WO2007057957A1 - Plasma display device - Google Patents

Plasma display device Download PDF

Info

Publication number
WO2007057957A1
WO2007057957A1 PCT/JP2005/021110 JP2005021110W WO2007057957A1 WO 2007057957 A1 WO2007057957 A1 WO 2007057957A1 JP 2005021110 W JP2005021110 W JP 2005021110W WO 2007057957 A1 WO2007057957 A1 WO 2007057957A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
sustain
circuit
address
electrode
Prior art date
Application number
PCT/JP2005/021110
Other languages
French (fr)
Japanese (ja)
Inventor
Yasunobu Hashimoto
Tomokatsu Kishi
Katsumi Itoh
Isao Furukawa
Original Assignee
Fujitsu Hitachi Plasma Display Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Hitachi Plasma Display Limited filed Critical Fujitsu Hitachi Plasma Display Limited
Priority to PCT/JP2005/021110 priority Critical patent/WO2007057957A1/en
Priority to JP2007545130A priority patent/JPWO2007057957A1/en
Publication of WO2007057957A1 publication Critical patent/WO2007057957A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/296Driving circuits for producing the waveforms applied to the driving electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/294Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for lighting or sustain discharge
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/296Driving circuits for producing the waveforms applied to the driving electrodes
    • G09G3/2965Driving circuits for producing the waveforms applied to the driving electrodes using inductors for energy recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/028Generation of voltages supplied to electrode drivers in a matrix display other than LCD
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/292Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for reset discharge, priming discharge or erase discharge occurring in a phase other than addressing
    • G09G3/2927Details of initialising
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/293Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for address discharge

