WO2007059876A2 - Spiral en verre athermique pour mouvement d’horlogerie et son procede de fabrication - Google Patents

Spiral en verre athermique pour mouvement d’horlogerie et son procede de fabrication Download PDF

Info

Publication number
WO2007059876A2
WO2007059876A2 PCT/EP2006/010854 EP2006010854W WO2007059876A2 WO 2007059876 A2 WO2007059876 A2 WO 2007059876A2 EP 2006010854 W EP2006010854 W EP 2006010854W WO 2007059876 A2 WO2007059876 A2 WO 2007059876A2
Authority
WO
WIPO (PCT)
Prior art keywords
turns
spiral
glass
mask
cte
Prior art date
Application number
PCT/EP2006/010854
Other languages
English (en)
Other versions
WO2007059876A3 (fr
Inventor
Thierry Hessler
Joachim Grupp
Original Assignee
The Swatch Group Research And Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Swatch Group Research And Development Ltd filed Critical The Swatch Group Research And Development Ltd
Priority to KR1020087012485A priority Critical patent/KR101247907B1/ko
Priority to US12/095,088 priority patent/US7753581B2/en
Priority to CN2006800515054A priority patent/CN101361027B/zh
Priority to JP2008541616A priority patent/JP5061117B2/ja
Priority to EP06829020A priority patent/EP1958031B1/fr
Publication of WO2007059876A2 publication Critical patent/WO2007059876A2/fr
Publication of WO2007059876A3 publication Critical patent/WO2007059876A3/fr
Priority to HK09106337.0A priority patent/HK1128777A1/xx

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/22Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/04Wound springs
    • F16F1/10Spiral springs with turns lying substantially in plane surfaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/002Other surface treatment of glass not in the form of fibres or filaments by irradiation by ultraviolet light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/021Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant characterised by their composition, e.g. comprising materials providing for particular spring properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0042Photosensitive materials with inorganic or organometallic light-sensitive compounds not otherwise provided for, e.g. inorganic resists
    • G03F7/0043Chalcogenides; Silicon, germanium, arsenic or derivatives thereof; Metals, oxides or alloys thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2022Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure
    • G03F7/203Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure comprising an imagewise exposure to electromagnetic radiation or corpuscular radiation
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/066Manufacture of the spiral spring
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/22Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
    • G04B17/227Compensation of mechanisms for stabilising frequency for the effect of variations of temperature composition and manufacture of the material used
    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D3/00Watchmakers' or watch-repairers' machines or tools for working materials
    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D3/00Watchmakers' or watch-repairers' machines or tools for working materials
    • G04D3/0074Watchmakers' or watch-repairers' machines or tools for working materials for treatment of the material, e.g. surface treatment
    • G04D3/0089Watchmakers' or watch-repairers' machines or tools for working materials for treatment of the material, e.g. surface treatment for components of the regulating mechanism, e.g. coil springs

