WO2007053789A2 - Systeme d'alimentation en materiau mettant en application un accumulateur de decouplage - Google Patents

Systeme d'alimentation en materiau mettant en application un accumulateur de decouplage Download PDF

Info

Publication number
WO2007053789A2
WO2007053789A2 PCT/US2006/043318 US2006043318W WO2007053789A2 WO 2007053789 A2 WO2007053789 A2 WO 2007053789A2 US 2006043318 W US2006043318 W US 2006043318W WO 2007053789 A2 WO2007053789 A2 WO 2007053789A2
Authority
WO
WIPO (PCT)
Prior art keywords
cementitious material
accumulator
delivery system
reservoir
pump
Prior art date
Application number
PCT/US2006/043318
Other languages
English (en)
Other versions
WO2007053789A3 (fr
Inventor
Behrokh Khoshnevis
Original Assignee
University Of Southern California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/556,027 external-priority patent/US7841851B2/en
Application filed by University Of Southern California filed Critical University Of Southern California
Priority to MX2008005842A priority Critical patent/MX2008005842A/es
Priority to AU2006308628A priority patent/AU2006308628B2/en
Priority to EP06847468.3A priority patent/EP1948933B1/fr
Publication of WO2007053789A2 publication Critical patent/WO2007053789A2/fr
Publication of WO2007053789A3 publication Critical patent/WO2007053789A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/02Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/08Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions using driven mechanical means affecting the mixing
    • B28C5/10Mixing in containers not actuated to effect the mixing
    • B28C5/12Mixing in containers not actuated to effect the mixing with stirrers sweeping through the materials, e.g. with incorporated feeding or discharging means or with oscillating stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C7/00Controlling the operation of apparatus for producing mixtures of clay or cement with other substances; Supplying or proportioning the ingredients for mixing clay or cement with other substances; Discharging the mixture
    • B28C7/04Supplying or proportioning the ingredients
    • B28C7/0404Proportioning
    • B28C7/0418Proportioning control systems therefor