Definitions

  • the present invention relates to a technology of a plasma display device (PDP device) including a plasma display panel (PDP), and more particularly, to driving of an electrode of a PDP and a configuration of a power source therefor.
  • PDP device plasma display device
  • PDP plasma display panel
  • Sustain pulses are used so that low breakdown voltage elements can be used compared to conventional PDP device technology.
  • TERES drive system configures a circuit such as a sustain circuit (circuit for sustain pulse application) as a symmetrical positive / negative pulse (voltage pulse) (voltage pulse applied for sustain discharge) . That is, as a sustain pulse, a plurality of short pulses, a positive pulse (positive sustain pulse) and a negative pulse (negative sustain pulse) are alternately repeated.
  • the symmetric positive and negative pulses are the positive pulses.
  • the absolute value of the negative pulse potential are the same.
  • the conventional sustain voltage is Vs.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-62843
  • each pulse height potential absolute value
  • FIG. 10 shows an example of a drive circuit including the sustain circuit of the prior art, which is a prerequisite technique of the present invention, corresponding to the sustain pulse configuration
  • FIG. 11 shows an example of the drive waveform
  • Figure 12 shows the power supply configuration.
  • the address pulse potential (Va) is + 65V
  • the positive sustain pulse potential (Vs) is + 85V.
  • Patent Document 1 JP 2002-62843 A
  • Patent Document 1 a negative voltage is generated by using a single power capacitor for the external sustain pulse.
  • the present invention has been made in view of the above problems, and an object of the present invention is to solve the above problems and reduce the number of power supplies for display driving of the PDP in the PDP device to reduce the cost.
  • the aim is to provide a technology that can
  • the present invention is a technique of a PDP device comprising a PDP and a drive circuit thereof, characterized by comprising the following technical means.
  • the positive sustain pulse potential (Vsl) is made lower than the conventional potential (Vs) and equal to the address pulse potential (Va).
  • the PDP includes at least a first (X) electrode that serves as a sustain electrode (sustain discharge electrode), a second (Y) electrode, and a third (A) electrode that serves as an address electrode.
  • the drive circuit applies an address pulse corresponding to the addressing pattern to the A electrode of the PDP, and applies a scan pulse to the Y electrode.
  • the drive circuit applies a sustain pulse, which is a repetition force of positive and negative pulses, to the X and Y electrodes of the PDP so that the polarities of X and Y are reversed.
  • the sustain pulse consists of repeating unit pulses of a positive pulse and a negative pulse with a reference potential (0V) as a boundary.
  • the drive circuit includes a power supply (power supply circuit) for generating each pulse.
  • the PDP apparatus is configured such that the positive pulse potential in the sustain pulse positive and negative pulses is equal to the address pulse potential.
  • the second voltage (Vs2 Va-2Vs), which is the negative pulse voltage of the sustain pulse, is supplied from the second power supply (Vs2 power supply).
  • the pulse heights of the positive and negative pulses in the sustain pulse are asymmetric, and the absolute value of the positive pulse potential (I Vsl I) is the absolute value of the negative pulse potential (I Vs2 It is configured to be smaller than I).
  • the drive circuit applies a sustain pulse with a waveform in which X and Y have opposite polarities and a constant voltage is applied between X and Y in each unit pulse to the X and Y electrodes.
  • FIG. 1 is a diagram showing a configuration of a drive circuit centered on a sustain circuit in the PDP device according to the first embodiment of the present invention.
  • the subfield unit in the drive circuit of the PDP device according to the first embodiment of the present invention It is a figure which shows the structure of a driving waveform of a unit.
  • FIG. 3 is a diagram showing a power supply configuration in the drive circuit of the PDP device according to the first embodiment of the present invention.
  • FIG. 4 is a block diagram showing an overall configuration centering on a drive circuit in the PDP device according to the first embodiment of the present invention.
  • FIG. 5 is an exploded perspective view showing a configuration example of a PDP in the PDP device according to the first embodiment of the present invention.
  • FIG. 6 is a diagram showing a configuration of a subfield method that is a driving method in the PDP device according to the first embodiment of the present invention.
  • FIG. 7 is a diagram showing a configuration of a drive waveform in a drive circuit of a PDP device according to a second embodiment of the present invention.
  • FIG. 8 is a diagram showing a configuration of a drive waveform in a drive circuit of a PDP device that is Embodiment 3 of the present invention.
  • FIG. 9 is a diagram showing a configuration of a drive waveform in a drive circuit of a PDP device that is Embodiment 4 of the present invention.
  • FIG. 10 is a diagram showing a configuration of a drive circuit centered on a sustain circuit in a conventional PDP device.
  • FIG. 11 is a diagram showing a configuration of drive waveforms in subfield units in a drive circuit of a conventional PDP device.
  • FIG. 12 is a diagram showing a configuration of a drive waveform in subfield units in a drive circuit of a conventional PDP device.
  • FIG. 10 shows an example of a sustain circuit in a conventional PDP device.
  • Figure 11 shows an example of drive waveforms (drive voltage and ideal waveform) in a drive circuit including the sustain circuit.
  • FIG. 12 shows a power supply configuration in the drive circuit.
  • a drive circuit such as an X sustain circuit 91, a Y sustain circuit (not shown), and an address circuit 93 is connected to the PDP 40 through electrodes and signal lines connected to the terminals of the capacitive load 10 of each cell. It is connected.
  • the circuit of one cell unit is shown.
  • the X sustain circuit 91 is connected to the capacitive load 10 of the PDP40 cell through the X electrode (X terminal) and the signal line 910.
  • the X side is connected to the X side through the Y electrode (Y terminal) and the signal line.
  • a Y sustain circuit with the same configuration is connected.
  • An address circuit 93 is connected to the capacitive load 10 of the cell through an address electrode and a signal line.
  • An address pulse is applied by the address circuit 93 to the capacitive load 10 of the target cell in the PDP 40, and a sustain pulse is applied by the sustain circuit, thereby generating a sustain discharge.
  • An X sustain pulse is applied to the X terminal of the capacitive load 10 by the X sustain circuit 91, and similarly, a Y sustain pulse is applied to the Y terminal by the Y sustain circuit.
  • the configuration of the Y-side circuit (Y sustain circuit) is omitted, the configuration is basically the same as that of the X-side circuit (X sustain circuit).
  • a scan drive circuit (scan driver) is required on the Y side.
  • the scan driver is necessary for address driving in the address period together with the address driver. Therefore, the Y sustain circuit is provided with a scan driver, or the scan driver is inserted between the Y sustain circuit and the capacitive load 10.
  • a Vs power source 901 which is a first power source, supplies a voltage Vs through a first signal line (power supply line) 911.
  • a _Vs power source 902 as a second power source supplies a voltage ⁇ Vs through a second signal line (power supply line) 912.
  • a Va power source 931 that is a power source supplies an address voltage Va.
  • the switch elements (913, 914) are for switching the voltage (Vs, 1 Vs) applied to the capacitive load 10 through the signal lines (911, 912).
  • the switch elements (913, 914) are transistors. Configured. Vs is supplied by ⁇ N of the first switch element 913, and the second switch element 914 Vs is supplied by turning ON.
  • the power recovery circuit 930 is a prior art, and is a circuit for starting / stopping a sustain pulse.
  • a sustain pulse (positive pulse) to the capacitive load 10 is started up through the coil and diode element by the first switch element ⁇ N based on the ground, and the second switch
  • the sustain pulse (negative pulse) to the capacitive load 10 falls through the coil and diode element due to the element N.
  • FIG. 11 shows the drive waveform in units of subfields (SF) in FIG. 1 and shows the address drive waveform (A), the X sustain drive waveform (X), and the Y sustain drive waveform (Y) from the top. 1
  • each waveform is marked from each drive circuit to the corresponding electrode (terminal) of the capacitive load 10 of each cell. Added.
  • the positive voltage (positive sustain panel voltage) in the X sustain pulse (X) is Vs. Since the positive and negative nodes are symmetrical, that is, the potential absolute value is the same for positive and negative pulses, the negative voltage (negative sustain pulse voltage) is -Vs.
  • a positive sustain pulse voltage (Vs) force is applied to the X terminal of the capacitive load 10 through the first signal line 911 with a Vs power supply of 901 power.
  • a negative sustain pulse voltage (one Vs) is applied from the 1 Vs power source 902 to the X terminal of the capacitive load 10 through the second signal line 912.
  • Vs is +85 V and Vs is ⁇ 85 V, for example.
  • a predetermined reset pulse is applied to the X and ⁇ electrodes in accordance with the prior art, thereby erasing residual charges and the like.
  • the address pulse (973) applied to the address electrode in the address period (Ta) is addressed by the unit pulse of the voltage (Va) having the potential of Va from the reference potential (0V) to the positive side. This is a pulse corresponding to the pattern.
  • pulses (X and Y sustain pulses) applied to the X and Y electrodes in the sustain period (Ts) are positive norms (X and Y sustain pulses) each having a reference potential (0V) force and a Vs potential on the positive side. 9 71) and a negative pulse (972) with a potential of 1 Vs on the negative side.
  • a sustain pulse of opposite polarity is applied to X and Y
  • a voltage of 2Vs is applied to the capacitive load 10.
  • FIG. 12 shows details of the power supply portion (901, 902, 931) in the conventional X sustain circuit 91. Note that only the portion having a large relationship is shown.
  • AC voltage is supplied from the AC (alternating current) power supply unit 961, and the AC voltage is converted into DC (direct current) voltage by the rectifier 962 including the AC / DC converter.
  • the necessary DC voltage ⁇ Va, Vs, _Vs ⁇ is generated by the DC / DC converter unit 963 composed of a transformer wire.
  • FIG. 1 shows a drive circuit of PDP device 100 according to the first embodiment of the present invention.
  • the configuration of the power supply and voltage in the sustain circuit is different from the above-described conventional configuration.
  • FIG. 2 shows drive waveforms (drive voltage and ideal waveform) in the drive circuit of the first embodiment.
  • the positive sustain pulse height positive sustain pulse voltage Vsl
  • the address pulse height address voltage Va
  • driving circuits such as the X sustain circuit 11, the Y sustain circuit 12, and the address circuit 13 are connected to the PDP 40 through electrodes and signal lines connected to the terminals of the capacitive load 10 of each cell.
  • the circuit of one cell unit is shown.
  • the X sustain circuit 11 is connected to the capacitive load 10 of the PDP40 cell through the X electrode (X terminal) and the signal line 110.
  • the configured Y sustain circuit 12 is connected.
  • An address circuit 13 is connected to the capacitive load 10 of the cell through an address electrode and a signal line.
  • An address pulse is applied to the capacitive load 10 of the target cell in the PDP 40 by the address circuit 13 and a sustain node is applied by the sustain circuit, so that a sustain discharge is generated.
  • the X sustain pulse is applied to the X terminal of the capacitive load 10 by the X sustain circuit 11 and the signal line 110, and the Y sustain pulse is similarly applied to the Y terminal by the Y sustain circuit 12 and the signal line 120.
  • the configuration of the Y side circuit (Y sustain circuit 12) is basically the same as that of the X side, and is therefore omitted. Although not shown in the drawings, it is necessary depending on the drive waveform.
  • a power supply for supplying a voltage.
  • a power supply circuit is included in the drive circuit.
  • the X sustain circuit 11 includes a first power source Vsl power source 101 (in other words, Va power source) and a second power source Vs2 power source 102 (in other words, Va_2Vs power source). Has two power supplies.
  • the Vsl power supply 101 is a power supply shared by the X sustain circuit 11 and the address circuit 13 and supplies the same voltage to the address circuit 13.
  • the address circuit 13 has a configuration that does not require the Va power source 931 that is conventionally required.
  • the first signal line 111 and the second signal line 112 are connected to the signal line 110 to the cell via the switch elements (113, 114).
  • the switch elements (113, 114) are for switching the voltages (Vsl, Vs2) applied to the capacitive load 10 through the signal lines (111, 112), and are specifically composed of transistors. Is done. When the first switch element 113 is turned on, Vsl is supplied, and when the second switch element 114 is turned on, Vs2 is supplied.
  • the power recovery circuit 130 is configured as in the prior art, and is a circuit that raises / lowers the sustain pulse.
  • the power recovery circuit 130 includes a ground 131, first and second switch elements (132, 135), first and second coils (133, 136), and first and second diode elements (134, 137). And connected to the signal line 110.
  • first switch element 132 When the first switch element 132 is turned on based on the ground 131, the sustain pulse (positive voltage) to the capacitive load 10 is passed through the first coin 133 and the first diode element 134 based on the ground 131.
  • the second switch element 135 When the second switch element 135 is turned on, the sustain pulse (negative pulse) to the capacitive load 10 is lowered through the second coiner 136 and the second diode element 137.
  • X sustain pulse rise / rise by LC resonance in power recovery circuit 130 The power supply at that time may use the ground 131. In this case, it is not necessary to add another extra power source to the PDP device 100.
  • the ground 131 serving as a power source for the power recovery circuit 130 is a power source intermediate between the Vsl power source 101 and the Vs2 power source 102.
  • the drive waveform of the first embodiment is shown in comparison with FIG.
  • the positive voltage (positive sustain voltage) in the X sustain pulse (X) is the first sustain voltage: Vsl
  • the negative voltage (negative sustain voltage) is Second sustain voltage: Vs2.
  • the positive voltage is the first sustain voltage: Vsl
  • the negative voltage is the second sustain voltage: Vs2.
  • the address voltage Va at A has a conventional waveform, and the positive potential of the sustain pulse voltage at X and Y (positive sustain pulse voltage Vsl) is the same as the potential of the conventional address voltage Va.
  • the whole sustain is shifted from the reference potential (0V).
  • the other part of the waveform is the same as the conventional waveform (Fig. 11).
  • a positive sustain pulse voltage (Vsl) is applied from the Vsl power source 101 to the X terminal of the capacitive load 10 through the first signal line 111. Further, a negative sustain pulse voltage (Vs 2) is applied from the Vs 2 power source 102 to the X terminal of the capacitive load 10 through the second signal line 112.
  • a predetermined reset pulse is applied to the X and Y electrodes in accordance with the prior art, thereby performing residual charge erasure and the like.
  • an address pulse (73) having a potential of Va on the positive side is applied as in the prior art.
  • a predetermined voltage (Vax) is applied in X
  • a scan pulse with a predetermined voltage (Vay) is applied in Y.
  • a pulse (X and Y sustain pulse) applied to the X and Y electrodes in the sustain period (Ts) is a positive pulse (71V) having a reference potential (0V) force on the positive side (Vsl potential).
  • FIG. 3 shows details of the power supply portions (101, 102) in the X sustain circuit 11 in the present embodiment.
  • an AC voltage is supplied from an AC (alternating current) power source 61, and the AC voltage is converted into a DC (direct current) voltage by a rectifier 62 including an AC / DC converter.
  • the necessary DC voltage ⁇ Va, Va_2Vs ⁇ is generated by the DC / DC converter unit 63 composed of transformer wire.
  • FIG. 4 to 6 show a basic configuration in PDP device 100 of the present embodiment.
  • FIG. 4 shows a configuration example of a circuit including the drive circuit 30 for the PD P40.
  • FIG. 5 shows an example of the configuration of the PDP 40 as an exploded perspective view in units of cells.
  • FIG. 6 shows the subfield method, which is a standard driving method in the PDP device 100 configuration, and the configuration of the screen (referred to as a frame or field).
  • the PDP device 100 is configured to include a PDP 40 that is a display panel unit, a drive circuit 30, a control circuit 20, and the like.
  • the drive circuit 30 is connected to the PDP 40, and the control circuit 20 is connected to the drive circuit 30.
  • the drive circuit 30 including the control circuit 20 is sometimes called the drive circuit 30.
  • the PDP device 100 for example, an IC or power supply circuit unit in which the back surface of the PD P40 is bonded to a chassis unit (not shown) and each circuit unit such as the control circuit 20 is mounted on the rear side of the chassis unit.
  • Etc. have a PDP module.
  • the circuit part on the rear side of the chassis part and the end part of the electrode of the PDP 40 are connected by a driver module corresponding to the drive circuit 30.
  • the PDP module force S configured as described above is housed in an external housing, and a PDP device set is configured.
  • the control circuit 20 includes a display data control unit 21, a timing control unit 22, and the like.
  • the control circuit 20 receives externally input interface signals ⁇ D (display data), CLK (dot clock), B (blanking signal), V (vertical synchronizing signal), H (horizontal synchronizing signal) ⁇ , etc. Based on this, a control signal for controlling the drive circuit 30 is formed, and thereby the drive circuit 30 is controlled.
  • the control circuit 20 processes the display data (D) from the outside and stores it in the frame memory unit 23 of the display data control unit 21.
  • the display data control unit 21 controls the supply of display data to the drive circuit 30.
  • the timing control unit 22 generates a timing signal for controlling the display processing timing and supplies it to each circuit unit.
  • the display data control unit 21 controls the address circuit unit 31 based on the display data (D) in the frame memory unit 23. Further, the address circuit unit 31, the X sustain circuit unit 32, and the Y sustain circuit unit 33 are controlled by the timing signal from the timing control unit 22, respectively.
  • the drive circuit 30 includes an address circuit unit 31 (corresponding to the address circuit 13), an X sustain circuit unit 32 (corresponding to the X sustain circuit 11), and a Y sustain circuit unit 33 (corresponding to the Y sustain circuit 12). ).
  • the drive circuit 30 drives the electrode of the PDP 40 according to the control signal from the control circuit 20.
  • the address circuit unit 31 drives the address electrode (data line) of the PDP 40 based on the display data (D) signal from the display data control unit 21.
  • the X sustain circuit unit 32 drives the X electrode of the PDP40.
  • the Y sustain circuit unit 33 drives the Y electrode of the PDP40.
  • the Y sustain circuit unit 33 includes a scan driver, and thereby drives the Y electrode serving as a scanning electrode.
  • the PDP 40 is mainly composed of a substrate mainly composed of two glasses, a front substrate 41 and a rear substrate 42.
  • the PDP40 is constructed by bonding the front substrate 41 side and the rear substrate 42 side so that they face each other via the partition wall 48, etc., and sealing and sealing the exhaust and discharge gas in that space. Is done.
  • the front substrate 41 is provided with a plurality of sets of first (X) electrodes and second (Y) electrodes substantially in parallel in the first direction.
  • a sustain discharge is generated between the X and Y electrodes, which are display electrodes (sustain electrodes).
  • the Y electrode becomes the scan electrode.
  • Each X, Y electrode is composed of, for example, a bus electrode and a transparent electrode.
  • the bus electrode is a metal linear bar-shaped electrode that is electrically connected to the driver side.
  • the transparent electrode is an electrode made of a ⁇ (indium tin oxide) layer film that is electrically connected to the bus electrode and forms a discharge slit.
  • the X transparent electrode 51b and the transparent electrode 52b, and the X bus electrode 5la and the Y bus electrode 52a are formed in three dimensions with respect to the front substrate 41.
  • the X and Y electrodes on the front substrate 41 are covered with a dielectric layer 43 and a protective layer 44.
  • the rear substrate 42 has a third (A) in the second direction orthogonal to the X and Y electrodes (first direction).
  • a plurality of address electrodes 47 as electrodes are arranged substantially in parallel.
  • the address electrode 47 is covered with a dielectric layer 45.
  • a display cell is formed by a region divided by the partition wall 48 and intersected by the Y-X electrode and the address electrode 47.
  • a plurality of partition walls 48 are formed for forming regions divided into stripes in the vertical direction (second direction).
  • the phosphor layer (46r, 46g, 46b) of each color of R, G, B is applied to the area divided by the barrier ribs 48 separately.
  • a pixel is composed of a set of display cells of these colors.
  • a form of a box-type cell in which a partition wall is provided in the lateral direction (first direction) is also possible.
  • one field corresponding to one display screen of the PDP 40 is a plurality of time-division subfields (SF), n of SFl to SFn (n is for example 10) SF power.
  • Each SF has a reset period (Tr), an address period (Ta), and a sustain period (Ts) in order.
  • Each SF is weighted according to the sustain period (Ts), that is, the number of sustain discharges, and the gradation display of each cell is performed by the combination pattern of lighting / non-lighting of these SFs.
  • the remaining charge is made uniform as the reset operation in the reset period (Tr), and then the address circuit 13 is used as the address operation in the address period (Ta).
  • the discharge between the A and Y electrodes is performed, and the data memory in the lighting target cell is performed.
  • the sustain discharge repetition discharge
  • the sustain discharge is performed between the XY electrodes by driving from the X sustain circuit 11 and the Y sustain circuit 12, and discharge light emission occurs in the lighting target cell.
  • the three power supplies (931, 901, 902) that have been conventionally required are replaced with the two power supplies (101 , 102), and Va and Vsl are set to low voltages, so that it is possible to reduce costs while using low-voltage elements in the device configuration.
  • FIG. 7 shows a drive waveform in drive circuit 30 of the second embodiment.
  • the first configuration (2-1) includes the reset period (Tr)
  • the potential (Vrx) of the applied voltage (81) to the sustain electrode (X electrode) during the reset operation at is equal to the potential (Va) of the address pulse (73).
  • the potential (Vry) of the applied voltage (82) to the Y electrode during the reset operation is made equal to the potential (Va) of the address pulse (73).
  • FIG. 8 shows a drive waveform in the drive circuit 30 of the third embodiment.
  • the potential (Vax) of the voltage (83) applied to the X electrode during the address operation in the address period (Ta) is made equal to the potential (Va) of the address pulse (73).
  • the number of power supplies used in the address operation can be reduced as compared with the conventional one.
  • FIG. 9 shows drive waveforms in drive circuit 30 of the fourth embodiment.
  • the above-described common power supply voltages in the embodiments can be combined.
  • the present invention can be used for a display device such as a PDP device.