Definitions

  • the present invention relates to a hairspring for a watch movement made of a special glass and to a method making it possible to render its mechanical properties, and in particular its temperature coefficient of Young's modulus (CTE) almost completely independent of the temperature, while enjoying its non-magnetic properties.
  • CTE Young's modulus
  • EP 0 886 195 discloses, for example, Niobium and Zirconium alloy compositions further containing an interstitial dopant agent formed at least in part of oxygen and making it possible to control the value of the CTE.
  • an interstitial dopant agent formed at least in part of oxygen and making it possible to control the value of the CTE.
  • the final product has a high cost.
  • the manufacture of a metal hairspring uses complex metallurgical processes (wire drawing, hardening, annealing, etc.) which do not guarantee perfect reproducibility of the desired elastic properties, so that it is still necessary to proceed. the pairing of the balance and the hairspring during assembly.
  • Patent CH 307 683 published in 1955 proposes to manufacture a glass hairspring having a silica content such that its coefficient of expansion has a value practically zero without the need to add any rare metal. This document does not describe how such a spiral is fashioned, nor what is the influence on the CTE.
  • EP 1519250 describes a thermocompensated balance-spring resonator by cutting and structuring according to orientations determined with respect to the crystallographic axes of a quartz crystal. Such manufacturing process can only be implemented by qualified persons. On the other hand, the crystalline nature of quartz renders the spiral brittle under shock by causing cracks that propagate along crystalline planes.
  • the present invention therefore aims to overcome the disadvantages of the aforementioned prior art by providing a glass hairspring manufactured by a method for both locally controlling the mechanical properties, in particular the thermal coefficient of Young's modulus (CTE) of said hairspring and that its coefficient of elasticity and ability to perform a batch manufacturing at lower cost.
  • CTE thermal coefficient of Young's modulus
  • the material chosen to manufacture a glass spiral composed of turns of uniform height h and locally of width I is a photostructurable glass having initially a thermal coefficient of the Young's modulus (CTE 0 ) preferably close to zero.
  • CTE 0 thermal coefficient of the Young's modulus
  • Such a glass makes it possible to locally modify the thermal coefficient of Young's modulus (CTEj) by irradiation, said irradiation possibly being supplemented by a heat treatment at high temperature.
  • This modification can be performed for one or more turns or zones of turns having different CTEj along the spiral.
  • the modification of the CTEj can also be performed on part of the width of the turns, over all or part of their length, or even only a part of the height of the turns.
  • Such a hairspring can be manufactured in a batch from a photostructurable glass plate having the Young's modulus coefficient CTE 0 , according to two methods based on the same principles.
  • a first method UV illumination is effected through a first mask on areas of the glass corresponding to the spaces to be subsequently released between the turns.
  • a high temperature heat treatment is carried out which makes it possible to weaken the zones having been illuminated, without having a destructive effect.
  • a new UV illumination is performed through a second mask whose windows are arranged above turns, zones of turns, over all or part of their width to modify the initial CTE 0 to a value CTEj.
  • the previous step can be renewed with a third mask, and with UV illumination characteristics allowing the initial CTE 0 to be changed to a CTE 2 value on only a part of the height of the hairspring, preferably by performing this step at the same time. both on the upper and lower surfaces of said hairspring.
  • the second and third masks may have common window areas, so that the initial CTE 0 is changed to a CTE value 3 that may be different from the previous ones.
  • the zones between the turns which have been weakened by UV and thermal treatment are removed by chemical etching.
  • a glass plate is fastened to a substrate which is insensitive to acid attack and the spiral is first shaped by means of a first mask by UV illumination, and heat treatment and then acid etching. At the end of this step the turns are separated but remain bonded to the substrate.
  • UV illumination is performed through a mask whose windows correspond to zones of turns whose CTEj is to be modified.
  • the hairspring is released from the substrate and an additional heat treatment is optionally carried out to obtain a further adjustment of the CTE. If necessary, it is possible to carry out an additional heat treatment to obtain a further adjustment of the CTE, after each UV illumination to modify CTE 0 , whether in the first or the second process.
  • the mask used to define the outline of the spiral may also make it possible to vary the pitch and / or the width of the turns along said spiral or on specific zones of turn.
  • FIGS. 7 to 9 represent the steps of a first method making it possible to modify a chosen zone of the spiral
  • FIGS. 10A, 10B and 10C represent the sections of three different turns modified by the first method; - AT -
  • FIGS. 11 to 13 show a second method making it possible to modify a chosen zone of the spiral
  • FIGS. 14A, 14B and 14C show the straight sections of three different turns modified by the second method.
  • Figure 1 there is shown in plan view a spiral made from a photostructurable glass having a low thermal coefficient Young's modulus CTE 0 .
  • glasses whose compositions based on silicates incorporate certain dopants and / or adjuvants, such as oxides of cerium, silver, tin, or antimony, which will render parts of this glass, subjected to ultraviolet irradiation and heat treatment, chemically easily attackable anisotropically, for example by a hydrofluoric acid solution.
  • This property is well known and already used to manufacture, for example, microfluidic devices.
  • Such glasses are for example available from Schott AG in Germany under the brand Foturan ® or Hoya Corp in Japan under the reference PEG 3.
  • Such photostructurable glasses are currently only used for their properties for obtaining MEMS by unconventional machining techniques.