Definitions

  • This application relates to material delivery and extrusion systems, including systems configured to deliver and extrude cementitious material.
  • Structures such as buildings, may be built up, layer by layer, by extruding cementitious or other unhardened material from a nozzle moving in a controlled pattern.
  • Examples of apparatuses and processes that may be used are set forth in the patent applications that have been incorporated by reference in the Cross- Reference to Related Applications section of this application.
  • the quality of the result may depend upon being able to accurately control the rate at which the cementitious or other material is extruded from the nozzle. Controlling the pressure or rate at which the material is delivered from a remote pump, however, may not be sufficient. Intervening hoses may expand or contract and gas bubbles in the material itself may compress or expand. Changes in pressure at the output of the pump, therefore, may not be immediately reflected at the nozzle.
  • a cementitious material delivery system may include a pump configured to pump cementitious material and an accumulator.
  • the accumulator may be a decoupling accumulator and may contain a reservoir configured to store cementitious material, an accumulator inlet to the reservoir configured to receive cementitious material pumped by the pump, an accumulator outlet configured to deliver cementitious material from the reservoir, and a pressure applicator configured to apply pressure to the cementitious material that is delivered from the accumulator outlet.
  • the decoupling accumulator may be configured to pass cementitious material that sequentially enters the accumulator inlet in substantially the same sequence through the accumulator outlet.
  • the decoupling accumulator may include a cylinder and a piston within the cylinder.
  • a volume defined by the piston and the cylinder may function as the reservoir.
  • the decoupling accumulator may include a hollow shaft connected to the piston.
  • the hollow shaft may have an end connected to the piston and an opposite end that functions as the accumulator inlet.
  • the piston may have a pushing surface and an opening within the pushing surface.
  • the hollow shaft may be attached to the piston such that cementitious material may flow from the accumulator inlet through the opening in the pushing surface of the piston.
  • the cylinder may include an opening there through that is sized and positioned to allow cementitious material to escape from the cylinder only when the cylinder has been filled beyond a threshold amount.
  • the pressure applicator may be configured to apply a substantially constant pressure to the cementitious material.
  • the pressure applicator may include a pneumatic actuator.
  • the pressure applicator may include a bladder.
  • the decoupling accumulator may include a detection system configured to detect when the amount of cementitious material in the reservoir reaches a first amount and a second amount.
  • the pump may be configured to be activated when the detection system detects that the amount of cementitious material in the reservoir has reached the first amount and to be deactivated when the detection system detects that the amount of cementitious material in the reservoir has reached the second amount.
  • the detection system may include a first and second level sensor.
  • the cementitious material delivery system may include a nozzle configured to extrude the cementitious material delivered from the accumulator outlet.
  • the cementitious material delivery system may include a flow divider configured to divide the cementitious material delivered from the accumulator outlet of the reservoir into a first stream of cementitious material and a second stream of cementitious material that is separate from the first stream.
  • the cementitious material delivery system may include a first mixer configured to mix a first chemical agent with the first steam of cementitious material and a second mixer configured to mix a second chemical agent with the second steam of cementitious material.
  • the first and the second chemical agents may have different compositions that cause the first and the second streams to cure at substantially different rates.
  • Nozzle may be configured to extrude the first stream of cementitious material and the second stream of cementitious material separately from the first stream.
  • FIG. 1 illustrates a material delivery system using a decoupling accumulator.
  • FIG. 2 is a cross-section of a flow-through, decoupling accumulator that uses a bladder.
  • FIG. 3 is a cut-away view of a flow-through, decoupling accumulator that uses a piston shown in a raised position.
  • FIG. 4 is a cut-away view of the flow-through, decoupling accumulator in
  • FIG. 3 with the piston in a lowered position position.
  • FIG. 5 illustrates the upper portion of a flow-through, decoupling accumulator of the type shown in FIGS. 3 and 4 with a detection system and overflow protection.
  • FIG. 6 is a cut-away underneath view of the flow-through, decoupling accumulator that in FIG. 3.
  • Fig. 1 illustrates a material delivery system using a decoupling accumulator.
  • the material delivery system may include a reservoir 101.
  • the reservoir may contain a mixture of unhardened material, such as unhardened cementitious material.
  • the unhardened material may be treated with one or more retardant chemicals that may cause the material to cure slowly.
  • the reservoir 101 may be of any type. It may be of any shape, of any size, and made from any type of material.
  • the reservoir 101 may include an internal mixer.
  • Material may be pumped from the reservoir 101 by a pump 103.
  • the pump 103 may be external to the reservoir 101 , as shown in Fig. 1 , or may be within the reservoir 101.
  • a tube 105 such as a flexible hose, may be connected between the reservoir 101 and the pump 103.
  • the operation of the pump 103 may be controlled by a control signal that may be delivered to the pump 103 over a control channel 107 or through other means. Under the control of the control signal, the pump may be configured to turn on, to turn off, and/or to operate at a controllable speed, flow rate or pressure.
  • Material that is pumped by the pump 103 may be delivered at an outlet 104 on the pump through a tube 109, such as a flexible hose, to an inlet 111 of a decoupling accumulator 113.
  • the decoupling accumulator 113 may include a reservoir 115, a pressure-applicator 117, and an outlet 119.
  • the reservoir 115 may be configured to store material that is delivered through the inlet 111 and to deliver stored material through the outlet 119.
  • the pressure-applicator 117 may be configured to assert pressure on the material that is stored in the reservoir 115 and, in turn, the material that is delivered through the outlet 119.
  • the reservoir 115 may be of any type. It may be of any shape, of any size, and made from any type of material. It may include an internal mixer.
  • the pressure-applicator 117 may similarly be of any type. It may be of any shape, of any size, and made from any type of material.
  • the pressure-applicator 117 may include a piston 121 within the reservoir 115 that is configured to create a seal between the perimeter of the piston 121 and the wall of the reservoir 115.
  • the piston 121 may be driven downwardly by any means, such as by the weight of the piston, a weight that is placed on top of the piston, a spring, by pressure from gas such as air, or by pressure from liquid such as water.
  • the pressure-applicator may be configured to apply a constant pressure to the material in the reservoir 115, notwithstanding changes in the amount of the material within the reservoir 115.
  • a detection system may be employed in connection with the decoupling accumulator 113.
  • the detection system may be configured to detect the amount of material that is within the reservoir 115 and to generate a control signal based on this amount. This control signal may be delivered to the pump 103 over the control channel 107.
  • the detection system may be configured to deliver a control signal to the pump 103 that turns the pump on when the level of material within the reservoir 115 is below a first threshold amount, and that turns the pump 103 off when the level of material within the reservoir 115 is above a second, larger threshold amount.
  • One or more level-sensing switches may be used to detect the level of the material within the reservoir 115 as part of the detection system.
  • Material from the outlet 119 of the decoupling accumulator 113 may be channeled by a tube 123, such as a flexible hose, to a flow divider 125.
  • the flow divider may be configured to divide the flow of material from the tube 123 into two or more separated paths.
  • Material from a first path may be directed by a tube 127, such as a flexible hose, to a first metering device 129.
  • Material from a second path may be directed by a tube 131 , such as a flexible hose, to a second metering device 133.
  • the metering devices 129 and 133 may be configured to regulate the amount of material that flows through the path in which it is interposed. Examples of such metering devices and apparatuses and processes that may be employed in connection with them are set forth in US Provisional Application 60/864,060, entitled “Metering and Pumping Devices," Attorney Docket No. 28080-251 , filed November 2, 2006; and U.S. Provisional Application Serial No. 60/864,291 , entitled “Metering and Pumping Devices," Attorney Docket No. 28080-252, filed November 3, 2006.
  • a chemical agent which may or may not be a hardening agent, may be injected in the first path of the material at a first injection point 135.
  • a chemical agent which may or may not be a hardening agent may be injected into the second path of material at a second injection point 137.
  • the chemical agents that are injected into the first injection point 135 and the second injection point 137 may be different.
  • One chemical agent may be selected to cause the material in one path to cure quickly. This quick-curing material may be extruded by a nozzle (discussed below) to quickly form two, spaced apart, outer shell walls.
  • the other chemical agent may be selected to cause the material in another path to cure slowly and be self-leveling. The slow-curing material may be extruded by the nozzle into the space between the two, spaced apart, outer shell walls.
  • a mixer 141 may be used to mix the chemical agent that is injected at the first injection point 135 with the material in the first pathway.
  • a mixer 143 may be used to mix the chemical agent that is injected at the second injection point 137 with the material in the second pathway.
  • the mixers may share a common drive shaft 144.
  • the mixed material in the first pathway and the mixed material in the second pathway may be separately delivered to a nozzle 145.
  • the nozzle 145 may include outlets 147 and 148 from which quick-curing mixed material may be extruded to quickly create the inner and outer shell walls.
  • the nozzle 145 may include an outlet 149 between the outlets 147 and 148 from which slow-curing mixed material may be extruded to created a self-leveling core. Examples of nozzles and processes for using them are set forth in the patent applications that are incorporated by reference in the Cross-Reference to Related Applications section of this patent application.
  • Fig. 1 Although two paths and three extrusion outlets are illustrated in Fig. 1 , a different number may be used instead. For example, there may be only a single path of mixed material or there may be three paths.
  • the nozzle may have only a single outlet or it may have two or more outlets.
  • a computer system may be used to partially or fully automate the operation of the pump 103, the metering devices 129 and 133, the injection of curing agents at the injection points 135 and 137, the mixers 141 and 143, the movement of the nozzle 145, and/or the extrusion of materials from the nozzle 145.
  • the control of one or more of these devices may be done manually.
  • the fully automated mode all these devices may be controlled and operated by the computer system under the control of one or more computer programs.
  • the same computer system may also operate a gantry system that may be used to position the nozzle and/or a deployable machine that may be used to transport the nozzle, along with the gantry system, to a construction site.
  • a gantry system that may be used to position the nozzle and/or a deployable machine that may be used to transport the nozzle, along with the gantry system, to a construction site.
  • the embodiment of the decoupling accumulator 113 that is illustrated in Fig. 1 may result in some material remaining longer in the reservoir 115 than other material. For example, material at the top of the reservoir 115 may remain within the reservoir 115 longer than material at the bottom. Some material may remain within the reservoir for so long that it begins to cure. [0049]
  • the decoupling accumulator 113 may be configured differently to be of a flow-through type so as to pass the material that sequentially enters the accumulator inlet in substantially the same sequence through the accumulator outlet.
  • Fig. 2 is a cross-section of a flow-through, accumulator that uses a bladder.
  • a decoupling accumulator 201 may include a material inlet 203, a material outlet 205, a compressible tube 207, such as a rubber tube, a sealed pressure chamber 209, and a control inlet 211.
  • the interior wall of the compressible tube 207 may serve as a reservoir.
  • the exterior wall of the compressible tube 207, the sealed pressure chamber 209, and the control inlet 211 may serve as a pressure- applicator.
  • the amount of pressure on the material within the compressible tube 207 may be controlled by varying the amount of gas, such as air, or fluid, such as water, that is delivered through the control inlet 211.
  • a pressure gauge 213 may be include to indicate the pressure within the sealed pressure chamber 209 and, in turn, that is applied though the compressible tube 207 to the material within it.
  • a detection system may be used in connection with the decoupling accumulator 201 so as to generate an on and off control signal for the pump 103.
  • one or more sensors may be used to detect the amount of material within the compressible tube 207.
  • the sensors may sense the diameter of the compressible tube 207, the air pressure in the sealed pressure chamber 209, and/or the weight of the decoupling accumulator.
  • One or more of these measurements may be compared to a pre-determined maximum and a predetermined minimum.
  • the detection system may send a control signal to the pump 103 to turn on.
  • the detection system may send a control signal to the pump 103 to turn off.
  • the decoupling accumulator 201 may be used in lieu of the decoupling accumulator 113 in Fig. 1.
  • Fig. 3 is a cut-away view of a flow-through decoupling accumulator that uses a piston shown in a raised position.
  • a decoupling accumulator 301 may include a piston 305 having an under-side pushing surface 333 configured to snuggly traverse the interior of a cylinder 307.
  • the piston may 2006/043318
  • Pneumatic cylinders 311 and 313 may be configured to apply downward pressure on the hollow drive shaft 309 and, in turn, the piston 305 through linkages 315, 317, 319 and 321.
  • material from the pump 103 may be delivered to the decoupling accumulator 301 at an inlet 331 which may be the upper end of the hollow drive shaft 309.
  • the material may flow through the hollow drive shaft 309 and through an opening in the under-side, pushing surface 333 of the piston 305.
  • FIG. FIG. 6 is a cut-away underneath view of the flow-through, decoupling accumulator that in FIG. 3. It illustrates the opening 334 in the piston 305.
  • the material may fill the reservoir defined by the inner wall of the cylinder 307, the under side pushing surface 333 of the piston 305, and a rim 335 of an outlet 337.
  • the piston may rise.
  • the pneumatic cylinders 311 and 313, the linkages 315, 317, 319 and 321 , the hollow drive shaft 309, and the piston 305 may cooperate to function as a pressure- applicator, applying pressure to the material within the reservoir, thus urging the material out of the outlet 337.
  • FIG. 4 is a cut-away view of the flow-through decoupling accumulator in Fig. 3 with the piston in a lowered position. As shown in Fig. 4, the piston 305 is at the bottom of the cylinder 307.
  • Fig. 5 illustrates the upper portion of a flow-through decoupling accumulator of the type shown in Figs. 3 and 4 with a detection system and overflow protection.
  • the decoupling accumulator may have the same components as shown in Figs. 3 and 4, except for the addition of an overflow outlet 401 near the upper end of the cylinder 307, a cylinder-empty sense switch 403, and a cylinder-full sense switch 405.
  • the cylinder-empty sense switch 403 may have an actuation member 407 sized and positioned to contact a lower surface 409 of the linkage 319 when the piston 305 is almost at the bottom of the cylinder 307.
  • a control signal generated by the empty sense switch 403 may be delivered to the pump 103 and cause the pump 103 to turn on, thus pumping material which will fill the reservoir within the cylinder 307.
  • an actuation member 411 on the cylinder-full sense switch 405 may be actuated by an upper surface of the piston 305.
  • a control signal generated by the cylinder-full sense switch 405 may be delivered to the pump 103 and cause the pump 103 to turn off, thus stopping the reservoir within the cylinder 307 from continuing to fill.
  • the piston 305 may continue to rise until the level of material within the cylinder 307 rises to the level of the overflow outlet 401. At this point, the material may exit from the overflow outlet 401 , thus preventing the piston 305 from separating from the cylinder 307.
  • the decoupling accumulator 301 may be used in lieu of the decoupling accumulator 113 shown in Fig.1.

Abstract

Système d'alimentation en matériau à base de ciment pouvant consister en une pompe conçue pour pomper ce matériau et en un accumulateur. Cet accumulateur peut être un accumulateur de découplage et peut comprendre un réservoir conçu pour accumuler ce matériau à base de ciment, une entrée menant au réservoir et conçue pour recevoir le matériau pompé par la pompe, une sortie conçue pour effectuer l'alimentation en matériau à base de ciment provenant du réservoir et un applicateur de pression conçu pour appliquer de la pression audit matériau provenant de la sortie de l'accumulateur.
PCT/US2006/043318 2005-11-04 2006-11-06 Systeme d'alimentation en materiau mettant en application un accumulateur de decouplage WO2007053789A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MX2008005842A MX2008005842A (es) 2005-11-04 2006-11-06 Sistema de abastecimiento de material que utiliza acumulador de desacoplamiento.
AU2006308628A AU2006308628B2 (en) 2005-11-04 2006-11-06 Material delivery system using decoupling accumulator
EP06847468.3A EP1948933B1 (fr) 2005-11-04 2006-11-06 Systeme d'alimentation en materiau mettant en application un accumulateur de decouplage

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US73345105P 2005-11-04 2005-11-04
US60/733,451 2005-11-04
US82004606P 2006-07-21 2006-07-21
US60/820,046 2006-07-21
US86406006P 2006-11-02 2006-11-02
US11/556,027 US7841851B2 (en) 2005-11-04 2006-11-02 Material delivery system using decoupling accumulator
US60/864,060 2006-11-02
US11/556,027 2006-11-02
US86429306P 2006-11-03 2006-11-03
US86429106P 2006-11-03 2006-11-03
US60/864,293 2006-11-03
US60/864,291 2006-11-03

Publications (2)

Publication Number Publication Date
WO2007053789A2 true WO2007053789A2 (fr) 2007-05-10
WO2007053789A3 WO2007053789A3 (fr) 2007-12-27

Family

ID=38006528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/043318 WO2007053789A2 (fr) 2005-11-04 2006-11-06 Systeme d'alimentation en materiau mettant en application un accumulateur de decouplage

Country Status (4)

Country Link
EP (1) EP1948933B1 (fr)
AU (1) AU2006308628B2 (fr)
MX (1) MX2008005842A (fr)
WO (1) WO2007053789A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8308470B2 (en) 2005-11-04 2012-11-13 University Of Southern California Extrusion of cementitious material with different curing rates
US8992679B2 (en) 2003-01-21 2015-03-31 University Of Southern California Cementitious material, dry construction pellets comprising uncured cement powder and binder, and method of making thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2052583A1 (de) 1970-10-27 1972-05-04 Bors, Heinz J., Campione (Schweiz) Vorrichtung zum Fördern dickflüssiger Stoffe, insbesondere Beton, Mörtel und dgl
US4919597A (en) 1988-06-15 1990-04-24 Specified Equipment Systems Co., Inc. Pump apparatus for multiple component fluids
US20050196484A1 (en) 2003-01-21 2005-09-08 University Of Southern California Robotic systems for automated construction

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3910189A1 (de) * 1989-03-29 1990-10-04 Schwing Gmbh F Zweizylinder-dickstoffpumpe mit kolbenspeicher
GB2291600B (en) * 1994-07-05 1996-08-07 Mass Measuring Sys Ltd Method for preparing a mix
US5924598A (en) * 1997-10-24 1999-07-20 Bradshaw; Larry R. Drywall mud storage and distribution system
US6089837A (en) * 1999-06-18 2000-07-18 Blacoh Fluid Control, Inc. Pump inlet stabilizer with a control unit for creating a positive pressure and a partial vacuum
US7111682B2 (en) * 2003-07-21 2006-09-26 Mark Kevin Blaisdell Method and apparatus for gas displacement well systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2052583A1 (de) 1970-10-27 1972-05-04 Bors, Heinz J., Campione (Schweiz) Vorrichtung zum Fördern dickflüssiger Stoffe, insbesondere Beton, Mörtel und dgl
US4919597A (en) 1988-06-15 1990-04-24 Specified Equipment Systems Co., Inc. Pump apparatus for multiple component fluids
US20050196484A1 (en) 2003-01-21 2005-09-08 University Of Southern California Robotic systems for automated construction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1948933A2

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8992679B2 (en) 2003-01-21 2015-03-31 University Of Southern California Cementitious material, dry construction pellets comprising uncured cement powder and binder, and method of making thereof
US8308470B2 (en) 2005-11-04 2012-11-13 University Of Southern California Extrusion of cementitious material with different curing rates

Also Published As

Publication number Publication date
EP1948933B1 (fr) 2013-07-17
WO2007053789A3 (fr) 2007-12-27
EP1948933A4 (fr) 2012-01-18
MX2008005842A (es) 2008-09-12
AU2006308628B2 (en) 2012-03-22
AU2006308628A1 (en) 2007-05-10
EP1948933A2 (fr) 2008-07-30

Similar Documents

Publication Publication Date Title
US8308470B2 (en) Extrusion of cementitious material with different curing rates
US7841851B2 (en) Material delivery system using decoupling accumulator
US9242267B2 (en) Method and apparatus for mixing and applying material
US20080253222A1 (en) Machine for Dosing and Mixing Liquid Products and Operating Method Thereof
AU2018354998B2 (en) Method and system for ensuring the quality of a multi-component mixture for rock reinforcment
KR20070074493A (ko) 화학반응에 의한 물질 제조용 장치
US9144351B2 (en) Vacuum prime foam pumps, refill units and dispensers
AU2006308628B2 (en) Material delivery system using decoupling accumulator
US7828474B2 (en) Shot pump and variable-speed-type two-liquid metering and mixing apparatus
US8863773B2 (en) Fluid metering device using free-moving piston
KR101439028B1 (ko) 회전 배출이 가능한 콘크리트 펌프카에 장착된 콘크리트 재료물 분사 장치 및 분사방법
US10035168B1 (en) Low pressure two component fluid metering, mixing and dispensing system
EP3711921A1 (fr) Système de pompage et procédé d'impression 3d
KR101261217B1 (ko) 디스펜서용 레진 공급 장치
KR20150121631A (ko) 공압 이송 자동 분무 장치
JP3700100B2 (ja) 液体定量吐出装置
WO2003035346A1 (fr) Systeme et procede de distribution d'une matiere colorante fluente
RU2703311C1 (ru) Бункерное устройство для обрушения сводов сыпучего материала
KR101933913B1 (ko) 경량 기포 콘크리트 공급 장치
KR20080058125A (ko) 제어식 몰탈 펌프
JPS5885373A (ja) 液体材料定量供給装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/005842

Country of ref document: MX

NENP Non-entry into the national phase in:

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006308628

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2006847468

Country of ref document: EP

ENP Entry into the national phase in:

Ref document number: 2006308628

Country of ref document: AU

Date of ref document: 20061106

Kind code of ref document: A