WO2007055033A1 - Filter, exhaust gas purifying apparatus for internal combustion engine and exhaust gas purifying method - Google Patents

Filter, exhaust gas purifying apparatus for internal combustion engine and exhaust gas purifying method Download PDF

Info

Publication number
WO2007055033A1
WO2007055033A1 PCT/JP2005/021189 JP2005021189W WO2007055033A1 WO 2007055033 A1 WO2007055033 A1 WO 2007055033A1 JP 2005021189 W JP2005021189 W JP 2005021189W WO 2007055033 A1 WO2007055033 A1 WO 2007055033A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
exhaust gas
honeycomb structure
ash
internal combustion
Prior art date
Application number
PCT/JP2005/021189
Other languages
French (fr)
Japanese (ja)
Inventor
Atsushi Kudo
Yukio Oshimi
Original Assignee
Ibiden Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co., Ltd. filed Critical Ibiden Co., Ltd.
Priority to PCT/JP2005/021189 priority Critical patent/WO2007055033A1/en
Publication of WO2007055033A1 publication Critical patent/WO2007055033A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/80Chemical processes for the removal of the retained particles, e.g. by burning
    • B01D46/84Chemical processes for the removal of the retained particles, e.g. by burning by heating only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/0215Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters the filtering elements having the form of disks or plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0232Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles removing incombustible material from a particle filter, e.g. ash
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/30Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for treatment of exhaust gases from IC Engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction

Definitions

  • the present invention relates to a filter, an exhaust gas purification device for an internal combustion engine, and an exhaust gas purification method.
  • the present invention relates to a filter for removing particulate matter in exhaust gas discharged from an internal combustion engine such as a diesel engine, an exhaust gas purification device using the filter, and an exhaust gas purification method performed using the device.
  • the present invention proposes a technique characterized by a filter that can effectively remove the ash contained in the particulate matter at a specific location in the filter without causing a pressure loss.
  • a particulate filter for collecting particulate matter contained in the exhaust gas is provided in the exhaust passage.
  • the filter raises the temperature of the filter by increasing the exhaust temperature of the engine or heating it using a beater, and the collected particulate matter is collected. It is intended to burn and remove.
  • ash refers to various additives and impurity components contained in the fuel and lubricating oil of an internal combustion engine that combine in the combustion chamber of the internal combustion engine or the filter to form various compounds, These compounds are produced by agglomeration of these compounds in the filter.
  • fuels and lubricating oils for internal combustion engines contain components such as sulfur, phosphorus, calcium, and magnesium, and the components contained in the lubricating oil and the components contained in the mixture are combined in the combustion chamber.
  • the screened-off ash is accumulated in the longitudinal direction of the through-holes from the vicinity of the sealing portion of the honeycomb structure, so that the filtration area decreases as it is used. As a result, there is a problem that the life of the filter is shortened.
  • a metal having a negative electronegativity equal to or lower than that of a predetermined component contained in the lubricating oil is preferably used as the trapping material, preferably a metal having a lower electronegativity than the predetermined component and a high ionization tendency. Since it is supported, it is used that the component to be bonded is not the predetermined component but is bonded to the metal having a low electronegativity.
  • potassium sulfate is more expensive than calcium sulfate.
  • the degree of aggregation is low, it can be easily decomposed and removed by using a high-temperature treatment or reducing atmosphere.
  • an object of the present invention is to reduce the filter volume resulting from the accumulation of ash produced by the combustion of particulate matter in the exhaust gas in the filter, or the exhaust gas flow path (cell).
  • the purpose is to propose a filter that does not cause clogging and does not cause the accompanying increase in pressure loss.
  • Another object of the present invention is not only the need for maintenance after replacement for a new product after a certain period of use, and removal for removal of an ash, but also a longer service life with a simple configuration. It is to propose a filter.
  • Still another object of the present invention is to propose an exhaust gas purification device and an exhaust gas purification method using the filter. Disclosure of the invention
  • Ash is Obtaining the knowledge that the ruta is deposited sequentially from the rear (discharge side) of the cell, the removal of the ash accompanied by such a deposition phenomenon is not a method of physically peeling and removing as in the prior art.
  • the present invention based on the knowledge that it is effective to remove ash in a compact location in a filter while suppressing filter volume reduction and exhaust flow blockage. did.
  • a filter for purifying exhaust gas discharged from an internal combustion engine wherein an ash trap layer is provided in an exhaust gas inflow side cell of the filter,
  • an exhaust gas purification apparatus for an internal combustion engine in which an exhaust gas flow path of the internal combustion engine is provided with a filter that collects particulate matter contained in the exhaust gas, an exhaust gas inflow side cell of the filter
  • An exhaust gas purifying device for an internal combustion engine characterized in that an ash trap layer is provided therein.
  • the ash trap layer is preferably made of a glassy material, and is made of a low melting point glass, and the ash trap layer can be made of a low melting point inorganic compound flux material. .
  • the ash trap layer is preferably provided in the vicinity of the in-cell sealing portion of the integral-type, aggregate-type honeycomb structure, or laminated honeycomb structure.
  • the filter has an ash trap layer formed of the honeycomb structure. It is preferable to be provided on the partition wall surface.
  • an ash trap layer is provided at a specific location in the filter, that is, in each cell on the exhaust gas inflow side, particularly in the vicinity of the sealing portion of the cell end (downstream end portion).
  • the particulate matter in the exhaust gas is burned and removed (for example, about 550 ° C), softened or further melted to produce ash, that is, the particulate matter burns to become unburned.
  • the ash generated in this way is adsorbed sequentially in this ash trap layer, and is accumulated so as to be confined there and accumulated and solidified at a high density, thereby reducing the filter volume (filtering area) or blocking the exhaust passage. It can be used for a long time with no pressure loss in the exhaust system, and the filter life can be extended.
  • exhaust gas can be highly purified through complete removal of ash.
  • FIG. 1 is a perspective view schematically showing an example of a honeycomb filter according to the present invention.
  • FIG. 2 (a) is a perspective view schematically showing an example of the porous ceramic member constituting the honeycomb filter shown in Fig. 1, and Fig. 2 (b) is shown in Fig. 2 (a).
  • FIG. 3 is a cross-sectional view taken along line AA of the porous ceramic member.
  • FIG. 3 (a) is a perspective view schematically showing another example of the honeycomb filter according to the present invention, and Fig. 3 (b) shows the honeycomb shown in Fig. 3 (a).
  • FIG. 6 is a cross-sectional view of the mu filter taken along line B-B.
  • Fig. 4 (a) is a perspective view schematically showing still another example of the honeycomb filter according to the present invention
  • Fig. 4 (b) is a diagram of C and C of the honeycomb filter shown in Fig. 4 (a).
  • FIG. 5 is a diagram for explaining a part of the manufacturing process of the honeycomb filter shown in FIG.
  • FIG. 5 (a) is a schematic view showing the paper sheets to be laminated
  • FIG. 5 (b) is a schematic perspective view of the honeycomb filter formed by stacking the paper sheets.
  • FIG. 6 is a cross-sectional view schematically showing an example of an exhaust gas purification device using the honeycomb filter according to the present invention.
  • the present invention relates to a filter that collects particulate matter contained in exhaust gas exhausted from an internal combustion engine and an exhaust gas purification device for an internal combustion engine equipped with the filter.
  • the generated ash is captured, and the ash is captured (captured) at a specific position in the filter, that is, in the vicinity of the sealing portion provided in the cell end portion of each cell on the exhaust gas inflow side.
  • An ash trap layer is provided.
  • the above ash trap layer means that at least a part of the liquid phase at the filter regeneration temperature (2500 ° C to 800 ° C) at which the ash described above is removed (regenerated) by burning the particulates. It is preferably made of a material that generates or softens.
  • such a trap layer constituent material is a vitreous material that changes from a solid phase to a liquid phase at the regeneration temperature of the filter or softens at least, preferably a phosphate glass or a calcium sulfate glass. Low melting point glass, etc. Alternatively, it is preferable to use a low melting point inorganic compound flux material.
  • the phosphoric acid glasses include P 2 0 3 — BaO (glass transition temperature: 3 7 7), ⁇ 2 0 3 - ⁇ 0 (glass transition temperature: 3 6 6 ° C), P 2 0 3 — BaO—BaF 2 (glass transition temperature: 3 66 ° C.) or the like can be used.
  • CaS0 4 -NaC I lowest liquid phase temperature: 7 2 6 ° C
  • CaS0 4 - KCI minimum liquidus temperature: 6 8 7 ° C
  • CaS0 4 - NaC ⁇ KC I minimum liquidus temperature: 60 5 ° C
  • chloride-containing flux a sulfate-based flux-reactive chloride-containing sulfate-based flux (hereinafter referred to as “chloride-containing flux”).
  • the sulfate fluxes include Li 2 S0 4 -0.5Na 2 S0 4 + 0.5K 2 S0 4 (minimum melting temperature: 5 2 1 ° C), Na 2 S0 4 -ZnS0 4 (minimum melting temperature: 4 5 6 ° C) can be used.
  • Li 2 S0 4 -K 2 S0 4 -NaCI minimum melting temperature: 4 3 2 ° C
  • i 2 S0 4 -NaCI minimum melting temperature: 4 9 9 ° C
  • Li 2 S0 4 -NaC ⁇ KCI minimum melting temperature: 4 26 ° C
  • a filter according to the present invention and an exhaust gas purification apparatus for an internal combustion engine using the filter will be specifically described with reference to the drawings.
  • the filter according to the present invention is a honeycomb structure and the exhaust gas purification device according to the present invention is applied to a vehicle diesel engine will be described.
  • the filter according to the present invention uses a honeycomb structure in which a large number of cells (through holes) are arranged in parallel in the longitudinal direction with partition walls (filtration walls) therebetween. With such a structure, the filtration area per volume of the filter can be increased. ⁇ Ticulate can be collected thinly.
  • honeycomb structure In such a honeycomb structure, a large number of cells are separated by partition walls.
  • One made of porous ceramic members hereinafter referred to as “integrated honeycomb structure” and a number of plate-like (sheet-like) porous ceramic members
  • stacked honeycomb structure A columnar honeycomb structure in which the cell holes are arranged in parallel in the longitudinal direction with the partition walls therebetween
  • Fig. 1 is a perspective view schematically showing an example of an aggregate type honeycomb structure which is an example of a honeycomb structure
  • Fig. 2 (a) is a porous diagram of the aggregate type honeycomb structure shown in Fig. 1.
  • 1 is a perspective view of a ceramic member (unit)
  • FIG. 2B is a cross-sectional view taken along line AA of the porous ceramic member shown in FIG.
  • the honeycomb structure 10 shown in FIG. 1 is composed of a prismatic porous ceramic member (unit) 20 shown in FIG. 2 and a cylindrical ceramic block 1 that is bundled together via a sealing material layer 1 4. 5 and a sealing material layer 13 is provided on the outer periphery of the ceramic block 15.
  • the prismatic porous ceramic member 20 is provided with a large number of cells (through holes) 21 along the longitudinal direction thereof.
  • the porous ceramic member 20 is formed of these cells as shown in FIG. 2 (b). Either one of the openings at both ends of 2 1 is sealed with a sealing material (plug) 2 2.
  • the honeycomb structure 1 0 is hand of (exhaust gas inflow side) cells 2 1 of the ceramic block 1 5 its downstream end (Seruen de) is locked Li sealed by the sealing material 2 2, In the other (exhaust gas outflow side) cell 2 1, the upstream end is sealed with the sealing material 2 2.
  • the exhaust gas flowing into the exhaust gas inflow side cell 21a passes through the partition wall 23 that separates the cells 21a, and moves to the cell 21b on the exhaust gas outflow side.
  • the partition wall 2 3 separating these cells 21a and 21b is made to function as a particle collecting filter.
  • the sealing material layer 13 formed around the ceramic block 15 is used to prevent exhaust gas from leaking from the outer periphery of the ceramic block 15 when the honeycomb structure 10 is used as a honeycomb filter. Or, it is formed to adjust the shape.
  • Fig. 3 (a) is a perspective view schematically showing another embodiment of the honeycomb structure, that is, a specific example of the integral honeycomb structure, and Fig. 3 (b) is a view taken along the line B-B. It is sectional drawing.
  • the monolithic honeycomb structure 30 has a single columnar structure in which a large number of cells 31a and 31b are provided along the longitudinal direction with a partition wall 33 therebetween. It is composed of a cylindrical ceramic block 35 made of a porous ceramic sintered body.
  • the ceramic block 35 is composed of cells 31a, as shown in Fig. 3 (b). Either one of the ends of 3 1 b is sealed with sealing material 3 2 on one side.
  • the downstream end of the exhaust gas inflow side cell 3 1 a is sealed by the sealing material 3 2, and the exhaust gas outflow side cell 3 1 b At the end, the upstream end is preferably sealed with the sealing material 32.
  • the exhaust gas flowing into one cell 3 1 a passes through the partition wall 3 3 separating these cells 3 1 a and then flows out from the other cell 3 1 b (so-called wall). Flow type), these cells 3 1 a, 3 1 b
  • the partition wall 3 3 separating the two can function as a particle collecting filter.
  • a sealing material layer may be formed to adjust the shape.
  • the honeycomb structure constituting the filter according to the present invention described above may be used as a ceramic member material, for example, oxide ceramics such as cordierite, alumina, silicon force, mullite, zirconia, and yttria, silicon carbide, Carbide ceramics such as zirconium carbide, titanium carbide, tantalum carbide, tungsten carbide, etc., nitride ceramics such as aluminum nitride, silicon nitride, boron nitride, titanium nitride, etc., aluminum titanate, composite of ceramic and silicon, etc. Can be used.
  • oxide ceramics such as cordierite, alumina, silicon force, mullite, zirconia, and yttria
  • silicon carbide Carbide ceramics such as zirconium carbide, titanium carbide, tantalum carbide, tungsten carbide, etc.
  • nitride ceramics such as aluminum nitride, silicon nitride, boron
  • the honeycomb structure forming the filter according to the present invention is an aggregate-type honeycomb structure as shown in FIG. 1, among the above ceramic particles, heat resistance is high, and mechanical characteristics and chemical stability are improved. Silicon carbide is desirable because it has excellent thermal conductivity.
  • the honeycomb structure forming the filter according to the present invention is an integral honeycomb structure as shown in FIG. 3, an oxide ceramic such as cordierite is used. It can be manufactured at low cost and has a relatively small coefficient of thermal expansion. For example, it is not broken during use as a honeycomb filter, and it is not oxidized. It is.
  • the thermal conductivity of the substrate of the honeycomb structure forming the filter according to the present invention is determined by the type of ceramic particles used, etc., but when ceramic ceramics or nitride ceramics are used as ceramic particles Is preferably 3 WZ m ⁇ K to 60 WZ m W / m 2 K ⁇ 40 W / m 2 K is more desirable.
  • the thermal conductivity is less than 3 WZm ⁇ K, the temperature of the filter will be too high and the filter will be damaged, and the performance of the catalyst supported on the filter will be reduced. ⁇ If the temperature exceeds K, the temperature of the filter will not rise easily, so it will be difficult for the particulate soot to burn, and it will be difficult to purify the exhaust gas.
  • the thermal conductivity is preferably 0.1 WZm ⁇ K to 10W Wm ⁇ ⁇ , and 0.3 WZm ⁇ ⁇ ⁇ 3 W / m ⁇ More preferably ⁇ .
  • the thermal conductivity is less than 0.1 WZm ⁇ K, the temperature of the filter is too high and the filter is damaged, or the performance of the catalyst supported on the filter decreases. This is because if the temperature exceeds 1 OWZm ⁇ K, the temperature of the filter becomes difficult to rise, so it becomes difficult for the particulate soot to burn and purification of the exhaust gas becomes difficult.
  • the shape of the ceramic block is a columnar shape.
  • the ceramic block is not limited to a columnar shape as long as it is a columnar shape. It may be of a shape such as a prismatic shape.
  • the porosity of the ceramic block is preferably about 20 to 80%. The reason is that when the porosity is less than 20%, when the above honeycomb structure is used as a honeycomb filter, clogging occurs immediately, and when the porosity exceeds 80%, ceramic This is because the strength of the block decreases and it is easily broken.
  • the porosity can be measured by a conventionally known method such as a mercury intrusion method, an Archimedes method, or a measurement using a scanning electron microscope (SEM).
  • the average pore size of the ceramic block is preferably about 5 to 100 m. The reason is that if the average pore diameter is less than 5 jum, when the above honeycomb structure is used as a filter, the particulates are easily clogged, while the average pore diameter is 1 OO jUm. This is because the particulates pass through the pores, and the particulates cannot be collected and cannot function as a filter.
  • the sealing material is preferably made of a porous ceramic. .
  • the sealed ceramic block is made of porous ceramic, so that the sealing material is the same porous ceramic as the ceramic block, so that the adhesive strength between them can be increased.
  • the thermal expansion coefficient of the ceramic block can be matched with the thermal expansion coefficient of the sealing material. It is possible to prevent cracks from occurring in the wall part where the sealing material is in contact with the sealing material due to thermal stress during use. This is because it can be done.
  • the sealing material is made of porous ceramic, it is desirable to use, for example, the same material as the ceramic particles constituting the ceramic block described above.
  • the sealing material layers 1 3 and 14 are provided between the porous ceramic members 20 or ceramics. These are arranged on the outer periphery of the block 15 so as to surround them.
  • the sealing material layer 14 interposed between the porous ceramic members 20 functions as an adhesive that binds the plurality of porous ceramic members 20 together.
  • the sealing material layer 13 formed on the outer periphery of the block 15 is a ceramic block 1 when the honeycomb structure 10 is installed in the exhaust passage of the internal combustion engine. It functions to prevent the exhaust gas from leaking from the outer periphery of 5.
  • the sealing material layer is formed between the porous ceramic members and on the outer periphery of the ceramic block.
  • These sealing material layers are the same. It may be made of a material or a different material. For example, an inorganic binder, an organic binder, and inorganic fibers and / or inorganic particles are used. Furthermore, when the sealing material layers are made of the same material, the blending ratio of the materials may be the same and may be different.
  • silica sol for example, silica sol, alumina sol or the like is used. These may be used alone or in combination of two or more. Of the above inorganic binders, silica is preferred.
  • Examples of the organic binder constituting the sealing material layer include polyvinyl alcohol, methyl cellulose, ethyl cellulose, carboxymethyl cellulose, and the like. These may be used alone or in combination of two or more. Among the organic binders, carboxymethyl cellulose is desirable.
  • the inorganic fibers constituting the sealing material layer for example, silica alumina, mullite, alumina, a ceramic fiber such as siri force, or the like is used. These may be used alone or in combination of two or more. Among the inorganic fibers, silica monoalumina fiber is desirable.
  • the inorganic particles constituting the sealing material layer include carbides, nitrides, and the like. Specifically, silicon carbide, silicon nitride, nitriding An inorganic powder made of boron or the like or a whisker is used. These may be used alone or in combination of two or more.
  • silicon carbide having excellent thermal conductivity is desirable.
  • the sealing material layer 14 interposed between the members may be made of a dense material, but when used as the honeycomb filter, the exhaust gas can flow into the inside thereof. A porous body is used.
  • the sealing material layer 13 disposed on the outer periphery of the filter is made of a dense body. This is because the sealing material layer 13 is used for the purpose of preventing the exhaust gas from leaking from the outer periphery of the ceramic block 15 when the honeycomb structure 10 is installed in the exhaust passage of the internal combustion engine. is there.
  • the honeycomb structure according to the present invention has a structure in which a sealing material is filled and sealed at one end of each cell of the ceramic block, as shown in FIGS. It is suitable for collecting particulates in exhaust gas discharged from internal combustion engines such as diesel engines.
  • the partition walls of the ceramic block of the honeycomb structure may carry a catalyst such as Pt for promoting combustion of the particulate when the honeycomb filter is regenerated.
  • a catalyst such as Pt for promoting combustion of the particulate when the honeycomb filter is regenerated.
  • exhaust gas discharged from a heat engine such as an internal combustion engine or a combustion device such as a boiler by supporting a catalyst such as a noble metal such as Pt, Rh, or Pd or an alloy thereof on a ceramic block of a honeycomb structure It can be used to purify HC, CO, NOx, etc.
  • FIG. 4 is a perspective view schematically showing a specific example of the laminated honeycomb structure
  • FIG. 4 (a) is a perspective view of the porous ceramic sintered body shown in FIG. Figure (b)
  • FIG. 3 is a cross-sectional view taken along line C-C of the porous ceramic member shown in (a).
  • This filter is a laminate in which plate-like sheets (thickness of about 0.1 to 20 mm) are laminated in the thickness direction, that is, in the longitudinal direction of the filter, and the cell through holes overlap in the longitudinal direction.
  • the cells 4 1 are shaped to form a honeycomb structure.
  • the term “stacked so that the cell through holes overlap each other” means that the through holes formed in the adjacent sheet-shaped objects communicate with each other to form the cell 41.
  • the sheet-like material is preferably made of ceramic, metal or the like, but in the present invention, it is preferably made mainly of inorganic fibers. This is because when the sheet-like material is made of inorganic fibers, it can be easily produced by a papermaking method or the like, and a honeycomb structure made of a laminated body can be produced by laminating them. .
  • the laminate may be formed by bonding with an inorganic adhesive material or the like, or may be merely physically laminated.
  • the honeycomb structure 40 has a large number of cells 41a, in which either one end of the cells, that is, the downstream end on the exhaust gas inflow side is plugged, arranged in parallel in the longitudinal direction with the partition wall 43 therebetween. It has a cylindrical shape that functions as a filter.
  • the cell is sealed at either the end corresponding to the exhaust gas inlet side or the outlet side, and the exhaust gas flowing into one cell 41a is After passing through the partition wall 43 that separates these cells, it flows out from the other cell 4 1 b and functions as a filter.
  • the wall thickness is preferably in the range of 0.2 to 10 mm, and more preferably in the range of 0.3 to 6.0 mm.
  • the thickness is less than 0.2 mm, the strength is weak and may be damaged during use. If the thickness exceeds 10 O mm, the exhaust gas hardly permeates and the pressure loss is large. Because it becomes.
  • the density of cells in the cross section perpendicular to the longitudinal direction of the honeycomb structure is 0.16 cells / cm 2 (1.0 cells ⁇ 2 ) to 62 cells cm 2 (400 cells / in 2 ).
  • 0.6 2 pieces cm 2 (4.0 pieces Z in 2 ) to 3 1 pieces Zcm 2 (200 pieces Z in 2 ) is a more desirable range.
  • the reason for this is that if the area is less than 0.1 6 cm 2 , the filtration area is small and the pressure loss tends to be large, and if it exceeds 62 2 cm 2 , the cross-sectional area per through hole is small. This is because the particulates and ash are easily clogged.
  • the size of the through hole is 1.4mm x 1.4mm ⁇ 16mmx16mm force, desired.
  • Examples of the material of the inorganic fiber include oxide ceramics such as silica-alumina, clay, alumina, and silica, nitride ceramics such as aluminum nitride, silicon nitride, boron nitride, and titanium nitride, silicon carbide, Carbide ceramics such as zirconium carbide, titanium carbide, tantalum carbide, and tungsten carbide can be used. These may be used alone or in combination of two or more.
  • oxide ceramics such as silica-alumina, clay, alumina, and silica
  • nitride ceramics such as aluminum nitride, silicon nitride, boron nitride, and titanium nitride
  • silicon carbide Carbide ceramics such as zirconium carbide, titanium carbide, tantalum carbide, and tungsten carbide can be used. These may be used alone or in combination of two or more.
  • the fiber length of the inorganic fiber is preferably 0.1 mm to 100 mm, and more preferably 0.5 mm to 5 O mm.
  • the thickness is less than 0.1 mm, the elasticity due to the use of the fiber is lowered and it becomes difficult to maintain the shape, and if it exceeds 100 mm, the additivity is lowered.
  • the fiber diameter of the inorganic fiber is preferably 1 m to 30 m, and more preferably 2 / m to 10 m. The reason is that if it is less than 1 fi m, the strength is insufficient, and if it exceeds 30 ju m, the workability deteriorates.
  • the honeycomb structure may include a binder that bonds these inorganic fibers to maintain a certain shape.
  • the binder include inorganic glass such as silicate glass, alkali silicate glass, and borosilicate glass, alumina sol, silica sol, and titasol.
  • the content is preferably 5 w t% to 50 w t%, and more preferably 10 w t% to 40 w t% o
  • the bonding strength is insufficient if it is less than 5 wt%, and conversely, if it exceeds 50 wt%, there are too many indas and the bonding between the fibers becomes insufficient.
  • the honeycomb structure may contain a small amount of inorganic particles and metal particles.
  • inorganic particles for example, carbides, nitrides, oxides and the like can be used.
  • inorganic powders made of silicon carbide, silicon nitride, boron nitride, alumina, silica, zirconia, titania, etc. Can be used.
  • metal particles examples include metal silicon, aluminum, iron, and titanium. These may be used alone or in combination of two or more.
  • the apparent density of the honeycomb structure is preferably 0.05 gZ cm 3 to 1.0 O gZ cm 3 , and is preferably 0.1 g / cm 3 to 0.5 0 g Z cm 3 . It is more desirable.
  • the porosity of the honeycomb structure is preferably a 6 0% by volume to 9 8 volume%, 8 0 volume% to 9 5 volume 0/0 is a more desirable arbitrariness.
  • the reason is that if it is less than 60% by volume, the passage of exhaust gas decreases, while if it exceeds 98% by volume, the strength is insufficient.
  • the apparent density and porosity can be measured by a conventionally known method such as a gravimetric method, an Archimedes method, or a measurement using a scanning electron microscope (S E M).
  • a catalyst made of a noble metal such as platinum, palladium, or rhodium may be supported on the inorganic fiber constituting the honeycomb structure.