Abstract

Provided is a technology by which cost of a PDP device is reduced by reducing the number of power supplies for driving display of the PDP. In the PDP device, positive and negative sustain pulses are applied to X and Y electrodes of the PDP. The heights of the positive and negative sustain pulses are asymmetric, and a potential (Vs1) of the positive sustain pulse and a potential (Va) of an address pulse are equivalent. The common power supply is used for the positive sustain pulse and the address pulse.

Description

明 細 書  Specification
プラズマディスプレイ装置  Plasma display device
技術分野  Technical field
[0001] 本発明は、プラズマディスプレイパネル (PDP)を備えるプラズマディスプレイ装置( PDP装置)の技術に関し、特に、 PDPの電極の駆動やそのための電源の構成に関 する。  TECHNICAL FIELD [0001] The present invention relates to a technology of a plasma display device (PDP device) including a plasma display panel (PDP), and more particularly, to driving of an electrode of a PDP and a configuration of a power source therefor.
背景技術  Background art
[0002] 従来の PDP装置の技術にぉレ、て、低耐圧の素子が使えるように、サスティンパルス  [0002] Sustain pulses are used so that low breakdown voltage elements can be used compared to conventional PDP device technology.
(維持放電用に印加する電圧パルス)を、対称な正負のパルス(電圧パルス)として、 サスティン回路 (サスティンパルス印加用の回路)等の回路を構成する技術 (いわゆ る TERES駆動方式)がある。即ち、サスティンパルスとして、複数の短いパルスであ る正パルス(正サスティンパルス)と負パルス(負サスティンパルス)が交互に繰り返さ れるものであるが、前記対称な正負のパルスとは、その正パルスと負パルスの電位の 絶対値が同じとなるものである。従来のサスティン電圧を Vsとする。  There is a technology (so-called TERES drive system) that configures a circuit such as a sustain circuit (circuit for sustain pulse application) as a symmetrical positive / negative pulse (voltage pulse) (voltage pulse applied for sustain discharge) . That is, as a sustain pulse, a plurality of short pulses, a positive pulse (positive sustain pulse) and a negative pulse (negative sustain pulse) are alternately repeated. The symmetric positive and negative pulses are the positive pulses. And the absolute value of the negative pulse potential are the same. The conventional sustain voltage is Vs.
[0003] このような従来技術について、特開 2002— 62843号公報(特許文献 1)に記載さ れている。サスティンパルスとして正負のパルスを使うことにより、各々のパルス高(電 位絶対値)は、片側極性のパルスを使用する場合に比べて 1/2になる。よって、回路 構成において電源電圧を低くして低耐圧の素子を使うことができる。  [0003] Such a conventional technique is described in Japanese Patent Laid-Open No. 2002-62843 (Patent Document 1). By using positive and negative pulses as sustain pulses, each pulse height (potential absolute value) is halved compared to using one-side polarity pulses. Therefore, it is possible to use a low breakdown voltage element by reducing the power supply voltage in the circuit configuration.
[0004] 上記正負のパルスでサスティンパルスを構成する従来技術では、正負のパルスの 電位 (Vs, _Vs)が対称であったため、通常の動作条件では、アドレスパルス電位( Va)と正サスティンパルス電位 (Vs)は異なる。  [0004] In the above-described conventional technology that forms a sustain pulse with positive and negative pulses, the potential (Vs, _Vs) of the positive and negative pulses is symmetric. Therefore, under normal operating conditions, the address pulse potential (Va) and the positive sustain pulse potential (Vs) is different.
[0005] 図 10に、上記サスティンパルス構成に対応した、本発明の前提技術である、従来 技術のサスティン回路を含む駆動回路の例を示し、図 11にその駆動波形の例を示 す。図 12は、その電源構成を示す。例えば、アドレスパルス電位(Va)が + 65Vであ り、正サスティンパルス電位(Vs)が + 85Vである。  FIG. 10 shows an example of a drive circuit including the sustain circuit of the prior art, which is a prerequisite technique of the present invention, corresponding to the sustain pulse configuration, and FIG. 11 shows an example of the drive waveform. Figure 12 shows the power supply configuration. For example, the address pulse potential (Va) is + 65V and the positive sustain pulse potential (Vs) is + 85V.
特許文献 1 :特開 2002— 62843号公報  Patent Document 1: JP 2002-62843 A
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0006] 前記従来技術では、サスティンパルス高が半分になる反面、サスティンパルス用の 電源として正負パルス用に 2つの別々の電源 ( Vs電源 901 , — Vs電源 902 )を準備 する必要があった。よって、 PDP装置構成における電源数が増加するという問題があ り、 PDP装置のコストアップ要因となっていた。  [0006] In the prior art, while the sustain pulse height is halved, it is necessary to prepare two separate power supplies (Vs power supply 901, —Vs power supply 902) for the positive and negative pulses as the power supply for the sustain pulse. Therefore, there is a problem that the number of power supplies in the PDP device configuration increases, which has been a factor in increasing the cost of the PDP device.
[0007] なお、前記特開 2002— 62843号公報(特許文献 1)の技術では、外部のサスティ ンパルス用の電源は 1つである力 コンデンサを使用して負電圧を生成しているので[0007] It should be noted that in the technique disclosed in Japanese Patent Laid-Open No. 2002-62843 (Patent Document 1), a negative voltage is generated by using a single power capacitor for the external sustain pulse.
、実質的な内部電源を持っていることになる。 Will have substantial internal power.
[0008] 本発明は以上のような問題に鑑みてなされたものであり、その目的は、上記のような 問題を解決し、 PDP装置における PDPの表示駆動のための電源数を減らしてコスト ダウンできる技術を提供することにある。 [0008] The present invention has been made in view of the above problems, and an object of the present invention is to solve the above problems and reduce the number of power supplies for display driving of the PDP in the PDP device to reduce the cost. The aim is to provide a technology that can
課題を解決するための手段  Means for solving the problem
[0009] 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、 次のとおりである。前記目的を達成するために、本発明は、 PDPとその駆動回路とを 備える PDP装置の技術であって、以下に示す技術的手段を備えることを特徴とする [0009] Outlines of representative ones of the inventions disclosed in the present application will be briefly described as follows. In order to achieve the above object, the present invention is a technique of a PDP device comprising a PDP and a drive circuit thereof, characterized by comprising the following technical means.
[0010] 従来技術の PDP及び電源の設計での典型的な設定値は、アドレス電圧 Va = 65V であり、サスティン電圧 Vs = 85Vである。従って、前記サスティンパルスの正負の対 称性を保ったままでは電源の共通化はできなレ、。そのため、本発明の PDP装置では 、サスティンパルスの構成を、従来から 20Vずらしたものにする。そうすれば(85— 2 0 = 65)、アドレスパルスと正サスティンノ ルスの電圧値を等しくさせることができる。 これにより、それらパルスの電源を共通化することで、全体の電源数を減らすことがで きる。なお、素子耐圧などの理由からアドレス電圧 Vaをできる限り低くすることが望ま しレ、ので、正サスティンパルス電位側を Va側に合わせて低くする。 [0010] Typical settings in prior art PDP and power supply designs are address voltage Va = 65V and sustain voltage Vs = 85V. Therefore, the power supply cannot be shared while maintaining the positive and negative symmetry of the sustain pulse. Therefore, in the PDP device of the present invention, the configuration of the sustain pulse is shifted by 20V from the conventional one. By doing so, the voltage value of the address pulse and the positive sustaining noise can be made equal (85—2 0 = 65). This makes it possible to reduce the total number of power supplies by sharing the power sources for these pulses. Since it is desirable to reduce the address voltage Va as much as possible for reasons such as device breakdown voltage, the positive sustain pulse potential side is lowered to match the Va side.
[0011] 換言すれば、従来の X及び Yサスティンパルスについて、その正負の対称性を崩し て中心を負側にずらす。これにより、正サスティンパルス電位 (Vsl)を従来の電位 (V s)よりも低くして、アドレスパルス電位 (Va)と等しくする。設定値としては、例えば、正 サスティンパルス電位(Vsl)とアドレスパルス電位(Va)を 65Vにし、負サスティンパ ノレス電位を 65— 2 X 85=— 105Vとする。共通の電源(Vsl電源)から、正サスティ
Figure imgf000005_0001
In other words, with respect to the conventional X and Y sustain pulses, the positive / negative symmetry is broken and the center is shifted to the negative side. As a result, the positive sustain pulse potential (Vsl) is made lower than the conventional potential (Vs) and equal to the address pulse potential (Va). For example, the positive sustain pulse potential (Vsl) and address pulse potential (Va) are set to 65V, and the negative sustain The Norres potential is 65−2 X 85 = −105V. From common power supply (Vsl power supply) to positive sustain
Figure imgf000005_0001
[0012] 本 PDP装置において、例えば、 PDPは、サスティン電極(維持放電用電極)となる 第 1 (X)電極及び第 2 (Y)電極とアドレス電極となる第 3 (A)電極とを少なくとも有する 。駆動回路は、 PDPの A電極に対しアドレッシングパターンに応じたアドレスパルスを 印加し、 Y電極に対しスキャンパルスを印加する。また駆動回路は、 PDPの X及び Y 電極に対し、正と負のパルスの繰り返し力 成るサスティンパルスを、 X, Yで逆極性 となるように印加する。サスティンパルスは、基準電位(0V)を境に正パルスと負パル スとの単位パルスの繰り返しから成る。駆動回路は、各パルス生成のための電源(電 源回路)を含む。そして、本 PDP装置は、サスティンパルスの正と負のパルスにおけ る正のパルスの電位と前記アドレスパルスの電位とが等しくなるように構成する。  In this PDP apparatus, for example, the PDP includes at least a first (X) electrode that serves as a sustain electrode (sustain discharge electrode), a second (Y) electrode, and a third (A) electrode that serves as an address electrode. Have The drive circuit applies an address pulse corresponding to the addressing pattern to the A electrode of the PDP, and applies a scan pulse to the Y electrode. In addition, the drive circuit applies a sustain pulse, which is a repetition force of positive and negative pulses, to the X and Y electrodes of the PDP so that the polarities of X and Y are reversed. The sustain pulse consists of repeating unit pulses of a positive pulse and a negative pulse with a reference potential (0V) as a boundary. The drive circuit includes a power supply (power supply circuit) for generating each pulse. The PDP apparatus is configured such that the positive pulse potential in the sustain pulse positive and negative pulses is equal to the address pulse potential.
[0013] また本 PDP装置において、共通化された第 1の電源 (Vsl電源)から、サスティンパ ルスの正のパルスの電圧及びアドレスパルスの電圧である第 1の電圧(Vsl =Va)を 供給し、第 2の電源 (Vs2電源)から、サスティンパルスの負のノ ルスの電圧である第 2の電圧(Vs2 = Va— 2Vs)を供給する。  [0013] In the PDP device, the first pulse (Vsl = Va) which is the voltage of the sustain pulse positive pulse and the address pulse is supplied from the common first power supply (Vsl power supply). The second voltage (Vs2 = Va-2Vs), which is the negative pulse voltage of the sustain pulse, is supplied from the second power supply (Vs2 power supply).
