WO2007055379A1 - External electrode driven discharge lamp, method for producing same, and liquid crystal display - Google Patents

External electrode driven discharge lamp, method for producing same, and liquid crystal display Download PDF

Info

Publication number
WO2007055379A1
WO2007055379A1 PCT/JP2006/322661 JP2006322661W WO2007055379A1 WO 2007055379 A1 WO2007055379 A1 WO 2007055379A1 JP 2006322661 W JP2006322661 W JP 2006322661W WO 2007055379 A1 WO2007055379 A1 WO 2007055379A1
Authority
WO
WIPO (PCT)
Prior art keywords
external electrode
solder alloy
envelope
discharge lamp
glass bulb
Prior art date
Application number
PCT/JP2006/322661
Other languages
French (fr)
Japanese (ja)
Inventor
Seiichirou Fujioka
Susumu Takahashi
Original Assignee
Nec Lighting, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Lighting, Ltd. filed Critical Nec Lighting, Ltd.
Priority to CN2006800423955A priority Critical patent/CN101310363B/en
Publication of WO2007055379A1 publication Critical patent/WO2007055379A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/044Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by a separate microwave unit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/046Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/245Manufacture or joining of vessels, leading-in conductors or bases specially adapted for gas discharge tubes or lamps
    • H01J9/247Manufacture or joining of vessels, leading-in conductors or bases specially adapted for gas discharge tubes or lamps specially adapted for gas-discharge lamps