  • a noble metal such as platinum, palladium, or rhodium
  • alkali metals Group 1 of the Periodic Table of Elements
  • alkaline earth metals Group 2 of the Periodic Table of Elements
  • rare earth elements Group 3 of the Periodic Table of Elements
  • transition metal elements may be added. .
  • the filter using the honeycomb structure functions as a filter that can collect particulates in the exhaust gas and perform regeneration treatment with the catalyst. It can function as a catalytic converter for purifying C0, HC, NOx, etc. contained in exhaust gas.
  • the shape of the honeycomb structure 10 shown in FIG. 4 is a columnar shape, but is not limited to the circular columnar shape. For example, it has an arbitrary columnar shape or size such as an elliptical columnar shape or a prismatic shape. Also good.
  • An important structure in the filter according to the present invention is to use any one of the aggregate type honeycomb structure 10, the integral type honeycomb structure 30, and the laminated honeycomb structure 40 as described above.
  • the exhaust gas inflow side cells 2 1 a, 3 1 a, 4 formed in this structure are preferable.
  • Made of vitreous material such as low-melting glass or low-melting-point inorganic compound-based flux material in the vicinity of the sealing part in the cell of 1a or on the partition wall surface, and further on the downstream part of the partition wall surface. This is in that an ash trap layer 1 0 0 is provided.
  • the low melting point glass is vitrified by softening or melting at a temperature at which particulates collected during regeneration can be burned and removed, that is, at a filter regeneration temperature (2500 to 800 ° C).
  • Inorganic compounds such as phosphate glass and calcium sulfate glass are preferred, and the low melting inorganic compound flux material is softened or melted within the above temperature range. Sulfate flux or chloride containing flux is preferred. In addition, two or more of these materials can be used in combination.
  • the reason why the above-described ash trap layer is provided in the cell is as follows.
  • particulate matter particulate soot
  • the ash component left as unburned material is blown away by the exhaust gas.
  • the ash thus blown is vitrified and fluidized in a softened and melted state.
  • the ash in such a flow state attracts and binds with each other in order to trap the ash, so that all the softened ash that has detached (from the particulates) accumulates in this portion (ash trap, etc.). That is, the softened glass or flux generated in this way is accumulated at a high density in that portion, and is fixed there, so that even if the filter is used for a long time, the filtration area is small. There is no longer a loss of pressure.
  • the honeycomb structure forming the filter is a so-called wall flow type in which any one of the cell end portions is sealed with a sealing material
  • the ash trap layer is formed on the partition wall of the ceramic block. Rather than forming, it is preferable to form it at a position adjacent to the sealing part of the exhaust gas outflow side.
  • the honeycomb structure is an integrated honeycomb structure 30 formed as one ceramic block as a whole
  • the ceramic structure as described above is used. Extrusion molding is performed using a raw material paste ⁇ containing particles as a main component, and a ceramic molded body having substantially the same shape as the honeycomb structure 30 shown in Fig. 3 is produced.
  • the raw material paste preferably has a porosity of 20 to 80% of ceramic block after production.
  • ceramic particle powder having a large average particle size and ceramic particle having a small average particle size A mixed powder consisting of and added with a binder and a dispersion medium is used.
  • the binder for example, methyl cellulose, carboxymethyl cellulose, hydroxychetyl cellulose, polyethylene glycol, phenol resin, epoxy resin and the like are used.
  • the amount of the binder is desirably about 1 to 10 parts by weight with respect to 100 parts by weight of the ceramic particle powder.
  • the dispersion medium liquid for example, an organic solvent such as benzene, alcohol such as methanol, water or the like is used, and this dispersion medium liquid is blended so that the viscosity of the raw material paste ⁇ ⁇ ⁇ falls within a certain range.
  • the mixed powder consisting of the ceramic powder and the silicon powder, the binder and the dispersion medium liquid are mixed with an attritor or the like, and sufficiently mixed with a kneader to obtain a raw material paste, and then the raw material paste is extruded. Molding to produce the above ceramic molded body.
  • a molding aid may be added to the raw material paste as necessary, and examples of the molding aid include ethylene glycol, dextrins phosphorus, fatty acid sarcophagus, polyvinyl alcohol, and the like. Is used.
  • a pore-forming agent such as balloons that are fine hollow spheres containing oxide-based ceramics, spherical acrylic particles, and graphite may be added to the raw material paste as necessary.
  • an alumina balloon for example, an alumina balloon, a glass micro balloon, a shirasu balloon, a fly ash balloon (FA balloon), and a murato balloon are used.
  • alumina balloons are preferred.
  • the ceramic molded body is dried using a microphone mouth wave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, a freeze dryer, or the like to obtain a ceramic dried body, and then a predetermined cell.
  • One end of the cell is filled with a paste serving as a sealing material, and the cell is sealed.
  • the ceramic dry body filled with the sealing material paste ⁇ is heated to about 150 to 700 ° C. to remove the binder contained in the ceramic dry body, and the ceramic degreased body and Apply degreasing treatment.
  • the above ceramic degreased body is heated to about 1400-200 ° C. And manufacturing a ceramic porous body.
  • the honeycomb structure manufactured in this way has a structure in which a sealing material is filled and sealed at the outflow side end of the exhaust gas inflow side cell of the ceramic block.
  • the honeycomb filter for exhaust gas purification described above As such, it can be suitably used.
  • the cell wall of the ceramic block that is, the surface of each partition wall, may be supported with a catalyst such as Pt for promoting the combustion of the particulates when the honeycomb filter is regenerated.
  • the honeycomb structure is an aggregated honeycomb structure 10 in which a plurality of porous ceramic members are bundled through a sealing material layer as shown in FIG.
  • extrusion molding is performed using the above-mentioned raw material paste containing ceramic particles and silicon as main components, and a shaped product having a shape like the porous ceramic member 20 shown in FIG. 2 is produced.
  • the raw material paste may be the same as the raw material paste described in the above-described integrated honeycomb structure 30.
  • the generated shaped body is dried using a microwave dryer or the like to obtain a dried body, and then a sealing material and a sealing material are provided at the end on the outflow side of the through hole on the gas inflow side serving as a cell of the dried body.
  • a sealing process is performed to fill the sealing material paste and seal the cells.
  • the upstream end of the exhaust gas outflow side cell adjacent to the exhaust gas inflow side is similarly sealed with a sealing material.
  • a dry body in which each cell is alternately sealed as described above, is subjected to a degreasing process under the same conditions as those of the above-described integrated honeycomb structure 30, and then fired to obtain a plurality of It is possible to manufacture a porous ceramic member in which the cells are arranged in parallel in the longitudinal direction across the partition walls. Then, on the side surface of the porous ceramic member 20, a seal layer is formed. The process of applying and laminating a paste paste with a uniform thickness is repeated to produce a laminated body of prismatic porous ceramic members 20 having a predetermined size. Since the material constituting the sealing material paste has been described when the honeycomb structure is described, the description thereof is omitted here.
  • the laminated body of the porous ceramic member 20 is heated to dry and solidify the sealing material paste layer 51 to form the sealing material layer 14. Then, for example, using a diamond cutter or the like, A ceramic block 15 is manufactured by cutting the outer peripheral portion into a shape as shown in FIG. Furthermore, a honeycomb structure in which a plurality of porous ceramic members are bundled through a seal material layer by forming the seal material layer 13 on the outer periphery of the ceramic block 15 using the above seal material paste. Structures can be manufactured.
  • the aggregated honeycomb structure 10 manufactured in this way is obtained by filling the end portion of a predetermined cell of a ceramic block (porous ceramic member) with a sealing material and sealing it. It can be suitably used as a honeycomb filter for gas purification.
  • the wall of the ceramic block (the partition wall of the porous ceramic member) may carry a catalyst such as Pt for promoting the combustion of the particulates when the honeycomb filter is regenerated. Good.
  • the downstream end portions of the exhaust gas inflow side cells 21a and 31a are adjacent to the portion (sealing portion) sealed with the sealing material.
  • the ash trap layer 100 it is desirable that the ash trap layer 100 be formed, but in some cases, the ash trap layer may be formed on the partition wall surface (cell wall).
  • This ash trap layer 100 is formed by cooling after melting, coating, filling, or spraying molten glassy material into the exhaust gas inflow side cells 2 1a, 3 1a. can do. If a trap layer is formed at the time of sealing, it is then fired at ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ , so the trap layer softens at 25 ° to 80 ° C., which is not preferred.
  • the sealing material may be pushed in and sealed.
  • Inorganic fibers such as alumina fibers are impregnated in a slurry prepared by melting phosphate glass, for example, and then pulled up and cooled to prepare inorganic fibers on which a glassy ash trap layer is adhered and supported.
  • the supported amount of ash trap is preferably 0.01 to 90 g per 10 g of inorganic fiber.
  • the ash trap layer 100 can be more evenly dispersed because the ash trap layer 100 can be directly applied to the inorganic fiber that is a constituent material before molding. In this state, it can be supported and adhered.
  • the ash trap layer 100 is controlled so as not to melt and flow out of the filter, and utilizes the property of softening and melting during regeneration. Therefore, when the surface of the ash trap layer is softened and melted (that is, at the time of regeneration), it is desirable that the ash be immediately taken into the ash trap layer when the particulate reaction occurs. . In other words, ash can be reliably taken into the trap layer by providing ash traps uniformly within the filter.
  • the combustion function of particulates and the purification function of harmful gases can be increased.
  • the provision of the strap layer may be performed after the papermaking sheet is produced.
  • the inorganic fiber carrying the catalyst obtained in step (1) is dispersed at a rate of 5 to 100 g per 1 liter of water, and an inorganic binder such as sili-force sol is added to the inorganic fiber 1.
  • an inorganic binder such as sili-force sol is added to the inorganic fiber 1.
  • organic binder such as acrylic latex
  • coagulant such as aluminum sulfate, polyacrylamide, etc.
  • organic binder examples include methyl cellulose, carboxymethyl cellulose, hydroxy shetil cellulose, polyethylene glycol, phenol resin, epoxy resin, polyvinyl alcohol, and styrene butadiene rubber.
  • the slurry obtained in the above (2) is made by a punching mesh in which holes having a predetermined shape are formed at predetermined intervals, and the obtained slurry is heated to a temperature of about 100 to 200 ° C. By drying with, a paper sheet 40 a having a predetermined thickness as shown in FIG. 5 (a) is obtained.
  • the thickness of the papermaking sheet 40 a is preferably 0.1 to 20 mm.
  • a papermaking sheet 40b for both ends can be obtained.
  • a honeycomb structure that functions as a filter can be obtained without forming a cell and then closing a predetermined cell at both ends. Can do.
  • a cylindrical case with a holding bracket on one side As shown in Fig. 5 (b), a cylindrical case with a holding bracket on one side. First, a plurality of sheet-forming sheets 40 b for both ends are stacked in the casing 43, and then a predetermined number of sheet-forming sheets 40 a for internal use are stacked. Finally, several sheets of paper 40b for both ends were stacked, further pressed, and then the other side was installed and fixed with holding metal fittings to complete the canning. A honeycomb structure can be produced. Of course, in this process, the papermaking sheets 40 a and 40 b are laminated so that the cells overlap.
  • the honeycomb structure forming the filter of the present invention is simply simply formed by stacking paper sheets, the honeycomb structure is disposed in the exhaust passage when the honeycomb structure is disposed in the exhaust passage. Even if a certain temperature distribution occurs in the structure, the temperature distribution of a single sheet is small and cracks are not likely to occur.
  • the inorganic fibers are oriented almost parallel to the main surface of the papermaking sheet, and when the laminate is produced, the inorganic fibers are compared with the surfaces parallel to the cell formation direction.
  • the orientation is more along the plane perpendicular to the cell formation direction.
  • the exhaust gas can easily permeate the walls of the honeycomb structure, so that the initial pressure loss can be reduced and the particulates can be easily filtered through the inside of the partition walls. Can be suppressed, and an increase in pressure loss during particulate collection can be suppressed.
  • the shape of the hole is not particularly limited to a quadrangle, and may be any shape such as a triangle, hexagon, octagon, dodecagon, circle, or ellipse.
  • FIG. 6 is a cross-sectional view schematically showing an example of an exhaust gas purifying device for a vehicle in which the filter of the present invention is installed.
  • an exhaust gas purification device 600 mainly includes a honeycomb filter 60 according to the present invention, a casing 630 which covers the outside of the honeycomb filter 60, and A holding sealing material 6 20 disposed between the cam filter 60 and the casing 6 30 and heating means 6 10 provided on the exhaust gas inflow side of the honeycomb filter 60 are configured.
  • An exhaust introduction pipe 6 40 connected to an internal combustion engine such as an engine is connected to an end of the casing 6 30 on the side where the exhaust gas is introduced.
  • a discharge pipe 65 0 connected to the outside is connected to the end.
  • the arrows indicate the flow of exhaust gas.
  • an exhaust pipe in front of the honeycomb filter or a catalyst carrier carrying platinum in the casing. This is because, among exhaust gases, the heat generated by gases that react at low temperatures, such as HC, is transmitted to the honeycomb filter, which makes the filter cool to high temperatures.
  • the particulate filter described above is not particularly limited in shape and structure as long as it has a structure capable of collecting particulate matter, but preferably has a surface area as large as possible.
  • the first flow path has a two-cam structure, a porous material is used as a base material, the upstream end is open, and the downstream end is closed, and the upstream end is closed.
  • a so-called wall flow type in which the second flow path having the open end on the downstream side is alternately arranged in a honeycomb shape can be provided.
  • These first flow paths become exhaust gas inflow side cells whose downstream ends are closed by a sealing material, and the second flow paths are exhaust gases whose upstream ends are closed by a sealing material.
  • the structure of the honeycomb filter 60 may be the same as the aggregated honeycomb structure 10 shown in FIG. 1 or the integrated honeycomb structure 30 shown in FIG.
  • exhaust gas discharged from an internal combustion engine such as an engine is introduced into the casing 6 30 through the introduction pipe 6 40, and the honeycomb filter. After passing through the wall (partition wall) from the 60 cell, the particulates are collected and purified by this partition wall, and then discharged to the outside through the discharge pipe 6 50.
  • the regeneration process of the honeycomb filter 60 is performed.
  • the gas heated by the heating means 61 is flowed into the cells of the honeycomb filter 60 to heat the honeycomb filter 60, and the particulates deposited on the partition walls are burned by the heating. Removed.
  • the heating means 6 10 when a catalyst such as Pt for promoting the combustion of particulates is supported on the partition walls of the honeycomb filter 60, the combustion temperature of the particulates is lowered, so the honeycomb filter 60 by the heating means 6 10 is used. In some cases, heating by the heating means 6 10 can be eliminated.
  • the regeneration of the filter means that the collected particulates are burned, but the regeneration method is a method in which the honeycomb structure is heated by a heating means provided on the exhaust gas inflow side.
  • an oxidation catalyst is supported on the two-cam structure, and the heat generated by the oxidation of hydrocarbons in the exhaust gas by the oxidation catalyst is used to regenerate in parallel with the purification of the exhaust gas.
  • the particulates are burned and removed in the temperature range of 2500 ° C. to 800 ° C., which is the melting temperature of the ash trap layer 100.
  • (Regeneration treatment) is preferably configured, and more preferably, the regeneration treatment is performed in a temperature range of 500 ° C to 700 ° C.
  • the exhaust gas has a relatively high oxygen concentration. Therefore, the regeneration process of the exhaust gas purification device for the diesel engine has a relatively high oxygen concentration or an oxygen storage effect of rare earth elements or the like. Usually, it is carried out in an excess oxygen atmosphere by the action of a catalyst having
  • the vitreous material or flux material constituting the ash trap layer 100 is melted and easily flows from the porous filter. Below 2500 ° C, the glass or flux will not melt, so it will not function to take in and fix the ash.
  • a glassy material or an inorganic compound-based flux material is melted and reduced in viscosity within a temperature range of 250 ° C. to 800 ° C.
  • 11 types of testable glassy materials (Test Examples 1 to 1 1) and inorganic compound flux materials were used. 5 types (Test Examples 1 2 to 16) were selected. The results are shown in Table 1.
  • thermogravimetric / differential thermal analyzer (TGZD TA) (manufactured by Seiko Denshi Co., Ltd., product name: TGZDTA220U). The lowest liquidus temperature, the lowest melting temperature, and the glass transition temperature were obtained and the applicability was judged.
  • Examples 1 to 16 below are examples of an integral honeycomb structure
  • Examples 1 7 to 3 2 are examples of an aggregated honeycomb structure
  • Examples 3 3 to 4 8 are It is an example of a laminated honeycomb structure.
  • the P 2 0 3 based glass such as that shown in Test Example 1 was slurried dissolved in 400 ° C, sealing the slurry Seruen de of exhaust gas inflow-side cells of the honeycomb structure Spraying to a thickness of 5 mm adjacent to the stop, an ash trap layer is formed and used as a filter.
  • Example 7 A honeycomb structure similar to (1) of Example 1 was used.
  • Example 16 (1) A honeycomb structure similar to (1) of Example 1 was used.
  • a honeycomb structure was only produced in the same manner as (1) of Example 1, but no ash trap layer was formed.
  • a raw material paste was prepared by adding 24 parts by weight of water and kneading.
  • the raw material paste was filled into an extrusion molding machine, and a green body having substantially the same shape as the porous ceramic member 30 shown in FIG. 23 was produced at an extrusion speed of 10 cm / min.
  • a sealing material paste having the same composition as that of the formed form is filled into one end of a predetermined through hole, and then again. It was dried using a drier and further degreased at 55 ° C. for 3 hours in an oxidizing atmosphere to obtain a ceramic degreased body.
  • the porosity is 45%
  • the average pore diameter is 10 m
  • the size is 34.3.
  • a porous ceramic member of mm X 3 4.3 mm x 25 4 mm was produced.
  • the thickness of the sealing material layer for binding the porous ceramic member was adjusted to 1.0 mm.
  • ceramic fiber made of alumina silicate as inorganic fiber (Shock content: 3%, fiber length: 5 to 100 jum) 2 3.3% by weight, average as inorganic particles
  • Silicon carbide powder with a particle size of 0.3 m 30.2% by weight silica sol as inorganic binder (content of Sio 2 in sol: 30% by weight) 7% by weight, carboxymethyl cereal as organic binder 0.5% by weight of roulose and 39% by weight of water were mixed and kneaded to prepare a sealing material case ⁇ .
  • a seal material paste layer having a thickness of 1.0 mm was formed on the outer periphery of the ceramic block using the seal material paste.
  • the seal material paste layer was dried at 120 ° C. to produce a honeycomb structure having a cylindrical shape and functioning as a honeycomb filter for exhaust gas purification.
  • a honeycomb structure was manufactured in the same manner as in (1) to (2) of Example 17.
  • a honeycomb structure was manufactured in the same manner as in (1) to (2) of Example 17.
  • a honeycomb structure was manufactured in the same manner as in (1) to (2) of Example 17.
  • a honeycomb structure was manufactured in the same manner as in (1) to (2) of Example 17.
  • the GaSO 4 glass shown in Test Example 5 is melted at 700 ° C. to form a slurry, and the slurry is sealed at the downstream end in the exhaust inflow side cell.
  • the filter was applied and filled with a thickness of 5 mm adjacent to the stopper to form an ash trap layer, which was used as a filter.
  • a honeycomb structure was manufactured in the same manner as in (1) to (2) of Example 17.
  • a honeycomb structure was manufactured in the same manner as in (1) to (2) of Example 17.
  • the CaSO 4 glass shown in Test Example 7 is melted at 7700C to make a slurry, and the slurry is placed at the downstream end in the exhaust inflow side cell.
  • the ash trap layer was formed by pouring in a thickness of 5 mm adjacent to the sealing portion to obtain a filter.
  • a honeycomb structure was manufactured in the same manner as in (1) to (2) of Example 17.
  • a honeycomb structure was manufactured in the same manner as in (1) to (2) of Example 17.
  • a honeycomb structure was manufactured in the same manner as in (1) to (2) of Example 17.
  • a honeycomb structure was manufactured in the same manner as in (1) to (2) of Example 17.
  • a honeycomb structure was manufactured in the same manner as in (1) to (2) of Example 17.
  • a honeycomb structure was manufactured in the same manner as in (1) to (2) of Example 17.
  • a honeycomb structure was manufactured in the same manner as (1) to (2) in Example 17 Made.
  • a honeycomb structure was manufactured in the same manner as in (1) to (2) of Example 17.
  • a honeycomb structure was manufactured in the same manner as in (1) to (2) of Example 17.
  • Test Example 16 6 Chloride-containing flux was melted at 4800C to make a slurry, and the slurry was placed at the downstream end in the exhaust inflow side cell. An ash trap layer was formed by pouring in a thickness of 5 mm adjacent to the sealing portion to obtain a filter.
  • a honeycomb structure was only manufactured in the same manner as (1) to (2) in Example 17 and no ash trap layer was formed.
  • Alumina fibers (average fiber diameter: 5 m, average fiber length: 0. 3 mm), and was impregnated 2 minutes to the slurry one was melted to P 2 0 3 system glass 400 ° C, as shown in Test Example 1
  • Alumina slurry carrying Pt (Pt concentration: 5 Wt%) was impregnated for 2 minutes, and then heated to the slurry preparation temperature of each ash trap to prepare an alumina fiber with a catalyst attached. As a result, the supported amount of Pt is 0.
  • the alumina fiber obtained in step (1) is dispersed at a rate of 10 g per 1 liter of water, and in addition, silica sol is added to the fiber as an inorganic binder.
  • Acrylate latex was added at a rate of 3 wt% as an organic binder.
  • a slurry for papermaking was prepared by adding a small amount of aluminum sulfate as a coagulant and a small amount of polyacrylamide as a coagulant and stirring sufficiently.
  • a casing (cylindrical metal container) with a holding bracket attached on one side was erected so that the side on which the bracket was attached was down. Then, after three sheets of paper sheet B were laminated, 150 sheets of paper sheet A 1 were laminated, and finally three paper sheets were laminated, and further pressed, and then the other sheet was also used for restraining. By installing and fixing the bracket, the length is 1
  • a honeycomb structure composed of a 50 mm laminate was manufactured and used as a filter. The amount of Pt supported on this honeycomb structure was 5 gZl. In this step, the sheets were laminated so that the through holes overlapped.
  • Example 5 Except that the slurries by dissolving CAS0 4 glass as shown in Test Example 5 7 00 ° C, the same procedure as in Example 3 3 to manufacture a laminated honeycomb structured body, and a filter.
  • Example 3 3 Except that the slurries by dissolving GaS0 4 glass as shown in Test Example 6 in 5 8 0 ° C, the same procedure as in Example 3 3 to manufacture a laminated honeycomb structured body, and a filter.
  • Example 7 Except that the slurries by dissolving CAS0 4 glass as shown in Test Example 7 by 7 7 0 ° C, the laminated honeycomb structured body in the same manner as in Example 3 3 Manufactured and used as a filter.
  • Example 8 7 3 0 ° C Except that the slurries by dissolving CAS0 4 glass as shown in Test Example 8 7 3 0 ° C, the same procedure as in Example 3 3 to manufacture a laminated honeycomb structured body, and a filter.
  • Example 9 Except that the slurries by dissolving CAS0 4 glass as shown in Test Example 9 6 5 0 ° C, the same procedure as in Example 3 3 to manufacture a laminated honeycomb structured body, and a filter.
  • Example 3 3 Except that the slurries by dissolving CAS0 4 glass as shown in Test Example 1 0 One at 0 0 ° C, the same procedure as in Example 3 3 to manufacture a laminated honeycomb structured body, and a filter.
  • Example 3 3 Except that the slurries by dissolving CAS0 4 glass as shown in Test Example 1 1 5 0 0 ° C, the same procedure as in Example 3 3 to manufacture a laminated honeycomb structured body, and a filter.
  • a laminated honeycomb structure was produced as a filter in the same manner as in Example 33 except that a sulfide-based flux as shown in Test Example 12 was melted at 5700C to make a slurry.
  • a laminated honeycomb structure was manufactured and used as a filter in the same manner as in Example 33, except that a sulfide-based flux as shown in Test Example 13 was melted at 530 ° C to form a slurry.
  • Test Example 14 Dissolve a chloride-containing flux as shown in 4 at 55 ° C.
  • a laminated honeycomb structure was produced in the same manner as in Example 33 except that the slurry was made into a slurry.
  • Test Example 15 A laminated honeycomb structure was produced in the same manner as in Example 33, except that a chloride-containing flux as shown in 5 was dissolved at 4800 ° C. into a slurry. It was.
  • a laminated honeycomb structure was produced in the same manner as in Example 33 except that a chloride-containing flux as shown in Test Example 16 was dissolved at 4800 ° C to form a slurry. Filter.
  • a honeycomb structure was manufactured in the same manner as in Example 33, except that the ash trap was not formed in (1) of Example 33.
  • honeycomb structure manufactured according to each of the above-described Examples 1 to 48 and Comparative Examples 1 to 3 was disposed in the exhaust passage of the engine as a particulate filter to form an exhaust gas purification device. Then, the above engine is operated at a rotational speed of 300 min-1 and torque of 50 Nm until a particulate of 8 g I is collected in the filter, and then a regeneration process for burning the particulates. was applied 1 5 0 times.
  • the filter was cut and the presence or absence of ash was visually confirmed.
  • Tables 2 to 4 show the manufacturing conditions and the presence or absence of ash absorption by the ash trap layer for each example. (Table 2)
  • the filter according to the present invention not only removes particulates in exhaust gas discharged from an internal combustion engine such as a diesel engine, but also by combustion during regeneration to remove the particulates.
  • the produced ash is useful for being taken in and fixed by an ash-wrapped layer made of a glassy material or an inorganic compound-based flux material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Filtering Materials (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

