明組成物はこのようなグリコ サミノダリカン分解酵素活性に由来するグリコサミノダリカン分解抑制剤として利用す ることがでさる。  [0045] The composition of the present invention has resistance to the degradation activity of the guinea pig testicular-derived hyaluronan-dase and the hygiene testis-derived hyaluronan-idase. Therefore, the composition of the present invention can be used as a glycosaminodarlican degradation inhibitor derived from such glycosaminodarican degrading enzyme activity.
[0046] 本発明抑制剤は、ヒアルロン酸、コンドロイチン硫酸(コンドロイチン硫酸 A、コンドロ ィチン硫酸 B、コンドロイチン硫酸 C、コンドロイチン硫酸 D、コンドロイチン硫酸 E)、ケ ラタン硫酸、へパリン、へパラン硫酸、デルマタン硫酸の分解抑制剤として有用である 力 その中でも特にほ乳類型のエンド型ヒアル口-ダーゼ (EC3.2.1.35)が作用する 対象であるヒアルロン酸、コンドロイチン硫酸、デルマタン硫酸の分解抑制剤として有 用である。  [0046] The inhibitor of the present invention includes hyaluronic acid, chondroitin sulfate (chondroitin sulfate A, chondroitin sulfate B, chondroitin sulfate C, chondroitin sulfate D, chondroitin sulfate E), keratan sulfate, heparin, heparan sulfate, dermatan sulfate. It is useful as a decomposition inhibitor of hyaluronic acid, chondroitin sulfate, and dermatan sulfate, which are the targets of mammalian type endo hyaluro-dase (EC 3.2.1.35). is there.
[0047] 本発明抑制剤を他のグリコサミノダリカンと混合して、酵素による分解を抑制する場 合の、本発明抑制剤の使用量は、他のグリコサミノダリカンに対して重量比で 0.01% 〜80%、好ましくは 0.1%〜30%、より好ましくは 0.5%〜20%が例示される力 共存す る酵素濃度 (活性を抑制すべきグリコサミノダリカン分解酵素の濃度)に応じて適宜調 整して使用することができる。  [0047] When the inhibitor of the present invention is mixed with other glycosaminodarlicans to suppress degradation by the enzyme, the amount of the inhibitor of the present invention used is a weight ratio with respect to the other glycosaminodaricans. Forces exemplified by 0.01% to 80%, preferably 0.1% to 30%, more preferably 0.5% to 20%, depending on the coexisting enzyme concentration (concentration of glycosaminodarlican-degrading enzyme whose activity should be suppressed) It can be used after adjusting appropriately.
[0048] 本発明抑制剤を、医薬品、食品、化粧品に対して本発明抑制剤を添加して、本発 明組成物が有するグリコサミノダリカン分解抑制作用を利用することが可能である。本 発明組成物はヒアルロン酸によって形成されると考えられる力 ヒアルロン酸はナトリ ゥム塩として既に薬局方にも収載され、また医薬品としても利用されている。従って、 本発明抑制剤、本発明組成物の安全性もそれと同様である。  [0048] The inhibitor of the present invention can be added to pharmaceuticals, foods, and cosmetics to utilize the glycosaminodarican degradation inhibitory action of the present invention composition. The present invention composition is considered to be formed by hyaluronic acid. Hyaluronic acid is already listed in the pharmacopoeia as a sodium salt, and is also used as a medicine. Therefore, the safety | security of this invention inhibitor and this invention composition is also the same.
実施例  Example
[0049] 以下、実施例により本発明をより具体的に説明する。なお、当然ながら本発明の技 術的範囲は本実施例の範囲に限定されて解釈されるものではない。  [0049] Hereinafter, the present invention will be described more specifically by way of examples. Needless to say, the technical scope of the present invention is not limited to the scope of this embodiment.
[0050] <測定例 1 > 乾燥減量の測定法  [0050] <Measurement Example 1> Method for measuring loss on drying
乾燥減量は日本薬局方 14に準じ、試料 O.lgを精密に量り五酸化リンを乾燥剤とし て、 95°C、 3時間減圧乾燥後の試料量より求める。  Drying loss is determined according to the Japanese Pharmacopoeia 14 by accurately measuring sample O.lg and using phosphorus pentoxide as the desiccant, and the amount after drying at 95 ° C for 3 hours under reduced pressure.
[0051] 試料をあら力じめ恒量にしたは力り瓶に取り、試料の表面を平らにして力も質量を 0. lmgの桁まで量る。試料を入れたは力ゝり瓶を 95°Cに調製した減圧乾燥機に入れる。 五酸化リンを適量入れ、減圧乾燥機内の圧力を O.lkPaまで減圧した後、 3時間乾燥 する。乾燥後、減圧乾燥器の圧力を徐々に大気圧に戻し、は力り瓶とふたをすみや かにデシケーターに移し室温まで冷却させる。冷却後、は力り瓶にふたをしてデシケ 一ター内から取り出し、その質量を 0. lmgの桁まで量る。乾燥前と乾燥後の試料量か らその減量を質量百分率で算出する。 [0051] The sample is pre-stretched to a constant weight and placed in a force bottle, and the surface of the sample is flattened and the mass is reduced to 0. Weigh to the order of lmg. Place the sample bottle into the vacuum dryer prepared at 95 ° C. Add an appropriate amount of phosphorus pentoxide, reduce the pressure in the vacuum dryer to O.lkPa, and dry for 3 hours. After drying, gradually reduce the pressure in the vacuum dryer to atmospheric pressure, quickly transfer the force bottle and lid to a desiccator and allow to cool to room temperature. After cooling, cover the force bottle and remove it from the desiccator, and weigh it to the order of 0.1 mg. The weight loss is calculated as a percentage by mass from the amount of sample before and after drying.
[0052] <測定例 2> pHの測定法  [0052] <Measurement example 2> pH measurement method
pHは日本薬局方 14の pH試験法に準じ、試料 O.lgに新たに蒸留水を煮沸し冷却し た水 50mlをカ卩えて溶解した液を pH電極法にて測定する。  The pH is determined by the pH electrode method according to the pH test method of Japanese Pharmacopoeia 14 by adding 50 ml of freshly boiled and cooled distilled water to sample O.lg.
