WO2007061757A1 - Compositions d'edulcorant de table naturel tres puissant avec profil temporel et/ou profil de gout ameliore, procedes de preparation et utilisations - Google Patents

Compositions d'edulcorant de table naturel tres puissant avec profil temporel et/ou profil de gout ameliore, procedes de preparation et utilisations Download PDF

Info

Publication number
WO2007061757A1
WO2007061757A1 PCT/US2006/044518 US2006044518W WO2007061757A1 WO 2007061757 A1 WO2007061757 A1 WO 2007061757A1 US 2006044518 W US2006044518 W US 2006044518W WO 2007061757 A1 WO2007061757 A1 WO 2007061757A1
Authority
WO
WIPO (PCT)
Prior art keywords
sweet taste
taste improving
acid
polyol
carbohydrate
Prior art date
Application number
PCT/US2006/044518
Other languages
English (en)
Inventor
Indra Prakash
Grant E. Dubois
George A. King
Original Assignee
The Coca-Cola Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Coca-Cola Company filed Critical The Coca-Cola Company
Priority to JP2008542348A priority Critical patent/JP2009517021A/ja
Priority to CA002630043A priority patent/CA2630043A1/fr
Priority to EP06837792A priority patent/EP1968399A1/fr
Priority to KR1020137021682A priority patent/KR101379494B1/ko
Priority to AP2008004495A priority patent/AP2008004495A0/xx
Priority to MX2008006589A priority patent/MX2008006589A/es
Priority to KR1020087015153A priority patent/KR101379492B1/ko
Priority to BRPI0618952-0A priority patent/BRPI0618952A2/pt
Priority to AU2006316313A priority patent/AU2006316313B2/en
Publication of WO2007061757A1 publication Critical patent/WO2007061757A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/30Artificial sweetening agents
    • A23L27/33Artificial sweetening agents containing sugars or derivatives
    • A23L27/36Terpene glycosides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/30Artificial sweetening agents
    • A23L27/33Artificial sweetening agents containing sugars or derivatives
    • A23L27/34Sugar alcohols
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention relates generally to novel tabletop sweetener compositions comprising non-caloric or low-caloric natural high-potency sweeteners and methods for manufacture and use thereof.
  • the present invention also relates to tabletop compositions and methods that can improve the tastes of non-caloric or low-caloric natural high-potency sweeteners by imparting a more sugar-like taste.
  • the tabletop compositions and methods provide a more sugar-like temporal profile, including sweetness onset and sweetness linger times, and/or a more sugar-like flavor profile, including osmotic taste.
  • Tabletop sweeteners are used widely in the food and beverage industries. Tabletop sweeteners commonly are found in packet form, solid form, and liquid form, and can be used for sweetening numerous food and beverage compositions. Historically, both caloric and non-caloric or low-caloric, natural and synthetic tabletop sweetener compositions are available widely to consumers. Tabletop sweeteners, among other functions, allow consumers the option to customize a beverage or food product according to their individual tastes. This ability to customize food or beverage products becomes more important with increased health awareness and sedentary lifestyles. Although natural caloric tabletop sweetener compositions such as sucrose, fructose, and glucose provide the most desireable taste to consumers, they are caloric.
  • sucrose substitutes e.g., saccharin, aspartame, and sucralose
  • sweeteness linger e.g., saccharin, aspartame, and sucralose
  • sweetening intensities equivalent to larger amounts of sugar.
  • tabletop sweeteners require a product with a sugar-like taste and uniform sweetness.
  • the tabletop sweetener generally comprises one or more agents to add to the bulk of the tabletop sweetener product. Such products generally dissolve quickly and have tastes which improve or do not interfere with the taste of the high-potency sweetener.
  • Natural high-potency sweeteners such as rebaudioside A, rebaudioside B, rebaudioside C, rebaudioside D, rebaudioside E, rebaudioside F, dulcoside A, dulcoside B, rubusoside, stevia, stevioside, mogroside IV, mogroside V, Luo Han Guo sweetener, siamenoside, monatin and its salts (monatin SS, RR, RS, SR), curculin, glycyrrhizic acid and its salts, thaumatin, monellin, mabinlin, brazzein, hernandulcin, phyllodulcin, glycyphyllin, phloridzin, trilobatin, baiyunoside, osladin, polypodoside A
  • the sweet tastes of natural high-potency sweeteners are slower in onset and longer in duration than the sweet taste produced by sugar and thus change the taste balance of a food composition. Because of these differences, use of a natural high-potency sweetener to replace a bulk sweetener, such as sugar, in a food or beverage, causes an unbalanced temporal profile and/or flavor profile. If the taste profile of natural high- potency sweeteners could be modified to impart specific desired taste characteristics to be more sugar-like, tabletop sweeteners comprising natural high-potency non-caloric or low- caloric sweeteners could be provided to replace caloric sweeteners. Accordingly, it would be desirable to selectively modify the taste characteristics of natural high-potency sweeteners.
  • this invention addresses the above described need by providing a tabletop sweetener composition comprising at least one natural high-potency sweetener (NHPS) composition in combination with at least one bulking agent, at least one sweet taste improving composition, at least one anti-caking agent, or combinations thereof.
  • NHPS natural high-potency sweetener
  • the present invention provides a tabletop composition comprising at least one NHPS composition having improved temporal and/or flavor profile.
  • one embodiment of this invention encompasses a tabletop sweetener composition comprising at least one NHPS composition and at least one bulking agent and methods for manufacture and use thereof.
  • a tabletop sweetener composition comprising at least one NHPS composition in combination with at least one bulking agent and at least one sweet taste improving composition is provided, and methods for manufacture and use thereof.
  • a tabletop sweetener composition comprising at least one NHPS composition in combination with at least one bulking agent and at least one anti- caking agent, and methods for manufacture and use thereof are provided.
  • a tabletop sweetener composition comprising at least one NHPS composition in combination with at least one bulking agent, at least one sweet taste improving composition, and at least one anti-caking agent, and methods for manufacture and use thereof are provided.
  • a tabletop sweetener composition comprising at least one NHPS and at least one sweet taste improving composition and methods for manufacture and use thereof are provided.
  • a tabletop sweetener composition comprising at least one NHPS in combination with at least one sweet taste improving composition and at least one anti-caking agent and methods for manufacture and use thereof are provided.
  • Fig. 1 is a powder x-ray diffraction scan of rebaudioside A polymorph Form 1 on a plot of the scattering intensity versus the scattering angle 2 ⁇ in accordance with an embodiment of this invention.
  • Fig. 2 is a powder x-ray diffraction scan of rebaudioside A polymorph Form 2 on a plot of the scattering intensity versus the scattering angle 2 ⁇ in accordance with an embodiment of this invention.
  • Fig. 3 is a powder x-ray diffraction scan of rebaudioside A polymorph Form 3A on a plot of the scattering intensity versus the scattering angle 2 ⁇ in accordance with an embodiment of this invention.
  • Fig. 4 is a powder x-ray diffraction scan of rebaudioside A polymorph Form 3B on a plot of the scattering intensity versus the scattering angle 2 ⁇ in accordance with an embodiment of this invention.
  • Fig. 5 is a powder x-ray diffraction scan of rebaudioside A polymorph Form 4 on a plot of the scattering intensity versus the scattering angle 2 ⁇ in accordance with an embodiment of this invention.
  • DETAILED DESCRIPTION OF THE INVENTION I. Tabletop Sweetener Compositions
  • a sweet taste improving composition improves the temporal profile and/or flavor profile of the NHPS, including the osmotic taste, to be more sugar-like.
  • a sweet taste improving composition include carbohydrates, polyols, amino acids and their corresponding salts, polyamino acids and their corresponding salts, sugar acids and their corresponding salts, nucleotides, organic acids, inorganic acids, organic salts including organic acid salts and organic base salts, inorganic salts, bitter compounds, flavorants and flavoring ingredients, astringent compounds, proteins or protein hydrolysates, surfactants, emulsifiers, flavonoids, alcohols, polymers, other sweet taste improving taste additives imparting such sugar-like characteristics, and combinations thereof.
  • a single sweet taste improving composition may be used in combination with a single NHPS.
  • a single sweet taste improving composition may be used in combination with one or more NHPSs.
  • one or more sweet taste improving compositions may be used in combination with a single NHPS.
  • combinations of at least one NHPS and at least one sweet taste improving composition suppress, reduce, or eliminate undesirable taste and impart sugar-like characteristics to the tabletop sweetener composition.
  • the phrase "undesirable taste” includes any taste property which is not imparted by sugars, e.g. glucose, sucrose, fructose, or similar saccharides.
  • Non-limiting examples of undesirable tastes include delayed sweetness onset, lingering sweet aftertaste, metallic taste, bitter taste, cooling sensation taste or menthol-like taste, licorice-like taste, and/or the like.
  • sugar-like characteristic As used herein, the phrases "sugar-like characteristic,” “sugar-like taste,” “sugar- like sweet,” “sugary,” and “sugar-like” are synonymous.
  • Sugar-like characteristics include any characteristic similar to that of sucrose and include, but are not limited to, maximal response, flavor profile, temporal profile, adaptation behavior, mouthfeel, concentration/response function, tastant and flavor/sweet taste interactions, spatial pattern selectivity, and temperature effects. These characterisitics are dimensions in which the taste of sucrose is different from the tastes of NHPSs.
  • a tabletop sweetener composition which exhibits a more sugar-like temporal and/or sugar-like flavor profile than a tabletop sweetener composition comprising a NHPS, but without a sweet taste improving composition, bulking agent, and/or anti-caking agent is provided.
  • Whether or not a characteristic is more sugar-like is determined by an expert sensory panel who taste compositions comprising sugar and compositions comprising a NHPS, both with and without a sweet taste improving composition, and provide their impression as to the similarities of the characteristics of compositions comprising a NHPS, both with and without a sweet taste improving composition, with those comprising sugar.
  • Suitable procedures for determining whether a composition has a more sugar-like taste are well known in the art.
  • a panel of assessors is used to measure the reduction of sweetness linger.
  • a panel of assessors (generally 8 to 12 individuals) is trained to evaluate sweetness perception and measure sweetness at several time points from when the sample initially is taken into the mouth until 3 minutes after it has been expectorated. Using statistical analysis, the results are compared between samples containing additives and samples that do not contain additives. A decrease in score for a time point measured after the sample has cleared the mouth indicates there has been a reduction in sweetness perception.
  • the panel of assessors may be trained using procedures well known to those of ordinary skill in the art.
  • the panel of assessors may be trained using the SpectrumTM Descriptive Analysis Method (Meilgaard et al, Sensory Evaluation Techniques, 3 rd edition, Chapter 11).
  • the focus of training should be the recognition of and the measure of the basic tastes; specifically, sweet.
  • each assessor should repeat the measure of the reduction of sweetness linger about three to about five times per sample, taking at least a five minute break between each repetition and/or sample and rinsing well with water to clear the mouth.
  • the method of measuring sweetness comprises taking a 10 mL sample into the mouth, holding the sample in the mouth for 5 seconds and gently swirling the sample in the mouth, rating the sweetness intensity perceived at 5 seconds, expectorating the sample (without swallowing following expectorating the sample), rinsing with one mouthful of water (e.g., vigorously moving water in mouth as if with mouth wash) and expectorating the rinse water, rating the sweetness intensity perceived immediately upon expectorating the rinse water, waiting 45 seconds and, while wating those 45 seconds, identifying the time of maximum perceived sweetness intensity and rating the sweetness intensity at that time (moving the mouth normally and swallowing as needed), rating the sweetness intensity after another 10 seconds, rating the sweetness intensity after another
  • a tabletop sweetener composition comprising at least one NHPS composition in combination with: (i) at least one bulking agent and (ii) optionally at least one sweet taste improving composition and/or anti-caking agent with improved temporal and/or flavor profile and methods for manufacture and use thereof are provided.
  • a tabletop sweetener composition comprising at least one NHPS composition in combination with: (i) at least one sweet taste improving composition and (ii) optionally at least one bulking agent and/or anti-caking agent with improved temporal and/or flavor profile and methods for manufacture and use thereof are provided.
  • the components of the tabletop composition improve the temporal and/or flavor profile of a tabletop sweetener composition comprising a NHPS by imparting a more sugar-like temporal and/or flavor profile to compositions comprising a NHPS.
  • NHPS natural high-potency sweetener
  • NHPS composition any sweetener found in nature which may be in raw, extracted, purified, or any other form, singularly or in combination thereof and characteristically have a sweetness potency greater than sucrose, fructose, or glucose, yet have less calories.
  • Non- limiting examples of NHPSs suitable for embodiments of this invention include rebaudioside A, rebaudioside B, rebaudioside C, rebaudioside D, rebaudioside E, rebaudioside F, dulcoside A, dulcoside B, rubusoside, stevia, stevioside, mogroside IV, mogroside V, Luo Han Guo sweetener, siamenoside, monatin and its salts (monatin SS, RR, RS, SR), curculin, glycyrrhizic acid and its salts, thaumatin, monellin, mabinlin, brazzein, hernandulcin, phyllodulcin, glycyphyllin, phloridzin, trilobatin, baiyunoside, osladin, polypodoside A, pterocaryoside A, pterocaryoside B, mukurozioside
  • NHPSs also include modified NHPSs.
  • Modified NHPSs include NHPSs which have been altered naturally.
  • a modified NHPS includes, but is not limited to, NHPSs which have been fermented, contacted with enzyme, or derivatized or substituted on the NHPS.
  • at least one modified NHPS may be used in combination with at least one NHPS.
  • at least one modified NHPS may be used without a NHPS.
  • modified NHPSs may be substituted for a NHPS or may be used in combination with NHPSs for any of the embodiments described herein.
  • modified NHPS is not described expressly as an alternative to an unmodified NHPS, but it should be understood that modified NHPSs can be substituted for NHPSs in any embodiment disclosed herein.
  • extracts of NHPSs may be used in any purity percentage.
  • the purity of the NHPS may range for example from about 25% to about 100%. In another example, the purity of the
  • NHPS may range from about 70% to about 100%; from about 80% to about 90%; from about 90% to about 100%; from about 95% to about 100%; from about 96% to about 99%; from about 97% to about 98%; from about 98% to about 99%; and from about 99% to about 100%.
  • Purity as used herein refers to a purity of a single type of NHPS.
  • a steviolglycoside extract comprises a particular steviolglycoside in a particular purity, with the remainder of the stevioglycoside extract comprising a mixture of other steviolglycosides.
  • substantially pure rebaudioside A is crystallized in a single step from an aqueous organic solution comprising at least one organic solvent and water in an amount from about 10 % to about 25 % by weight, more particularly from about 15 % to about 20 % by weight.
  • Organic solvents desirably comprise alcohols, acetone, and acetonitile.
  • Non-limiting examples of alcohols include ethanol, methanol, isopranol, 1- propanol, 1-butanol, 2-butanol, tert-butanol, and isobutanol.
  • the at least one organic solvent comprises a mixture of ethanol and methanol present in the aqueous organic solution in a weight ratio ranging from about 20 parts to about 1 part ethanol to 1 part methanol, more desirably from about 3 parts to about 1 part ethanol to 1 part methanol.
  • the weight ratio of the aqueous organic solvent and crude rebaudioside A ranges from about 10 to about 4 parts aqueous organic solvent to 1 part crude rebaudioside A, more particularly from about 5 to about 3 parts aqueous organic solvent to 1 part crude rebaudioside A.
  • the method of purifying rebaudioside A is carried out at approximately room temperature.
  • the method of purifying rebaudioside A further comprises the step of heating the rebaudioside A solution to a temperature in a range from about 20°C to about 40°C, or in another embodiment to a reflux temperature, for about 0.25 hours to about 8 hours.
  • the method for purifying rebaudioside A comprises the step of heating the rebaudioside A solution
  • the method further comprises the step of cooling the rebaudioside A solution to a temperature in the range from about 4°C to about 25°C for about 0.5 hours to about 24 hours.
  • the purity of rebaudioside A may range from about 50% to about 100%; from about 70% to about 100%; from about 80% to about 100%; from about 90% to about 100%; from about 95% to about 100%; from about 95% to about 99.5%; about 96% to about 100%; from about 97% to about 100%; from about 98% to about 100%; and from about 99% to about 100%.
  • the substantially pure rebaudioside A composition upon crystallization of crude rebaudioside A, the substantially pure rebaudioside A composition comprises rebaudioside A in a purity greater than about 95 % by weight up to about 100% by weight on a dry basis.
  • substantially pure rebaudioside A comprises purity levels of rebaudioside A greater than about 97 % up to about 100% rebaudioside A by weight on a dry basis, greater than about 98 % up to about 100% by weight on a dry basis, or greater than about 99 % up to about 100% by weight on a dry basis.
  • the rebaudioside A solution during the single crystallization step may be stirred or unstirred.
  • the method of purifying rebaudioside A further comprises the step of seeding (optional step) the rebaudioside A solution at an appropriate temperature with high-purity crystals of rebaudioside A sufficient to promote crystallization of the rebaudioside A to form pure rebaudioside A.
  • An amount of rebaudioside A sufficient to promote crystallization of substantially pure rebaudioside A comprises an amount of rebaudioside A from about 0.0001 % to about 1 % by weight of the rebaudioside A present in the solution, more particularly from about 0.01 % to about 1 % by weight.
  • An appropriate temperature for the step of seeding comprises a temperature in a range from about 18 0 C to about 35°C.
  • the method of purifying rebaudioside A further comprises the steps of separating and washing the substantially pure rebaudioside A composition.
  • the substantially pure rebaudioside A composition may be separated from the aqueous organic solution by a variety of solid-liquid separation techniques that utilize centrifugal force, that include, without limitation, vertical and horizontal perforated basket centrifuge, solid bowl centrifuge, decanter centrifuge, peeler type centrifuge, pusher type centrifuge, Heinkel type centrifuge, disc stack centrifuge and cyclone separation. Additionally, separation may be enhanced by any of pressure, vacuum, and gravity filtration methods, that include, without limitation, the use of belt, drum, nutsche type, leaf, plate, Rosenmund type, sparkler type, and bag filters and filter press. Operation of the rebaudioside A solid-liquid separation device may be continuous, semi-continuous or in batch mode.
  • the substantially pure rebaudioside A composition also may be washed on the separation device using various aqueous organic solvents and mixtures thereof.
  • the substantially pure rebaudioside A composition can be dried partially or totally on the separation device using any number of gases, including, without limitation, nitrogen and argon, to evaporate residual liquid solvent.
  • the substantially pure rebaudioside A composition may be removed automatically or manually from the separation device using liquids, gases or mechanical means by either dissolving the solid or maintaining the solid form.
  • the method of purifying rebaudioside A further comprises the step of drying the substantially pure rebaudioside A composition using techniques well known to those skilled in the art, non-limiting examples of which include the use of a rotary vacuum dryer, fluid bed dryer, rotary tunnel dryer, plate dryer, tray dryer, Nauta type dryer, spray dryer, flash dryer, micron dryer, pan dryer, high and low speed paddle dryer and microwave dryer.
  • the step of drying comprises drying the substantially pure rebaudioside A composition using a nitrogen or argon purge to remove the residual solvent at a temperature in a range from about 40°C to about 60°C for about 5 hours to about 100 hours.
  • the method of purifying rebaudioside A further comprises the step of slurrying the composition of substantially pure rebaudioside A with an aqueous organic solvent prior to the step of drying the substantially pure rebaudioside A composition.
  • the slurry is a mixture comprising a solid and an aqueous organic or organic solvent, wherein the solid comprises the substantially pure rebaudioside A composition and is only sparingly soluble in the aqueous organic or organic solvent.
  • the substantially pure rebaudioside A composition and aqueous organic solvent are present in the slurry in a weight ratio ranging from about 15 parts to 1 part aqueous organic solvent to 1 part substantially pure rebaudioside A composition, hi one embodiment, the slurry is maintained at room temperature.
  • the step of slurrying comprises heating the slurry to a temperature in a range from about 20 to about 40°C. The substantially pure rebaudioside A composition is slurried for about 0.5 hours to about 24 hours.
  • the method of purifying rebaudioside A further comprises the steps of separating the substantially pure rebaudioside A composition from the aqueous organic or organic solvent of the slurry and washing the substantially pure rebaudioside A composition followed by the step of drying the substantially pure rebaudioside A composition.
  • the method of purifying rebaudioside A described herein may be repeated or the substantially pure rebaudioside A composition may be purified further using an alternative purification method, such as the column chromatography. It also is contemplated that other NHPSs may be purified using the purification method described herein, requiring only minor experimentation that would be obvious to those of ordinary skill in the art.
  • Form 2 an anhydrous rebaudioside A
  • Form 3 a rebaudioside A solvate
  • Form 4 an amorphous rebaudioside A.
  • the aqueous organic solution and temperature of the purification process influence the resulting polymorphs in the substantially pure rebaudioside A composition.
  • Figures 1-5 are exemplary powder x-ray diffraction (XRPD) scans of polymorphs Form 1 (hydrate), Form 2 (anhydrate), Form 3A (methanol solvate),
  • Form 3B (ethanol solvate), and Form 4 (amorphous), respectively.
  • the type of polymorph formed is dependent on the composition of the aqueous organic solution, the temperature of the crystallization step, and the temperature during the drying step.
  • Form 1 and Form 3 are formed during the single crystallization step while Form 2 is formed during the drying step after conversion from Form 1 or Form 3.
  • Form 1 can be converted to Form 3 by slurrying in an anhydrous solvent at room temperature (2 -16 hours) or at reflux for approximately (0.5-3 hours).
  • Form 3 can be converted to Form 1 by slurrying the polymorph in water at room temperature for approximately 16 hours or at reflux for approximately 2-3 hours.
  • Form 3 can be converted to the Form 2 during the drying process; however, increasing either the drying temperature above 70°C or the drying time of a substantially pure rebaudioside A composition can result in decomposition of the rebaudioside A and increase the remaining rebaudioside B impurity in the substantially pure rebaudioside A composition.
  • Form 2 can be converted to Form 1 with the addition of water.
  • Form 4 may be formed from Form 1, 2, 3, or combinations thereof, using methods well known to those of ordinary skill in the art. Non-limiting examples of such methods include melt-processing, ball milling, crystallization, and spray-drying. In a particular embodiment, Form 4 can be prepared from a substantially pure rebaudioside A composition obtained by the purification methods described hereinabove by spray-drying a solution of the substantially pure rebaudioside A composition.
  • the NHPS may be used individually or in combination with other NHPSs.
  • the sweetener composition may comprise a single NHPS or a plurality of
  • NHPSs are used as long as the combined effect does not adversely affect the taste of the tabletop sweetener composition or orally sweetened composition.
  • particular embodiments comprise combinations of NHPSs, such as steviolglycosides.
  • suitable stevioglycosides which may be combined include rebaudioside A, rebaudioside B, rebaudioside C, rebaudioside D, rebaudioside E, rebaudioside F, dulcoside A, dulcoside B, rubusoside, stevioside, and steviolbioside.
  • the combination of NHPSs comprises rebaudioside A in combination with rebaudioside B, rebaudioside C, rebaudioside E, rebaudioside F, stevioside, steviolbioside, dulside A, or combinations thereof.
  • rebaudioside A is present in the combination of NHPSs in an amount in the range of about 50 to about 99.5 weight percent of the combination of NHPSs, more desirably in the range of about 70 to about 90 weight percent, and still more desirably in the range of about 75 to about 85 weight percent.
  • rebaudioside B is present in the combination of NHPSs in an amount in the range of about 1 to about 8 weight percent of the combination of NHPSs, more desirably in the range of about 2 to about 5 weight percent, and still more desirably in the range of about 2 to about 3 weight percent.
  • rebaudioside C is present in the combination of
  • NHPSs in an amount in the range of about 1 to about 10 weight percent of the combination of NHPSs, more desirably in the range of about 3 to about 8 weight percent, and still more desirably in the range of about 4 to about 6 weight percent.
  • rebaudioside E is present in the combination of NHPSs in an amount in the range of about 0.1 to about 4 weight percent of the combination of NHPSs, more desirably in the range of about 0.1 to about 2 weight percent, and still more desirably in the range of about 0.5 to about 1 weight percent.
  • rebaudioside F is present in the combination of NHPSs in an amount in the range of about 0.1 to about 4 weight percent of the combination of NHPSs, more desirably in the range of about 0.1 to about 2 weight percent, and still more desirably in the range of about 0.5 to about 1 weight percent.
  • dulcoside A is present in the combination of NHPSs in an amount in the range of about 0.1 to about 4 weight percent of the combination of NHPSs, more desirably in the range of about 0.1 to about 2 weight percent, and still more desirably in the range of about " 0.5 to about 1 weight percent.
  • dulcoside B is present in the combination of NHPSs in an amount in the range of about 0.1 to about 4 weight percent of the combination of NHPSs, more desirably in the range of about 0.1 to about 2 weight percent, and still more desirably in the range of about 0.5 to about 1 weight percent.
  • stevioside is present in the combination of
  • NHPSs in an amount in the range of about 0.5 to about 10 weight percent of the combination of NHPSs, more desirably in the range of about 1 to about 6 weight percent, and still more desirably in the range of about 1 to about 4 weight percent.
  • steviolbioside is present in the combination of NHPSs in an amount in the range of about 0.1 to about 4 weight percent of the combination of NHPSs, more desirably in the range of about 0.1 to about 2 weight percent, and still more desirably in the range of about 0.5 to about 1 weight percent.
  • the NHPS composition comprises a combination of rebaudioside A, stevioside, rebaudioside B, rebaudioside C, and rebaudioside F; wherein rebaudioside A is present in the combination of NHPSs in an amount in the range of about 75 to about 85 weight percent based on the total weight of the combination of NHPSs, stevioside is present in an amount in the range of about 1 to about 6 weight percent, rebaudioside B is present in an amount in the range of about 2 to about 5 weight percent, rebaudioside C is present in ana mount in the range of about 3 to about 8 weight percent, and rebaudioside F is present in an amount in the range of about 0.1 to about 2 weight percent.
  • rebaudioside A is present in the combination of NHPSs in an amount in the range of about 75 to about 85 weight percent based on the total weight of the combination of NHPSs
  • stevioside is present in an amount in the range of about 1 to about 6 weight
  • the sweetener composition can be customized to obtain a desired calorie content.
  • a low- caloric or non-caloric NHPS may be combined with a caloric natural sweetener and/or other caloric additives to produce a sweetener composition with a preferred calorie content.
  • the "bulking agent” as used herein refers to maltodextrin (10 DE, 18 DE, or 5
  • corn syrup solids (20 or 36 DE), sucrose, fructose, glucose, invert sugar, sorbitol, xylose, ribulose, mannose, xylitol, mannitol, galactitol, erythritol, maltitol, lactitol, isomalt, maltose, tagatose, lactose, inulin, glycerol, propylene glycol, polyols, polydextrose, fructooligosaccharides, cellulose and cellulose derivatives, and the like, and mixtures thereof.
  • granulated sugar sucrose
  • caloric sweeteners such as crystalline fructose, other carbohydrates, or sugar alcohols
  • a bulking agent may be used as a sweet taste improving composition.
  • anti-caking agent and “flow agent” refer to any composition which prevents, reduces, inhibits, or suppresses at least one NHPS molecule from attaching, binding, or contacting to another NHPS molecule.
  • anti- caking agent may refer to any composition which assists in content uniformity and uniform dissolution.
  • Non-limiting examples of anti-caking agents include cream of tartar, calcium silicate, silicon dioxide, microcrystalline cellulose (Avicel, FMC BioPolymer, Philadelphia, Pennsylvania),, and tricalcium phosphate.
  • the anti- caking agents are present in the tabletop sweetener composition in an amount from about 0.001 to about 3 % by weight of the tabletop sweetener composition.
  • compositions comprising at least one NHPS in combination with at least one sweet taste improving composition have an improved taste that is more sugar-like.
  • a sweet taste improving composition include carbohydrates, polyols, amino acids and their corresponding salts, polyamino acids and their corresponding salts, sugar acids and their corresponding salts, nucleotides, organic acids, inorganic acids, organic salts including organic acid salts and organic base salts, inorganic salts, bitter compounds, flavorants and flavoring ingredients, astringent compounds, proteins or protein hydrolysates, surfactants, emulsifiers, flavonoids, alcohols, polymers, other sweet taste improving taste additives imparting such sugar-like characteristics, and combinations thereof.
  • carbohydrate generally refers to aldehyde or ketone compounds substituted with multiple hydroxyl groups, of the general formula (CH 2 O) n , wherein n is 3-30, as well as their oligomers and polymers.
  • the carbohydrates of the present invention can, in addition, be substituted or deoxygenated at one or more positions.
  • Carbohydrates as used herein, encompass unmodified carbohydrates, carbohydrate derivatives, substituted carbohydrates, and modified carbohydrates.
  • the phrases “carbohydrate derivatives", “substituted carbohydrate”, and “modified carbohydrates” are synonymous. Modified carbohydrate means any carbohydrate wherein at least one atom has been added, removed, substituted, or combinations thereof.
  • carbohydrate derivatives or substituted carbohydrates include substituted and unsubstituted monosaccharides, disaccharides, oligosaccharides, and polysaccharides.
  • the carbohydrate derivatives or substituted carbohydrates optionally can be deoxygenated at any corresponding C-position, and/or substituted with one or more moieties such as hydrogen, halogen, haloalkyl, carboxyl, acyl, acyloxy, amino, amido, carboxyl derivatives, alkylamino, dialkylamino, arylamino, alkoxy, aryloxy, nitro, cyano, sulfo, mercapto, imino, sulfonyl, sulfenyl, sulfinyl, sulfamoyl, carboalkoxy, carboxamido, phosphonyl, phosphinyl, phosphoryl, phosphino, thioester, thioether, oxi
  • Non-limiting examples of carbohydrates in embodiments of this invention include tagatose, trehalose, galactose, rhamnose, cyclodextrin (e.g., ⁇ -cyclodextrin, ⁇ - cyclodextrin, and ⁇ -cyclodextrin), maltodextrin (including resistant maltodextrins such as Fibersol-2TM), dextran, sucrose, glucose, ribulose, fructose, threose, arabinose, xylose, lyxose, allose, altrose, mannose, idose, lactose, maltose, invert sugar, isotrehalose, neotrehalose, palatinose or isomaltulose, erythrose, deoxyribose, gulose, idose, talose, erythrulose, xylulose, psicose, turanose, cellobiose, am
  • the carbohydrates as used herein may be in either the D- or L- configuration.
  • polyol refers to a molecule that contains more than one hydroxyl group.
  • a polyol may be a diol, triol, or a tetraol which contains 2, 3, and 4 hydroxyl groups, respectively.
  • a polyol also may contain more than four hydroxyl groups, such as a pentaol, hexaol, heptaol, or the like, which contain, 5, 6, or 7 hydroxyl groups, respectively.
  • a polyol also may be a sugar alcohol, polyhydric alcohol, or polyalcohol which is a reduced form of carbohydrate, wherein the carbonyl group (aldehyde or ketone, reducing sugar) has been reduced to a primary or secondary hydroxyl group.
  • Non-limiting examples of sweet taste improving polyol additives in embodiments of this invention include erythritol, maltitol, mannitol, sorbitol, lactitol, xylitol, inositol, isomalt, propylene glycol, glycerol (glycerine), threitol, galactitol, palatinose, reduced isomalto-oligosaccharides, reduced xylo-oligosaccharides, reduced gentio- oligosaccharides, reduced maltose syrup, reduced glucose syrup, and sugar alcohols or any other carbohydrates capable of being reduced which do not adversely affect the taste of the at least one NHPS or the orally ingestible composition.
  • Suitable sweet taste improving amino acid additives for use in embodiments of this invention include, but are not limited to, aspartic acid, arginine, glycine, glutamic acid, proline, threonine, theanine, cysteine, cystine, alanine, valine, tyrosine, leucine, isoleucine, asparagine, serine, lysine, histidine, ornithine, methionine, carnitine, aminobutyric acid (alpha-, beta-, or gamma- isomers), glutamine, hydroxyproline, taurine, norvaline, sarcosine, and their salt forms such as sodium or potassium salts or acid salts.
  • the sweet taste improving amino acid additives also may be in the D- or L- configuration and in the mono-, di-, or tri- form of the same or different amino acids. Additionally, the amino acids may be ⁇ -, ⁇ -, ⁇ -, ⁇ -, and ⁇ - isomers if appropriate. Combinations of the foregoing amino acids and their corresponding salts (e.g., sodium, potassium, calcium, magnesium salts or other alkali or alkaline earth metal salts thereof, or acid salts) also are suitable sweet taste improving additives in embodiments of this invention.
  • the amino acids may be natural or synthetic.
  • the amino acids also may be modified.
  • Modified amino acids refers to any amino acid wherein at least one atom has been added, removed, substituted, or combinations thereof (e.g., N-alkyl amino acid, N-acyl ammo acid, or N-methyl amino acid).
  • modified amino acids include amino acid derivatives such as trimethyl glycine, N-methyl-glycine, and N-methyl-alanine.
  • amino acids encompass both modified and unmodified amino acids.
  • modified amino acid also may encompass peptides and polypeptides (e.g., dipeptides, tripeptides, tetrapeptides, and pentapeptides) such as glutathione and L-alanyl-L- glutamine.
  • Suitable sweet taste improving polyamino acid additives include poly-L-aspartic acid, poly-L-lysine (e.g., poly-L- ⁇ -lysine or poly-L- ⁇ -lysine), poly-L-ornithine (e.g., poly- L- ⁇ -ornithine or poly-L- ⁇ -ornithine), poly-L-arginine, other polymeric forms of amino acids, and salt forms thereof (e.g., magnesium, calcium, potassium, or sodium salts such as L-glutamic acid mono sodium salt).
  • the sweet taste improving polyamino acid additives also may be in the D- or L- configuration.
  • polyamino acids may be ⁇ -, ⁇ -, ⁇ -, ⁇ -, and ⁇ - isomers if appropriate.
  • Combinations of the foregoing polyamino acids and their corresponding salts e.g., sodium, potassium, calcium, magnesium salts or other alkali or alkaline earth metal salts thereof or acid salts
  • the polyamino acids described herein also may comprise co-polymers of different amino acids.
  • the polyamino acids may be natural or synthetic.
  • polyamino acids also may be modified, such that at least one atom has been added, removed, substituted, or combinations thereof (e.g., N-alkyl polyamino acid or N-acyl polyamino acid).
  • polyamino acids encompass both modified and unmodified polyamino acids.
  • modified polyamino acids include, but are not limited to, polyamino acids of various molecular weights (MW), such as poly-L- ⁇ -lysine with a MW of 1,500, MW of 6,000, MW of 25,200, MW of 63,000, MW of 83,000, or MW of 300,000.
  • MW molecular weights
  • Suitable sweet taste improving sugar acid additives for use in embodiments of this invention include, but are not limited to, aldonic, uronic, aldaric, alginic, gluconic, glucuronic, glucaric, galactaric, galacturonic, and their salts (e.g., sodium, potassium, calcium, magnesium salts or other physiologically acceptable salts), and combinations thereof.
  • Suitable sweet taste improving nucleotide additives for use in embodiments of this invention include, but are not limited to, inosine monophosphate ("IMP"), guanosine monophosphate (“GMP”), adenosine monophosphate (“AMP”), cytosine monophosphate (CMP), uracil monophosphate (UMP), inosine diphosphate, guanosine diphosphate, adenosine diphosphate, cytosine diphosphate, uracil diphosphate, inosine triphosphate, guanosine triphosphate, adenosine triphosphate, cytosine triphosphate, uracil triphosphate, and then: alkali or alkaline earth metal salts, and combinations thereof.
  • IMP inosine monophosphate
  • GMP guanosine monophosphate
  • AMP adenosine monophosphate
  • CMP cytosine monophosphate
  • UMP uracil monophosphate
  • nucleotides described herein also may comprise nucleotide-related additives, such as nucleosides or nucleic acid bases (e.g., guanine, cytosine, adenine, thymine, uracil).
  • nucleosides or nucleic acid bases e.g., guanine, cytosine, adenine, thymine, uracil.
  • Suitable sweet taste improving organic acid additives include any compound which comprises a -COOH moiety.
  • Suitable sweet taste improving organic acid additives for use in embodiments of this invention include, but are not limited to, C2-C30 carboxylic acids, substituted hydroxyl C1-C30 carboxylic acids, benzoic acid, substituted benzoic acids (e.g.
  • 2,4-dihydroxybenzoic acid substituted cinnamic acids, hydroxyacids, substituted hydroxybenzoic acids, substituted cyclohexyl carboxylic acids, tannic acid, lactic acid, tartaric acid, citric acid, gluconic acid, glucoheptonic acids, adipic acid, hydroxycitric acid, malic acid, fruitaric acid (a blend of malic, fumaric, and tartaric acids), fumaric acid, maleic acid, succinic acid, chlorogenic acid, salicylic acid, creatine, glucosamine hydrochloride, glucono delta lactone, caffeic acid, bile acids, acetic acid, ascorbic acid, alginic acid, erythorbic acid, polyglutamic acid, and their alkali or alkaline earth metal salt derivatives thereof.
  • the sweet taste improving organic acid additives also may be in either the D- or L- configuration.
  • Suitable sweet taste improving organic acid salt additives include, but are not limited to, sodium, calcium, potassium, and magnesium salts of all organic acids, such as salts of citric acid, malic acid, tartaric acid, fumaric acid, lactic acid (e.g., sodium lactate), alginic acid (e.g., sodium alginate), ascorbic acid (e.g., sodium ascorbate), benzoic acid (e.g., sodium benzoate or potassium benzoate), and adipic acid.
  • organic acids such as salts of citric acid, malic acid, tartaric acid, fumaric acid, lactic acid (e.g., sodium lactate), alginic acid (e.g., sodium alginate), ascorbic acid (e.g., sodium ascorbate), benzoic acid (e.g., sodium benzoate or potassium benzoate), and adipic acid.
  • sweet taste improving organic acid salt additives described optionally may be substituted with one or more of the following moiety selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, halo, haloalkyl, carboxyl, acyl, acyloxy, amino, amido, carboxyl derivatives, alkylamino, dialkylamino, arylamino, alkoxy, aryloxy, nitro, cyano, sulfo, thiol, imine, sulfonyl, sulfenyl, sulfinyl, sulfamyl, carboxalkoxy, carboxamido, phosphonyl, phosphinyl, phosphoryl, phosphino, thioester, thioether, anhydride, oximino, hydrazino, carbamyl, phospho, phosphonato, and any other viable tabletop group, provided the substituted organic
  • Suitable sweet taste improving inorganic acid additives for use in embodiments of this invention include, but are not limited to, phosphoric acid, phosphorous acid, polyphosphoric acid, hydrochloric acid, sulfuric acid, carbonic acid, sodium dihydrogen phosphate, and their corresponding alkali or alkaline earth metal salts thereof (e.g., inositol hexaphosphate Mg/Ca).
  • Suitable sweet taste improving bitter compound additives for use in embodiments of this invention include, but are not limited to, caffeine, quinine, urea, bitter orange oil, naringin, quassia, and salts thereof.
  • Suitable sweet taste improving flavorant and flavoring ingredient additives for use in embodiments of this invention include, but are not limited to, vanillin, vanilla extract, mango extract, cinnamon, citrus, coconut, ginger, viridiflorol, almond, menthol (including menthol without mint), grape skin extract, and grape seed extract.
  • "Flavorant” and “flavoring ingredient” are synonymous, and include natural or synthetic substances or combinations thereof. Flavorants also include any other substance which imparts flavor, and may include natural or non-natural (synthetic) substances which are safe for human or animals when used in a generally accepted range.
  • Non-limiting examples of proprietary flavorants include D ⁇ hlerTM Natural Flavoring Sweetness Enhancer K14323 (DohlerTM, Darmstadt, Germany), SymriseTM Natural Flavor Mask for Sweeteners 161453 and 164126 (Symrise, HolzmindenTM, Germany), Natural AdvantageTM Bitterness Blockers 1, 2, 9 and 10 (Natural AdvantageTM, Freehold, New Jersey, U.S.A.), and SucramaskTM (Creative Research Management, Stockton, California, U.S. A.).
  • Suitable sweet taste improving polymer additives for use in embodiments of this invention include, but are not limited to, chitosan, pectin (of beet, citrus, apple, and other vegetables) and modified pectins, pectic, pectinic, polyuronic, polygalacturonic acid, starch and starch derivatives, food hydrocolloid or crude extracts thereof (e.g., gum acacia Senegal (FibergumTM), gum acacia seyal, guar gum, locust bean gum, gum karaya, gum ghatti, carageenan), carboxymethyl cellulose, hydroxypropyl methyl cellulose, xantha, scleroglucan, poly-L-lysine (e.g., poly-L- ⁇ -lysine or poly-L- ⁇ -lysine), poly-L-ornithine (e.g., poly-L- ⁇ -ornithine or poly-L- ⁇ -ornithine), poly
  • Suitable sweet taste improving protein or protein hydrolysate additives for use in embodiments of this invention include, but are not limited to, bovine serum albumin (BSA), whey protein (including fractions or concentrates thereof such as 90% instant whey protein isolate, 34% whey protein, 50% hydrolyzed whey protein, and 80% whey protein concentrate), soluble rice protein, soy protein, protein isolates, protein hydrolysates, reaction products of protein hydrolysates, glycoproteins, and/or proteoglycans containing amino acids (e.g., glycine, alanine, serine, threonine, asparagine, glutamine, arginine, valine, isoleucine, leucine, norvaline, methionine, proline, tyrosine, hydroxyproline, and the like), collagen (e.g., gelatin), partially hydrolyzed collagen (e.g., hydrolyzed fish collagen), and collagen hydrolysates (e.g., porcine collagen
  • Suitable sweet taste improving surfactant additives for use in embodiments of this invention include, but are not limited to, polysorbates (e.g., polyoxyethylene sorbitan monooleate (polysorbate 80), polysorbate 20, polysorbate 60), sodium dodecylbenzenesulfonate, dioctyl sulfosuccinate or dioctyl sulfosuccinate sodium, sodium dodecyl sulfate, cetylpyridinium chloride (hexadecylpyridinium chloride), hexadecyltrimethylammonium bromide, sodium cholate, carbamoyl, choline chloride, sodium glycocholate, sodium taurodeoxycholate, lauric arginate, sodium stearoyl lactylate, sodium taurocholate, lecithins, sucrose oleate esters, sucrose stearate esters, sucrose palmitate esters, sucrose laurate esters,
  • Suitable sweet taste improving flavonoid additives for use in embodiments of this invention generally are classified as flavonols, flavones, flavanones, flavan-3-ols, isoflavones, or anthocyanidins.
  • flavonoid additives include catechins (e.g., green tea extracts such as PolyphenonTM 60, PolyphenonTM 30, and PolyphenonTM 25 (Mitsui Norin Co., Ltd., Japan), polyphenols, rutins (e.g., enzyme modified rutin SanmelinTM AO (San-Ei Gen F.F.I., Inc., Osaka, Japan)), neohesperidin, naringin, neohesperidin dihydrochalcone, and the like.
  • catechins e.g., green tea extracts such as PolyphenonTM 60, PolyphenonTM 30, and PolyphenonTM 25 (Mitsui Norin Co., Ltd., Japan
  • Suitable sweet taste improving alcohol additives for use in embodiments of this invention include, but are not limited to, ethanol.
  • Suitable sweet taste improving astringent compound additives include, but are not limited to, tannic acid, europium chloride (EUCI 3 ), gadolinium chloride (GdCl 3 ), terbium chloride (TbCl 3 ), alum, tannic acid, and polyphenols (e.g., tea polyphenols).
  • Suitable sweet taste improving vitamins include nicotinamide (Vitamin B3) and pyridoxal hydrochloride (Vitamin B6).
  • the sweet taste improving compositions also may comprise other natural and/or synthetic high-potency sweeteners.
  • the functional sweetener composition comprises at least one NHPS
  • the at least one sweet taste improving composition may comprise a synthetic high-potency sweetener, non-limiting examples of which include sucralose, potassium acesulfame, aspartame, alitame, saccharin, neohesperidin dihydrochalcone, cyclamate, neotame, N-[N-[3-(3-hydroxy-4- methoxyphenyl)propyl]-L- ⁇ -aspartyl]-L-phenylalanine 1-methyl ester, N-[N-[3-(3- hydroxy-4-methoxyphenyl)-3-methylbutyl]-L- ⁇ -aspartyl]-L-phen
  • the sweet taste improving compositions also may be in salt form which may be obtained using standard procedures well known in the art.
  • the term “salt” also refers to complexes that retain the desired chemical activity of the sweet taste improving compositions of the present invention and are safe for human or animal consumption in a generally acceptable range.
  • Alkali metal (for example, sodium or potassium) or alkaline earth metal (for example calcium or magnesium) salts also can be made. Salts also may include combinations of alkali and alkaline earth metals.
  • Non-limiting examples of such salts are (a) acid addition salts formed with inorganic acids and salts formed with organic acids; (b) base addition salts formed with metal cations such as calcium, bismuth, barium, magnesium, aluminum, copper, cobalt, nickel, cadmium, sodium, potassium, and the like, or with a cation formed from ammonia, N,N-dibenzylethylenediamine, D-glucosamine, tetraethylammonium, or ethylenediamine; or (c) combinations of (a) and (b).
  • metal cations such as calcium, bismuth, barium, magnesium, aluminum, copper, cobalt, nickel, cadmium, sodium, potassium, and the like, or with a cation formed from ammonia, N,N-dibenzylethylenediamine, D-glucosamine, tetraethylammonium, or ethylenediamine
  • metal cations such as calcium, bismuth, bar
  • any salt forms which may be derived from the sweet taste improving compositions may be used with the embodiments of the present invention as long as the salts of the sweet taste improving additives do not adversely affect the taste of the at least one NHPSs or the orally ingestible compositions comprising the at least one NHPS.
  • the salt forms of the additives can be added to the natural and/or synthetic sweetener composition in the same amounts as their acid or base forms.
  • suitable sweet taste improving inorganic salts useful as sweet taste improving additives include, but are not limited to, sodium chloride, potassium chloride, sodium sulfate, potassium citrate, europium chloride (EuCl 3 ), gadolinium chloride (GdCl 3 ), terbium chloride (TbCl 3 ), magnesium sulfate, alum, magnesium chloride, mono-, di-, tri-basic sodium or potassium salts of phosphoric acid (e.g., inorganic phosphates), salts of hydrochloric acid (e.g., inorganic chlorides), sodium carbonate, sodium bisulfate, and sodium bicarbonate.
  • EuCl 3 europium chloride
  • GdCl 3 gadolinium chloride
  • TbCl 3 terbium chloride
  • magnesium sulfate alum, magnesium chloride, mono-, di-, tri-basic sodium or potassium salts of phosphoric acid (e.g., inorganic phosphate
  • suitable organic salts useful as sweet taste improving additives include, but are not limited to, choline chloride, alginic acid sodium salt (sodium alginate), glucoheptonic acid sodium salt, gluconic acid sodium salt (sodium gluconate), gluconic acid potassium salt (potassium gluconate), guanidine HCl, glucosamine HCl, amiloride HCl, monosodium glutamate (MSG), adenosine monophosphate salt, magnesium gluconate, potassium tartrate (monohydrate), and sodium tartrate (dihydrate).
  • choline chloride alginic acid sodium salt (sodium alginate), glucoheptonic acid sodium salt, gluconic acid sodium salt (sodium gluconate), gluconic acid potassium salt (potassium gluconate), guanidine HCl, glucosamine HCl, amiloride HCl, monosodium glutamate (MSG), adeno
  • Non-limiting combinations of the NHPS and sweet taste improving compositions include:
  • At least one NHPS, at least one carbohydrate, at least one amino acid, and at least one other sweet taste improving additive At least one NHPS, at least one carbohydrate, at least one amino acid, and at least one other sweet taste improving additive.
  • the sweet taste improving composition is selected from the group consisting of polyols, carbohydrates, amino acids, other sweet taste improving additives, and combinations thereof.
  • the other sweet taste improving additives useful in embodiments of this invention are described hereinabove.
  • a single sweet taste improving composition may be used with a single NHPS.
  • a single sweet taste improving composition may be used with one or more NHPSs.
  • one or more sweet taste improving compositions may be used with a single NHPS.
  • non-limiting examples of sweet taste improving composition combinations for embodiments of this invention include: i. at least one polyol, at least one carbohydrate, at least one amino acid, and at least one other sweet taste improving additive; ii. at least one polyol, at least one carbohydrate, and at least one other sweet taste improving additive; iii. at least one polyol and at least one other sweet taste improving additive; iv. at least one polyol and at least one carbohydrate; v. at least one carbohydrate and at least one other sweet taste improving additive; vi. at least one polyol and at least one amino acid; vii. at least one carbohydrate and at least one amino acid; viii. at least one amino acid and at least one other sweet taste improving additive.
  • sweet taste improving composition combinations in accordance with embodiments of this invention include: 1. at least one polyol, at least one carbohydrate, and at least one amino acid;
  • At least one polyol, at least one carbohydrate, and at least one polymer 10. at least one polyol, at least one carbohydrate, and at least one protein or protein hydrolysate or protein or protein hydrolysate with low molecular weight amino acid;
  • At least one polyol, at least one carbohydrate, and at least one organic salt 17. at least one polyol, at least one carbohydrate, and at least one amino acid, and at least one other sweet taste improving additive;
  • 21 at least one polyol, at least one carbohydrate, and at least one organic acid, and at least one other sweet taste improving additive; 22. at least one polyol, at least one carbohydrate, and at least one inorganic acid, and at least one other sweet taste improving additive;
  • At least one polyol at least one carbohydrate, at least one amino acid, at least one polyamino acid, and at least one sugar acid;
  • At least one polyol at least one carbohydrate, at least one amino acid, at least one polyamino acid, at least one sugar acid, and at least one nucleotide;
  • At least one polyol at least one carbohydrate, at least one amino acid, at least one polyamino acid, at least one sugar acid, at least one nucleotide, and at least one organic acid;
  • At least one polyol at least one carbohydrate, at least one amino acid, at least one polyamino acid, at least one sugar acid, at least one nucleotide, at least one organic acid, and at least one inorganic acid;
  • 35 at least one polyol, at least one carbohydrate, at least one amino acid, at least one polyamino acid, at least one sugar acid, at least one nucleotide, at least one organic acid, at least one inorganic acid, and at least one bitter compound; 36. at least one polyol, at least one carbohydrate, at least one amino acid, at least one polyamino acid, at least one sugar acid, at least one nucleotide, at least one organic acid, at least one inorganic acid, at least one bitter compound, and at least one polymer;
  • At least one polyol at least one carbohydrate, at least one amino acid, at least one polyamino acid, at least one sugar acid, at least one nucleotide, at least one organic acid, at least one inorganic acid, at least one bitter compound, at least one polymer, and at least one protein or protein hydrolysate;
  • At least one polyol at least one carbohydrate, at least one amino acid, at least one polyamino acid, at least one sugar acid, at least one nucleotide, at least one organic acid, at least one inorganic acid, at least one bitter compound, at least one polymer, at least one protein or protein hydrolysate, and at least one surfactant;
  • At least one polyol at least one carbohydrate, at least one amino acid, at least one polyamino acid, at least one sugar acid, at least one nucleotide, at least one organic acid, at least one inorganic acid, at least one bitter compound, at least one polymer, at least one protein or protein hydrolysate, at least one surfactant, at least one flavonoid, and at least one alcohol;
  • At least one polyol at least one carbohydrate, at least one amino acid, and at least one organic acid;
  • At least one polyol at least one carbohydrate, at least one amino acid, and at least one inorganic acid;
  • At least one polyol at least one carbohydrate, at least one amino acid, and at least one flavonoid
  • 50. at least one polyol, at least one carbohydrate, at least one amino acid, and at least one alcohol
  • At least one polyol at least one carbohydrate, at least one polyamino acid, and at least one inorganic acid;
  • At least one polyol at least one carbohydrate, at least one polyamino acid, and at least one surfactant
  • At least one polyol at least one carbohydrate, at least one polyamino acid, and at least one flavonoid
  • At least one polyol at least one carbohydrate, at least one polyamino acid, and at least one alcohol;
  • At least one polyol at least one carbohydrate, at least one sugar acid, and at least one inorganic acid;
  • At least one polyol at least one carbohydrate, at least one sugar acid, and at least one protein or protein hydrolysate
  • At least one polyol at least one carbohydrate, at least one sugar acid, and at least one alcohol
  • At least one polyol at least one carbohydrate, at least one nucleotide, and at least one polymer
  • At least one polyol at least one carbohydrate, at least one nucleotide, and at least one protein or protein hydrolysate;
  • At least one polyol at least one carbohydrate, at least one nucleotide, and at least one flavonoid
  • At least one polyol at least one carbohydrate, at least one organic acid, and at least one bitter compound
  • At least one polyol at least one carbohydrate, at least one organic acid, and at least one protein or protein hydrolysate
  • At least one polyol at least one carbohydrate, at least one organic acid, and at least one alcohol
  • At least one polyol at least one carbohydrate, at least one inorganic acid, and at least one polymer
  • 87. at least one polyol, at least one carbohydrate, at least one inorganic acid, and at least one protein or protein hydrolysate
  • At least one polyol at least one carbohydrate, at least one inorganic acid, and at least one alcohol;
  • At least one polyol at least one carbohydrate, at least one bitter compound, and at least one flavonoid
  • 95. at least one polyol, at least one carbohydrate, at least one bitter compound, and at least one alcohol
  • At least one polyol at least one carbohydrate, at least one protein or protein hydrolysate, and at least one surfactant;
  • 101 at least one polyol, at least one carbohydrate, at least one protein or protein hydrolysate, and at least one flavonoid; 102. at least one polyol, at least one carbohydrate, at least one surfactant, and at least one flavonoid;
  • At least one polyol at least one carbohydrate, at least one flavonoid, and at least one alcohol.
  • At least one polyol, at least one sugar acid, and at least one other sweet taste improving additive at least one polyol, at least one sugar acid, and at least one other sweet taste improving additive
  • At least one polyol, at least one nucleotide, and at least one other sweet taste improving additive at least one polyol, at least one nucleotide, and at least one other sweet taste improving additive
  • At least one polyol, at least one bitter compound, and at least one other sweet taste improving additive at least one polyol, at least one bitter compound, and at least one other sweet taste improving additive
  • At least one polyol at least one flavorant or flavoring ingredient, and at least one other sweet taste improving additive;
  • At least one polyol at least one alcohol, and at least one other sweet taste improving additive;
  • 31. at least one polyol, at least one amino acid, and at least one polyamino acid;
  • At least one polyol at least one amino acid, at least one polyamino acid, and at least one sugar acid;
  • At least one polyol at least one amino acid, at least one polyamino acid, at least one sugar acid, and at least one nucleotide
  • 34. at least one polyol, at least one amino acid, at least one polyamino acid, at least one sugar acid, at least one nucleotide, and at least one organic acid
  • 35. at least one polyol, at least one amino acid, at least one polyamino acid, at least one sugar acid, at least one nucleotide, at least one organic acid, and at least one inorganic acid
  • At least one polyol at least one amino acid, at least one polyamino acid, at least one sugar acid, at least one nucleotide, at least one organic acid, at least one inorganic acid, at least one bitter compound, and at least one polymer;
  • At least one polyol at least one amino acid, at least one polyamino acid, at least one sugar acid, at least one nucleotide, at least one organic acid, at least one inorganic acid, at least one bitter compound, at least one polymer, and at least one protein or protein hydrolysate; 39. at least one polyol, at least one amino acid, at least one polyamino acid, at least one sugar acid, at least one nucleotide, at least one organic acid, at least one inorganic acid, at least one bitter compound, at least one polymer, at least one protein or protein hydrolysate, and at least one surfactant;
  • At least one polyol at least one amino acid, at least one polyamino acid, at least one sugar acid, at least one nucleotide, at least one organic acid, at least one inorganic acid, at least one bitter compound, at least one polymer, at least one protein or protein hydrolysate, at least one surfactant, and at least one flavonoid;
  • At least one polyol at least one amino acid, at least one polyamino acid, at least one sugar acid, at least one nucleotide, at least one organic acid, at least one inorganic acid, at least one bitter compound, at least one polymer, at least one protein or protein hydrolysate, at least one surfactant, at least one flavonoid, and at least one alcohol;
  • At least one polyol, at least one polyamino acid, and at least one organic salt are 55. at least one polyol, at least one polyamino acid, and at least one organic salt
  • 60 at least one polyol, at least one polyamino acid, and at least one protein or protein hydrolysate; 61. at least one polyol, at least one polyamino acid, and at least one surfactant;
  • At least one polyol at least one polyamino acid, and at least one flavonoid
  • 63. at least one polyol, at least one polyamino acid, and at least one alcohol
  • 75 at least one polyol, at least one nucleotide, and at least one bitter compound; 76. at least one polyol, at least one nucleotide, and at least one polymer;
  • At least one polyol at least one nucleotide, and at least one flavonoid
  • At least one polyol at least one inorganic acid, and at least one polymer
  • 90. at least one polyol, at least one inorganic acid, and at least one protein or protein hydrolysate
  • At least one polyol at least one protein or protein hydrolysate, and at least one surfactant
  • At least one polyol at least one protein or protein hydrolysate, and at least one flavonoid
  • At least one polyol at least one surfactant, and at least one alcohol
  • At least one sweet taste improving additive and mannitol at least one sweet taste improving additive and mannitol
  • At least one sweet taste improving additive and sorbitol at least one sweet taste improving additive and sorbitol
  • At least one sweet taste improving additive and lactitol at least one sweet taste improving additive and lactitol
  • At least one sweet taste improving additive and propylene glycol at least one sweet taste improving additive and propylene glycol; 116. at least one sweet taste improving additive and glycerol;
  • At least one sweet taste improving additive and reduced maltose syrup at least one sweet taste improving additive and reduced maltose syrup
  • At least one sweet taste improving additive and reduced glucose syrup 122. at least one sweet taste improving additive and reduced glucose syrup; 123. at least one sweet taste improving additive, erythritol, and at least one other polyol;
  • At least one sweet taste improving additive maltitol, and at least one other polyol
  • At least one sweet taste improving additive at least one sweet taste improving additive, mannitol, and at least one other polyol
  • At least one sweet taste improving additive at least one sweet taste improving additive, sorbitol, and at least one other polyol
  • At least one sweet taste improving additive lactitol, and at least one other polyol
  • 128. at least one sweet taste improving additive, xylitol, and at least one other polyol;
  • At least one sweet taste improving additive propylene glycol, and at least one other polyol
  • At least one sweet taste improving additive glycerol, and at least one other polyol
  • At least one sweet taste improving additive at least one sweet taste improving additive, palatinose, and at least one other polyol; 133. at least one sweet taste improving additive, reduced isomalto-oligosaccharides, and at least one other polyol; 134. at least one sweet taste improving additive, reduced xylo-oligosaccharides, and at least one other polyol;
  • At least one sweet taste improving additive at least one sweet taste improving additive, reduced gentio-oligosaccharides, and at least one other polyol; 136. at least one sweet taste improving additive, reduced maltose syrup, and at least one other polyol; and
  • At least one sweet taste improving additive at least one sweet taste improving additive, reduced glucose syrup, and at least one other polyol.
  • 21 at least one polyol and talose; 22. at least one polyol and lactose;
  • 25 at least one polyol and trehalose; 26. at least one polyol and isotrehalose;
  • At least one polyol and high fructose corn syrup e.g. HFCS55, HFCS42, or HFCS90
  • starch syrup e.g. HFCS55, HFCS42, or HFCS90
  • 65 at least one polyol and soybean oligosaccharides; 66. at least one polyol and glucose syrup;
  • 70 at least one polyol, rhamnose, and at least one other carbohydrate; 71. at least one polyol, dextrin, and at least one other carbohydrate;
  • 75 at least one polyol, dextran, and at least one other carbohydrate; 76. at least one polyol, sucrose, and at least one other carbohydrate;
  • At least one polyol, ribose, and at least one other carbohydrate 128. at least one polyol, isomerized liquid sugars, and at least one other carbohydrate;
  • high fructose corn syrup e.g. HFCS55, HFCS42, or HFCS90
  • 150 at least one carbohydrate, mannitol, and at least one other polyol; 151. at least one carbohydrate, sorbitol, and at least one other polyol;
  • 155 at least one carbohydrate, propylene glycol, and at least one other polyol
  • 156 at least one carbohydrate, glycerol, and at least one other polyol
  • Other sweet taste improving composition combinations in accordance with embodiments of this invention include:
  • At least one carbohydrate, at least one nucleotide, and at least one other sweet taste improving additive at least one carbohydrate, at least one nucleotide, and at least one other sweet taste improving additive
  • At least one carbohydrate, at least one surfactant, and at least one other sweet taste improving additive at least one carbohydrate, at least one surfactant, and at least one other sweet taste improving additive
  • 35 at least one carbohydrate, at least one amino acid, at least one polyamino acid, at least one sugar acid, at least one nucleotide, at least one organic acid, at least one inorganic acid, and at least one bitter compound;
  • At least one carbohydrate at least one amino acid, at least one polyamino acid, at least one sugar acid, at least one nucleotide, at least one organic acid, at least one inorganic acid, at least one bitter compound, at least one polymer, at least one protein or protein hydrolysate, and at least one surfactant;
  • At least one carbohydrate, at least one polyamino acid, and at least one bitter compound At least one carbohydrate, at least one polyamino acid, and at least one bitter compound
  • 60 at least one carbohydrate, at least one polyamino acid, and at least one alcohol; 61. at least one carbohydrate, at least one sugar acid, and at least one nucleotide;
  • At least one carbohydrate, at least one sugar acid, and at least one bitter compound At least one carbohydrate, at least one sugar acid, and at least one bitter compound
  • 67 at least one carbohydrate, at least one sugar acid, and at least one surfactant; 68. at least one carbohydrate, at least one sugar acid, and at least one flavonoid;
  • At least one carbohydrate at least one sugar acid, and at least one alcohol
  • 70. at least one carbohydrate, at least one nucleotide, and at least one organic acid
  • 75 at least one carbohydrate, at least one nucleotide, and at least one surfactant; 76. at least one carbohydrate, at least one nucleotide, and at least one flavonoid;
  • 101 at least one carbohydrate, at least one protein or protein hydrolysate, and at least one flavonoid; 102. at least one carbohydrate, at least one surfactant, and at least one flavonoid;
  • At least one sweet taste improving additive and trehalose 106. at least one sweet taste improving additive and trehalose; 107. at least one sweet taste improving additive and D-galactose;
  • At least one sweet taste improving additive and cyclodextrin at least one sweet taste improving additive and cyclodextrin
  • At least one sweet taste improving additive and ⁇ -cyclodextrin at least one sweet taste improving additive and maltodextrin;
  • At least one sweet taste improving additive and xylose at least one sweet taste improving additive and xylose
  • At least one sweet taste improving additive and lyxose at least one sweet taste improving additive and lyxose
  • At least one sweet taste improving additive and allose at least one sweet taste improving additive and allose
  • At least one sweet taste improving additive and idose at least one sweet taste improving additive and idose
  • At least one sweet taste improving additive and talose 125. at least one sweet taste improving additive and talose
  • At least one sweet taste improving additive and lactose at least one sweet taste improving additive and lactose
  • At least one sweet taste improving additive and maltose 128. at least one sweet taste improving additive and invert sugar;
  • At least one sweet taste improving additive and isotrehalose at least one sweet taste improving additive and isotrehalose
  • At least one sweet taste improving additive and neotrehalose at least one sweet taste improving additive and neotrehalose
  • At least one sweet taste improving additive and beet oligosaccharides at least one sweet taste improving additive and beet oligosaccharides
  • At least one sweet taste improving additive and isomalto-oligosaccharides at least one sweet taste improving additive and isomalto-oligosaccharides
  • At least one sweet taste improving additive and isomaltose at least one sweet taste improving additive and isomaltose
  • At least one sweet taste improving additive and isomaltotriose 137. at least one sweet taste improving additive and isomaltotriose; 138. at least one sweet taste improving additive and panose;
  • At least one sweet taste improving additive and xylotriose at least one sweet taste improving additive and xylotriose
  • At least one sweet taste improving additive and xylobiose at least one sweet taste improving additive and xylobiose
  • At least one sweet taste improving additive and gentio-oligoscaccharides at least one sweet taste improving additive and gentiobiose;
  • At least one sweet taste improving additive and gentiotriose at least one sweet taste improving additive and gentiotriose; 145. at least one sweet taste improving additive and gentiotetraose;
  • At least one sweet taste improving additive and sorbose at least one sweet taste improving additive and sorbose
  • At least one sweet taste improving additive and nigero-oligosaccharides 147. at least one sweet taste improving additive and nigero-oligosaccharides
  • At least one sweet taste improving additive and fructooligosaccharides At least one sweet taste improving additive and fructooligosaccharides
  • At least one sweet taste improving additive and kestose at least one sweet taste improving additive and kestose
  • At least one sweet taste improving additive and nystose at least one sweet taste improving additive and nystose
  • At least one sweet taste improving additive and maltotetraol 153. at least one sweet taste improving additive and maltotetraol; 154. at least one sweet taste improving additive and maltotriol;
  • At least one sweet taste improving additive and malto-oligosaccharides 155. at least one sweet taste improving additive and malto-oligosaccharides
  • At least one sweet taste improving additive and maltotetraose at least one sweet taste improving additive and maltotetraose
  • At least one sweet taste improving additive and maltopentaose 158. at least one sweet taste improving additive and maltopentaose; 159. at least one sweet taste improving additive and maltohexaose;
  • At least one sweet taste improving additive and maltoheptaose At least one sweet taste improving additive and maltoheptaose
  • At least one sweet taste improving additive and lactulose at least one sweet taste improving additive and lactulose
  • At least one sweet taste improving additive and melibiose at least one sweet taste improving additive and melibiose
  • At least one sweet taste improving additive and raffinose 163. at least one sweet taste improving additive and raffinose; 164. at least one sweet taste improving additive and rhamnose;
  • At least one sweet taste improving additive and ribose at least one sweet taste improving additive and ribose
  • At least one sweet taste improving additive and high fructose corn syrup e.g., HFCS55, HFCS42, or HFCS90
  • starch syrup e.g., HFCS55, HFCS42, or HFCS90
  • sweet taste improving additive and coupling sugars e.g., HFCS55, HFCS42, or HFCS90
  • At least one sweet taste improving additive and glucose syrup At least one sweet taste improving additive and glucose syrup
  • At least one sweet taste improving additive D-tagatose, and at least one other carbohydrate
  • 172. at least one sweet taste improving additive, trehalose, and at least one other carbohydrate
  • 173. at least one sweet taste improving additive, D-galactose, and at least one other carbohydrate
  • At least one sweet taste improving additive at least one sweet taste improving additive, rhamnose, and at least one other carbohydrate; 175. at least one sweet taste improving additive, dextrin, and at least one other carbohydrate;
  • At least one sweet taste improving additive at least one sweet taste improving additive, cyclodextrin, and at least one other carbohydrate
  • At least one sweet taste improving additive at least one sweet taste improving additive, ⁇ -cyclodextrin, and at least one other carbohydrate
  • At least one sweet taste improving additive maltodextrin, and at least one other carbohydrate
  • At least one sweet taste improving additive dextran, and at least one other carbohydrate
  • 180. at least one sweet taste improving additive, sucrose, and at least one other carbohydrate
  • At least one sweet taste improving additive glucose, and at least one other carbohydrate
  • At least one sweet taste improving additive fructose, and at least one other carbohydrate
  • At least one sweet taste improving additive threose, and at least one other carbohydrate
  • At least one sweet taste improving additive at least one sweet taste improving additive, arabinose, and at least one other carbohydrate
  • 185. at least one sweet taste improving additive, xylose, and at least one other carbohydrate
  • At least one sweet taste improving additive at least one sweet taste improving additive, lyxose, and at least one other carbohydrate
  • At least one sweet taste improving additive at least one sweet taste improving additive, allose, and at least one other carbohydrate; 188. at least one sweet taste improving additive, altrose, and at least one other carbohydrate;
  • At least one sweet taste improving additive mannose, and at least one other carbohydrate
  • at least one sweet taste improving additive mannose, and at least one other carbohydrate
  • at least one sweet taste improving additive idose, and at least one other carbohydrate
  • At least one sweet taste improving additive at least one sweet taste improving additive, talose, and at least one other carbohydrate;
  • At least one sweet taste improving additive lactose, and at least one other carbohydrate
  • At least one sweet taste improving additive maltose, and at least one other carbohydrate
  • At least one sweet taste improving additive invert sugar, and at least one other carbohydrate
  • at least one sweet taste improving additive at least one sweet taste improving additive, trehalose, and at least one other carbohydrate
  • At least one sweet taste improving additive isotrehalose, and at least one other carbohydrate
  • At least one sweet taste improving additive at least one sweet taste improving additive, neotrehalose, and at least one other carbohydrate
  • At least one sweet taste improving additive at least one sweet taste improving additive, palatinose, and at least one other carbohydrate
  • At least one sweet taste improving additive at least one sweet taste improving additive, galactose, and at least one other carbohydrate; 200. at least one sweet taste improving additive, beet oligosaccharides, and at least one other carbohydrate;
  • At least one sweet taste improving additive isomalto-oligosaccharides, and at least one other carbohydrate
  • At least one sweet taste improving additive isomaltose, and at least one other carbohydrate
  • At least one sweet taste improving additive at least one sweet taste improving additive, panose, and at least one other carbohydrate;
  • 205. at least one sweet taste improving additive, xylo-oligosaccharides, and at least one other carbohydrate;
  • At least one sweet taste improving additive at least one sweet taste improving additive, xylotriose, and at least one other carbohydrate
  • At least one sweet taste improving additive at least one sweet taste improving additive, xylobiose, and at least one other carbohydrate
  • At least one sweet taste improving additive at least one sweet taste improving additive, gentio-oligoscaccharides, and at least one other carbohydrate
  • At least one sweet taste improving additive at least one sweet taste improving additive, gentiobiose, and at least one other carbohydrate; 210. at least one sweet taste improving additive, gentiotriose, and at least one other carbohydrate;
  • At least one sweet taste improving additive at least one sweet taste improving additive, gentiotetraose, and at least one other carbohydrate
  • At least one sweet taste improving additive at least one sweet taste improving additive, sorbose, and at least one other carbohydrate
  • At least one sweet taste improving additive at least one sweet taste improving additive, nigero-oligosaccharidess and at least one other carbohydrate;
  • At least one sweet taste improving additive palatinose oligosaccharides, and at least one other carbohydrate
  • 215. at least one sweet taste improving additive, fucose, and at least one other carbohydrate
  • At least one sweet taste improving additive fructooligosaccharides, and at least one other carbohydrate
  • At least one sweet taste improving additive at least one sweet taste improving additive, kestose, and at least one other carbohydrate
  • 218. at least one sweet taste improving additive, nystose, and at least one other carbohydrate
  • At least one sweet taste improving additive maltotetraol, and at least one other carbohydrate
  • 220. at least one sweet taste improving additive, maltotriol, and at least one other carbohydrate
  • At least one sweet taste improving additive malto-oligosaccharides, and at least one other carbohydrate;
  • At least one sweet taste improving additive maltotriose, and at least one other carbohydrate
  • At least one sweet taste improving additive maltotetraose, and at least one other carbohydrate
  • At least one sweet taste improving additive at least one sweet taste improving additive, maltopentaose, and at least one other carbohydrate
  • At least one sweet taste improving additive maltoheptaose, and at least one other carbohydrate
  • At least one sweet taste improving additive at least one sweet taste improving additive, lactulose, and at least one other carbohydrate;
  • At least one sweet taste improving additive at least one sweet taste improving additive, melibiose, and at least one other carbohydrate
  • At least one sweet taste improving additive at least one sweet taste improving additive, raffinose, and at least one other carbohydrate
  • At least one sweet taste improving additive at least one sweet taste improving additive, ribose, and at least one other carbohydrate;
  • At least one sweet taste improving additive isomerized liquid sugars, and at least one other carbohydrate
  • at least one sweet taste improving additive high fructose corn syrup (e.g. HFCS55, HFCS42, or HFCS90) or starch syrup, and at least one other carbohydrate
  • high fructose corn syrup e.g. HFCS55, HFCS42, or HFCS90
  • At least one sweet taste improving additive at least one sweet taste improving additive, coupling sugars, and at least one other carbohydrate;
  • At least one sweet taste improving additive soybean oligosaccharides, and at least one other carbohydrate
  • the tabletop sweetener composition comprises at least one
  • NHPS in combination with a plurality of sweet taste improving additives, desirably 3 or more sweet taste improving additives, and even more desirably 4 or more sweet taste improving additives, wherein each sweet taste improving additive is present in an amount such that no one sweet taste improving additive imparts a substantial off taste to the tabletop sweetener composition.
  • the amounts of the sweet taste improving additives in the tabletop sweetener composition are balanced so that no one sweet taste improving additive imparts a substantial off taste to the tabletop sweetener composition.
  • the tabletop sweetener composition provided herein comprises at least one sweet taste improving composition in the tabletop sweetener composition in an amount effective for the tabletop sweetener composition to impart an osmolarity of at least 10 mOsmoles/L to an aqueous solution of the tabletop sweetener composition, wherein the at least one NHPS is present in the aqueous solution in an amount sufficient to impart a maximum sweetness intensity equivalent to that of a 10% aqueous solution of sucrose by weight.
  • at least one sweet taste improving composition in the tabletop sweetener composition in an amount effective for the tabletop sweetener composition to impart an osmolarity of at least 10 mOsmoles/L to an aqueous solution of the tabletop sweetener composition, wherein the at least one NHPS is present in the aqueous solution in an amount sufficient to impart a maximum sweetness intensity equivalent to that of a 10% aqueous solution of sucrose by weight.
  • the tabletop sweetener composition comprises at least one sweet taste improving composition in an amount effective for the tabletop sweetener composition to impart an osmolarity of
  • Osmolarity refers to the measure of osmoles of solute per liter of solution, wherein osmole is equal to the number of moles of osmotically active particles in an ideal solution (e.g., a mole of glucose is one osmole), whereas a mole of sodium chloride is two osmoles (one mole of sodium and one mole of chloride).
  • an ideal solution e.g., a mole of glucose is one osmole
  • sodium chloride is two osmoles (one mole of sodium and one mole of chloride).
  • suitable sweet taste improving carbohydrate additives for the present invention have a molecular weight less than or equal to 500 and desirably have a molecular weight from 50 to 500.
  • suitable carbohydrates with a molecular weight less than or equal to 500 include, but are not limited to, sucrose, fructose, glucose, maltose, lactose, mannose, galactose, and tagatose.
  • suitable sweet taste improving carbohydrate additives for imparting osmolarities ranging from about 10 mOsmoles/L to about 500 mOsmoles/L to a sweetenable composition include, but are not limited to, sweet taste improving carbohydrate additives with a molecular weight ranging from about 50 to about 500.
  • suitable sweet taste improving polyol additives have a molecular weight less than or equal to 500 and desirably have a molecular weight from 76 to 500.
  • suitable sweet taste improving polyol additives with a molecular weight less than or equal to 500 include, but are not limited to, erythritol, glycerol, and propylene glycol.
  • suitable sweet taste improving polyol additives for imparting osmolarities ranging from about 10 mOsmoles/L to about 500 mOsmoles/L to a sweetenable composition include, but are not limited to, sweet taste improving polyol additives with a molecular weight ranging from about 76 to about 500.
  • the at least one NHPS and at least one sweet taste improving polyol additive are present in the sweetener composition in a ratio from about 1:4 to about 1:800, respectively; more particularly from about 1:20 to about 1:600; even more particularly from about 1:50 to about 1:300; and still more particularly from about 1:75 to about 1:150.
  • suitable sweet taste improving alcohol additives for imparting osmolarities ranging from about 10 mOsmoles/L to about 500 mOsmoles/L to a sweetenable composition include, but are not limited to, sweet taste improving alcohol additives with a molecular weight ranging from about 46 to about 500.
  • a non-limiting example of sweet taste improving alcohol additive with a molecular weight ranging from about 46 to about 500 includes ethanol.
  • suitable sweet taste improving amino acid additives have a molecular weight of less than or equal to 250 and desirably have a molecular weight from 75 to 250.
  • suitable sweet taste improving amino acid additives with a molecular weight less than or equal to 250 include, but are not limited to, glycine, alanine, serine, valine, leucine, isoleucine, proline, theanine, and threonine.
  • Preferred sweet taste improving amino acid additives include those which are sweet tasting at high concentrations, but desirably are present in embodiments of this invention at amounts below or above their sweetness taste detection threshold. Even more preferred are mixtures of sweet taste improving amino acid additives at amounts below or above their sweetness taste detection threshold.
  • suitable sweet taste improving amino acid additives for imparting osmolarities ranging from about 10 mOsmoles/L to about 500 mOsmoles/L to a sweetenable composition include, but are not limited to, sweet taste improving amino acid additives with a molecular weight ranging from about 75 to about 250.
  • suitable sweet taste improving amino acid salt additives for imparting osmolarities ranging from about 10 mOsmoles/L to about 500 mOsmoles/L to a sweetenable composition include, but are not limited to, sweet taste improving amino acid salt additives with a molecular weight ranging from about 75 to about 300.
  • Non- limiting examples of sweet taste improving amino acid salt additives with a molecular weight ranging from about 75 to about 300 include salts of glycine, alanine, serine, theanine, and threonine.
  • suitable sweet taste improving protein or protein hydrolysate additives for imparting osmolarities ranging from about 10 mOsmoles/L to about 500 mOsmoles/L to a sweetenable composition include, but are not limited to, sweet taste improving protein or protein hydrolysate additives with a molecular weight ranging from about 75 to about 300.
  • suitable sweet taste improving protein or protein hydrolysate additives with a molecular weight ranging from about 75 to about 300 include proteins or protein hydrolysates containing glycine, alanine, serine, and threonine.
  • suitable sweet taste improving inorganic acid additives for imparting osmolarities ranging from about 10 mOsmoles/L to about 500 mOsmoles/L to a sweetenable composition include, but are not limited to, phosphoric acid, HCl, and H 2 SO 4 and any other inorganic acid additives which are safe for human or animal consumption when used in a generally acceptable range.
  • suitable sweet taste improving inorganic acid additives for imparting osmolarities ranging from about 10 mOsmoles/L to about 500 mOsmoles/L to a sweetenable composition include, but are not limited to, sweet taste improving inorganic acid additives with a molecular weight range from about 36 to about 98.
  • suitable sweet taste improving inorganic acid salt additives for imparting osmolarities ranging from about 10 mOsmoles/L to about 500 mOsmoles/L to a sweetenable composition include, but are not limited to, salts of inorganic acids, for example sodium, potassium, calcium, and magnesium salts of phosphoric acid, and any other alkali or alkaline earth metal salts of other inorganic acids (e.g., sodium bisulfate) which are safe for human or animal consumption when used in a generally acceptable range.
  • salts of inorganic acids for example sodium, potassium, calcium, and magnesium salts of phosphoric acid
  • any other alkali or alkaline earth metal salts of other inorganic acids e.g., sodium bisulfate
  • suitable suitable sweet taste improving inorganic acid salt additives for imparting osmolarities ranging from about 10 mOsmoles/L to about 500 mOsmoles/L to a sweetenable composition include, but are not limited to, sweet taste improving inorganic acid salt additives with a molecular weight range from about 58 to about 120.
  • suitable sweet taste improving organic acid additives for imparting osmolarities ranging from about 10 mOsmoles/L to about 500 mOsmoles/L to a sweetenable composition include, but are not limited to, creatine, citric acid, malic acid, succinic acid, hydroxycitric acid, tartaric acid, fumaric acid, gluconic acid, glutaric acid, adipic acid, and any other sweet taste improving organic acid additives which are safe for human or animal consumption when used in a generally acceptable range.
  • the sweet taste improving organic acid additive comprises a molecular weight range from about 60 to about 208.
  • suitable sweet taste improving organic acid salt additives for imparting osmolarities ranging from about 10 mOsmoles/L to about 500 mOsmoles/L to a sweetenable composition include, but are not limited to, salts of sweet taste improving organic acid additives, such as sodium, potassium, calcium, magnesium, and other alkali or alkaline metal salts of citric acid, malic acid, tartaric acid, fumaric acid, gluconic acid, glutaric acid, adipic acid, hydroxycitric acid, succinic acid, and salts of any other sweet taste improving organic acid additives which are safe for human or animal consumption when used in a generally acceptable range.
  • the sweet taste improving organic acid salt additive comprises a molecular weight range from about 140 to about
  • suitable sweet taste improving organic base salt additives for imparting osmolarities ranging from about 10 mOsmoles/L to about 500 mOsmoles/L to a sweetenable composition include, but are not limited to, inorganic and organic acid salts of organic bases such as glucosamine salts, choline salts, and guanidine salts.
  • suitable sweet taste improving astringent additives for imparting osmolarities ranging from about 10 mOsmoles/L to about 500 mOsmoles/L to a sweetenable composition include, but are not limited to, tannic acid, tea polyphenols, catechins, aluminum sulfate, AlNa(SO 4 ) 2 , A1K(SO 4 ) 2 and other forms of alum.
  • suitable sweet taste improving nucleotide additives for imparting osmolarities ranging from about 10 mOsmoles/L to about 500 mOsmoles/L to a sweetenable composition include, but are not limited to, adenosine monophosphate.
  • suitable sweet taste improving polyamino acid additives for imparting osmolarities ranging from about 10 mOsmoles/L to about 500 mOsmoles/L to a sweetenable composition include, but are not limited to, poly-L-lysine (e.g., poly-L- ⁇ - lysine or poly-L- ⁇ -lysine), poly-L-ornithine (e.g., poly-L- ⁇ -ornithine or poly-L- ⁇ - ornithine), and poly-L-arginine.
  • suitable sweet taste improving polymer additives for imparting osmolarities ranging from about 10 mOsmoles/L to about 500 mOsmoles/L to a sweetenable composition include, but are not limited to, chitosan, sodium hexametaphosphate and its salts, pectin, hydrocolloids such as gum acacia Senegal, propylene glycol, polyethylene glycol, and poly(ethylene glycol methyl ether).
  • suitable sweet taste improving surfactant additives for imparting osmolarities ranging from about 10 mOsmoles/L to about 500 mOsmoles/L to a sweetenable composition include, but are not limited to, polysorbates, choline chloride, sodium taurocholate, lecithins, sucrose oleate esters, sucrose stearate esters, sucrose palmitate esters, and sucrlose laurate esters.
  • suitable sweet taste improving flavonoid additives for imparting osmolarities ranging from about 10 mOsmoles/L to about 500 mOsmoles/L to a sweetenable composition include, but are not limited to, naringin, catechins, rutins, neohesperidin, and neohesperidin dihydrochalcone. 3. Flavor Profile Modulation
  • suitable sweet taste improving compositions improve the flavor profile, including the osmotic taste, of the NHPS tabletop composition.
  • suitable sweet taste improving compositions enhancing the NHPS 's osmotic taste to be more sugar-like include sweet taste improving carbohydrate additives, sweet taste improving alcohol additives, sweet taste improving polyol additives, sweet taste improving amino acid additives, sweet taste improving amino acid salt additives, sweet taste improving inorganic acid salt additives, sweet taste improving polymer additives, and sweet taste improving protein or protein hydrolysate additives.
  • suitable sweet taste improving carbohydrate additives for improving the osmotic taste of the a NHPS to be more sugar-like include, but are not limited to, sweet taste improving carbohydrate additives with a molecular weight ranging from about 50 to about 500.
  • sweet taste improving carbohydrate additives with a molecular weight ranging from about 50 to about 500 include sucrose, fructose, glucose, maltose, lactose, mannose, galactose, ribose, rhamnose, trehalose, HFCS, and tagatose.
  • suitable sweet taste improving polyol additives for improving the osmotic taste of a NHPS to be more sugar-like include, but are not limited to, sweet taste improving polyol additives with a molecular weight ranging from about 76 to about 500.
  • sweet taste improving polyol additives with a molecular weight ranging from about 76 to about 500 include erythritol, glycerol, and propylene glycol.
  • other suitable sweet taste improving polyol additives include sugar alcohols.
  • suitable sweet taste improving alcohol additives for improving the osmotic taste of a NHPS to be more sugar-like include, but are not limited to, sweet taste improving alcohol additives with a molecular weight ranging from about 46 to about 500.
  • a non-limiting example of sweet taste improving alcohol additive with a molecular weight ranging from about 46 to about 500 includes ethanol.
  • suitable sweet taste improving amino acid additives for improving the osmotic taste of a NHPS to be more sugar-like include, but are not limited to, sweet taste improving amnio acid additives with a molecular weight ranging from about 75 to about 250.
  • sweet taste improving amino acid additives with a molecular weight ranging from about 75 to about 250 include glycine, alanine, serine, leucine, valine, isoleucine, proline, hydroxyproline, glutamine, theanine, and threonine.
  • suitable sweet taste improving amino acid salt additives for improving the osmotic taste of a NHPS to be more sugar-like include, but are not limited to, sweet taste improving amino acid salt additives with a molecular weight ranging from about 75 to about 300.
  • sweet taste improving amino acid salt additives with a molecular weight ranging from about 75 to about 300 include salts of glycine, alanine, serine, leucine, valine, isoleucine, proline, hydroxyproline, glutamine, theanine, and threonine.
  • suitable sweet taste improving protein or protein hydrolysate additives for improving the osmotic taste of a NHPS to be more sugar-like include, but are not limited to, sweet taste improving protein or protein hydrolysate additives with a molecular weight ranging from about 75 to about 300.
  • suitable sweet taste improving protein or protein hydrolysate additives with a molecular weight ranging from about 75 to about 300 include protein or protein hydrolysates containing glycine, alanine, serine, leucine, valine, isoleucine, proline, and threonine.
  • suitable sweet taste improving inorganic acid salt additives for improving the osmotic taste of a NHPS to be more sugar-like include, but are not limited to, sodium chloride, potassium chloride, magnesium chloride, KH 2 PO 4 and
  • Suitable sweet taste improving inorganic acid salt additives for improving the osmotic taste may comprise a molecular weight from about 58 to about 120.
  • suitable sweet taste improving bitter additives for improving the osmotic taste of the NHPS to be more sugar-like include, but are not limited to, caffeine, quinine, urea, quassia, tannic acid, and naringin.
  • a tabletop sweetener composition comprising at least one NHPS in combination with at least one sweet taste improving nucleotide additive and optionally at least one bulking agent; wherein the at least one nucleotide additive is chosen from inosine monophosphate ("IMP"), guanosine monophosphate (“GMP”), adenosine monophosphate (“AMP”), cytosine monophosphate (CMP), uracil monophosphate (UMP), inosine diphosphate, guanosine diphosphate, adenosine diphosphate, cytosine diphosphate, uracil diphosphate, inosine triphosphate, guanosine triphosphate, adenosine triphosphate, cytosine triphosphate, uracil triphosphate, nucleosides thereof, nucleic acid bases thereof, or salts thereof; and wherein the at least one bulking agent is chosen from maltodextrin ⁇ e.g., 10 DE, 18
  • a tabletop sweetener composition comprising at least one NHPS in combination with at least one sweet taste improving carbohydrate additive and optionally at least one bulking agent; wherein the at least one carbohydrate additive is chosen from tagatose, trehalose, galactose, rhamnose, cyclodextrin (e.g., ⁇ - cyclodextrin, ⁇ -cyclodextrin, and ⁇ -cyclodextrin), maltodextrin (including resistant maltodextrins such as Fibersol-2TM), dextran, sucrose, glucose, ribulose, fructose, threose, arabinose, xylose, lyxose, allose, altrose, mannose, idose, lactose, maltose, invert sugar, isotrehalose, neotrehalose, palatinose or isomaltulose, erythrose, deoxyribose,
  • a tabletop sweetener composition comprising at least one NHPS in combination with at least one sweet taste improving polyol additive and optionally at least one bulking agent; wherein the at least one polyol additive is chosen from erythritol, maltitol, mannitol, sorbitol, lactitol, xylitol, inositol, isomalt, propylene glycol, glycerol (glycerine), threitol, galactitol, palatinose, reduced isomalto- oligosaccharides, reduced xylo-oligosaccharides, reduced gentio-oligosaccharides, reduced maltose syrup, or reduced glucose syrup; and wherein the at least one bulking agent is chosen from maltodextrin (e.g., 10 DE, 18 DE, or 5 DE), corn syrup solids (e.g., 20 or 36 DE), sucrose, fructose, glucose
  • a tabletop sweetener composition comprising at least one NHPS in combination with at least one sweet taste improving amino acid additive and optionally at least one bulking agent; wherein the at least one amino acid additive is chosen from aspartic acid, arginine, glycine, glutamic acid, proline, threonine, theanine, creatine, cysteine, cystine, alanine, valine, tyrosine, leucine, isoleucine, asparagine, serine, lysine, histidine, ornithine, methionine, carnitine, aminobutyric acid (alpha-, beta-, or gamma- isomers), glutamine, hydroxyproline, taurine, norvaline, sarcosine, or salts thereof; and wherein the at least one bulking agent is chosen from maltodextrin (e.g., 10 DE, 18 DE, or 5 DE), corn syrup solids (e.g., 20 or 36 DE
  • a tabletop sweetener composition comprising at least one NHPS in combination with at least one sweet taste improving polyamino acid additive and optionally at least one bulking agent; wherein the at least one polyamino acid additive is chosen from poly-L-aspartic acid, poly-L-lysine (e.g., poly-L- ⁇ -lysine or poly- L- ⁇ -lysine), poly-L-ornithine (e.g., poly-L- ⁇ -ornithine or poly- ⁇ -ornithine), poly-L- arginine, other polymeric forms of amino acids, or salts thereof; and wherein the at least one bulking agent is chosen from maltodextrin (e.g., 10 DE, 18 DE, or 5 DE), corn syrup solids (e.g., 20 or 36 DE), sucrose, fructose, glucose, invert sugar, sorbitol, xylose, ribulose, mannose, xylitol,
  • a tabletop sweetener composition comprising at least one NHPS in combination with at least one sweet taste improving sugar acid additive and optionally at least one bulking agent; wherein the at least one sugar acid additive is chosen from aldonic, uronic, aldaric, alginic, gluconic, glucuronic, glucaric, galactaric, galacturonic, or salts thereof; and wherein the at least one bulking agent is chosen from maltodextrin (e.g., 10 DE, 18 DE, or 5 DE), corn syrup solids (e.g., 20 or 36
  • sucrose fructose
  • glucose invert sugar
  • sorbitol xylose
  • ribulose mannose
  • xylitol mannitol
  • galactitol galactitol
  • maltitol lactitol
  • isomalt maltose
  • tagatose lactose
  • inulin glycerol
  • propylene glycol polyols, polydextrose, fructooligosaccharides, cellulose and cellulose derivatives, or combinations thereof.
  • a tabletop sweetener composition comprising at least one NHPS in combination with at least one sweet taste improving organic acid additive and optionally at least one bulking agent; wherein the at least one organic acid is chosen from C2-C30 carboxylic acids, substituted hydroxyl C1-C30 carboxylic acids, benzoic acid, substituted benzoic acids (e.g., 2,4-dihydroxybenzoic acid), substituted cinnamic acids, hydroxyacids, substituted hydroxybenzoic acids, substituted cyclohexyl carboxylic acids, tannic acid, lactic acid, tartaric acid, citric acid, gluconic acid, glucoheptonic acids, glutaric acid, creatine, adipic acid, hydroxycitric acid, malic acid, fruitaric acid, fumaric acid, maleic acid, succinic acid, chlorogenic acid, salicylic acid, caffeic acid, bile acids, acetic acid, ascorbic acid, algin
  • a tabletop sweetener composition comprising at least one NHPS in combination with at least one sweet taste improving inorganic acid additive and optionally at least one bulking agent; wherein the at least one inorganic acid additive is chosen from phosphoric acid, phosphorous acid, polyphosphoric acid, hydrochloric acid, sulfuric acid, carbonic acid, sodium dihydrogen phosphate, or salts thereof; and wherein the at least one bulking agent is chosen from maltodextrin (e.g., 10 DE, 18 DE, or 5 DE), corn syrup solids (e.g., 20 or 36 DE), sucrose, fructose, glucose, invert sugar, sorbitol, xylose, ribulose, mannose, xylitol, mannitol, galactitol, erythritol, maltitol, lactitol, isomalt, maltose, tagatose, lactose, inulin, glycerol,
  • a tabletop sweetener composition comprising at least one NHPS in combination with at least one sweet taste improving bitter compound additive and optionally at least one bulking agent; wherein the at least one bitter compound additive is chosen from caffeine, quinine, urea, bitter orange oil, naringin, quassia, or salts thereof; and wherein the at least one bulking agent is chosen from maltodextrin (e.g., 10 DE, 18 DE, or 5 DE), corn syrup solids (e.g., 20 or 36 DE), sucrose, fructose, glucose, invert sugar, sorbitol, xylose, ribulose, mannose, xylitol, mannitol, galactitol, erythritol, maltitol, lactitol, isomalt, maltose, tagatose, lactose, inulin, glycerol, propylene glycol, polyols, polydextrose, fructodextrose,
  • a tabletop sweetener composition comprising at least one NHPS in combination with at least one sweet taste improving flavorant additive and optionally at least one bulking agent; wherein the at least one flavorant additive is chosen from vanillin, vanilla extract, mango extract, cinnamon, citrus, coconut, ginger, viridiflorol, almond, menthol, grape skin extract, or grape seed extract; D ⁇ hlerTM Natural Flavoring Sweetness Enhancer K14323 (DohlerTM, Darmstadt, Germany), SymriseTM Natural Flavor Mask for Sweeteners 161453 or 164126 (SymriseTM, Holzminden, Germany), Natural AdvantageTM Bitterness Blockers 1, 2, 9 or 10 (Natural AdvantageTM, Freehold, New Jersey, U.S.A.), or SucramaskTM (Creative Research Management, Stockton, California, U.S.A.); and wherein the at least one bulking agent is chosen from maltodextrin (e.g., 10 DE, 18 DE, or 5 DE), corn syrup solids (
  • a tabletop sweetener composition comprising at least one NHPS in combination with at least one sweet taste improving polymer additive and optionally at least one bulking agent; wherein the at least one polymer additive is chosen from chitosan, pectin, pectic, pectinic, polyuronic, polygalacturonic acid, starch, food hydrocolloid or crude extracts thereof (e.g., gum acacia Senegal, gum acacia seyal, carageenan), poly-L-lysine (e.g., poly-L- ⁇ -lysine or poly-L- ⁇ -lysine), poly-L- ornithine (e.g., poly-L- ⁇ -ornithine or poly- ⁇ -ornithine), polypropylene glycol, polyethylene glycol, poly(ethylene glycol methyl ether), polyarginine, polyaspartic acid, polyglutamic acid, polyethyleneimine, alginic acid, sodium alginate,
  • a tabletop sweetener composition comprising at least one NHPS in combination with at least one sweet taste improving protein or protein hydrolysate additive and optionally at least one bulking agent; wherein the at least one protein or protein hydrolysate additive is chosen from bovine serum albumin (BSA), whey protein (including fractions or concentrates thereof such as 90% instant whey protein isolate, 34% whey protein, 50% hydrolyzed whey protein, and 80% whey protein concentrate), soluble rice protein, soy protein, protein isolates, protein hydrolysates, reaction products of protein hydrolysates, glycoproteins, and/or proteoglycans containing amino acids (e.g., glycine, alanine, serine, threonine, theanine, asparagine, glutamine, arginine, valine, isoleucine, leucine, norvaline, methionine, proline, tyrosine, hydroxyproline, or the like); and wherein the at least one protein or protein
  • a tabletop sweetener composition comprising at least one NHPS in combination with at least one sweet taste improving surfactant additive and optionally at least one bulking agent; wherein the at least one surfactant additive is chosen from polysorbates (e.g., polyoxyethylene sorbitan monooleate (polysorbate 80), polysorbate 20, polysorbate 60), sodium dodecylbenzenesulfonate, dioctyl sulfosuccinate or dioctyl sulfosuccinate sodium, sodium dodecyl sulfate, cetylpyridinium chloride, hexadecyltrimethylammonium bromide, sodium cholate, carbamoyl, choline chloride, sodium glycocholate, sodium taurocholate, sodium taurodeoxycholate, lauric arginate, sodium stearoyl lactylate, lecithins, sucrose oleate esters, sucrose stearate est
  • a tabletop sweetener composition comprising at least one NHPS in combination with at least one sweet taste improving flavonoid additive and optionally at least one bulking agent; wherein the at least one flavonoid additive is chosen from catechins, polyphenols, rutins, neohesperidin, naringin, neohesperidin dihydrochalcone, or the like; and wherein the at least one bulking agent is chosen from maltodextrin (e.g., 10 DE, 18 DE, or 5 DE), corn syrup solids (e.g., 20 or 36 DE), sucrose, fructose, glucose, invert sugar, sorbitol, xylose, ribulose, mannose, xylitol, mannitol, galactitol, erythritol, maltitol, lactitol, isomalt, maltose, tagatose, lactose, inulin,
  • a tabletop sweetener composition comprising at least one NHPS in combination with ethanol and optionally at least one bulking agent, wherein the at least one bulking agent is chosen from maltodextrin (e.g., 10 DE, 18 DE, or 5 DE), corn syrup solids (e.g., 20 or 36 DE), sucrose, fructose, glucose, invert sugar, sorbitol, xylose, ribulose, mannose, xylitol, mannitol, galactitol, erythritol, maltitol, lactitol, isomalt, maltose, tagatose, lactose, inulin, glycerol, propylene glycol, polyols, polydextrose, fractooligosaccharides, cellulose and cellulose derivatives, or combinations thereof.
  • maltodextrin e.g. 10 DE, 18 DE, or 5 DE
  • corn syrup solids e.g.
  • a tabletop sweetener composition comprising at least one NHPS in combination with at least one sweet taste improving astringent compound additive and optionally at least one bulking agent; wherein the at least one astringent additive is chosen from tannic acid, europium chloride (EuCl 3 ), gadolinium chloride (GdCl 3 ), terbium chloride (TbCl 3 ), alum, tannic acid, and polyphenols (e.g., tea polyphenol); and wherein the at least one bulking agent is chosen from maltodextrin (e.g., 10 DE, 18 DE, or 5 DE), corn syrup solids (e.g., 20 or 36 DE), sucrose, fructose, glucose, invert sugar, sorbitol, xylose, ribulose, mannose, xylitol, mannitol, galactitol, erythritol, maltitol, lactitol, is
  • a tabletop sweetener composition comprising at least one NHPS in combination with at least one sweet taste improving inorganic salt additive and optionally at least one bulking agent; wherein the at least one inorganic salt additive is chosen from sodium chloride, potassium chloride, sodium dihydrogen phosphate, sodium sulfate, potassium citrate, europium chloride (EuCl 3 ), gadolinium chloride (GdCl 3 ), terbium chloride (TbCl 3 ), magnesium sulfate, magnesium phosphate, alum, magnesium chloride, mono-, di-, tri-basic sodium or potassium salts of phosphoric acid, salts of hydrochloric acid, sodium carbonate, sodium bisulfate, or sodium bicarbonate; and wherein the at least one bulking agent is chosen from maltodextrin (e.g., 10 DE, 18 DE, or 5 DE), corn syrup solids (e.g., 20 or 36 DE), sucrose, fructose, glucose, in
  • a tabletop sweetener composition comprising at least one tabletop ingredient and at least one NHPS in combination with at least one sweet taste improving organic salt additive and optionally at least one bulking agent; wherein the at least one organic salt additive is chosen from choline chloride, gluconic acid sodium salt, gluconic acid potassium salt, guanidine HCl, amiloride HCl, glucosamine HCl, monosodium glutamate (MSG), adenosine monophosphate salt, magnesium gluconate, potassium tartrate, and sodium tartrate; and wherein the at least one bulking agent is chosen from maltodextrin (e.g., 10 DE, 18 DE, or 5 DE), corn syrup solids (e.g., 20 or 36 DE), sucrose, fructose, glucose, invert sugar, sorbitol, xylose, ribulose, mannose, xylitol, mannitol, galactitol, erythritol
  • a tabletop sweetener composition comprising at least one NHPS in combination with at least one sweet taste improving nucleotide additive, at least one sweet taste improving carbohydrate additive, at least one sweet taste improving amino acid additive, and optionally at least one bulking agent; wherein the at least one nucleotide additive is chosen from inosine monophosphate ("IMP"), guanosine monophosphate (“GMP”), adenosine monophosphate (“AMP”), cytosine monophosphate (CMP), uracil monophosphate (UMP), inosine diphosphate, guanosine diphosphate, adenosine diphosphate, cytosine diphosphate, uracil diphosphate, inosine triphosphate, guanosine triphosphate, adenosine triphosphate, cytosine triphosphate, uracil triphosphate, nucleosides thereof, nucleic acid bases thereof, or salts thereof; wherein the at least one carbo
  • a tabletop sweetener composition comprising at least one NHPS in combination with at least one sweet taste improving nucleotide additive, at least one sweet taste improving carbohydrate additive, and optionally at least one bulking agent; wherein the at least one nucleotide additive is chosen from inosine monophosphate ("IMP"), guanosine monophosphate (“GMP”), adenosine monophosphate (“AMP”), cytosine monophosphate (CMP), uracil monophosphate (UMP), inosine diphosphate, guanosine diphosphate, adenosine diphosphate, cytosine diphosphate, uracil diphosphate, inosine triphosphate, guanosine triphosphate, adenosine triphosphate, cytosine triphosphate, uracil triphosphate, nucleosides thereof, nucleic acidbases thereof, or salts thereof; wherein the at least one carbohydrate additive is chosen from tagatos
  • a tabletop sweetener composition comprising at least one NHPS in combination with at least one sweet taste improving nucleotide additive, at least one sweet taste improving polyol additive, and optionally at least one bulking agent; wherein the at least one nucleotide additive is chosen from inosine monophosphate ("IMP"), guanosine monophosphate (“GMP”), adenosine monophosphate (“AMP”), cytosine monophosphate (CMP), uracil monophosphate (UMP), inosine diphosphate, guanosine diphosphate, adenosine diphosphate, cytosine diphosphate, uracil diphosphate, inosine triphosphate, guanosine triphosphate, adenosine triphosphate, cytosine triphosphate, uracil triphosphate, nucleosides thereof, nucleic acidbases thereof, or salts thereof; wherein the at least one polyol additive is chosen from erythr
  • a tabletop sweetener composition comprising at least one NHPS in combination with at least one sweet taste improving nucleotide additive, at least one sweet taste improving amino acid, and optionally at least one bulking agent; wherein the at least one nucleotide additive is chosen from inosine monophosphate ("IMP"), guanosine monophosphate (“GMP”), adenosine monophosphate (“AMP”), cytosine monophosphate (CMP), uracil monophosphate (UMP), inosine diphosphate, guanosine diphosphate, adenosine diphosphate, cytosine diphosphate, uracil diphosphate, inosine triphosphate, guanosine triphosphate, adenosine triphosphate, cytosine triphosphate, uracil triphosphate, nucleosides thereof, nucleic acid bases thereof, or salts thereof; wherein the at least one amino acid additive is chosen from aspartic acid, argin
  • a tabletop sweetener composition comprising at least one NHPS in combination with at least one sweet taste improving carbohydrate additive, at least one sweet taste improving polyol additive, at least one sweet taste improving amino acid additive, and optionally at least one bulking agent; wherein the at least one carbohydrate additive is chosen from tagatose, trehalose, galactose, rhamnose, cyclodextrin (e.g., ⁇ -cyclodextrin, ⁇ -cyclodextrin, and ⁇ -cyclodextrin), maltodextrin (including resistant maltodextrins such as Fibersol-2TM), dextran, sucrose, glucose, ribulose, fructose, threose, arabinose, xylose, lyxose, allose, altrose, mannose, idose, lactose, maltose, invert sugar, isotrehalose, neotrehalose, palatinose
  • a tabletop sweetener composition comprising at least one NHPS in combination with at least one sweet taste improving carbohydrate additive, at least one sweet taste improving polyol additive, and optionally at least one bulking agent; wherein the at least one carbohydrate additive is chosen from tagatose, trehalose, galactose, rhamnose, cyclodextrin (e.g., ⁇ -cyclodextrin, ⁇ -cyclodextrin, and ⁇ - cyclodextrin), maltodextrin (including resistant maltodextrins such as Fibersol-2TM), dextran, sucrose, glucose, ribulose, fructose, threose, arabinose, xylose, lyxose, allose, altrose, mannose, idose, lactose, maltose, invert sugar, isotrehalose, neotrehalose, palatinose or isomaltulose,
  • a tabletop sweetener composition comprising at least one NHPS in combination with at least one sweet taste improving carbohydrate additive, at least one sweet taste improving amino acid additive, and optionally at least one bulking agent; wherein the at least one carbohydrate additive is chosen from tagatose, trehalose, galactose, rhamnose, cyclodextrin (e.g., ⁇ -cyclodextrin, ⁇ -cyclodextrin, and ⁇ - cyclodextrin), maltodextrin (including resistant maltodextrins such as Fibersol-2TM), dextran, sucrose, glucose, ribulose, fructose, threose, arabinose, xylose, lyxose, allose, altrose, mannose, idose, lactose, maltose, invert sugar, isotrehalose, neotrehalose, palatinose or isomaltulose, ery
  • a tabletop sweetener composition comprising at least one NHPS in combination with at least one sweet taste improving polyol additive, at least one sweet taste improving amino acid additive, and optionally at least one bulking agent; wherein the at least one polyol additive is chosen from erythritol, maltitol, mannitol, sorbitol, lactitol, xylitol, inositol, isomalt, propylene glycol, glycerol (glycerin), threitol, galactitol, palatinose, reduced isomalto-oligosaccharides, reduced xylo- oligosaccharides, reduced gentio-oligosaccharides, reduced maltose syrup, or reduced glucose syrup; wherein the at least one amino acid additive is chosen from aspartic acid, arginine, glycine, glutamic acid, proline, threonine, theanine, cysteine
  • a tabletop sweetener composition comprising at least one NHPS in combination with at least one sweet taste improving polyol additive, at least one sweet taste improving inorganic salt additive, and optionally at least one bulking agent; wherein the at least one polyol additive is chosen from erythritol, maltitol, mannitol, sorbitol, lactitol, xylitol, inositol, isomalt, propylene glycol, glycerol (glycerin), threitol, galactitol, palatinose, reduced isomalto-oligosaccharides, reduced xylo- oligosaccharides, reduced gentio-oligosaccharides, reduced maltose syrup, or reduced glucose syrup; wherein the at least one inorganic salt additive is chosen from sodium chloride, potassium chloride, sodium dihydrogen phosphate, sodium sulfate, potassium citrate, europium chloride
  • a tabletop sweetener composition comprising at least one NHPS in combination with at least one sweet taste improving carbohydrate additive, at least one sweet taste improving inorganic salt additive, and optionally at least one bulking agent; wherein the at least one carbohydrate additive is chosen from tagatose, trehalose, galactose, rhamnose, cyclodextrin (e.g., ⁇ -cyclodextrin, ⁇ -cyclodextrin, and ⁇ - cyclodextrin), maltodextrin (including resistant maltodextrins such as Fibersol-2TM), dextran, sucrose, glucose, ribulose, fructose, threose, arabinose, xylose, lyxose, allose, altrose, mannose, idose, lactose, maltose, invert sugar, isotrehalose, neotrehalose, palatinose or isomaltulose,
  • a tabletop sweetener composition comprising at least one NHPS in combination with at least one sweet taste improving carbohydrate additive, at least one sweet taste improving amino acid additive, at least one sweet taste improving inorganic salt additive, and optionally at least one bulking agent; wherein the at least one carbohydrate additive is chosen from tagatose, trehalose, galactose, rhamnose, cyclodextrin (e.g., ⁇ -cyclodextrin, ⁇ -cyclodextrin, and ⁇ -cyclodextrin), maltodextrin (including resistant maltodextrins such as Fibersol-2TM), dextran, sucrose, glucose, ribulose, fructose, threose, arabinose, xylose, lyxose, allose, altrose, mannose, idose, lactose, maltose, invert sugar, isotrehalose, neotrehalose, palati
  • a tabletop sweetener composition comprising at least one NHPS in combination with at least one sweet taste improving polyol additive, at least one sweet taste improving polyamino acid additive, and optionally at least one bulking agent; wherein the at least one polyol additive is chosen from erythritol, maltitol, mannitol, sorbitol, lactitol, xylitol, inositol, isomalt, propylene glycol, glycerol (glycerin), threitol, galactitol, palatinose, reduced isomalto-oligosaccharides, reduced xylo- oligosaccharides, reduced gentio-oligosaccharides, reduced maltose syrup, or reduced glucose syrup; wherein the at least one polyamino acid additive is chosen from poly-L- aspartic acid, poly-L-lysine (e.g., poly-L- ⁇ -lys
  • a tabletop sweetener composition comprising at least one NHPS in combination with at least one sweet taste improving protein or protein hydrolysate additive, at least one sweet taste improving inorganic salt additive, and optionally at least one bulking agent; wherein the at least one sweet taste improving protein or protein hydrolysate additive is chosen from bovine serum albumin (BSA), whey protein (including fractions or concentrates thereof such as 90% instant whey protein isolate, 34% whey protein, 50% hydrolyzed whey protein, and 80% whey protein concentrate), soluble rice protein, soy protein, protein isolates, protein hydrolysates, reaction products of protein hydrolysates, glycoproteins, and/or proteoglycans containing amino acids (e.g., glycine, alanine, serine, threonine, theanine, asparagine, glutamine, arginine, valine, isoleucine, leucine, norvaline, methionine, proline, tryptophan
  • BSA bo
  • a tabletop sweetener composition comprising rebaudioside A in combination with at least one NHPS other than rebaudioside-A, at least one sweet taste improving composition, and optionally at least one bulking agent.
  • a tabletop sweetener composition comprising rebaudioside-A
  • the at least one sweet taste improving amino acid additive is glycine or alanine
  • the at least one sweet taste improving polyol additive is erythritol
  • a tabletop sweetener composition comprising REBA in combination with at least one sweet taste improving amino acid additive, at least one sweet taste improving protein or protein hydrolysate additive, and optionally at least one bulking agent
  • the at least one sweet taste improving amino acid additive is glycine or lysine
  • the at least one sweet taste improving protein or protein hydrolysate additive is protein, a hydrolysate, or a reaction product of a hydrolysate of a protein containing glycine, alanine, serine, leucine, valine, isoleucine, proline, or threonine.
  • a tabletop sweetener composition comprising REBA in combination with at least one sweet taste improving protein hydrolysate additive, at least one sweet taste improving polyol additive, and optionally at least one bulking agent is provided.
  • the at least one sweet taste improving protein or protein hydrolysate additive is a protein, a hydrolysate, or a reaction product of a hydrolysate of proteins containing glycine, alanine, serine, leucine, valine, isoleucine, proline, or threonine
  • the at least one sweet taste improving polyol additive is erythritol.
  • a tabletop sweetener composition comprising REBA in combination with at least one sweet taste improving carbohydrate additive and optionally at least one bulking agent is provided.
  • the composition comprises REBA and glucose, sucrose, HFCS, or D-fructose.
  • a tabletop sweetener composition comprising REBA in combination with at least one sweet taste improving polyol additive and optionally at least one bulking agent.
  • Non-limiting examples include REBA in combination with propylene glycol, erythritol, or combinations thereof.
  • a tabletop sweetener composition comprising REBA in combination with at least one sweet taste improving polyol additive and optionally at least one bulking agent is provided.
  • the at least one sweet taste improving polyol comprises erythritol.
  • REBA and erythritol are present in the composition in a ratio from about 1:4 to about 1:800, respectively.
  • REBA and erythritol are present in the composition in a ratio from about 1:20 to about 1:600, respectively; more particularly from about 1:50 to about 1:300; and still more particularly from about 1:75 to about 1:150.
  • the REBA comprises at least 50 % REBA by weight with the remainder being other steviol glycosides.
  • a tabletop sweetener composition comprising REBA in combination with at least one sweet taste improving synthetic sweetener additive and optionally at least one bulking agent is provided.
  • the tabletop sweetener composition comprises REBA in combination with saccharin or acesulfame potassium or other salts.
  • a tabletop sweetener composition comprising REBA in combination with at least one sweet taste improving carbohydrate additive, at least one sweet taste improving polyol additive, and optionally at least one bulking agent is provided.
  • REBA in combination with tagatose, fructose or sucrose and erythritol.
  • a tabletop sweetener composition comprising REBA in combination with at least one sweet taste improving inorganic salt additive and optionally at least one bulking agent.
  • REBA in combination with NaCl, KCl, NaHSO 4 .H2O, NaH 2 PO 4 , MgSO 4 , KA1(SO 4 ) 2 (alum), magnesium phosphate, magnesium chloride, KCl and KH 2 PO 4 , or other combinations thereof.
  • a particularly desirable embodiment comprises REBA in combination with a mixture of inorganic salt additives, such as chlorides, phosphates, and sulfates of sodium, magnesium, potassium, and calcium (e.g., sodium chloride and potassium chloride; potassium phosphate and potassium chloride; sodium chloride and sodium phosphate; calcium phosphate and calcium sulfate; magnesium chloride and magnesium phosphate; and calcium phosphate, calcium sulfate, and potassium sulfate).
  • inorganic salt additives such as chlorides, phosphates, and sulfates of sodium, magnesium, potassium, and calcium (e.g., sodium chloride and potassium chloride; potassium phosphate and potassium chloride; sodium chloride and sodium phosphate; calcium phosphate and calcium sulfate; magnesium chloride and magnesium phosphate; and calcium phosphate, calcium sulfate, and potassium sulfate).
  • a tabletop sweetener composition comprising REBA in combination with at least one sweet taste improving organic acid salt additive and optionally at least one bulking agent.
  • REBA in combination with choline chloride in citrate buffer, D-gluconic acid sodium salt, guanidine
  • a tabletop sweetener composition comprising REBA in combination with at least one sweet taste improving organic acid additive and optionally at least one bulking agent.
  • REBA in combination with fumaric acid, malic acid, tartaric acid, citric acid, adipic acid, ascorbic acid, tannic acid, lauric arginate, or combinations thereof.
  • a tabletop sweetener composition comprising REBA in combination with at least one sweet taste improving amino acid additive and optionally at least one bulking agent.
  • REBA in combination with glycine, L-alanine, L-serine, L-threonine, ⁇ -alanine, aminobutyric acid (alpha-, beta-, or gamma- isomers), L-aspartic acid, L-glutamic acid, L-lysine, glycine and L-alanine mixture, salt derivatives or combinations thereof.
  • a tabletop sweetener composition comprising REBA in combination with at least one sweet taste improving surfactant additive and optionally at least one bulking agent.
  • REBA in combination with dioctyl sulfosuccinate sodium, cetylpyridinium chloride, hexadecyltrimethylammonium bromide, sucrose oleate, polysorbate 20, polysorbate 80, lecithin, or combinations thereof.
  • a tabletop sweetener composition comprising REBA in combination with at least one sweet taste improving polymer additive and optionally at least one bulking agent.
  • REBA in combination with cationic polymers such as polyethyleneimine, poly-L-lysine (e.g., poly- L- ⁇ -lysine or poly-L- ⁇ -lysine), poly-L-ornithine (e.g., poly-L- ⁇ -ornithine or poly-L- ⁇ - ornithine), chitosan, or combinations thereof.
  • a tabletop sweetener composition comprising REBA in combination with at least one sweet taste improving polymer additive, at least one sweet taste improving polyol additive, and optionally at least one bulking agent.
  • REBA in combination with a hydrocolloid, such as a gum acacia seyal, and erythritol.
  • a tabletop sweetener composition comprising REBA in combination with at least one sweet taste improving protein or protein hydrolysate additive and optionally at least one bulking agent is provided.
  • Non-limiting examples include REBA in combination with bovine serum albumin (BSA), whey protein or combinations thereof.
  • BSA bovine serum albumin
  • a tabletop sweetener composition comprising REBA in combination with at least one sweet taste improving amino acid additive, at least one sweet taste improving inorganic acid salt additive, and optionally at least one bulking agent.
  • REBA in combination with glycine and alum
  • REBA in combination with glycine and potassium chloride
  • REBA in combination with glycine and sodium chloride
  • REBA in combination with glycine, potassium phosphate, and potassium chloride
  • REBA in combination with glycine, sodium chloride, and potassium chloride REBA in combination with glycine, sodium chloride, and potassium chloride.
  • a tabletop sweetener composition comprising REBA in combination with at least one sweet taste improving carbohydrate additive, at least one sweet taste improving inorganic acid salt additive, and optionally at least one bulking agent.
  • REBA in combination with fructose, sucrose, or glucose and alum
  • REBA in combination with fructose, sucrose, or glucose and potassium chloride
  • REBA in combination with fructose, sucrose, or glucose and sodium chloride
  • REBA in combination with fructose, sucrose, or glucose, potassium phosphate, and potassium chloride
  • REBA in combination with fructose, sucrose, or glucose, sodium chloride, and potassium chloride.
  • a tabletop sweetener composition comprising REBA in combination with at least one sweet taste improving bitter additive, at least one sweet taste improving inorganic salt additive and optionally at least one bulking agent is provided.
  • REBA in combination with urea and sodium chloride.
  • a tabletop sweetener composition comprising REBA in combination with at least one sweet taste improving amino acid additive, at least one sweet taste improving polyamino acid additive, and optionally at least one bulking agent.
  • REBA in combination with glycine and poly-L- ⁇ -lysine
  • REBA in combination with glycine and poly-L- ⁇ -lysine.
  • a tabletop sweetener composition comprising REBA in combination with at least one sweet taste improving amino acid additive, at least one sweet taste improving organic acid additive, and optionally at least one bulking agent is provided.
  • REBA in combination with glycine and sodium gluconate.
  • a tabletop sweetener composition comprising REBA in combination with at least one sweet taste improving amino acid additive, at least one sweet taste improving carbohydrate additive, and optionally at least one bulking agent.
  • a non-limiting example includes REBA in combination with L-alanine and fructose.
  • a tabletop sweetener composition comprising REBA in combination with at least one sweet taste improving amino acid additive, at least one sweet taste improving polyol additive, at least one sweet taste improving inorganic salt additive, at least one sweet taste improving organic acid salt additive, and optionally at least one bulking agent is provided.
  • a non-limiting example includes REBA in combination with erythritol, glycine, KCl, KH 2 PO 4 , and choline chloride.
  • a tabletop sweetener composition comprising REBA in combination with at least one sweet taste improving amino acid additive, at least one sweet taste improving carbohydrate additive, at least one sweet taste improving polyol additive, and optionally at least one bulking agent.
  • REBA in combination with L-alanine, fructose, and erythritol.
  • a tabletop sweetener composition comprising REBA in combination with at least one sweet taste improving amino acid additive, at least one sweet taste improving polyol, additive, at least one sweet taste improving inorganic acid salt additive, and optionally at least one bulking agent.
  • REBA in combination with erythritol, glycine, KCl, and KH 2 PO 4 .
  • a tabletop sweetener composition comprising REBA in combination with a sweet taste improving inorganic acid salt additive and optionally at least one bulking agent is provided.
  • a non-limiting example includes REBA in combination with sodium chloride.
  • a tabletop sweetener composition comprising glycyrrihizin such as mono-ammonium glycyrrhizic acid salt hydrate in combination with a sweet taste improving inorganic acid salt additive and optionally at least one bulking agent is provided.
  • glycyrrihizin such as mono-ammonium glycyrrhizic acid salt hydrate in combination with a sweet taste improving inorganic acid salt additive and optionally at least one bulking agent.
  • a non-limiting example includes monoammonium glycyrrhizic acid salt hydrate in combination with sodium chloride.
  • a tabletop sweetener composition comprising at least one NHPS chosen from rebaudioside-A, stevia, stevioside, mogroside IV, mogroside
  • the composition described hereinabove further comprises at least one sweet taste improving inorganic acid additive, at least one sweet taste improving inorganic acid salt additive, at least one sweet taste improving organic acid salt additive, or combinations thereof.
  • a tabletop sweetener composition comprising REBA in combination with at least one sweet taste improving polyol additive, at least one sweet taste improving organic acid additive, and optionally at least one bulking agent.
  • the REBA has a purity from about 50 to about 100% by weight of REBA, more desirably from about 80 to about 99.5% by weight REBA, most desirably from about 97 to about 99.5% by weight REBA in a steviolglycoside mixture.
  • a non- limiting example includes REBA in combination with erythritol, lactic acid, citric acid, malic acid, tartaric acid, or combinations thereof.
  • the composition comprises 34,000 ppm of erythritol, 80 ppm of lactic acid, 310 ppm of citric acid, 310 ppm of malic acid, 310 ppm or tartaric acid, and 550 ppm of REBA.
  • the REBA has a purity from about 80 to about 99.5% by weight of REBA, more desirably from about 97 to about 99.5% by weight REBA in a steviolglycoside mixture.
  • the composition optionally also may include flavorants such as caramel, vanilla, or other such flavorants as described herein, or combinations thereof.
  • the tabletop sweetener composition comprising REBA in combination with at least one sweet taste improving polyol additive, at least one sweet taste improving organic acid additive, and optionally at least one bulking agent described hereinabove further comprises at least one sweet taste improving inorganic acid additive.
  • sweet taste improving inorganic acid additives include phosphoric acid, benzoic acid, sorbic acid, and combinations thereof.
  • the tabletop sweetener composition comprising REBA in combination with at least one sweet taste improving polyol additive, at least one sweet taste improving organic acid additive, and optionally at least one bulking agent described hereinabove further comprises at least one sweet taste improving inorganic acid salt additive and/or at least one sweet taste improving organic acid salt additive.
  • Non-limiting examples include REBA in combination with erythritol, sodium chloride or magnesium chloride, and lactic acid, citric acid, malic acid, tartaric acid, or combinations thereof; REBA in combination with erythritol, potassium citrate or sodium citrate, and lactic acid, citric acid, malic acid, tartaric acid, or combinations thereof; or REBA in combination with erythritol, sodium chloride and sodium citrate, lactic acid, citric acid, malic acid, and tartaric acid, or combinations thereof.
  • composition comprising REBA in combination with at least one sweet taste improving polyol additive, at least one sweet taste improving inorganic acid additive, at least one sweet taste improving organic acid additive, and optionally at least one bulking agent described hereinabove further comprises at least one sweet taste improving inorganic acid salt additive and/or at least one sweet taste improving organic acid salt additive.
  • Non-limiting examples include REBA in combination with erythritol, phosphoric acid, sodium chloride or magnesium chloride, and lactic acid, citric acid, malic acid, tartaric acid, or combinations thereof; REBA in combination with erythritol, phosphoric acid, potassium citrate or sodium citrate, and lactic acid, citric acid, malic acid, tartaric acid, or combinations thereof; or REBA in combination with erythritol, phosphoric acid, sodium chloride and sodium citrate, lactic acid, citric acid, malic acid, and tartaric acid, or combinations thereof.
  • Tabletop sweeteners are embodied and packaged in numerous different forms, and it is intended that the tabletop sweetener composition of the present invention may be of any form known in the art. Non-limiting examples include powder form, granular form, packets, tablets, sachets, pellets, cubes, solids, and liquids.
  • a tabletop sweetener composition comprises a single-serving (portion control) packet comprising a dry-blend of a NHPS formulation. Dry-blend formulations generally may comprise powder or granules.
  • tabletop sweetener packet may be of any size
  • an illustrative non-limiting example of conventional portion control tabletop sweetener packets are approximately 2.5 by 1.5 inches and hold approximately 1 gram of a sweetener composition having a sweeteness equivalent to 2 teaspoons of granulated sugar ( ⁇ 8 g).
  • the amount of NHPS in a dry-blend tabletop sweetener formulation will vary due to the varying potency of different NHPSs.
  • a dry-blend tabletop sweetener formulation may comprise a NHPS in an amount from about 1 % (w/w) to about 10 % (w/w) of the tabletop sweetener composition.
  • Solid tabletop sweetener embodiments include cubes and tablets.
  • a non-limiting example of conventional cubes are equivalent in size to a standard cube of granulated sugar, which is approximately 2.2 x 2.2 x 2.2 cm and weigh approximately 8 g.
  • a solid tabletop sweetener is in the form of a tablet or any other form known to those skilled in the art.
  • a tabletop sweetener composition also may be embodied in the form of a liquid, wherein the NHPS is combined with a liquid carrier.
  • suitable non-limiting examples of carrier agents for liquid tabletop sweeteners include water, alcohol, polyol, glycerin base or citric acid base dissolved in water, and mixtures thereof. Due to the varying potencies of the different NHPSs, the amount of NHPS in a liquid tabletop sweetener formulation also will vary.
  • the sweetness equivalent of a tabletop sweetener composition for any of the forms described herein or known in the art may be varied to obtain a desired sweetness profile.
  • a tabletop sweetener composition may comprise a sweetness comparable to that of an equivalent amount of standard sugar.
  • the tabletop sweetener composition may comprise a sweetness of up to 100 times that of an equivalent amount of sugar. In another embodiment, the tabletop sweetener composition may comprise a sweetness of up to 90 times, 80 times, 70 times, 60 times, 50 times, 40 times, 30 times, 20 times, 10 times, 9 times, 8 times, 7 times, 6 times, 5 times, 4 times, 3 times, and 2 times that of an equivalent amount of sugar.
  • the tabletop sweetener composition also may be formulated for targeted uses, for example, in beverage, food, pharmaceutical, cosmetics, herbal/vitamins, tobacco, and in any other products which may be sweetened.
  • a tabletop sweetener composition for baking may be formulated having additional protecting agents, such as encapsulants.
  • additional protecting agents such as encapsulants.
  • Commonly used methods for making powder or granulated NHPS formulations for packets include fluid bed agglomeration processes. Typically, finely divided particles of a solution are sprayed onto a fluidized bed of particles under moisture and temperature conditions which promote formation of an agglomerate.
  • the solution comprises the NHPS, a sweet taste improving composition, and a binding agent.
  • the spray rate can be modified to control the average particle size, as it is known that by increasing the spray rate, the average particle size is also increased.
  • the particles are allowed to dry and may optionally be screened to control the particle size distribution.
  • the method comprises combining at least one NHPS and any sweet taste improving composition, bulking agent, and/or anti-caking agent with an aqueous solution to form a aqueous suspension that is thoroughly blended.
  • the suspension is heated to approximately 50° to 90°C under vacuum to remove the water while avoiding decomposition of the materials. Finally, the mixture is milled to the desired particle size.
  • tabletop sweetener compositions that are well known in the art also may be used.
  • the amount of NHPS and amount and types of sweet taste improving composition, bulking agent, and/or anti-caking agent can be modified in order to tailor the taste of the tabletop sweetener composition to a desired profile and end use.
  • Embodiments of the sweet taste improving compositions of this invention can impart a more sharp and clean sensation to the taste of NHPS.
  • embodiments of the sweet taste improving compositions of the present invention have a superior effect in improving the temporal and/or flavor profile of a NHPS while at the same time providing a sweetener composition with a low-caloric or non-caloric content, imparting more sugar-like characteristics.
  • NHPS sweet taste improving composition
  • bulking agent bulking agent
  • anti-caking agent The desired weight ratio of a NHPS to sweet taste improving composition, bulking agent, and/or anti-caking agent will depend on the NHPS, and the sweetness and other characteristics desired in the final tabletop sweetener composition.
  • NHPSs vary greatly in their potency, ranging from about 30 times more potent than sucrose to about 8,000 times more potent than sucrose on a weight basis.
  • the weight ratio of a NHPS to sweet taste improving composition, bulking agent, and/or anti-caking agent may, for example, range from between 10,000:1 to about 1:10,000; a further non-limiting example may range from about 9,000:1 to about 1:9,000; yet another example may range from about 8,000:1 to about 1:8,000; a further example may range from about 7,000:1 to about 1:7,000; another example may range from about 6,000:1 to about 1:6000; in yet another example may range from about 5,000:1 to about 1:5,000; in yet another example may range from about 4,000:1 to about 1:4,000; in yet another example may range from about 3,000:1 to about 1:3,000; in yet another example may range from about 2,000:1 to about 1:2,000; in yet another example may range from about 1,500:1 to about 1:1,500; in yet another example may range from about 1,000:1 to about 1:1,000; in yet another example may range from about 900:1 to about 1:900; in yet another example may range from about 800:1
  • Tabletop packets were prepared containing rebaudioside A ("REBA") and the bulking agent dextrose available from CPC International.
  • REBA rebaudioside A
  • the REBA and Unidex were dry blended and the resulting dry blend was packaged into 1 gram packets. Each packet comprised approximately 3.2 % (w/w) REBA and approximately 96.8 % (w/w) Unidex.
  • Each packet had a sweetness equivalent to approximately two teaspoons of sucrose.
  • the tabletop packets were used to sweeten Vietnamese brand aroma roasted coffee, black or whitened with 2 % milk. When mixed into approximately 240 mL (one cup) of coffee, the packets yielded a good, sweet product.
  • Tabletop packets were prepared containing REBA and erythritol, a polyol.
  • REBA and erythritol were dry blended and the resulting dry blend was packaged into 1 gram packets.
  • Each packet comprised approximately 3.2 % (w/w) REBA and approximately 96.8 % (w/w) erythritol.
  • Each packet had a sweetness equivalent to approximately two teaspoons of sucrose.
  • the tabletop packets were used to sweeten Folger brand aroma roasted coffee, black or whitened with 2 % milk. When mixed into approximately 240 mL (one cup) of coffee, the packets yielded a good, sweet product.
  • Example A3 Tabletop packets were prepared containing REBA and glycine, an amino acid.
  • the REBA and glycine were dry blended and the resulting dry blend was packaged into 1 gram packets.
  • Each packet comprised approximately 3.2 % (w/w) REBA and approximately 96.8 % (w/w) glycine.
  • Each packet had a sweetness equivalent to approximately two teaspoons of sucrose.
  • the tabletop packets were used to sweeten Folger brand aroma roasted coffee, black or whitened with 2 % milk. When mixed into approximately 240 mL (one cup) of coffee, the packets yielded a good, sweet product.
  • Tabletop packets were prepared containing REBA, glycine, an amino acid and the bulking agent Unidex.
  • the REBA, glycine, and Unidex were dry blended and the resulting dry blend was packaged into 1 gram packets.
  • Each packet comprised approximately 3.2 % (w/w) REBA, approximately 48.4 % (w/w) glycine, and approximately 48.4 % (w/w) Unidex.
  • Each packet had a sweetness equivalent to approximately two teaspoons of sucrose.
  • the tabletop packets were used to sweeten Folger brand aroma roasted coffee, black or whitened with 2 % milk. When mixed into approximately 240 mL (one cup) of coffee, the packets yielded a good, sweet product.
  • Example A5 Tabletop packets were prepared containing, erythritol, a polyol and the bulking agent Unidex.
  • the REBA, erythritol, and dextrose were dry blended and the resulting dry blend was packaged into 1 gram packets.
  • Each packet comprised approximately 3.2 % (w/w) REBA, approximately 48.4 % (w/w) erythritol, and approximately 48.4 % (w/w) dextrose.
  • Each packet had a sweetness equivalent to approximately two teaspoons of sucrose.
  • the tabletop packets were used to sweeten Vietnamese brand aroma roasted coffee, black or whitened with 2 % milk. When mixed into approximately 240 mL (one cup) of coffee, the packets yielded a good, sweet product.
  • Tabletop packets were prepared containing REBA and glycine, an amino acid.
  • the REBA and glycine were dry blended and the resulting dry blend was packaged into 1 gram packets.
  • Each packet comprised approximately 3.2 % (w/w) REBA and approximately 96.8 % (w/w) glycine.
  • Each packet had a sweetness equivalent to approximately two teaspoons of sucrose.
  • the tabletop packets were used to sweeten Vietnamese brand aroma roasted coffee, black or whitened with 2 % milk. When mixed into approximately 240 mL (one cup) of coffee, the packets yielded a good, sweet product.
  • Crude rebaudioside A (77.4% purity) mixture was obtained from a commercial source.
  • the impurities (6.2% stevioside, 5.6% rebaudioside C, 0.6 % rebaudioside F, 1.0
  • % other steviolglycosides 3.0% rebaudioside D, 4.9% rebaudioside B, 0.3% steviolbioside
  • substantially pure rebaudioside A (130 g) comprised 98.91% rebaudioside A, 0.06% stevioside, 0.03% rebaudioside C, 0.12% rebaudioside F, 0.13% other steviolglycosides, 0.1% rebaudioside D, 0.49% rebaudioside B and 0.03% steviolbioside, all by weight.
  • Example B2
  • Crude rebaudioside A (80.37 %) was obtained from a commercial source.
  • the impurities (6.22% stevioside, 2.28% rebaudioside C, 0.35% Dulcoside, 0.78 % rebaudioside F, 0.72 % other steviolglycosides, 3.33% rebaudioside B, 0.07% steviolbioside) were identified by HPLC on dry basis, moisture content 3.4%.
  • Crude rebaudioside A (100 g), ethanol (95%, 320 mL), methanol (99%, 120 mL) and water (50 mL) were combined and heated to 30-40°C for 10 minutes. The clear solution was cooled to 22°C for 16 hours.
  • the white crystals were filtered and washed twice with ethanol (2 x 50 mL, 95%).
  • the wet filter cake (88 g) was slurried in ethanol (95%, 1320 mL) for 16 hours, filtered, washed with ethanol (95%, 2 x 100 mL) and dried in a vacuum oven at 60 0 C for 16-24 hours under reduced pressure (20 mm).
  • substantially pure rebaudioside A (72 g) comprised 98.29% rebaudioside A, 0.03% stevioside, 0.02% rebaudioside C, 0.17% rebaudioside F, 0.06% rebaudioside D and 1.09% rebaudioside B. Steviolbioside was not detected by HPLC.
  • Crude rebaudioside A (80.37%) was obtained from a commercial source.
  • the impurities (6.22% stevioside, 2.28% rebaudioside C, 0.35% Dulcoside, 0.78 % rebaudioside F, 0.72 % other steviolglycosides, 3.33% rebaudioside B, 0.07% steviolbioside) were identified by HPLC on dry basis, moisture content 3.4%.
  • Crude rebaudioside A 50 g), ethanol (95%, 160 mL), methanol (99%, 60 mL) and water (25 mL) were combined and heated to approximately 30°C for 10 minutes. The clear solution was cooled to 22°C for 16 hours.
  • the white crystals were filtered and washed twice with ethanol (2 x 25 mL, 95% ).
  • the wet filter cake (40 g) was slurried in methanol (99%, 600 mL) for 16 hours, filtered, washed with methanol (99%, 2 x 25 mL) and dried in a vacuum oven at 6O 0 C for 16-24 hours under reduced pressure (20 mm).
  • the final composition of substantially pure rebaudioside A (27.3g) comprised 98.22% rebaudioside A, 0.04% stevioside, 0.04% rebaudioside C, 0.18% rebaudioside F, 0.08% rebaudioside D and 1.03% rebaudioside B. Steviolbioside was not detected by HPLC.
  • the white crystalline product was filtered and washed twice with ethanol (95%, 25 mL).
  • the wet cake of white crystalline product then was slurried in methanol (99.8 %, 200 mL) for 16 hours, filtered, washed twice with methanol (99.8 %, 25 mL), and dried in a vacuum oven at 60°C for 16-24 hours under reduced pressure (20 mm) to give 12.7 g of purified product (>97% by HPLC).
  • a solution of rebaudioside A ( >97% pure by HPLC ) was prepared in double distilled water (12.5 gm in 50 mL, 25 % concentration) by stirring the mixture at 40°C for 5 minutes.
  • An amorphous rebaudioside A polymorph was formed by immediately using the clear solution for spray drying with the Lab-Plant spray drier SD-04 instrument (Lab- Plant Ltd., West Yorkshire, U.K.).
  • the solution was fed through the feed pump into the nozzle atomizer which atomized it into a spray of droplets with the help of a constant flow of nitrogen / air.
  • Moisture was evaporated from the droplets under controlled temperature conditions (about 90 to about 97°C) and airflow conditions in the drying chamber and resulted in the formation of dry particles.
  • This dry powder (11-12 g, H 2 O 6.74 %) was discharged continuously from the drying chamber and was collected in a bottle.
  • the solubility in water at room temperature was determined to be > 35.0 %.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Seasonings (AREA)

Abstract

La présente invention concerne d'une manière générale des compositions d'édulcorant de table comprenant des édulcorants très puissants non caloriques ou à basses calories naturels et/ou synthétiques et, des procédés de fabrication et d'utilisation de celles-ci. Cette invention concerne en particulier différentes formes de compositions d'édulcorant de table comprenant au moins un édulcorant très puissant non calorique ou basses calories naturel en combinaison avec au moins un agent gonflant, ou au moins une composition améliorant le goût sucré ou au moins un agent anti-agglutinant ou une combinaison de ceux-ci. Cette invention concerne aussi des compositions d'édulcorant de table et des procédés qui peuvent améliorer les goûts d'édulcorants très puissants non caloriques ou basses calories en donnant un goût ou une caractéristique de type sucre. Ces compositions d'édulcorant fonctionnelles et ces procédés offrent un profil temporel s'approchant plus de celui du sucre, notamment pour l'apparition du goût sucré et pour le prolongement de ce goût, et/ou un profil de goût s'approchant aussi davantage de celui du sucre.
PCT/US2006/044518 2005-11-23 2006-11-17 Compositions d'edulcorant de table naturel tres puissant avec profil temporel et/ou profil de gout ameliore, procedes de preparation et utilisations WO2007061757A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2008542348A JP2009517021A (ja) 2005-11-23 2006-11-17 経時的及び/又は香味プロファイルを改善した卓上用天然高甘味度甘味料組成物、その配合及び使用方法
CA002630043A CA2630043A1 (fr) 2005-11-23 2006-11-17 Compositions d'edulcorant de table naturel tres puissant avec profil temporel et/ou profil de gout ameliore, procedes de preparation et utilisations
EP06837792A EP1968399A1 (fr) 2005-11-23 2006-11-17 Compositions d'edulcorant de table naturel tres puissant avec profil temporel et/ou profil de gout ameliore, procedes de preparation et utilisations
KR1020137021682A KR101379494B1 (ko) 2005-11-23 2006-11-17 시간 특성 및/또는 향미 특성이 개선된 천연의 고효능 식탁용 감미료 조성물, 이들의 제제 방법 및 용도
AP2008004495A AP2008004495A0 (en) 2005-11-23 2006-11-17 Natural high-potency tabletop sweetener compositions with improved temporal and/or flavor profile, methods for their formulation, and uses
MX2008006589A MX2008006589A (es) 2005-11-23 2006-11-17 Composiciones de edulcorante natural de mesa, de alta potencia, con perfil temporal y/o de sabor mejorado, metodos para su formulacion, y usos
KR1020087015153A KR101379492B1 (ko) 2005-11-23 2006-11-17 시간 특성 및/또는 향미 특성이 개선된 천연의 고효능식탁용 감미료 조성물, 이들의 제제 방법 및 용도
BRPI0618952-0A BRPI0618952A2 (pt) 2005-11-23 2006-11-17 composição adoçante de topo de mesa, e, método para conferir um perfil temporal mais parecido com o áçucar, um perfil de flavor mais parecido com o do açúcar ou ambos a uma composição adoçante de topo de mesa
AU2006316313A AU2006316313B2 (en) 2005-11-23 2006-11-17 Natural high-potency tabletop sweetener compositions with improved temporal and/or flavor profile, methods for their formulation, and uses

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US73912405P 2005-11-23 2005-11-23
US73930205P 2005-11-23 2005-11-23
US60/739,302 2005-11-23
US60/739,124 2005-11-23
US80520906P 2006-06-19 2006-06-19
US80521606P 2006-06-19 2006-06-19
US60/805,216 2006-06-19
US60/805,209 2006-06-19
US11/555,962 2006-11-02

Publications (1)

Publication Number Publication Date
WO2007061757A1 true WO2007061757A1 (fr) 2007-05-31

Family

ID=37820595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/044518 WO2007061757A1 (fr) 2005-11-23 2006-11-17 Compositions d'edulcorant de table naturel tres puissant avec profil temporel et/ou profil de gout ameliore, procedes de preparation et utilisations

Country Status (1)

Country Link
WO (1) WO2007061757A1 (fr)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009006200A1 (fr) * 2007-06-29 2009-01-08 Mcneil Nutritionals, Llc Édulcorants de table à base d'érythritol et de stevia (rebaudioside a) et procédés de production de ceux-ci
JP2009184927A (ja) * 2008-02-01 2009-08-20 House Foods Corp 唾液分泌促進剤
WO2010021411A1 (fr) * 2008-08-22 2010-02-25 味の素株式会社 Composition édulcorante contenant de la poly-ν-glutamine
WO2010025158A1 (fr) * 2008-08-26 2010-03-04 Merisant Company Compositions d’édulcorant comprenant du rebaudioside a, de l’érythritol, un hydrate de carbone de disaccharide ou du fructose et une quantité de cellulose pour améliorer le goût, ainsi que leurs procédés de fabrication
WO2010042093A3 (fr) * 2007-06-29 2010-10-07 Mcneil Nutritionals, Llc Compositions d'édulcorant
WO2011161027A1 (fr) * 2010-06-25 2011-12-29 Unilever Plc Produit comprenant de la stevia
US8283338B2 (en) 2007-11-30 2012-10-09 Kao Corporation GIP secretion inhibitor
US8338389B2 (en) 2009-06-17 2012-12-25 Kao Corporation Agent for preventing or ameliorating obesity
WO2015193869A1 (fr) 2014-08-13 2015-12-23 Pintori Antonio Composition d'édulcorant
US9668504B2 (en) 2005-07-14 2017-06-06 Douxmatok Ltd Sweetener compositions
US10207004B2 (en) 2014-04-04 2019-02-19 Douxmatok Ltd Method for producing sweetener compositions and sweetener compositions
US10231476B2 (en) 2014-04-04 2019-03-19 Douxmatok Ltd Sweetener compositions and foods, beverages, and consumable products made thereof
CN110122841A (zh) * 2012-02-15 2019-08-16 卡夫食品集团品牌有限责任公司 高溶解性天然甜味剂组合物
US10501817B2 (en) 2010-03-16 2019-12-10 Imperial Sugar Company Process for the manufacture of co-crystallized sucrose natural sweeteners and the products thereof
US11246835B2 (en) 2014-04-04 2022-02-15 Douxmatok Ltd Method for producing sweetener compositions and sweetener compositions

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4758438A (en) * 1986-10-14 1988-07-19 Stroz John J Sweetener composition
WO1989004609A1 (fr) * 1987-11-24 1989-06-01 The Nutrasweet Company Agent de remplissage
US5746369A (en) * 1996-08-13 1998-05-05 Mcdermott; Virginia B. Packaging carton with perforations for dispensing mouth
WO1998027832A2 (fr) * 1996-12-20 1998-07-02 Nutrinova Nutrition Specialties & Food Ingredients Gmbh Utilisation d'oligosaccharides pour renforcer le pouvoir edulcorant et ameliorer le gout d'un melange acesulfame-k/aspartame
WO2000024272A1 (fr) * 1998-10-27 2000-05-04 Louis Jean Hilda Brouwers Edulcorant
WO2001006872A1 (fr) * 1999-07-26 2001-02-01 Sara Lee/De Adoucissant
US20030161879A1 (en) * 1999-06-29 2003-08-28 Shinji Ohmori Tablets quickly disintegrating in mouth
EP1340431A1 (fr) * 2001-01-11 2003-09-03 The Sweet Life, Inc. Composition avec du Xylitol et une fibre alimentaire, utilisée dans des aliments et/ou des boissons
US20030165603A1 (en) * 2002-03-01 2003-09-04 Cindy A. Burklow Natural fruit-based sweetener blend compositions
US20030170365A1 (en) * 2002-03-06 2003-09-11 Chifu Huang Natural fruit-based dietary sweetener blend compositions
US20040058050A1 (en) * 2002-09-25 2004-03-25 Peilin Guo Herbal sweetening composition
WO2005014839A2 (fr) * 2003-08-01 2005-02-17 Cargill, Incorporated Compositions d'edulcorants de table a base de monatine et procedes de fabrication associes
WO2006072879A1 (fr) * 2005-01-07 2006-07-13 Ranbaxy Laboratories Limited Preparation de comprimes edulcorants a partir de l'extrait de stevia au moyen de procedes de granulation seche

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4758438A (en) * 1986-10-14 1988-07-19 Stroz John J Sweetener composition
WO1989004609A1 (fr) * 1987-11-24 1989-06-01 The Nutrasweet Company Agent de remplissage
US5746369A (en) * 1996-08-13 1998-05-05 Mcdermott; Virginia B. Packaging carton with perforations for dispensing mouth
WO1998027832A2 (fr) * 1996-12-20 1998-07-02 Nutrinova Nutrition Specialties & Food Ingredients Gmbh Utilisation d'oligosaccharides pour renforcer le pouvoir edulcorant et ameliorer le gout d'un melange acesulfame-k/aspartame
WO2000024272A1 (fr) * 1998-10-27 2000-05-04 Louis Jean Hilda Brouwers Edulcorant
US20030161879A1 (en) * 1999-06-29 2003-08-28 Shinji Ohmori Tablets quickly disintegrating in mouth
WO2001006872A1 (fr) * 1999-07-26 2001-02-01 Sara Lee/De Adoucissant
EP1340431A1 (fr) * 2001-01-11 2003-09-03 The Sweet Life, Inc. Composition avec du Xylitol et une fibre alimentaire, utilisée dans des aliments et/ou des boissons
US20030165603A1 (en) * 2002-03-01 2003-09-04 Cindy A. Burklow Natural fruit-based sweetener blend compositions
US20030170365A1 (en) * 2002-03-06 2003-09-11 Chifu Huang Natural fruit-based dietary sweetener blend compositions
US20040058050A1 (en) * 2002-09-25 2004-03-25 Peilin Guo Herbal sweetening composition
WO2005014839A2 (fr) * 2003-08-01 2005-02-17 Cargill, Incorporated Compositions d'edulcorants de table a base de monatine et procedes de fabrication associes
US20050112260A1 (en) * 2003-08-01 2005-05-26 Cargill, Inc. Monatin tabletop sweetener compositions and methods of making same
WO2006072879A1 (fr) * 2005-01-07 2006-07-13 Ranbaxy Laboratories Limited Preparation de comprimes edulcorants a partir de l'extrait de stevia au moyen de procedes de granulation seche

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10212961B2 (en) 2005-07-14 2019-02-26 Douxmatok Ltd Sweetener compositions
US9668504B2 (en) 2005-07-14 2017-06-06 Douxmatok Ltd Sweetener compositions
WO2010042093A3 (fr) * 2007-06-29 2010-10-07 Mcneil Nutritionals, Llc Compositions d'édulcorant
WO2009006200A1 (fr) * 2007-06-29 2009-01-08 Mcneil Nutritionals, Llc Édulcorants de table à base d'érythritol et de stevia (rebaudioside a) et procédés de production de ceux-ci
US8283338B2 (en) 2007-11-30 2012-10-09 Kao Corporation GIP secretion inhibitor
JP2009184927A (ja) * 2008-02-01 2009-08-20 House Foods Corp 唾液分泌促進剤
JP5625909B2 (ja) * 2008-08-22 2014-11-19 味の素株式会社 ポリ−γ−グルタミン酸を含有する甘味料組成物
JPWO2010021411A1 (ja) * 2008-08-22 2012-01-26 味の素株式会社 ポリ−γ−グルタミン酸を含有する甘味料組成物
WO2010021411A1 (fr) * 2008-08-22 2010-02-25 味の素株式会社 Composition édulcorante contenant de la poly-ν-glutamine
WO2010025158A1 (fr) * 2008-08-26 2010-03-04 Merisant Company Compositions d’édulcorant comprenant du rebaudioside a, de l’érythritol, un hydrate de carbone de disaccharide ou du fructose et une quantité de cellulose pour améliorer le goût, ainsi que leurs procédés de fabrication
CN102202523A (zh) * 2008-08-26 2011-09-28 梅里桑特公司 包含莱鲍迪甙a、赤藓糖醇、二糖碳水化合物或果糖以及口味改善量的纤维素的甜味剂组合物及其制造方法
US8338389B2 (en) 2009-06-17 2012-12-25 Kao Corporation Agent for preventing or ameliorating obesity
US10501817B2 (en) 2010-03-16 2019-12-10 Imperial Sugar Company Process for the manufacture of co-crystallized sucrose natural sweeteners and the products thereof
EA021812B1 (ru) * 2010-06-25 2015-09-30 Унилевер Н.В. Продукт, содержащий стевию
WO2011161027A1 (fr) * 2010-06-25 2011-12-29 Unilever Plc Produit comprenant de la stevia
CN110122841A (zh) * 2012-02-15 2019-08-16 卡夫食品集团品牌有限责任公司 高溶解性天然甜味剂组合物
US10207004B2 (en) 2014-04-04 2019-02-19 Douxmatok Ltd Method for producing sweetener compositions and sweetener compositions
US10231476B2 (en) 2014-04-04 2019-03-19 Douxmatok Ltd Sweetener compositions and foods, beverages, and consumable products made thereof
US10244782B2 (en) 2014-04-04 2019-04-02 Douxmatok Ltd Sweetener compositions and foods, beverages, and consumable products made thereof
US11246835B2 (en) 2014-04-04 2022-02-15 Douxmatok Ltd Method for producing sweetener compositions and sweetener compositions
US11896714B2 (en) 2014-04-04 2024-02-13 Incredo Ltd Method for producing sweetener compositions and sweetener compositions
WO2015193869A1 (fr) 2014-08-13 2015-12-23 Pintori Antonio Composition d'édulcorant

Similar Documents

Publication Publication Date Title
US8993027B2 (en) Natural high-potency tabletop sweetener compositions with improved temporal and/or flavor profile, methods for their formulation, and uses
US8940350B2 (en) Cereal compositions comprising high-potency sweeteners
AU2006318783B2 (en) Condiments with high-potency sweetener
CA2688104C (fr) Compositions edulcorantes au gout sucre marque et profils ameliores en termes de duree et d'aromes
US20070116820A1 (en) Edible gel compositions comprising high-potency sweeteners
WO2007061757A1 (fr) Compositions d'edulcorant de table naturel tres puissant avec profil temporel et/ou profil de gout ameliore, procedes de preparation et utilisations
US20080107787A1 (en) Anti-Diabetic Composition with High-Potency Sweetener
EP2164348A1 (fr) Édulcorants, compositions édulcorantes accentuant le goût sucré, méthodes de préparation et utilisations
WO2007061794A2 (fr) Composition dentaire avec edulcorant tres puissant
AU2006318708B2 (en) Cereal composition comprising high-potency sweetener
AU2006318711A1 (en) Edible gel composition comprising high-potency sweetener
AU2013201686A1 (en) Condiments with high-potency sweetener
AU2013201682A1 (en) Natural high-potency tabletop sweetener compositions with improved temporal and/or flavor profile, methods for their formulation, and uses
AU2013201292A1 (en) Cereal composition comprising high-potency sweetener

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680043898.4

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12008501062

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2630043

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2008542348

Country of ref document: JP

Ref document number: MX/a/2008/006589

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 568517

Country of ref document: NZ

Ref document number: 4397/DELNP/2008

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: AP/P/2008/004495

Country of ref document: AP

WWE Wipo information: entry into national phase

Ref document number: 1020087015153

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2008121426

Country of ref document: RU

Ref document number: 2006316313

Country of ref document: AU

Ref document number: 08064624

Country of ref document: CO

Ref document number: 2006837792

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006316313

Country of ref document: AU

Date of ref document: 20061117

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0618952

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080523

WWE Wipo information: entry into national phase

Ref document number: 1020137021682

Country of ref document: KR