Disclosed is a filter for purifying an exhaust gas discharged from an internal combustion engine, wherein an ash trap layer is provided in a cell on the exhaust gas inflow side. Consequently, the filter can have a longer life without sacrificing the filtration area or pressure loss by effectively accumulating ashes which are produced during regeneration of the filter.

Description

明 細 書  Specification
フィルタ、内燃機関の排気ガス浄化装置および排気ガス浄化方法 技術分野  TECHNICAL FIELD The present invention relates to a filter, an exhaust gas purification device for an internal combustion engine, and an exhaust gas purification method.
本発明は、 ディーゼルエンジン等の内燃機関から排出される排気ガ ス中の粒子状物質等を除去するフィルタと、そのフィルタを用いた排 気ガス浄化装置およびこの装置を用いて行う排気ガス浄化方法に関し、 とくに前記粒子状物質中に含まれるアツシュを該フィルタ内の特定場 所に閉じ込めることによって圧力損失を招く ことなく効果的に除去す ることができるフィルタに特徴を有する技術について提案する。  The present invention relates to a filter for removing particulate matter in exhaust gas discharged from an internal combustion engine such as a diesel engine, an exhaust gas purification device using the filter, and an exhaust gas purification method performed using the device. In particular, the present invention proposes a technique characterized by a filter that can effectively remove the ash contained in the particulate matter at a specific location in the filter without causing a pressure loss.
背景技術 Background art
近年、 自動車、 建設機械等に搭載される内燃機関では、 排気ガス中 に含まれる窒素酸化物 (NOx ) や炭化水素 (HC) 等の有害ガス成分を浄 化して排気ガスの浄化を図ることが普通である。 特に、 ディーゼルェ ンジンの場合は、 窒素酸化物 (NOx) や炭化水素 (HG) に加えて、 煤や S0F( So l ub l e Organ i c Fract i on)等の所謂、粒子状物質( PM: Part i cu I ate Matter) を低減することも必要である。  In recent years, internal combustion engines mounted on automobiles, construction machines, etc. have been purifying exhaust gas by purifying harmful gas components such as nitrogen oxides (NOx) and hydrocarbons (HC) contained in the exhaust gas. It is normal. In particular, in the case of diesel engines, in addition to nitrogen oxides (NOx) and hydrocarbons (HG), so-called particulate matter (PM) such as soot and S0F (Solu- ble Organic Fraction) is used. It is also necessary to reduce i cu I ate Matter).
このような技術的背景にあって、 従来、 種々の内燃機関用排気ガス 浄化装置が提案されている。 例えば、 こう した排気ガス浄化装置の一 例と して、 排気通路に排気ガス中に含まれる粒子状物質を捕集するた めのパティキュレー トフィルタを設けたものがある。このフィルタは、 所定量の粒子状物質を捕集したとき、 エンジンの排気温度を高くする か、 ビータを用いて加熱することにより、 該フィルタを昇温させ、 捕 集された前記粒子状物質を燃焼、除去しょうとするものである。  With such a technical background, various exhaust gas purification apparatuses for internal combustion engines have been proposed. For example, as an example of such an exhaust gas purification device, there is one in which a particulate filter for collecting particulate matter contained in the exhaust gas is provided in the exhaust passage. When a predetermined amount of particulate matter is collected, the filter raises the temperature of the filter by increasing the exhaust temperature of the engine or heating it using a beater, and the collected particulate matter is collected. It is intended to burn and remove.
しかしながら、 このようなフィルタでは、 粒子状物質を燃焼、除去し た後に、 未燃焼物と して生成されるアツシュと呼ばれる無機化合物の 凝集により、フィルタ内の排気流路ゃ細孔径が閉塞され、排気の圧力損 失が大きくなるという問題があった。 However, in such a filter, after the particulate matter is burned and removed, the pore size of the exhaust passage in the filter is blocked by aggregation of an inorganic compound called ash that is generated as unburned matter. Exhaust pressure loss There was a problem of increased loss.
なお、ここでいうアッシュとは、内燃機関の燃料や潤滑油に含まれる 種々の添加剤や不純物の成分が内燃機関の燃焼室あるいは前記フィル タ上で結合し、 種々の化合物を形成して、 これらの化合物が該フィル タに凝集することによって生成したものを言う。 例えば、 内燃機関の 燃料や潤滑油には、 硫黄、 リン、 カルシウム、 マグネシウム等の成分 が含有されておリ、 燃焼室内において潤滑油中に含まれる成分と混合 気中に含まれる成分とが結合し、 硫酸カルシウム (CaS04 ) 、燐酸カル シゥ厶 (Ca 3 (P04 ) 2 ) 、あるいは硫酸マグネシウム (MgS04 ) 等の化合 物が生成し、 これらの化合物が煤 (C)と共に凝集し、 粒子状物質を形 造ることになる。即ち、硫黄は煤に吸収され易いという特性を有するこ とから、フィルタ上に、煤とともに吸収された硫黄が排気ガス中のカル シゥムやマグネシウムと結合して、 硫酸カルシウム (CaS04 ) や硫酸マ グネシゥム (MgS04 ) 等の化合物を生成し、 これらの化合物がアッシュ と して凝集するのである。 As used herein, ash refers to various additives and impurity components contained in the fuel and lubricating oil of an internal combustion engine that combine in the combustion chamber of the internal combustion engine or the filter to form various compounds, These compounds are produced by agglomeration of these compounds in the filter. For example, fuels and lubricating oils for internal combustion engines contain components such as sulfur, phosphorus, calcium, and magnesium, and the components contained in the lubricating oil and the components contained in the mixture are combined in the combustion chamber. and calcium sulfate (CAS0 4), phosphoric acid Cal Shiu厶 (Ca 3 (P0 4) 2 ), or compounds such as magnesium sulfate (MgSO 4) generates, these compounds are aggregated with soot (C), Particulate matter will be formed. That is, sulfur and this has a characteristic that it is easy to be absorbed in the soot, on the filter, the sulfur absorbed with soot combines with cull Shiumu and magnesium in the exhaust gas, calcium sulfate (CAS0 4) or sulfuric acid Ma It generates Guneshiumu (MgSO 4) compounds such as these compounds is to agglomerate in the ash.
こう したアッシュ成分と しては、 その他、 化石燃料中にセリウム、 鉄等が含まれた添加剤を混入させ、 その添加剤 (無機化合物) によつ て酸化反応を促進させることで、再生温度を下げる技術 (例えば、 特開 平 8— 2 1 8 8 4 9号公報、 特開 2 0 0 0— 1 6 7 3 2 9号公報、 特 開 2 0 0 1—9 8 9 2 5号公報参照) に用いられている前記添加剤に 起因する化合物もまたアッシュとなる。  As these ash components, other additives containing cerium, iron, etc. in fossil fuels are mixed, and the oxidation reaction is promoted by these additives (inorganic compounds), thereby achieving a regeneration temperature. (E.g., Japanese Patent Laid-Open No. 8-2 1 8 8 49, Japanese Patent Laid-Open No. 2 00 0-1 6 7 3 2 9, Japanese Patent Laid-Open No. 2 0 0 1-9 8 9 2 5) The compound resulting from the additive used in (see) is also ash.
一般に、 これらのアッシュは、 再生時に前記粒子状物質から分離す ると反応性が低下し、 排気ガス流路 (有底孔) 内で堆積するとき、 ァ ッシュ上に他のアツシュが次々と積み重なる特性がある。 その結果、 フィルタの隔壁内細孔が詰まって、 フィルター特性を阻害して圧力損 失が大きくなるという問題があった。  In general, these ashes become less reactive when separated from the particulate matter during regeneration, and other ashes accumulate on the ash one after another when they accumulate in the exhaust gas passage (bottomed hole). There are characteristics. As a result, there was a problem that the pores in the partition walls of the filter were clogged, hindering the filter characteristics and increasing the pressure loss.
このような問題を解決するために、 従来、 フィルタを振動させるこ とによってアッシュをふるい落とす技術 (例えば、 実開平 4一 1 2 9 8 2 4号公報、 特開平 8— 2 8 2 4 7号公報参照) や、フィルタの表面 に有機バインダまたは金属バインダによって ラミック粒子を付着さ せることによって、アッシュをセラミ ック粒子ごとふるい落とす技術 (例えば、特開平 1 0— 3 3 9 2 3号公報参照) などが提案されてい る。 In order to solve such problems, it has been conventional to vibrate the filter. (See, for example, Japanese Utility Model Laid-Open No. 4 1 1 2 9 8 2 4 and Japanese Patent Laid-Open No. 8-2 8 2 4 7) and organic particles or metallic binder on the filter surface. There has been proposed a technique (see, for example, Japanese Patent Laid-Open No. 10-33932) in which ash is screened together with ceramic particles by adhering ash.
しかしながら、 これらの従来技術においては、 ふるい落とされたァ ッシュが、 ハニカム構造体の封止部付近から、 貫通孔の長手方向に蓄 積されることになるので、 使用するにつれ、 濾過面積が減少して、 フ ィルタの寿命が短くなるという問題があった。  However, in these conventional technologies, the screened-off ash is accumulated in the longitudinal direction of the through-holes from the vicinity of the sealing portion of the honeycomb structure, so that the filtration area decreases as it is used. As a result, there is a problem that the life of the filter is shortened.
また 、二カム構造体内にアツシュが蓄積するのを防ぐために、逆方 向から洗浄用のガスを流入させ、 その洗浄後のアツシュをハニカム構 造体の外部に回収する技術も提寒されているが、このようなシステム を形成しょうとすると極めて煩雑になるという問題があった。  In addition, in order to prevent the accumulation of ash in the two-cam structure, a technique for flowing a cleaning gas from the opposite direction and collecting the cleaned ash outside the honeycomb structure has been proposed. However, there was a problem that it would become extremely complicated when trying to form such a system.
さらに他の従来技術と しては、 捕集材に、 内燃機関の燃料およびま たは潤滑油に含有される所定成分と同等以下の電気陰性度を有する金 属を担持したものを利用する技術も提案されている(例えば、特開 2 0 0 1 - 1 2 2 2 9号公報参照) 。  Further, as another conventional technique, a technique using a trapping material carrying a metal having an electronegativity equal to or lower than a predetermined component contained in a fuel and / or lubricating oil of an internal combustion engine is used. Has also been proposed (see, for example, Japanese Patent Application Laid-Open No. 2 00 1-1 2 2 2 9).
この従来技術は、 捕集材には潤滑油に含有される所定成分と同等以 下の電気陰性度を有する金属、 好ましくは前記所定成分よリ電気陰性 度が低く、 かつイオン化傾向が大きい金属を担持させているので、 被 結合成分が前記所定成分ではなくて、 前記電気陰性度の低い金属と結 合することを利用するものである。  According to this prior art, a metal having a negative electronegativity equal to or lower than that of a predetermined component contained in the lubricating oil is preferably used as the trapping material, preferably a metal having a lower electronegativity than the predetermined component and a high ionization tendency. Since it is supported, it is used that the component to be bonded is not the predetermined component but is bonded to the metal having a low electronegativity.
次に、 上流域に塩基性金属を担持させ、 燐酸塩、 硫酸塩にすること で、 下流域のフィルタでアツシュの形成を阻止しようという技術も提 案されている (例えば、 特開 2 0 0 2— 3 7 1 8 2 4号公報参照) 。  Next, a technique for preventing the formation of ash by a filter in the downstream region by supporting a basic metal in the upstream region and converting it into a phosphate or a sulfate has been proposed (for example, Japanese Patent Laid-Open Publication No. 2000-208). 2—see 3 7 1 8 2 4).
この技術では、 例えば、 硫酸カ リウムの方が、 硫酸カルシウムより も凝集度合いが低いために、 高温処理あるいは還元雰囲気にすること によって、 分解除去しやすくなるのである。 With this technology, for example, potassium sulfate is more expensive than calcium sulfate. However, since the degree of aggregation is low, it can be easily decomposed and removed by using a high-temperature treatment or reducing atmosphere.
さらに他の従来技術と しては、 セラミック粒子 (炭化珪素等) をガ ラス質で接合する技術が、 知られている (例えば、 特開昭 6 1 — 2 6 5 5 0号公報、 特開平 8—1 6 5 1 7 1 号公報、 特開 2 0 0 1 — 1 9 9 7 7 7号公報参照) 。しかし、これら技術は、 フィルタを作製する目 的で、 セラミック粒子をガラスで接合するものであって、 アッシュを 取リ込むための技術ではないし、またそのようなものでは、結合部のガ ラス溶融によって、 フィルタそのものが却って破壊されるという問題 がある。  Further, as another conventional technique, a technique for bonding ceramic particles (silicon carbide or the like) with a glass is known (for example, Japanese Patent Laid-Open Nos. 61-265050, 8-1 6 5 1 7 1 and Japanese Patent Laid-Open No. 2 0 1-1 9 9 7 7). However, these technologies are intended to fabricate filters and are used to bond ceramic particles with glass, not to incorporate ash, and in such cases, glass melting of the joints is not possible. The problem is that the filter itself is destroyed instead.
しかしながら、 上記特許文献に開示された従来技術については、 上 述したとおり、 なお解決を必要とする各種の問題点を抱えているのが 実情である。  However, as described above, the conventional technology disclosed in the above-mentioned patent document still has various problems that need to be solved.
そこで、本発明の目的は、排気ガス中の粒子状物質の燃焼によリ生成 するアッシュが、 そのフィルタ内に堆積することに起因する該フィル タ容積の減少または排気ガス流路 (セル) の閉塞を招く ことなく、 か つそれに伴う圧力損失の増大を招く ことのないフィルタを提案するこ とにある。  Accordingly, an object of the present invention is to reduce the filter volume resulting from the accumulation of ash produced by the combustion of particulate matter in the exhaust gas in the filter, or the exhaust gas flow path (cell). The purpose is to propose a filter that does not cause clogging and does not cause the accompanying increase in pressure loss.
本発明の他の目的は、一定の使用期間後に新品と交換したリ、アツシ ュ除去のために取り外したリというメンテナンスが不要になるだけで なく、簡単な構成によって長寿命化を図ることができるフィルタを提 案することにある。  Another object of the present invention is not only the need for maintenance after replacement for a new product after a certain period of use, and removal for removal of an ash, but also a longer service life with a simple configuration. It is to propose a filter.
本発明のさらに他の目的は、上記フィルタを用いた排気ガス浄化装 置および排気ガス浄化方法を提案することにある。 発明の開示  Still another object of the present invention is to propose an exhaust gas purification device and an exhaust gas purification method using the filter. Disclosure of the invention
発明者らは、上記の目的の実現に向けた研究の中で、アッシュはフィ ルタのセル内後方 (排出側) から順次堆積していく という知見を得て、 このような堆積現象を伴うァッシュの除去は、従来技術のように物理 的に剥離、除去する方法ではない方法で、フィルタ容積の減少や排気流 路の閉塞を抑制しながらフィルタ内の特定の場所にアッシュをコンパ ク 卜に集積させるという方法によって除去することが有効であるとの 知見を得て本発明を開発した。 Inventors have found that Ash is Obtaining the knowledge that the ruta is deposited sequentially from the rear (discharge side) of the cell, the removal of the ash accompanied by such a deposition phenomenon is not a method of physically peeling and removing as in the prior art. Developed the present invention based on the knowledge that it is effective to remove ash in a compact location in a filter while suppressing filter volume reduction and exhaust flow blockage. did.
すなわち、本発明は、  That is, the present invention
( 1 ) 内燃機関から排出される排気ガスを浄化するためのフィルタで あって、 このフィルタの排気ガス流入側セル内に、アツシュ トラップ層 を設けてなることを特徴とするフィルタであり、  (1) A filter for purifying exhaust gas discharged from an internal combustion engine, wherein an ash trap layer is provided in an exhaust gas inflow side cell of the filter,
( 2 ) 内燃機関の排気ガス流路内に、 排気ガスに含まれる粒子状物質 を捕集するフィルタを装着してなる内燃機関の排気ガス浄化装置にお いて、 このフィルタの排気ガス流入側セル内に、アツシュ トラップ層を 設けてなることを特徴とする内燃機関の排気ガス浄化装置である。  (2) In an exhaust gas purification apparatus for an internal combustion engine, in which an exhaust gas flow path of the internal combustion engine is provided with a filter that collects particulate matter contained in the exhaust gas, an exhaust gas inflow side cell of the filter An exhaust gas purifying device for an internal combustion engine, characterized in that an ash trap layer is provided therein.
( 3 ) 内燃機関から排出される排気ガス中の粒子状物質を排気ガス浄 化装置の排気ガス通路内に装着したフィルタによって捕集して浄化す る方法において、 前記フィルタの排気ガス流入側セル内にアッシュ ト ラップ層を設け、 このアッシュ トラップ層に前記粒子状物質中に含ま れるアツシュを捕捉集積させて、 フィルタ内の特定位置に閉じ込めて 除去することを特徴とする内燃機関の排気ガス浄化方法である。  (3) In a method of collecting and purifying particulate matter in exhaust gas discharged from an internal combustion engine by a filter mounted in an exhaust gas passage of an exhaust gas purification device, the exhaust gas inflow side cell of the filter An exhaust gas purification of an internal combustion engine, characterized in that an ash trap layer is provided in the ash trap, the ash contained in the particulate matter is trapped and accumulated in the ash trap layer, and is trapped and removed at a specific position in the filter. Is the method.
前記アッシュ トラップ層は、ガラス質材料にて構成されることが好 ましく、低融点ガラスにて構成されること、上記ァッシュ トラップ層は、 低融点無機化合物系フラックス材料にて構成することができる。  The ash trap layer is preferably made of a glassy material, and is made of a low melting point glass, and the ash trap layer can be made of a low melting point inorganic compound flux material. .
前記アッシュ トラップ層は、一体型または集合体型ハニカム構造体 もしくは積層型ハニカム構造体のセル内封止部近傍に設けられている ことが好ましい。  The ash trap layer is preferably provided in the vicinity of the in-cell sealing portion of the integral-type, aggregate-type honeycomb structure, or laminated honeycomb structure.
また、前記フィルタは、アッシュ トラップ層は前記ハニカム構造体の 隔壁表面に設けられていることが好ましい。 Further, the filter has an ash trap layer formed of the honeycomb structure. It is preferable to be provided on the partition wall surface.
本発明によれば、フィルタ内の特定の場所、 即ち、 排気ガス流入側の 各セル、 と くにセルエン ド (下流側端部) の封止部近傍にアッシュ ト ラップ層を設け、 このアッシュ トラップ層にて、排気ガス中の粒子状物 質を燃焼、除去する再生時 (例えば、 550°C程度) に軟化しまたはさらに 溶融して生成するアッシュ、 即ち粒子状物質の燃焼により未燃焼物と して生成したアツシュを、 このアツシュ トラップ層に順次に吸着させ て、 そこに閉じ込めるように集積させて高密度に堆積固化させること により、 フィルタ容積 (濾過面積) の減少または排気流路の閉塞を招 く ことなく、 かつ排気系の圧力損失を抑えた状態で長く使えるため、 フィルタの長寿命化が実現できる。  According to the present invention, an ash trap layer is provided at a specific location in the filter, that is, in each cell on the exhaust gas inflow side, particularly in the vicinity of the sealing portion of the cell end (downstream end portion). In ash, the particulate matter in the exhaust gas is burned and removed (for example, about 550 ° C), softened or further melted to produce ash, that is, the particulate matter burns to become unburned. The ash generated in this way is adsorbed sequentially in this ash trap layer, and is accumulated so as to be confined there and accumulated and solidified at a high density, thereby reducing the filter volume (filtering area) or blocking the exhaust passage. It can be used for a long time with no pressure loss in the exhaust system, and the filter life can be extended.
また、本発明の排気ガス浄化装置によると、ある一定の使用期間後に 新品と交換したり、アッシュ除去のために取り外したりというメ ンテ ナンスが不要となり、しかも構成が簡単であるため、低コス ト化を実現 することができる。  In addition, according to the exhaust gas purifying apparatus of the present invention, there is no need for maintenance such as replacement with a new product after a certain period of use or removal for ash removal, and the structure is simple, so that the cost is low. Can be realized.
さらに、 本発明方法によれば、 アッシュの完全な除去を通じて、 排 気ガスのよリ高い浄化が可能である。 図面の簡単な説明  Furthermore, according to the method of the present invention, exhaust gas can be highly purified through complete removal of ash. Brief Description of Drawings
図 1 は、 本発明にかかるハニカムフィルタの一例を模式的に示した 斜視図である。  FIG. 1 is a perspective view schematically showing an example of a honeycomb filter according to the present invention.
図 2 ( a ) は、 図 1 に示したハニカムフィルタを構成する多孔質セ ラミック部材の一例を模式的に示した斜視図であり、 図 2 ( b ) は、 図 2 ( a ) に示した多孔質セラミック部材の A— A線矢視断面図であ る。  Fig. 2 (a) is a perspective view schematically showing an example of the porous ceramic member constituting the honeycomb filter shown in Fig. 1, and Fig. 2 (b) is shown in Fig. 2 (a). FIG. 3 is a cross-sectional view taken along line AA of the porous ceramic member.
図 3 ( a ) は、 本発明にかかるハニカムフィルタの他の一例を模式 的に示した斜視図であり、 図 3 ( b ) は、 図 3 ( a ) に示したハニカ ムフィルタの B— B線矢視断面図である。 Fig. 3 (a) is a perspective view schematically showing another example of the honeycomb filter according to the present invention, and Fig. 3 (b) shows the honeycomb shown in Fig. 3 (a). FIG. 6 is a cross-sectional view of the mu filter taken along line B-B.
図 4 ( a ) は、 本発明にかかるハニカムフィルタのさらに他の一例 を模式的に示した斜視図であり、 図 4 ( b ) は、 図 4 ( a ) に示した ハニカムフィルタの C一 C線矢視断面図である。  Fig. 4 (a) is a perspective view schematically showing still another example of the honeycomb filter according to the present invention, and Fig. 4 (b) is a diagram of C and C of the honeycomb filter shown in Fig. 4 (a). FIG.
図 5は、 図 4に示すハニカムフィルタの製造工程の一部を説明する 図であり、  FIG. 5 is a diagram for explaining a part of the manufacturing process of the honeycomb filter shown in FIG.
図 5 ( a ) は、 積層される抄造シートを示す概略図、 図 5 ( b ) は抄 造シートを積層して形成したハニカムフィルタの概略的な斜視図であ る。 FIG. 5 (a) is a schematic view showing the paper sheets to be laminated, and FIG. 5 (b) is a schematic perspective view of the honeycomb filter formed by stacking the paper sheets.
図 6は、 本発明にかかるハニカムフィルタを用いた排気ガス浄化装 置の一例を模式的に示した断面図である。 発明を実施するための最良の形態  FIG. 6 is a cross-sectional view schematically showing an example of an exhaust gas purification device using the honeycomb filter according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明は、 内燃機関から排出される排気ガスに含まれる粒子状物質 を捕集するフィルタおよびそれを備えた内燃機関の排気ガス浄化装置 において、 フィルタ再生温度において軟化し、再生時に未燃焼物と して 生成するアッシュを取り込んで、そのアッシュをフィルタ内の特定位 置、 即ち、 排気ガス流入側の各セル内のセルエン ド部に設けた封止部 近傍で捕捉 (取り込める) ような構成を有するアッシュ トラップ層を 設けたことを特徴とする。  The present invention relates to a filter that collects particulate matter contained in exhaust gas exhausted from an internal combustion engine and an exhaust gas purification device for an internal combustion engine equipped with the filter. In this way, the generated ash is captured, and the ash is captured (captured) at a specific position in the filter, that is, in the vicinity of the sealing portion provided in the cell end portion of each cell on the exhaust gas inflow side. An ash trap layer is provided.
上記アッシュ トラップ層とは、 上述したアッシュを、 パティキユレ — トを燃焼させて除去 (再生) するフィルタ再生温度 ( 2 5 0 °C ~ 8 0 0 °C ) において、少なく とも一部で液相を生成するか、あるいは軟化 するような材料にて構成されたものであることが好ましい。  The above ash trap layer means that at least a part of the liquid phase at the filter regeneration temperature (2500 ° C to 800 ° C) at which the ash described above is removed (regenerated) by burning the particulates. It is preferably made of a material that generates or softens.
このような トラップ層構成材料は、具体的には、フィルタの再生温度 で固相から液相に変化するか、少なく とも軟化するガラス質材料、好ま しくは、リン酸系ガラスや硫酸カルシウム系ガラス等の低融点ガラス、 あるいは低融点無機化合物系フラックス材料を用いることが好まし い。 Specifically, such a trap layer constituent material is a vitreous material that changes from a solid phase to a liquid phase at the regeneration temperature of the filter or softens at least, preferably a phosphate glass or a calcium sulfate glass. Low melting point glass, etc. Alternatively, it is preferable to use a low melting point inorganic compound flux material.
上記リン酸系ガラスと しては、 P203— BaO (ガラス転移温度: 3 7 7で)、 Ρ203-Ζπ0 (ガラス転移温度: 3 6 6 °C) 、P203— BaO— BaF2 (ガラス転移 温度 : 3 6 6 °C) 等を用いることができる。 The phosphoric acid glasses include P 2 0 3 — BaO (glass transition temperature: 3 7 7), Ρ 2 0 3 -Ζπ0 (glass transition temperature: 3 6 6 ° C), P 2 0 3 — BaO—BaF 2 (glass transition temperature: 3 66 ° C.) or the like can be used.
また、硫酸カルシウム系ガラスと しては、 CaS04-NaC I (最低液相温 度: 7 2 6 °C) 、CaS04- KCI (最低液相温度: 6 8 7 °C) 、 CaS04 - NaC卜 KC I (最低液相温度 : 6 0 5 °C) 等を用いることができる。 Further, as a calcium-based glass sulfate, CaS0 4 -NaC I (lowest liquid phase temperature: 7 2 6 ° C), CaS0 4 - KCI ( minimum liquidus temperature: 6 8 7 ° C), CaS0 4 - NaC 卜 KC I (minimum liquidus temperature: 60 5 ° C) or the like can be used.
上記低融点無機化合物系フラックス材料と しては、硫酸塩系フラッ クスゃアル力 リ塩化物含有硫酸塩系フラックス (以下、 「塩化物含有系 フラックス」 という) を用いることが好ましい。  As the low-melting-point inorganic compound-based flux material, it is preferable to use a sulfate-based flux-reactive chloride-containing sulfate-based flux (hereinafter referred to as “chloride-containing flux”).
硫酸塩系フラックスと しては、 Li2S04-0.5Na2S04+0.5K2S04 (最低融解 温度 : 5 2 1 °C) 、Na2S04-ZnS04 (最低融解温度 : 4 5 6 °C) 等を用い ることができる。 The sulfate fluxes include Li 2 S0 4 -0.5Na 2 S0 4 + 0.5K 2 S0 4 (minimum melting temperature: 5 2 1 ° C), Na 2 S0 4 -ZnS0 4 (minimum melting temperature: 4 5 6 ° C) can be used.
さらに、塩化物含有系フラックスと しては、 Li2S04-K2S04- NaCI (最低 融解温度 : 4 3 2 °C) 、し i2S04-NaCI (最低融解温度 : 4 9 9 °C ) 、 Li2S04-NaC卜 KCI (最低融解温度: 4 2 6 °C) 等を用いることができる。 以下、 本発明にかかるフィルタおよびそのフィルタを用いた内燃機 関の排気ガス浄化装置について図面に基づいて具体的に説明する。 Furthermore, for chloride-containing fluxes, Li 2 S0 4 -K 2 S0 4 -NaCI (minimum melting temperature: 4 3 2 ° C) and i 2 S0 4 -NaCI (minimum melting temperature: 4 9 9 ° C), Li 2 S0 4 -NaC 卜 KCI (minimum melting temperature: 4 26 ° C), etc. can be used. Hereinafter, a filter according to the present invention and an exhaust gas purification apparatus for an internal combustion engine using the filter will be specifically described with reference to the drawings.
なお、 ここでは、 本発明にかかるフィルタをハニカム構造体と し、 本発明にかかる排気ガス浄化装置を、車両用ディーゼルエンジンに適 用した態様について説明する。  Here, an embodiment in which the filter according to the present invention is a honeycomb structure and the exhaust gas purification device according to the present invention is applied to a vehicle diesel engine will be described.
本発明にかかるフィルタは、 多数のセル (通孔) が隔壁 (濾過壁) を隔てて長手方向に並列させてハニカム構造と したものを用いる。 こ のような構造だと、 フィルタの体積あたりの濾過面積を大きくするこ とができ 《ティキュレー トを薄く捕集することができる。  The filter according to the present invention uses a honeycomb structure in which a large number of cells (through holes) are arranged in parallel in the longitudinal direction with partition walls (filtration walls) therebetween. With such a structure, the filtration area per volume of the filter can be increased. << Ticulate can be collected thinly.
このようなハニカム構造体と しては、 多数のセルが隔壁を隔てて長 手方向に並列した柱状の多孔質セラミック部材を、シール材層を介し て複数個結束させた集合体と したもの (以下、 これを 「集合体型ハニ カム構造体」 という)、 また全体が単一の部材と して形成された多孔質 セラミック部材から構成されたもの (以下、 これを 「一体型ハニカム 構造体」 という)、 多数の板状 (シー ト状物) の多孔質セラミック部材 を重ね合わせて積層し、 セル孔が隔壁を隔てて長手方向に並設された 柱状のハニカム構造体と したもの (以下、 これを 「積層型ハニカム構 造体」 という) であってもよい。 In such a honeycomb structure, a large number of cells are separated by partition walls. An assembly in which a plurality of columnar porous ceramic members arranged in parallel in the hand direction are bundled through a sealing material layer (hereinafter referred to as an “aggregate type honeycomb structure”), and the whole is a single unit. One made of porous ceramic members (hereinafter referred to as “integrated honeycomb structure”) and a number of plate-like (sheet-like) porous ceramic members A columnar honeycomb structure in which the cell holes are arranged in parallel in the longitudinal direction with the partition walls therebetween (hereinafter referred to as “stacked honeycomb structure”) may be used.