[0014] また本 PDP装置において、サスティンパルスにおける正と負のパルスのパルス高が 非対称であり、正のパルスの電位の絶対値( I Vsl I )が負のパルスの電位の絶対 値( I Vs2 I )よりも小さいように構成する。駆動回路は、 X及び Y電極に対し、 Xと Y で逆極性で、各単位パルスで X— Y間に一定電圧が力かる波形のサスティンパルス を印加する。  [0014] In this PDP device, the pulse heights of the positive and negative pulses in the sustain pulse are asymmetric, and the absolute value of the positive pulse potential (I Vsl I) is the absolute value of the negative pulse potential (I Vs2 It is configured to be smaller than I). The drive circuit applies a sustain pulse with a waveform in which X and Y have opposite polarities and a constant voltage is applied between X and Y in each unit pulse to the X and Y electrodes.
発明の効果  The invention's effect
[0015] 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に 説明すれば以下のとおりである。本発明によれば、 PDP装置における PDPの表示駆 動のための電源数を減らしてコストダウンできる。  [0015] The effects obtained by typical ones of the inventions disclosed in the present application will be briefly described as follows. According to the present invention, it is possible to reduce the cost by reducing the number of power sources for PDP display driving in the PDP device.
図面の簡単な説明  Brief Description of Drawings
[0016] 園 1]本発明の実施の形態 1である PDP装置におけるサスティン回路を中心とした駆 動回路の構成を示す図である。  [0016] FIG. 1 is a diagram showing a configuration of a drive circuit centered on a sustain circuit in the PDP device according to the first embodiment of the present invention.
園 2]本発明の実施の形態 1である PDP装置の駆動回路におけるサブフィールド単 位の駆動波形の構成を示す図である。 2] The subfield unit in the drive circuit of the PDP device according to the first embodiment of the present invention It is a figure which shows the structure of a driving waveform of a unit.
[図 3]本発明の実施の形態 1である PDP装置の駆動回路における電源構成を示す図 である。  FIG. 3 is a diagram showing a power supply configuration in the drive circuit of the PDP device according to the first embodiment of the present invention.
[図 4]本発明の実施の形態 1である PDP装置における駆動回路を中心とした全体の 構成を示すブロック図である。  FIG. 4 is a block diagram showing an overall configuration centering on a drive circuit in the PDP device according to the first embodiment of the present invention.
[図 5]本発明の実施の形態 1である PDP装置における PDPの構成例を示す分解斜 視図である。  FIG. 5 is an exploded perspective view showing a configuration example of a PDP in the PDP device according to the first embodiment of the present invention.
[図 6]本発明の実施の形態 1である PDP装置における駆動方法であるサブフィールド 法の構成を示す図である。  FIG. 6 is a diagram showing a configuration of a subfield method that is a driving method in the PDP device according to the first embodiment of the present invention.
[図 7]本発明の実施の形態 2である PDP装置の駆動回路における駆動波形の構成を 示す図である。  FIG. 7 is a diagram showing a configuration of a drive waveform in a drive circuit of a PDP device according to a second embodiment of the present invention.
[図 8]本発明の実施の形態 3である PDP装置の駆動回路における駆動波形の構成を 示す図である。  FIG. 8 is a diagram showing a configuration of a drive waveform in a drive circuit of a PDP device that is Embodiment 3 of the present invention.
[図 9]本発明の実施の形態 4である PDP装置の駆動回路における駆動波形の構成を 示す図である。  FIG. 9 is a diagram showing a configuration of a drive waveform in a drive circuit of a PDP device that is Embodiment 4 of the present invention.
[図 10]従来技術の PDP装置におけるサスティン回路を中心とした駆動回路の構成を 示す図である。  FIG. 10 is a diagram showing a configuration of a drive circuit centered on a sustain circuit in a conventional PDP device.
[図 11]従来技術の PDP装置の駆動回路におけるサブフィールド単位の駆動波形の 構成を示す図である。  FIG. 11 is a diagram showing a configuration of drive waveforms in subfield units in a drive circuit of a conventional PDP device.
[図 12]従来技術の PDP装置の駆動回路におけるサブフィールド単位の駆動波形の 構成を示す図である。  FIG. 12 is a diagram showing a configuration of a drive waveform in subfield units in a drive circuit of a conventional PDP device.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態 を説明するための全図において、同一部には原則として同一符号を付し、その繰り 返しの説明は省略する。図 1〜図 9は、本発明の実施の形態を説明するためのもの である。図 10〜図 12は、従来技術 (本発明の前提技術)を説明するためのものであ る。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted. 1 to 9 are for explaining an embodiment of the present invention. 10 to 12 are for explaining the prior art (a prerequisite technique of the present invention).
[0018] <従来のサスティン回路及び駆動波形 > まず、本実施の形態との比較のために、従来技術の PDP装置の駆動回路を説明 する。図 10は、従来技術の PDP装置におけるサスティン回路例を中心に示す。図 1 1は、そのサスティン回路を含む駆動回路における駆動波形 (駆動電圧及び理想波 形)の一例を示す。図 12は、その駆動回路における電源構成を示す。 [0018] <Conventional Sustain Circuit and Drive Waveform> First, for comparison with the present embodiment, a driving circuit of a conventional PDP device will be described. Figure 10 shows an example of a sustain circuit in a conventional PDP device. Figure 11 shows an example of drive waveforms (drive voltage and ideal waveform) in a drive circuit including the sustain circuit. FIG. 12 shows a power supply configuration in the drive circuit.
[0019] 図 10において、 PDP40に対し、各セルの容量負荷 10の端子に接続される電極及 び信号線を通じて、 Xサスティン回路 91、図示しない Yサスティン回路、及びアドレス 回路 93などの駆動回路が接続されている。なお 1セル単位の回路を示す。 PDP40 のセルの容量負荷 10に対し、 X電極 (X端子)及び信号線 910を通じて、 Xサスティ ン回路 91が接続されており、同様に、 Y電極 (Y端子)及び信号線を通じて、 X側と同 様構成の Yサスティン回路が接続されている。またセルの容量負荷 10に対しアドレス 電極及び信号線を通じてアドレス回路 93が接続されている。 PDP40における対象 セルの容量負荷 10に対して、アドレス回路 93によりアドレスパルスが印加され、サス ティン回路によりサスティンパルスが印加されることにより、サスティン放電が発生す る。 Xサスティン回路 91により容量負荷 10の X端子へ Xサスティンパルスが印加され 、同様に Yサスティン回路により Y端子へ Yサスティンパルスが印加される。  In FIG. 10, a drive circuit such as an X sustain circuit 91, a Y sustain circuit (not shown), and an address circuit 93 is connected to the PDP 40 through electrodes and signal lines connected to the terminals of the capacitive load 10 of each cell. It is connected. The circuit of one cell unit is shown. The X sustain circuit 91 is connected to the capacitive load 10 of the PDP40 cell through the X electrode (X terminal) and the signal line 910. Similarly, the X side is connected to the X side through the Y electrode (Y terminal) and the signal line. A Y sustain circuit with the same configuration is connected. An address circuit 93 is connected to the capacitive load 10 of the cell through an address electrode and a signal line. An address pulse is applied by the address circuit 93 to the capacitive load 10 of the target cell in the PDP 40, and a sustain pulse is applied by the sustain circuit, thereby generating a sustain discharge. An X sustain pulse is applied to the X terminal of the capacitive load 10 by the X sustain circuit 91, and similarly, a Y sustain pulse is applied to the Y terminal by the Y sustain circuit.
[0020] なお、 Y側回路 (Yサスティン回路)の構成を省略したが、基本的に X側回路 (Xサス ティン回路)と同様の構成である。但し、 Y側には走査駆動回路 (スキャンドライバ)が 必要である。スキャンドライバは、アドレスドライバと共に、アドレス期間でのアドレス駆 動のために必要である。よって、 Yサスティン回路にスキャンドライバを備えた構成、も しくは、 Yサスティン回路と容量負荷 10との間にスキャンドライバが挿入された構成と なる。  [0020] Although the configuration of the Y-side circuit (Y sustain circuit) is omitted, the configuration is basically the same as that of the X-side circuit (X sustain circuit). However, a scan drive circuit (scan driver) is required on the Y side. The scan driver is necessary for address driving in the address period together with the address driver. Therefore, the Y sustain circuit is provided with a scan driver, or the scan driver is inserted between the Y sustain circuit and the capacitive load 10.
[0021] Xサスティン回路 91において、第 1の電源である Vs電源 901は、第 1の信号線(電 源供給線) 911を通じて、電圧 Vsを供給する。また第 2の電源である _Vs電源 902 は、第 2の信号線 (電源供給線) 912を通じて、電圧— Vsを供給する。アドレス回路 9 3において、その電源である Va電源 931は、アドレス電圧 Vaを供給する。  In the X sustain circuit 91, a Vs power source 901, which is a first power source, supplies a voltage Vs through a first signal line (power supply line) 911. A _Vs power source 902 as a second power source supplies a voltage −Vs through a second signal line (power supply line) 912. In the address circuit 93, a Va power source 931 that is a power source supplies an address voltage Va.
[0022] スィッチ素子(913, 914)は、信号線(911 , 912)を通じて容量負荷 10へ印加され る電圧(Vs, 一Vs)の切り替えのためのものであり、具体的には、トランジスタで構成 される。第 1のスィッチ素子 913の〇Nにより Vsが供給され、第 2のスィッチ素子 914 の ONにより Vsが供給される。 The switch elements (913, 914) are for switching the voltage (Vs, 1 Vs) applied to the capacitive load 10 through the signal lines (911, 912). Specifically, the switch elements (913, 914) are transistors. Configured. Vs is supplied by ◯ N of the first switch element 913, and the second switch element 914 Vs is supplied by turning ON.
[0023] 電力回収回路 930は、従来技術であり、サスティンパルスの立ち上げ/立ち下げを 行う回路である。電力回収回路 930内において、グランドをもとに、第 1のスィッチ素 子の〇Nにより、コイル、ダイオード素子を通じて、容量負荷 10へのサスティンパルス (正パルス)が立ち上げられ、第 2のスィッチ素子の〇Nにより、コイル、ダイオード素 子を通じて、容量負荷 10へのサスティンパルス(負パルス)が立ち下げられる。  [0023] The power recovery circuit 930 is a prior art, and is a circuit for starting / stopping a sustain pulse. In the power recovery circuit 930, a sustain pulse (positive pulse) to the capacitive load 10 is started up through the coil and diode element by the first switch element ○ N based on the ground, and the second switch The sustain pulse (negative pulse) to the capacitive load 10 falls through the coil and diode element due to the element N.
[0024] 図 1 1のサブフィールド(SF)単位の駆動波形にいて、上から、アドレス駆動波形 (A )、 Xサスティン駆動波形 (X)、及び Yサスティン駆動波形 (Y)をそれぞれ示す。 1 SF におけるリセット期間 (Tr)、アドレス期間 (Ta)、及びサスティン期間 (Ts)に、それぞ れの波形が、各駆動回路から各セルの容量負荷 10の対応する電極 (端子)に対し印 加される。  FIG. 11 shows the drive waveform in units of subfields (SF) in FIG. 1 and shows the address drive waveform (A), the X sustain drive waveform (X), and the Y sustain drive waveform (Y) from the top. 1 During the reset period (Tr), address period (Ta), and sustain period (Ts) in SF, each waveform is marked from each drive circuit to the corresponding electrode (terminal) of the capacitive load 10 of each cell. Added.