  • FIGS. 2 to 6 show, in top view, examples of modification of the CTE of a spiral turnaround L initially having a thermal coefficient of the Young's modulus of CTE 0 .
  • FIG. 2 shows that, for a zone 11, over the entire width I, the initial CTEo has been modified to CTE-
  • FIG. 4 illustrates another embodiment in which the initial thermal coefficient of Young's modulus CTEo only on an area 11 of the hairspring having a width F less than I.
  • the zone 11 is located substantially in the center, but it is obvious that it could be provided in the thickness of the outer surface or inner surface, or in both at the same time.
  • FIG. 5 illustrates another variant in which the thermal coefficient of the Young's modulus is modified from the value CTE 0 to a value CTEi in an outer zone 11 of width T and to a value CTE 2 in an inner zone 12 of width I " These two zones being contiguous, FIG.
  • the method together with the modification of the CTE, can have a favorable influence on the coefficient of expansion ⁇ s> which is involved in the determination of the frequency, even if its influence is much less important.
  • Figures 7 to 10c show in section, along the arrow S, three contiguous turns of height h, being observed that the height / width of the turn is not respected for a better understanding of the drawings.
  • UV illumination is carried out as shown in FIG. 7 through a mask 3.
  • the mask 3 comprises a window 3a whose opening is located above areas 15 to be subsequently removed to obtain the space desired between the turns, ie a pitch p., which in this example remains constant at all points, the turns having a uniform width L
  • the UV radiation source used depends on the absorption band of the glass used. This is for example a UV lamp whose peak spectral distribution is between 200 and 400 nm. It is also possible to use another radiation source such as an Eximer XeCl2 laser whose emission peak is 308 nm, or KrF 2 having an emission peak at 248 nm.
  • the photostructurable glass plate 1 is subjected to a high temperature heat treatment, of the order of 600 ° C depending on the composition of the glass.
  • This heat treatment makes it possible to make the zones 15 having have UV illumination more easily and selectively removable by subsequent chemical etching.
  • a second mask 5 has windows 5a, 5b and so on. ... arranged above the turns or zones of turns 11 whose initial CTE 0 is to be modified to a determined value CTEi, by UV irradiation through said windows. It will be observed that these windows can be provided on only a part of the width of a turn.
  • the window 5b has a width l b located substantially in the median portion of the turn
  • the window 5c has a width l c located on an edge of the turn.
  • This chemical etching is carried out conventionally, for example in a bath of hydrofluoric acid at about 10%, at room temperature and under ultrasound.
  • FIG. 10a shows a zone 11 of width l b whose CTE has been modified in CTE 1 , on either side of two zones 10 whose initial CTE 0 has not been modified.
  • FIG. 10b the modification of CTE 0 to a value CTE 1 is carried out over a width l c located near the edge of the turn. It is obvious that other modified CTE zone configurations are possible depending on the shapes of the windows of the mask 5, and that these configurations may concern a turn zone, several turns, or even the entire spiral.
  • FIG. 9 it is seen that it is possible, before carrying out the chemical etching, to subject turns or turn zones to a new UV illumination through a mask 6 which, in this example, has windows 6d having the same width as the spiral.
  • an appropriate UV irradiation for example an Eximer KrF 2 laser at 248 nm and controlling the exposure time, it is possible to modify the thermal coefficient of the Young's modulus from the initial value CTE 0 to a value CTE 2 in a zone 12 which penetrates only a part JV of the height h of the spiral.
  • FIG. 11 illustrates a second manufacturing method and a number of variants that would also be applicable to the first method.
  • a glass plate 1 having a thickness h, having the characteristics indicated at the beginning is fixed on a substrate 2 insensitive to acid attacks.
  • the substrate 2 is for example a ceramic plate.
  • the spiral is then shaped by UV illumination through a mask 7 whose windows 7a, 7b correspond to the free spaces between the turns and whose opaque portions determine the planar contour of the spiral.
  • a suitable mask 7 it is possible to design the outline of the spiral with a variable pitch p a , Pb, etc., with a variable width li, I2, 13, etc. or with both.
  • a heat treatment at high temperature is completed by a heat treatment at high temperature to weaken areas that have just been illuminated.
  • the illuminated portions are removed by acid etching as indicated in the first method.
  • a UV illumination is carried out through a second mask 8 whose windows 8c, 8d, 8e will define zones 11 of turns whose thermal coefficient of the Young's modulus will be modified by the value CTEo at the value CTE-), possibly carrying out additional heat treatment at high temperature.
  • new windows 9 ⁇ , 9f, 9g will define new areas 12 of the spiral for which the thermal coefficient of the module Young will have been modified to a CTE2 value, or even zones 13 where it will have been modified to a value CTE3 if windows, or window areas of masks 8 and 9 coincide, as is the case for windows 8c and 9e .
  • the modified zones may optionally be subjected to additional heat treatment at high temperature.
  • the spiral is separated from the substrate 2.
  • turns or zones of turns having respectively the values of CTE, CTE3 / CTE0 (FIG. 14a), CTE2 / CT1 have been obtained.
  • Fig. 14b CTE 2 / CTE 0 / CTEi.
  • the skilled person can design other variants without departing from the scope of the invention to improve the mechanical properties of a glass hairspring, and particularly its insensitivity to variations. of temperature, which are harmful to isochronism.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Springs (AREA)
  • Surface Treatment Of Glass (AREA)
  • Micromachines (AREA)
  • Glass Compositions (AREA)

Abstract

Le spiral est réalisé à partir d'une plaque de verre photostructurable par irradiation UV, traitement thermique et attaque chimique, ledit verre ayant un coefficient thermique du module de Young CTE0. Par irradiation UV à travers un ou plusieurs masques, éventuellement complétée par un traitement thermique, des zones choisies du spiral ont la valeur CTE0 modifiée en une valeur CTEi.