図 1 は、 ハニカム構造体の一例である集合体型ハニカム構造体の具 体例を模式的に示した斜視図であり、 図 2 ( a) は、 図 1 に示した集合 体型ハニカム構造体の多孔質セラミック部材 (ュニッ ト) の斜視図で あり、 同図 ( b ) は、 (a ) に示した多孔質セラミック部材の A— A線 矢視断面図である。  Fig. 1 is a perspective view schematically showing an example of an aggregate type honeycomb structure which is an example of a honeycomb structure, and Fig. 2 (a) is a porous diagram of the aggregate type honeycomb structure shown in Fig. 1. 1 is a perspective view of a ceramic member (unit), and FIG. 2B is a cross-sectional view taken along line AA of the porous ceramic member shown in FIG.
図 1 に示すハニカム構造体 1 0は、 図 2に示す角柱状の多孔質セラ ミック部材 (ュニッ 卜) 2 0力 シール材層 1 4を介して複数個結束さ れて円柱状のセラミックブロック 1 5を構成し、 このセラミックプロ ック 1 5の外周部には、 シール材層 1 3が設けられている。  The honeycomb structure 10 shown in FIG. 1 is composed of a prismatic porous ceramic member (unit) 20 shown in FIG. 2 and a cylindrical ceramic block 1 that is bundled together via a sealing material layer 1 4. 5 and a sealing material layer 13 is provided on the outer periphery of the ceramic block 15.
この例において、 角柱状の上記多孔質セラミック部材 2 0は、 その 長手方向に沿って多数のセル (通孔) 2 1 が設けられている。 上記ハ 二カム構造体 1 0を排気ガス中のパティキュレー トを捕集するための ハニカムフィルタとして使用する場合、多孔質セラミック部材 2 0は、 図 2 ( b ) に示したように、 これらのセル 2 1 の両端部開口部のいず れか一方が封止材 (プラグ) 2 2により封止されている。  In this example, the prismatic porous ceramic member 20 is provided with a large number of cells (through holes) 21 along the longitudinal direction thereof. When the above-mentioned double cam structure 10 is used as a honeycomb filter for collecting particulates in exhaust gas, the porous ceramic member 20 is formed of these cells as shown in FIG. 2 (b). Either one of the openings at both ends of 2 1 is sealed with a sealing material (plug) 2 2.
すなわち、 このハニカム構造体 1 0は、セラミックブロック 1 5の一 方の (排気ガス流入側) セル 2 1 はその下流側端部 (セルェン ド) が 封止材 2 2によリ封止され、他方の(排気ガス流出側)セル 2 1 では、 上流側端部が封止材 2 2により封止されている。 この場合、 排気ガス流入側セル 2 1 aに流入した排気ガスは、 これ らの各セル 2 1 a を隔てている隔壁 2 3を通過して、 排気ガス流出側 のセル 2 1 bに移ってから流出するようになっており (いわゆるゥォ ールフロー型)、 これらのセル 2 1 a、 2 1 bどう しを隔てる隔壁 2 3 を、粒子捕集用フィルタとして機能させるようになつている。 That is, the honeycomb structure 1 0 is hand of (exhaust gas inflow side) cells 2 1 of the ceramic block 1 5 its downstream end (Seruen de) is locked Li sealed by the sealing material 2 2, In the other (exhaust gas outflow side) cell 2 1, the upstream end is sealed with the sealing material 2 2. In this case, the exhaust gas flowing into the exhaust gas inflow side cell 21a passes through the partition wall 23 that separates the cells 21a, and moves to the cell 21b on the exhaust gas outflow side. The partition wall 2 3 separating these cells 21a and 21b is made to function as a particle collecting filter.
なお、 セラミックブロック 1 5の周囲に形成されたシール材層 1 3 は、 ハニカム構造体 1 0をハニカムフィルタと して使用したときに、 セラミックブロック 1 5の外周から排気ガスの漏れを防止するため、 あるいは形状を整えるために形成されている。  The sealing material layer 13 formed around the ceramic block 15 is used to prevent exhaust gas from leaking from the outer periphery of the ceramic block 15 when the honeycomb structure 10 is used as a honeycomb filter. Or, it is formed to adjust the shape.
図 3 ( a) は、 ハニカム構造体の他の形態、即ち、一体型ハニカム構造 体の具体例を模式的に示した斜視図であり、 同図 ( b ) は、 その B— B線矢視断面図である。  Fig. 3 (a) is a perspective view schematically showing another embodiment of the honeycomb structure, that is, a specific example of the integral honeycomb structure, and Fig. 3 (b) is a view taken along the line B-B. It is sectional drawing.
図 3 ( a ) に示したように、 一体型ハニカム構造体 3 0は、 長手方向 に沿って多数のセル 3 1 a、 3 1 bが隔壁 3 3を隔てて併設された柱 状の単一の多孔質セラミック焼結体からなる円柱状のセラミックプロ ック 3 5によリ構成されている。  As shown in FIG. 3 (a), the monolithic honeycomb structure 30 has a single columnar structure in which a large number of cells 31a and 31b are provided along the longitudinal direction with a partition wall 33 therebetween. It is composed of a cylindrical ceramic block 35 made of a porous ceramic sintered body.
このハニカム構造体 3 0を排気ガス中のパティキュレー トを捕集す るためのフィルタと して使用する場合、 セラミックブロック 3 5は、 図 3 ( b ) に示したように、 セル 3 1 a、 3 1 bの端部のいずれかが 一方が封止材 3 2にて封止したものを用いる。  When this honeycomb structure 30 is used as a filter for collecting particulates in the exhaust gas, the ceramic block 35 is composed of cells 31a, as shown in Fig. 3 (b). Either one of the ends of 3 1 b is sealed with sealing material 3 2 on one side.
すなわち、 ハニカム構造体 3 0のセラミックブロック 3 5では、 排 気ガス流入側セル 3 1 aの端部では下流側端部が封止材 3 2により封 止され、 排気ガス流出側セル 3 1 bの端部では、 上流側端部が封止材 3 2により封止されていることが好ましい。  That is, in the ceramic block 35 of the honeycomb structure 30, the downstream end of the exhaust gas inflow side cell 3 1 a is sealed by the sealing material 3 2, and the exhaust gas outflow side cell 3 1 b At the end, the upstream end is preferably sealed with the sealing material 32.
この場合、 一方のセル 3 1 aに流入した排気ガスは、 これらのセル 3 1 aを隔てる隔壁 3 3を通過した後、 他方のセル 3 1 bから流出さ れるようになっており (いわゆるウォールフロー型)、 これらのセル 3 1 a、 3 1 bどう しを隔てる隔壁 3 3を粒子捕集用フィルタと して機 能させることができる。 In this case, the exhaust gas flowing into one cell 3 1 a passes through the partition wall 3 3 separating these cells 3 1 a and then flows out from the other cell 3 1 b (so-called wall). Flow type), these cells 3 1 a, 3 1 b The partition wall 3 3 separating the two can function as a particle collecting filter.
また、 図 3には示していないが、 セラミックブロック 3 5の周囲に は、 図 1 に示したハニカム構造体 1 0と同様に、 セラミックブロック 1 5の外周から排気ガスの漏れを防止するため、 あるいは形状を整え るためにシール材層を形成してもよい。  Although not shown in Fig. 3, around the ceramic block 35, in order to prevent the exhaust gas from leaking from the outer periphery of the ceramic block 15 as in the honeycomb structure 10 shown in Fig. 1, Alternatively, a sealing material layer may be formed to adjust the shape.
上述した本発明にかかるフィルタを構成するハニカム構造体は、セ ラミック部材の材料と して、例えば、 コージェライ 卜、 アルミナ、 シリ 力、 ムライ ト、 ジルコニァ、 イッ トリア等の酸化物セラミック、 炭化 珪素、 炭化ジルコニウム、 炭化チタン、 炭化タンタル、 炭化タングス テン等の炭化物セラミック、 窒化アルミニウム、 窒化珪素、 窒化ホウ 素、 窒化チタン等の窒化物セラミック等、 チタン酸アルミニウム、 上 記セラミックとシリコンの複合物等を使用することができる。  The honeycomb structure constituting the filter according to the present invention described above may be used as a ceramic member material, for example, oxide ceramics such as cordierite, alumina, silicon force, mullite, zirconia, and yttria, silicon carbide, Carbide ceramics such as zirconium carbide, titanium carbide, tantalum carbide, tungsten carbide, etc., nitride ceramics such as aluminum nitride, silicon nitride, boron nitride, titanium nitride, etc., aluminum titanate, composite of ceramic and silicon, etc. Can be used.
本発明にかかるフィルタを形成するハニカム構造体が、 図 1 に示し たような集合体型ハニカム構造体である場合、 上記セラミック粒子の 中では、 耐熱性が大きく、 機械的特性および化学的安定性に優れると ともに、 熱伝導率も大きい炭化珪素が望ましい。  When the honeycomb structure forming the filter according to the present invention is an aggregate-type honeycomb structure as shown in FIG. 1, among the above ceramic particles, heat resistance is high, and mechanical characteristics and chemical stability are improved. Silicon carbide is desirable because it has excellent thermal conductivity.
また、本発明にかかるフィルタを形成するハニカム構造体が、図 3に 示したような一体型ハニカム構造体である場合、 コージェライ 卜等の 酸化物セラミックが使用される。 安価に製造することができるととも に、 比較的熱膨張係数が小さく、 例えば、 ハニカムフィルタと して使 用している途中に破壊されることがなく、 また、 酸化されることもな いからである。  In addition, when the honeycomb structure forming the filter according to the present invention is an integral honeycomb structure as shown in FIG. 3, an oxide ceramic such as cordierite is used. It can be manufactured at low cost and has a relatively small coefficient of thermal expansion. For example, it is not broken during use as a honeycomb filter, and it is not oxidized. It is.
本発明にかかるフィルタを形成するハニカム構造体の基材の熱伝導 率は、 使用するセラミック粒子の種類等により決定されるが、 セラミ ック粒子と して炭化物セラミックまたは窒化物セラミックを使用した 場合には、 3 W Z m · K〜 6 0 W Z m ■ Kであることが望ましく、 8 W/m ■ K ~ 4 0 W/m ■ Kであることがより望ましい。 The thermal conductivity of the substrate of the honeycomb structure forming the filter according to the present invention is determined by the type of ceramic particles used, etc., but when ceramic ceramics or nitride ceramics are used as ceramic particles Is preferably 3 WZ m · K to 60 WZ m W / m 2 K ~ 40 W / m 2 K is more desirable.
その理由は、熱伝導率が 3 WZm ■ K未満だと、 フィルタの温度が高 くなリすぎてフィルタが破損したリ、フィルタに担持させた触媒の性 能が低下するためであり、 6 OWZm ■ Kを超えると、フィルタの温度 が上がりにく くなるので、パティキュレー 卜の燃焼が起こリにく くな リ、排気ガスの浄化が困難になるからである。  The reason is that if the thermal conductivity is less than 3 WZm ■ K, the temperature of the filter will be too high and the filter will be damaged, and the performance of the catalyst supported on the filter will be reduced. ■ If the temperature exceeds K, the temperature of the filter will not rise easily, so it will be difficult for the particulate soot to burn, and it will be difficult to purify the exhaust gas.
また、 セラミック粒子と して酸化物セラミック (例えば、 コーディ ェライ 卜) を使用した場合の熱伝導率は、 0. 1 WZm ■ K〜 1 0W Zm ■ Κであることが望ましく、 0. 3 WZm ■ Κ〜 3 W/m ■ Κで あることがより望ましい。  In addition, when using oxide ceramics (eg cordierite 卜) as the ceramic particles, the thermal conductivity is preferably 0.1 WZm ■ K to 10W Wm ■ 、, and 0.3 WZm ■ Κ ~ 3 W / m ■ More preferably Κ.
その理由は、熱伝導率が 0. 1 WZm ■ K未満だと、フィルタの温度 が高くなリすぎてフィルタが破損したり、フィルタに担持させた触媒 の性能が低下するためでありであり、 1 OWZm ■ Kを超えると、フィ ルタの温度が上がリにく くなるので、パティキュレー 卜の燃焼が起こ リにく くなり、排気ガスの浄化が困難になるからである。  The reason is that if the thermal conductivity is less than 0.1 WZm ■ K, the temperature of the filter is too high and the filter is damaged, or the performance of the catalyst supported on the filter decreases. This is because if the temperature exceeds 1 OWZm ■ K, the temperature of the filter becomes difficult to rise, so it becomes difficult for the particulate soot to burn and purification of the exhaust gas becomes difficult.
図 1 および図 3に示したハニカム構造体では、 セラミックブロック の形状は円柱状であるが、 本発明において、 セラミックブロックは柱 状であれば円柱状に限定されることはなく、 例えば、 楕円柱状や角柱 状等の形状のものであってもよい。  In the honeycomb structure shown in FIG. 1 and FIG. 3, the shape of the ceramic block is a columnar shape. However, in the present invention, the ceramic block is not limited to a columnar shape as long as it is a columnar shape. It may be of a shape such as a prismatic shape.
上記セラミ ックブロックの気孔率は、 2 0 ~ 8 0 %程度であること が好ましい。 その理由は、気孔率が 2 0 %未満だと、 上記ハニカム構造 体をハニカムフィルタと して使用する場合、 すぐに目詰まりを起し、 —方、 気孔率が 8 0 %を超えると、 セラミックブロックの強度が低下 して容易に破壊されるためである。  The porosity of the ceramic block is preferably about 20 to 80%. The reason is that when the porosity is less than 20%, when the above honeycomb structure is used as a honeycomb filter, clogging occurs immediately, and when the porosity exceeds 80%, ceramic This is because the strength of the block decreases and it is easily broken.
なお、 上記気孔率は、 例えば、 水銀圧入法、 アルキメデス法及び走 査型電子顕微鏡 (S E M) による測定等、 従来公知の方法により測定 することができる。 また、上記セラミックブロックの平均気孔径は、 5〜 1 0 0 m程度 であることが好ましい。 その理由は、平均気孔径が 5 ju m未満だと、 上 記ハニカム構造体をフィルタと して使用する場合、 パティキュレート が容易に目詰まりを起し、一方、 平均気孔径が 1 O O jU mを超えると、 パティキュレー トが気孔を通り抜けてしまい、 該パティキュレー トを 捕集することができず、 フィルタと して機能できないためである。 本発明にかかるフィルタを形成するハニカム構造体において、 セラ ミックブロックのセルのいずれか一方の端部が封止されている場合、 この封止材は、多孔質セラミックからなるものであることが望ましい。 その理由は、封止されたセラミックブロックは、多孔質セラミックか らなるものであるため、 上記封止材を上記セラミックブロックと同じ 多孔質セラミックとすることで、 両者の接着強度を高くすることがで きるとともに、 封止材の気孔率を上述したセラミックブロックと同様 に調整することで、 上記セラミックプロックの熱膨張率と封止材の熱 膨張率との整合を図ることができ、 製造時や使用時の熱応力によって 封止材と壁部との間に隙間が生じたリ、 封止材ゃ封止材に接触する部 分の壁部にクラックが発生したりすることを防止することができるか らである。 The porosity can be measured by a conventionally known method such as a mercury intrusion method, an Archimedes method, or a measurement using a scanning electron microscope (SEM). The average pore size of the ceramic block is preferably about 5 to 100 m. The reason is that if the average pore diameter is less than 5 jum, when the above honeycomb structure is used as a filter, the particulates are easily clogged, while the average pore diameter is 1 OO jUm. This is because the particulates pass through the pores, and the particulates cannot be collected and cannot function as a filter. In the honeycomb structure forming the filter according to the present invention, when any one end of the ceramic block cells is sealed, the sealing material is preferably made of a porous ceramic. . The reason is that the sealed ceramic block is made of porous ceramic, so that the sealing material is the same porous ceramic as the ceramic block, so that the adhesive strength between them can be increased. In addition, by adjusting the porosity of the sealing material in the same manner as the ceramic block described above, the thermal expansion coefficient of the ceramic block can be matched with the thermal expansion coefficient of the sealing material. It is possible to prevent cracks from occurring in the wall part where the sealing material is in contact with the sealing material due to thermal stress during use. This is because it can be done.
上記封止材が多孔質セラミックからなる場合、 その材料と しては、 例えば、 上述したセラミックブロックを構成するセラミック粒子と同 様の材料が使用されることが望ましい。  When the sealing material is made of porous ceramic, it is desirable to use, for example, the same material as the ceramic particles constituting the ceramic block described above.
本発明にかかるフィルタを形成するハニカム構造体が、図 1 に示し た集合体型ハニカム構造体である場合、 シール材層 1 3、 1 4は、 多 孔質セラミック部材 2 0の相互間、 またはセラミックブロック 1 5の 外周部にこれらを囲繞するように配設される。 そして、 多孔質セラミ ック部材 2 0間に介在させるシール材層 1 4は、 複数の多孔質セラミ ック部材 2 0どう しを結束する接着剤と して機能し、 一方、 セラミツ クブロック 1 5の外周部に形成されたシール材層 1 3は、 ハニカム構 造体をフィルタと して使用する場合、 ハニカム構造体 1 0を内燃機関 の排気通路に設置した際、 セラミ ックブロック 1 5の外周から排気ガ スが漏れ出すことを防止するために機能する。 When the honeycomb structure forming the filter according to the present invention is the aggregate type honeycomb structure shown in FIG. 1, the sealing material layers 1 3 and 14 are provided between the porous ceramic members 20 or ceramics. These are arranged on the outer periphery of the block 15 so as to surround them. The sealing material layer 14 interposed between the porous ceramic members 20 functions as an adhesive that binds the plurality of porous ceramic members 20 together. When the honeycomb structure is used as a filter, the sealing material layer 13 formed on the outer periphery of the block 15 is a ceramic block 1 when the honeycomb structure 10 is installed in the exhaust passage of the internal combustion engine. It functions to prevent the exhaust gas from leaking from the outer periphery of 5.
上述したように、 本発明にかかるフィルタを形成するハニカム構造 体において、 シール材層は、 多孔質セラミック部材間、 およびセラミ ックブロックの外周に形成されているが、 これらのシール材層は、 同 じ材料からなるものであっても、 異なる材料からなるものであっても よい。 例えば、 無機バインダと、 有機バインダと、 無機繊維および または無機粒子とからなるもの等が使用される。 さらに、 上記シール 材層が同じ材料からなるものである場合、 その材料の配合比は同じも のであって、 異なるものであってもよい。  As described above, in the honeycomb structure forming the filter according to the present invention, the sealing material layer is formed between the porous ceramic members and on the outer periphery of the ceramic block. These sealing material layers are the same. It may be made of a material or a different material. For example, an inorganic binder, an organic binder, and inorganic fibers and / or inorganic particles are used. Furthermore, when the sealing material layers are made of the same material, the blending ratio of the materials may be the same and may be different.
上記シール材層を構成する無機バインダと しては、 例えば、 シリカ ゾル、 アルミナゾル等が使用される。 これらは、単独で用いてもよく、 2種以上を併用してもよい。 上記無機バインダのなかでは、 シリカゾ ルが望ましい。  As the inorganic binder constituting the sealing material layer, for example, silica sol, alumina sol or the like is used. These may be used alone or in combination of two or more. Of the above inorganic binders, silica is preferred.
上記シール材層を構成する有機バインダと しては、 例えば、 ポリ ビ ニルアルコール、 メチルセルロース、 ェチルセルロース、 カルボキシ メチルセルロース等が使用される。 これらは、 単独で用いても、 2種 以上を併用してもよい。 上記有機バインダのなかでは、 カルボキシメ チルセルロースが望ましい。  Examples of the organic binder constituting the sealing material layer include polyvinyl alcohol, methyl cellulose, ethyl cellulose, carboxymethyl cellulose, and the like. These may be used alone or in combination of two or more. Among the organic binders, carboxymethyl cellulose is desirable.
上記シール材層を構成する無機繊維と しては、 例えば、 シリカーァ ルミナ、 ムライ ト、 アルミナ、 シリ力等のセラミックファイバ一等が 使用される。 これらは、単独で用いても、 2種以上を併用してもよい。 上記無機繊維のなかでは、 シリカ一アルミナファイバーが望ましい。 上記シール材層を構成する無機粒子と しては、 例えば、 炭化物、 窒 化物等を挙げることができ、 具体的には、 炭化珪素、 窒化珪素、 窒化 硼素等からなる無機粉末またはウイスカ一等が使用される。 これらは、 単独で用いても、 2種以上を併用してもよい。 上記無機粒子のなかで は、 熱伝導性に優れる炭化珪素が望ましい。 As the inorganic fibers constituting the sealing material layer, for example, silica alumina, mullite, alumina, a ceramic fiber such as siri force, or the like is used. These may be used alone or in combination of two or more. Among the inorganic fibers, silica monoalumina fiber is desirable. Examples of the inorganic particles constituting the sealing material layer include carbides, nitrides, and the like. Specifically, silicon carbide, silicon nitride, nitriding An inorganic powder made of boron or the like or a whisker is used. These may be used alone or in combination of two or more. Among the inorganic particles, silicon carbide having excellent thermal conductivity is desirable.
上記の部材間に介在させるシール材層 1 4は、 緻密質材料からなる ものであってもよいが、 上記ハニカムフィルタとして使用する場合、 その内部への排気ガスの流入が可能になるように、多孔質体を用いる。 一方、 フィルタ外周に配設するシール材層 1 3は、 緻密体からなるも のであることが望ましい。 それは、 このシール材層 1 3は、 ハニカム 構造体 1 0を内燃機関の排気通路に設置した際、 セラミックブロック 1 5の外周から排気ガスが漏れ出すことを防止する目的で使用される ものだからである。  The sealing material layer 14 interposed between the members may be made of a dense material, but when used as the honeycomb filter, the exhaust gas can flow into the inside thereof. A porous body is used. On the other hand, it is desirable that the sealing material layer 13 disposed on the outer periphery of the filter is made of a dense body. This is because the sealing material layer 13 is used for the purpose of preventing the exhaust gas from leaking from the outer periphery of the ceramic block 15 when the honeycomb structure 10 is installed in the exhaust passage of the internal combustion engine. is there.
以上説明したように本発明にかかるハニカム構造体は、 図 1 〜 3に 示すように、 セラミックプロックの各セルのいずれか一方の端部に封 止材が充填され目封じされた構成であり、 ディーゼルエンジン等の内 燃機関から排出される排気ガス中のパティキュレ一 トを捕集するのに 好適である。  As described above, the honeycomb structure according to the present invention has a structure in which a sealing material is filled and sealed at one end of each cell of the ceramic block, as shown in FIGS. It is suitable for collecting particulates in exhaust gas discharged from internal combustion engines such as diesel engines.
なお、 上記ハニカム構造体のセラミックブロックの隔壁には、 ハニ カムフィルタに再生処理を施す際、 パティキユレ一 卜の燃焼を促進す るための Pt等の触媒を担持させてもよい。 例えば、 ハニカム構造体の セラミックブロックに Pt、 Rh、 Pd等の貴金属またはこれらの合金等の 触媒を担持させることで、 内燃機関等の熱機関やボイラー等の燃焼装 置等から排出される排気ガス中の HC、 CO及び NOx等の浄化に使用する ことができる。  Note that the partition walls of the ceramic block of the honeycomb structure may carry a catalyst such as Pt for promoting combustion of the particulate when the honeycomb filter is regenerated. For example, exhaust gas discharged from a heat engine such as an internal combustion engine or a combustion device such as a boiler by supporting a catalyst such as a noble metal such as Pt, Rh, or Pd or an alloy thereof on a ceramic block of a honeycomb structure It can be used to purify HC, CO, NOx, etc.
次に、 本発明にかかるフィルタを形成するハニカム構造体の他の形 態である積層型ハニカム構造体について説明する。 図 4は、 積層型ハ 二カム構造体の具体例を模式的に示した斜視図であり、 図 4 ( a) は、 図 4に示した多孔質セラミック焼結体の斜視図であり、 同図( b )は、 ( a ) に示した多孔質セラミック部材の C一 C線矢視断面図である。 このフィルタは、 板状のシート状物 (厚さが 0 . 1 〜 2 0 m m程度) を厚み方向、 即ちフィルタの長手方向に積層した積層体であり、 長手 方向にセル用の通孔が重なリ合ってセル 4 1 を形造ってハニカム構造 体となるようになつている。 Next, a laminated honeycomb structure which is another embodiment of the honeycomb structure forming the filter according to the present invention will be described. FIG. 4 is a perspective view schematically showing a specific example of the laminated honeycomb structure, and FIG. 4 (a) is a perspective view of the porous ceramic sintered body shown in FIG. Figure (b) FIG. 3 is a cross-sectional view taken along line C-C of the porous ceramic member shown in (a). This filter is a laminate in which plate-like sheets (thickness of about 0.1 to 20 mm) are laminated in the thickness direction, that is, in the longitudinal direction of the filter, and the cell through holes overlap in the longitudinal direction. The cells 4 1 are shaped to form a honeycomb structure.
ここで、 セル用通孔が重なり合うように積層されているとは、 隣り 合うシ一 卜状物に形成された通孔同士が連通してセル 4 1 を形造って いることをいう。  Here, the term “stacked so that the cell through holes overlap each other” means that the through holes formed in the adjacent sheet-shaped objects communicate with each other to form the cell 41.
上記シー ト状物は、 セラミックや金属等からなるものを用いること が好ましいが、 本発明では、 主に無機繊維からなるものが好ましい。 上記シー 卜状物が無機繊維からなる場合は、 抄造法等により容易に 作製することができ、 これを積層することによリ積層体からなるハニ カム構造体を製造することができるからである。 積層体は、 無機の接 着材等によリ接着形成されていてもよく、 単に物理的に積層されてい るのみであってもよい。  The sheet-like material is preferably made of ceramic, metal or the like, but in the present invention, it is preferably made mainly of inorganic fibers. This is because when the sheet-like material is made of inorganic fibers, it can be easily produced by a papermaking method or the like, and a honeycomb structure made of a laminated body can be produced by laminating them. . The laminate may be formed by bonding with an inorganic adhesive material or the like, or may be merely physically laminated.
また、 積層体を作製する際には、 排気管に装着するためのケーシン グ (金属製の筒状体) に、 直接、 嵌挿し、 圧力を加えることによリ積 層させてパニカム構造体とすることができる。  In addition, when producing a laminated body, it is directly inserted into a casing (metal cylindrical body) to be attached to the exhaust pipe, and the layer is stacked by applying pressure to form the panicam structure. can do.
そして、 上記ハニカム構造体 4 0は、 セルのいずれか一方の端部、 即ち排気ガス流入側の下流端が目封じされた多数のセル 4 1 aが隔壁 4 3を隔てて長手方向に並設され、 フィルタと して機能する円柱形状 のものである。  The honeycomb structure 40 has a large number of cells 41a, in which either one end of the cells, that is, the downstream end on the exhaust gas inflow side is plugged, arranged in parallel in the longitudinal direction with the partition wall 43 therebetween. It has a cylindrical shape that functions as a filter.
すなわち、 図 4 ( b ) に示したように、 セルは、 排気ガス入口側ま たは出口側に相当する端部のいずれかが目封じされ、 一方のセル 4 1 aに流入した排気ガスは、 これらのセルを隔てる隔壁 4 3を通過した 後、 他方のセル 4 1 bから流出し、 フィルタと して機能するようにな つている。 上記壁部の厚さは、 0. 2 ~ 1 0. O mmの範囲が望ましく、 0. 3 〜 6. 0 mmの範囲がより望ましい。 That is, as shown in Fig. 4 (b), the cell is sealed at either the end corresponding to the exhaust gas inlet side or the outlet side, and the exhaust gas flowing into one cell 41a is After passing through the partition wall 43 that separates these cells, it flows out from the other cell 4 1 b and functions as a filter. The wall thickness is preferably in the range of 0.2 to 10 mm, and more preferably in the range of 0.3 to 6.0 mm.
その理由は、 0. 2 mm未満では、 強度が弱く、使用中に破損する惧 れがあるからであり、 1 0. O mmを超えると、 排気ガスが透過しにく <なり圧力損失が大きくなるからである。  The reason is that if the thickness is less than 0.2 mm, the strength is weak and may be damaged during use. If the thickness exceeds 10 O mm, the exhaust gas hardly permeates and the pressure loss is large. Because it becomes.
また、上記ハニカム構造体の長手方向に垂直な断面におけるセルの 密度は、 0. 1 6個/ c m2 ( 1 . 0個 η 2) 〜 6 2個ノ c m2 ( 4 00個/ i n 2) が望ましく、 0. 6 2個 c m2 ( 4. 0個 Z i n 2) ~ 3 1 個 Zcm2 ( 2 00個 Z i n 2) がより望ましい範囲である。 その理由は、 0. 1 6個 c m2未満では、 ろ過面積が小さく圧力損 失が大きくなリやすいからであり、 6 2個/ c m2を超えると、 貫通孔 1 個あたりの断面積が小さすぎて、パティキュレー トやアッシュが目 詰まり しやすくなるからである。また、 貫通孔の大きさは、 1 . 4mm X 1 . 4 mm〜 1 6 mmx 1 6 mm力、望ましし、。 The density of cells in the cross section perpendicular to the longitudinal direction of the honeycomb structure is 0.16 cells / cm 2 (1.0 cells η 2 ) to 62 cells cm 2 (400 cells / in 2 ). Preferably, 0.6 2 pieces cm 2 (4.0 pieces Z in 2 ) to 3 1 pieces Zcm 2 (200 pieces Z in 2 ) is a more desirable range. The reason for this is that if the area is less than 0.1 6 cm 2 , the filtration area is small and the pressure loss tends to be large, and if it exceeds 62 2 cm 2 , the cross-sectional area per through hole is small. This is because the particulates and ash are easily clogged. Also, the size of the through hole is 1.4mm x 1.4mm ~ 16mmx16mm force, desired.
上記無機繊維の材質と しては、 例えば、 シリカ一アルミナ、 ムライ ト、 アルミナ、 シリカ等の酸化物セラミック、 窒化アルミニウム、 窒 化ケィ素、窒化ホウ素、窒化チタン等の窒化物セラミック、炭化珪素、 炭化ジルコニウム、 炭化チタン、 炭化タンタル、 炭化タングステン等 の炭化物セラミック等を使用することができる。 これらは、 単独で用 いてもよく、 2種以上を併用してもよい。  Examples of the material of the inorganic fiber include oxide ceramics such as silica-alumina, clay, alumina, and silica, nitride ceramics such as aluminum nitride, silicon nitride, boron nitride, and titanium nitride, silicon carbide, Carbide ceramics such as zirconium carbide, titanium carbide, tantalum carbide, and tungsten carbide can be used. These may be used alone or in combination of two or more.
上記無機繊維の繊維長は、 0. 1 mm〜 1 00 mmが望ましく、 0. 5 mm~ 5 O mmがより望ましい。  The fiber length of the inorganic fiber is preferably 0.1 mm to 100 mm, and more preferably 0.5 mm to 5 O mm.
その理由は、 0. 1 mm未満では、繊維を使用することによる弾性が 低下し、形状保持が難しくなるためであり、 1 0 0 mmを超えると、加 ェ性が低下するからである。  The reason is that if the thickness is less than 0.1 mm, the elasticity due to the use of the fiber is lowered and it becomes difficult to maintain the shape, and if it exceeds 100 mm, the additivity is lowered.