Definitions

  • External electrode type discharge lamp method for manufacturing the same, and liquid crystal display device
  • the present invention relates to a structure of an external electrode type discharge lamp used for a backlight of a liquid crystal display panel, a manufacturing method thereof, and a liquid crystal display device using the external electrode type discharge lamp as a backlight.
  • This illumination method includes a passive illumination method using ambient light and an active illumination method using a light source such as a cold cathode fluorescent lamp or a light emitting diode on the back side or the front side of the liquid crystal display panel.
  • a light source such as a cold cathode fluorescent lamp or a light emitting diode
  • the size of the liquid crystal display panel is large, and in large display devices, a light source arranged on the back of the liquid crystal display panel, the so-called backlight, is generally used, and the use of fluorescent lamps as the size increases
  • problems such as an increase in the manufacturing cost due to the increase in the number, and there is a demand for improvements in fluorescent lamps.
  • a cold cathode fluorescent lamp and an external electrode fluorescent lamp are used.
  • a pair of internal electrodes are provided in the fluorescent lamp, and a voltage is provided between the electrodes.
  • a cold cathode fluorescent lamp having a structure in which electric discharge is generated by discharging a mark is generally used.
  • cold cathode fluorescent lamps cannot handle thinning of the display, reduction of power consumption, production cost, etc., and external electrode type fluorescent lamps that can be expected to reduce production cost and power consumption will attract attention. Became.
  • Japanese Patent Application Laid-Open No. 2003-91007 discloses a configuration in which short tubular metal electrodes are respectively provided outside both ends of a glass tube.
  • the gap between the outer surface of the glass tube and the inner surface of the external electrode is mainly composed of tin. It is considered to join by filling with a solder alloy.
  • a solder alloy mainly composed of tin has an average linear expansion coefficient of about 230 X 10 " 6 cm / cm / ° C to 250 X 10 _6 cm / cm / ° C. Coefficient of linear expansion 51 X 10 " 6 c mZcmZ ° C The melting point is much larger than 210 ° C to 230 ° C, and the soldering temperature during operation is around S250 ° C.
  • the present invention provides an external electrode type discharge that can prevent the occurrence of damage after attaching an external electrode to an envelope, and improve reliability.
  • An object of the present invention is to provide a lamp, a manufacturing method thereof, and a liquid crystal display device.
  • an external electrode type discharge lamp includes an envelope made of a glass material that forms a hollow hermetic space, and a discharge medium sealed inside the envelope.
  • a body gas and an external electrode provided on the outer surface of the envelope for causing a dielectric barrier discharge in the gas of the discharge medium.
  • the external electrode is made of a conductive material plate and is joined by a solder alloy fusion layer provided around the outer surface of the envelope.
  • the solder alloy contains bismuth in the range of 30% to 70% by weight, with the balance being tin.
  • the non-linear alloy forming the fusion layer contains bismuth, so that the linear expansion of the envelope made of the glass material can be achieved. Since the coefficient of thermal expansion of the solder alloy can be made close to the coefficient, damage due to thermal shock can be suppressed when the external electrode is joined to the envelope with a solder alloy.
  • the fusion layer of the solder alloy is favorably formed between the external electrode and the envelope. Therefore, for example, when a plurality of discharge lamps are lit in parallel, variations in lamp current are reduced, and a local temperature rise in the external electrode portion can be suppressed. As a result, the reliability of the external electrode type discharge lamp is improved and manufacturing defects are reduced.
  • solder alloy in the range of 0.01 wt% to 2 wt% in addition to bismuth and tin.
  • copper is added to the solder alloy in the range of 0.01 wt% to 2 wt% in addition to bismuth and tin.
  • liquid crystal display device includes the above-described external electrode type discharge lamp according to the present invention.
  • an external electrode type discharge lamp is used as a backlight of the liquid crystal display panel.
  • the manufacturing method of the external electrode type discharge lamp according to the present invention includes an envelope made of a glass material that forms a hollow airtight space, and a gas of a discharge medium sealed inside the envelope. And an external electrode provided on the outer surface of the envelope for causing a dielectric barrier discharge in the gas of the discharge medium.
  • the external electrode extends around the outer surface of the envelope due to the plate force of the conductive material.
  • the bonding state between the envelope and the external electrode is ensured satisfactorily by the fusion layer of the solder alloy, and the linear expansion coefficient of the envelope made of the glass material is reduced.
  • the linear expansion coefficient of the alloy can be approached. Therefore, according to the present invention, the variation in lamp current when a plurality of discharge lamps are lit in parallel is reduced, and when the external electrode is soldered to the envelope, the discharge is performed after soldering. It is possible to prevent lamp breakage and improve reliability.
  • FIG. 1 is a side view showing an entire external electrode type discharge lamp of a first embodiment.
  • FIG. 2 is a side view showing an end portion of the external electrode type discharge lamp of the first embodiment.
  • FIG. 3A is an AA cross-sectional view showing the external electrode type discharge lamp of the first embodiment.
  • FIG. 3B is a cross-sectional view taken along the line BB showing the external electrode type discharge lamp of the first embodiment.
  • FIG. 4A is a diagram showing a method of soldering external electrodes in the second embodiment.
  • FIG. 4B is a diagram showing a method of soldering external electrodes according to the second embodiment.
  • FIG. 5A is a longitudinal sectional view showing an external electrode type discharge lamp of a second embodiment.
  • FIG. 5B is a longitudinal sectional view showing another example of the external electrode type discharge lamp of the second embodiment.
  • FIG. 6A is a cross-sectional view showing an external electrode type discharge lamp of a third embodiment.
  • FIG. 6B is a longitudinal sectional view showing an external electrode type discharge lamp of a third embodiment.
  • FIG. 7A is a front view showing an example of an external electrode according to a fourth embodiment in a component state.
  • FIG. 7B is a perspective side view showing an example of the external electrode according to the fourth embodiment in a component state.
  • FIG. 8A is a front view showing another example of the external electrode according to the fourth embodiment in a component state.
  • FIG. 8B is a transparent side view showing another example of the external electrode according to the fourth embodiment in a component state.
  • FIG. 1 shows an external electrode type discharge lamp of this embodiment.
  • FIG. 2 shows a side view of the end portion of the external electrode type discharge lamp according to the first embodiment of the present invention.
  • 3A and 3B are cross-sectional views showing electrode portions of the external electrode type discharge lamp according to the first embodiment.
  • FIG. 3A is a cross-sectional view taken along the line AA
  • FIG. 3B is a cross-sectional view taken along the line BB.
  • the external electrode type discharge lamp is a mercury fluorescent lamp, and external electrodes 22 are formed on the outer surfaces of both ends of the cylindrical glass bulb 1. There is one each.
  • the external electrodes 22 are electrically insulated from each other.
  • the glass bulb 1 has a light-transmitting hermetically sealed cylindrical shape such as borosilicate glass, for example, and has a medium air-tight space (discharge chamber) inside, such as a mixed gas of argon and mercury vapor.
  • the discharge medium gas is sealed. Examples of the discharge medium gas include a mixed gas of argon and mercury vapor, a rare gas such as argon, neon, krypton, or xenon, or these.
  • a mixed gas of noble gas and mercury vapor is enclosed.
  • the filling pressure is about 1.3 X 10 3 Pa to 40 X 10 3 Pa (10 Torr to 300 Torr).
  • the basic structure related to the discharge is the glass bulb 1, the discharge medium gas, and the external electrode 22 described above.
  • the phosphor layer 4 is provided on the inner surface of the glass bulb 1 on the discharge chamber side. It has been.
  • the phosphor layer 4 plays a role of converting ultraviolet rays generated in the glass bulb 1 by discharge into light of other wavelengths such as visible light.
  • the phosphor is not particularly limited, and an appropriate phosphor is selected according to the wavelength of light to be emitted to the outside.
  • a protective layer 3 is formed on the inner surface of the glass bulb 1 corresponding to the bottom of each external electrode 22, and a phosphor layer 4 is formed on the other portions.
  • the protective layer 3 is for protecting the inner surface of the glass nozzle 1 and is made of a metal oxide such as yttrium oxide.
  • the protective layer 3 and the phosphor layer 4 do not affect the function and effect of the present invention even if they are not particularly provided, as will be described later. For this reason, the illustration of the protective layer 3 formed on the inner surface of the glass bulb 1 is omitted in the AA sectional view shown in FIG. 3A.
  • each external electrode 22 is formed in a ring shape by using a belt-like plate having a force such as 42 alloy (Fe—Ni42 alloy) or Kovar (KOV), for example.
  • the inner diameter is made smaller than the outer diameter of the glass bulb 1.
  • the circumferential length of the strip-shaped metal plate is sufficiently longer than that of the conventional “C” -shaped electrode, and one end and the other end of the strip are rounded in a ring shape. It has a “deep winding” structure that overlaps at an appropriate distance, and that the overlapping part remains even after it is mounted on the glass nozzle. Such a structure is called “deep winding” or “lap winding”.
  • the length L1 of the portion where the ends overlap is not particularly limited.
  • the inner diameter of the external electrode component having the “deep winding” structure as described above is expanded, and the glass nozzle 1 is passed through the tube in the direction of the tube axis. Cover the glass bulb 1 with the external electrode. After the mounting, the external electrode 22 is fixed by pressing the glass bulb 1 by spring elasticity due to the fact that the inner diameter is larger than that in the component state.
  • the external electrode 22 is formed by covering a ring electrode having a deep winding structure on the outside of the glass nozzle 1. Easy to install. Since the external electrode 22 is “deeply wound” and the end portion of the ring shape overlaps the end portion, the end electrode is different from the conventional “C” -shaped external electrode. The light leakage of force between the breaks is eliminated. Further, according to the external electrode 22, the electrode area can be made larger than that of the conventional “C” -shaped external electrode, the amount of heat generation can be reduced, and the heat radiation area can be increased.
  • the material of the external electrode 22 is not limited to 42 alloy or KOV. However, considering the relationship with the coefficient of thermal expansion of the borosilicate glass bulb, 42 alloy or KOV that has a coefficient of thermal expansion close to that of the glass valve is preferred. That is, the thermal expansion coefficient of the external electrode 22 is made substantially equal to the thermal expansion coefficient of the glass bulb 1, thereby preventing the glass bulb 1 from being damaged.
  • the inner electrode surface of the external electrode 22 (the surface facing the outer peripheral surface side of the glass bulb 1) is provided with, for example, a structural force prevention by which metal plating is applied by a flash plating method. Is preferable.
  • the external electrode 22 is made of an alloy containing iron (Fe) and 42 alloy or KOV, the effect of plating is great.
  • the plating material include, but are not limited to, metals such as gold and nickel, which are not easily oxidized, and copper, tin, zinc, silver, and the like. It is also effective if the outer peripheral surface of the external electrode 22 is similarly subjected to metal plating.
  • the external electrode type mercury fluorescent lamp configured as described above, for example, frequency: 10 kHz to 100 kHz, voltage: lkV to 10 kV between an external power supply (not shown) and a pair of external electrodes 22.
  • a dielectric barrier discharge is generated in which the tube wall of the glass bulb 1 is a dielectric.
  • the ultraviolet rays generated by the dielectric barrier discharge excite the phosphor layer 4, and the light converted to another wavelength by the phosphor layer 4 is emitted to the outside through the glass bulb 1.
  • each external electrode 22 is joined to both ends of the glass nozzle 1 by a solder alloy wetting phenomenon, so that there is no contact state unevenness caused by mechanical contact.
  • solder alloy is a metal material, there is no deterioration due to ultraviolet rays. Therefore, follow Unlike external electrodes using conventional adhesives containing organic resin, the bonding state between the external electrode and the glass valve does not deteriorate over time.
  • FIG. 4A shows a state when the external electrode 22 is soldered in this embodiment.
  • “deep winding” external electrodes 22 are attached to the outer surfaces of both ends of the glass bulb 1.
  • attach the tip of the solder bar 6 to the edge of the circumference of the outer electrode 22 surrounding the glass bulb 1, and bring the solder rod 7 into contact with the outer electrode 22, so that the glass bulb 1 rotates around the tube axis.
  • Heat and ultrasonic energy are applied to the external electrode 22 while rotating.
  • the molten solder alloy penetrates into the gap between the external electrode 22 and the glass bulb 1 and the overlap between the electrode ends of the deeply wound portion of the external electrode 22 by capillary action. Soldering is done. Further, the external electrode 22 soldered to the glass bulb 1 is coated with a solder alloy to a degree that is not visible from the outside.
  • the glass bulb 1 may be held horizontally or may be set up vertically! /.
  • the external electrode 22 is fixed to the glass bulb 1 by spring elasticity, so that it slides down from the glass nozzle 1 even when held vertically. There is no hindrance to soldering work.
  • Such a method of soldering while applying heat and ultrasonic energy to an object to be soldered using a soldering iron is called “ultrasonic soldering”.
  • soldering of the external electrode is not limited to the “ultrasonic soldering” described above, but can be similarly realized by the “ultrasonic soldering dip method” described below.
  • Figure 4B shows the soldering method using the “ultrasonic soldering method”. As shown in FIG. 4B, the solder alloy is melted in the solder bath 9 including the ultrasonic vibrator 8. Then, the glass bulb 1 is previously covered with an external electrode 22 having a “deep winding” structure, and the glass bulb 1 is immersed in the molten solder 10 to operate the ultrasonic vibrator 8.
  • the solder alloy penetrates smoothly between the gap between the external electrode 22 and the glass bulb 1 and the overlap between the electrode ends of the deeply wound portion of the external electrode 22, for example, a thickness of 100 m. As a result, a sufficient amount of the fusion layer 5 is formed, and the soldering is performed well.
  • soldering method in which the object to be soldered is immersed in molten solder is called the “ultrasonic solder dip method”.
  • the fusion layer 5 is also formed on the end face of the glass nozzle 1 as shown in FIG. 3B.
  • a solder alloy fusion layer may be formed directly on the glass bulb, but as a foundation for the fusion layer, It is also a good method to form a plating layer of a metal such as nickel on the outer surface of the glass bulb 1 in advance. By doing so, the familiarity between the fusion layer 5 and the glass bulb 1 becomes better, and the soldering operation becomes easier.
  • solder alloy used for soldering which is the main part of the present invention, will be described in detail.
  • the solder alloy contains bismuth in the range of 30 wt% to 70 wt%, and copper is 0.0.
  • Bismuth is added for the purpose of reducing the linear expansion coefficient of the solder alloy so that the linear expansion coefficient of the solder alloy approaches that of the glass bulb 1.
  • bismuth is less than 30% by weight, the effect of reducing the linear expansion coefficient of the solder alloy is poor.
  • the glass mass is higher than 70% by weight, when the glass bulb 1 is immersed in the molten solder alloy, the so-called “dama” is easily generated, the solder alloy becomes brittle after solidification, and cracking and peeling are likely to occur. There is an inconvenience.
  • Copper has a function of facilitating the melting of the solder alloy and is added for the purpose of facilitating adhesion of the solder alloy to the outer surface of the glass bulb 1, and if less than 0.01%, the solder alloy Is not preferable because it becomes brittle after solidification. When it exceeds 2%, the fluidity of the molten solder alloy is lowered, and so-called “dama” is easily generated when the glass bulb 1 is immersed in the molten solder alloy, which is inconvenient.
  • the external electrode type discharge lamp of the present embodiment Te As an example of the component ratio of the solder alloy, bismuth 40 weight 0/0, copper 0.1 wt 0/0, tin It was optimal to have 59.9% by weight.
  • the optimum wettability with respect to the external electrode 22 and the glass nozzle 1 is ensured, so that the inner peripheral surface of the external electrode 22 and the outer peripheral surface of the glass bulb 1 are
  • the solder alloy penetrates well into the gap by capillary action, and the fusion layer 5 can be formed with a substantially uniform thickness over almost the entire area of the gap.
  • this solder alloy when the external electrode 22 is pulled out after being immersed in the molten solder 10, it is possible to prevent the oxides adhering to the outer inner surface of the outer electrode 22 from remaining on the surface. Thus, a flat fusion layer 5 can be formed satisfactorily.
  • solder alloy for example, a configuration in which a current conductor layer is formed as an external electrode on the outer peripheral surface of a glass bulb by an ultrasonic solder dubbing method, for example, JP-A-2004-146351 It is suitable for use in an external electrode type discharge lamp disclosed in the publication.
  • the solder alloy having the above component ratio is used in the ultrasonic solder dubbing method to form the external electrode, so that the wettability of the solder alloy is ensured. Therefore, the glass bulb and the external electrode are connected to the solder bath.
  • the fused layer can be formed with a substantially uniform thickness. Therefore, by improving the flatness of the outer peripheral surface of the external electrode, it is possible to prevent peeling of the external electrode and breakage of the glass valve due to unevenness of the oxide, and to supply power to the external electrode. A good contact state is ensured, and productivity and yield can be improved.
  • each external electrode 22 It is also good to form a metal plating layer on the inner peripheral surface of each external electrode 22.
  • the inner peripheral surface of the external electrode 22 is soldered and does not come into direct contact with air, so that it has a structure that is resistant to oxidization. Wetting of the solder alloy during soldering Therefore, when immersed in the solder bath, the solder alloy smoothly enters the gap between the external electrode 22 and the glass bulb 1, facilitating the soldering work and improving the soldering reliability. Can do. Sarako, outer surface of external electrode 22 Similarly, by applying metal plating, the fusion layer 5 can be satisfactorily adhered to the outer peripheral surface with a uniform thickness.
  • the solder alloy force bismuth forming the fusion layer 5 provided across the gap between the external electrode 22 and the glass bulb 1 is provided.
  • the linear expansion coefficient of the fusion layer 5 can be brought close to the linear expansion coefficient of the glass bulb 1. Therefore, according to this external electrode type discharge lamp, the glass bulb 1 may be damaged by thermal shock in the process of soldering the external electrode 22 to the glass bulb 1 or the glass bulb 1 may be damaged after soldering. It can be suppressed.
  • this external electrode type discharge lamp since the solder alloy fusion layer 5 is well formed between the external electrode 22 and the glass bulb 1, for example, a plurality of discharge lamps are arranged in parallel. When the lamp is lit, the variation in lamp current is reduced, and the local temperature rise at the outer electrode 22 is suppressed. As a result, the reliability of the external electrode type discharge lamp is improved, and the manufacturing cost can be reduced by reducing manufacturing defects.
  • FIGS. 5A and 5B are longitudinal sectional views of the external electrodes according to the second embodiment.
  • the external electrode having the “deep winding” structure is used V, and the external electrode is made of the above-described solder alloy with glass bulb 1.
  • the point of soldering is the same as in the first embodiment, except that the end face of the external electrode 24 protrudes outward from the end face of the glass bulb 1 in the axial direction.
  • the thickness of the fusion layer 5 formed on the end surface of the glass bulb 1 is such that the glass bulb 1 of the external electrode 24 Depending on the amount of protrusion L2 of the end face force, it is formed thicker than when it is not protruded, so heat dissipation is improved accordingly.
  • FIG. 6A shows a cross-sectional view of the external electrode according to the third embodiment
  • FIG. 6B shows the third embodiment.
  • the longitudinal cross-sectional view of the external electrode which concerns on a form is shown.
  • illustration of the protective layer 3 on the inner surface of the glass bulb 1 is omitted for the same reason as in the first embodiment.
  • the external electrode 25 is soldered to the glass valve 1, and the solder alloy used is the first. It is the same as the embodiment. However, this is different from the first embodiment in which an electrode having a “deep winding” structure using a “C” -shaped external electrode is used.
  • the “C” -shaped external electrode 25 used in the present embodiment is obtained by curving a strip of 42 alloy or KOV into a ring shape with a circular cross section.
  • the outer electrode 25 has an inner diameter of the ring that is smaller than the outer diameter of the glass bulb 1 in the state of the parts before being attached to the glass bulb 1, and is expanded after being attached to the glass bulb 1. The ends of the are separated into a “C” shape.
  • the external electrode 25 of the present embodiment has a “C” -shaped force.
  • the fusion layer 5 soldering the external electrode 25 to the glass bulb 1 is the circle of the glass bulb 1. Since it is provided in the circumferential direction, it is blocked by the optical force fusion layer 5 radiated from the inside of the glass bulb 1 and does not leak to the outside from the ⁇ C '' shaped cut portion of the external electrode 25. .
  • the external electrode 25 is first fitted into the glass bulb 1 as in the second embodiment. Thereafter, the fusion layer 5 is poured between the glass valve 1 and the external electrode 25 by ultrasonic soldering or ultrasonic solder dipping. Even if the glass bulb 1 is set up vertically during soldering, the workability is not reduced as the external electrode 25 does not slide off the glass bulb 1.
  • the “C” -shaped external electrode 25 originally has an inner diameter smaller than the outer diameter of the glass nozzle 1. Therefore, when the glass bulb 1 is fitted, the external electrode itself This is because it is fixed to the glass bulb 1 by the spring elasticity.
  • the light of the internal force of the glass bulb 1 is caused by the fusion layer 5 provided around the outer surface of the glass bulb 1. Since the light is blocked, light leakage at the external electrode 25 can be eliminated.
  • FIG. 7A shows a front view of an example of the external electrode according to the fourth embodiment
  • FIG. 7B shows a perspective side view of an example of the external electrode according to the fourth embodiment
  • FIG. 8A shows a front view of another example
  • FIG. 8B shows a perspective side view of another example.
  • the cylinder 13 made of a metal plate has an inner diameter larger than the outer diameter of the glass bulb 1, and is provided with a protrusion protruding toward the glass bulb 1 inside.
  • a protrusion for example, as shown in FIGS. 7A and 7B, a protrusion 14 having a structure in which the middle of the cylinder 13 is radially narrowed and protruded inward is used.
  • a protrusion 15 formed by cutting the side surface of the cylinder 13 into a “U” shape in the tube axis direction and causing it to the inside may be used.
  • the protrusion L3 of protrusion 14 or protrusion 15 is the diameter of the circle inscribed in the tip of protrusions 14 and 15 in the state of the part before attaching external electrode 26 to glass valve 1. It is sized so that it becomes smaller. After the external electrode 26 is attached to the glass bulb 1, the glass bulb 1 is pressed down by the spring elasticity of the internal projection.
  • the external electrode 26 is mainly a cylinder, there is no light leakage through the glass bulb 1 internal force external electrode 26.
  • the external electrode 26 is simply fitted along the one end force tube axis direction of the glass bulb 1, so that the assembling work is simple.
  • the external electrode 26 shown in FIGS. 7A, 7B, 8A, and 8B is soldered to the glass bulb 1 with the above-described solder alloy, as in the first embodiment (see FIGS. 3A and 3B). ing. In this way, the external electrode made of a metal plate was simply fitted into the glass nozzle. The uneven contact state caused by mechanical contact is eliminated. In this embodiment
  • the glass valve 1 and the external electrode 26 are connected to each other by ultrasonic soldering or ultrasonic solder dipping.
  • the fusion layer 5 is formed.
  • the external electrode having a structure that is substantially cylindrical and has both end faces open in the tube axis direction is illustrated, but the present invention is limited to this configuration.
  • the external electrode may have a cap-like structure in which the end surface near the end surface of the glass bulb is closed. In this way, since the heat radiation area is further increased, the heat radiation effect can be further improved.
  • the present invention is not limited to a mercury discharge lamp in which mercury vapor is included in the gas of the discharge medium.
  • the presence or absence of the layer 3 or the material does not affect the operational effects of the present invention.
  • the external electrode type discharge lamp according to the present invention is called a so-called flat plate structure, which is not a case where a cylindrical envelope (glass bulb 1) as described in the embodiment is used. It is also suitable for those having a loose structure.
  • the external electrode type discharge lamp of this structure has a structure in which a pair of external electrodes are provided on the outer surface of the glass plate by creating a medium airtight discharge space with two glass flat plates facing each other at an interval. Speak. Even in this flat electrode type external electrode type discharge lamp, the glass plate and the external electrode made of a metal plate can be joined with a solder.
  • the nonuniformity of the contact state which arises by the structure only of the direct mechanical contact of an external electrode and a glass plate can be improved.
  • the contact state between the envelope and the external electrode can be prevented from being deteriorated by the ultraviolet rays radiated from the discharge space.
  • the external electrodes 22 are respectively provided outside the both ends of the glass valve 1 to cover the external electrodes 22.
  • a solder alloy fusion layer 5 made of tin, bismuth, and a small amount of copper is provided, and a solder alloy fusion layer 5 is formed in the gap between the glass valve 1 and the external electrode 22.
  • the solder alloy used in the example consists of 0% by weight of bismuth, 0.1% by weight of copper and the balance of tin.
  • Comparative Example 1 A structure having the same structure as that of the example and provided with a solder alloy fusion layer containing tin as a main component without containing bismuth is referred to as Comparative Example 1.
  • Comparative Example 2 is a configuration in which a solder alloy fusion layer 5 having adhesiveness between the glass bulb 1 and the external electrode 22 in the embodiment is provided, and the outer side of both ends of the fluorescent lamp. In this configuration, only external electrodes are provided respectively. This configuration is the same as that of the external electrode disclosed in Japanese Patent Laid-Open No. 2003-91007 described above.
  • Comparative example 3 is configured without the external electrode 22 in the example. Comparative Example 3 has a structure in which a solder alloy fusion layer mainly composed of tin is provided outside the both ends of the glass bulb.
  • the fluorescent lamp of the present invention has a fluorescent lamp (Comparative Examples 1, 2, and 3) that lacks some of the structural requirements of the present invention. If the characteristics were excellent, it was a fluorescent lamp with excellent reliability without damage and pinholes due to thermal shock during manufacturing.
  • damage due to thermal shock during production does not occur, in addition to the direct effect of reducing the defective rate, sorting work for non-defective products and defective products becomes unnecessary and the inspection process is omitted. Can greatly contribute to the reduction of manufacturing costs.
  • the external electrode type discharge lamp of the present invention it becomes possible to improve the reliability of the pack light in the liquid crystal display device and to provide it at a low price, and the liquid crystal display device whose display screen will become larger in the future. It is suitable for being used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

Disclosed is an external electrode driven discharge lamp comprising a hollow glass bulb (1) forming a hermetically sealed space, a discharge gas sealed in the glass bulb, and an external electrode (22) arranged outside the glass bulb. The external electrode is a plate composed of a conductive material, and is connected to the glass bulb with a fusion-bonding layer (5) whichi is composed of a solder alloy. The solder alloy is an alloy of bismuth and tin containing 30-70% by weight of bismuth. Since the linear expansion coefficient of the glass bulb is almost equal to the linear expansion coefficient of the solder alloy, damages to the glass bulb caused by thermal impact during production can be suppressed.