[0025] 本従来駆動波形で、 Xサスティンパルス (X)における、正側の電圧(正サスティンパ ノレス電圧)を Vsとする。正負ノ レスが対称、即ち正負パルスで電位絶対値が同じな ので、負側の電圧(負サスティンパルス電圧)は、—Vsである。 Vs電源 901力 、第 1 の信号線 91 1を通じて、正サスティンパルス電圧 (Vs)力 容量負荷 10の X端子へ印 加される。また一 Vs電源 902から、第 2の信号線 912を通じて、負サスティンパルス 電圧(一 Vs)力 容量負荷 10の X端子へ印加される。具体値は、例えば、 Vsが + 85 Vであり、 Vsがー 85Vである。  [0025] In this conventional driving waveform, the positive voltage (positive sustain panel voltage) in the X sustain pulse (X) is Vs. Since the positive and negative nodes are symmetrical, that is, the potential absolute value is the same for positive and negative pulses, the negative voltage (negative sustain pulse voltage) is -Vs. A positive sustain pulse voltage (Vs) force is applied to the X terminal of the capacitive load 10 through the first signal line 911 with a Vs power supply of 901 power. Also, a negative sustain pulse voltage (one Vs) is applied from the 1 Vs power source 902 to the X terminal of the capacitive load 10 through the second signal line 912. For example, Vs is +85 V and Vs is −85 V, for example.
[0026] 1 SFにおいて、リセット期間(Tr)では、従来技術に従い所定のリセットパルスが X及 び γ電極へ印加されることにより、残存電荷消去などが行われる。次にアドレス期間( Ta)においてアドレス電極に印加されるアドレスパルス(973)は、基準電位(0V)から 正側に Vaの電位を持つ電圧(Va)の単位パルスによる、アドレッシング(点灯対象セ ルの選択)のパターンに応じたパルスである。  [0026] In 1 SF, in the reset period (Tr), a predetermined reset pulse is applied to the X and γ electrodes in accordance with the prior art, thereby erasing residual charges and the like. Next, the address pulse (973) applied to the address electrode in the address period (Ta) is addressed by the unit pulse of the voltage (Va) having the potential of Va from the reference potential (0V) to the positive side. This is a pulse corresponding to the pattern.
[0027] 次にサスティン期間(Ts)において X及び Y電極に印加されるパルス (X及び Yサス ティンパルス)は、それぞれ、基準電位(0V)力も正側に Vsの電位を持つ正ノ ルス(9 71 )と負側に一 Vsの電位を持つ負パルス(972)との単位パルスの繰り返しによるパ ルスである。 Xと Yで逆極性のサスティンパルスが印加されることにより、 2Vsの電圧 が容量負荷 10に対し印加されることになる。 [0028] 図 12は、従来技術の Xサスティン回路 91における電源部分(901, 902, 931)の 詳細を示す。なお関係の大きい部分のみ図示している。本電源構成において、 AC ( 交流)電源部 961から AC電圧が供給され、 AC/DCコンバータを含んだ整流器 962 により、 AC電圧を DC (直流)電圧に変換する。その DC電圧をもとに、トランス卷き線 で構成される DC/DCコンバータ部 963により、必要な DC電圧 {Va, Vs, _Vs}を生 成する。 [0027] Next, pulses (X and Y sustain pulses) applied to the X and Y electrodes in the sustain period (Ts) are positive norms (X and Y sustain pulses) each having a reference potential (0V) force and a Vs potential on the positive side. 9 71) and a negative pulse (972) with a potential of 1 Vs on the negative side. When a sustain pulse of opposite polarity is applied to X and Y, a voltage of 2Vs is applied to the capacitive load 10. FIG. 12 shows details of the power supply portion (901, 902, 931) in the conventional X sustain circuit 91. Note that only the portion having a large relationship is shown. In this power supply configuration, AC voltage is supplied from the AC (alternating current) power supply unit 961, and the AC voltage is converted into DC (direct current) voltage by the rectifier 962 including the AC / DC converter. Based on the DC voltage, the necessary DC voltage {Va, Vs, _Vs} is generated by the DC / DC converter unit 963 composed of a transformer wire.
[0029] (実施の形態 1)  [0029] (Embodiment 1)
図 1は、本発明の実施の形態 1の PDP装置 100の駆動回路を示す。実施の形態 1 の構成は、サスティン回路における電源及び電圧の構成が、前述した従来技術構成 と異なる。図 2は、実施の形態 1の駆動回路における駆動波形 (駆動電圧及び理想 波形)である。本駆動回路及び波形では、正側のサスティンパルス高(正サスティン パルス電圧 Vsl)とアドレスパルス高(アドレス電圧 Va)が等しい構成である。そのた め、本構成では、アドレス回路とサスティン回路とで電源が共通化され、全体の電源 数を、前記従来技術構成に比べて減らすことができる。  FIG. 1 shows a drive circuit of PDP device 100 according to the first embodiment of the present invention. In the configuration of the first embodiment, the configuration of the power supply and voltage in the sustain circuit is different from the above-described conventional configuration. FIG. 2 shows drive waveforms (drive voltage and ideal waveform) in the drive circuit of the first embodiment. In this drive circuit and waveform, the positive sustain pulse height (positive sustain pulse voltage Vsl) and the address pulse height (address voltage Va) are equal. Therefore, in this configuration, the power supply is shared by the address circuit and the sustain circuit, and the total number of power supplies can be reduced as compared with the conventional technology configuration.
[0030] 図 1において、 PDP40に対し、各セルの容量負荷 10の端子に接続される電極及 び信号線を通じて、 Xサスティン回路 11、 Yサスティン回路 12、及びアドレス回路 13 などの駆動回路が接続されている。なお 1セル単位の回路を示す。 PDP40のセルの 容量負荷 10に対し、 X電極 (X端子)及び信号線 110を通じて、 Xサスティン回路 11 が接続されており、同様に、 Y電極 (Y端子)及び信号線を通じて、 X側と同様構成の Yサスティン回路 12が接続されている。またセルの容量負荷 10に対しアドレス電極 及び信号線を通じてアドレス回路 13が接続されている。 PDP40における対象セルの 容量負荷 10に対して、アドレス回路 13によりアドレスパルスが印加され、サスティン 回路によりサスティンノ^レスが印加されることにより、サスティン放電が発生する。 Xサ スティン回路 11及び信号線 110により容量負荷 10の X端子へ Xサスティンパルスが 印加され、同様に Yサスティン回路 12及び信号線 120により Y端子へ Yサスティンパ ルスが印加される。  In FIG. 1, driving circuits such as the X sustain circuit 11, the Y sustain circuit 12, and the address circuit 13 are connected to the PDP 40 through electrodes and signal lines connected to the terminals of the capacitive load 10 of each cell. Has been. The circuit of one cell unit is shown. The X sustain circuit 11 is connected to the capacitive load 10 of the PDP40 cell through the X electrode (X terminal) and the signal line 110. Similarly, the same as the X side through the Y electrode (Y terminal) and the signal line The configured Y sustain circuit 12 is connected. An address circuit 13 is connected to the capacitive load 10 of the cell through an address electrode and a signal line. An address pulse is applied to the capacitive load 10 of the target cell in the PDP 40 by the address circuit 13 and a sustain node is applied by the sustain circuit, so that a sustain discharge is generated. The X sustain pulse is applied to the X terminal of the capacitive load 10 by the X sustain circuit 11 and the signal line 110, and the Y sustain pulse is similarly applied to the Y terminal by the Y sustain circuit 12 and the signal line 120.
[0031] なお、 PDP40の駆動回路において、 Y側回路 (Yサスティン回路 12)の構成は基 本的に X側と同様なので省略する。その他、図示しないが、駆動波形に応じて必要と なる電圧の供給のための電源(電源回路)を有する。例えば、 Xサスティン回路 11及 び Yサスティン回路 12やアドレス回路 13に加えて、その他、図示しないリセット回路 などを有し、リセット電圧によるパルスを用いる。なお本明細書では、駆動回路に電源 回路を含めている。 [0031] In the drive circuit of the PDP 40, the configuration of the Y side circuit (Y sustain circuit 12) is basically the same as that of the X side, and is therefore omitted. Although not shown in the drawings, it is necessary depending on the drive waveform. A power supply (power supply circuit) for supplying a voltage. For example, in addition to the X sustain circuit 11, the Y sustain circuit 12, and the address circuit 13, in addition to the reset circuit (not shown), a pulse by a reset voltage is used. In this specification, a power supply circuit is included in the drive circuit.
[0032] 図 1において、 Xサスティン回路 11は、第 1の電源である Vsl電源 101 (換言すれ ば Va電源)と第 2の電源である Vs2電源 102 (換言すれば Va_ 2Vs電源)との 2つの 電源を有する。 Vsl電源 101は、 Xサスティン回路 11とアドレス回路 13とで共通化さ れた電源であり、アドレス回路 13に対しても同じ電圧を供給する。アドレス回路 13は 、従来必要であった Va電源 931を必要としない構成である。  [0032] In FIG. 1, the X sustain circuit 11 includes a first power source Vsl power source 101 (in other words, Va power source) and a second power source Vs2 power source 102 (in other words, Va_2Vs power source). Has two power supplies. The Vsl power supply 101 is a power supply shared by the X sustain circuit 11 and the address circuit 13 and supplies the same voltage to the address circuit 13. The address circuit 13 has a configuration that does not require the Va power source 931 that is conventionally required.
[0033] Xサスティン回路 11において、 Vsl電源 101は、電圧 Vsl =Vaを、第 1の信号線( 電源供給線) 111を通じて、セルの容量負荷 10の X端子へ供給する。 Vs2電源 102 は、電圧 Vs2= (Va_ 2Vs)を、第 2の信号線(電源供給線) 112を通じてセルの容 量負荷 10の X端子へ供給する。第 1の信号線 111と第 2の信号線 112は、スィッチ素 子(113, 114)を介して、セルへの信号線 110へ接続されている。  In the X sustain circuit 11, the Vsl power supply 101 supplies the voltage Vsl = Va to the X terminal of the capacitive load 10 of the cell through the first signal line (power supply line) 111. The Vs2 power supply 102 supplies the voltage Vs2 = (Va — 2Vs) to the X terminal of the cell capacity load 10 through the second signal line (power supply line) 112. The first signal line 111 and the second signal line 112 are connected to the signal line 110 to the cell via the switch elements (113, 114).
[0034] スィッチ素子(113, 114)は、信号線(111 , 112)を通じて容量負荷 10へ印加され る電圧(Vsl, Vs2)の切り替えのためのものであり、具体的には、トランジスタで構成 される。第 1のスィッチ素子 113の ONにより Vslが供給され、第 2のスィッチ素子 114 の ONにより Vs2が供給される。  [0034] The switch elements (113, 114) are for switching the voltages (Vsl, Vs2) applied to the capacitive load 10 through the signal lines (111, 112), and are specifically composed of transistors. Is done. When the first switch element 113 is turned on, Vsl is supplied, and when the second switch element 114 is turned on, Vs2 is supplied.
[0035] 電力回収回路 130は、従来技術通りの構成であり、サスティンパルスの立ち上げ/ 立ち下げを行う回路である。電力回収回路 130は、グランド 131、第 1及び第 2のスィ ツチ素子(132,135)、第 1及び第 2のコイル(133, 136)、第 1及び第 2のダイオード 素子(134, 137)を有し、信号線 110に接続されている。電力回収回路 930内にお レヽて、グランド 131をもとに、第 1のスィッチ素子 132の ONにより、第 1のコィノレ 133、 第 1のダイオード素子 134を通じて、容量負荷 10へのサスティンパルス(正パルス) が立ち上げられ、第 2のスィッチ素子 135の ONにより、第 2のコィノレ 136、第 2のダイ オード素子 137を通じて、容量負荷 10へのサスティンパルス(負パルス)が立ち下げ られる。  [0035] The power recovery circuit 130 is configured as in the prior art, and is a circuit that raises / lowers the sustain pulse. The power recovery circuit 130 includes a ground 131, first and second switch elements (132, 135), first and second coils (133, 136), and first and second diode elements (134, 137). And connected to the signal line 110. When the first switch element 132 is turned on based on the ground 131, the sustain pulse (positive voltage) to the capacitive load 10 is passed through the first coin 133 and the first diode element 134 based on the ground 131. When the second switch element 135 is turned on, the sustain pulse (negative pulse) to the capacitive load 10 is lowered through the second coiner 136 and the second diode element 137.