Description

SPI RAL EN VERRE ATHERM IQUE POU R MOUVEMENT D'HORLOGERI E ET SON PROCEDE DE FABRICATION
Domaine technique
La présente invention concerne un spiral pour mouvement d'horlogerie réalisé en un verre spécial et par un procédé permettant de rendre ses propriétés mécaniques, et notamment son coefficient thermique du module de Young (CTE) à peu près totalement indépendant de la température, tout en bénéficiant de ses propriétés amagnétiques.
Arrière plan technologique
On a depuis longtemps essayé de minimiser l'influence des variations de conditions extérieures, en particulier température et champ magnétique, sur l'isochronisme d'un système réglant balancier-spiral en agissant sur la construction et sur le choix des matériaux. En ce qui concerne le spiral, depuis la découverte de l'invar, qui est un alliage
Fe-Ni, au début du XXe siècle, on n'a cessé de proposer des compositions d'alliage de plus en plus complexes pour tendre vers la qualité optimum. Le brevet EP 0 886 195 décrit par exemple des compositions d'alliage au Niobium et au Zirconium contenant en outre un agent dopant interstitiel formé au moins en partie d'oxygène et permettant de contrôler la valeur du CTE. Compte-tenu de la complexité des compositions et de l'utilisation de métaux rares, le produit final a un coût élevé. De plus la fabrication d'un spiral métallique fait appel à des procédés métallurgiques complexes (tréfilage, écrouissage, recuit, etc..) ne permettant pas de garantir une parfaite reproductibilité des propriétés élastiques souhaitées, de sorte qu'il est encore nécessaire de procéder à l'appairage du balancier et du spiral lors du montage.
On a également essayé depuis longtemps de remplacer un alliage par un autre matériau n'ayant pas les inconvénients du métal. Le brevet CH 307 683 publié en 1955 propose de fabriquer un spiral en verre ayant une teneur en silice telle que son coefficient de dilatation ait une valeur pratiquement nulle sans qu'il soit nécessaire d'ajouter un quelconque métal rare. Ce document ne décrit pas comment est façonné un tel spiral, ni quelle est l'influence sur le CTE.
Un document plus récent, EP 1519250 décrit un résonateur balancier-spiral thermocompensé grâce à la découpe et la structuration selon des orientations déterminées par rapport aux axes cristallographiques d'un cristal de quartz. Un tel procédé de fabrication ne peut être mis en œuvre que par des personnes qualifiées. On observera d'autre part que la nature cristalline du quartz rend le spiral cassant sous le choc en provoquant des fissures qui se propagent le long des plans cristallins.
Résumé de l'invention
La présente invention vise donc à palier les inconvénients de l'art antérieur précité en procurant un spiral en verre fabriqué selon un procédé permettant à la fois de contrôler localement les propriétés mécaniques, notamment le coefficient thermique du module de Young (CTE) dudit spiral ainsi que son coefficient d'élasticité et de pouvoir effectuer une fabrication en lot à moindre coût.
A cet effet le matériau choisi pour fabriquer un spiral en verre composé de spires de hauteur uniforme h et localement de largeur I est un verre photostructurable ayant initialement un coefficient thermique du module de Young (CTE0) de préférence voisin de zéro. Un tel verre permet de modifier localement le coefficient thermique du module de Young (CTEj) par irradiation, ladite irradiation étant éventuellement complétée par un traitement thermique à haute température.
Cette modification peut être effectuée pour une ou plusieurs spires ou zones de spires en ayant des CTEj différents le long du spiral. La modification du CTEj peut également être effectuée sur une partie de la largeur des spires, sur tout ou partie de leur longueur, voire sur seulement une partie de la hauteur des spires.
Un tel spiral peut être fabriqué en lot à partir d'une plaque de verre photostructurable ayant pour coefficient du module de Young CTE0, selon deux procédés reposant sur les mêmes principes. Selon un premier procédé, on effectue à travers un premier masque une illumination UV sur des zones du verre correspondant aux espaces devant être ultérieurement libérés entre les spires. Dans l'étape suivante on effectue un traitement thermique à haute température qui permet de fragiliser les zones ayant été illuminées, sans pour autant avoir un effet destructif. Dans l'étape suivante on effectue une nouvelle illumination UV à travers un deuxième masque dont les fenêtres sont disposées au dessus de spires, zones de spires, sur tout ou partie de leur largeur pour modifier le CTE0 initial à une valeur CTEj. L'étape précédente peut être renouvelée avec un troisième masque, et avec des caractéristiques d'illumination UV permettant de modifier le CTE0 initial à une valeur CTE2 sur seulement une partie de la hauteur du spiral, de préférence en effectuant cette étape à la fois sur les surfaces supérieure et inférieure dudit spiral. Il est bien évident que les deuxième et troisième masques peuvent avoir des zones de fenêtre communes, faisant que le CTE0 initial est modifié à une valeur CTE3 pouvant être différente des précédentes.
Dans une dernière étape on élimine par attaque chimique les zones entre les spires qui ont été fragilisées par traitement UV et thermique.
Selon un deuxième procédé on assujettit une plaque de verre à un substrat insensible aux attaques acides et on effectue d'abord la conformation du spiral au moyen d'un premier masque par illumination UV, et traitement thermique puis attaque acide. A l'issue de cette étape les spires sont séparées mais restent liées au substrat. Dans au moins une étape suivante on effectue une illumination UV à travers un masque dont les fenêtres correspondent à des zones de spires dont on veut modifier le CTEj. Dans une dernière étape on libère le spiral du substrat et on effectue éventuellement un traitement thermique additionnel pour obtenir un ajustement supplémentaire du CTE. Si cela est nécessaire, il est possible d'effectuer un traitement thermique additionnel pour obtenir un ajustement supplémentaire du CTE, après chaque illumination UV visant à modifier CTE0, que ce soit dans le premier ou le deuxième procédé.
Selon un autre aspect de l'invention, le masque utilisé pour définir le contour du spiral peut également permettre de faire varier le pas et/ou la largeur des spires le long dudit spiral ou sur des zones déterminées de spire.
Selon encore un autre aspect de l'invention, par le choix d'une source de radiation appropriée, il est possible de modifier localement le CTE0 dans toute la hauteur de la spire, ou seulement sur une partie de sa hauteur.
Brève description des dessins
D'autres caractéristiques et avantages de la présente invention apparaîtront dans la description suivante de divers modes de réalisation donnés à titre illustratif et non limitatif, en référence aux dessins annexés dans lesquels :
- la figure 1 représente un spiral en verre;
- les figures 2 à 6 représentent en vue de dessus différentes façons de modifier une zone choisie du spiral;
- les figures 7 à 9 représentent les étapes d'un premier procédé permettant de modifier une zone choisie du spiral;
- les figures 10A, 10B et 10C représentent les sections de trois spires différentes modifiées par le premier procédé; - A -
- les figures 11 à 13 représentent un deuxième procédé permettant de modifier une zone choisie du spiral, et
- les figures 14A, 14B et 14C représentent les sections droites de trois spires différentes, modifiées par le deuxième procédé.
Description détaillée de l'invention
A la figure 1 on a représenté en vue de dessus un spiral réalisé à partir d'un verre photostructurable ayant un faible coefficient thermique du module de Young CTE0. On connaît un très grand nombre de verres, dont les compositions à base de silicates incorporent certains dopants et/ou adjuvants, tels que des oxydes de cérium, d'argent, d'étain, ou d'antimoine qui vont rendre des parties de ce verre, soumises à irradiation ultraviolette et traitement thermique, chimiquement facilement attaquables de façon anisotropique, par exemple par une solution d'acide fluorhydrique. Cette propriété est bien connue et déjà utilisée pour fabriquer par exemples des dispositifs microfluidiques. De tels verres sont par exemples disponibles chez Schott AG en Allemagne sous la marque Foturan ®ou chez Hoya Corp au Japon, sous la référence PEG 3. De tels verres photostructurables ne sont actuellement utilisés que pour leurs propriétés permettant d'obtenir des MEMS par des techniques d'usinage non conventionnelles.
Les figures 2 à 6 représentent en vue de dessus des exemples de modification du CTE d'une zone L de spire d'un spiral ayant initialement un coefficient thermique du module de Young de CTE0.
La figure 2 montre que, pour une zone 11 , sur toute la largeur I, le CTEo initial a été modifié en CTE-|. Il est bien évident que cette modification peut s'étendre sur plusieurs spires, voire permettre d'alterner des zones de spire ayant des coefficients thermiques du module de Young CTEo et CTE-I.