Description

明 細 書  Specification
外部電極型放電ランプおよびその製造方法、液晶表示装置  External electrode type discharge lamp, method for manufacturing the same, and liquid crystal display device
技術分野  Technical field
[0001] 本発明は、液晶表示パネルのバックライトなどに使用する外部電極型放電ランプの 構造とその製造方法およびこの外部電極型放電ランプをバックライトとして使用した 液晶表示装置に関する。  The present invention relates to a structure of an external electrode type discharge lamp used for a backlight of a liquid crystal display panel, a manufacturing method thereof, and a liquid crystal display device using the external electrode type discharge lamp as a backlight.
背景技術  Background art
[0002] 液晶表示装置では、その液晶表示パネルに形成した電子的な画像を可視化する ために、外部力 照明光を与える必要がある。この照明方法には、周囲光を用いるパ ッシブ照明方式と、液晶表示パネルの背面側、あるいは表面側に冷陰極蛍光ランプ や発光ダイオード等の光源を用いるアクティブ照明方式がある。アクティブ照明方式 のうち液晶表示パネルのサイズが大き 、大型表示装置では、その液晶表示パネルの 背面に配置される光源、いわゆるバックライトが一般的に用いられており、大型化に 伴う蛍光ランプの使用数増加によって製造コストが増加するなどの問題があり、蛍光 ランプの改良が求められている。  In a liquid crystal display device, it is necessary to apply external force illumination light in order to visualize an electronic image formed on the liquid crystal display panel. This illumination method includes a passive illumination method using ambient light and an active illumination method using a light source such as a cold cathode fluorescent lamp or a light emitting diode on the back side or the front side of the liquid crystal display panel. Among the active illumination methods, the size of the liquid crystal display panel is large, and in large display devices, a light source arranged on the back of the liquid crystal display panel, the so-called backlight, is generally used, and the use of fluorescent lamps as the size increases There are problems such as an increase in the manufacturing cost due to the increase in the number, and there is a demand for improvements in fluorescent lamps.
[0003] ノ ックライト用蛍光ランプには、冷陰極蛍光ランプと外部電極型蛍光ランプとが用い られており、一般的には、蛍光ランプ内に一対の内部電極が設けられ、電極間に電 圧を印カロして放電させる構造とした冷陰極蛍光ランプが一般的であった。しかし、表 示部の薄型化、消費電力の削減、製作コストの削減などについて冷陰極蛍光ランプ では対応できなくなり、製作コストや消費電力の削減が期待できる外部電極型蛍光ラ ンプが注目されるようになった。この外部電極型蛍光ランプとしては、特開 2003— 9 1007号公報に、ガラス管の両端部の外側に短管状の金属製電極がそれぞれ設けら れた構成が開示されている。  [0003] As a fluorescent lamp for knocklights, a cold cathode fluorescent lamp and an external electrode fluorescent lamp are used. In general, a pair of internal electrodes are provided in the fluorescent lamp, and a voltage is provided between the electrodes. In general, a cold cathode fluorescent lamp having a structure in which electric discharge is generated by discharging a mark is generally used. However, cold cathode fluorescent lamps cannot handle thinning of the display, reduction of power consumption, production cost, etc., and external electrode type fluorescent lamps that can be expected to reduce production cost and power consumption will attract attention. Became. As this external electrode type fluorescent lamp, Japanese Patent Application Laid-Open No. 2003-91007 discloses a configuration in which short tubular metal electrodes are respectively provided outside both ends of a glass tube.
発明の開示  Disclosure of the invention
[0004] ところで、上述したような外部電極型蛍光ランプでは、複数本の蛍光ランプを並列 点灯させた場合のランプ電流のばらつきや、外部電極部分の局部的な温度上昇など の問題を避けるために、ガラス管と外部電極を構成する金属材とが密着されて ヽる必 要がある。し力しながら、機械的加工による密着度の向上には限界があり、上述の問 題を克服するために、ガラス管の外面と外部電極の内面との隙間を、錫を主成分とす るハンダ合金で埋めることによって接合することが考えられている。 [0004] By the way, in the external electrode fluorescent lamp as described above, in order to avoid problems such as variations in lamp current when a plurality of fluorescent lamps are lit in parallel and local temperature rise in the external electrode portion. The glass tube and the metal material constituting the external electrode must be in close contact. There is a point. However, in order to overcome the above-mentioned problems, the gap between the outer surface of the glass tube and the inner surface of the external electrode is mainly composed of tin. It is considered to join by filling with a solder alloy.
[0005] 一方で、錫を主成分とするハンダ合金は、平均線膨張係数が 230 X 10"6cm/cm /°Cから 250 X 10_6cm/cm/°C程度であり、ガラス管の線膨張係数 51 X 10"6c mZcmZ°Cよりもはるかに大きぐ融点が 210°Cから 230°Cで、作業時のハンダ温度 力 S250°C前後になる。 [0005] On the other hand, a solder alloy mainly composed of tin has an average linear expansion coefficient of about 230 X 10 " 6 cm / cm / ° C to 250 X 10 _6 cm / cm / ° C. Coefficient of linear expansion 51 X 10 " 6 c mZcmZ ° C The melting point is much larger than 210 ° C to 230 ° C, and the soldering temperature during operation is around S250 ° C.
[0006] このため、ガラス管と外部電極との隙間にハンダ合金の融着層を設ける際、溶融し たハンダ合金のハンダ槽内に、外部電極が取り付けられたガラス管の端部を浸漬し たときに、熱衝撃によってガラス管が破損してしまうおそれがある。また、ガラス管に外 部電極をノヽンダ付けした後であっても、ハンダ合金が固化した際、ハンダ合金とガラ ス管との各線膨張係数の差から、ガラス管が破損してしまうおそれもあり、液晶表示 装置のバックライト用ランプとして十分な信頼性が得られな 、と 、う問題がある。  [0006] For this reason, when a solder alloy fusion layer is provided in the gap between the glass tube and the external electrode, the end portion of the glass tube to which the external electrode is attached is immersed in a molten solder alloy solder bath. The glass tube may be damaged by thermal shock. In addition, even after the external electrode is soldered to the glass tube, when the solder alloy is solidified, the glass tube may be damaged due to the difference in coefficient of linear expansion between the solder alloy and the glass tube. However, there is a problem that sufficient reliability cannot be obtained as a backlight lamp of a liquid crystal display device.
[0007] そこで、本発明は、外囲器に外部電極をノ、ンダ付けする際ゃノ、ンダ付けした後に 破損が発生することを防ぎ、信頼性の向上を図ることができる外部電極型放電ランプ およびその製造方法、液晶表示装置を提供することを目的とする。  [0007] Therefore, the present invention provides an external electrode type discharge that can prevent the occurrence of damage after attaching an external electrode to an envelope, and improve reliability. An object of the present invention is to provide a lamp, a manufacturing method thereof, and a liquid crystal display device.
[0008] 上述した目的を達成するため、本発明に係る外部電極型放電ランプは、中空の気 密空間を形作るガラス材カ なる外囲器と、この外囲器の内部に封入された放電媒 体の気体と、外囲器の外面に設けられ放電媒体の気体に誘電体バリア放電を起こさ せるための外部電極とを備える。また、外部電極が、導電性材料の板からなり、外囲 器の外面の周回りに亘つて設けられたハンダ合金の融着層によって接合されて!、る 。そして、ハンダ合金は、ビスマスが 30重量%から 70重量%の範囲で含まれ、残部 が錫力 なる。  In order to achieve the above-described object, an external electrode type discharge lamp according to the present invention includes an envelope made of a glass material that forms a hollow hermetic space, and a discharge medium sealed inside the envelope. A body gas and an external electrode provided on the outer surface of the envelope for causing a dielectric barrier discharge in the gas of the discharge medium. Further, the external electrode is made of a conductive material plate and is joined by a solder alloy fusion layer provided around the outer surface of the envelope. The solder alloy contains bismuth in the range of 30% to 70% by weight, with the balance being tin.
[0009] 以上のように構成した本発明に係る外部電極型放電ランプによれば、融着層をな すノヽンダ合金がビスマスを含むことで、ガラス材カゝらなる外囲器の線膨張係数に、ハ ンダ合金の線膨張係数を近づけることができるので、外囲器に外部電極をノヽンダ合 金で接合する際に、熱衝撃による破損が抑えられる。また、この外部電極型放電ラン プによれば、外部電極と外囲器との間に、ハンダ合金の融着層が良好に形成される ので、例えば複数本の放電ランプを並列点灯させた場合のランプ電流のばらつきが 小さくなり、外部電極部分の局部的な温度上昇が抑えられる。その結果、外部電極 型放電ランプの信頼性が向上されると共に、製造不良が低減される。 [0009] According to the external electrode type discharge lamp of the present invention configured as described above, the non-linear alloy forming the fusion layer contains bismuth, so that the linear expansion of the envelope made of the glass material can be achieved. Since the coefficient of thermal expansion of the solder alloy can be made close to the coefficient, damage due to thermal shock can be suppressed when the external electrode is joined to the envelope with a solder alloy. In addition, according to the external electrode type discharge lamp, the fusion layer of the solder alloy is favorably formed between the external electrode and the envelope. Therefore, for example, when a plurality of discharge lamps are lit in parallel, variations in lamp current are reduced, and a local temperature rise in the external electrode portion can be suppressed. As a result, the reliability of the external electrode type discharge lamp is improved and manufacturing defects are reduced.
[0010] また、本発明に係る外部電極型放電ランプは、ハンダ合金に、ビスマスと錫以外に 、銅が 0. 01重量%から 2重量%の範囲で添加されているのが好ましい。銅が添加さ れることで、溶融したハンダ合金がのび易くなり、外囲器の外面にハンダ合金を付着 させ易くなる。  [0010] Further, in the external electrode type discharge lamp according to the present invention, it is preferable that copper is added to the solder alloy in the range of 0.01 wt% to 2 wt% in addition to bismuth and tin. By adding copper, the molten solder alloy is easily spread, and the solder alloy is easily adhered to the outer surface of the envelope.
[0011] また、本発明に係る液晶表示装置は、上述した本発明の外部電極型放電ランプと In addition, the liquid crystal display device according to the present invention includes the above-described external electrode type discharge lamp according to the present invention.
、液晶表示板とを備え、外部電極型放電ランプが液晶表示板のバックライトとして用 いられている。 In addition, an external electrode type discharge lamp is used as a backlight of the liquid crystal display panel.
[0012] また、本発明に係る外部電極型放電ランプの製造方法は、中空の気密空間を形作 るガラス材カ なる外囲器と、外囲器の内部に封入された放電媒体の気体と、外囲器 の外面に設けられ放電媒体の気体に誘電体バリア放電を起こさせるための外部電極 とを備え、外部電極が、導電性材料の板力 なり外囲器の外面の周回りに亘つて設 けられたノヽンダ合金の融着層によって接合され、ハンダ合金はビスマスが 30重量% 力も 70重量%の範囲で含まれ残部が錫力もなる、外部電極型放電ランプの製造方 法であって、外囲器に外部電極を取り付ける第 1工程と、外囲器の外面と外部電極 の内面との間にハンダ合金を流し込んで融着層を形成する第 2工程とを有する。  [0012] In addition, the manufacturing method of the external electrode type discharge lamp according to the present invention includes an envelope made of a glass material that forms a hollow airtight space, and a gas of a discharge medium sealed inside the envelope. And an external electrode provided on the outer surface of the envelope for causing a dielectric barrier discharge in the gas of the discharge medium. The external electrode extends around the outer surface of the envelope due to the plate force of the conductive material. This is a method for manufacturing an external electrode type discharge lamp in which a solder alloy is bonded by a fusion layer of a solder alloy, and the solder alloy contains bismuth in the range of 30% by weight and 70% by weight, and the balance is tin. A first step of attaching the external electrode to the envelope, and a second step of forming a fusion layer by pouring a solder alloy between the outer surface of the envelope and the inner surface of the external electrode.
[0013] 本発明によれば、ハンダ合金の融着層によって外囲器と外部電極との接合状態が 良好に確保されると共に、ガラス材カゝらなる外囲器の線膨張係数に、ハンダ合金の 線膨張係数が近づけられる。このため、本発明によれば、複数本の放電ランプを並 列点灯させた場合のランプ電流のばらつきが小さくなり、外囲器に外部電極をノヽンダ 付けする際ゃノ、ンダ付けした後に放電ランプの破損が発生することを防ぎ、信頼性 の向上を図ることができる。  [0013] According to the present invention, the bonding state between the envelope and the external electrode is ensured satisfactorily by the fusion layer of the solder alloy, and the linear expansion coefficient of the envelope made of the glass material is reduced. The linear expansion coefficient of the alloy can be approached. Therefore, according to the present invention, the variation in lamp current when a plurality of discharge lamps are lit in parallel is reduced, and when the external electrode is soldered to the envelope, the discharge is performed after soldering. It is possible to prevent lamp breakage and improve reliability.
図面の簡単な説明  Brief Description of Drawings