[0036] 電力回収回路 130における LC共振によって Xサスティンパルスの立ち上げ/立ち 下げを行うが、その時の電源はグランド 131を使用すれば良い。この場合、本 PDP装 置 100にその他の余計な電源を増やして設ける必要はなレ、。電力回収回路 130の 電源となるグランド 131は、 Vsl電源 101と Vs2電源 102との中間の電源とはしなレ、。 [0036] X sustain pulse rise / rise by LC resonance in power recovery circuit 130 The power supply at that time may use the ground 131. In this case, it is not necessary to add another extra power source to the PDP device 100. The ground 131 serving as a power source for the power recovery circuit 130 is a power source intermediate between the Vsl power source 101 and the Vs2 power source 102.
[0037] 図 2において、実施の形態 1の駆動波形を図 11と対比して示す。本実施の形態の 駆動波形において、 Xサスティンパルス (X)における、正側の電圧(正サスティンパ ノレス電圧)を、第 1のサスティン電圧: Vslとし、負側の電圧(負サスティンノ ルス電圧 )を、第 2のサスティン電圧: Vs2とする。同様に、 Yサスティンパルスにおける、正側 の電圧が第 1のサスティン電圧: Vsl、負側の電圧が第 2のサスティン電圧: Vs2とな る。 In FIG. 2, the drive waveform of the first embodiment is shown in comparison with FIG. In the drive waveform of this embodiment, the positive voltage (positive sustain voltage) in the X sustain pulse (X) is the first sustain voltage: Vsl, and the negative voltage (negative sustain voltage) is Second sustain voltage: Vs2. Similarly, in the Y sustain pulse, the positive voltage is the first sustain voltage: Vsl, and the negative voltage is the second sustain voltage: Vs2.
[0038] Aにおけるアドレス電圧 Vaは従来波形であり、 X, Yにおけるサスティンパルス電圧 の正側の電位(正サスティンパルス電圧 Vsl)を、従来のアドレス電圧 Vaの電位と同 じになるように、サスティンノ^レス全体を基準電位(0V)からずらした構成である。正と 負のノ^レスによる印加電圧は 2Vsであり従来波形と同じである。即ち、 X及び Yサス ティンパルスにおいて、正負パルスが非対称で I Vsl I く I Vs I く I Vs2 Iであり 、 Vsl =Vaであり、 Vs2= (Vsl - 2Vs) = (Va— 2Vs)である。他の部分の波形は従 来波形(図 11)と同様である。  [0038] The address voltage Va at A has a conventional waveform, and the positive potential of the sustain pulse voltage at X and Y (positive sustain pulse voltage Vsl) is the same as the potential of the conventional address voltage Va. The whole sustain is shifted from the reference potential (0V). The applied voltage by positive and negative nodes is 2Vs, which is the same as the conventional waveform. That is, in the X and Y sustain pulses, the positive and negative pulses are asymmetric and I Vsl I, I Vs I, I Vs2 I, Vsl = Va, and Vs2 = (Vsl-2Vs) = (Va-2Vs). . The other part of the waveform is the same as the conventional waveform (Fig. 11).
[0039] Vsl電源 101から、第 1の信号線 111を通じて、正サスティンパルス電圧(Vsl)が、 容量負荷 10の X端子へ印加される。また Vs2電源 102から、第 2の信号線 112を通 じて、負サスティンパルス電圧 (Vs 2)が、容量負荷 10の X端子へ印加される。具体 値は、例えば、 Vslが + 65Vであり、 Vs2が— 105Vである(Va = 65Vの場合)。  A positive sustain pulse voltage (Vsl) is applied from the Vsl power source 101 to the X terminal of the capacitive load 10 through the first signal line 111. Further, a negative sustain pulse voltage (Vs 2) is applied from the Vs 2 power source 102 to the X terminal of the capacitive load 10 through the second signal line 112. For example, Vsl is + 65V and Vs2 is -105V (when Va = 65V).
[0040] 1SFにおいて、リセット期間(Tr)では、従来技術に従い所定のリセットパルスが X及 び Y電極へ印加されることにより、残存電荷消去などが行われる。次にアドレス期間( Ta)において従来同様に正側に Vaの電位を持つアドレスパルス(73)が印加される 。なお、同アドレス期間 (Ta)で、 Xでは、所定電圧 (Vax)が印加され、 Yでは、所定 電圧(Vay)によるスキャンパルスが印加される。  [0040] In 1SF, in the reset period (Tr), a predetermined reset pulse is applied to the X and Y electrodes in accordance with the prior art, thereby performing residual charge erasure and the like. Next, in the address period (Ta), an address pulse (73) having a potential of Va on the positive side is applied as in the prior art. In the same address period (Ta), a predetermined voltage (Vax) is applied in X, and a scan pulse with a predetermined voltage (Vay) is applied in Y.
[0041] 次にサスティン期間(Ts)において X及び Y電極に印加されるパルス(X及び Yサス ティンパルス)は、それぞれ、基準電位(0V)力も正側に Vslの電位を持つ正パルス( 71)と、負側に Vs2の電位を持つ負パルス(72)との単位パルスの繰り返しによるパ ルスである。 Xと Yで逆極性のサスティンパルスが印加されることにより、 2VSの電圧 が容量負荷 10に対し印加されることになる。 [0041] Next, a pulse (X and Y sustain pulse) applied to the X and Y electrodes in the sustain period (Ts) is a positive pulse (71V) having a reference potential (0V) force on the positive side (Vsl potential). ) And a negative pulse with a potential of Vs2 on the negative side (72) Luz. By applying a sustain pulse of opposite polarity at X and Y, a voltage of 2VS is applied to the capacitive load 10.
[0042] 図 3は、本実施の形態における Xサスティン回路 11における電源部分(101 , 102) の詳細を示す。本電源構成において、 AC (交流)電源部 61から AC電圧が供給され 、 AC/DCコンバータを含んだ整流器 62により AC電圧を DC (直流)電圧に変換する 。その DC電圧をもとに、トランス卷き線で構成される DC/DCコンバータ部 63により、 必要な DC電圧 {Va, Va_ 2Vs}を生成する。  FIG. 3 shows details of the power supply portions (101, 102) in the X sustain circuit 11 in the present embodiment. In this power supply configuration, an AC voltage is supplied from an AC (alternating current) power source 61, and the AC voltage is converted into a DC (direct current) voltage by a rectifier 62 including an AC / DC converter. Based on the DC voltage, the necessary DC voltage {Va, Va_2Vs} is generated by the DC / DC converter unit 63 composed of transformer wire.
[0043] 図 4〜図 6は、本実施の形態の PDP装置 100における基本構成を示す。図 4は PD P40に対する駆動回路 30を含む回路の一構成例を示す。図 5は、 PDP40の一構成 例をセル単位の分解斜視図として示す。図 6は、それらの PDP装置 100構成におけ る標準的な駆動方法であるサブフィールド法及びその画面(フレーム又はフィールド と称する)の構成を示す。  4 to 6 show a basic configuration in PDP device 100 of the present embodiment. FIG. 4 shows a configuration example of a circuit including the drive circuit 30 for the PD P40. FIG. 5 shows an example of the configuration of the PDP 40 as an exploded perspective view in units of cells. FIG. 6 shows the subfield method, which is a standard driving method in the PDP device 100 configuration, and the configuration of the screen (referred to as a frame or field).
[0044] 図 4において、本 PDP装置 100は、表示パネル部である PDP40、駆動回路 30、制 御回路 20などを有する構成である。 PDP40に対して駆動回路 30が接続され、駆動 回路 30に制御回路 20が接続される。なお制御回路 20を含めて駆動回路 30と呼ぶ 場合もある。  In FIG. 4, the PDP device 100 is configured to include a PDP 40 that is a display panel unit, a drive circuit 30, a control circuit 20, and the like. The drive circuit 30 is connected to the PDP 40, and the control circuit 20 is connected to the drive circuit 30. The drive circuit 30 including the control circuit 20 is sometimes called the drive circuit 30.
[0045] PDP装置 100のハードウェア構成として、例えば、図示しないシャーシ部に対し PD P40背面が貼り合わせられ、シャーシ部背面側に制御回路 20などの各回路部を実 装した ICや電源回路部などが配置された PDPモジュールを有する。シャーシ部背面 側回路部と、 PDP40の電極の端部とが、駆動回路 30に対応するドライバモジュール により接続される。このような構成の PDPモジュール力 S、外部筐体に収容され、 PDP 装置セットが構成される。  [0045] As a hardware configuration of the PDP device 100, for example, an IC or power supply circuit unit in which the back surface of the PD P40 is bonded to a chassis unit (not shown) and each circuit unit such as the control circuit 20 is mounted on the rear side of the chassis unit. Etc. have a PDP module. The circuit part on the rear side of the chassis part and the end part of the electrode of the PDP 40 are connected by a driver module corresponding to the drive circuit 30. The PDP module force S configured as described above is housed in an external housing, and a PDP device set is configured.
[0046] 制御回路 20は、表示データ制御部 21、タイミング制御部 22などを有する。制御回 路 20は、外部より入力されるインタフェース信号 {D (表示データ), CLK (ドットクロッ ク), B (ブランキング信号), V (垂直同期信号), H (水平同期信号) }等に基づき、駆 動回路 30を制御するための制御信号を形成し、これにより駆動回路 30を制御する。 制御回路 20は、外部からの表示データ(D)を信号処理して、表示データ制御部 21 のフレームメモリ部 23に格納する。 [0047] 表示データ制御部 21は、駆動回路 30に対する表示データの供給を制御する。タイ ミング制御部 22は、表示処理タイミングを制御するタイミング信号を生成して各回路 部に供給する。表示データ制御部 21から、フレームメモリ部 23の表示データ(D)を もとに、アドレス回路部 31を制御する。またタイミング制御部 22からのタイミング信号 により、アドレス回路部 31、 Xサスティン回路部 32、及び Yサスティン回路部 33をそ れぞれ制御する。 The control circuit 20 includes a display data control unit 21, a timing control unit 22, and the like. The control circuit 20 receives externally input interface signals {D (display data), CLK (dot clock), B (blanking signal), V (vertical synchronizing signal), H (horizontal synchronizing signal)}, etc. Based on this, a control signal for controlling the drive circuit 30 is formed, and thereby the drive circuit 30 is controlled. The control circuit 20 processes the display data (D) from the outside and stores it in the frame memory unit 23 of the display data control unit 21. The display data control unit 21 controls the supply of display data to the drive circuit 30. The timing control unit 22 generates a timing signal for controlling the display processing timing and supplies it to each circuit unit. The display data control unit 21 controls the address circuit unit 31 based on the display data (D) in the frame memory unit 23. Further, the address circuit unit 31, the X sustain circuit unit 32, and the Y sustain circuit unit 33 are controlled by the timing signal from the timing control unit 22, respectively.
[0048] 駆動回路 30は、アドレス回路部 31 (アドレス回路 13に対応する)、 Xサスティン回 路部 32 (Xサスティン回路 11に対応する)、 Yサスティン回路部 33 (Yサスティン回路 12に対応する)を有する。駆動回路 30では、制御回路 20からの制御信号に従って P DP40の電極を駆動する。アドレス回路部 31は、表示データ制御部 21からの表示デ ータ(D)の信号をもとに、 PDP40のアドレス電極(データ線)を駆動する。 Xサスティ ン回路部 32は、 PDP40の X電極を駆動する。 Yサスティン回路部 33は、 PDP40の Y電極を駆動する。 Yサスティン回路部 33は、スキャンドライバを含み、これにより、走 查電極となる Y電極を駆動する。  [0048] The drive circuit 30 includes an address circuit unit 31 (corresponding to the address circuit 13), an X sustain circuit unit 32 (corresponding to the X sustain circuit 11), and a Y sustain circuit unit 33 (corresponding to the Y sustain circuit 12). ). The drive circuit 30 drives the electrode of the PDP 40 according to the control signal from the control circuit 20. The address circuit unit 31 drives the address electrode (data line) of the PDP 40 based on the display data (D) signal from the display data control unit 21. The X sustain circuit unit 32 drives the X electrode of the PDP40. The Y sustain circuit unit 33 drives the Y electrode of the PDP40. The Y sustain circuit unit 33 includes a scan driver, and thereby drives the Y electrode serving as a scanning electrode.
[0049] 図 5において、 PDP40は、主に前面基板 41と背面基板 42との二枚のガラスを主と する基板によって構成されている。 PDP40は、前面基板 41側と背面基板 42側とが、 隔壁 48等を介して対向するように貼り合わせられ、その空間におレ、て排気及び放電 ガスが封入され封止されることにより構成される。  In FIG. 5, the PDP 40 is mainly composed of a substrate mainly composed of two glasses, a front substrate 41 and a rear substrate 42. The PDP40 is constructed by bonding the front substrate 41 side and the rear substrate 42 side so that they face each other via the partition wall 48, etc., and sealing and sealing the exhaust and discharge gas in that space. Is done.
[0050] 前面基板 41には、第 1の方向に、第 1 (X)電極及び第 2 (Y)電極の組を複数本、略 平行に備える。表示電極(サスティン電極)となる X, Y電極間で維持放電が行われる 。例えば Y電極がスキャン電極となる。各 X, Y電極は、例えば、バス電極と透明電極 とにより構成される。バス電極は、ドライバ側と電気的に接続される、金属製の直線バ 一形状の電極である。透明電極は、バス電極に対し電気的に接続され、放電スリット を形成する、 ιτ〇(酸化インジウムスズ)層膜などによる電極である。本例では、前面 基板 41に対し、 X透明電極 51b及び透明電極 52bと、 Xバス電極 5 la及び Yバス電 極 52aと力 立体的に形成されている。前面基板 41上の X, Y電極は、誘電体層 43 及び保護層 44で覆われる。  [0050] The front substrate 41 is provided with a plurality of sets of first (X) electrodes and second (Y) electrodes substantially in parallel in the first direction. A sustain discharge is generated between the X and Y electrodes, which are display electrodes (sustain electrodes). For example, the Y electrode becomes the scan electrode. Each X, Y electrode is composed of, for example, a bus electrode and a transparent electrode. The bus electrode is a metal linear bar-shaped electrode that is electrically connected to the driver side. The transparent electrode is an electrode made of a ιτ〇 (indium tin oxide) layer film that is electrically connected to the bus electrode and forms a discharge slit. In this example, the X transparent electrode 51b and the transparent electrode 52b, and the X bus electrode 5la and the Y bus electrode 52a are formed in three dimensions with respect to the front substrate 41. The X and Y electrodes on the front substrate 41 are covered with a dielectric layer 43 and a protective layer 44.
[0051] また、背面基板 42には、 X, Y電極(第 1の方向)と直交する第 2の方向に、第 3 (A) 電極であるアドレス電極 47が複数本、略平行に配置されている。アドレス電極 47は、 誘電体層 45で覆われる。隔壁 48で区分され、 Y— X電極及びアドレス電極 47で交 差する領域により、表示セルが形成される。 [0051] Further, the rear substrate 42 has a third (A) in the second direction orthogonal to the X and Y electrodes (first direction). A plurality of address electrodes 47 as electrodes are arranged substantially in parallel. The address electrode 47 is covered with a dielectric layer 45. A display cell is formed by a region divided by the partition wall 48 and intersected by the Y-X electrode and the address electrode 47.
[0052] 前面基板 41と背面基板 42との間は、例えば縦方向(第 2の方向)のストライプ状に 区分された領域を形成するための複数の隔壁 48が形成されている。隔壁 48で区分 された領域には、 R, G, Bの各色の蛍光体層(46r, 46g, 46b)が区別して塗布され る。これら各色の表示セルのセットにより画素が構成される。なお、横方向(第 1の方 向)にも隔壁を設けたボックス型セルの形態なども可能である。  [0052] Between the front substrate 41 and the rear substrate 42, for example, a plurality of partition walls 48 are formed for forming regions divided into stripes in the vertical direction (second direction). The phosphor layer (46r, 46g, 46b) of each color of R, G, B is applied to the area divided by the barrier ribs 48 separately. A pixel is composed of a set of display cells of these colors. A form of a box-type cell in which a partition wall is provided in the lateral direction (first direction) is also possible.
[0053] 図 6において、 PDP40の一表示画面に対応する 1フィールド: F (例えば 16.7ms)は 、時分割される複数のサブフィールド(SF)である、 SFl〜SFnの n個(nは例えば 10 )の SF力 成る。各 SFは、順に、リセット期間(Tr) ,アドレス期間(Ta) ,サスティン期 間 (Ts)を有する。各 SFはサスティン期間(Ts)即ち維持放電回数の違いにより重み 付けが与えられており、これらの SFの点灯/非点灯の組合せパターンにより、各セ ルの階調表示が行われる。  [0053] In FIG. 6, one field corresponding to one display screen of the PDP 40: F (for example, 16.7 ms) is a plurality of time-division subfields (SF), n of SFl to SFn (n is for example 10) SF power. Each SF has a reset period (Tr), an address period (Ta), and a sustain period (Ts) in order. Each SF is weighted according to the sustain period (Ts), that is, the number of sustain discharges, and the gradation display of each cell is performed by the combination pattern of lighting / non-lighting of these SFs.
[0054] PDP40の表示駆動では、まず、リセット期間(Tr)のリセット動作として、残存する電 荷の均一化などが行われ、次に、アドレス期間(Ta)のアドレス動作として、アドレス回 路 13及び Yサスティン回路 12からの駆動により、 A—Y電極間の放電が行われ、点 灯対象セルにおけるデータメモリが行われる。そしてサスティン期間(Ts)のサスティ ン動作として、 Xサスティン回路 11及び Yサスティン回路 12からの駆動により、 X-Y 電極間での維持放電 (繰り返し放電)が行われ、点灯対象セルでの放電発光が発生 する。  In the display drive of the PDP 40, first, the remaining charge is made uniform as the reset operation in the reset period (Tr), and then the address circuit 13 is used as the address operation in the address period (Ta). And by the drive from the Y sustain circuit 12, the discharge between the A and Y electrodes is performed, and the data memory in the lighting target cell is performed. As a sustain operation during the sustain period (Ts), the sustain discharge (repetitive discharge) is performed between the XY electrodes by driving from the X sustain circuit 11 and the Y sustain circuit 12, and discharge light emission occurs in the lighting target cell. To do.
[0055] 実施の形態 1によれば、 PDP装置 100における PDP40の表示駆動のために必要 となる電源構成において、従来必要であった 3つの電源(931 , 901, 902)を 2つの 電源(101 , 102)にし、 Va及び Vslを低電圧とするので、装置構成において、低耐 圧の素子を使用しつつ、コストダウンが可能となる。  [0055] According to the first embodiment, in the power supply configuration required for the display drive of the PDP 40 in the PDP device 100, the three power supplies (931, 901, 902) that have been conventionally required are replaced with the two power supplies (101 , 102), and Va and Vsl are set to low voltages, so that it is possible to reduce costs while using low-voltage elements in the device configuration.
[0056] (実施の形態 2)  [Embodiment 2]
その他の実施の形態として、駆動回路におけるサスティンパルス以外の他の駆動 波形の電源電圧についても電源共通化を考慮し適用した構成を説明する。基本構 成は実施の形態 1と同様である。 As another embodiment, a configuration will be described in which a power supply voltage other than the sustain pulse in the drive circuit is applied in consideration of common power supply. Basic structure The configuration is the same as in the first embodiment.
[0057] 図 7は、実施の形態 2の駆動回路 30における駆動波形を示す。実施の形態 2では 、実施の形態 1と同様のサスティン回路(11 , 12)のサスティンパルスの電圧 (Vsl, Vs2)に加えて、第 1の構成(2— 1)として、リセット期間(Tr)でのリセット動作時のサ スティン電極(X電極)への印加電圧 (81)の電位(Vrx)を、アドレスパルス(73)の電 位 (Va)と等しくする。  FIG. 7 shows a drive waveform in drive circuit 30 of the second embodiment. In the second embodiment, in addition to the sustain pulse voltages (Vsl, Vs2) of the sustain circuit (11, 12) similar to the first embodiment, the first configuration (2-1) includes the reset period (Tr) The potential (Vrx) of the applied voltage (81) to the sustain electrode (X electrode) during the reset operation at is equal to the potential (Va) of the address pulse (73).
[0058] また第 2の構成(2 _ 2)として、リセット動作時の Y電極への印加電圧(82)の電位( Vry)を、アドレスパルス(73)の電位 (Va)と等しくするようにしてもよレ、。これらにより、 リセット動作で使用する電源数を従来よりも減らすことができる。  [0058] In the second configuration (2_2), the potential (Vry) of the applied voltage (82) to the Y electrode during the reset operation is made equal to the potential (Va) of the address pulse (73). Anyway. As a result, the number of power supplies used in the reset operation can be reduced as compared with the prior art.
[0059] (実施の形態 3)  [Embodiment 3]
図 8は、実施の形態 3の駆動回路 30における駆動波形を示す。構成(3)として、ァ ドレス期間(Ta)でのアドレス動作時の X電極への印加電圧(83)の電位 (Vax)を、ァ ドレスパルス(73)の電位 (Va)と等しくする。これにより、アドレス動作で使用する電 源数を従来よりも減らすことができる。  FIG. 8 shows a drive waveform in the drive circuit 30 of the third embodiment. In configuration (3), the potential (Vax) of the voltage (83) applied to the X electrode during the address operation in the address period (Ta) is made equal to the potential (Va) of the address pulse (73). As a result, the number of power supplies used in the address operation can be reduced as compared with the conventional one.
[0060] (実施の形態 4)  [0060] (Embodiment 4)
図 9は、実施の形態 4の駆動回路 30における駆動波形を示す。構成 (4)として、ァ ドレス期間(Ta)でのアドレス動作時の Y電極への印加電圧(84)、即ちスキャンパノレ スの電位(Vay)を、サスティンパルスの負パルス側の電位(Vs2=Va— 2Vs)と等し くする。これにより、アドレス動作で使用する電源数を従来よりも減らすことができる。 前述した各実施の形態の電源電圧共通化は、組み合わせた実施も可能である。  FIG. 9 shows drive waveforms in drive circuit 30 of the fourth embodiment. In configuration (4), the voltage applied to the Y electrode during the address operation in the address period (Ta) (84), that is, the scan panel potential (Vay) is set to the potential on the negative pulse side of the sustain pulse (Vs2 = Va — Equal to 2Vs). As a result, the number of power supplies used in the address operation can be reduced as compared with the prior art. The above-described common power supply voltages in the embodiments can be combined.
[0061] 以上説明したように、各実施の形態によれば、 PDP装置 100における PDP40の表 示駆動のために必要となる電源数を減らして、コストダウンが可能となる。  As described above, according to each embodiment, it is possible to reduce the number of power supplies required for the display driving of the PDP 40 in the PDP device 100, thereby reducing the cost.
[0062] 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが 、本発明は前記実施の形態に限定されるものではなぐその要旨を逸脱しない範囲 で種々変更可能であることは言うまでもない。  [0062] While the invention made by the present inventor has been specifically described based on the embodiments, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. Needless to say.
産業上の利用可能性  Industrial applicability
[0063] 本発明は、 PDP装置などのディスプレイ装置に利用可能である。 The present invention can be used for a display device such as a PDP device.