また、 上記無機繊維の繊維径は、 1 m~ 3 0 mであることが望 ましく、 2 / m〜 1 0 mの範囲であることがより望ましい。 その理由は、 1 fi m未満では、強度が不十分であリ、 3 0 ju mを超え ると、加工性が低下するからである。 The fiber diameter of the inorganic fiber is preferably 1 m to 30 m, and more preferably 2 / m to 10 m. The reason is that if it is less than 1 fi m, the strength is insufficient, and if it exceeds 30 ju m, the workability deteriorates.
上記ハニカム構造体は、 上記無機繊維のほ に、 一定の形状を維持 するためにこれらの無機繊維,同士を結合するバインダを含んでもよい。 上記バインダと しては、例えば、 珪酸ガラス、 珪酸アルカリガラス、 ホウ珪酸ガラス等の無機ガラス、 アルミナゾル、 シリカゾル、 チタ二 ァゾル等を使用することができる。  In addition to the inorganic fibers, the honeycomb structure may include a binder that bonds these inorganic fibers to maintain a certain shape. Examples of the binder include inorganic glass such as silicate glass, alkali silicate glass, and borosilicate glass, alumina sol, silica sol, and titasol.
上記バインダを含む場合、その含有量は、 5 w t %〜 5 0 w t %であ ることが望ましく、 1 0 w t % ~ 4 0 w t %であることがより望まし い o  When the binder is included, the content is preferably 5 w t% to 50 w t%, and more preferably 10 w t% to 40 w t% o
その理由は、 5 w t %未満では、結合力が不十分であり、 5 0 w t % を超えると、逆に くインダが多すぎて繊維同士の結合が不十分となる 力、らである。  The reason for this is that the bonding strength is insufficient if it is less than 5 wt%, and conversely, if it exceeds 50 wt%, there are too many indas and the bonding between the fibers becomes insufficient.
上記ハニカム構造体は、 無機粒子及び金属粒子を少量含んでいても よい。 上記無機粒子としては、 例えば、 炭化物、 窒化物、 酸化物等を 使用することができ、 具体的には、 炭化珪素、 窒化珪素、 窒化硼素、 アルミナ、 シリカ、 ジルコニァ、 チタニア等からなる無機粉末等を使 用することができる。  The honeycomb structure may contain a small amount of inorganic particles and metal particles. As the inorganic particles, for example, carbides, nitrides, oxides and the like can be used. Specifically, inorganic powders made of silicon carbide, silicon nitride, boron nitride, alumina, silica, zirconia, titania, etc. Can be used.
上記金属粒子と しては、 例えば、 金属シリコン、 アルミニウム、 鉄、 チタン等が使用される。 これらは、 単独で用いてもよく、 2種以上を 併用してもよい。  Examples of the metal particles include metal silicon, aluminum, iron, and titanium. These may be used alone or in combination of two or more.
上記ハニカム構造体の見かけの密度は、 0. 0 5 gZ c m3〜 1 . 0 O gZ c m3であることが望ましく、 0. 1 0 g / c m3〜 0. 5 0 g Z c m 3であることがより望ましい。 The apparent density of the honeycomb structure is preferably 0.05 gZ cm 3 to 1.0 O gZ cm 3 , and is preferably 0.1 g / cm 3 to 0.5 0 g Z cm 3 . It is more desirable.
その理由は、 0.0 5 g Zc m 3未満では 、二カム構造体の熱容量が 小さすぎてパティキュレー トの燃焼時に温度が高くなりすぎ、亀裂が 生じるからであり、 1 .00 g / c m3を超えると、ハニカム構造体の熱 容量が大きすぎてパティキユレ一 卜の燃焼時に温度が上昇しにくいた め、再生が不十分となるからである。 The reason is that 0.0 is less than 5 g Zc m 3, second cam structure capacity is too small temperature becomes too high during Patikyure bets combustion is because cracks, more than 1 .00 g / cm 3 And the heat of the honeycomb structure This is because the capacity is so large that the temperature does not rise easily during the burning of the patty liquor and the regeneration is insufficient.
また、 上記ハニカム構造体の気孔率は、 6 0容量%~ 9 8容量%で あることが望ましく、 8 0容量% ~ 9 5容量0 /0であることがより望ま しい。 The porosity of the honeycomb structure is preferably a 6 0% by volume to 9 8 volume%, 8 0 volume% to 9 5 volume 0/0 is a more desirable arbitrariness.
その理由は、 6 0容量%未満では、排気ガスの通過性が低下するから であり、一方、 9 8容量%を超えると、強度が不十分となるからである。 なお、 みかけの密度や気孔率は、 例えば、 重量法、 アルキメデス法、 走査型電子顕微鏡 (S E M ) による測定等、 従来公知の方法により測 定することができる。  The reason is that if it is less than 60% by volume, the passage of exhaust gas decreases, while if it exceeds 98% by volume, the strength is insufficient. The apparent density and porosity can be measured by a conventionally known method such as a gravimetric method, an Archimedes method, or a measurement using a scanning electron microscope (S E M).
本発明のフィルタを形成するハニカム構造体において、それを構成 する無機繊維には、 白金、 パラジウム、 ロジウム等の貴金属からなる 触媒が担持されていてもよい。 また、 貴金属に加えて、 アルカ リ金属 (元素周期表 1 族)、 アルカ リ土類金属 (元素周期表 2族)、 希土類元 素 (元素周期表 3族)、 遷移金属元素が加わることもある。  In the honeycomb structure forming the filter of the present invention, a catalyst made of a noble metal such as platinum, palladium, or rhodium may be supported on the inorganic fiber constituting the honeycomb structure. In addition to precious metals, alkali metals (Group 1 of the Periodic Table of Elements), alkaline earth metals (Group 2 of the Periodic Table of Elements), rare earth elements (Group 3 of the Periodic Table of Elements), and transition metal elements may be added. .
このような触媒が担持されていることで、 ハニカム構造体を用いた フィルタは、 排気ガス中のパティキュレートを捕集し、 触媒により再 生処理を行うことができるフィルタと して機能するとともに、 排気ガ スに含有される C0、 HC及び NOx等を浄化するための触媒コンバータと して機能することができる。  By supporting such a catalyst, the filter using the honeycomb structure functions as a filter that can collect particulates in the exhaust gas and perform regeneration treatment with the catalyst. It can function as a catalytic converter for purifying C0, HC, NOx, etc. contained in exhaust gas.
図 4に示したハニカム構造体 1 0の形状は円柱状であるが、 その円 柱状に限定されることはなく、 例えば、 楕円柱状や角柱状等任意の柱 形状、 大きさのものであってもよい。  The shape of the honeycomb structure 10 shown in FIG. 4 is a columnar shape, but is not limited to the circular columnar shape. For example, it has an arbitrary columnar shape or size such as an elliptical columnar shape or a prismatic shape. Also good.
本発明にかかるフィルタにおいて重要な構成は、 上述したような集 合体型ハニカム構造体 1 0、一体型ハニカム構造体 3 0、積層型ハニカ ム構造体 4 0のいずれかのハニカム構造体を用いることが好ましく、 この構造体に形成されている排気ガス流入側セル 2 1 a , 3 1 a , 4 1 aのセルェン ドにある封止部近傍あるいは隔壁の表面、さらに隔壁 表面の一部と くに下流側の部分に、 低融点ガラス等のガラス質材料ま たは低融点無機化合物系フラックス材料からなるアツシュ トラップ層 1 0 0を設けた点にある。 An important structure in the filter according to the present invention is to use any one of the aggregate type honeycomb structure 10, the integral type honeycomb structure 30, and the laminated honeycomb structure 40 as described above. The exhaust gas inflow side cells 2 1 a, 3 1 a, 4 formed in this structure are preferable. Made of vitreous material such as low-melting glass or low-melting-point inorganic compound-based flux material in the vicinity of the sealing part in the cell of 1a or on the partition wall surface, and further on the downstream part of the partition wall surface. This is in that an ash trap layer 1 0 0 is provided.
上記低融点ガラスと しては、 再生時に捕集したパティキュレー トを 燃焼、除去させることができる温度、すなわち、フィルタ再生温度( 2 5 0〜 8 0 0 °C ) において軟化もしくは溶融し、 ガラス化するような無 機化合物、即ちリン酸系ガラスや、硫酸カルシウム系ガラス等が好まし く、そして、 その低融点無機化合物系フラックス材料と しては、上記温 度範囲内で軟化し、 もしくは溶融する硫酸塩系フラックスや、塩化物含 有系フラックスが好ましい。 また、これらの材料のうち、 2以上を組み 合わせて用いることもできる。  The low melting point glass is vitrified by softening or melting at a temperature at which particulates collected during regeneration can be burned and removed, that is, at a filter regeneration temperature (2500 to 800 ° C). Inorganic compounds such as phosphate glass and calcium sulfate glass are preferred, and the low melting inorganic compound flux material is softened or melted within the above temperature range. Sulfate flux or chloride containing flux is preferred. In addition, two or more of these materials can be used in combination.
本発明において、 セル内に、 上述したアッシュ トラップ層を設ける 理由は、 下記のとおりである。 一般に、 フィルタの再生時には、 粒子 状物質 (パティキュレー 卜) が燃焼するが、 このとき未燃焼物と して 残されたアツシュ成分が排気ガスによって吹き飛ばされることになる。 そして、その飛ばされたアッシュは、軟化し溶融した状態でガラス化し 流動状態になる。 こう した流動状態にあるアッシュは、 前記アッシュ トラップするために互いに引き合い、 結合するために、 離脱 (パティ キュレートから) した全ての軟化アッシュがこの部分 (アッシュ トラ ップ等に集積していく ことになる。 即ち、 こう して生成した軟化ガラ スまたはフラックスがその部分に高密度に集積され、 そこで固定化さ せることになリ、それによつて、フィルタを長期間使用しても濾過面積 が小さくなつたり、圧力損失を招く ことはなくなるのである。  In the present invention, the reason why the above-described ash trap layer is provided in the cell is as follows. In general, when the filter is regenerated, particulate matter (particulate soot) is combusted. At this time, the ash component left as unburned material is blown away by the exhaust gas. The ash thus blown is vitrified and fluidized in a softened and melted state. The ash in such a flow state attracts and binds with each other in order to trap the ash, so that all the softened ash that has detached (from the particulates) accumulates in this portion (ash trap, etc.). That is, the softened glass or flux generated in this way is accumulated at a high density in that portion, and is fixed there, so that even if the filter is used for a long time, the filtration area is small. There is no longer a loss of pressure.
本発明において、 フィルタを形成するハニカム構造体は、 セル端部 のいずれかが封止材により封止されてなる、所謂ウォールフロー型の 場合においては、アッシュ トラップ層は、セラミックプロックの隔壁に 形成するよりも、 排気ガス流出側のセルェン ド部の封止部に隣接した 位置に形成した方が好ましい。 In the present invention, when the honeycomb structure forming the filter is a so-called wall flow type in which any one of the cell end portions is sealed with a sealing material, the ash trap layer is formed on the partition wall of the ceramic block. Rather than forming, it is preferable to form it at a position adjacent to the sealing part of the exhaust gas outflow side.
なぜならば、隔壁にアッシュ トラップ層を形成した場合にば、 トラッ プ上にアッシュが蓄積され、 細孔を埋めてしまうので、 排気ガスの流 入時の抵抗を大きく させ、 圧力損失を大きくすることになるからであ る。  This is because if an ash trap layer is formed on the partition wall, ash accumulates on the trap and fills the pores, increasing the resistance when injecting exhaust gas and increasing pressure loss. Because it becomes.
一方、 排気ガス流入側セルの流出側端部の封止部に隣接してアツシ ュ トラップ層を形成した場合には、アツシュは、その封止部付近に集積 することになるので、 濾過面積の減少を最小限に押さえることができ るからである。 しかしながら、 フィルタの気孔率や、 アッシュ 卜ラッ プ層の厚みを調整すれば、 隔壁上に形成させることもできる。  On the other hand, when an ash trap layer is formed adjacent to the sealing portion at the outflow side end of the exhaust gas inflow side cell, the ash is accumulated in the vicinity of the sealing portion. This is because the decrease can be minimized. However, it can also be formed on the partition walls by adjusting the porosity of the filter and the thickness of the ash wrap layer.
次に、 本発明にかかるフィルタを形成する集合体型ハニカム構造体 Next, an aggregated honeycomb structure forming the filter according to the present invention
1 0および一体型ハニカム構造体 3 0の製造方法の一例と して、 セラ ミ ックブロックの所定のセルの一端が封止され、目封じされた形態の ハニカム構造体を製造する場合について説明する。 As an example of a method for manufacturing 10 and the integral honeycomb structure 30, a case will be described in which a honeycomb structure in which one end of a predetermined cell of a ceramic block is sealed and sealed is manufactured.
上記ハニカム構造体は、その構造が図 3に示したように、全体が一つ のセラミックブロックと して形成された一体型ハニカム構造体 3 0で ある場合には、 まず、 上述したようなセラミック粒子を主成分とする 原料ペース 卜を用いて押出成形を行い、 図 3に示したハニカム構造体 3 0と略同形状のセラミック成形体を作製する。  As shown in FIG. 3, when the honeycomb structure is an integrated honeycomb structure 30 formed as one ceramic block as a whole, first, the ceramic structure as described above is used. Extrusion molding is performed using a raw material paste 粒子 containing particles as a main component, and a ceramic molded body having substantially the same shape as the honeycomb structure 30 shown in Fig. 3 is produced.
上記原料ペース トは、製造後のセラミックプロックの気孔率が、 2 0 〜 8 0 %となるものであることが望ましく、 例えば、 平均粒子径が大 きいセラミック粒子粉末と平均粒子径が小さいセラミック粒子とから なる混合粉末にバインダおよび分散媒液を加えたものが使用される。 上記バインダと しては、例えば、 メチルセルロース、 カルボキシメチ ルセルロース、 ヒ ドロキシェチルセルロース、 ポリエチレングリコー ル、 フヱノール樹脂、 エポキシ樹脂等が使用される。 上記バインダの配合量は、 通常、 セラミック粒子粉末 1 0 0重量部 に対して、 1 〜 1 0重量部程度が望ましい。 The raw material paste preferably has a porosity of 20 to 80% of ceramic block after production. For example, ceramic particle powder having a large average particle size and ceramic particle having a small average particle size A mixed powder consisting of and added with a binder and a dispersion medium is used. As the binder, for example, methyl cellulose, carboxymethyl cellulose, hydroxychetyl cellulose, polyethylene glycol, phenol resin, epoxy resin and the like are used. In general, the amount of the binder is desirably about 1 to 10 parts by weight with respect to 100 parts by weight of the ceramic particle powder.
上記分散媒液と しては、例えば、 ベンゼン等の有機溶媒、メタノール 等のアルコール、 水等が使用され、この分散媒液は、 原料ペース 卜の粘 度が一定範囲内となるように配合される。  As the dispersion medium liquid, for example, an organic solvent such as benzene, alcohol such as methanol, water or the like is used, and this dispersion medium liquid is blended so that the viscosity of the raw material paste ペ ー ス falls within a certain range. The
上記セラミック粉末とシリコン粉末とからなる混合粉末、 バインダ および分散媒液は、 ア トライター等で混合し、 ニーダ一等で充分に混 練して原料ペース トとした後、 該原料ペース トを押出成形して上記セ ラミック成形体を作製する。  The mixed powder consisting of the ceramic powder and the silicon powder, the binder and the dispersion medium liquid are mixed with an attritor or the like, and sufficiently mixed with a kneader to obtain a raw material paste, and then the raw material paste is extruded. Molding to produce the above ceramic molded body.
また、 上記原料ペース トには、 必要に応じて成形助剤を添加しても よく、その成形助剤と しては、 例えば、 エチレングリコール、 デキス 卜 リン、 脂肪酸石鹼、 ポリ ビニルアルコ,ル等が用いられる。  In addition, a molding aid may be added to the raw material paste as necessary, and examples of the molding aid include ethylene glycol, dextrins phosphorus, fatty acid sarcophagus, polyvinyl alcohol, and the like. Is used.
さらに、 上記原料ペース トには、 必要に応じて酸化物系セラミック を成分とする微小中空球体であるバルーンや、 球状アク リル粒子、 グ ラフアイ ト等の造孔剤を添加してもよい。  Furthermore, a pore-forming agent such as balloons that are fine hollow spheres containing oxide-based ceramics, spherical acrylic particles, and graphite may be added to the raw material paste as necessary.
上記バルーンとしては、例えば、 アルミナバルーン、 ガラスマイクロ バルーン、 シラスバルーン、 フライアッシュバルーン ( F Aバルーン) 及びムラィ トバルーン等が用いられる。 これらのなかでは、 アルミナ バルーンが望ましい。  As the balloon, for example, an alumina balloon, a glass micro balloon, a shirasu balloon, a fly ash balloon (FA balloon), and a murato balloon are used. Of these, alumina balloons are preferred.
そして、上記セラミック成形体を、 マイク口波乾燥機、熱風乾燥機、 誘電乾燥機、 減圧乾燥機、 真空乾燥機及び凍結乾燥機等を用いて乾燥 させてセラミック乾燥体とした後、 所定のセルの一端に封止材となる ペース トを充填し、 セルに目封じする封口処理を施す。  Then, the ceramic molded body is dried using a microphone mouth wave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, a freeze dryer, or the like to obtain a ceramic dried body, and then a predetermined cell. One end of the cell is filled with a paste serving as a sealing material, and the cell is sealed.
次に、上記封止材ペース 卜が充填されたセラミック乾燥体を、 1 5 0 ~ 7 0 0 °C程度に加熱して、 上記セラミック乾燥体に含まれるバイン ダを除去し、 セラミック脱脂体とする脱脂処理を施す。  Next, the ceramic dry body filled with the sealing material paste 卜 is heated to about 150 to 700 ° C. to remove the binder contained in the ceramic dry body, and the ceramic degreased body and Apply degreasing treatment.
さらに、 上記セラミック脱脂体を 1 4 0 0〜 2 1 0 0 °C程度に加熱 し、 セラミック多孔体を製造する。 Furthermore, the above ceramic degreased body is heated to about 1400-200 ° C. And manufacturing a ceramic porous body.
このように製造されたハニカム構造体は、 セラミックブロックの排 気ガス流入側セルの流出側端部に封止材が充填されて目封じされた構 造であり、 上述した排気ガス浄化用ハニカムフィルタと して好適に用 いることができる。  The honeycomb structure manufactured in this way has a structure in which a sealing material is filled and sealed at the outflow side end of the exhaust gas inflow side cell of the ceramic block. The honeycomb filter for exhaust gas purification described above As such, it can be suitably used.
また、 この場合、 上記セラミックブロックのセル壁、 即ち各隔壁表 面には、 ハニカムフィルタに再生処理を施す際、 パティキュレー トの 燃焼を促進するための Pt等の触媒を担持させてもよい。  In this case, the cell wall of the ceramic block, that is, the surface of each partition wall, may be supported with a catalyst such as Pt for promoting the combustion of the particulates when the honeycomb filter is regenerated.
上記ハニカム構造体は、 その構造が図 1 に示したように、 多孔質セ ラミック部材が、シール材層を介して複数個結束されて構成された集 合体型ハニカム構造体 1 0と した場合、 まず、 上述したセラミック粒 子とシリコンとを主成分とする原料ペース 卜を用いて押出成形を行い、 図 2に示した多孔質セラミック部材 2 0のような形状の生成形体を作 製する。  When the honeycomb structure is an aggregated honeycomb structure 10 in which a plurality of porous ceramic members are bundled through a sealing material layer as shown in FIG. First, extrusion molding is performed using the above-mentioned raw material paste containing ceramic particles and silicon as main components, and a shaped product having a shape like the porous ceramic member 20 shown in FIG. 2 is produced.
なお、 上記原料ペース トと しては、 上述した一体型ハニカム構造体 3 0において説明した原料ペース 卜と同様のものを使用することがで さる。  The raw material paste may be the same as the raw material paste described in the above-described integrated honeycomb structure 30.
次に、 上記生成形体を、 マイクロ波乾燥機等を用いて乾燥させて乾 燥体と した後、 該乾燥体のセルとなるガス流入側の通孔の流出側の端 部に封止材となる封止材ペース トを充填し、 上記セルを目封じする封 口処理を施す。 また、 前記排気ガス流入側と隣り合う排気ガス流出側 セルの上流端を同様にして封止材にて封止する。  Next, the generated shaped body is dried using a microwave dryer or the like to obtain a dried body, and then a sealing material and a sealing material are provided at the end on the outflow side of the through hole on the gas inflow side serving as a cell of the dried body. A sealing process is performed to fill the sealing material paste and seal the cells. Further, the upstream end of the exhaust gas outflow side cell adjacent to the exhaust gas inflow side is similarly sealed with a sealing material.
次いで、 各セルを上述したようにして互い違いに封口処理を施した 乾燥体に、上述した一体型ハニカム構造体 3 0と同様の条件で脱脂処 理を施した後に、 焼成を行うことにより、 複数のセルが隔壁を隔てて 長手方向に並設された多孔質セラミック部材を製造することができる。 そして、 多孔質セラミック部材 2 0の側面に、 シール材層となるシ ール材ペース トを均一な厚さで塗布し積層する工程を繰り返し、 所定 の大きさの角柱状の多孔質セラミック部材 2 0の積層体を作製する。 なお、 上記シール材ペース トを構成する材料と しては、 上記ハニカ ム構造体を説明する際に述べたので、ここではその説明を省略する。 次に、 この多孔質セラミック部材 2 0の積層体を加熱してシール材 ペース ト層 5 1 を乾燥、 固化させてシール材層 1 4と し、 その後、 例 えば、 ダイヤモン ドカッター等を用いて、 その外周部を図 1 に示した ような形状に切削することで、 セラミックブロック 1 5を作製する。 さらに、 セラミックブロック 1 5の外周に上記シール材ペース トを 用いてシール材層 1 3を形成することで、 多孔質セラミック部材がシ 一ル材層を介して複数個結束されて構成されたハニカム構造体を製造 することができる。 Next, a dry body, in which each cell is alternately sealed as described above, is subjected to a degreasing process under the same conditions as those of the above-described integrated honeycomb structure 30, and then fired to obtain a plurality of It is possible to manufacture a porous ceramic member in which the cells are arranged in parallel in the longitudinal direction across the partition walls. Then, on the side surface of the porous ceramic member 20, a seal layer is formed. The process of applying and laminating a paste paste with a uniform thickness is repeated to produce a laminated body of prismatic porous ceramic members 20 having a predetermined size. Since the material constituting the sealing material paste has been described when the honeycomb structure is described, the description thereof is omitted here. Next, the laminated body of the porous ceramic member 20 is heated to dry and solidify the sealing material paste layer 51 to form the sealing material layer 14. Then, for example, using a diamond cutter or the like, A ceramic block 15 is manufactured by cutting the outer peripheral portion into a shape as shown in FIG. Furthermore, a honeycomb structure in which a plurality of porous ceramic members are bundled through a seal material layer by forming the seal material layer 13 on the outer periphery of the ceramic block 15 using the above seal material paste. Structures can be manufactured.
このように製造された集合型ハニカム構造体 1 0は、 セラミックブ ロック (多孔質セラミック部材) の所定のセルの端部に封止材が充填 され、目封じされたものであり、上述した排気ガス浄化用ハニカムフィ ルタとして好適に用いることができる。 また、 この場合、 上記セラミ ックブロックの壁部 (多孔質セラミック部材の隔壁) には、 ハニカム フィルタに再生処理を施す際、 パティキュレートの燃焼を促進するた めの Pt等の触媒を担持させてもよい。  The aggregated honeycomb structure 10 manufactured in this way is obtained by filling the end portion of a predetermined cell of a ceramic block (porous ceramic member) with a sealing material and sealing it. It can be suitably used as a honeycomb filter for gas purification. In this case, the wall of the ceramic block (the partition wall of the porous ceramic member) may carry a catalyst such as Pt for promoting the combustion of the particulates when the honeycomb filter is regenerated. Good.
本発明においては、上記セラミックブロックのセルのうち、排気ガス 流入側セル 2 1 a、 3 1 aの下流側端部が封止材によリ 目封じされた 部分 (封止部) に隣接して、アッシュ トラップ層 1 0 0が形成されるこ とが望ましいが、 場合によって隔壁表面 (セル壁) にこのアッシュ 卜 ラップ層を形成したものであってもよい。 このアッシュ トラップ層 1 0 0は、 溶融したガラス質材料を排気ガス流入側セル 2 1 a、 3 1 a 内に流し込んだリ、 塗布、充填したり、あるいは吹き付けたり した後、 冷却することによって形成することができる。 封止時に トラップ層を形成すると、 その後、 Ι Α Ο Ο Ζ Ι Ο Ο ^ で焼成するので、 トラップ層は 2 5 0〜 8 0 0 °Cで軟化するので好ま し <ない。 In the present invention, among the cells of the ceramic block, the downstream end portions of the exhaust gas inflow side cells 21a and 31a are adjacent to the portion (sealing portion) sealed with the sealing material. Thus, it is desirable that the ash trap layer 100 be formed, but in some cases, the ash trap layer may be formed on the partition wall surface (cell wall). This ash trap layer 100 is formed by cooling after melting, coating, filling, or spraying molten glassy material into the exhaust gas inflow side cells 2 1a, 3 1a. can do. If a trap layer is formed at the time of sealing, it is then fired at Ι Α Ο Ζ Ι Ο Ο Ο ^, so the trap layer softens at 25 ° to 80 ° C., which is not preferred.
また、排気ガス流入側セル 2 1 a、 3 1 a内に トラップ層を形成した 後に、封止材を押し込んで目封じしてもよい。  Further, after forming the trap layer in the exhaust gas inflow side cells 21a and 31a, the sealing material may be pushed in and sealed.
次に、 本発明のフィルタを形成する積層型ハニカム構造体の製造方 法について、 図 5に基づいて説明する。  Next, a manufacturing method of the laminated honeycomb structure forming the filter of the present invention will be described with reference to FIG.
( 1 ) 無機繊維へのアッシュ トラップの付与工程  (1) Ash trap application process to inorganic fibers
アルミナファイバ等の無機繊維を、 例えば、 リン酸系ガラスを溶か して作製したスラリーに含浸した後、引き上げ、 冷却することにより、 ガラス質のアッシュ トラップ層が付着担持された無機繊維を調製する。 アッシュ トラップの担持量は、 無機繊維 1 0 gに対して、 0 . 0 1 ~ 9 0 gが好ましい。  Inorganic fibers such as alumina fibers are impregnated in a slurry prepared by melting phosphate glass, for example, and then pulled up and cooled to prepare inorganic fibers on which a glassy ash trap layer is adhered and supported. . The supported amount of ash trap is preferably 0.01 to 90 g per 10 g of inorganic fiber.
このように、 本発明によるハニカム構造体では、 成形前に構成材料 である無機繊維に直接、アツシュ トラップ層 1 0 0を付与することが できるため、 アッシュ 卜ラップ層 1 0 0をより均一に分散させた状態 で担持付着させることができる。  As described above, in the honeycomb structure according to the present invention, the ash trap layer 100 can be more evenly dispersed because the ash trap layer 100 can be directly applied to the inorganic fiber that is a constituent material before molding. In this state, it can be supported and adhered.
通常、 アッシュ トラップ層 1 0 0は、 溶融してフィルタから流れ出 ないように制御され、 再生時には軟化、 溶融する性質を利用するもの である。 従って、 アッシュ トラップ層の表面が軟化し、 溶融している 場合 (即ち、再生時) において、 パティキュレー トの反応がおこると、 ァッシュはすぐにアツシュ トラップ層に取リ込まれるようにすること が望ましい。 すなわち、 アッシュ トラップを、 フィルタ内に均一に設 けることによって、 アッシュを確実に トラップ層に取り込むことがで きるのである。  Usually, the ash trap layer 100 is controlled so as not to melt and flow out of the filter, and utilizes the property of softening and melting during regeneration. Therefore, when the surface of the ash trap layer is softened and melted (that is, at the time of regeneration), it is desirable that the ash be immediately taken into the ash trap layer when the particulate reaction occurs. . In other words, ash can be reliably taken into the trap layer by providing ash traps uniformly within the filter.
そのため、 得られるハニカム構造体では、 パティキュレー トの燃焼 機能及び有害ガスの浄化機能を増大させることができる。 なお、 アツ シュ トラップ層の付与は、 抄造シートを作製した後に行ってもよい。 Therefore, in the obtained honeycomb structure, the combustion function of particulates and the purification function of harmful gases can be increased. Atsushi The provision of the strap layer may be performed after the papermaking sheet is produced.
( 2 ) 抄造用スラリーの調製工程  (2) Process for preparing papermaking slurry
次に、 水 1 リ ッ トルに対し ( 1 ) の工程で得られた触媒を担持した 無機繊維を 5〜 1 00 gの割合で分散させ、 そのほかにシリ力ゾル等 の無機バインダを無機繊維 1 00重量部に対して 1 0 ~ 40重量部、 アク リルラテックス等の有機バインダを 1 ~ 1 0重量部の割合で添加 し、 さらに、 必要により、 硫酸アルミニウム等の凝結剤、 ポリアク リ ルアミ ド等の凝集剤を少量添加し、 充分撹拌することによリ抄造用ス ラリーを調製する。  Next, the inorganic fiber carrying the catalyst obtained in step (1) is dispersed at a rate of 5 to 100 g per 1 liter of water, and an inorganic binder such as sili-force sol is added to the inorganic fiber 1. Add 100 to 40 parts by weight of organic binder such as acrylic latex to 1 to 10 parts by weight with respect to 00 parts by weight, and if necessary, coagulant such as aluminum sulfate, polyacrylamide, etc. Add a small amount of flocculant and thoroughly stir to prepare a slurry for papermaking.
上記有機バインダと しては、 例えば、 メチルセルロース、 カルボキ シメチルセルロース、 ヒ ドロキシェチルセルロース、 ポリエチレング リコール、 フエノール樹脂、 エポキシ樹脂、 ポリ ビニルアルコール、 スチレンブタジエンゴム等が使用される。  Examples of the organic binder include methyl cellulose, carboxymethyl cellulose, hydroxy shetil cellulose, polyethylene glycol, phenol resin, epoxy resin, polyvinyl alcohol, and styrene butadiene rubber.
( 3 ) 抄造工程  (3) Papermaking process
上記 ( 2 ) で得られたスラリーを、 所定形状の穴が互いに所定の間 隔で形成された穴開きメ ッシュによリ抄造し、 得られたものを 1 00 ~ 2 00°C程度の温度で乾燥することにより、 図 5 ( a ) に示すよう な、所定厚さの抄造シー ト 4 0 aを得る。抄造シー ト 4 0 aの厚さは、 0. 1 ~ 2 0 mmが望ましい。  The slurry obtained in the above (2) is made by a punching mesh in which holes having a predetermined shape are formed at predetermined intervals, and the obtained slurry is heated to a temperature of about 100 to 200 ° C. By drying with, a paper sheet 40 a having a predetermined thickness as shown in FIG. 5 (a) is obtained. The thickness of the papermaking sheet 40 a is preferably 0.1 to 20 mm.