[0014] [図 1]第 1の実施形態の外部電極型放電ランプ全体を示す側面図である。 FIG. 1 is a side view showing an entire external electrode type discharge lamp of a first embodiment.
[図 2]第 1の実施形態の外部電極型放電ランプの端部を示す側面図である。  FIG. 2 is a side view showing an end portion of the external electrode type discharge lamp of the first embodiment.
[図 3A]第 1の実施形態の外部電極型放電ランプを示す A— A断面図である。 [図 3B]第 1の実施形態の外部電極型放電ランプを示す B— B断面図である。 FIG. 3A is an AA cross-sectional view showing the external electrode type discharge lamp of the first embodiment. FIG. 3B is a cross-sectional view taken along the line BB showing the external electrode type discharge lamp of the first embodiment.
[図 4A]第 2の実施形態にお ヽて、外部電極をハンダ付けする方法を示す図である。  FIG. 4A is a diagram showing a method of soldering external electrodes in the second embodiment.
[図 4B]第 2の実施形態にぉ ヽて、外部電極をハンダ付けする方法を示す図である。  FIG. 4B is a diagram showing a method of soldering external electrodes according to the second embodiment.
[図 5A]第 2の実施形態の外部電極型放電ランプを示す縦断面図である。  FIG. 5A is a longitudinal sectional view showing an external electrode type discharge lamp of a second embodiment.
[図 5B]第 2の実施形態の外部電極型放電ランプの他の例を示す縦断面図である。  FIG. 5B is a longitudinal sectional view showing another example of the external electrode type discharge lamp of the second embodiment.
[図 6A]第 3の実施形態の外部電極型放電ランプを示す横断面図である。  FIG. 6A is a cross-sectional view showing an external electrode type discharge lamp of a third embodiment.
[図 6B]第 3の実施形態の外部電極型放電ランプを示す縦断面図である。  FIG. 6B is a longitudinal sectional view showing an external electrode type discharge lamp of a third embodiment.
[図 7A]第 4の実施形態に係る外部電極の一例を部品状態で示す正面図である。  FIG. 7A is a front view showing an example of an external electrode according to a fourth embodiment in a component state.
[図 7B]第 4の実施形態に係る外部電極の一例を部品状態で示す透視側面図である  FIG. 7B is a perspective side view showing an example of the external electrode according to the fourth embodiment in a component state.
[図 8A]第 4の実施形態に係る外部電極の他の例を部品状態で示す正面図である。 FIG. 8A is a front view showing another example of the external electrode according to the fourth embodiment in a component state.
[図 8B]第 4の実施形態に係る外部電極の他の例を部品状態で示す透視側面図であ る。  FIG. 8B is a transparent side view showing another example of the external electrode according to the fourth embodiment in a component state.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 以下、本発明の具体的な実施の形態について、図面を参照して説明する。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
[0016] (第 1の実施形態) [0016] (First embodiment)
図 1に、本実施形態の外部電極型放電ランプを示す。図 2に本発明の第 1の実施 形態に係る外部電極型放電ランプの端部の側面図を示す。また、図 3A,図 3Bは、 第 1の実施形態に係る外部電極型放電ランプの電極部分を示す断面図であって、図 FIG. 1 shows an external electrode type discharge lamp of this embodiment. FIG. 2 shows a side view of the end portion of the external electrode type discharge lamp according to the first embodiment of the present invention. 3A and 3B are cross-sectional views showing electrode portions of the external electrode type discharge lamp according to the first embodiment.
3Aが A— A断面図、図 3Bが B— B断面図である。 3A is a cross-sectional view taken along the line AA, and FIG. 3B is a cross-sectional view taken along the line BB.
[0017] 図 1、図 2および図 3A,図 3Bに示すように、外部電極型放電ランプは、水銀蛍光ラ ンプであって、円筒状のガラスバルブ 1の両端部の外面に、外部電極 22が 1つずつ 設けられている。 As shown in FIG. 1, FIG. 2, FIG. 3A, and FIG. 3B, the external electrode type discharge lamp is a mercury fluorescent lamp, and external electrodes 22 are formed on the outer surfaces of both ends of the cylindrical glass bulb 1. There is one each.
[0018] 各外部電極 22同士は、電気的には互いに絶縁状態にある。ガラスバルブ 1は、例 えばほう珪酸ガラスなど力もなる透光性の密閉された円筒状をなし、内部の中空気密 の空間(放電室)に、例えば、アルゴンと水銀蒸気との混合ガスのような放電媒体の 気体が封入されている。放電媒体のガスとしては、例えば、アルゴンと水銀蒸気との 混合ガスあるいは、アルゴン、ネオン、クリプトンやキセノンなどの希ガスまたはこれら の希ガスの混合ガスと、水銀蒸気との混合ガスが封入されている。封入圧力は、 1. 3 X 103Paから 40 X 103Pa (10Torrから 300Torr)程度である。放電に関わる基本構 成は、上述したガラスバルブ 1と、放電媒体の気体と、外部電極 22の 3つであるが、 その他に、ガラスバルブ 1の放電室側の内面に蛍光体層 4が設けられている。蛍光体 層 4は、放電によってガラスバルブ 1内に生じる紫外線を、例えば可視光のような他の 波長の光に変換する役を担っている。蛍光体は、特に限定されず、外部に放射すベ き光の波長に応じて適当なものを選択する。 [0018] The external electrodes 22 are electrically insulated from each other. The glass bulb 1 has a light-transmitting hermetically sealed cylindrical shape such as borosilicate glass, for example, and has a medium air-tight space (discharge chamber) inside, such as a mixed gas of argon and mercury vapor. The discharge medium gas is sealed. Examples of the discharge medium gas include a mixed gas of argon and mercury vapor, a rare gas such as argon, neon, krypton, or xenon, or these. A mixed gas of noble gas and mercury vapor is enclosed. The filling pressure is about 1.3 X 10 3 Pa to 40 X 10 3 Pa (10 Torr to 300 Torr). The basic structure related to the discharge is the glass bulb 1, the discharge medium gas, and the external electrode 22 described above. In addition, the phosphor layer 4 is provided on the inner surface of the glass bulb 1 on the discharge chamber side. It has been. The phosphor layer 4 plays a role of converting ultraviolet rays generated in the glass bulb 1 by discharge into light of other wavelengths such as visible light. The phosphor is not particularly limited, and an appropriate phosphor is selected according to the wavelength of light to be emitted to the outside.
[0019] また、ガラスバルブ 1の内面の各外部電極 22の下に対応する部分には、保護層 3 が形成されており、それ以外の部分には蛍光体層 4が形成されている。この保護層 3 は、ガラスノ レブ 1の内面を保護するためのもので、例えば酸化イットリウムなどのよう な金属酸化物からなる。なお、これらの保護層 3や蛍光体層 4は、後述する説明で分 力るように、特に設けられなくても本発明の作用効果に何ら影響を及ぼすものではな い。このため、図 3Aに示す A— A断面図では、ガラスバルブ 1の内面に形成されてい る保護層 3の図示を省略する。  In addition, a protective layer 3 is formed on the inner surface of the glass bulb 1 corresponding to the bottom of each external electrode 22, and a phosphor layer 4 is formed on the other portions. The protective layer 3 is for protecting the inner surface of the glass nozzle 1 and is made of a metal oxide such as yttrium oxide. The protective layer 3 and the phosphor layer 4 do not affect the function and effect of the present invention even if they are not particularly provided, as will be described later. For this reason, the illustration of the protective layer 3 formed on the inner surface of the glass bulb 1 is omitted in the AA sectional view shown in FIG. 3A.
[0020] 本実施形態において、各外部電極 22は、例えば 42ァロイ (Fe—Ni42合金)ゃコ バール (KOV)など力もなる帯状の板を卷 、てリング状に形成されたもので、ガラスバ ルブ 1に装着する前のまだ部品の状態では、内径がガラスバルブ 1の外径よりも小さ くされている。但し、帯状金属板の円周方向の長さは、従来の「C」字形電極に比べ て十分長くされ、リング状に丸めた状態で、帯板の一方の端部と他方の端部とが適当 な距離をもって重なり合っており、さらに、ガラスノ レブに装着した後でも重なり合う部 分が残るような「深巻き」構造になっている。このような構造を、「深巻き」または「重ね 巻き」と呼ぶ。端と端とが重なり合つている部分の長さ L1は、特には限定されない。  In the present embodiment, each external electrode 22 is formed in a ring shape by using a belt-like plate having a force such as 42 alloy (Fe—Ni42 alloy) or Kovar (KOV), for example. In the state of the parts before being attached to 1, the inner diameter is made smaller than the outer diameter of the glass bulb 1. However, the circumferential length of the strip-shaped metal plate is sufficiently longer than that of the conventional “C” -shaped electrode, and one end and the other end of the strip are rounded in a ring shape. It has a “deep winding” structure that overlaps at an appropriate distance, and that the overlapping part remains even after it is mounted on the glass nozzle. Such a structure is called “deep winding” or “lap winding”. The length L1 of the portion where the ends overlap is not particularly limited.
[0021] 本実施形態においては、上述のような、「深巻き」構造の外部電極の部品の内径を 拡げておいて、これにガラスノ レブ 1を端の方力も管軸方向に沿ってくぐらせて、外 部電極をガラスバルブ 1に被せる。装着された後の外部電極 22は、内径が部品状態 のときよりも拡がったことによるばね弾性によってガラスバルブ 1を押さえつけて固定さ れる。  In the present embodiment, the inner diameter of the external electrode component having the “deep winding” structure as described above is expanded, and the glass nozzle 1 is passed through the tube in the direction of the tube axis. Cover the glass bulb 1 with the external electrode. After the mounting, the external electrode 22 is fixed by pressing the glass bulb 1 by spring elasticity due to the fact that the inner diameter is larger than that in the component state.
[0022] 外部電極 22は、深巻き構造のリング状電極をガラスノ レブ 1の外側に被せることで 容易に取り付けられる。カロえて、外部電極 22は、「深巻き」になっていてリング状の端 の部分と端の部分とが重なっているので、従来の「C」字形の外部電極とは異なり、端 と端の切れ目の間力 の光の漏れが解消される。また、外部電極 22によれば、電極 面積を従来の「C」字形外部電極よりも大きくすることができ、発熱量を低減し、放熱 面積を大きくすることができる。 [0022] The external electrode 22 is formed by covering a ring electrode having a deep winding structure on the outside of the glass nozzle 1. Easy to install. Since the external electrode 22 is “deeply wound” and the end portion of the ring shape overlaps the end portion, the end electrode is different from the conventional “C” -shaped external electrode. The light leakage of force between the breaks is eliminated. Further, according to the external electrode 22, the electrode area can be made larger than that of the conventional “C” -shaped external electrode, the amount of heat generation can be reduced, and the heat radiation area can be increased.
[0023] 外部電極 22の材料としては、 42ァロイや KOVに限定されない。しかしながら、ほう 珪酸ガラス製ガラスバルブの熱膨張率との関係を考慮すると、熱膨張率がガラスバル ブの熱膨張率に近い 42ァロイまたは KOVなどが好ましい。すなわち、外部電極 22 の熱膨張率は、ガラスバルブ 1の熱膨張率とほぼ等しくされることで、ガラスバルブ 1 の破損の防止が図られている。  [0023] The material of the external electrode 22 is not limited to 42 alloy or KOV. However, considering the relationship with the coefficient of thermal expansion of the borosilicate glass bulb, 42 alloy or KOV that has a coefficient of thermal expansion close to that of the glass valve is preferred. That is, the thermal expansion coefficient of the external electrode 22 is made substantially equal to the thermal expansion coefficient of the glass bulb 1, thereby preventing the glass bulb 1 from being damaged.
[0024] また、図示しないが、外部電極 22の内周面 (ガラスバルブ 1の外周面側に臨む面) には、例えばフラッシュメツキ法によって金属めつきが施される構成力 防鲭などの点 で好ましい。特に、外部電極 22は、 42ァロイや KOVは、鉄 (Fe)を含む合金からなる ので、めっきを施しておくことの効果が大きい。めっき材料としは、例えば金や-ッケ ルなどの酸ィ匕しにくい金属や、その他にも銅、スズ、亜鉛、銀などが挙げられる力 も ちろんこれに限定されるものではない。また、外部電極 22の外周面にも同様に金属 めっきが施されても効果的である。  [0024] Although not shown in the figure, the inner electrode surface of the external electrode 22 (the surface facing the outer peripheral surface side of the glass bulb 1) is provided with, for example, a structural force prevention by which metal plating is applied by a flash plating method. Is preferable. In particular, since the external electrode 22 is made of an alloy containing iron (Fe) and 42 alloy or KOV, the effect of plating is great. Examples of the plating material include, but are not limited to, metals such as gold and nickel, which are not easily oxidized, and copper, tin, zinc, silver, and the like. It is also effective if the outer peripheral surface of the external electrode 22 is similarly subjected to metal plating.
[0025] 以上のように構成された外部電極型の水銀蛍光ランプでは、外部の電源装置 (不 図示)から一対の外部電極 22の間に、例えば、周波数: 10kHzから 100kHz、電圧: lkVから 10kV程度の交流電力を投入することで、放電室内にガラスバルブ 1の管壁 を誘電体とする誘電体バリア放電が発生する。そして、その誘電体バリア放電によつ て発生した紫外線が蛍光体層 4を励起し、蛍光体層 4によって他の波長に変換され た光がガラスバルブ 1を通して外部に放射される。  [0025] In the external electrode type mercury fluorescent lamp configured as described above, for example, frequency: 10 kHz to 100 kHz, voltage: lkV to 10 kV between an external power supply (not shown) and a pair of external electrodes 22. By applying a certain amount of AC power, a dielectric barrier discharge is generated in which the tube wall of the glass bulb 1 is a dielectric. Then, the ultraviolet rays generated by the dielectric barrier discharge excite the phosphor layer 4, and the light converted to another wavelength by the phosphor layer 4 is emitted to the outside through the glass bulb 1.