Comme représenté à la figure 3, il est également possible de modifier plusieurs fois le coefficient thermique du module de Young initial CTEo pour avoir une valeur CTEi dans une zone 11 et CTE2 dans une zone 12, ces zones étant séparées par une zone 10 à CTE0. Les zones 11 et 12 pourraient également être jointives.
Selon un autre mode de réalisation représenté à la figure 4, il est possible de modifier le coefficient thermique initial du module de Young CTEo seulement sur une zone 11 du spiral ayant une largeur F inférieure à I. Dans l'exemple représenté, la zone 11 est située sensiblement au centre, mais il est bien évident qu'elle pourrait être prévue dans l'épaisseur de la surface extérieure ou de surface intérieure, soit encore dans les deux en même temps. La figure 5 illustre une autre variante dans laquelle le coefficient thermique du module de Young est modifié de la valeur CTE0 à une valeur CTEi dans une zone 11 extérieure de largeur T et à une valeur CTE2 dans une zone 12 intérieure de largeur I", ces deux zones étant jointives. La figure 6 illustre la possibilité d'avoir dans une zone donnée du spiral selon la section droite, une valeur CTE-i dans une zone 11 , une valeur CTE2 dans une zone 12 et une valeur CTEo dans une zone située entre les zones 11 et 12. D'autres possibilités seront illustrées dans la suite de la description.
En ayant cette liberté de modifier le CTE0 initial du verre photostructurable utilisé, on crée en quelque sorte un CTE "apparent" optimisé pour obtenir une fréquence du système balancier-spiral pratiquement indépendante des variations de température même si le CTE0 initial est un peu éloigné de la valeur optimale zéro.
Il est également à noter que le procédé, en même temps que la modification du CTE, peuvent avoir une influence favorable sur le coefficient de dilatation αs> qui intervient dans la détermination de la fréquence, même si son influence est nettement moins importante.
On se réfère maintenant aux figures 7 à 10c pour décrire un premier mode de réalisation d'un spiral en verre selon l'invention.
Les figures 7 à 10c représentent en coupe, selon la flèche S, trois spires jointives de hauteur h, étant fait observer que le rapport hauteur/largeur de spire n'est pas respecté pour une meilleure compréhension des dessins.
Partant d'une plaque de verre 1 , ayant pour coefficient thermique du module de Young initial CTE0 et une épaisseur h éventuellement obtenue par usinage et polissage, on effectue comme représenté à la figure 7 une illumination UV à travers un masque 3. Le masque 3 comporte une fenêtre 3a dont l'ouverture est située au dessus de zones 15 devant ultérieurement être éliminées pour obtenir l'espace qu'on souhaite avoir entre les spires, c'est à dire un pas p., qui dans cet exemple reste constant en tout point, les spires ayant une largeur uniforme L La source de radiation UV utilisée dépend de la bande d'absorption du verre utilisé. Il s'agit par exemple d'une lampe UV dont le pic de distribution spectral est situé entre 200 et 400 nm. Il est également possible d'utiliser une autre source de radiation tel qu'un laser Eximer XeCl2 dont le pic d'émission est situé 308 nm, ou KrF2 ayant un pic d'émission à 248 nm.
Dans l'étape suivante, non représentée, la plaque de verre photostructurable 1 est soumise à un traitement thermique à haute température, de l'ordre de 600°C selon la composition du verre. Ce traitement thermique permet de rendre les zones 15 ayant eues une illumination UV plus facilement et sélectivement éliminables par une attaque chimique ultérieure.
Dans l'étape représentée à la figure 8, un deuxième masque 5 comporte des fenêtres 5a, 5b etc. ...disposées au dessus des spires ou de zones de spires 11 dont on veut modifier le CTE0 initial à une valeur CTEi déterminée, par irradiation UV à travers lesdites fenêtres. On observera que ces fenêtres peuvent être prévues sur seulement une partie de la largeur d'une spire. A titre d'exemple la fenêtre 5b a une largeur lb située sensiblement dans la partie médiane de la spire, et la fenêtre 5c a une largeur lc située sur un bord de la spire. A ce stade du procédé il est possible d'effectuer l'attaque chimique qui va permettre d'éliminer sélectivement les zones 15 et de libérer les spires. Cette attaque chimique est effectuée de façon classique, par exemple dans un bain d'acide fluorhydrique à environ 10%, à température ambiante et sous ultrasons.
Il est également possible d'effectuer un traitement thermique additionnel pour obtenir un ajustement supplémentaire des CTE modifiés.
Les figures 10a et 10b représentent à titre d'exemple les configurations possibles. La figure 10a montre une zone 11 de largeur lb dont le CTE a été modifié en CTE1, de part et d'autre de deux zones 10 dont le CTE0 initial n'a pas été modifié. A la figure 10b la modification du CTE0 à une valeur CTE1 est effectuée sur une largeur lc située près du bord de la spire. Il est bien évident que d'autres configurations à zones CTE modifiées sont possibles selon les formes des fenêtres du masque 5, et que ces configurations peuvent concerner une zone de spire, plusieurs spires, voire tout le spiral.
En se référant maintenant à la figure 9, on voit qu'il est possible, avant d'effectuer l'attaque chimique, de soumettre des spires ou zones de spire à une nouvelle illumination UV à travers un masque 6 qui, dans cet exemple, comporte des fenêtres 6d ayant la même largeur que le spiral. En choisissant une irradiation UV appropriée, par exemple un laser Eximer KrF2 à 248 nm et en contrôlant le temps d'exposition, on peut modifier le coefficient thermique du module de Young de la valeur initiale CTE0 à une valeur CTE2 dans une zone 12 qui pénètre seulement une partie JV de la hauteur h du spiral.
En pareil cas, il est souhaitable d'effectuer l'illumination du spiral sur les deux faces de celui-ci comme représenté à la figure 10c.
Si on veut effectuer une telle modification pour l'ensemble des spires, il est bien évident qu'aucun masque n'est nécessaire. Il est alors envisageable d'effectuer une telle illumination UV, une fois le spiral monté pour faire un ajustement fin de la valeur du CTE et par là-même de la fréquence. Les figures 11 à14c illustrent un deuxième procédé de fabrication ainsi qu'un certain nombre de variantes qui seraient également applicables au premier procédé. Dans une première étape représentée à la figure 11 , on fixe une plaque de verre 1 d'épaisseur h, ayant les caractéristiques indiquées au début, sur un substrat 2 insensible aux attaques acides. Le substrat 2 est par exemple une plaque de céramique.
On effectue ensuite la conformation du spiral par illumination UV à travers un masque 7 dont les fenêtres 7a, 7b correspondent aux espaces libres entre les spires et dont les parties opaques déterminent le contour planaire du spiral. Comme on le voit, en choisissant un masque 7 approprié il est possible de concevoir le contour du spiral avec un pas variable pa, Pb, etc., avec une largeur variable l-i, I2, 13, etc ou avec les deux. Comme précédemment, est complétée par un traitement thermique à haute température pour fragiliser les zones qui viennent d'être illuminée.
Dans l'étape suivante, non représentée, on élimine les parties illuminées par attaque acide comme indiqué dans le premier procédé.
Dans l'étape suivante représentée à la figure 12, on effectue une illumination UV à travers un deuxième masque 8 dont les fenêtres 8c, 8d, 8e vont définir des zones 11 de spires dont le coefficient thermique du module de Young sera modifié de la valeur CTEo à la valeur CTE-), en effectuant éventuellement un traitement thermique complémentaire à haute température.
En utilisant un masque supplémentaire 9, comme représenté à la figure 13, et en faisant varier les conditions d'illumination UV, de nouvelles fenêtres 9β, 9f, 9g vont définir de nouvelles zones 12 du spiral pour lesquels le coefficient thermique du module de Young aura été modifié à une valeur CTE2, voire des zones 13 où il aura été modifié à une valeur CTE3 si des fenêtres, ou des zones de fenêtre des masques 8 et 9 coïncident, comme c'est le cas pour les fenêtres 8c et 9e. Les zones modifiées peuvent éventuellement être soumises à un traitement thermique complémentaire à haute température.
Dans une dernière étape représenté au figures 14a et 14b, on sépare le spiral du substrat 2. Dans cet exemple on a obtenu des spires ou zones de spires ayant respectivement pour valeurs de CTE, CTE3/CTE0 (fig. 14a), CTE2/CT1 (fig. 14b), CTE2/CTE0/CTEi.
En jouant sur la forme des masques et/ou leur nombre, l'homme de métier peut concevoir d'autres variantes sans sortir du cadre de l'invention pour améliorer les propriétés mécaniques d'un spiral en verre, et notamment son insensibilité aux variations de température, qui sont néfastes à l'isochronisme.

Claims

REVENDICATIONS
1. Spiral en verre pour mouvement d'horlogerie comportant des spires de hauteur h et localement une largeur I, caractérisé en ce qu'il est réalisé en un verre photostructurable ayant pour épaisseur la valeur h et un coefficient thermique du module de Young (CTEo) voisin de zéro.
2. Spiral en verre selon la revendication 1 , caractérisé en ce que tout le spiral ou des zones choisies de spires ont un coefficient thermique du module de Young (CTEj) modifié par rapport au coefficient initial (CTEo) du verre photostructurable utilisé, ladite modification étant obtenue par irradiation UV, éventuellement complétée par un traitement thermique à haute température.
3. Spiral en verre selon la revendication 2, caractérisé en ce que la modification de CTE0 en CTEj est effectuée pour une ou plusieurs zones du spiral, sur toute la largeur de la spire, les CTEj de chaque zone pouvant avoir des valeurs différentes.
4. Spiral en verre selon la revendication 2, caractérisé en ce que la modification de CTE0 en CTEj est effectuée sur une partie de leur largeur, une même zone de spire pouvant avoir des valeurs, CTE, différentes.
5. Spiral en verre selon une quelconque des revendications 1 à 4, caractérisé en ce que la modification du CTE0 est effectuée sur seulement une partie de la hauteur des spires.
6. Spiral en verre selon la revendication 4, caractérisé en ce qu'une zone de spire comporte localement plus de deux CTEj différents.
7. Procédé de fabrication d'un spiral en verre pour mouvement d'horlogerie, formé de spires à section rectangulaire de hauteur h, de largeur I, et ayant entre elles un pas β, caractérisé en ce qu'il comporte les étapes consistant à : a) prendre une plaque d'épaisseur h en verre photostructurable dont la valeur du coefficient thermique du module de Young CTEo est voisine de zéro; b) effectuer une illumination UV à travers un premier masque (3) dont les fenêtres (3a) correspondent aux espaces devant ultérieurement être libérées entre les spires; c) effectuer un traitement thermique à haute température; d) effectuer une illumination UV à travers un deuxième masque (5) sur des zones de spire dont on veut modifier le coefficient thermique du module de Young de la valeur initiale CTE0 à une valeur CTE1, et e) effectuer une attaque chimique pour éliminer les zones ayant été traitées dans les étapes b) et c).
8. Procédé selon la revendication 7, caractérisé en ce qu'on effectue en outre un traitement thermique après l'étape e).
9. Procédé selon les revendications 7 ou 8, caractérisé en ce qu'on répète au moins une fois l'étape d) avec un masque supplémentaire (6) dont les fenêtres (6d) correspondent à des zones de spires dont on veut modifier le coefficient thermique initial du module de Young à une valeur CTE2.
10. Procédé selon la revendication 9, caractérisé en ce que le deuxième masque (5) et le masque supplémentaire (6) ont des zones de fenêtres communes permettant de modifier le coefficient thermique initial du module de Young à une valeur CTE3.
11. Procédé de fabrication d'un spiral en verre pour mouvement d'horlogerie formé de spires à section rectangulaire de hauteur h, de largeur I et ayant entre elles un pas p_, caractérisé en ce qu'il comporte les étapes consistant à : a) fixer sur un substrat résistant aux attaques acides une plaque d'épaisseur h en verre photostructurable dont la valeur du coefficient thermique du module de
Young CTEo, est voisine de zéro; b) effectuer une illumination UV à travers un premier masque (7) dont les fenêtres (7a, 7b) ont le même contour que les espaces libres entre les spires; c) effectuer un traitement thermique à haute température; d) effectuer une attaque chimique des zones illuminées à travers les fenêtres du premier masque pour séparer les spires maintenues à leur base sur le substrat; e) effectuer une deuxième illumination UV à travers un deuxième masque (8) dont les fenêtres (8c, 8d, 8e) correspondent à des zones de spires dont on veut modifier le coefficient thermique du module de Young de la valeur initiale CTE0, à une valeur CTEi, et f) séparer le spiral du substrat.
12. Procédé selon la revendication 11 , caractérisé en ce qu'on effectue en outre un traitement thermique entre les étapes e) et f).
13. Procédé selon les revendications 11 ou 12, caractérisé en ce qu'on répète au moins une fois l'étape e) avec un masque supplémentaire (9) dont les fenêtres correspondent à des zones de spires dont on veut modifier le coefficient thermique du module de Young à une valeur CTE2.
14. Procédé selon la revendication 13, caractérisé en ce que le deuxième masque (8) et le masque supplémentaire (9) ont des zones de fenêtres communes permettant de modifier le coefficient thermique du module de Young à une valeur CTE3.
15. Procédé selon les revendications 7 ou 11 , caractérisé en ce que le masque utilisé (5, 7) pour définir le contour du spiral comporte des fenêtres permettant de faire varier le pas p. entre les spires, et/ou leur largeur I.
PCT/EP2006/010854 2005-11-25 2006-11-13 Spiral en verre athermique pour mouvement d’horlogerie et son procede de fabrication WO2007059876A2 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020087012485A KR101247907B1 (ko) 2005-11-25 2006-11-13 글래스 밸런스 스프링과 스프링 밸런스 시스템 및 이를 제조하기 위한 방법
US12/095,088 US7753581B2 (en) 2005-11-25 2006-11-13 Spiral spring made of athermal glass for clockwork movement and method for making same
CN2006800515054A CN101361027B (zh) 2005-11-25 2006-11-13 由绝热玻璃制成的用于钟表机构机芯的螺旋游丝及其制造方法
JP2008541616A JP5061117B2 (ja) 2005-11-25 2006-11-13 時計のムーブメント用の熱ガラス製ゼンマイとその製造方法
EP06829020A EP1958031B1 (fr) 2005-11-25 2006-11-13 Spiral en verre athermique pour mouvement d horlogerie et son procede de fabrication
HK09106337.0A HK1128777A1 (en) 2005-11-25 2009-07-14 Spiral spring made of athermal glass for clockwork movement and method for making same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP05025724A EP1791039A1 (fr) 2005-11-25 2005-11-25 Spiral en verre athermique pour mouvement d'horlogerie et son procédé de fabrication
EP05025724.5 2005-11-25

Publications (2)

Publication Number Publication Date
WO2007059876A2 true WO2007059876A2 (fr) 2007-05-31
WO2007059876A3 WO2007059876A3 (fr) 2007-10-04

Family

ID=37101394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/010854 WO2007059876A2 (fr) 2005-11-25 2006-11-13 Spiral en verre athermique pour mouvement d’horlogerie et son procede de fabrication

Country Status (8)

Country Link
US (1) US7753581B2 (fr)
EP (2) EP1791039A1 (fr)
JP (1) JP5061117B2 (fr)
KR (1) KR101247907B1 (fr)
CN (1) CN101361027B (fr)
HK (1) HK1128777A1 (fr)
TW (1) TW200731037A (fr)
WO (1) WO2007059876A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2590325A1 (fr) 2011-11-04 2013-05-08 The Swatch Group Research and Development Ltd. Résonateur thermocompensé en céramique
CN106104393A (zh) * 2014-01-29 2016-11-09 卡地亚国际股份公司 由在其组成中包含硅的陶瓷制成的热补偿的游丝和用于调节游丝的方法

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8414185B2 (en) * 2007-11-28 2013-04-09 Manufacture Et Fabrique De Montres Et Chronometres Ulysse Nardin Le Locle S.A. Mechanical oscillator having an optimized thermoelastic coefficient
EP2104007A1 (fr) * 2008-03-20 2009-09-23 Nivarox-FAR S.A. Spiral monobloc en matériau à base de silicium et son procédé de fabrication
EP2264553B1 (fr) * 2009-06-19 2016-10-26 Nivarox-FAR S.A. Ressort thermocompensé et son procédé de fabrication
EP2284629A1 (fr) * 2009-08-13 2011-02-16 ETA SA Manufacture Horlogère Suisse Résonateur mécanique thermocompensé
CH702151A1 (fr) * 2009-11-10 2011-05-13 Cartier Creation Studio Sa Procede de realisation de pieces micromecaniques, notamment en verre ceramique.
US8562206B2 (en) * 2010-07-12 2013-10-22 Rolex S.A. Hairspring for timepiece hairspring-balance oscillator, and method of manufacture thereof
CH704649B1 (fr) 2011-03-23 2019-04-15 Lvmh Swiss Mft Sa Elément oscillant pour organe réglant horloger.
EP2520983A1 (fr) * 2011-05-03 2012-11-07 Nivarox-FAR S.A. Barillet comportant des moyens élastiques d'accumulation d'énergie
EP2597536A1 (fr) 2011-11-25 2013-05-29 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Ressort spiral amélioré et procédé de fabrication dudit ressort spiral
EP2607971A1 (fr) * 2011-12-22 2013-06-26 The Swatch Group Research and Development Ltd. Procédé de réalisation d'un composant
EP2607974A1 (fr) * 2011-12-22 2013-06-26 The Swatch Group Research and Development Ltd. Procede de realisation d'un résonateur
EP2685325B1 (fr) 2012-07-11 2016-04-06 Diamaze Microtechnology S.A. Ressort spiralé, procédé de fabrication, possibilités d'application ainsi qu'un entraînement micro-mécanique
EP2690508B1 (fr) * 2012-07-26 2015-02-25 Nivarox-FAR S.A. Spiral d'horlogerie
CH707060B1 (fr) * 2012-10-04 2017-05-31 Swatch Group Res & Dev Ltd Afficheur horloger lumineux.
EP2717103B1 (fr) * 2012-10-04 2017-01-11 The Swatch Group Research and Development Ltd. Spiral lumineux
EP2972557A4 (fr) * 2013-03-14 2016-11-02 Raviv Erlich Charnières mems ayant une meilleure rotation
CH707814A2 (fr) * 2013-03-19 2014-09-30 Nivarox Sa Mécanisme de réglage de spiral d'horlogerie.
EP2781968A1 (fr) * 2013-03-19 2014-09-24 Nivarox-FAR S.A. Résonateur moins sensible aux variations climatiques
CH707815B1 (fr) * 2013-03-19 2017-05-31 Nivarox Far Sa Sous-ensemble de mécanisme d'échappement d'horlogerie comportant un ressort-spiral.
EP2804054B1 (fr) * 2013-05-17 2020-09-23 ETA SA Manufacture Horlogère Suisse Dispositif anti-adhésion d'un spiral sur un pont
WO2014203085A1 (fr) 2013-06-21 2014-12-24 Damasko Uhrenmanufaktur KG Système oscillant pour mouvements d'horlogerie mécaniques, procédé de production d'un spiral et spiral
HK1193537A2 (en) * 2013-07-29 2014-09-19 Master Dynamic Ltd Silicon overcoil balance spring
EP2884346A1 (fr) * 2013-12-16 2015-06-17 ETA SA Manufacture Horlogère Suisse Spiral polygonal pour un résonateur horloger
EP2908183B1 (fr) * 2014-02-14 2018-04-18 ETA SA Manufacture Horlogère Suisse Spiral d'horlogerie
EP2952972B1 (fr) * 2014-06-03 2017-01-25 The Swatch Group Research and Development Ltd. Procédé de fabrication d'un spiral compensateur composite
EP2952979B1 (fr) * 2014-06-03 2017-03-01 Nivarox-FAR S.A. Composant horloger à base de verre photostructurable
CH709729A2 (fr) 2014-06-03 2015-12-15 Swatch Group Res & Dev Ltd Pièce d'habillage à base de verre photostructurable.
FR3032810B1 (fr) * 2015-02-13 2017-02-24 Tronic's Microsystems Oscillateur mecanique et procede de realisation associe
EP3304216B1 (fr) * 2015-06-08 2022-04-27 Richemont International SA Résonateur horloger thermocompensé et méthode pour réaliser un tel résonateur
EP3159747A1 (fr) * 2015-10-22 2017-04-26 ETA SA Manufacture Horlogère Suisse Spiral a encombrement reduit a section constante
EP3176651B1 (fr) * 2015-12-02 2018-09-12 Nivarox-FAR S.A. Procédé de fabrication d'un ressort-spiral d'horlogerie
EP3181938B1 (fr) 2015-12-18 2019-02-20 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Procede de fabrication d'un spiral d'une raideur predeterminee par retrait de matiere
CH711962B1 (fr) 2015-12-18 2017-10-31 Csem Centre Suisse D'electronique Et De Microtechnique Sa – Rech Et Développement Procédé de fabrication d'un spiral d'une raideur prédéterminée avec retrait localisé de matière.
EP3181939B1 (fr) 2015-12-18 2019-02-20 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Procede de fabrication d'un spiral d'une raideur predeterminee par ajout de matiere
EP3190095B1 (fr) * 2016-01-08 2023-08-02 Richemont International SA Résonateur thermocompensé comprenant un verre
JP6762914B2 (ja) 2017-07-18 2020-09-30 株式会社テクニスコ ガラス成形方法
TWI774925B (zh) * 2018-03-01 2022-08-21 瑞士商Csem瑞士電子及微技術研發公司 製造螺旋彈簧的方法
JP6548240B1 (ja) * 2018-06-29 2019-07-24 セイコーインスツル株式会社 ひげぜんまい、調速機、時計用ムーブメント及び時計

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH307683A (fr) 1952-04-17 1955-06-15 Suisse Horlogerie Rech Lab Elément élastique pour appareils chronométriques.
EP0886195A1 (fr) 1997-06-20 1998-12-23 Montres Rolex Sa Spiral autocompensateur pour oscillateur mécanique balancier-spiral de mouvement d'horlogerie et procédé de fabrication de ce spiral
EP1519250A1 (fr) 2003-09-26 2005-03-30 Asulab S.A. Résonateur balancier-spiral thermocompensé

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06117470A (ja) * 1992-10-07 1994-04-26 Yokogawa Electric Corp 渦巻きバネ及び指示電気計器
US6863435B2 (en) * 1997-08-11 2005-03-08 Seiko Epson Corporation Spring, mainspring, hairspring, and driving mechanism and timepiece based thereon
JP3498315B2 (ja) * 1997-08-28 2004-02-16 セイコーエプソン株式会社 バネ、ゼンマイ、これらを利用した駆動機構、および時計
JP2001105398A (ja) 1999-03-04 2001-04-17 Seiko Epson Corp 加工方法
WO2001013182A1 (fr) * 1999-08-12 2001-02-22 Seiko Instruments Inc. Piece d'horlogerie mecanique dotee d'un detecteur de position
CN1357118A (zh) * 2000-02-29 2002-07-03 精工电子有限公司 具备静电容量式检测部和制动部的机械钟表
WO2001065320A1 (fr) * 2000-02-29 2001-09-07 Seiko Instruments Inc. Piece d'horlogerie mecanique a element de detection de posture et element de detection optique de la rotation du balancier annulaire regle
ATE307990T1 (de) * 2002-11-25 2005-11-15 Suisse Electronique Microtech Spiraluhrwerkfeder und verfahren zu deren herstellung
EP1445670A1 (fr) * 2003-02-06 2004-08-11 ETA SA Manufacture Horlogère Suisse Spiral de résonateur balancier-spiral et son procédé de fabrication
GB0324439D0 (en) * 2003-10-20 2003-11-19 Levingston Gideon R Minimal thermal variation and temperature compensating non-magnetic balance wheels and methods of production of these and their associated balance springs
JP2005140674A (ja) * 2003-11-07 2005-06-02 Seiko Epson Corp 時計用ばね、ぜんまい、ひげぜんまい、及び時計
JP4471730B2 (ja) * 2004-05-10 2010-06-02 Hoya株式会社 両面配線基板及びその製造方法
WO2006123095A2 (fr) * 2005-05-14 2006-11-23 Gideon Levingston Spiral, ensemble balancier regule et procedes de fabrication
CH696881A5 (fr) * 2005-06-28 2008-01-15 Eta Sa Mft Horlogere Suisse Pièce de micro-mécanique en silicium renforcé et son procédé de fabrication.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH307683A (fr) 1952-04-17 1955-06-15 Suisse Horlogerie Rech Lab Elément élastique pour appareils chronométriques.
EP0886195A1 (fr) 1997-06-20 1998-12-23 Montres Rolex Sa Spiral autocompensateur pour oscillateur mécanique balancier-spiral de mouvement d'horlogerie et procédé de fabrication de ce spiral
EP1519250A1 (fr) 2003-09-26 2005-03-30 Asulab S.A. Résonateur balancier-spiral thermocompensé

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2590325A1 (fr) 2011-11-04 2013-05-08 The Swatch Group Research and Development Ltd. Résonateur thermocompensé en céramique
WO2013064351A1 (fr) 2011-11-04 2013-05-10 The Swatch Group Research And Development Ltd Résonateur thermocompensé en céramique
EP2774268B1 (fr) * 2011-11-04 2019-01-23 The Swatch Group Research and Development Ltd. Résonateur thermocompensé en céramique
CN106104393A (zh) * 2014-01-29 2016-11-09 卡地亚国际股份公司 由在其组成中包含硅的陶瓷制成的热补偿的游丝和用于调节游丝的方法

Also Published As

Publication number Publication date
EP1958031B1 (fr) 2012-06-06
TW200731037A (en) 2007-08-16
US20090016173A1 (en) 2009-01-15
JP2009517637A (ja) 2009-04-30
US7753581B2 (en) 2010-07-13
KR20080072002A (ko) 2008-08-05
HK1128777A1 (en) 2009-11-06
CN101361027A (zh) 2009-02-04
EP1791039A1 (fr) 2007-05-30
WO2007059876A3 (fr) 2007-10-04
KR101247907B1 (ko) 2013-04-02
JP5061117B2 (ja) 2012-10-31
EP1958031A2 (fr) 2008-08-20
CN101361027B (zh) 2012-05-30

Similar Documents

Publication Publication Date Title
EP1958031B1 (fr) Spiral en verre athermique pour mouvement d horlogerie et son procede de fabrication
EP0732635B1 (fr) Procédé de réalisation d'une piéce de micro-mécanique
EP1519250B1 (fr) Résonateur balancier-spiral thermocompensé
CN100381838C (zh) 激光表面处理
EP1039352B1 (fr) Spiral autocompensateur pour balancier-spiral de mouvement d'horlogerie et procédé de traitement de ce spiral
EP3181938A1 (fr) Procede de fabrication d'un spiral d'une raideur predeterminee par retrait de matiere
EP2320281B1 (fr) Procédé de réalisation de pièces micromécaniques
CH701499B1 (fr) Procède de fabrication d'une pièce micromécanique en silicium renforcé.
EP3181940B2 (fr) Procede de fabrication d'un spiral d'une raideur predeterminee par retrait localise de matiere
EP2597536A1 (fr) Ressort spiral amélioré et procédé de fabrication dudit ressort spiral
EP2774268A1 (fr) Résonateur thermocompensé en céramique
EP1921042A1 (fr) Procédé de fabrication de pièces de micromécanique multiniveaux en silicium et pièces ainsi obtenues
EP3769161A1 (fr) Procede de fabrication de spiraux horlogers thermocompenses de raideur precise
CH702708B1 (fr) Ensemble oscillateur balancier-spiral avec éléments détachables et procédé d'ajustement de sa fréquence d'oscillation.
EP3557333B1 (fr) Procédé de fabrication d'un ressort moteur d'horlogerie
EP3304216B1 (fr) Résonateur horloger thermocompensé et méthode pour réaliser un tel résonateur
EP3982205A1 (fr) Procede de fabrication d'un ressort horloger de raideur precise
CH717357A2 (fr) Spiral horloger en verre ou en céramique, à géométrie complexe.
EP3865954A1 (fr) Procédé de fabrication d'un dispositif à lames flexibles monobloc en silicium, pour l'horlogerie
CH717124A2 (fr) Procédé de fabrication d'un dispositif à lames flexibles monobloc en silicium, notamment pour l'horlogerie.
JP4361186B2 (ja) マイクロレンズの製造方法
EP4019459A1 (fr) Procédé de fabrication d'un ressort spiral thermocompensé
EP3141519A1 (fr) Procédé de fabrication d'une pièce micromécanique horlogère et ladite pièce micromécanique horlogère
CH716974A2 (fr) Ressort spiral pour oscillateur balancier-spiral horloger et son procédé de fabrication.
FR2883370A1 (fr) Procede de fabrication d'un resonateur mecanique en etoile pour dispositif de mesure gyrometrique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006829020

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008541616

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2569/CHENP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020087012485

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12095088

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200680051505.4

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2006829020

Country of ref document: EP