本発明では、 例えば、 所定形状の穴が市松模様に形成されているメ ッシュを用いることにより、 両端部用の抄造シ一ト 40 bを得ること ができる。  In the present invention, for example, by using a mesh in which holes having a predetermined shape are formed in a checkered pattern, a papermaking sheet 40b for both ends can be obtained.
すなわち、 この抄造シー トを数枚両端部に用いれば、 セルを形成し た後、 両端部の所定のセルを塞ぐという工程を行うことなく、 フィル タと して機能するハニカム構造体を得ることができる。  That is, if several sheets of this papermaking sheet are used at both ends, a honeycomb structure that functions as a filter can be obtained without forming a cell and then closing a predetermined cell at both ends. Can do.
( 4 ) 積層工程  (4) Lamination process
図 5 ( b ) に示すように、 片側に抑え用の金具を有する円筒状のケ 一シング 4 2を用いて、 まず、 ケーシング 4 3内に、 両端部用の抄造 シー ト 4 0 bを数枚積層した後、 内部用の抄造シ一ト 4 0 aを所定枚 数積層する。 そして、 最後に、 両端部用の抄造シー ト 4 0 bを数枚積 層し、 さらにプレスを行い、 その後、 もう片方にも、 抑え用の金具を 設置、 固定することにより、 キヤニングまで完了したハニカム構造体 を作製することができる。 もちろん、 この工程では、 セルが重なり合 うように、 抄造シート 4 0 a、 4 0 bを積層する。 As shown in Fig. 5 (b), a cylindrical case with a holding bracket on one side. First, a plurality of sheet-forming sheets 40 b for both ends are stacked in the casing 43, and then a predetermined number of sheet-forming sheets 40 a for internal use are stacked. Finally, several sheets of paper 40b for both ends were stacked, further pressed, and then the other side was installed and fixed with holding metal fittings to complete the canning. A honeycomb structure can be produced. Of course, in this process, the papermaking sheets 40 a and 40 b are laminated so that the cells overlap.
本発明のフィルタを形成するハニカム構造体が、 このように単に、 抄造シ一卜を物理的に積層しているのみであると、 このハニカム構造 体を上記排気通路に配設した際、 このハニカム構造体にある程度の温 度分布が発生しても、 一枚の抄造シー トの温度分布は小さく、 クラッ ク等が発生しにくい。  When the honeycomb structure forming the filter of the present invention is simply simply formed by stacking paper sheets, the honeycomb structure is disposed in the exhaust passage when the honeycomb structure is disposed in the exhaust passage. Even if a certain temperature distribution occurs in the structure, the temperature distribution of a single sheet is small and cracks are not likely to occur.
また、 上記抄造により、 上記無機繊維は、 抄造シートの主面にほぼ 平行に配向し、 積層体を作製した際には、 上記無機繊維は、 セルの形 成方向に対して平行な面に比べてセルの形成方向に対して垂直な面に 沿ってより多く配向している。  In addition, as a result of the papermaking, the inorganic fibers are oriented almost parallel to the main surface of the papermaking sheet, and when the laminate is produced, the inorganic fibers are compared with the surfaces parallel to the cell formation direction. The orientation is more along the plane perpendicular to the cell formation direction.
従って、排気ガスがハニカム構造体の壁部を透過しやすくなる結果、 初期の圧力損失を低減することができるとともに、 パティキュレート を隔壁内部によリ深層ろ過しやすくなリ、 隔壁表面でケーク層が形成 されることを抑制して、 パティキュレート捕集時の圧力損失の上昇を 抑制することができる。  As a result, the exhaust gas can easily permeate the walls of the honeycomb structure, so that the initial pressure loss can be reduced and the particulates can be easily filtered through the inside of the partition walls. Can be suppressed, and an increase in pressure loss during particulate collection can be suppressed.
また、 排気ガスが無機繊維の配向方向に平行に流れる割合が多くな るために、 パティキユレ一 卜が無機繊維に付着した触媒と接触する機 会が増加し、 パティキュレートが燃焼しやすくなる。  In addition, since the ratio of exhaust gas flowing parallel to the orientation direction of the inorganic fibers increases, the chance that the particulates come into contact with the catalyst adhering to the inorganic fibers increases, and the particulates easily burn.
さらに、 穴の寸法が異なる抄造シー トを作製し、 これらを積層すれ ば、 セルが凹凸を形成し、 その表面積が大きなセルを形成することが できる。 従って、 濾過面積が大きくなリ、 パティキュレー トを捕集し た際の圧力損失を低下させることが可能となる。 穴の形状については 特に四角形に限定されず、 三角形、 六角形、 八角形、 十二角形、 円形、 楕円形等の任意の形状であってよい。 Furthermore, by making paper sheets with different hole dimensions and laminating them, the cells form irregularities and cells with a large surface area can be formed. Therefore, it is necessary to collect particulates with a large filtration area. It is possible to reduce the pressure loss at the time. The shape of the hole is not particularly limited to a quadrangle, and may be any shape such as a triangle, hexagon, octagon, dodecagon, circle, or ellipse.
図 6は、 本発明のフィルタが設置された車両の排気ガス浄化装置の 一例を模式的に示した断面図である。  FIG. 6 is a cross-sectional view schematically showing an example of an exhaust gas purifying device for a vehicle in which the filter of the present invention is installed.
図 6において、 排気ガス浄化装置 6 0 0は、 主と して、 本発明にか かるハニカムフィルタ 6 0と、 そのハニカムフィルタ 6 0の外方を覆 ぅケ一シング 6 3 0と、 /ヽニカムフィルタ 6 0とケーシング 6 3 0と の間に配置された保持シール材 6 2 0と、 ハニカムフィルタ 6 0の排 気ガス流入側に設けられた加熱手段 6 1 0とから構成されている。 前記ケーシング 6 3 0の排気ガスが導入される側の端部には、 ェン ジン等の内燃機関に連結された排気導入管 6 4 0が接続されており、 ケ一シング 6 3 0の他端部には、 外部に連結された排出管 6 5 0が接 続されている。 なお、 図 6中、 矢印は排気ガスの流れを示している。  In FIG. 6, an exhaust gas purification device 600 mainly includes a honeycomb filter 60 according to the present invention, a casing 630 which covers the outside of the honeycomb filter 60, and A holding sealing material 6 20 disposed between the cam filter 60 and the casing 6 30 and heating means 6 10 provided on the exhaust gas inflow side of the honeycomb filter 60 are configured. An exhaust introduction pipe 6 40 connected to an internal combustion engine such as an engine is connected to an end of the casing 6 30 on the side where the exhaust gas is introduced. A discharge pipe 65 0 connected to the outside is connected to the end. In Fig. 6, the arrows indicate the flow of exhaust gas.
なお、 図示しないが、 ハニカムフィルタの前の排気管や、 ケーシン グ内に白金を担持した触媒担体を設置するほうが望ましい。 排気ガス の中でも、 H C等の低温で反応するガスの発熱を、 ハニカムフィルタ に伝えることで、 フィルタを高温にしゃすくなるからである。  Although not shown, it is preferable to install an exhaust pipe in front of the honeycomb filter or a catalyst carrier carrying platinum in the casing. This is because, among exhaust gases, the heat generated by gases that react at low temperatures, such as HC, is transmitted to the honeycomb filter, which makes the filter cool to high temperatures.
上述したパティキュレー トフィルタは、 粒状物を捕集可能な構造で あれば特に形状、 構造は限定されないが、 なるべく表面積が広いもの が好ましい。  The particulate filter described above is not particularly limited in shape and structure as long as it has a structure capable of collecting particulate matter, but preferably has a surface area as large as possible.
例えば 、二カム構造をなし、 多孔質の物質を基材と し、 上流側の端 部が開放し、 かつ下流側の端部が閉塞された第 1 流路と、 上流側の端 部が閉塞されかつ下流側の端部が開放された第 2流路とを交互にハニ カム状に配置して構成された、 いわゆるウォールフロー型とすること ができる。 これら第 1 流路は下流端が封止材によリ閉塞された排気ガ ス流入側セルとなリ、 第 2流路は上流端が封止材によリ閉塞された排 気ガス流出側セルとなって、 これらは薄肉の隔壁を介して交互に配置 される。 For example, the first flow path has a two-cam structure, a porous material is used as a base material, the upstream end is open, and the downstream end is closed, and the upstream end is closed. In addition, a so-called wall flow type in which the second flow path having the open end on the downstream side is alternately arranged in a honeycomb shape can be provided. These first flow paths become exhaust gas inflow side cells whose downstream ends are closed by a sealing material, and the second flow paths are exhaust gases whose upstream ends are closed by a sealing material. These are gas gas outflow side cells, which are alternately arranged through thin walls.
また、 図 6において、 ハニカムフィルタ 6 0の構造は、 図 1 に示し た集合体型ハニカム構造体 1 0や、 図 3に示した一体型ハニカム構造 体 3 0と同様であってもよい。  Further, in FIG. 6, the structure of the honeycomb filter 60 may be the same as the aggregated honeycomb structure 10 shown in FIG. 1 or the integrated honeycomb structure 30 shown in FIG.
このような構成からなる排気ガス浄化装置 6 0 0では、 エンジン等 の内燃機関から排出された排気ガスは、 導入管 6 4 0を通ってケ一シ ング 6 3 0内に導入され、 ハニカムフィルタ 6 0のセルから壁部 (隔 壁) を通過してこの隔壁でパティキュレー トが捕集されて浄化された 後、 排出管 6 5 0を通って外部へ 出されることとなる。  In the exhaust gas purification device 600 having such a configuration, exhaust gas discharged from an internal combustion engine such as an engine is introduced into the casing 6 30 through the introduction pipe 6 40, and the honeycomb filter. After passing through the wall (partition wall) from the 60 cell, the particulates are collected and purified by this partition wall, and then discharged to the outside through the discharge pipe 6 50.
そして、 ハニカムフィルタ 6 0の隔壁に大量のパティキュレートが 堆積し、 圧損が高くなると、 ハニカムフィルタ 6 0の再生処理が行わ れる。 その再生処理では、 加熱手段 6 1 0を用いて加熱されたガスを ハニカムフィルタ 6 0のセルの内部へ流入させて、 ハニカムフィルタ 6 0を加熱し、 その加熱によって隔壁に堆積したパティキュレー トが 燃焼除去される。  When a large amount of particulates accumulates on the partition walls of the honeycomb filter 60 and the pressure loss increases, the regeneration process of the honeycomb filter 60 is performed. In the regeneration treatment, the gas heated by the heating means 61 is flowed into the cells of the honeycomb filter 60 to heat the honeycomb filter 60, and the particulates deposited on the partition walls are burned by the heating. Removed.
また、 ハニカムフィルタ 6 0の隔壁に、 パティキュレートの燃焼を 促進するための Pt等の触媒を担持させた場合、パティキュレー卜の燃 焼温度が低下するため、 加熱手段 6 1 0によるハニカムフィルタ 6 0 の加熱温度を低くすることができ、 場合によっては、 加熱手段 6 1 0 による加熱を不要とすることができる。  Further, when a catalyst such as Pt for promoting the combustion of particulates is supported on the partition walls of the honeycomb filter 60, the combustion temperature of the particulates is lowered, so the honeycomb filter 60 by the heating means 6 10 is used. In some cases, heating by the heating means 6 10 can be eliminated.
フィルタの再生とは、 捕集したパティキュレー トを燃焼させること を意味するが、 その再生方法と しては、 排気ガス流入側に設けた加熱 手段によリハニカム構造体を加熱するような方式であってもよく、 ハ 二カム構造体に酸化触媒を担持させ、 この酸化触媒により排気ガス中 の炭化水素等が酸化することによって発生する熱を利用することで、 排気ガスの浄化と並行して再生を行う方式であってもよい。 さらに、 固体のパティキュレー トを直接酸化する触媒をフィルタに 設ける方式やフィルタの上流側に設けた酸化触媒によリ NOX を酸化し て N02を生成し、 その N02を用いてパティキュレー トを酸化する方式 であってもよい。 The regeneration of the filter means that the collected particulates are burned, but the regeneration method is a method in which the honeycomb structure is heated by a heating means provided on the exhaust gas inflow side. Alternatively, an oxidation catalyst is supported on the two-cam structure, and the heat generated by the oxidation of hydrocarbons in the exhaust gas by the oxidation catalyst is used to regenerate in parallel with the purification of the exhaust gas. A method of performing Further, the catalyst for direct oxidation of solid Patikyure bets by oxidizing by re NOX oxidation catalyst provided upstream of the system and filters provided in the filter to generate a N0 2, oxidizing the Patikyure bets using the N0 2 It is also possible to use this method.
なお、 本発明にかかる排気ガズ浄化装置 6 0 0においては、 アツシ ュ トラップ層 1 0 0の溶融温度である 2 5 0 °C〜 8 0 0 °Cの温度範囲 でパティキュレー トが燃焼除去される (再生処理) ように構成される ことが好ましく、より好ましくは、 5 0 0 °C〜 7 0 0 °Cの温度範囲で再 生処理されるように構成される。  In the exhaust gas purifying apparatus 600 according to the present invention, the particulates are burned and removed in the temperature range of 2500 ° C. to 800 ° C., which is the melting temperature of the ash trap layer 100. (Regeneration treatment) is preferably configured, and more preferably, the regeneration treatment is performed in a temperature range of 500 ° C to 700 ° C.
一般にディーゼルエンジンでは、 その排気ガスは酸素濃度が比較的 に高いので、そのディーゼルエンジン用の排気ガス浄化装置の再生処 理は、 酸素濃度が比較的に高いかあるいは、 希土類元素等の酸素吸蔵 作用を有する触媒の作用による過剰酸素雰囲気下で行われるのが通常 である。  Generally, in a diesel engine, the exhaust gas has a relatively high oxygen concentration. Therefore, the regeneration process of the exhaust gas purification device for the diesel engine has a relatively high oxygen concentration or an oxygen storage effect of rare earth elements or the like. Usually, it is carried out in an excess oxygen atmosphere by the action of a catalyst having
従って、再生温度が 8 0 0 °Cを超えると、アッシュ トラップ層 1 0 0 を構成するガラス質材料またはフラックス材料が溶融して、 多孔体で あるフィルタから流れやすくなつてしまう。 2 5 0 °C未満では、ガラス またはフラックスが溶融しないのでアツシュを取り込んで固定化する ように機能しない。  Therefore, when the regeneration temperature exceeds 800 ° C., the vitreous material or flux material constituting the ash trap layer 100 is melted and easily flows from the porous filter. Below 2500 ° C, the glass or flux will not melt, so it will not function to take in and fix the ash.
本発明にかかるフィルタを作製するにあたリ、 ガラス質材料または 無機化合物系フラックス材料が、 2 5 0 °C〜 8 0 0 °Cの温度範囲にお いて溶融、低粘度化し、アッシュ 卜ラップを形成する材料と しての適用 可能性を調べるための試験を予め行って、適用可能なガラス質材料と して 1 1 種類 (試験例 1 ~ 1 1 ) 、無機化合物系フラックス材料と して 5種類 (試験例 1 2 ~ 1 6 ) 選定した。その結果を表 1 に示す。
Figure imgf000033_0001
When producing a filter according to the present invention, a glassy material or an inorganic compound-based flux material is melted and reduced in viscosity within a temperature range of 250 ° C. to 800 ° C. In order to investigate the applicability of the material as a material to form a glass, 11 types of testable glassy materials (Test Examples 1 to 1 1) and inorganic compound flux materials were used. 5 types (Test Examples 1 2 to 16) were selected. The results are shown in Table 1.
Figure imgf000033_0001
Figure imgf000033_0002
Figure imgf000033_0002
(注 * 1 ) フラックス Α · '硫化物系フラックス  (Note * 1) Flux Α 'Sulfide flux
(注 * 2) フラックス Β · '塩化物含有系フラックス (* 2) Flux Β
なお、 上記試験は、熱重量 /示差熱分析装置 (T GZD T A) (セィ コー電子 (株) 社製、製品名 : TGZDTA220U) を用いて行い、 その温度 一重量曲線の変化によって、各種材料の最低液相温度、最低融解温度、 ガラス転移温度を求め、適用可能性を判断したものである。 The above test was performed using a thermogravimetric / differential thermal analyzer (TGZD TA) (manufactured by Seiko Denshi Co., Ltd., product name: TGZDTA220U). The lowest liquidus temperature, the lowest melting temperature, and the glass transition temperature were obtained and the applicability was judged.
このような試験結果に基づいて選択した 1 6種類のアッシュ トラッ プ材料を、 一体型/集合体型ノ積層型のハニカム構造体にそれぞれ適 用した例について、以下に詳しく説明するが、本発明はこれらの実施例 のみに限定されるものではない。  Examples in which 16 types of ash trap materials selected based on such test results are applied to an integrated / aggregate type non-stacked honeycomb structure will be described in detail below. It is not limited only to these examples.
なお、以下の実施例 1 ~ 1 6は、一体型ハニカム構造体の例であり、 実施例 1 7〜 3 2は、 集合体型ハニカム構造体の例であり、 実施例 3 3〜 4 8は、 積層型ハニカム構造体の例である。  Examples 1 to 16 below are examples of an integral honeycomb structure, Examples 1 7 to 3 2 are examples of an aggregated honeycomb structure, and Examples 3 3 to 4 8 are It is an example of a laminated honeycomb structure.
(実施例 1 )  (Example 1)
( 1 ) 市販のコージェライ トを用いて、気孔率が 4 5 %、 平均気孔径が 2 0 / m、 その大きさ力 直径 1 44 mm、 長さ 2 5 4mmの円柱形 状の多孔質セラミ ック部材を製造し、これを排気ガス浄化用ハニカム フィルタと して機能するハニカム構造体と した。  (1) Using a commercially available cordierite, a cylindrical porous ceramic with a porosity of 45%, an average pore diameter of 20 / m, a large force diameter of 144 mm, and a length of 25 4 mm And a honeycomb structure that functions as a honeycomb filter for purifying exhaust gas.
( 2 ) このハニカム構造体に、 試験例 1 に示すような P203系ガラスを 400 °Cで溶かしてスラリーにして、 そのスラリーをハニカム構造体 の排気ガス流入側セルのセルェン ドの封止部に隣接させて厚さ 5 mm となるように吹き付けて、アッシュ トラップ層を形成し、フィルタと し (2) in the honeycomb structure, the P 2 0 3 based glass such as that shown in Test Example 1 was slurried dissolved in 400 ° C, sealing the slurry Seruen de of exhaust gas inflow-side cells of the honeycomb structure Spraying to a thickness of 5 mm adjacent to the stop, an ash trap layer is formed and used as a filter.
(実施例 2 ) (Example 2)
( 1 ) 実施例 1 の ( 1 ) と同様のハニカム構造体を用いた。  (1) A honeycomb structure similar to (1) of Example 1 was used.
( 2 ) 上記 ( 1 ) のハニカム構造体に、 試験例 2に示すような P203 系ガラスを 5 0 0°Cで溶かしてスラリーにして、 そのスラリーを排気 流入側セル内の下流端に設けた封止部に隣接させて厚さ 5 mmで流し 込んで、アッシュ トラップ層を形成し、フィルタと した。 (2) the honeycomb structure of the above (1), in the slurry by dissolving P 2 0 3 based glass, as shown in Test Example 2 5 0 0 ° C, the downstream end of the exhaust inlet-side in the cell the slurry Sink at a thickness of 5 mm adjacent to the sealing part As a result, an ash trap layer was formed and used as a filter.
(実施例 3 )  (Example 3)
( 1 ) 実施例 1 の ( 1 ) と同様のハニカム構造体を用いた。  (1) A honeycomb structure similar to (1) of Example 1 was used.
( 2 ) 上記 ( 1 ) のハニカム構造体に、 試験例 3に示すような P203 系ガラスを 3 00 °Cで溶かしてスラリーにして、 そのスラリーを排気 ガス流入側セル内の下流端に設けたハニカム構造体の封止部に隣接さ せて厚さ 5 mmで流し込んで、アッシュ トラップ層を形成し、フィルタ と した。 (2) above (1) to the honeycomb structure, in the slurry by dissolving P 2 0 3 based glass such as that shown in Test Example 3 in 3 00 ° C, the downstream end in the slurry exhaust gas inflow cells The ash trap layer was formed by pouring in a thickness of 5 mm adjacent to the sealing portion of the honeycomb structure provided in Fig. 1 to obtain a filter.
(実施例 4)  (Example 4)
( 1 ) 実施例 1 の ( 1 ) と同様のハニカ厶構造体を用いた。  (1) The same hanica ridge structure as (1) of Example 1 was used.
( 2 ) 上記 ( 1 ) のハニカム構造体に、 試験例 4に示すような CaS04 系ガラスで 7 5 0 °Cに溶かしてスラリーにして、 そのスラリーを排気 流入側セル内の下流端の封止部に隣接させて厚さ 5 mmで流し込んで、 アッシュ トラップ層を形成し、フィルタと した。 (2) the honeycomb structure of the above (1), and the slurry dissolved in 7 5 0 ° C in CAS0 4 glass as shown in Test Example 4, sealing of the downstream end of the exhaust inlet-side in the cell the slurry A ash trap layer was formed by pouring in a thickness of 5 mm adjacent to the stopper, and a filter was obtained.
(実施例 5 )  (Example 5)
( 1 ) 実施例 1 の ( 1 ) と同様のハニカム構造体を用いた。  (1) A honeycomb structure similar to (1) of Example 1 was used.
( 2 ) 上記 ( 1 ) のハニカム構造体に、 試験例 5に示すような CaS04 系ガラスを 7 00°Cで溶かしてスラリーにして、 そのスラリーをハニ カム構造体の封止部に隣接させて厚さ 5 mmで塗布充填して、アツシ ュ トラップ層を形成し、フィルタと した。 (2) the honeycomb structure of the above (1), in the slurry by dissolving CAS0 4 glass as shown in Test Example 5 7 00 ° C, is adjacent to the slurry in the sealing portion of Hani cam structure Then, it was coated and filled at a thickness of 5 mm to form an ash trap layer and used as a filter.
(実施例 6 )  (Example 6)
( 1 ) 実施例 1 の ( 1 ) と同様のハニカム構造体を用いた。  (1) A honeycomb structure similar to (1) of Example 1 was used.
( 2 ) 上記 ( 1 ) のハニカム構造体に、 試験例 6に示すような CaS04 系ガラスを 5 8 0 °Gで溶かしてスラリーにして、 そのスラリーを排気 流入側セル内の下流端の封止部に隣接させて厚さ 5 mmで流し込んで、 アッシュ トラップ層を形成し、フィルタと した。 (2) the honeycomb structure of the above (1), in the slurry by dissolving CAS0 4 glass as shown in Test Example 6 in 5 8 0 ° G, sealing of the downstream end of the exhaust inlet-side in the cell the slurry A ash trap layer was formed by pouring in a thickness of 5 mm adjacent to the stopper, and a filter was obtained.
(実施例 7 ) ( 1 ) 実施例 1 の ( 1 ) と同様のハニカム構造体を用いた。 (Example 7) (1) A honeycomb structure similar to (1) of Example 1 was used.
( 2 ) 上記 ( 1 ) のハニカム構造体に、 試験例 7に示すような CaS04 系ガラスを 7 7 0°Cで溶かしてスラリーにして、 そのスラリーを排気 流入側セル内の下流端の封止部に隣接させて厚さ 5 mmで流し込んで、 アッシュ トラップ層を形成し、フィルタと した。 (2) the honeycomb structure of the above (1), in the slurry by dissolving CAS0 4 glass as shown in Test Example 7 by 7 7 0 ° C, sealing of the downstream end of the exhaust inlet-side in the cell the slurry A ash trap layer was formed by pouring in a thickness of 5 mm adjacent to the stopper, and a filter was obtained.
(実施例 8 )  (Example 8)
( 1 ) 実施例 1 の ( 1 ) と同様のハニカム構造体を用いた。  (1) A honeycomb structure similar to (1) of Example 1 was used.
( 2 ) 上記 ( 1 ) のハニカム構造体に、 試験例 8に示すような CaS04 系ガラスを 7 3 0 °Cで溶かしてスラリーにして、 そのスラリーを排気 流入側セル内の下流端の封止部に隣接させて厚さ 5 mmで流し込んで、 アッシュ トラップ層を形成し、フィルタと した。 (2) the honeycomb structure of the above (1), in the slurry by dissolving CAS0 4 glass as shown in Test Example 8 7 3 0 ° C, sealing of the downstream end of the exhaust inlet-side in the cell the slurry A ash trap layer was formed by pouring in a thickness of 5 mm adjacent to the stopper, and a filter was obtained.
(実施例 9 )  (Example 9)
( 1 ) 実施例 1 の ( 1 ) と同様のハニカム構造体を用いた。  (1) A honeycomb structure similar to (1) of Example 1 was used.
( 2 ) 上記 ( 1 ) のハニカム構造体に、 試験例 9に示すような CaS04 系ガラスを 6 5 0°Cで溶かしてスラリーにして、 そのスラリーを排気 流入側セル内の下流端の封止部に隣接させて厚さ 5 mmで流し込んで、 アッシュ トラップ層を形成し、フィルタと した。 (2) the honeycomb structure of the above (1), in the slurry by dissolving CAS0 4 glass as shown in Test Example 9 6 5 0 ° C, sealing of the downstream end of the exhaust inlet-side in the cell the slurry A ash trap layer was formed by pouring in a thickness of 5 mm adjacent to the stopper, and a filter was obtained.
(実施例 1 0 )  (Example 10)
( 1 ) 実施例 1 の ( 1 ) と同様のハニカム構造体を用いた。  (1) A honeycomb structure similar to (1) of Example 1 was used.
( 2 ) 上記 ( 1 ) のハニカム構造体に、 試験例 1 0に示した CaS04系 ガラスを 7 00 °Cで溶かしてスラリーにして、 そのスラリーを排 流 入側セル内の下流端の封止部に隣接させて厚さ 5 mmで流し込んで、 ァッシュ トラップ層を形成し、フィルタと した。 (2) the honeycomb structure of the above (1), in the CaS0 slurry dissolved 4 glass at 7 00 ° C shown in Experimental Example 1 0, sealing the slurry in the downstream end of the drainage inlet side cells A flush trap layer was formed by pouring in a thickness of 5 mm adjacent to the stopper and used as a filter.
(実施例 1 1 )  (Example 1 1)
( 1 ) 実施例 1 の ( 1 ) と同様のハニカム構造体を用いた。  (1) A honeycomb structure similar to (1) of Example 1 was used.
( 2 ) 上記 ( 1 ) のハニカム構造体に、 試験例 1 1 に示した CaS04系 ガラスを 5 00 °Cで溶かしてスラリーにして、 そのスラ リーを/、二力 ム構造体の封止部に隣接させて厚さ 5 mmで塗布充填して、アッシュ トラップ層を形成し、フィルタと した。 (2) In the honeycomb structure of (1) above, the CaS0 4 glass shown in Test Example 1 1 was melted at 500 ° C to make a slurry. The ash trap layer was formed by coating and filling with a thickness of 5 mm adjacent to the sealing portion of the system structure to obtain a filter.
(実施例 1 2 )  (Example 1 2)
( 1 ) 実施例 1 の ( 1 ) と同様のハニカム構造体を用いた。  (1) A honeycomb structure similar to (1) of Example 1 was used.
( 2 ) 上記 ( 1 ) のハニカム構造体に、 試験例 1 2に示した硫化物系 フラックスを 5 70 °Cで溶かしてスラリーにして、 そのスラリーを排 気流入側セル内の下流端の封止部に隣接させて厚さ 5 mmで流し込ん で、アツシュ トラップ層を形成し、フィルタと した。  (2) In the honeycomb structure of (1) above, the sulfide flux shown in Test Example 12 was dissolved at 570 ° C to form a slurry, and the slurry was sealed at the downstream end in the exhaust inflow side cell. Poured at a thickness of 5 mm adjacent to the stopper, an ash trap layer was formed to provide a filter.
(実施例 1 3 )  (Example 1 3)
( 1 ) 実施例 1 の ( 1 ) と同様のハニカム構造体を用いた。  (1) A honeycomb structure similar to (1) of Example 1 was used.
( 2 ) 上記 ( 1 ) のハニカム構造体に、 試験例 1 3に示した硫化物系 フラックスを 5 3 0°Cで溶かしてスラリーにして、 そのスラリーをハ 二カム構造体の封止部に隣接させて厚さ 5 mmで塗布充填して、アツ シュ 卜ラップ層を形成し、フィルタと した。  (2) In the honeycomb structure of (1) above, the sulfide-based flux shown in Test Example 13 is melted at 5300C to make a slurry, and the slurry is used as a sealing part of the honeycomb structure. Adjacent to each other at a thickness of 5 mm, an ash wrap layer was formed to form a filter.
(実施例 1 4)  (Example 1 4)
( 1 ) 実施例 1 の ( 1 ) と同様のハニカム構造体を用いた。  (1) A honeycomb structure similar to (1) of Example 1 was used.
( 2 ) 上記 ( 1 ) のハニカム構造体に、 試験例 1 4に示した塩化物含 有系フラックスを 5 50 °Cで溶かしてスラリーにして、 そのスラリー を排気流入側セル内の下流端の封止部に隣接させて厚さ 5 mmで流し 込んで、アッシュ トラップ層を形成し、フィルタと した。  (2) In the honeycomb structure of (1) above, the chloride-containing flux shown in Test Example 14 was dissolved at 550 ° C to form a slurry, and the slurry was placed at the downstream end of the exhaust inflow side cell. An ash trap layer was formed by pouring in a thickness of 5 mm adjacent to the sealing portion to obtain a filter.
(実施例 1 5 )  (Example 15)
( 1 ) 実施例 1 の ( 1 ) と同様のハニカム構造体を用いた。  (1) A honeycomb structure similar to (1) of Example 1 was used.
( 2 ) 上記 ( 1 ) のハニカム構造体に、 試験例 1 5に示した塩化物含 有系フラックスを 4 80 °Cで溶かしてスラリーにして、 そのスラリー を排気流入側セル内の下流端の封止部に隣接させて厚さ 5 mmで流し 込んで、アツシュ トラップ層を形成し、フィルタと した。  (2) In the honeycomb structure of (1) above, the chloride-containing flux shown in Test Example 15 was dissolved at 480 ° C to form a slurry, and the slurry was placed at the downstream end in the exhaust inflow side cell. Poured at a thickness of 5 mm adjacent to the sealing part, an ash trap layer was formed and used as a filter.
(実施例 1 6 ) ( 1 ) 実施例 1 の ( 1 ) と同様のハニカム構造体を用いた。 (Example 16) (1) A honeycomb structure similar to (1) of Example 1 was used.
( 2 ) 上記 ( 1 ) のハニカム構造体に、 試験例 1 6に示した塩化物含 有系フラックスを 4 8 0 °Cで溶かしてスラリーにして、 そのスラリー を排気流入側セル内の下流端の封止部に隣接させて厚さ 5 mmで流し 込んで、ァッシュ トラップ層を形成し、フィルタと した。  (2) In the honeycomb structure of (1) above, the chloride-containing flux shown in Test Example 16 was dissolved at 4800 ° C to form a slurry, and the slurry was downstream end in the exhaust inflow side cell. A ash trap layer was formed by pouring in a thickness of 5 mm adjacent to the sealing portion of the filter.
(比較例 1 )  (Comparative Example 1)
( 1 ) 実施例 1 の ( 1 ) と同様にしてハニカム構造体を製造したのみ で、 アッシュ トラップ層を形成しなかった。  (1) A honeycomb structure was only produced in the same manner as (1) of Example 1, but no ash trap layer was formed.
(実施例 1 7 )  (Example 1 7)
( 1 ) 平均粒径 3 0 _i mの炭化珪素粉末 8 0重量%と、 平均粒径 0. (1) 80% by weight of silicon carbide powder with an average particle size of 30_im and an average particle size of 0.
5 μ mの炭化珪素粉末 2 0重量%とを湿式混合し、 得られた混合粉末 1 0 0重量部に対して、 有機バインダ (メチルセルロース) を 6重量 部、 界面活性剤を 2. 5重量部、 水を 2 4重量部加えて混練して原料 ペース トを調製した。 5 μm silicon carbide powder 20% by weight is wet-mixed, and 6 parts by weight of organic binder (methylcellulose) and 2.5 parts by weight of surfactant are added to 100 parts by weight of the obtained mixed powder. A raw material paste was prepared by adding 24 parts by weight of water and kneading.