Claims

請求の範囲 The scope of the claims
[1] サスティン電極となる第 1電極及び第 2電極とアドレス電極となる第 3電極とを少なく とも有するプラズマディスプレイパネルと、正と負のパルスの繰り返しから成るサスティ ンパルスを前記プラズマディスプレイパネルの第 1電極及び第 2電極に印加し、アド レスパルスを前記第 3電極に印加する駆動回路とを有するプラズマディスプレイ装置 であって、  [1] A plasma display panel having at least a first electrode and a second electrode as sustain electrodes and a third electrode as an address electrode, and a sustain pulse composed of repetition of positive and negative pulses are supplied to the plasma display panel. A plasma display device having a drive circuit for applying an address pulse to the third electrode and applying an address pulse to the first electrode and the second electrode,
前記サスティンパルスの正と負のパルスにおける正のパルスの電位と前記アドレス パルスの電位とが等しいことを特徴とするプラズマディスプレイ装置。  A plasma display apparatus, wherein a positive pulse potential and a potential of the address pulse in the sustain pulse positive and negative pulses are equal.
[2] 請求項 1記載のプラズマディスプレイ装置において、 [2] The plasma display device according to claim 1,
前記駆動回路は、第 1の電源から前記サスティンノ^レスの正のパルスと前記アドレ スパルスのための第 1の電圧を供給し、第 2の電源から前記サスティンパルスの負の パルスのための第 2の電圧を供給することを特徴とするプラズマディスプレイ装置。  The drive circuit supplies a first positive voltage for the sustain pulse and a first voltage for the address pulse from a first power source, and a second voltage for the negative pulse for the sustain pulse from a second power source. 2. A plasma display device that supplies a voltage of 2.
[3] 請求項 1記載のプラズマディスプレイ装置において、 [3] The plasma display device according to claim 1,
前記サスティンパルスにおける前記正のパルスの電位絶対値が前記負のパルスの 電位絶対値よりも小さいことを特徴とするプラズマディスプレイ装置。  The plasma display apparatus characterized in that the positive pulse potential absolute value in the sustain pulse is smaller than the negative pulse potential absolute value.
[4] 請求項 1記載のプラズマディスプレイ装置において、 [4] The plasma display device according to claim 1,
前記駆動回路は、前記サスティンパルスの立ち上げ Z立ち下げを行う電力回収回 路を有し、  The drive circuit includes a power recovery circuit that performs Z rising and falling of the sustain pulse,
前記電力回収回路での LC共振時の電源がグランドであることを特徴とするプラズ マディスプレイ装置。  A plasma display device characterized in that a power source at the time of LC resonance in the power recovery circuit is a ground.
[5] 請求項 1記載のプラズマディスプレイ装置において、  [5] The plasma display device according to claim 1,
サブフィールドにおけるリセット動作時に保持するサスティン電極の電位のうち少な くとも 1つの電位が、前記アドレスパルスの電位と等しいことを特徴とするプラズマディ スプレイ装置。  A plasma display device, wherein at least one potential of a sustain electrode held during a reset operation in a subfield is equal to a potential of the address pulse.
[6] 請求項 1記載のプラズマディスプレイ装置において、  [6] The plasma display device according to claim 1,
サブフィールドにおけるアドレス動作時に、スキャン電極とならない方のサスティン 電極の電位が、少なくともアドレス動作時の一部において前記アドレスパルスの電位 と等しレ、ことを特徴とするプラズマディスプレイ装置。 [7] 請求項 1記載のプラズマディスプレイ装置において、 A plasma display device, wherein a potential of a sustain electrode that is not a scan electrode during an address operation in a subfield is equal to a potential of the address pulse at least during a part of the address operation. [7] The plasma display device according to claim 1,
サブフィールドにおけるアドレス動作時にスキャン電極へ印加するスキャンパルスの 電位が、前記サスティンノ レスの負のパルスの電位と等しいことを特徴とするプラズ マディスプレイ装置。  A plasma display device, wherein a potential of a scan pulse applied to a scan electrode during an address operation in a subfield is equal to a potential of a negative pulse of the sustain node.
PCT/JP2005/021110 2005-11-17 2005-11-17 Plasma display device WO2007057957A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2005/021110 WO2007057957A1 (en) 2005-11-17 2005-11-17 Plasma display device
JP2007545130A JPWO2007057957A1 (en) 2005-11-17 2005-11-17 Plasma display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/021110 WO2007057957A1 (en) 2005-11-17 2005-11-17 Plasma display device

Publications (1)

Publication Number Publication Date
WO2007057957A1 true WO2007057957A1 (en) 2007-05-24

Family

ID=38048349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021110 WO2007057957A1 (en) 2005-11-17 2005-11-17 Plasma display device

Country Status (2)

Country Link
JP (1) JPWO2007057957A1 (en)
WO (1) WO2007057957A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0968946A (en) * 1995-09-04 1997-03-11 Fujitsu Ltd Image display device and its driving method
JP2000194316A (en) * 1998-12-28 2000-07-14 Fujitsu Ltd Plasma display panel device
JP2001075526A (en) * 1999-09-01 2001-03-23 Hitachi Ltd Display device and its control method
JP2003015600A (en) * 2001-06-22 2003-01-17 Samsung Electronics Co Ltd Device and method for driving plasma display panel with improved electric power recovery rate
JP2004038158A (en) * 2002-07-02 2004-02-05 Samsung Sdi Co Ltd Driver and driving method for plasma display panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0968946A (en) * 1995-09-04 1997-03-11 Fujitsu Ltd Image display device and its driving method
JP2000194316A (en) * 1998-12-28 2000-07-14 Fujitsu Ltd Plasma display panel device
JP2001075526A (en) * 1999-09-01 2001-03-23 Hitachi Ltd Display device and its control method
JP2003015600A (en) * 2001-06-22 2003-01-17 Samsung Electronics Co Ltd Device and method for driving plasma display panel with improved electric power recovery rate
JP2004038158A (en) * 2002-07-02 2004-02-05 Samsung Sdi Co Ltd Driver and driving method for plasma display panel

Also Published As

Publication number Publication date
JPWO2007057957A1 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
US6686912B1 (en) Driving apparatus and method, plasma display apparatus, and power supply circuit for plasma display panel
JP2976923B2 (en) Drive device for capacitive loads
US6483487B2 (en) Plasma display and method of driving the same
KR100433213B1 (en) Method and apparatus for driving plasma display panel
JP3642693B2 (en) Plasma display panel device
JP4204054B2 (en) Driving method and driving apparatus for plasma display panel
KR100390887B1 (en) Driving Circuit for AC-type Plasma Display Panel
TWI287773B (en) Display device
US8199072B2 (en) Plasma display device and method of driving the same
EP1612763A2 (en) Plasma display apparatus and method of driving the same
EP1693821A2 (en) Plasma display apparatus and driving method thereof
US8471785B2 (en) Driving device, driving method and plasma display apparatus
KR100730246B1 (en) Capacitive load drive circuit, method for driving the same, and plasma display apparatus
KR100592861B1 (en) Plasma display device
KR20040110688A (en) Apparatus and method for driving plasma display panel
KR100627292B1 (en) Plasma display device and driving method thereof
KR100542227B1 (en) A driving apparatus and method of plasma display panel
KR20050110946A (en) Plasma display panel and driving method thereof
WO2007057957A1 (en) Plasma display device
JPWO2009122690A1 (en) Plasma display apparatus and driving method of plasma display panel
KR100765511B1 (en) Plasma Display Apparatus
JPWO2007023526A1 (en) Plasma display device
EP1865485A2 (en) Plasma display apparatus and scan drive circuit with reduced effect of surge voltage
JP2006072314A (en) Plasma display device and driving method thereof
KR100570680B1 (en) Driving method and apparatus of plasma display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007545130

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, EPO FORM 1205A DATED 28-08-2008

122 Ep: pct application non-entry in european phase

Ref document number: 05806559

Country of ref document: EP

Kind code of ref document: A1