[0026] そして、本実施形態の外部電極型放電ランプには、外部電極 22とガラスバルブ 1と の間に、ハンダ合金の融着層 5が設けられている。つまり、本実施形態では、各外部 電極 22がガラスノ レブ 1の両端部にハンダ合金の濡れ現象で接合されているので、 機械的な接触が原因になる接触状態のむらがない。  In the external electrode type discharge lamp of this embodiment, a solder alloy fusion layer 5 is provided between the external electrode 22 and the glass bulb 1. In other words, in the present embodiment, each external electrode 22 is joined to both ends of the glass nozzle 1 by a solder alloy wetting phenomenon, so that there is no contact state unevenness caused by mechanical contact.
[0027] し力も、ハンダ合金は金属材であるので、紫外線による劣化はない。したがって、従 来の有機榭脂を含む粘 ·接着剤を使った外部電極とは異なり、外部電極とガラスバ ルブとの接合状態が経時的に劣化することはない。 [0027] Since the solder alloy is a metal material, there is no deterioration due to ultraviolet rays. Therefore, follow Unlike external electrodes using conventional adhesives containing organic resin, the bonding state between the external electrode and the glass valve does not deteriorate over time.
[0028] 本実施形態に係る外部電極 22は、以下のようにして製造する。図 4Aに、本実施形 態において、外部電極 22をノヽンダ付けするときの状態を示す。図 4Aに示すように、 先ず、ガラスバルブ 1の両端部の外面に、「深巻き」の外部電極 22を装着する。そし て、外部電極 22のガラスバルブ 1を取り巻く円周の縁の部分にハンダ棒 6の先端をあ てがい、併せてハンダ鏝 7を外部電極 22に接触させて、ガラスバルブ 1を管軸回りに 回転させながら外部電極 22に熱と超音波エネルギーとを与える。これにより、溶融し たハンダ合金は、毛管現象で外部電極 22とガラスバルブ 1との間の隙間、および外 部電極 22の深巻き部分の、電極端同士の重なりの間に浸み込むことで、ハンダ付け がなされる。また、ガラスバルブ 1にハンダ付けされた外部電極 22は、外部から見え な 、程度までハンダ合金で被覆されて 、る。  [0028] The external electrode 22 according to the present embodiment is manufactured as follows. FIG. 4A shows a state when the external electrode 22 is soldered in this embodiment. As shown in FIG. 4A, first, “deep winding” external electrodes 22 are attached to the outer surfaces of both ends of the glass bulb 1. Then, attach the tip of the solder bar 6 to the edge of the circumference of the outer electrode 22 surrounding the glass bulb 1, and bring the solder rod 7 into contact with the outer electrode 22, so that the glass bulb 1 rotates around the tube axis. Heat and ultrasonic energy are applied to the external electrode 22 while rotating. As a result, the molten solder alloy penetrates into the gap between the external electrode 22 and the glass bulb 1 and the overlap between the electrode ends of the deeply wound portion of the external electrode 22 by capillary action. Soldering is done. Further, the external electrode 22 soldered to the glass bulb 1 is coated with a solder alloy to a degree that is not visible from the outside.
[0029] この方法でノ、ンダ付けを行う場合、ガラスバルブ 1は水平に保持されてもよいし、垂 直に立てられてもよ!/、。ガラスバルブ 1に嵌められた状態でのまだハンダ付けされる 前では、外部電極 22がばね弾性によってガラスバルブ 1に固定されているので、垂 直に保持した場合であってもガラスノ レブ 1から滑り落ちることがなぐハンダ付け作 業に何ら支障がない。このような、ハンダ鏝を用いてハンダ付け対象物に熱と超音波 エネルギーとを印加しながらハンダ付けする方法を、「超音波ハンダ付け」と呼ぶ。  [0029] In the case of attaching and slashing by this method, the glass bulb 1 may be held horizontally or may be set up vertically! /. Before soldering with the glass bulb 1 fitted into the glass bulb 1, the external electrode 22 is fixed to the glass bulb 1 by spring elasticity, so that it slides down from the glass nozzle 1 even when held vertically. There is no hindrance to soldering work. Such a method of soldering while applying heat and ultrasonic energy to an object to be soldered using a soldering iron is called “ultrasonic soldering”.
[0030] 外部電極のハンダ付けは、上述した「超音波ハンダ付け」に限らず、次に述べる「超 音波ハンダディップ法」でも同様に実現することができる。図 4Bに、「超音波ハンダデ イッブ法」によるハンダ付けの方法を示す。図 4Bに示すように、超音波振動子 8を備 えるハンダ浴槽 9に、ハンダ合金を溶融させておく。そして、予めガラスバルブ 1に「深 巻き」構造の外部電極 22を被せてぉ 、たガラスバルブ 1を溶融ハンダ 10の中に浸漬 させ、超音波振動子 8を作動させる。これにより、ハンダ合金は、外部電極 22とガラス バルブ 1との間の隙間と、外部電極 22の深巻き部分の、電極端同士の重なりの間と に円滑に浸み込んで例えば厚さ 100 m程度の融着層 5が形成されて、ハンダ付け が良好になされる。  The soldering of the external electrode is not limited to the “ultrasonic soldering” described above, but can be similarly realized by the “ultrasonic soldering dip method” described below. Figure 4B shows the soldering method using the “ultrasonic soldering method”. As shown in FIG. 4B, the solder alloy is melted in the solder bath 9 including the ultrasonic vibrator 8. Then, the glass bulb 1 is previously covered with an external electrode 22 having a “deep winding” structure, and the glass bulb 1 is immersed in the molten solder 10 to operate the ultrasonic vibrator 8. As a result, the solder alloy penetrates smoothly between the gap between the external electrode 22 and the glass bulb 1 and the overlap between the electrode ends of the deeply wound portion of the external electrode 22, for example, a thickness of 100 m. As a result, a sufficient amount of the fusion layer 5 is formed, and the soldering is performed well.
[0031] このような、ハンダ浴槽を用いて、溶融ハンダに超音波エネルギーを与えながらノヽ ンダ付け対象物を溶融ハンダに浸すノヽンダ付け法を、「超音波ハンダディップ法」と 呼ぶ。超音波ハンダディップ法によるハンダ付けの場合には、図 3Bに示すように、融 着層 5がガラスノ レブ 1の端面にも形成される。 [0031] Using such a solder bath, while applying ultrasonic energy to molten solder, The soldering method in which the object to be soldered is immersed in molten solder is called the “ultrasonic solder dip method”. In the case of soldering by the ultrasonic solder dip method, the fusion layer 5 is also formed on the end face of the glass nozzle 1 as shown in FIG. 3B.
[0032] 超音波ハンダデイッブ法によるハンダ付けの場合、通常、ガラスノ レブ 1を、管軸方 向を垂直にして溶融ハンダ 10に浸漬させることになる力 その場合でも、ハンダ付け 前の外部電極 22は、ばね弾性でガラスバルブ 1に固定されているので、作業に何ら 支障はない。この超音波ハンダディップ法によれば、外部電極 22とガラスバルブ 1と の間隙へのハンダ合金の浸透性が良好にされ、融着層による接合力も向上される。  [0032] In the case of soldering by the ultrasonic solder dave method, the force that normally dries the glass nozzle 1 in the molten solder 10 with the tube axis direction vertical, even in that case, the external electrode 22 before soldering is Since it is fixed to the glass bulb 1 with spring elasticity, there is no problem in the work. According to this ultrasonic solder dip method, the permeability of the solder alloy into the gap between the external electrode 22 and the glass bulb 1 is improved, and the bonding force by the fusion layer is also improved.
[0033] 本実施形態のように外部電極 22とガラスノ レブ 1とをノヽンダ付けする場合、ガラス バルブに直接、ハンダ合金の融着層を形成しても良いが、融着層の下地として、予 めガラスバルブ 1の外面に例えばニッケルなどの金属のめっき層を形成しておくことも 良い方法である。このようにすれば、融着層 5とガラスバルブ 1とのなじみが良くなつて 、ハンダ付け作業がより一層行い易くなる。  [0033] When the external electrode 22 and the glass nozzle 1 are soldered as in this embodiment, a solder alloy fusion layer may be formed directly on the glass bulb, but as a foundation for the fusion layer, It is also a good method to form a plating layer of a metal such as nickel on the outer surface of the glass bulb 1 in advance. By doing so, the familiarity between the fusion layer 5 and the glass bulb 1 becomes better, and the soldering operation becomes easier.
[0034] ここで、本発明の要部である、ハンダ付けに用いられるハンダ合金について、詳細 に説明する。  [0034] Here, the solder alloy used for soldering, which is the main part of the present invention, will be described in detail.
[0035] ハンダ合金は、ビスマスが 30重量%から 70重量%の範囲で含まれており、銅が 0.  [0035] The solder alloy contains bismuth in the range of 30 wt% to 70 wt%, and copper is 0.0.
01重量%から 2重量%の範囲で添加され、残部が錫からなる。  It is added in the range of 01% to 2% by weight, with the balance being tin.
[0036] ビスマスは、ハンダ合金の線膨張係数をガラスバルブ 1の線膨張係数に近づけるた めに、ハンダ合金の線膨張係数を小さくする目的で添加されている。ビスマスが 30重 量%よりも少ない場合には、ハンダ合金の線膨張係数を小さくする効果が乏しい。ビ スマスが 70重量%よりも多い場合には、溶融したハンダ合金にガラスバルブ 1を浸し た際に、いわゆる「だま」が発生し易ぐハンダ合金が固化後に脆くなり、割れや剥離 が生じ易くなる不都合がある。  Bismuth is added for the purpose of reducing the linear expansion coefficient of the solder alloy so that the linear expansion coefficient of the solder alloy approaches that of the glass bulb 1. When bismuth is less than 30% by weight, the effect of reducing the linear expansion coefficient of the solder alloy is poor. If the glass mass is higher than 70% by weight, when the glass bulb 1 is immersed in the molten solder alloy, the so-called “dama” is easily generated, the solder alloy becomes brittle after solidification, and cracking and peeling are likely to occur. There is an inconvenience.
[0037] 銅は、溶融したノ、ンダ合金をのび易くする働きがあり、ガラスバルブ 1の外面にハン ダ合金を付着させ易くする目的で添加され、 0. 01%よりも少ない場合、ハンダ合金 が固化後に脆くなるので好ましくない。 2%よりも多い場合には、溶融したノヽンダ合金 の流動性が低下し、溶融したハンダ合金にガラスバルブ 1を浸したときに、いわゆる「 だま」が発生し易 、不都合がある。 [0038] そして、本実施形態の外部電極型放電ランプにお!、て、ハンダ合金の成分比の一 例としては、ビスマスが 40重量0 /0、銅が 0. 1重量0 /0、錫が 59. 9重量%カ なるもの が最適であった。 [0037] Copper has a function of facilitating the melting of the solder alloy and is added for the purpose of facilitating adhesion of the solder alloy to the outer surface of the glass bulb 1, and if less than 0.01%, the solder alloy Is not preferable because it becomes brittle after solidification. When it exceeds 2%, the fluidity of the molten solder alloy is lowered, and so-called “dama” is easily generated when the glass bulb 1 is immersed in the molten solder alloy, which is inconvenient. [0038] Then, contact!, The external electrode type discharge lamp of the present embodiment Te, As an example of the component ratio of the solder alloy, bismuth 40 weight 0/0, copper 0.1 wt 0/0, tin It was optimal to have 59.9% by weight.
[0039] 上述した本実施形態に係るハンダ合金によれば、外部電極 22およびガラスノ レブ 1に対する最適な濡れ性が確保されるので、外部電極 22の内周面とガラスバルブ 1 の外周面との間隙にハンダ合金が毛管現象で良好に浸入し、この間隙のほぼ全域 に亘つて融着層 5がほぼ均一な厚みで良好に形成することができる。また、このハン ダ合金によれば、外部電極 22を溶融ハンダ 10に浸した後に引き出す際に、外部電 極 22の外内面に付着した酸ィ匕物が表面に残留することが抑えられ、表面が平坦な 融着層 5を良好に形成することができる。  [0039] According to the solder alloy according to the above-described embodiment, the optimum wettability with respect to the external electrode 22 and the glass nozzle 1 is ensured, so that the inner peripheral surface of the external electrode 22 and the outer peripheral surface of the glass bulb 1 are The solder alloy penetrates well into the gap by capillary action, and the fusion layer 5 can be formed with a substantially uniform thickness over almost the entire area of the gap. Also, according to this solder alloy, when the external electrode 22 is pulled out after being immersed in the molten solder 10, it is possible to prevent the oxides adhering to the outer inner surface of the outer electrode 22 from remaining on the surface. Thus, a flat fusion layer 5 can be formed satisfactorily.
[0040] また、上述したハンダ合金の他の用途としては、例えばガラスバルブの外周面に超 音波ハンダデイツビング法によって電流導体層を外部電極として形成された構成、例 えば特開 2004— 146351号公報に開示されている外部電極型放電ランプに採用さ れて好適である。上述した成分比のハンダ合金を超音波ハンダデイツビング法で用 いて、外部電極を形成することで、ハンダ合金の濡れ性が良好に確保されているの で、ガラスバルブおよび外部電極をノヽンダ浴槽に浸した際、ハンダデイツビング層の 外周面に酸ィ匕物などの異物が残留することが抑制され、酸ィ匕物による凹凸が外周面 上に生じること無ぐ融着層力 なる外部電極の外周面を平坦面に形成すると共に、 融着層をほぼ均一な厚みで形成することができる。したがって、外部電極の外周面の 平坦度が向上されることで、外部電極の剥離や、酸ィ匕物の凹凸に起因するガラスバ ルブの破損が防止されると共に、外部電極に電力を供給するコネクタとの良好な接 触状態が確保され、生産性および歩留まりの向上を図ることができる。  [0040] Further, as another application of the above-described solder alloy, for example, a configuration in which a current conductor layer is formed as an external electrode on the outer peripheral surface of a glass bulb by an ultrasonic solder dubbing method, for example, JP-A-2004-146351 It is suitable for use in an external electrode type discharge lamp disclosed in the publication. The solder alloy having the above component ratio is used in the ultrasonic solder dubbing method to form the external electrode, so that the wettability of the solder alloy is ensured. Therefore, the glass bulb and the external electrode are connected to the solder bath. When immersed in the outer surface of the solder dubbing layer, it is possible to prevent foreign substances such as oxides from remaining on the outer peripheral surface, and to prevent the unevenness caused by the oxides from forming on the outer peripheral surface. In addition to forming the outer peripheral surface of a flat surface, the fused layer can be formed with a substantially uniform thickness. Therefore, by improving the flatness of the outer peripheral surface of the external electrode, it is possible to prevent peeling of the external electrode and breakage of the glass valve due to unevenness of the oxide, and to supply power to the external electrode. A good contact state is ensured, and productivity and yield can be improved.
[0041] また、各外部電極 22の内周面には、金属めつき層を形成しておくことも良い結果を もたらす。本実施形態では、外部電極 22の内周面は、ハンダ付けされており、直接 空気に触れることがないので、酸ィ匕されにくい構造にはなっている力 ハンダ付けの 際のハンダ合金の濡れ性が向上するので、ハンダ浴槽に浸した際に外部電極 22と ガラスバルブ 1との間隙に円滑にハンダ合金が浸入されて、ハンダ付け作業が容易 になり、ハンダ付けの信頼性も向上することができる。さら〖こ、外部電極 22の外周面 にも同様に金属めつきが施されることで、外周面上に融着層 5を均一な厚さで良好に 付着させることができる。 [0041] It is also good to form a metal plating layer on the inner peripheral surface of each external electrode 22. In the present embodiment, the inner peripheral surface of the external electrode 22 is soldered and does not come into direct contact with air, so that it has a structure that is resistant to oxidization. Wetting of the solder alloy during soldering Therefore, when immersed in the solder bath, the solder alloy smoothly enters the gap between the external electrode 22 and the glass bulb 1, facilitating the soldering work and improving the soldering reliability. Can do. Sarako, outer surface of external electrode 22 Similarly, by applying metal plating, the fusion layer 5 can be satisfactorily adhered to the outer peripheral surface with a uniform thickness.
[0042] 上述したように、第 1の実施形態の外部電極型放電ランプによれば、外部電極 22と ガラスバルブ 1との間隙に亘つて設けられた融着層 5をなすノヽンダ合金力 ビスマス、 錫、銅カゝらなることによって、融着層 5の線膨張係数をガラスバルブ 1の線膨張係数 に近づけることが可能になる。このため、この外部電極型放電ランプによれば、ガラス バルブ 1に外部電極 22をノヽンダ付けする工程で熱衝撃によるガラスバルブ 1の破損 や、ハンダ付けした後にガラスバルブ 1の破損が生じることが抑えられる。  [0042] As described above, according to the external electrode type discharge lamp of the first embodiment, the solder alloy force bismuth forming the fusion layer 5 provided across the gap between the external electrode 22 and the glass bulb 1 is provided. By using tin, copper, etc., the linear expansion coefficient of the fusion layer 5 can be brought close to the linear expansion coefficient of the glass bulb 1. Therefore, according to this external electrode type discharge lamp, the glass bulb 1 may be damaged by thermal shock in the process of soldering the external electrode 22 to the glass bulb 1 or the glass bulb 1 may be damaged after soldering. It can be suppressed.
[0043] また、この外部電極型放電ランプによれば、外部電極 22とガラスバルブ 1との間に、 ハンダ合金の融着層 5が良好に形成されるので、例えば複数本の放電ランプを並列 点灯させた場合のランプ電流のばらつきが小さくなり、外部電極 22部分の局部的な 温度上昇が抑えられる。その結果、外部電極型放電ランプの信頼性が向上されると 共に、製造不良を低減して製造コストの低減を図ることができる。  Further, according to this external electrode type discharge lamp, since the solder alloy fusion layer 5 is well formed between the external electrode 22 and the glass bulb 1, for example, a plurality of discharge lamps are arranged in parallel. When the lamp is lit, the variation in lamp current is reduced, and the local temperature rise at the outer electrode 22 is suppressed. As a result, the reliability of the external electrode type discharge lamp is improved, and the manufacturing cost can be reduced by reducing manufacturing defects.
[0044] (第 2の実施形態)  [0044] (Second Embodiment)
図 5A,図 5Bに、第 2の実施形態に係る外部電極の縦断面図を示す。図 5A,図 5B と、併せて図 3A,図 3Bを参照して、本実施形態は、「深巻き」構造の外部電極を用 V、、その外部電極をガラスバルブ 1に上述のハンダ合金でハンダ付けして!/、る点は、 第 1の実施形態と同じであるが、外部電極 24の端面がガラスバルブ 1の端面から軸 方向に向力つて外側に突出されて 、る点が異なって 、る。  5A and 5B are longitudinal sectional views of the external electrodes according to the second embodiment. Referring to FIGS. 5A and 5B and FIGS. 3A and 3B together, in this embodiment, the external electrode having the “deep winding” structure is used V, and the external electrode is made of the above-described solder alloy with glass bulb 1. The point of soldering is the same as in the first embodiment, except that the end face of the external electrode 24 protrudes outward from the end face of the glass bulb 1 in the axial direction. And
[0045] このように構成することで、図 5Aに示すように、細径のガラスバルブでは、ガラスバ ルブ 1の端面に形成される融着層 5の厚さが、外部電極 24のガラスバルブ 1の端面 力もの突出量 L2に応じて、突出されていない場合に比べて厚く形成されるので、そ の分、放熱性が良くなる。  With this configuration, as shown in FIG. 5A, in the thin glass bulb, the thickness of the fusion layer 5 formed on the end surface of the glass bulb 1 is such that the glass bulb 1 of the external electrode 24 Depending on the amount of protrusion L2 of the end face force, it is formed thicker than when it is not protruded, so heat dissipation is improved accordingly.
[0046] また、ガラスバルブ 1の端面が平坦面でなぐ図 5Bに示すように断面円弧状の場合 、外部電極 24の端面が突出されているガラスノ レブ 1の端面が曲がり始める部分で 融着層 5が厚くなるので、その分だけ、放熱性が良くなる。  [0046] Further, in the case where the end surface of the glass bulb 1 is a flat surface, as shown in FIG. 5B, the end surface of the glass electrode 1 from which the end surface of the external electrode 24 protrudes is bent. Since 5 becomes thicker, the heat dissipation is improved accordingly.
[0047] (第 3の実施形態)  [0047] (Third embodiment)
図 6Aに、第 3の実施形態に係る外部電極の横断面図を示し、図 6Bに、第 3の実施 形態に係る外部電極の縦断面図を示す。なお、図 6Aの横断面図では、第 1の実施 形態と同じ理由により、ガラスバルブ 1内面の保護層 3の図示を省略する。 FIG. 6A shows a cross-sectional view of the external electrode according to the third embodiment, and FIG. 6B shows the third embodiment. The longitudinal cross-sectional view of the external electrode which concerns on a form is shown. In the cross-sectional view of FIG. 6A, illustration of the protective layer 3 on the inner surface of the glass bulb 1 is omitted for the same reason as in the first embodiment.
[0048] 図 6A,図 6Bと、併せて図 3A,図 3Bを参照して、本実施形態は、外部電極 25をガ ラスバルブ 1にハンダ付けして 、る点、および用いるハンダ合金は第 1の実施形態と 同一である。しかし、「C」字形の外部電極を用いている点力 「深巻き」構造の電極を 用いて 、る第 1の実施形態と異なって 、る。本実施形態に用いる「C」字形の外部電 極 25は、 42ァロイや KOVなどの帯板を断面円形のリング状に湾曲させて丸めたも のである。外部電極 25は、リングの内径が、ガラスバルブ 1に装着する前の部品の状 態で、ガラスバルブ 1の外径よりも小さくされており、ガラスバルブ 1に装着した後に拡 げられ、帯板の端と端とが離れて「C」字形になる。  [0048] Referring to FIGS. 3A and 3B in combination with FIGS. 6A and 6B, in this embodiment, the external electrode 25 is soldered to the glass valve 1, and the solder alloy used is the first. It is the same as the embodiment. However, this is different from the first embodiment in which an electrode having a “deep winding” structure using a “C” -shaped external electrode is used. The “C” -shaped external electrode 25 used in the present embodiment is obtained by curving a strip of 42 alloy or KOV into a ring shape with a circular cross section. The outer electrode 25 has an inner diameter of the ring that is smaller than the outer diameter of the glass bulb 1 in the state of the parts before being attached to the glass bulb 1, and is expanded after being attached to the glass bulb 1. The ends of the are separated into a “C” shape.
[0049] 本実施形態の外部電極 25は「C」字形ではある力 この外部電極 25の下地として、 外部電極 25をガラスバルブ 1にハンダ付けしている融着層 5が、ガラスバルブ 1の円 周方向に亘つて設けられているので、ガラスバルブ 1内から放射される光力 融着層 5によって遮断されて、外部電極 25の「C」字形の切れ目の部分から外部に漏れ出す ことはない。  The external electrode 25 of the present embodiment has a “C” -shaped force. As a base of the external electrode 25, the fusion layer 5 soldering the external electrode 25 to the glass bulb 1 is the circle of the glass bulb 1. Since it is provided in the circumferential direction, it is blocked by the optical force fusion layer 5 radiated from the inside of the glass bulb 1 and does not leak to the outside from the `` C '' shaped cut portion of the external electrode 25. .
[0050] し力も、外部電極 25とガラスバルブ 1とはハンダ付けで固着されているので、金属 板製の「C」字形の外部電極をただ単にガラスバルブに嵌め込んだだけで、機械的な 接触しかしていない従来の外部電極とは大きく異なり、接触状態のむらがない。また 、融着層 5は、紫外線によって劣化しないので、「C」字形の外部電極を粘'接着剤で ガラスバルブに固着した従来の外部電極とは違って、接触状態の経時的な劣化がな い。  [0050] Since the external electrode 25 and the glass bulb 1 are fixed to each other by soldering, a mechanical “C” -shaped external electrode made of a metal plate is simply fitted into the glass bulb. Unlike the conventional external electrode which is only in contact, there is no unevenness in the contact state. In addition, since the fusion layer 5 is not deteriorated by ultraviolet rays, the contact state does not deteriorate over time unlike the conventional external electrode in which the “C” -shaped external electrode is fixed to the glass bulb with an adhesive. Yes.
[0051] 本実施形態に係る外部電極 25を形成するときは、第 2の実施形態におけると同様 に、先ず、ガラスバルブ 1に外部電極 25を嵌め込んでおく。そして、その後、ガラスバ ルブ 1と外部電極 25との間に、超音波ハンダ付け、あるいは超音波ハンダディップ法 で融着層 5を流し込む。ハンダ付けの際にガラスバルブ 1を垂直に立てるようなことが あっても、外部電極 25がガラスバルブ 1から滑り落ちることはなぐ作業性が低下する ことはない。「C」字形の外部電極 25は、もともとは内径がガラスノ レブ 1の外径よりも 小さくされている。したがって、ガラスバルブ 1に嵌め込んだ状態では、外部電極自体 のばね弾性によってガラスバルブ 1に固定されているからである。 [0051] When forming the external electrode 25 according to the present embodiment, the external electrode 25 is first fitted into the glass bulb 1 as in the second embodiment. Thereafter, the fusion layer 5 is poured between the glass valve 1 and the external electrode 25 by ultrasonic soldering or ultrasonic solder dipping. Even if the glass bulb 1 is set up vertically during soldering, the workability is not reduced as the external electrode 25 does not slide off the glass bulb 1. The “C” -shaped external electrode 25 originally has an inner diameter smaller than the outer diameter of the glass nozzle 1. Therefore, when the glass bulb 1 is fitted, the external electrode itself This is because it is fixed to the glass bulb 1 by the spring elasticity.
[0052] 上述したように、本実施形態の外部電極型放電ランプによれば、ガラスバルブ 1の 外面の周回りにわたつて設けられた融着層 5によって、ガラスバルブ 1の内部力もの 光が遮断されるので、外部電極 25における光の漏れを解消することができる。  [0052] As described above, according to the external electrode type discharge lamp of the present embodiment, the light of the internal force of the glass bulb 1 is caused by the fusion layer 5 provided around the outer surface of the glass bulb 1. Since the light is blocked, light leakage at the external electrode 25 can be eliminated.
[0053] (第 4の実施形態)  [0053] (Fourth embodiment)
図 7Aに、第 4の実施形態に係る外部電極の一例の正面図を示し、図 7Bに、第 4の 実施形態に係る外部電極の一例の透視側面図を示す。また、図 8Aに、もう 1つ他の 例の正面図を示し、図 8Bに、もう 1つ他の例の透視側面図を示す。これらの図 7A, 図 7Bおよび図 8A,図 8Bはいずれも、ガラスバルブに装着前の、部品の状態の外部 電極を示す。図 7A,図 7Bおよび図 8A,図 8Bを参照して、本実施形態に係る外部 電極 26は、金属板からなる切れ目が無 、円筒 13を主体として 、る。  FIG. 7A shows a front view of an example of the external electrode according to the fourth embodiment, and FIG. 7B shows a perspective side view of an example of the external electrode according to the fourth embodiment. FIG. 8A shows a front view of another example, and FIG. 8B shows a perspective side view of another example. These FIGS. 7A, 7B and 8A, 8B all show the external electrodes in the state of the parts before being mounted on the glass bulb. With reference to FIG. 7A, FIG. 7B, and FIG. 8A, FIG.
[0054] 金属板製の円筒 13は、内径がガラスバルブ 1の外径よりも大きく形成されており、 内部にガラスバルブ 1側に向って突出された突起が設けられている。突起としては、 例えば図 7A,図 7Bに示すように、円筒 13の中腹を半径方向に絞って内側に突出さ せた構造の突起 14が使われる。あるいは、図 8A,図 8Bに示すように、円筒 13の側 面を管軸方向に「コ」の字形に切り込んで、内側に引き起こして形成された突起 15で もよい。いずれも、突起 14または突起 15の突出量 L3は、外部電極 26をガラスバル ブ 1に装着する前の部品の状態で、突起 14, 15の先端に内接する円の直径がガラ スバルブ 1の外径よりも小さくなるような大きさにされている。そして、外部電極 26をガ ラスバルブ 1に取り付けた後では、内部の突起のばね弾性によってガラスバルブ 1を 押さえつける構造になって 、る。  [0054] The cylinder 13 made of a metal plate has an inner diameter larger than the outer diameter of the glass bulb 1, and is provided with a protrusion protruding toward the glass bulb 1 inside. As the protrusion, for example, as shown in FIGS. 7A and 7B, a protrusion 14 having a structure in which the middle of the cylinder 13 is radially narrowed and protruded inward is used. Alternatively, as shown in FIGS. 8A and 8B, a protrusion 15 formed by cutting the side surface of the cylinder 13 into a “U” shape in the tube axis direction and causing it to the inside may be used. In either case, the protrusion L3 of protrusion 14 or protrusion 15 is the diameter of the circle inscribed in the tip of protrusions 14 and 15 in the state of the part before attaching external electrode 26 to glass valve 1. It is sized so that it becomes smaller. After the external electrode 26 is attached to the glass bulb 1, the glass bulb 1 is pressed down by the spring elasticity of the internal projection.
[0055] 本実施形態によれば、外部電極 26は、円筒を主体としているので、ガラスバルブ 1 内力 外部電極 26を通しての光の漏れはない。し力も、ガラスバルブ 1に外部電極 2 6を組み付ける際には、外部電極 26をガラスバルブ 1の一端力 管軸方向に沿って 嵌め込むだけであるので、組み付け作業が簡単である。  According to the present embodiment, since the external electrode 26 is mainly a cylinder, there is no light leakage through the glass bulb 1 internal force external electrode 26. When the external electrode 26 is assembled to the glass bulb 1, the external electrode 26 is simply fitted along the one end force tube axis direction of the glass bulb 1, so that the assembling work is simple.
[0056] 図 7A,図 7Bおよび図 8A,図 8Bに示す外部電極 26は、第 1の実施形態(図 3A, 図 3B参照)と同様に、ガラスバルブ 1に上述のハンダ合金でハンダ付けされている。 このようにすれば、金属板製の外部電極をただ単にガラスノ レブに嵌め込んだだけ の、機械的な接触を原因とする接触状態のむらが解消される。本実施形態において[0056] The external electrode 26 shown in FIGS. 7A, 7B, 8A, and 8B is soldered to the glass bulb 1 with the above-described solder alloy, as in the first embodiment (see FIGS. 3A and 3B). ing. In this way, the external electrode made of a metal plate was simply fitted into the glass nozzle. The uneven contact state caused by mechanical contact is eliminated. In this embodiment
、ハンダ付けする際には、第 1の実施形態と同様に、ガラスノ レブ 1に外部電極 26を 嵌め込んだ後に、超音波ハンダ付けあるいは超音波ハンダディップ法で、ガラスバル ブ 1と外部電極 26との間の隙間にハンダ合金を流し込むことで、融着層 5を形成する When soldering, as in the first embodiment, after the external electrode 26 is fitted into the glass nozzle 1, the glass valve 1 and the external electrode 26 are connected to each other by ultrasonic soldering or ultrasonic solder dipping. By forming a solder alloy into the gap between the two, the fusion layer 5 is formed.
[0057] なお、上述した第 1から第 4の実施形態ではいずれも、ほぼ円筒状で管軸方向の両 端面が開放されている構造の外部電極を例示したが、本発明はこの構成に限定され ない。図示しないが、外部電極は、ガラスバルブの端面に近い側の端面が塞がれた キャップ状に形成された構造であってもよい。このようにすれば、放熱面積がより一層 大きくなるので、放熱効果を更に向上することができる。 In each of the first to fourth embodiments described above, the external electrode having a structure that is substantially cylindrical and has both end faces open in the tube axis direction is illustrated, but the present invention is limited to this configuration. Not. Although not shown in the drawings, the external electrode may have a cap-like structure in which the end surface near the end surface of the glass bulb is closed. In this way, since the heat radiation area is further increased, the heat radiation effect can be further improved.
[0058] また、これまでの説明で明らかなように、本発明は放電媒体の気体に水銀蒸気を含 む水銀放電ランプに限定されるものではなぐ蛍光体層 4の有無や種類あるいは、保 護層 3の有無や材料なども、本発明の作用効果に影響を及ぼすものではない。  [0058] Further, as apparent from the above description, the present invention is not limited to a mercury discharge lamp in which mercury vapor is included in the gas of the discharge medium. The presence or absence of the layer 3 or the material does not affect the operational effects of the present invention.
[0059] また、本発明に係る外部電極型放電ランプには、実施形態で述べたような円筒型 の外囲器 (ガラスバルブ 1)が用いられる構成ばカゝりではなぐいわゆる平板構造と呼 ばれる構造のものにも好適ある。この構造の外部電極型放電ランプは、間隔をあけて 向 、合わせた 2枚のガラスの平板で中空気密の放電空間を作り、ガラス板の外面に 一対の外部電極が設けられた構造にされて ヽる。この平板構造の外部電極型放電ラ ンプにお 、ても、ガラス板と金属板製の外部電極とをノヽンダ付で接合することができ る。そして、このように構成することによって、外部電極とガラス板との直接的な機械的 な接触だけの構成で生じる接触状態のむらを改善することができる。また、外囲器と 外部電極との接触状態が、放電空間から放射される紫外線によって劣化することを 防止することができる。  [0059] In addition, the external electrode type discharge lamp according to the present invention is called a so-called flat plate structure, which is not a case where a cylindrical envelope (glass bulb 1) as described in the embodiment is used. It is also suitable for those having a loose structure. The external electrode type discharge lamp of this structure has a structure in which a pair of external electrodes are provided on the outer surface of the glass plate by creating a medium airtight discharge space with two glass flat plates facing each other at an interval. Speak. Even in this flat electrode type external electrode type discharge lamp, the glass plate and the external electrode made of a metal plate can be joined with a solder. And by comprising in this way, the nonuniformity of the contact state which arises by the structure only of the direct mechanical contact of an external electrode and a glass plate can be improved. In addition, the contact state between the envelope and the external electrode can be prevented from being deteriorated by the ultraviolet rays radiated from the discharge space.
実施例  Example
[0060] 図 1、図 2および図 3A,図 3Bに示したように、実施例の蛍光ランプは、ガラスバル ブ 1の両端部の外側に外部電極 22がそれぞれ設けられ、その外部電極 22を覆うよう に、錫、ビスマスおよび微量の銅カゝらなるハンダ合金の融着層 5が設けられ、ガラスバ ルブ 1と外部電極 22との間隙にハンダ合金の融着層 5が形成されている。また、実施 例で用いたノヽンダ合金は、ビスマスカ 0重量%、銅が 0. 1重量%ぉよび残部が錫 からなる。 As shown in FIG. 1, FIG. 2, FIG. 3A, and FIG. 3B, in the fluorescent lamp of the example, the external electrodes 22 are respectively provided outside the both ends of the glass valve 1 to cover the external electrodes 22. Thus, a solder alloy fusion layer 5 made of tin, bismuth, and a small amount of copper is provided, and a solder alloy fusion layer 5 is formed in the gap between the glass valve 1 and the external electrode 22. Also implemented The solder alloy used in the example consists of 0% by weight of bismuth, 0.1% by weight of copper and the balance of tin.
[0061] 蛍光ランプのガラスバルブ 1の両端部の外側に外部電極 22をそれぞれ設ける構造 としては、ガラスバルブ 1の外側に金属薄板が巻き付けられる構成を採用した。また、 金属製の外部電極 22とガラスバルブ 1との間隙に、ビスマスが 40重量%、銅が 0. 1 重量%ぉよびその残部が錫力 なるハンダ合金の融着層 5を形成する工程では、外 部電極 22が取り付けられたガラスバルブ 1の端部をノヽンダ合金の溶融物に浸漬した 後に引き上げることで、外部電極 22の内面とガラスノ レブ 1の外面との間隙にハンダ 合金の融着層 5を形成した。  [0061] As a structure in which the external electrodes 22 are provided outside the both ends of the glass bulb 1 of the fluorescent lamp, a configuration in which a thin metal plate is wound around the outside of the glass bulb 1 is adopted. In addition, in the process of forming the solder alloy fusion layer 5 in which 40% by weight of bismuth, 0.1% by weight of copper and the remainder of which is tin force are formed in the gap between the metal external electrode 22 and the glass bulb 1, Then, the end of the glass bulb 1 to which the outer electrode 22 is attached is immersed in the melt of the solder alloy and then pulled up, so that the solder alloy is fused to the gap between the inner surface of the outer electrode 22 and the outer surface of the glass nozzle 1. Layer 5 was formed.
[0062] 実施例と同様の構造で、ビスマスを含まずに錫を主成分としたハンダ合金の融着層 が設けられた構成を比較例 1とする。  A structure having the same structure as that of the example and provided with a solder alloy fusion layer containing tin as a main component without containing bismuth is referred to as Comparative Example 1.
[0063] 比較例 2は、実施例におけるガラスバルブ 1と外部電極 22との接着性を有するハン ダ合金の融着層 5が設けられて 、な 、構成であり、蛍光ランプの両端部の外側に外 部電極がそれぞれ設けられただけの構成である。この構成は、上述した特開 2003— 91007号公報に開示されている外部電極と同様な構造である。  [0063] Comparative Example 2 is a configuration in which a solder alloy fusion layer 5 having adhesiveness between the glass bulb 1 and the external electrode 22 in the embodiment is provided, and the outer side of both ends of the fluorescent lamp. In this configuration, only external electrodes are provided respectively. This configuration is the same as that of the external electrode disclosed in Japanese Patent Laid-Open No. 2003-91007 described above.
[0064] 比較例 3は、実施例における外部電極 22が設けられて 、な 、構成である。比較例 3は、ガラスバルブの両端部の外側に、錫を主成分としたハンダ合金の融着層がそ れぞれ設けられた構造である。  [0064] Comparative example 3 is configured without the external electrode 22 in the example. Comparative Example 3 has a structure in which a solder alloy fusion layer mainly composed of tin is provided outside the both ends of the glass bulb.
[0065] 実施例、比較例 1、比較例 2および比較例 3の各蛍光ランプにっ 、て、剥がれ率、 製造時の熱衝撃破損の有無、外部電極のピンホールの有無、およびランプ電流ばら つきをそれぞれ測定した結果を表 1に示す。剥がれ率は、対象となる外部電極部分 に直径 lmmの銅線を接合したものに、 2Kgfの弓 |つ張り加重をガラス管軸方向に負 荷したときに剥がれた割合 (実験個数: n= 20個)を示す。また、ピンホールの有無は 、製造された蛍光ランプを点灯させることで検査した。  [0065] For each fluorescent lamp of Example, Comparative Example 1, Comparative Example 2 and Comparative Example 3, the peeling rate, the presence or absence of thermal shock damage during production, the presence or absence of pinholes in the external electrode, and the lamp current variation Table 1 shows the results of measuring the tack. Peeling rate is the ratio of peeling when a lkg diameter copper wire is joined to the target external electrode part and a 2Kgf bow tension is loaded in the glass tube axis direction (number of experiments: n = 20 Number). In addition, the presence or absence of pinholes was inspected by turning on the manufactured fluorescent lamp.
[0066] [表 1] 剥がれ率 製造時の ピンホール ランプ電流 [0066] [Table 1] Peeling rate Pinhole during manufacturing Lamp current
熱衝擊破損 のばらつき 実施例 0% 0. 00% なし ±4% 比較例 1 0% 0. 58% なし ±4% 比較例 2 ― 0. 00% なし ± 1 1 % 比較例 3 60% 1. 73% あり ±5%  Variation of thermal shock damage Example 0% 0.00% None ± 4% Comparative example 1 0% 0. 58% None ± 4% Comparative example 2 ― 0.00% None ± 1 1% Comparative example 3 60% 1. ± 5% with 73%
表 1に示した結果から明らかなように、本発明の蛍光ランプ (実施例)は、本発明の 構成要件の一部を欠く蛍光ランプ (比較例 1、 2、 3)に比べて蛍光ランプの特性が優 れているば力りでなぐ製造時の熱衝撃による破損、ピンホールもなく信頼性に優れ た蛍光ランプであった。また、実施例によれば、製造時の熱衝撃による破損が発生し ないので、不良率が減少する直接的な効果に加えて、良品、不良品の選別作業が 不要になり、検査工程を省くことが可能になり、製造コストの低減に大いに貢献する。 なお、本発明の外部電極型放電ランプによれば、液晶表示装置におけるパックライ トの信頼性の向上を図り、廉価に提供することが可能になり、今後ますます表示画面 が大型化する液晶表示装置に用いられて好適である。 As is apparent from the results shown in Table 1, the fluorescent lamp of the present invention (Example) has a fluorescent lamp (Comparative Examples 1, 2, and 3) that lacks some of the structural requirements of the present invention. If the characteristics were excellent, it was a fluorescent lamp with excellent reliability without damage and pinholes due to thermal shock during manufacturing. In addition, according to the embodiment, since damage due to thermal shock during production does not occur, in addition to the direct effect of reducing the defective rate, sorting work for non-defective products and defective products becomes unnecessary and the inspection process is omitted. Can greatly contribute to the reduction of manufacturing costs. In addition, according to the external electrode type discharge lamp of the present invention, it becomes possible to improve the reliability of the pack light in the liquid crystal display device and to provide it at a low price, and the liquid crystal display device whose display screen will become larger in the future. It is suitable for being used.

Claims

請求の範囲 The scope of the claims
[1] 中空の気密空間を形作るガラス材カ なる外囲器と、前記外囲器の内部に封入さ れた放電媒体の気体と、前記外囲器の外面に設けられ前記放電媒体の気体に誘電 体バリア放電を起こさせるための外部電極とを備え、  [1] An envelope made of a glass material that forms a hollow hermetic space, a gas of a discharge medium enclosed in the envelope, and a gas of the discharge medium provided on the outer surface of the envelope An external electrode for causing a dielectric barrier discharge,
前記外部電極は、導電性材料の板からなり、前記外囲器の外面の周回りに亘つて 設けられたハンダ合金の融着層によって接合され、  The external electrode is made of a conductive material plate, and is bonded by a solder alloy fusion layer provided around the outer surface of the envelope.
前記ハンダ合金は、ビスマスが 30重量%から 70重量%の範囲で含まれ、残部が錫 からなる、外部電極型放電ランプ。  The solder alloy is an external electrode type discharge lamp in which bismuth is contained in an amount of 30 wt% to 70 wt%, and the balance is made of tin.
[2] 前記外部電極は、円筒状の前記外囲器の両端部にそれぞれ設けられている請求 項 1に記載の外部電極型放電ランプ。 2. The external electrode type discharge lamp according to claim 1, wherein the external electrodes are provided at both ends of the cylindrical envelope.
[3] 前記ハンダ合金は、前記ビスマスと前記錫以外に、銅が 0. 01重量%から 2重量% の範囲で添加されている請求項 1または 2に記載の外部電極型放電ランプ。 [3] The external electrode type discharge lamp according to claim 1 or 2, wherein the solder alloy contains copper in an amount of 0.01 wt% to 2 wt% in addition to the bismuth and the tin.
[4] 前記外部電極は、前記ハンダ合金で覆われて ヽる請求項 1に記載の外部電極型 放電ランプ。 4. The external electrode type discharge lamp according to claim 1, wherein the external electrode is covered with the solder alloy.
[5] 中空の気密空間を形作るガラス材カ なる外囲器と、前記外囲器の内部に封入さ れた放電媒体の気体と、前記外囲器の外面に設けられ前記放電媒体の気体に誘電 体バリア放電を起こさせるための外部電極とを備え、前記外部電極は、導電性材料 の板力 なり、前記外囲器の外面の周回りに亘つて設けられたハンダ合金の融着層 によって接合され、前記ハンダ合金は、ビスマスが 30重量%から 70重量%の範囲で 含まれ、残部が錫からなる、外部電極型放電ランプと、  [5] An envelope made of glass material forming a hollow hermetic space, a gas of a discharge medium enclosed in the envelope, and a gas of the discharge medium provided on the outer surface of the envelope An external electrode for causing a dielectric barrier discharge, and the external electrode is made of a conductive material, and is formed by a solder alloy fusion layer provided around the outer surface of the envelope. The solder alloy is bonded to an external electrode type discharge lamp comprising bismuth in a range of 30% to 70% by weight and the balance being tin.
液晶表示板とを備え、  With a liquid crystal display board,
前記外部電極型放電ランプが前記液晶表示板のバックライトとして用いられて 、る 液晶表示装置。  The liquid crystal display device, wherein the external electrode type discharge lamp is used as a backlight of the liquid crystal display panel.
[6] 前記外部電極は、円筒状の前記外囲器の両端部にそれぞれ設けられている請求 項 5に記載の液晶表示装置。  6. The liquid crystal display device according to claim 5, wherein the external electrodes are respectively provided at both ends of the cylindrical envelope.
[7] 前記ハンダ合金は、前記ビスマスと前記錫以外に、銅が 0. 01重量%から 2重量% の範囲で添加されている請求項 5または 6に記載の液晶表示装置。 7. The liquid crystal display device according to claim 5, wherein the solder alloy contains copper in an amount of 0.01 wt% to 2 wt% in addition to the bismuth and the tin.
[8] 前記外部電極は、前記ハンダ合金で覆われて!/ヽる請求項 5に記載の液晶表示装 置。 [8] The external electrode is covered with the solder alloy! 6. A liquid crystal display device according to claim 5 Place.
[9] 中空の気密空間を形作るガラス材カ なる外囲器と、前記外囲器の内部に封入さ れた放電媒体の気体と、前記外囲器の外面に設けられ前記放電媒体の気体に誘電 体バリア放電を起こさせるための外部電極とを備え、前記外部電極が、導電性材料 の板力 なり前記外囲器の外面の周回りに亘つて設けられたノ、ンダ合金の融着層に よって接合され、前記ハンダ合金はビスマスが 30重量%から 70重量%の範囲で含ま れ残部が錫カゝらなる、外部電極型放電ランプの製造方法であって、  [9] An envelope made of a glass material that forms a hollow hermetic space, a gas of a discharge medium enclosed in the envelope, and a gas of the discharge medium provided on the outer surface of the envelope An external electrode for causing dielectric barrier discharge, and the external electrode is provided with a plate force of a conductive material and is provided around the outer surface of the envelope. The solder alloy is a method of manufacturing an external electrode type discharge lamp, wherein the solder alloy contains bismuth in a range of 30% to 70% by weight and the balance is tin.
前記外囲器に前記外部電極を取り付ける第 1工程と、  A first step of attaching the external electrode to the envelope;
前記外囲器の外面と前記外部電極の内面との間に前記ハンダ合金を流し込んで 前記融着層を形成する第 2工程とを有する、外部電極型放電ランプの製造方法。  A method of manufacturing an external electrode type discharge lamp, comprising: a second step of forming the fusion layer by pouring the solder alloy between an outer surface of the envelope and an inner surface of the external electrode.
[10] 前記第 2工程では、前記外囲器に取り付けられた前記外部電極を、溶融した前記 ハンダ合金に浸漬することによって、前記外囲器と前記外部電極との間に前記融着 層を形成する請求項 9に記載の外部電極型放電ランプの製造方法。  [10] In the second step, the fusion layer is formed between the envelope and the external electrode by immersing the external electrode attached to the envelope in the molten solder alloy. The method of manufacturing an external electrode type discharge lamp according to claim 9 to be formed.
[11] 前記第 2工程では、前記ハンダ合金に超音波を印加しながら前記外部電極を浸漬 する請求項 10に記載の外部電極型放電ランプの製造方法。  11. The method for manufacturing an external electrode type discharge lamp according to claim 10, wherein in the second step, the external electrode is immersed while applying an ultrasonic wave to the solder alloy.
[12] 前記第 2工程では、前記ビスマスと前記錫以外に、銅が 0. 01重量%から 2重量% の範囲で添加されて ヽる前記ハンダ合金を用いる請求項 9に記載の外部電極型放 電ランプの製造方法。  12. The external electrode type according to claim 9, wherein, in the second step, the solder alloy in which copper is added in a range of 0.01 wt% to 2 wt% in addition to the bismuth and the tin is used. Manufacturing method of discharge lamp.
PCT/JP2006/322661 2005-11-14 2006-11-14 External electrode driven discharge lamp, method for producing same, and liquid crystal display WO2007055379A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2006800423955A CN101310363B (en) 2005-11-14 2006-11-14 External electrode driven discharge lamp, method for producing same, and liquid crystal display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-328915 2005-11-14
JP2005328915A JP4309393B2 (en) 2005-11-14 2005-11-14 External electrode type discharge lamp, method for manufacturing the same, and liquid crystal display device

Publications (1)

Publication Number Publication Date
WO2007055379A1 true WO2007055379A1 (en) 2007-05-18

Family

ID=38023370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322661 WO2007055379A1 (en) 2005-11-14 2006-11-14 External electrode driven discharge lamp, method for producing same, and liquid crystal display

Country Status (4)

Country Link
JP (1) JP4309393B2 (en)
KR (1) KR100940372B1 (en)
CN (1) CN101310363B (en)
WO (1) WO2007055379A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009125769A (en) * 2007-11-21 2009-06-11 Nec Lighting Ltd Solder, external electrode type fluorescent lamp, and liquid crystal display device
JP5111188B2 (en) * 2008-03-25 2012-12-26 ユーテック株式会社 Power supply terminal for external electrode discharge lamp and light source device
JP2009266721A (en) * 2008-04-28 2009-11-12 Nec Lighting Ltd External electrode fluorescent lamp and its manufacturing method
KR100931611B1 (en) 2008-06-17 2009-12-14 주식회사 에이디피엔지니어링 Soldering apparatus of fluorescent lamp
JP2010027560A (en) * 2008-07-24 2010-02-04 Nec Lighting Ltd External electrode type discharge lamp and electrode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146351A (en) * 2002-06-17 2004-05-20 Harison Toshiba Lighting Corp Low-pressure discharge lamp and method for manufacturing same
JP2005005265A (en) * 2003-06-11 2005-01-06 Samsung Electronics Co Ltd Lamp, manufacturing method therefor, backlight assembly having same, and liquid crystal display device
JP2005011710A (en) * 2003-06-19 2005-01-13 Harison Toshiba Lighting Corp Low-pressure discharge lamp

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2354204Y (en) * 1998-12-29 1999-12-15 天津埃梯埃·海联电子有限公司 Surface-sticked bulb for lighting of liquidcrystal-board displaying background

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146351A (en) * 2002-06-17 2004-05-20 Harison Toshiba Lighting Corp Low-pressure discharge lamp and method for manufacturing same
JP2005005265A (en) * 2003-06-11 2005-01-06 Samsung Electronics Co Ltd Lamp, manufacturing method therefor, backlight assembly having same, and liquid crystal display device
JP2005011710A (en) * 2003-06-19 2005-01-13 Harison Toshiba Lighting Corp Low-pressure discharge lamp

Also Published As

Publication number Publication date
JP4309393B2 (en) 2009-08-05
CN101310363B (en) 2010-05-26
CN101310363A (en) 2008-11-19
KR20080069243A (en) 2008-07-25
JP2007134289A (en) 2007-05-31
KR100940372B1 (en) 2010-02-02

Similar Documents

Publication Publication Date Title
JP4249689B2 (en) External electrode type discharge lamp and manufacturing method thereof
WO2007055379A1 (en) External electrode driven discharge lamp, method for producing same, and liquid crystal display
US20040256968A1 (en) Low pressure discharge lamp
JPH10284009A (en) Rare gas discharge lamp
JP4237103B2 (en) External electrode type discharge lamp
JP3635849B2 (en) Noble gas discharge lamp
JP2007053117A (en) External electrode discharge lamp
JP2006114271A (en) Fluorescent lamp, backlight unit, and liquid crystal television
JP4525305B2 (en) Fluorescent lamp, backlight unit and LCD TV
JP2006085983A (en) External electrode discharge lamp and its manufacturing method
JP3025216B2 (en) Rare gas discharge lamp
JP3032802B2 (en) Rare gas discharge lamp
JPH10289693A (en) Rare gas discharge lamp
KR101078402B1 (en) Electrode of discharge lamp with glass thin film layer
JP3562139B2 (en) Rare gas discharge lamp
KR100929544B1 (en) Surface light source device comprising an aluminum electrode and a method of manufacturing the same
JPH1092318A (en) Manufacture of rare gas discharge lamp
KR20080088361A (en) Discharge lamp
JP2001250511A (en) Rare-gas discharge lamp
JPH09129188A (en) Rare gas discharge lamp and manufacture thereof
JP2000173550A (en) Outer surface electrode lamp
JP2000251847A (en) Rare gas discharge lamp, document irradiating reader, and display device
JPH11329367A (en) Rare gas discharge lamp
JP2009146892A (en) External electrode type fluorescent lamp and liquid crystal display device
JPH10162781A (en) Aperture type rare gas discharge lamp and manufacture thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680042395.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087014263

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 06832617

Country of ref document: EP

Kind code of ref document: A1