次いで、 上記原料ペース 卜を押出成形機に充填し、 押出速度 1 0 c m/分にて図 2 3に示した多孔質セラミック部材 3 0と略同形状の生 成形体を作製した。  Next, the raw material paste was filled into an extrusion molding machine, and a green body having substantially the same shape as the porous ceramic member 30 shown in FIG. 23 was produced at an extrusion speed of 10 cm / min.
上記生成形体をマイク口波乾燥機を用いて乾燥させ、 セラミック乾 燥体と した後、 上記生成形体と同様の組成の封止材ペース トを所定の 貫通孔の一端に充填し、 その後、 再び乾燥機を用いて乾燥させ、 さら に酸化雰囲気下 5 5 0°Cで 3時間脱脂してセラミック脱脂体を得た。 上記セラミック脱脂体を常圧のアルゴン雰囲気下 2 1 5 0°C、 2時 間で焼成することによって、気孔率が 4 5 %、平均気孔径が 1 0 m、 その大きさが 3 4. 3 m m X 3 4. 3 mm x 2 5 4 mmの多孔質セラ ミック部材を製造した。  After the formed form is dried using a microphone mouth wave dryer to form a ceramic dry body, a sealing material paste having the same composition as that of the formed form is filled into one end of a predetermined through hole, and then again. It was dried using a drier and further degreased at 55 ° C. for 3 hours in an oxidizing atmosphere to obtain a ceramic degreased body. By firing the above ceramic degreased body under a normal pressure argon atmosphere at 2 15 ° C. for 2 hours, the porosity is 45%, the average pore diameter is 10 m, and the size is 34.3. A porous ceramic member of mm X 3 4.3 mm x 25 4 mm was produced.
( 2 ) 繊維長 2 0 mのアルミナファイバ 3 0重量%、 平均粒径 0. (2) Alumina fiber with a fiber length of 20 m 30% by weight, average particle size 0.
6 mの炭化珪素粒子 2 1 重量%、 シリカゾル 1 5重量%、 カルポキ シメチルセルロース 5. 6重量%、 及び、 水 2 8. 4重量%を含む耐 熱性のシール材ペース 卜を用いて上記多孔質セラミック部材を、 図 5 を用いて説明した方法により多数結束させ、 続いて、 ダイヤモンド力 ッターを用いて切断することにより、 直径が 1 4 4 mmで円柱形状の セラミックブロックを作製した。 6 m silicon carbide particles 2 1% by weight, silica sol 15% by weight, Karpoki A number of the above porous ceramic members are bound by the method described with reference to FIG. 5 using a heat-resistant sealing material pace 含 む containing 5.6% by weight of dimethyl cellulose and 28.4% by weight of water, and subsequently. A cylindrical ceramic block with a diameter of 144 mm was manufactured by cutting with a diamond force utter.
このとき、 上記多孔質セラミック部材を結束するシール材層の厚さ が 1 . 0 m mとなるように調整した。  At this time, the thickness of the sealing material layer for binding the porous ceramic member was adjusted to 1.0 mm.
次いで、 無機繊維と してアルミナシリゲー トからなるセラミックフ ァィバー (ショ ッ 卜含有率 : 3 %、 繊維長 : 5〜 1 0 0 ju m) 2 3. 3重量%、 無機粒子と して平均粒径 0. 3 mの炭化珪素粉末 30. 2重量%、 無機バインダと してシリカゾル (ゾル中の S i O 2の含有 率 : 30重量%) 7重量%、 有機バインダと してカルボキシメチルセ ルロース 0. 5重量%及び水 3 9重量%を混合、 混練してシール材ぺ ース 卜を調製した。 Next, ceramic fiber made of alumina silicate as inorganic fiber (Shock content: 3%, fiber length: 5 to 100 jum) 2 3.3% by weight, average as inorganic particles Silicon carbide powder with a particle size of 0.3 m 30.2% by weight, silica sol as inorganic binder (content of Sio 2 in sol: 30% by weight) 7% by weight, carboxymethyl cereal as organic binder 0.5% by weight of roulose and 39% by weight of water were mixed and kneaded to prepare a sealing material case 卜.
上記シール材ペース トを用いて、 上記セラミックブロックの外周部 に厚さ 1 . 0 mmのシ一ル材ペース ト層を形成した。 そして、 このシ ール材ペース ト層を 1 2 0 °Cで乾燥して、 円柱形状で排気ガス浄化用 ハニカムフィルタとして機能するハニカム構造体を製造した。  A seal material paste layer having a thickness of 1.0 mm was formed on the outer periphery of the ceramic block using the seal material paste. The seal material paste layer was dried at 120 ° C. to produce a honeycomb structure having a cylindrical shape and functioning as a honeycomb filter for exhaust gas purification.
( 3 ) このフィルタに、 試験例 1 に示したような P203系ガラスを 40 0 °Gで溶かしてスラリーにして、 そのスラリーを排気流入側セル内の 下流端の封止部に隣接させて厚さ 5 mmとなるように吹き付けて、ァ ッシュ トラップ層を形成し、フィルタとした。 (3) in the filter, and the P 2 0 3 based glass, such as shown in Test Example 1 slurried dissolved in 40 0 ° G, adjacent the slurry to the sealing portion of the downstream end of the exhaust inlet-side in the cell Then, it was sprayed to a thickness of 5 mm to form an ash trap layer to obtain a filter.
(実施例 1 8 )  (Example 1 8)
( 1 ) 実施例 1 7の ( 1 ) ~ ( 2 ) と同様にしてハニカム構造体を製 造した。  (1) A honeycomb structure was manufactured in the same manner as in (1) to (2) of Example 17.
( 3 ) 上記 ( 1 ) で製造したハニカム構造体に、 試験例 2に示したよ うな P203系ガラスを 5 00 °Cで溶かしてスラリーにして、そのスラリ 一を排気流入側セル内の下流端の封止部に隣接させて厚さ 5 mmとな るように吹き付けて、アッシュ トラップ層を形成し、フィルタと した。 (実施例 1 9 ) (3) the honeycomb structure manufactured in the above (1), and the slurry dissolved by UNA P 2 0 3 based glass shown in Test Example 2 5 00 ° C, the slurry One was sprayed to a thickness of 5 mm adjacent to the sealing part at the downstream end in the exhaust gas inflow side cell to form an ash trap layer, which was used as a filter. (Example 1 9)
( 1 ) 実施例 1 7の ( 1 ) 〜 (2 ) と同様にしてハニカム構造体を製 造した。  (1) A honeycomb structure was manufactured in the same manner as in (1) to (2) of Example 17.
( 2 ) 上記 ( 1 ) で製造したハニカム構造体に、 試験例 3に示したよ うな P203系ガラスを 3 00 °Cで溶かしてスラリーにして、そのスラリ 一を排気流入側セル内の下流端の封止部に隣接させて厚さ 5 mmとな るように吹き付けて、アッシュ トラップ層を形成し、フィルタと した。 (実施例 2 0) (2) the honeycomb structure manufactured in (1), and the slurry dissolved by UNA P 2 0 3 based glass shown in Test Example 3 in 3 00 ° C, in the slurry one exhaust inlet cells An ash trap layer was formed by spraying to a thickness of 5 mm adjacent to the sealing portion at the downstream end to obtain a filter. (Example 2 0)
( 1 ) 実施例 1 7の ( 1 ) ~ ( 2 ) と同様にしてハニカム構造体を製 造した。  (1) A honeycomb structure was manufactured in the same manner as in (1) to (2) of Example 17.
( 2 )上記( 1 )で製造したハニカム構造体に、試験例 4に示した CaSO 4系ガラスを 7 5 0°Cで溶かしてスラリーにして、そのスラリーを排気 流入側セル内の下流端の封止部に隣接させて厚さ 5 mmで流し込んで、 アッシュ トラップ層を形成し、フィルタと した。 (2) In the honeycomb structure manufactured in (1) above, the CaSO 4 glass shown in Test Example 4 was melted at 75 ° C. to make a slurry, and the slurry was placed at the downstream end in the exhaust inflow side cell. The ash trap layer was formed by pouring in a thickness of 5 mm adjacent to the sealing portion to obtain a filter.
(実施例 2 1 )  (Example 2 1)
( 1 ) 実施例 1 7の ( 1 ) ~ ( 2 ) と同様にしてハニカム構造体を製 造した。  (1) A honeycomb structure was manufactured in the same manner as in (1) to (2) of Example 17.
( 2 )上記( 1 )で製造したハニカム構造体に、試験例 5に示した GaSO 4系ガラスを 7 00 °Cで溶かしてスラリーにして、そのスラリーを排気 流入側セル内の下流端の封止部に隣接させて厚さ 5 mmで塗布充填し て、アッシュ トラップ層を形成し、フィルタと した。 (2) In the honeycomb structure manufactured in (1) above, the GaSO 4 glass shown in Test Example 5 is melted at 700 ° C. to form a slurry, and the slurry is sealed at the downstream end in the exhaust inflow side cell. The filter was applied and filled with a thickness of 5 mm adjacent to the stopper to form an ash trap layer, which was used as a filter.
(実施例 2 2 )  (Example 2 2)
( 1 ) 実施例 1 7の ( 1 ) ~ ( 2 ) と同様にしてハニカム構造体を製 造した。  (1) A honeycomb structure was manufactured in the same manner as in (1) to (2) of Example 17.
( 2 )上記( 1 )で製造したハニカム構造体に、試験例 6に示した CaSO 4系ガラスを 5 8 0°Cで溶かしてスラリーにして、そのスラリーを排気 流入側セル内の下流端の封止部に隣接させて厚さ 5 mmで流し込んで、 アッシュ トラップ層を形成し、フィルタと した。 (2) The CaSO shown in Test Example 6 was added to the honeycomb structure manufactured in (1) above. The quaternary glass is melted at 58 ° C. to make a slurry, and the slurry is poured into a 5 mm thickness adjacent to the downstream end sealing portion in the exhaust inflow side cell to form an ash trap layer, Filter.
(実施例 2 3 )  (Example 2 3)
( 1 ) 実施例 1 7の ( 1 ) 〜 ( 2 ) と同様にしてハニカム構造体を製 造した。  (1) A honeycomb structure was manufactured in the same manner as in (1) to (2) of Example 17.
( 2 )上記( 1 )で製造したハニカム構造体に、試験例 7に示した CaSO 4系ガラスを 7 7 0 °Cで溶かしてスラリーにして、そのスラリーを排気 流入側セル内の下流端の封止部に隣接させて厚さ 5 mmで流し込んで、 アッシュ トラップ層を形成し、フィルタと した。 (2) In the honeycomb structure manufactured in (1) above, the CaSO 4 glass shown in Test Example 7 is melted at 7700C to make a slurry, and the slurry is placed at the downstream end in the exhaust inflow side cell. The ash trap layer was formed by pouring in a thickness of 5 mm adjacent to the sealing portion to obtain a filter.
(実施例 24 )  (Example 24)
( 1 ) 実施例 1 7の ( 1 ) ~ ( 2 ) と同様にしてハニカム構造体を製 造した。  (1) A honeycomb structure was manufactured in the same manner as in (1) to (2) of Example 17.
( 2 )上記( 1 )で製造したハニカム構造体に、試験例 8に示した CaSO 4系ガラスを 7 3 0°Cで溶かしてスラリーにして、そのスラリーを排気 流入側セル内の下流端の封止部に隣接させて厚さ 5 mmで流し込んで、 アッシュ トラップ層を形成し、フィルタと した。 (2) In the honeycomb structure manufactured in (1) above, the CaSO 4 glass shown in Test Example 8 was melted at 730 ° C. to make a slurry, and the slurry was placed at the downstream end in the exhaust inflow side cell. The ash trap layer was formed by pouring in a thickness of 5 mm adjacent to the sealing portion to obtain a filter.
(実施例 2 5 )  (Example 2 5)
( 1 ) 実施例 1 7の ( 1 ) 〜 ( 2 ) と同様にしてハニカム構造体を製 造した。  (1) A honeycomb structure was manufactured in the same manner as in (1) to (2) of Example 17.
( 2 )上記( 1 )で製造したハニカム構造体に、試験例 9に示した CaSO 4系ガラスを 6 5 0°Cで溶かしてスラリーにして、そのスラリーを排気 流入側セル内の下流端の封止部に隣接させて厚さ 5 mmで流し込んで、 アッシュ トラップ層を形成し、フィルタとした。 (2) In the honeycomb structure manufactured in (1) above, the CaSO 4 glass shown in Test Example 9 was melted at 65 ° C. to make a slurry, and the slurry was placed at the downstream end in the exhaust inflow side cell. A ash trap layer was formed by pouring in a thickness of 5 mm adjacent to the sealing portion to obtain a filter.
(実施例 26 )  (Example 26)
( 1 ) 実施例 1 7の ( 1 ) ~ ( 2 ) と同様にしてハニカム構造体を製 造した。 ( 2 ) 上記 ( 1 ) で製造したハニカム構造体に、 試験例 1 0に示した CaS04系ガラスを 7 00 °Cで溶かしてスラリーにして、そのスラリーを 排気流入側セル内の下流端の封止部に隣接させて厚さ 5 mmで流し込 んで、アッシュ トラップ層を形成し、フィルタとした。 (1) A honeycomb structure was manufactured in the same manner as in (1) to (2) of Example 17. (2) the honeycomb structure manufactured in the above (1), in the slurry by dissolving CAS0 4 glass shown in Test Example 1 0 7 00 ° C, the downstream end of the exhaust inlet-side in the cell the slurry A ash trap layer was formed by pouring in a thickness of 5 mm adjacent to the sealing portion to obtain a filter.
(実施例 2 7 )  (Example 2 7)
( 1 ) 実施例 1 7の ( 1 ) 〜 ( 2 ) と同様にしてハニカム構造体を製 造した。  (1) A honeycomb structure was manufactured in the same manner as in (1) to (2) of Example 17.
( 2 ) 上記 ( 1 ) で製造したハニカム構造体に、 試験例 1 1 に示した CaS04系ガラスを 5 00 °Cで溶かしてスラリーにして、そのスラリーを 排気流入側セル内の下流端の封止部に隣接させて厚さ 5 mmで塗布充 填して、アッシュ トラップ層を形成し、フィルタとした。 (2) the honeycomb structure manufactured in the above (1), in the slurry by dissolving CAS0 4 glass shown in Test Example 1 1 5 00 ° C, the downstream end of the exhaust inlet-side in the cell the slurry The filter was applied and filled with a thickness of 5 mm adjacent to the sealing portion to form an ash trap layer to obtain a filter.
(実施例 2 8 )  (Example 2 8)
( 1 ) 実施例 1 7の ( 1 ) 〜 ( 2 ) と同様にしてハニカム構造体を製 造した。  (1) A honeycomb structure was manufactured in the same manner as in (1) to (2) of Example 17.
( 2 ) 上記 ( 1 ) で製造したハニカム構造体に、 試験例 1 2に示した ような硫酸塩系フラックスを 5 7 0 °Cで溶かしてスラリーにして、 そ のスラリーを排気流入側セル内の下流端の封止部に隣接させて厚さ 5 mmで流し込んで、アッシュ トラップ層を形成し、フィルタと した。 (実施例 2 9 )  (2) In the honeycomb structure manufactured in (1) above, a sulfate flux as shown in Test Example 12 was dissolved at 5700 ° C. to form a slurry, and the slurry was placed in the exhaust inflow side cell. Next, the ash trap layer was formed by pouring in a thickness of 5 mm adjacent to the sealing portion at the downstream end of the filter. (Example 29)
( 1 ) 実施例 1 7の ( 1 ) 〜 ( 2 ) と同様にしてハニカム構造体を製 造した。  (1) A honeycomb structure was manufactured in the same manner as in (1) to (2) of Example 17.
( 2 ) 上記 ( 1 ) で製造したハニカム構造体に、 試験例 1 3に示した ような硫酸塩系フラックスを 5 3 0 °Cで溶かしてスラリーにして、 そ のスラリーを排気流入側セル内の下流端の封止部に隣接させて厚さ 5 mmで塗布充填して、アッシュ トラップ層を形成し、フィルタと した。 (実施例 3 0 )  (2) In the honeycomb structure manufactured in (1) above, a sulfate flux as shown in Test Example 13 is dissolved at 5300 ° C to form a slurry, and the slurry is placed in the exhaust inflow side cell. Then, the ash trap layer was formed by coating and filling with a thickness of 5 mm adjacent to the sealing portion at the downstream end of the filter to obtain a filter. (Example 30)
( 1 ) 実施例 1 7の ( 1 ) 〜 (2 ) と同様にしてハニカム構造体を製 造した。 (1) A honeycomb structure was manufactured in the same manner as (1) to (2) in Example 17 Made.
( 2 ) 上記 ( 1 ) で製造したハニカム構造体に、 試験例 1 4に示した ような塩化物含有系フラックスを 5 5 0°Cで溶かしてスラリーにして、 そのスラリーを排気流入側セル内の下流端の封止部に隣接させて厚さ 5 mmで流し込んで、アッシュ トラップ層を形成し、フィルタと した。 (2) To the honeycomb structure manufactured in (1) above, a chloride-containing flux as shown in Test Example 14 was dissolved at 55 ° C to make a slurry, and the slurry was placed in the exhaust inflow side cell. Next, the ash trap layer was formed by pouring in a thickness of 5 mm adjacent to the sealing portion at the downstream end of the filter.
(実施例 3 1 ) (Example 3 1)
( 1 ) 実施例 1 7の ( 1 ) ~ ( 2 ) と同様にしてハニカム構造体を製 造した。  (1) A honeycomb structure was manufactured in the same manner as in (1) to (2) of Example 17.
( 2 ) 上記 ( 1 ) で製造したハニカム構造体に、 試験例 1 5に示した ような塩化物含有系フラックスを 4 8 0°Cで溶かしてスラリーにして、 そのスラリーを排気流入側セル内の下流端の封止部に隣接させて厚さ 5 mmで流し込んで、アッシュ トラップ層を形成し、フィルタと した。 (実施例 3 2 )  (2) In the honeycomb structure manufactured in (1) above, a chloride-containing flux as shown in Test Example 15 was melted at 4800C to make a slurry, and the slurry was placed in the exhaust inflow side cell. Next, the ash trap layer was formed by pouring in a thickness of 5 mm adjacent to the sealing portion at the downstream end of the filter. (Example 3 2)
( 1 ) 実施例 1 7の ( 1 ) ~ ( 2 ) と同様にしてハニカム構造体を製 造した。  (1) A honeycomb structure was manufactured in the same manner as in (1) to (2) of Example 17.
( 2 ) 上記 ( 1 ) で製造したハニカム構造体に、 試験例 1 6塩化物含 有系フラックスを 4 8 0°Cで溶かしてスラリーにして、 そのスラリー を排気流入側セル内の下流端の封止部に隣接させて厚さ 5 mmで流し 込んで、アッシュ トラップ層を形成し、フィルタと した。  (2) In the honeycomb structure manufactured in (1) above, Test Example 16 6 Chloride-containing flux was melted at 4800C to make a slurry, and the slurry was placed at the downstream end in the exhaust inflow side cell. An ash trap layer was formed by pouring in a thickness of 5 mm adjacent to the sealing portion to obtain a filter.
(比較例 2 )  (Comparative Example 2)
( 1 ) 実施例 1 7の ( 1 ) ~ ( 2 ) と同様にしてハニカム構造体を製 造したのみで、 ァッシュ トラップ層を形成しなかった。  (1) A honeycomb structure was only manufactured in the same manner as (1) to (2) in Example 17 and no ash trap layer was formed.
(実施例 3 3 )  (Example 3 3)
( 1 ) 無機繊維へのアッシュ トラップ、 触媒付与工程  (1) Ash trap and catalyst application process to inorganic fibers
アルミナファイバ (平均繊維径 : 5 m、 平均繊維長 : 0. 3 mm) を、 試験例 1 に示すような P203系ガラスを 400°Cに溶融させたスラリ 一に 2分間含浸した後、 Ptを担持したアルミナスラリー (Pt濃度 : 5 W t % ) に 2分間含浸した後、 各アッシュ トラップのスラリー調製温 度まで加熱することにより、 触媒が付着したアルミナファイバを調製 した。 その結果と して、 Pt の担持量は、 アルミナ 1 O gに対して 0.Alumina fibers (average fiber diameter: 5 m, average fiber length: 0. 3 mm), and was impregnated 2 minutes to the slurry one was melted to P 2 0 3 system glass 400 ° C, as shown in Test Example 1 Alumina slurry carrying Pt (Pt concentration: 5 Wt%) was impregnated for 2 minutes, and then heated to the slurry preparation temperature of each ash trap to prepare an alumina fiber with a catalyst attached. As a result, the supported amount of Pt is 0.
2 4 gであった。 2 4 g.
( 2 ) 抄造用スラリーの調製工程  (2) Process for preparing papermaking slurry
次に、 ( 1 )の工程で得られたアルミナファイバを水 1 リ ッ トルに対 して 1 0 gの割合で分散させ、 そのほかに無機バインダと して、 シリ 力ゾルをファイバに対して 5 w t %、 有機バインダと してアク リルラ テックスを 3 w t %の割合で添加した。 さらに、 凝結剤と して硫酸ァ ルミ二ゥム、凝集剤と してポリアクリルアミ ドを、ともに少量添加し、 充分撹拌することによリ抄造用スラリーを調製した。  Next, the alumina fiber obtained in step (1) is dispersed at a rate of 10 g per 1 liter of water, and in addition, silica sol is added to the fiber as an inorganic binder. Acrylate latex was added at a rate of 3 wt% as an organic binder. Furthermore, a slurry for papermaking was prepared by adding a small amount of aluminum sulfate as a coagulant and a small amount of polyacrylamide as a coagulant and stirring sufficiently.
( 3 ) 抄造工程  (3) Papermaking process
上記 ( 2 ) で得られたスラリーを、 4. 5 mm 4. 5 mmの穴が 互いに 2 mmの間隔でほぼ全面に形成された直径 1 4 3. 8 mmの穴 開きメ ッシュによリ抄き、 得られたものを 1 5 0°Cで乾燥することに より、 4. 5 mm X 4. 5 m mの穴が互いに 2 m mの間隔で全面に形 成された 1 mmの厚さの抄造シ一卜 A 1 を得た。  From the slurry obtained in (2) above, a 4.5 mm 4.5 mm hole was formed on the entire surface with a distance of 2 mm between each other, and a 13.4.8 mm diameter hole opening mesh was used. The resulting product was dried at 150 ° C to form a 1 mm thick sheet with 4.5 mm x 4.5 mm holes formed at 2 mm intervals on the entire surface. I got Shi Ai.
また、 両端部用のシー トを得るため、 4. 5 mm X 4. 5 mmの穴 が市松模様に形成されているメ ッシュを用い、 同様に抄造、 乾燥を行 うことにより、 4. 5 mm X 4. 5 m mの穴が市松模様で形成された 抄造シート Bを得た。  In addition, in order to obtain a sheet for both ends, a 4.5 mm X 4.5 mm hole with a checkered pattern is used, and paper making and drying are performed in the same manner. Papermaking sheet B in which holes of mm X 4.5 mm were formed in a checkered pattern was obtained.
( 4 ) 積層工程  (4) Lamination process
片側に抑え用の金具が取リ付けられたケーシング (円筒状の金属容 器) を、 金具が取り付けられた側が下になるように立てた。 そして、 抄造シー ト Bを 3枚積層した後、 抄造シート A 1 を 1 5 0枚積層し、 最後に抄造シー ト 3枚を積層し、 さらにプレスを行い、 その後、 もう 片方にも、 抑え用の金具を設置、 固定することにより、 その長さが 1 5 0 mmの積層体からなるハニカム構造体を製造し、これをフィルタ と した。 このハニカム構造体の Ptの担持量は、 5 gZ l であった。 なお、 この工程では、 貫通孔が重なり合うように、 各シートを積層 した。 A casing (cylindrical metal container) with a holding bracket attached on one side was erected so that the side on which the bracket was attached was down. Then, after three sheets of paper sheet B were laminated, 150 sheets of paper sheet A 1 were laminated, and finally three paper sheets were laminated, and further pressed, and then the other sheet was also used for restraining. By installing and fixing the bracket, the length is 1 A honeycomb structure composed of a 50 mm laminate was manufactured and used as a filter. The amount of Pt supported on this honeycomb structure was 5 gZl. In this step, the sheets were laminated so that the through holes overlapped.
(実施例 3 4 )  (Example 3 4)
試験例 2に示すような P203系ガラスを 5 00 °Cで溶かしてスラリ 一にした以外は、 実施例 3 3と同様にして積層型ハニカム構造体を製 造し、フィルタと した。 Except that the slurry scratch dissolved P 2 0 3 based glass, as shown in Test Example 2 5 00 ° C is to manufacture the laminated honeycomb structured body in the same manner as in Example 3 3, and a filter.
(実施例 3 5 )  (Example 3 5)
試験例 3に示すような P203系ガラスを 3 00 °Cで溶かしてスラリ 一にした以外は、 実施例 3 3と同様にして積層型ハニカム構造体を製 造し、フィルタと した。 Except that the slurry scratch P 2 0 3 based glass such as that shown in Test Example 3 was dissolved in 3 00 ° C is to manufacture the laminated honeycomb structured body in the same manner as in Example 3 3, and a filter.
(実施例 36 )  (Example 36)
試験例 4に示したような CaS04系ガラスを 7 50 °Cで溶かしてスラ リ一にした以外は、 実施例 3 3と同様にして積層型ハニカム構造体を 製造し、フィルタとした。 Except that the slide Li one by dissolving CAS0 4 glass as shown in Test Example 4 7 50 ° C, the same procedure as in Example 3 3 to manufacture a laminated honeycomb structured body, and a filter.
(実施例 3 7 )  (Example 3 7)
試験例 5に示したような CaS04系ガラスを 7 00°Cで溶かしてスラ リーにした以外は、 実施例 3 3と同様にして積層型ハニカム構造体を 製造し、フィルタと した。 Except that the slurries by dissolving CAS0 4 glass as shown in Test Example 5 7 00 ° C, the same procedure as in Example 3 3 to manufacture a laminated honeycomb structured body, and a filter.
(実施例 3 8 )  (Example 3 8)
試験例 6に示したような GaS04系ガラスを 5 8 0 °Cで溶かしてスラ リーにした以外は、 実施例 3 3と同様にして積層型ハニカム構造体を 製造し、フィルタと した。 Except that the slurries by dissolving GaS0 4 glass as shown in Test Example 6 in 5 8 0 ° C, the same procedure as in Example 3 3 to manufacture a laminated honeycomb structured body, and a filter.
(実施例 3 9 )  (Example 3 9)
試験例 7に示したような CaS04系ガラスを 7 7 0 °Cで溶かしてスラ リーにした以外は、 実施例 3 3と同様にして積層型ハニカム構造体を 製造し、フィルタと した。 Except that the slurries by dissolving CAS0 4 glass as shown in Test Example 7 by 7 7 0 ° C, the laminated honeycomb structured body in the same manner as in Example 3 3 Manufactured and used as a filter.
(実施例 4 0 )  (Example 40)
試験例 8に示したような CaS04系ガラスを 7 3 0 °Cで溶かしてスラ リーにした以外は、 実施例 3 3と同様にして積層型ハニカム構造体を 製造し、フィルタと した。 Except that the slurries by dissolving CAS0 4 glass as shown in Test Example 8 7 3 0 ° C, the same procedure as in Example 3 3 to manufacture a laminated honeycomb structured body, and a filter.
(実施例 4 1 )  (Example 4 1)
試験例 9に示したような CaS04系ガラスを 6 5 0 °Cで溶かしてスラ リーにした以外は、 実施例 3 3と同様にして積層型ハニカム構造体を 製造し、フィルタと した。 Except that the slurries by dissolving CAS0 4 glass as shown in Test Example 9 6 5 0 ° C, the same procedure as in Example 3 3 to manufacture a laminated honeycomb structured body, and a filter.
(実施例 4 2 )  (Example 4 2)
試験例 1 0に示したような CaS04系ガラスをつ 0 0 °Cで溶かしてス ラリーにした以外は、 実施例 3 3と同様にして積層型ハニカム構造体 を製造し、フィルタとした。 Except that the slurries by dissolving CAS0 4 glass as shown in Test Example 1 0 One at 0 0 ° C, the same procedure as in Example 3 3 to manufacture a laminated honeycomb structured body, and a filter.
(実施例 4 3 )  (Example 4 3)
試験例 1 1 に示したような CaS04系ガラスを 5 0 0 °Cで溶かしてス ラリーにした以外は、 実施例 3 3と同様にして積層型ハニカム構造体 を製造し、フィルタとした。 Except that the slurries by dissolving CAS0 4 glass as shown in Test Example 1 1 5 0 0 ° C, the same procedure as in Example 3 3 to manufacture a laminated honeycomb structured body, and a filter.
(実施例 4 4 )  (Example 4 4)
試験例 1 2に示したような硫化物系フラックスを 5 7 0 °Cで溶かし てスラリーにした以外は、 実施例 3 3と同様にして積層型ハニカム構 造体を製造し、フィルタと した。  A laminated honeycomb structure was produced as a filter in the same manner as in Example 33 except that a sulfide-based flux as shown in Test Example 12 was melted at 5700C to make a slurry.
(実施例 4 5 )  (Example 4 5)
試験例 1 3に示したような硫化物系フラックスを 5 3 0 °Cで溶かし てスラリーにした以外は、 実施例 3 3と同様にして積層型ハニカム構 造体を製造し、フィルタと した。  A laminated honeycomb structure was manufactured and used as a filter in the same manner as in Example 33, except that a sulfide-based flux as shown in Test Example 13 was melted at 530 ° C to form a slurry.
(実施例 4 6 )  (Example 4 6)
試験例 1 4に示したような塩化物含有系フラックスを 5 5 0 °Cで溶 かしてスラリーにした以外は、 実施例 3 3と同様にして積層型ハニカ ム構造体を製造し、フィルタと した。 Test Example 14 Dissolve a chloride-containing flux as shown in 4 at 55 ° C. A laminated honeycomb structure was produced in the same manner as in Example 33 except that the slurry was made into a slurry.
(実施例 4 7 )  (Example 4 7)
試験例 1 5に示したような塩化物含有系フラックスを 4 8 0 °Cで溶 かしてスラリーにした以外は、 実施例 3 3と同様にして積層型ハニカ ム構造体を製造し、フィルタと した。  Test Example 15 A laminated honeycomb structure was produced in the same manner as in Example 33, except that a chloride-containing flux as shown in 5 was dissolved at 4800 ° C. into a slurry. It was.
(実施例 4 8 )  (Example 4 8)
試験例 1 6に示したような塩化物含有系フラ クスを 4 8 0 °Cで溶 かしてスラリーにした以外は、実施例 3 3と同様にして積層型ハニカ ム構造体を製造し、フィルタとした。  A laminated honeycomb structure was produced in the same manner as in Example 33 except that a chloride-containing flux as shown in Test Example 16 was dissolved at 4800 ° C to form a slurry. Filter.
(比較例 3 )  (Comparative Example 3)
実施例 3 3の ( 1 ) において、アッシュ トラップを形成しなかったこ と以外は、 実施例 3 3と同様にしてハニカム構造体を製造した。  A honeycomb structure was manufactured in the same manner as in Example 33, except that the ash trap was not formed in (1) of Example 33.
上述した各実施例 1 〜 4 8および比較例 1 〜 3によって製造したハ 二カム構造体を、パティキュレー トフィルタと してエンジンの排気通 路に配設して排気ガス浄化装置と した。 そして、 上記エンジンを回転 数 3 0 0 0 m i n— 1 、 トルク 5 0 N mでフィルタに 8 gノ I のパテ ィキユレ一卜が捕集されるまで運転し、 その後、 パティキュレー トを 燃焼させる再生処理を 1 5 0回施した。  The honeycomb structure manufactured according to each of the above-described Examples 1 to 48 and Comparative Examples 1 to 3 was disposed in the exhaust passage of the engine as a particulate filter to form an exhaust gas purification device. Then, the above engine is operated at a rotational speed of 300 min-1 and torque of 50 Nm until a particulate of 8 g I is collected in the filter, and then a regeneration process for burning the particulates. Was applied 1 5 0 times.
その後、フィルタを切断してアッシュの有無を目視でアッシュの有 無を確認した。  After that, the filter was cut and the presence or absence of ash was visually confirmed.
各実施例について、製造条件およびァッシュ トラップ層によるアツ シュ吸収の有無を表 2〜 4に示す。 (表 2 ) Tables 2 to 4 show the manufacturing conditions and the presence or absence of ash absorption by the ash trap layer for each example. (Table 2)
Figure imgf000048_0001
Figure imgf000048_0001
(表 3 ) (Table 3)
Figure imgf000049_0001
Figure imgf000049_0001
(表 4 ) (Table 4)
Figure imgf000050_0001
表 2〜 4に示したように、 実施例のハニカム構造体は、 アッシュの 吸収がおこっていることが確認できた。 産業上の利用可能性
Figure imgf000050_0001
As shown in Tables 2 to 4, it was confirmed that ash absorption occurred in the honeycomb structures of the examples. Industrial applicability
以上説明したように、本発明にかかるフィルタは、ディーゼルェンジ ン等の内燃機関から排出される排気ガス中のパティキュレー 卜を除去 するだけでなく、そのパティキュレー 卜を除去する再生時の燃焼によ つて生成されるアッシュを、ガラス質材料または無機化合物系フラッ クス材料からなるアッシュ 卜ラップ層によって取り込んで、固定化す るのに有用である。  As described above, the filter according to the present invention not only removes particulates in exhaust gas discharged from an internal combustion engine such as a diesel engine, but also by combustion during regeneration to remove the particulates. The produced ash is useful for being taken in and fixed by an ash-wrapped layer made of a glassy material or an inorganic compound-based flux material.