[0053] pHは、あら力じめ水に数時間以上浸したガラス電極と PH計を用い測定する。 [0053] pH is measured using a roughness force Ji glass electrode and the P H meter soaked several hours or more in order water.
リン酸塩 pH標準液とフタル酸塩 pH標準液を用い、 pH計の校正を行い、試料 O.lgを 新たに蒸留水を煮沸し冷却した水 50mlを加え溶解した液を校正時と同じ温度にし、 p H計にて測定する。  Calibrate the pH meter using phosphate pH standard solution and phthalate pH standard solution, and add sample O.lg to a solution in which 50 ml of distilled water is boiled and cooled and then dissolved. Measure with a pH meter.
[0054] <測定例 3 > 極限粘度の測定法  <Measurement Example 3> Method for Measuring Intrinsic Viscosity
まず試料を 0.05mol/lトリス緩衝液 (pH8.0、 0.1mol/lで食塩含む)に溶解し、 0.02g/dl 〜0.1g/dlになるように希釈し、濃度を変えたものを 10数検体用意する。次に、ウベ口 ーデ粘度計を準備し、試料溶液をウベローデ粘度計を用いて常法により極限粘度を 測定する。  First, the sample was dissolved in 0.05 mol / l Tris buffer (pH 8.0, 0.1 mol / l containing sodium chloride), diluted to 0.02 g / dl to 0.1 g / dl, and the concentration was changed to 10 Prepare several samples. Next, prepare an Ubbe mouth viscometer, and measure the intrinsic viscosity of the sample solution using an Ubbelohde viscometer by a conventional method.
[0055] <測定例 4> 重量平均分子量の算出法  <Measurement Example 4> Calculation Method of Weight Average Molecular Weight
量平均分子量 ίま、 Τ . C . Laurent , A. Pietuszklewicz , M . Ryan , . Biochim.Biophys.Act a.42,476(1960)の記載に基づき、極限粘度 [ r? ]から算出した。  The weight average molecular weight was calculated from the intrinsic viscosity [r?] Based on the description of C. Laurent, A. Pietuszklewicz, M. Ryan, Biochim. Biophys. Act a. 42,476 (1960).
[0056] (式 2) [0056] (Formula 2)
[ 7? ] = 3.6 X 10"4Μ°·78 (Μは重量平均分子量を表す) [7?] = 3.6 X 10 " 4 Μ ° · 78 (Μ indicates weight average molecular weight)
[0057] <測定例 5 > ローリー法によるタンパク質の測定  [0057] <Measurement example 5> Protein measurement by the Raleigh method
タンパク質はローリー法で測定する。試料約 0. 08gを精密に量り、希水酸化ナトリウ ム試薬 2mlを正確に加え溶解したものを試料溶液とする。試料溶液 lmlを正確に量 りアルカリ性銅試薬 5mlを正確にカ卩え、 25°Cで 10分間放置、フォリン試薬 0. 5mlカロ え 25°Cで 60分間放置し、波長 750nmにおける吸光度を測定する。あら力じめ牛血 清アルブミンの標準溶液を作成しておき、この検量線力も試料溶液中のタンパク質量 を算出する。 Protein is measured by the Raleigh method. Precisely weigh about 0.08 g of the sample, and add exactly 2 ml of dilute sodium hydroxide reagent to dissolve it. Accurately measure 1 ml of sample solution, accurately place 5 ml of alkaline copper reagent, leave it at 25 ° C for 10 minutes, leave it at 25 ° C for 0.5 minute, leave it at 25 ° C for 60 minutes, and measure the absorbance at a wavelength of 750 nm. . Bullying cow blood Prepare a standard solution of clean albumin and calculate the amount of protein in the sample solution using this calibration curve.
[0058] <測定例 6 > 重金属含量の測定法  [0058] <Measurement example 6> Method for measuring heavy metal content
重金属は試料 0. 5を取り、日本薬局方 14 ·一般試験法の重金属試験法第 2法に従 つて測定した。比較液には鉛標準液を用いた。  For heavy metals, a sample of 0.5 was taken and measured according to the second method of the heavy metal test method of the Japanese Pharmacopoeia 14 · General test method. A lead standard solution was used as a comparison solution.
[0059] 試料 0. 5gを磁製のるつぼに量り、ゆるくふたをして弱く加熱して炭化する。冷後、 硝酸 2ml及び硫酸 5滴を加え、白煙が生じなくなるまで注意して加熱した後、 500〜 600°Cで強熱し、灰化する。冷後、塩酸 2mlを加え、水浴上で蒸発乾固し、残留物を 塩酸 3滴で潤し、熱湯 10mlをカ卩えて 2分間加温する。次に、フエノールフタレイン試 液 1滴カ卩え、アンモニア試液を液が微赤色となるまで滴カ卩し、希塩酸 2mlをカ卩えこの 液をネスラー管に入れ、水をカ卩えて 50mlとし、試料液とした。  [0059] 0.5 g of the sample is weighed in a magnetic crucible, and gently heated with a lid covered and weakly carbonized. After cooling, add 2 ml of nitric acid and 5 drops of sulfuric acid, heat carefully until no white smoke is formed, then ignite at 500-600 ° C to incinerate. After cooling, add 2 ml of hydrochloric acid, evaporate to dryness in a water bath, moisten the residue with 3 drops of hydrochloric acid, add 10 ml of hot water and warm for 2 minutes. Next, add 1 drop of phenolphthalein test solution, add ammonia test solution until the solution turns slightly red, add 2 ml of dilute hydrochloric acid, add this solution to a Nessler tube, and add water to make 50 ml. A sample solution was obtained.
[0060] 試料及び鉛標準液(20ppmで鉛を含有する)に硫ィ匕ナトリウム試液を 1滴づっ加え 、混和し、 5分間放置した後、両管を白色の背景を用い、上方力 観察して液の色を 比較する。液の色を観察し、標準液よりも濃い場合には、より高濃度で重金属が含有 されていることとなる。  [0060] Add a drop of sodium sulfate test solution to the sample and lead standard solution (containing 20 ppm of lead), mix, and let stand for 5 minutes. Compare the liquid colors. When the color of the liquid is observed and it is darker than the standard liquid, it means that heavy metal is contained at a higher concentration.
[0061] <測定例 7> 砒素含量の測定法  [0061] <Measurement example 7> Method for measuring arsenic content
砒素は試料 0. 5gを量り、磁製のるつぼに取る。これに対し、硝酸マグネシウム六水 和物のエタノール(95%)溶液を純水で 50倍希釈して得た溶液(10ml)を加え、エタ ノールに点火して燃焼させた後、徐々に加熱した後、強熱して灰化する。冷後、残留 物に塩酸 3mlをカ卩え、水浴上で加温して溶かし、試料液とする。この試料液をヒ素試 験装置を用いて反応させ、液の色を観察して含量を測定する。予め調製した標準液 (2ppmで砒素を含有する溶液)で観察された色はよりも濃 、色が観察された場合に は、それよりも高濃度で砒素を含有することを示す。  Arsenic weighs 0.5g of sample and puts it in a magnetic crucible. In contrast, a solution (10 ml) obtained by diluting an ethanol (95%) solution of magnesium nitrate hexahydrate 50-fold with pure water was added, and the ethanol was ignited and burned, and then gradually heated. After that, it is ignited by igniting. After cooling, add 3 ml of hydrochloric acid to the residue and warm to dissolve in a water bath to make the sample solution. The sample solution is reacted using an arsenic test apparatus, and the content is measured by observing the color of the solution. The color observed in the standard solution prepared in advance (a solution containing arsenic at 2 ppm) is darker, and if a color is observed, it indicates that it contains arsenic at a higher concentration.
[0062] <測定例 8 > 力ルバゾール硫酸法を用いたグルクロン酸含量の測定法  <Measurement Example 8> Method for measuring glucuronic acid content using the force rubazole sulfate method
グルクロン酸含量は力ルバゾール硫酸法を用い測定する。試料を乾燥し、その約 5 The glucuronic acid content is measured using the force rubazole sulfate method. Dried the sample and about 5
Omgを精密に量り、精製水を加え溶解し、全量を 1000mlとした。この溶液 lmlを試 験管に取り、氷水中に冷却しながらホウ酸ナトリウム '硫酸試薬を 5ml加え混和し、水 浴中に 10分間加熱する。直ちに氷水中で冷却し、力ルバゾール試薬 0. 2mlをカロえ 混和し、水浴中に 15分間加熱し、放冷し、波長 530nmにおける吸光度を測定する。 あら力じめ D—ダルクロノラタトンの標準溶液を作成しておき、この検量線力もダルク口 ン酸の量を算出した。(D—ダルクロノラタトン量に 1. 102を乗じ、グルクロン酸の量と する)得られたグルクロン酸量力 試料の中の割合を算出する。 Omg was precisely weighed and purified water was added to dissolve, making the total volume 1000 ml. Take 1 ml of this solution in a test tube, add 5 ml of sodium borate and sulfuric acid reagent while cooling in ice water, mix and heat for 10 minutes in a water bath. Immediately cool in ice water and add 0.2 ml of force rubazole reagent. Mix, heat in water bath for 15 minutes, allow to cool, and measure absorbance at 530 nm. A standard solution of D-Dalcronolatone was prepared in advance, and the calibration curve force was also used to calculate the amount of dalc carboxylic acid. (D-Dalcronolaton is multiplied by 1.102 to give the amount of glucuronic acid) Calculate the proportion of the glucuronic acid obtained in the sample.
[0063] く測定例 9 > キヤピラリー電気泳動による二糖分析 [0063] Measurement Example 9> Disaccharide analysis by capillary electrophoresis
キヤピラリー電気泳動装置(Beckman社の P/ACE 5010型)を用い、キヤビラリ一管( 40cm X 50 m)を用いる。電気泳動用緩衝液は 50nmol/lホウ酸緩衝液 (pH8. 5)、 lOOmmol/1 SDS (ドデシル硫酸ナトリウム)とし、キヤビラリ一管 25°Cに保ち分 析する。  Use a capillary electrophoresis device (P / ACE 5010 model from Beckman) and a single capillary tube (40 cm x 50 m). The electrophoresis buffer is 50 nmol / l borate buffer (pH 8.5), lOOmmol / 1 SDS (sodium dodecyl sulfate), and analyzed at a temperature of 25 ° C in a single tube.
[0064] キヤピラリーを超純水で加圧法により 2分間洗浄後、加圧法により電気泳動用緩衝 液で 2分間洗浄し、キヤピラリー内を泳動用緩衝液で満たした。加圧法により分析試 料を 10秒間キヤピラリー内に導入した後、電圧を印加した。印加電圧は 20kV、分析 時間は 10分間とした。波長 200nmにおける紫外線吸収を検出し、酵素分解を調べ る。  [0064] The capillary was washed with ultrapure water for 2 minutes by the pressurization method, and then washed with the electrophoresis buffer for 2 minutes by the pressurization method, and the inside of the capillary was filled with the electrophoresis buffer. An analytical sample was introduced into the capillary for 10 seconds by the pressurization method, and then a voltage was applied. The applied voltage was 20 kV and the analysis time was 10 minutes. Detect UV absorption at 200nm wavelength and examine enzymatic degradation.
[0065] <実施例 1 >本発明組成物の調製  <Example 1> Preparation of the composition of the present invention
-ヮトリから鶏冠 24kgを切り出し、ミンチにしたのち、 160Lの脱イオン水に懸濁した 。食塩 2. 5kgをカ卩え、抽出タンク内で、 105°Cで 30分間、加熱しながら攪拌した。室 温まで冷却した後、 pHを 7. 8に調整し塩ィ匕カルシウム 50gとプロナーゼ 650万単位 (科研製薬製)加え、 53°Cで 4時間攪拌した。この混合物にセライト (ゲムライトスーパ 一 3H :白山工業製) 2kgと活性炭(白鷺-ユーゴールド:武田製薬製) 2kgを加え、ス パークラーフィルター(ニッセン製)を用い、 No.5277 (安曇濾紙製)と Z- 800 (安曇濾紙-A 24 kg chicken crown was cut out from a chicken and minced and suspended in 160 L of deionized water. Salt (2.5 kg) was added and stirred in an extraction tank with heating at 105 ° C for 30 minutes. After cooling to room temperature, the pH was adjusted to 7.8, 50 g of calcium chloride and 6.5 million units of pronase (manufactured by Kaken Pharmaceutical) were added, and the mixture was stirred at 53 ° C. for 4 hours. Celite to this mixture (gemtuzumab write super one 3H: Hakusan Ltd.) 2 kg of activated carbon (Shirasagi - Yu Gold: Takeda Seiyaku) 2 kg was added, using a spark color filter (manufactured by Nissen), No .5277 (Azumi filter paper manufactured by ) And Z-800 (Azumi filter paper
)を組み合わせ、ろ紙濾過することにより鶏冠からの抽出液 170Lを得た。この抽出液 を塩酸により pHを 4. 8に調整し、活性炭(白鷺-ユーゴールド:武田製薬製) 2kgを 加え、スパークラーフィルター(ニッセン製)を用い、 No.5277 (安曇濾紙製)と Z- 800 ( 安曇濾紙)を組み合わせて、ろ紙濾過し、さらに pHを 8. 0に調整した。得られた溶液 を 20°Cで、限外濾過を一昼夜おこなった(限外濾過膜 ACV-3050旭化成ケミカルズ 製:分画分子量 13000)。得られた限外ろ過液を凍結乾燥することにより 120gの本 発明組成物を得た。 [0066] 測定例 1〜8記載の方法により測定した各特性は下記表 2の通りだった。 ) And filtered through filter paper to obtain 170 L of extract from chicken crown. Adjust the pH of this extract to 4.8 with hydrochloric acid, add 2 kg of activated carbon (Shirakaba-Yu Gold: manufactured by Takeda Pharmaceutical), use a sparkler filter (manufactured by Nissen), No.5277 (manufactured by Azumi filter paper) and Z -800 (Azumi filter paper) was combined, filtered, and the pH was adjusted to 8.0. The obtained solution was subjected to ultrafiltration at 20 ° C. all day and night (ultrafiltration membrane ACV-3050, manufactured by Asahi Kasei Chemicals: molecular weight cut off 13000). The obtained ultrafiltrate was freeze-dried to obtain 120 g of the composition of the present invention. [0066] Each characteristic measured by the methods described in Measurement Examples 1 to 8 was as shown in Table 2 below.
[0067] [表 2] [0067] [Table 2]
Figure imgf000015_0001
Figure imgf000015_0001
[0068] <調製例 >対象物質 1の調製 [0068] <Preparation example> Preparation of target substance 1
実施例 1で得た本発明組成物 2gを 2mol/l食塩水溶液 200mlに溶解後、 10%塩化セ チルピリジ-ゥム 600ml(w/w 2mol/lで食塩含む)を加え、これに食塩濃度力 l.4mol/l になるように 0.05%塩ィ匕セチルピリジ-ゥム溶液を約 340mlカ卩えた。生じた沈殿を 5,000 X gで 30分間、遠心分離し、上清 1,000mlを得た。この上清の食塩濃度 1.2mol/lにな るように 0.05%塩ィ匕セチルピリジ-ゥム (東京化成工業製)溶液 160mlをカ卩え、生じた沈 殿を遠心分離し、上清 1,100mlを得た。この上清の食塩濃度が 0.5mol/lになるように 0. 05%塩化セチルピリジ-ゥム溶液 1,540mlを加え、遠心分離を行い、上清 2,510mlを得 た。この上清の食塩濃度が 0.1mol/lになるように 0.05%塩化セチルピリジ-ゥム溶液 10 ,040mlを加え遠心分離した。得られた上清に 15%エタノール (w/w)を含む 2mol/l食塩 溶液 200mlに 40°C加温溶解 3倍量のエタノールをカ卩ぇ再び沈殿させた。生じた沈殿 を遠心分離にて分離し沈殿物を超純水 100mlに溶解、透析膜 (透過分子量 14,000 : 再生セルロース製)を用いて一昼夜透析した。得られた溶解液を凍結乾燥を行い、 95 Omgの対照物質 1 (ヒアルロン酸)を得た。  2 g of the composition of the present invention obtained in Example 1 was dissolved in 200 ml of a 2 mol / l aqueous sodium chloride solution, and then 600 ml of 10% cetylpyridydium chloride (containing sodium chloride at 2 mol / l of w / w) was added thereto. About 340 ml of 0.05% salt cetyl pyridinium solution was added to a concentration of 4 mol / l. The resulting precipitate was centrifuged at 5,000 × g for 30 minutes to obtain 1,000 ml of supernatant. To obtain a salt concentration of 1.2 mol / l in the supernatant, 160 ml of 0.05% salt cetyl pyridinium (manufactured by Tokyo Chemical Industry Co., Ltd.) is added, the resulting precipitate is centrifuged, and 1,100 ml of the supernatant is obtained. Got. To this supernatant, 1,540 ml of 0.05% cetylpyridyl chloride solution was added so that the sodium chloride concentration was 0.5 mol / l, followed by centrifugation to obtain 2,510 ml of supernatant. To this supernatant, 10,040 ml of 0.05% cetylpyridyl chloride solution was added and centrifuged so that the sodium chloride concentration was 0.1 mol / l. The obtained supernatant was dissolved again in 200 ml of 2 mol / l saline solution containing 15% ethanol (w / w) by heating at 40 ° C. Three times the amount of ethanol was precipitated again. The resulting precipitate was separated by centrifugation, the precipitate was dissolved in 100 ml of ultrapure water, and dialyzed overnight using a dialysis membrane (permeated molecular weight 14,000: made of regenerated cellulose). The obtained lysate was freeze-dried to obtain 95 Omg of control substance 1 (hyaluronic acid).
[0069] <実施例 2>  <Example 2>
本発明組成物 100 gを含む超純水 100 1に対し、 0.1mol/l酢酸緩衝液 (pH4.0、 0. lmol/1食塩含む) 10 1をカ卩え、ゥシ精巣由来ヒアル口-ダーゼ (シグマ社製: lmg/ml) を 10 1加え 37°Cで 10時間反応させ、反応液を 5分間煮沸後、遠心分離(12,000 X g、 24°C、 5分間)をおこない、上清を測定例 9記載の方法で分析した(図 1)。  To 100 1 of ultrapure water containing 100 g of the composition of the present invention, 0.1 mol / l acetate buffer solution (containing pH 4.0, 0.1 mol / 1 sodium chloride) 10 1 Add 10 1 of dase (Sigma: lmg / ml), react at 37 ° C for 10 hours, boil the reaction solution for 5 minutes, centrifuge (12,000 X g, 24 ° C, 5 minutes), and remove the supernatant. Was analyzed by the method described in Measurement Example 9 (FIG. 1).
[0070] 対照物質として下記表 3のヒアルロン酸を使用した。 [0071] [表 3] [0070] Hyaluronic acid shown in Table 3 below was used as a control substance. [0071] [Table 3]
Figure imgf000016_0001
Figure imgf000016_0001
[0072] その結果、本発明組成物のみが、ゥシ精巣由来ヒアル口-ダーゼに耐性を示すこと が明らかになった。 [0072] As a result, it was revealed that only the composition of the present invention is resistant to urchin testis-derived hyaluronan-dase.
[0073] <実施例 3 > <Example 3>
実施例 2におけるゥシ精巣由来ヒアル口-ダーゼを、ヒッジ精巣由来ヒアルロニダ一 ゼ (ロッシュ社製)に代え、実施例 2と同様の実験を行った(図 2)。  The experiment similar to that of Example 2 was performed in place of the Hushi testis-derived hyaluronan-dase in Example 2 instead of the Hygi testis-derived hyaluronidase (manufactured by Roche) (FIG. 2).
[0074] その結果、本発明組成物のみが、ヒッジ精巣由来ヒアル口-ダーゼ耐性を示すこと が明らかになった。 As a result, it was revealed that only the composition of the present invention exhibits resistance to hygiene testis-derived hyaluronan-dase.
[0075] また、市販のヒアルロン酸製剤(下記表 4)を使用して上記手順に従って実験を行つ た結果も、同様に何れもヒッジ精巣由来ヒアル口-ダーゼにより分解された(図 3)。  [0075] In addition, the results of experiments using commercially available hyaluronic acid preparations (Table 4 below) according to the above procedure were also similarly degraded by Hedge testis-derived hyaluronan-dase (Fig. 3).
[0076] [表 4] [0076] [Table 4]
Figure imgf000016_0002
Figure imgf000016_0002
[0077] <実施例 4> <Example 4>
ヒアルロン酸組成物 20 gを含む超純水 20 1に対し、 0.1mol/l酢酸緩衝液 (pH6.0) に溶解した微生物由来ヒアル口-ダーゼ(Streptomyces hyalurolyticus ) (lmg/ml)を 2 μ 1加え 60°Cで 10時間反応させ、反応液を 5分間煮沸後、遠心分離(12,000 X g、 24°C 、 5分間)を行い、上清を測定例 9記載の方法で分析した (図 4)。  2 μ 1 of microbial-derived hyaluro-dase (Streptomyces hyalurolyticus) (lmg / ml) dissolved in 0.1 mol / l acetate buffer (pH 6.0) to 20 1 of ultrapure water containing 20 g of hyaluronic acid composition The mixture was further reacted at 60 ° C for 10 hours. The reaction solution was boiled for 5 minutes, then centrifuged (12,000 X g, 24 ° C, 5 minutes), and the supernatant was analyzed by the method described in Measurement Example 9 (Fig. 4). ).
[0078] 対照としては実施例 2と同じ物質を使用した。 [0078] The same substance as in Example 2 was used as a control.
その結果、本発明組成物も対照と同様に分解されることを示された。 [0079] <実施例 5 > As a result, it was shown that the composition of the present invention was also decomposed similarly to the control. [0079] <Example 5>
ヒアルロン酸組成物 100 gを含む超純水 100 1に対し、 0.1mol/l酢酸緩衝液 (pH6. 0) 10 μ 1カ卩え、微生物由来ヒアル口-ダーゼ(Streptococcus dysgalactiae ) (lmg/ml)を 10 /z l加え 37°Cで 10時間反応し、反応液を 5分間煮沸後、遠心分離(12,000 X g、 24 °C、 5分間)をおこない、上清をキヤビラリ一電気泳動で分析した (図 5)。  100 μl of ultrapure water containing 100 g of hyaluronic acid composition 0.1 μl / l acetate buffer solution (pH 6.0) 10 μ1 10 / zl, react at 37 ° C for 10 hours, boil the reaction solution for 5 minutes, centrifuge (12,000 X g, 24 ° C, 5 minutes), and analyze the supernatant by capillary electrophoresis ( (Figure 5).
対照としては実施例 2と同じ物質を使用した。  The same substance as in Example 2 was used as a control.
[0080] その結果、本発明組成物も対照と同様に分解されることを示された。 As a result, it was shown that the composition of the present invention was also decomposed in the same manner as the control.
[0081] <実施例 6 > <Example 6>
ヒアル口-ダーゼは金属イオンがその酵素活性を阻害することが知られて 、る。そこ で本発明組成物がゥシおよびヒッジの精巣由来のヒアル口-ダーゼによる酵素分解 に対して耐性を持つことが金属イオンの影響の有無でな 、ことを確認した。すなわち 本発明組成物 100 μ gを含む超純水 100 μ 1に対して、 lOOmmol/1ェデト酸(キレート剤 )を 10 1加え 25°Cで 10時間処理した後、実施例 2と同様に酵素分解を行い、測定例 9に従って分析した(図 6)。対照としてナカライテスタ社製の Streptcoccus zooepidemi cus由来ヒアルロン酸その結果、分解産物は観測されな力つた。  Hyaluronan-dase is known to inhibit the enzymatic activity of metal ions. Thus, it was confirmed that the composition of the present invention is resistant to enzymatic degradation by hyaluro-dase derived from testes of ushi and hedges, regardless of the influence of metal ions. That is, 10 μl of lOOmmol / 1 edetic acid (chelating agent) was added to 100 μl of ultrapure water containing 100 μg of the composition of the present invention and treated at 25 ° C. for 10 hours. The sample was decomposed and analyzed according to Measurement Example 9 (Fig. 6). As a control, hyaluronic acid derived from Streptcoccus zooepidemi cus manufactured by Nacalai Testa Co. As a result, no degradation products were observed.
すなわち、本発明組成物のヒアル口-ダーゼ耐性は、金属イオンの混入によるもの ではないことが判明した。  That is, it was found that the hyaluronan-dase resistance of the composition of the present invention was not due to contamination with metal ions.
[0082] <実施例 7 > <Example 7>
本発明組成物は第四級アンモ-ゥム塩による処理、有機溶媒による分画等の処理 を経ることなく単離されたものである。従って、鶏冠内での存在形態が保たれ、水素 結合等に起因する立体的な高次構造を損なうことなく製造されている可能性が大き V、。そこでタンパク質研究等にぉ 、て水素結合を切断することが知られて 、る尿素又 は塩酸グアジニンで処理し、水素結合のヒアル口-ダーゼ耐性に与える影響を確認 した。  The composition of the present invention has been isolated without any treatment such as treatment with a quaternary ammonium salt or fractionation with an organic solvent. Therefore, it is highly possible that the existing form in the chicken crown is maintained, and it is manufactured without damaging the three-dimensional higher order structure caused by hydrogen bonding. Therefore, it was known in protein studies and the like that it was known to cleave hydrogen bonds, and the effect of hydrogen bonds on hyaluronan-dase resistance was confirmed by treatment with urea or guanidine hydrochloride.
[0083] すなわち本発明組成物 100 μ gに対して、 6mol/lグァ-ジン溶液および 8mol/l尿素 溶液を 100 1カ卩ぇ 25°C10時間処理した後にそれぞれに 10mgの酢酸ナトリウムと lml のエタノールを加えた。この液を- 27°Cで 2時間保ち、 12,000 X gで 10分間遠心分離し 得られた沈殿物を 0.1mol/l酢酸緩衝液 (pH5.3) 100 1に溶解し、実施例 2に従って 酵素分解を行!ヽ、測定例 9記載の方法で分析した (図 7)。 [0083] That is, after 100 μg of the composition of the present invention was treated with 6 mol / l guanidine solution and 8 mol / l urea solution for 100 hours at 25 ° C for 10 hours, 10 mg of sodium acetate and lml of each were treated. Ethanol was added. This solution is kept at −27 ° C. for 2 hours, and centrifuged at 12,000 × g for 10 minutes. The resulting precipitate is dissolved in 0.1 mol / l acetate buffer (pH 5.3) 100 1 and according to Example 2. Enzymatic degradation was performed and analyzed by the method described in Measurement Example 9 (FIG. 7).
その結果、本発明組成物は、塩酸グアジニンで処理した際に分解産物が観測され た。  As a result, when the composition of the present invention was treated with guanidine hydrochloride, degradation products were observed.
[0084] このことは、本発明組成物のヒアル口-ダーゼ耐性は、ヒアルロン酸分子内の水素 結合に起因するとよくされた。すなわち、本発明組成物は従来のヒアルロン酸と水素 結合による立体構造の点で相違すると考えられる。  [0084] This indicates that the hyaluronan-dase resistance of the composition of the present invention is attributed to hydrogen bonds in the hyaluronic acid molecule. That is, the composition of the present invention is considered to differ from conventional hyaluronic acid in terms of the three-dimensional structure due to hydrogen bonding.
[0085] <実施例 8 > <Example 8>
本発明組成物と、調製例 2で得られた対照物質 1とを、実施例 2及び 3に則りヒアル 口-ダーゼで処理し、測定例 9記載の方法で分解し、その分解性を比較した(図 8)。  The composition of the present invention and the control substance 1 obtained in Preparation Example 2 were treated with hyaluronan-dase according to Examples 2 and 3, decomposed by the method described in Measurement Example 9, and their degradability was compared. (Figure 8).
[0086] その結果、対照物質 1はゥシ精巣由来ヒアル口-ダーゼ及びヒッジ精巣由来ヒアル 口-ダーゼの何れによっても分解されることが明力となった。 [0086] As a result, it became clear that the control substance 1 was decomposed by both the testicular-derived hyaluronan-dase and the hygiene testis-derived hyaluronan-dase.
[0087] すなわち、本発明組成物を第四級アンモ-ゥム塩及び有機溶媒で処理すること〖こ より、ヒアル口-ダーゼ耐性がなくなること、力かる製造工程により生成物の特性に差 が生じていることが判明した。 [0087] That is, treating the composition of the present invention with a quaternary ammonium salt and an organic solvent eliminates the resistance to hyaluro-dase, and there is a difference in the characteristics of the product depending on the intensive manufacturing process. It was found that this occurred.
[0088] <実施例 9 > <Example 9>
培養ヒアルロン酸 (紀文フードケミファ社製、分子量 184万) 90mgと本発明組成物 lOmgを超純水 40mlに溶解した後に凍結乾燥を行った。  90 mg of cultured hyaluronic acid (manufactured by Kibun Food Chemifa Corporation, molecular weight 1.84 million) and lOmg of the composition of the present invention were dissolved in 40 ml of ultrapure water, and then lyophilized.
[0089] この混合物を用いて、実施例 2及び 3に則り、ゥシおよびヒッジの精巣由来のヒアル 口-ダーゼを用いてそれぞれヒアル口-ダーゼ処理を行 、、測定例 9記載の方法に より分析した (図 9)。 [0089] Using this mixture, hyaluro-dase treatment was carried out using hyaluro-dase derived from testes of ushi and hidge according to Examples 2 and 3, respectively, and by the method described in Measurement Example 9 Analyzed (Figure 9).
[0090] その結果、混合物は本発明組成物を 10%し力含有しないにも拘わらず、ヒアル口- ダーゼによる分解が抑制されていることが明ら力となった。  [0090] As a result, it became apparent that the mixture was suppressed from being decomposed by hyaluronan-dase, even though the composition of the present invention was 10% and contained no force.
[0091] また同様に、本発明組成物を 5%添加した場合においても同様の結果が得られた。 [0091] Similarly, the same result was obtained when 5% of the composition of the present invention was added.
産業上の利用可能性  Industrial applicability
[0092] 本発明によって得られた哺乳類由来ヒアル口-ダーゼに抵抗性を有するヒアルロン 酸組成物は、ヒアルロン酸の分子構造の改変に起因する生体適合性への悪影響が 避けられ、実用可能な分解酵素に対する安定性において優位性を有し、医薬品、医 薬部外品、化粧品あるいは飲食品の分野に応用することができる。 [0092] The hyaluronic acid composition having resistance to mammalian hyaluronan-dase obtained according to the present invention avoids adverse effects on biocompatibility resulting from alteration of the molecular structure of hyaluronic acid, and is a practical degradation. It has superiority in enzyme stability and can be applied in the fields of pharmaceuticals, quasi drugs, cosmetics, and foods.

Claims

請求の範囲 [1] 下記の(1)〜(3)の工程により得られるヒアルロン酸組成物。 (1)生体組織をタンパク質分解酵素で処理してタンパク質を分解する工程;(2) (1)によって得た分解産物を分子量で分画して画分を得る工程;(3) (2)によって得た画分力 ヒアルロン酸組成物を回収する工程。 [2] 下記の性質を有するヒアルロン酸組成物。 (a)標準条件下で、ゥシ精巣由来又はヒッジ精巣由来のヒアルロニダーゼと共存さ せた後、 5分間煮沸処理し、遠心分離した上清をキヤビラリ一電気泳動で二糖分析 すると、分解が認められない; (b)ローリー法で分析すると、タンパク質含量が 0.1%未満; (c)日本薬局方記載の重金属試験法による重金属測定で、重金属含量が 20ppm 以下; (d)日本薬局方記載の砒素試験法による砒素測定で、砒素含量が 2ppm以下。 [3] 下記の(1)〜(3)の工程を含むヒアルロン酸組成物の製造方法。 Claims [1] A hyaluronic acid composition obtained by the following steps (1) to (3). (1) A process of degrading a protein by treating a biological tissue with a proteolytic enzyme; (2) A process of fractionating the degradation product obtained in (1) by molecular weight to obtain a fraction; (3) By (2) Step of recovering the obtained fractional force hyaluronic acid composition. [2] A hyaluronic acid composition having the following properties. (a) Under standard conditions, when coexisting with the hyaluronidase derived from the urchin testis or the Hedgei testis, boiled for 5 minutes, and the supernatant after centrifugation was analyzed by disaccharide analysis using a capillary single electrophoresis. (B) Protein content of less than 0.1% when analyzed by the Raleigh method; (c) Heavy metal content of 20 ppm or less as determined by the heavy metal test method described in the Japanese Pharmacopoeia; (d) Arsenic as described in the Japanese Pharmacopoeia Arsenic content is 2ppm or less as measured by the test method. [3] A method for producing a hyaluronic acid composition comprising the following steps (1) to (3):
(1)生体組織をタンパク質分解酵素で処理してタンパク質を分解する工程; (1) a process of degrading protein by treating biological tissue with a proteolytic enzyme;
(2) (1)によって得た分解産物を分子量で分画して画分を得る工程;(2) A step of fractionating the degradation product obtained in (1) by molecular weight to obtain a fraction;
(3) (2)によって得た画分力 ヒアルロン酸組成物を回収する工程。 (3) The step of recovering the fractional force hyaluronic acid composition obtained in (2).
[4] ヒアルロン酸組成物を有効成分とする、グリコサミノダリカン分解抑制剤。 [4] A glycosaminodarican decomposition inhibitor comprising a hyaluronic acid composition as an active ingredient.
[5] ヒアルロン酸組成物のグリコサミノダリカン分解抑制剤としての使用。 [5] Use of a hyaluronic acid composition as a glycosaminodarican decomposition inhibitor.
[6] 請求項 1又は 2記載のヒアルロン酸組成物を含む医薬。  [6] A medicament comprising the hyaluronic acid composition according to claim 1 or 2.
[7] 請求項 1又は 2記載のヒアルロン酸組成物を含む食品。 [7] A food comprising the hyaluronic acid composition according to claim 1 or 2.
[8] 請求項 1又は 2記載のヒアルロン酸組成物を含む化粧品。 [8] A cosmetic comprising the hyaluronic acid composition according to claim 1 or 2.
PCT/JP2006/324800 2005-12-14 2006-12-13 Novel composition and method for production thereof WO2007069621A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007550185A JPWO2007069621A1 (en) 2005-12-14 2006-12-13 NOVEL COMPOSITION AND METHOD FOR PRODUCING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005360982 2005-12-14
JP2005-360982 2005-12-14

Publications (1)

Publication Number Publication Date
WO2007069621A1 true WO2007069621A1 (en) 2007-06-21

Family

ID=38162928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324800 WO2007069621A1 (en) 2005-12-14 2006-12-13 Novel composition and method for production thereof

Country Status (2)

Country Link
JP (1) JPWO2007069621A1 (en)
WO (1) WO2007069621A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270966A (en) * 2008-05-08 2009-11-19 Denki Kagaku Kogyo Kk Measuring method of molecular weight distribution of hyaluronic acid in biological sample of mammal origin
JP2011195611A (en) * 2010-03-17 2011-10-06 Denki Kagaku Kogyo Kk Purification method for hyaluronic acid and/or salt thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52145594A (en) * 1976-05-27 1977-12-03 Seikagaku Kogyo Co Ltd Extraction of acidic polysaccharides
JPS5467100A (en) * 1977-11-05 1979-05-30 Seikagaku Kogyo Co Ltd Separation of acid polysaccharide
JPH0247101A (en) * 1988-08-09 1990-02-16 Showa Sangyo Co Ltd Production of high-molecular weight hyaluronic acid
JPH04158796A (en) * 1990-10-23 1992-06-01 Chisso Corp Production of aqueous solution of sodium hyaluronate
JPH0782131A (en) * 1993-09-14 1995-03-28 Mikimoto Pharmaceut Co Ltd Hyaluronidase activity inhibitor and oil in water type cream base preparation
JPH0998739A (en) * 1995-10-06 1997-04-15 Shigeji Hayashi Health food and its production
JP2005206749A (en) * 2004-01-26 2005-08-04 Hokkaido Method for manufacturing mucopolysaccharide-protein complex containing chondroitin sulfate and hyaluronic acid
JP2006176701A (en) * 2004-12-24 2006-07-06 Nippon Barrier Free:Kk Manufacturing method of highly purified mucopolysaccharide

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52145594A (en) * 1976-05-27 1977-12-03 Seikagaku Kogyo Co Ltd Extraction of acidic polysaccharides
JPS5467100A (en) * 1977-11-05 1979-05-30 Seikagaku Kogyo Co Ltd Separation of acid polysaccharide
JPH0247101A (en) * 1988-08-09 1990-02-16 Showa Sangyo Co Ltd Production of high-molecular weight hyaluronic acid
JPH04158796A (en) * 1990-10-23 1992-06-01 Chisso Corp Production of aqueous solution of sodium hyaluronate
JPH0782131A (en) * 1993-09-14 1995-03-28 Mikimoto Pharmaceut Co Ltd Hyaluronidase activity inhibitor and oil in water type cream base preparation
JPH0998739A (en) * 1995-10-06 1997-04-15 Shigeji Hayashi Health food and its production
JP2005206749A (en) * 2004-01-26 2005-08-04 Hokkaido Method for manufacturing mucopolysaccharide-protein complex containing chondroitin sulfate and hyaluronic acid
JP2006176701A (en) * 2004-12-24 2006-07-06 Nippon Barrier Free:Kk Manufacturing method of highly purified mucopolysaccharide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270966A (en) * 2008-05-08 2009-11-19 Denki Kagaku Kogyo Kk Measuring method of molecular weight distribution of hyaluronic acid in biological sample of mammal origin
JP2011195611A (en) * 2010-03-17 2011-10-06 Denki Kagaku Kogyo Kk Purification method for hyaluronic acid and/or salt thereof

Also Published As

Publication number Publication date
JPWO2007069621A1 (en) 2009-05-21

Similar Documents

Publication Publication Date Title
JP5957096B2 (en) Bacillus, hyaluronic acid enzyme and use thereof
JP3731150B2 (en) Purification method of cartilage-type proteoglycan
US9896518B2 (en) Dilute filtration sterilization process for viscoelastic biopolymers
ES2811101T3 (en) Procedure for the Preparation and Purification of Hyaluronic Acid Sodium Salt
WO2007069621A1 (en) Novel composition and method for production thereof
KR101639105B1 (en) Hyaluronic acid purification method and production method
Amagai et al. Improvement of the extraction procedure for hyaluronan from fish eyeball and the molecular characterization
JPS61257930A (en) Prophylactic agent
KR20140044826A (en) Shark-like chondroitin sulphate and process for the preparation thereof
JPH08198725A (en) Skin cosmetic and hair cosmetic
JPH07285871A (en) Agent for suppressing active oxygen
JP2516009B2 (en) Method for producing hyaluronic acid
Van Der Sluis et al. Mucopolysaccharides in suspensions of Treponema pallidum extracted from infected rabbit testes.
JP5758878B2 (en) Purification method of hyaluronic acid
FR2642971A1 (en) COSMETIC PREPARATION AND PROCESS FOR PRODUCING THE PREPARATION
JPH02103203A (en) Purification of hyaluronic acid
JPH07241200A (en) Production of hyaluronic acid
CN114316081A (en) A sulfated polysaccharide of Botrytis longipedicularis with SARS-CoV-2 inhibiting activity, and its preparation method and application
CN112851833A (en) Purification method for reducing protein content in sodium hyaluronate and derivatives thereof
JPH01115903A (en) Production of hyaluronic acid
JP2005002212A (en) Humectant, moisture absorbent and thickener comprising lipid-containing acidic polysaccharide having hygroscopic and humectant effects
US20100075921A1 (en) Prêparation of hyaluronic acid with desired low molecular weight as a food supplement
KR20030068215A (en) A method for extraction and purification of cartilage type proteoglycan

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007550185

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06834555

Country of ref document: EP

Kind code of ref document: A1