Claims

請求の範囲 The scope of the claims
1 . 内燃機関から排出される排気ガスを浄化するためのフィ ルタであって、 このフィルタの排気ガス流入側セル内に、アッシュ トラ ップ層を設けてなることを特徴とするフィルタ。 1. A filter for purifying exhaust gas discharged from an internal combustion engine, wherein an ash trap layer is provided in an exhaust gas inflow side cell of the filter.
2 . 前記アッシュ トラップ層が、ガラス質材料にて構成されて いることを特徴とする請求項 1 に記載のフィルタ。  2. The filter according to claim 1, wherein the ash trap layer is made of a glassy material.
3 . 前記ァッシュ トラップ層が、低融点ガラスにて構成されて いることを特徴とする請求項 1 または 2に記載のフィルタ。  3. The filter according to claim 1 or 2, wherein the ash trap layer is made of low melting point glass.
4 . 前記アッシュ トラップ層力 低融点無機化合物系フラック ス材料にて構成されていることを特徴とする請求項 1 に記載のフィル タ。  4. The filter according to claim 1, wherein the ash trap layer force is composed of a low-melting-point inorganic compound-based flux material.
5 . 前記アッシュ 卜ラップ層が、 一体型または集合体型ハニ カム構造体もしくは積層型ハニカム構造体のセル内封止部近傍に設け られていることを特徴とする請求項 1 ~ 4のいずれか 1 項に記載のフ ィルタ。  5. The ash wrapping layer is provided in the vicinity of an in-cell sealing portion of an integral-type, aggregate-type honeycomb structure, or laminated honeycomb structure. The filter described in the section.
6 . 前記アッシュ トラップ層が、 前記ハニカム構造体の隔壁 表面に設けられていることを特徴とする請求項 1 〜 4のいずれか 1 項 に記載のフィルタ。  6. The filter according to any one of claims 1 to 4, wherein the ash trap layer is provided on a partition wall surface of the honeycomb structure.
7 . 内燃機関の排気ガス通路内に、 排気ガスに含まれる粒子 状物質を捕集するフィルタを装着してなる内燃機関の排気ガス浄化装 置において、 このフィルタの排気ガス流入側セル内に、アッシュ 卜ラッ プ層を設けてなることを特徴とする内燃機関の排気ガス浄化装置。  7. In an exhaust gas purification apparatus for an internal combustion engine in which a filter for collecting particulate matter contained in the exhaust gas is installed in the exhaust gas passage of the internal combustion engine, in the exhaust gas inflow side cell of this filter, An exhaust gas purifying device for an internal combustion engine, characterized in that an ash-wrap layer is provided.
8 . 前記フィルタは、 一体型または集合型ハニカム構造体も しくは積層型ハニカム構造体からなることを特徴とする請求項 7に記 載の内燃機関の排気ガス浄化装置。  8. The exhaust gas purifying device for an internal combustion engine according to claim 7, wherein the filter is formed of an integral type, a collective type honeycomb structure, or a laminated type honeycomb structure.
9 . 前記アッシュ トラップ層が、ガラス質材料にて構成されて いることを特徴とする請求項 7に記載の内燃機関の排気ガス浄化装置。 9. The ash trap layer is made of a glassy material. The exhaust gas purifying device for an internal combustion engine according to claim 7, wherein the exhaust gas purifying device is an internal combustion engine.
1 0 . 前記アッシュ 卜ラップ層が、低融点ガラスにて構成され ていることを特徴とする請求項 7または 9に記載の内燃機関の排気ガ ス浄化装置。  10. The exhaust gas purifying device for an internal combustion engine according to claim 7 or 9, wherein the ash soot wrap layer is made of low melting point glass.
1 1 . 前記アッシュ トラップ層力 低融点無機化合物系フラッ クスにて構成されていることを特徴とする請求項 7に記載の内燃機関 の排気ガス浄化装置。  11. The exhaust gas purifying device for an internal combustion engine according to claim 7, wherein the ash trap laminar force is composed of a low-melting-point inorganic compound-based flux.
1 2 . 前記アッシュ トラップ層が、 一体型または集合体型ハ 二カム構造体もしくは積層型ハニカム構造体のセル内封止部近傍に設 けられていることを特徴とする請求項 7〜 1 1 のいずれか 1 項に記載 の内燃機関の排気ガス浄化装置。  12. The ash trap layer is provided in the vicinity of an in-cell sealing portion of an integral type, an aggregate type honeycomb structure or a laminated honeycomb structure. The exhaust gas purification device for an internal combustion engine according to any one of claims 1 to 3.
1 3 . 前記アッシュ トラップ層が、 前記ハニカム構造体の隔 壁表面に設けられていることを特徴とする請求項 7〜 1 1 のいずれか 1 項に記載の内燃機関の排気ガス浄化装置。  13. The exhaust gas purifying device for an internal combustion engine according to any one of claims 7 to 11, wherein the ash trap layer is provided on a partition wall surface of the honeycomb structure.
1 4 . 内燃機関から排出される排気ガス中の粒子状物質を排 気ガス浄化装置の排気ガス通路内に装着したフィルタによって捕集し て浄化する方法において、 前記フィルタの排気ガス流入側セル内にァ ッシュ トラップ層を設け、 このアッシュ トラップ層に前記粒子状物質 中に含まれるアツシュを捕捉集積させて、 フィルタ内の特定位置に閉 じ込めて除去することを特徴とする内燃機関の排気ガス浄化方法。  14. In a method for collecting and purifying particulate matter in exhaust gas exhausted from an internal combustion engine by a filter mounted in an exhaust gas passage of an exhaust gas purification device, in the exhaust gas inflow side cell of the filter An exhaust gas for an internal combustion engine characterized in that an ash trap layer is provided in the ash trap layer, and the ash contained in the particulate matter is trapped and accumulated in the ash trap layer, and is trapped and removed at a specific position in the filter. Purification method.
PCT/JP2005/021189 2005-11-14 2005-11-14 Filter, exhaust gas purifying apparatus for internal combustion engine and exhaust gas purifying method WO2007055033A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/021189 WO2007055033A1 (en) 2005-11-14 2005-11-14 Filter, exhaust gas purifying apparatus for internal combustion engine and exhaust gas purifying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/021189 WO2007055033A1 (en) 2005-11-14 2005-11-14 Filter, exhaust gas purifying apparatus for internal combustion engine and exhaust gas purifying method

Publications (1)

Publication Number Publication Date
WO2007055033A1 true WO2007055033A1 (en) 2007-05-18

Family

ID=38023045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021189 WO2007055033A1 (en) 2005-11-14 2005-11-14 Filter, exhaust gas purifying apparatus for internal combustion engine and exhaust gas purifying method

Country Status (1)

Country Link
WO (1) WO2007055033A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110617122A (en) * 2018-06-20 2019-12-27 日本碍子株式会社 Honeycomb filter
CN113996125A (en) * 2021-10-15 2022-02-01 湖北三江航天红林探控有限公司 Cross-section type filtering device for high-energy hair burner

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4294806A (en) * 1979-02-14 1981-10-13 Sakai Chemical Industry Co., Ltd. Method for preventing the wear of a monolithic catalyst by dusts
JPS6174613A (en) * 1984-09-18 1986-04-16 Ngk Insulators Ltd Fine particle filter
JPH1033923A (en) * 1996-07-24 1998-02-10 Toyota Motor Corp Particulate trap device
JP2001012229A (en) * 1999-06-23 2001-01-16 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2001199777A (en) * 2000-01-17 2001-07-24 Ngk Insulators Ltd Honeycomb structure and method for producing the same
JP2002234779A (en) * 2001-02-02 2002-08-23 Ngk Insulators Ltd Honeycomb structure and production method therefor
JP2002371824A (en) * 2001-06-13 2002-12-26 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2005324092A (en) * 2004-05-12 2005-11-24 Ibiden Co Ltd Filter, exhaust gas purifying device of internal combustion engine and exhaust gas purifying method
JP2005342606A (en) * 2004-06-02 2005-12-15 Ibiden Co Ltd Filter, and apparatus and method for purifying exhaust gas from internal-combustion engine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4294806A (en) * 1979-02-14 1981-10-13 Sakai Chemical Industry Co., Ltd. Method for preventing the wear of a monolithic catalyst by dusts
JPS6174613A (en) * 1984-09-18 1986-04-16 Ngk Insulators Ltd Fine particle filter
JPH1033923A (en) * 1996-07-24 1998-02-10 Toyota Motor Corp Particulate trap device
JP2001012229A (en) * 1999-06-23 2001-01-16 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2001199777A (en) * 2000-01-17 2001-07-24 Ngk Insulators Ltd Honeycomb structure and method for producing the same
JP2002234779A (en) * 2001-02-02 2002-08-23 Ngk Insulators Ltd Honeycomb structure and production method therefor
JP2002371824A (en) * 2001-06-13 2002-12-26 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2005324092A (en) * 2004-05-12 2005-11-24 Ibiden Co Ltd Filter, exhaust gas purifying device of internal combustion engine and exhaust gas purifying method
JP2005342606A (en) * 2004-06-02 2005-12-15 Ibiden Co Ltd Filter, and apparatus and method for purifying exhaust gas from internal-combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110617122A (en) * 2018-06-20 2019-12-27 日本碍子株式会社 Honeycomb filter
CN113996125A (en) * 2021-10-15 2022-02-01 湖北三江航天红林探控有限公司 Cross-section type filtering device for high-energy hair burner
CN113996125B (en) * 2021-10-15 2022-11-22 湖北三江航天红林探控有限公司 Cross-section type filtering device for high-energy hair burner

Similar Documents

Publication Publication Date Title
JP4295279B2 (en) Honeycomb structure
JP5001009B2 (en) Ceramic honeycomb structure
JP4437084B2 (en) Honeycomb structure
JP4592695B2 (en) Honeycomb structure and exhaust gas purification device
JP4437085B2 (en) Honeycomb structure
JP4509029B2 (en) Honeycomb structure
WO2006106785A1 (en) Honeycomb structure body
WO2007010643A1 (en) Honeycomb structure and exhaust gas clean-up apparatus
WO2006070504A1 (en) Filter and filter aggregate
WO2008066167A1 (en) Ceramic honeycomb filter and method for manufacturing the same
WO2005026074A1 (en) Sintered ceramic compact and ceramic filter
WO2005002709A1 (en) Honeycomb structure body
WO2007097056A1 (en) Honeycomb structure and exhaust gas purifier
JP2007260595A (en) Honeycomb structure
JPWO2011125768A1 (en) Honeycomb filter
JP2007253144A (en) Honeycomb structured body and exhaust gas purifying device
WO2001068219A1 (en) Ceramic filter and filter device
WO2011042990A1 (en) Honeycomb filter
WO2007094499A1 (en) Ceramic honeycomb filter and exhaust gas purifier
JPWO2007086182A1 (en) Honeycomb structure, method for manufacturing honeycomb structure, and exhaust gas purification device
JP5714568B2 (en) Honeycomb filter
WO2008026675A1 (en) Ceramic honeycomb filter
JP2011098336A (en) Honeycomb filter
JP2006272157A (en) Ceramic honeycomb filter and waste gas cleaning facility
JP2005296936A (en) Ceramic honeycomb filter and exhaust gas cleaning apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05803841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP