WO2007052632A1 - PROCESS FOR PRODUCING RUTILE (TiO2) SINGLE CRYSTAL, RUTILE (TiO2) SINGLE CRYSTAL, AND OPTICAL ISOLATOR COMPRISING THE SAME - Google Patents

PROCESS FOR PRODUCING RUTILE (TiO2) SINGLE CRYSTAL, RUTILE (TiO2) SINGLE CRYSTAL, AND OPTICAL ISOLATOR COMPRISING THE SAME Download PDF

Info

Publication number
WO2007052632A1
WO2007052632A1 PCT/JP2006/321705 JP2006321705W WO2007052632A1 WO 2007052632 A1 WO2007052632 A1 WO 2007052632A1 JP 2006321705 W JP2006321705 W JP 2006321705W WO 2007052632 A1 WO2007052632 A1 WO 2007052632A1
Authority
WO
WIPO (PCT)
Prior art keywords
rutile
single crystal
tio
producing
metal element
Prior art date
Application number
PCT/JP2006/321705
Other languages
French (fr)
Japanese (ja)
Inventor
Isao Tanaka
Satoshi Watauchi
Shinsuke Morimoto
Jongkwan Pak
Original Assignee
University Of Yamanashi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University Of Yamanashi filed Critical University Of Yamanashi
Priority to JP2007542744A priority Critical patent/JP4882075B2/en
Publication of WO2007052632A1 publication Critical patent/WO2007052632A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/08Single-crystal growth by zone-melting; Refining by zone-melting adding crystallising materials or reactants forming it in situ to the molten zone

Definitions

  • the present invention relates to a floaty using a rutile (TiO 2) single crystal, for example, using an infrared concentration heating furnace.
  • rutile (TiO) single crystal having a light transmittance of 60% or more in a wavelength region of 420 nm or longer without the treatment of oxygen annealing or the like is manufactured. It is about how to do.
  • Rutile (TiO) single crystal is an indispensable optical material as a component of optical isolators.
  • rutile (TiO) single crystals are generally used in the floating zone method.
  • the former causes a decrease in light transmittance and the latter causes a change in refractive index, both of which are rutile (TiO 2) single crystals.
  • Patent Document 1 As a method for suppressing the generation of low-angle grain boundaries, the growth atmosphere is grown under low oxygen partial pressure or high pressure oxygen pressurization in carbon dioxide gas or the like in crystal growth by the FZ method (Patent Document 1), or A method of adding metal ions such as Al 3+ and Sc 3+ to raw materials has been reported (Patent Document 2).
  • Patent Document 2 as a method for producing a high-quality rutile single crystal having a large diameter and few lattice defects, a rutile (Ti 0) single crystal is grown using a sintered raw material rod containing an aluminum raw material.
  • Patent Document 1 JP-A-61-101495
  • Patent Document 2 Japanese Patent Laid-Open No. 6-48894
  • a single crystal causes a decrease in light transmittance and a change in refractive index, and it is difficult to grow a single crystal having a large diameter. For this reason, it is necessary to grow single crystals under high-pressure oxygen pressurization as described above, or to perform oxygen heat treatment at 1000 ° C or higher for several tens of hours or more, which causes high costs. Yes.
  • an object of the present invention is to bring a rutile (Ti 0) solvent or rutile melt (TiO 2) seed crystal containing a small amount of different metal elements into contact with a high-purity rutile raw material, Ti ⁇
  • a rutile raw material rod and a rutile seed crystal are melted to form a molten zone, and while the molten zone is moved, a rutile (TiO) unit is formed.
  • a heterogeneous metal element having a valence lower than 4 is added, and oxygen vacancies in the grown rutile (TiO) single crystal are suppressed by the dissimilar metal element contained in the melting zone.
  • the different metal element contained in the molten zone is one metal element selected from the group consisting of aluminum (A1), iron (Fe), calcium (Ca), and nickel (Ni). Also It is preferable that the growing atmosphere is oxygen 0. IMPa or more.
  • the rutile (TiO) single crystal produced according to the present invention is in the wavelength region of 420 nm or more.
  • the light transmittance of the rutile (TiO) single crystal is 1 mm or more in the light transmission direction.
  • the concentration of the dissimilar metal element contained in the single crystal is 30 ppm or less. This indicates that the foreign element contained in the liquid phase is not taken into the growing crystal, or that the proportion of the foreign element contained in the growing crystal is small.
  • the concentration of the foreign element in the liquid phase is CL, and the concentration contained in the growing crystal is CS. This means that CS / CL is very small compared to 1.
  • a single crystal having low oxygen vacancies or small tilt grain boundaries and a norretyl (TiO 2) single crystal can be obtained.
  • FIG. 1 is an explanatory diagram of a four-elliptic infrared intensive heating furnace used in a method for producing a rutile single crystal.
  • FIG. 2 is a diagram showing a bonding method (solvent attachment) between a solvent raw material and a rutile raw material and a method for growing a rutile single crystal.
  • FIG. 3 is a photograph of the color shape of the obtained grown crystal.
  • FIG. 4 is a graph showing the results of measuring light transmittance.
  • FIG. 1 is an explanatory view of a four-elliptic infrared central heating apparatus 1 used in the method for producing a rutile single crystal of the present invention.
  • a melting zone 19 formed between the raw material rod 18 and the seed crystal 20 rotating in opposite directions is disposed. These are located in an infrared-transmitting cylindrical body 13 made of quartz glass or the like, and the raw material rod 18 and the seed crystal 20 are respectively coupled to an upper rotating shaft 14 and a lower rotating shaft 15 driven by a rotation driving mechanism. .
  • the raw material rod 18 is a cold isostatic press (CI) packed with TiO powder in a rubber tube.
  • CI cold isostatic press
  • a gas exhaust port 16 is communicated with the upper portion of the cylindrical body 13 and a gas inlet port 17 is communicated with the lower portion thereof, and oxygen is introduced from the gas inlet port 17 as a growing atmosphere in the cylindrical body 13. A constant oxygen pressure is maintained in the cylindrical body 13.
  • the melting zone 19 is moved by relatively moving the seed crystal 20 and the heating position at a speed of 3 mm / hour or more to cause rutile to crystallize in the seed crystal 20 to form a single crystal. obtain.
  • a rutile raw material rod 18 was produced by the following procedure. Rutile raw material: Ti ⁇ (99.9%) (Toho Chitani)
  • each additive was wet mixed in an alumina mortar, placed in an alumina crucible, baked in air at 1000 ° C for 12 hours in a cantal furnace, and solvent powder. The powder was made.
  • the solvent powder is packed into a long and narrow rubber tube, molded into a rod shape, vacuumed for 30 minutes with an aspirator, and the air in the tube is evacuated, and a hydrostatic pressure of 300 MPa is applied by a cold isostatic press (CIP). After molding with a press, it was taken out from the rubber tube, drilled on one side, passed through a white wire, and sintered in air in a super cantal furnace at 1200 ° C for 12 hours to produce a sintered body of solvent raw material .
  • CIP cold isostatic press
  • a rutile single crystal growth apparatus was used for joining (solvent attachment) of the solvent raw material and the rutile raw material.
  • This device is a four elliptical mirror type infrared condensing heating device 1 (FZ-T-4000-H manufactured by Crystal System Co., Ltd.) using four l.OkW halogen lamps as light sources.
  • the quartz tube of this equipment was 2 mm thick when the growth atmosphere was oxygen O. lMPa, and 5 mm thick when oxygen was 0.5 MPa.
  • the raw material rod is fixed to the alumina tube with a platinum wire, 0.3 g of the solvent raw material is placed on the tip of the raw material rod (setting), and the atmosphere takes about 1.5 hours in the air.
  • the lamp voltage was adjusted to melt the solvent and attach the solvent raw material to the tip of the raw material rod (melting / solidification).
  • the growth conditions for the rutile single crystal were 5 mm / h at 1 atmosphere or 5 atmospheres of oxygen, and the rutile seed crystal 20 was a rutile single crystal grown in CO with an orientation ⁇ 001> and a diameter of 3 mm.
  • Figure 2 The growth conditions for the rutile single crystal were 5 mm / h at 1 atmosphere or 5 atmospheres of oxygen, and the rutile seed crystal 20 was a rutile single crystal grown in CO with an orientation ⁇ 001> and a diameter of 3 mm.
  • the solvent-adhered material rod was hooked on the hook of the upper shaft with a platinum wire, and the rutile seed crystal 20 was installed on the lower shaft.
  • pressurize the oxygen pressure to an arbitrary value, increase the lamp output to 3.17 to 3.44 kW over about 1.5 hours, and rotate the upper and lower shafts in opposite directions at lOrpm (up) and 30 rpm (down) I let you.
  • the tip of the raw material rod 18 was melted to form the melting zone 19 (FIG. 2 (b) melting).
  • the seed crystal 20 was raised to the heating zone and the seed crystal 20 was heated, and then joined to the raw material rod 18 to form a melting zone 19 (see FIG. 2 (b) seeding).
  • the heating zone was moved relatively upward at 5 mm / h to grow the rutile seed crystal 20 in the direction ⁇ 001>.
  • the relative movement of the heating zone includes a method in which the heating furnace is moved upward and a method in which the raw material rod 18 and the seed crystal 20 are simultaneously moved downward, either of which may be used.
  • the lamp voltage was adjusted by looking at the situation in the melting zone 19 (Fig. 2 (b)).
  • the ramp voltage was gradually decreased, and the grown crystal and the material rod 18 were separated in about 20 minutes (Fig. 2 (b) Melting zone separation).
  • the lamp output was set to 0 W over about 1 hour.
  • the oxygen pressure was maintained until the lamp output was 0 W and the grown crystal was removed from the furnace.
  • a halogen lamp is placed at one focal point of a spheroid coated with an aluminum film or a gold film, and a seed crystal fixed to the tip of the raw material rod suspended on the upper shaft and the lower shaft at the other focal point. Arrange so that the top of 20 comes.
  • the infrared light emitted from the halogen lamp at one focal point is condensed at the other focal point, melting part of the raw material rod 18 and seed crystal 20 and joining them together.
  • a melting zone 19 is formed, and the melting zone 19 is sequentially moved upward to grow a single crystal.
  • the stable melting zone 19 is maintained by adjusting the lamp voltage and the position of the upper and lower shafts while observing the melting zone.
  • the crystal growth section is shielded from the atmosphere by a transparent quartz tube, it is possible to grow crystals in any atmospheric gas.
  • a container such as a crucible is not required for forming the molten zone, there is no problem such as chemical reaction between the crucible and the raw material due to contamination from the crucible.
  • the shape of the grown crystal was a quadrangular prism because four facets appeared in parallel with the c-axis direction. There was a difference in the color of the grown crystal depending on the additive to the rutile solvent. As shown in Fig. 3, Al, Fe, and Ca were rutile's original pale yellow color regardless of the oxygen pressure in the growth atmosphere, but Ni is a neutral color between yellow and blue, and Y and Ga are slightly yellower than blue. It had a different color.
  • FIG. 4 is a graph showing the results of measuring the light transmittance.
  • the sample used here is l-2mm thick and polished Mirror-polished with lxm agent, unheat-treated.
  • the UV_Spectrophotometer was used to measure the light transmittance in the 200 to 900 nm wavelength range at room temperature, and as shown in FIG. 4, the rutile (TiO) single crystal grown at an oxygen pressure of 0.5 MPa was 420 nm or more.
  • Solvent composition A11 350ppm, oxygen pressure O. lMPa grown rutile (TiO) crystal
  • Each sample was cut out with a sample, 0.1 g of a sample obtained by treating the tip of the grown crystal (0.252 g) and the latter half (0.208 g) in sulfuric acid at 90 ° C for 3.5 hours, weighed with alkali, and the molten salt was dissolved in hydrochloric acid. Dissolved in.
  • Aluminum (A1) contained in this solution was measured by inductively coupled plasma optical emission spectrometry (device used: SPS-1700HVR type). As shown in Table 2, both Al and Fe were below the detection limit of the measuring device. .
  • the manufactured rutile (TiO) single crystal has an initial part and an end part.

Abstract

A rutile (TiO2) single crystal having a high transmittance is produced without the need of conducting single crystal growth in a high-pressure oxygen atmosphere or a heat treatment. The process for producing a rutile (TiO2) single crystal comprises melting a joint between a raw rutile rod and a seed rutile crystal to form a molten zone and growing a rutile (TiO2) single crystal while moving the molten zone. In the process, a different metal element which has a valance lower than that of the titanium, i.e., +4, is added to the molten zone, whereby the rutile (TiO2) single crystal which is being grown is inhibited from having an oxygen deficiency by the different metal element. Thus, a rutile (TiO2) single crystal in which the concentration of the different metal is 30 ppm or lower is produced.

Description

明 細 書  Specification
ルチル (TiO )単結晶の製造方法及びルチル (TiO )単結晶、並びにこれ  Method for producing rutile (TiO) single crystal, rutile (TiO) single crystal, and this
2 2  twenty two
を用いた光アイソレータ Optical isolator using
技術分野  Technical field
[0001] この発明は、ルチル (TiO )単結晶を例えば赤外線集中加熱炉を用いたフローティ  [0001] The present invention relates to a floaty using a rutile (TiO 2) single crystal, for example, using an infrared concentration heating furnace.
2  2
ングゾーン (FZ)法によってルチル単結晶を製造する方法に関し、特に酸素ァニー ルなどの処理を施さなくても 420nm以上の波長領域で光透過率が 60%以上である ルチル (TiO )単結晶を製造する方法に関するものである。  In particular, a rutile (TiO) single crystal having a light transmittance of 60% or more in a wavelength region of 420 nm or longer without the treatment of oxygen annealing or the like is manufactured. It is about how to do.
2  2
背景技術  Background art
[0002] ルチル (Ti〇)単結晶は光アイソレータの構成部品として必要不可欠な光学材料で  [0002] Rutile (TiO) single crystal is an indispensable optical material as a component of optical isolators.
2  2
ある。現在、ルチル (Ti〇)単結晶は一般的にフローティングゾーン(Floating Zone法  is there. At present, rutile (TiO) single crystals are generally used in the floating zone method.
2  2
、以下 FZ法)やべルヌーィ法により育成されているが、育成結晶に酸素欠損や小傾 角粒界などの結晶欠陥が発生することが大きな問題となっている。  These are grown by the FZ method) or the Bernoulli method. However, crystal defects such as oxygen vacancies and small-angle grain boundaries are a major problem in the grown crystals.
[0003] 前者は光透過率低下を、後者は屈折率変動を招き、いずれもルチル (TiO )単結晶 [0003] The former causes a decrease in light transmittance and the latter causes a change in refractive index, both of which are rutile (TiO 2) single crystals.
2 を光学材料として利用する際の大きな障害となる。また、高温で酸素欠損が生じて濃 青色に着色するという問題がある。更に酸素結晶に伴う着色によって、均一な加熱が 困難となるため、直径が数インチに及ぶ大口径の単結晶育成は困難であるという問 題がある。  This is a major obstacle when using 2 as an optical material. In addition, there is a problem that oxygen deficiency occurs at a high temperature and the color becomes dark blue. Furthermore, since the coloration associated with the oxygen crystals makes uniform heating difficult, it is difficult to grow a single crystal having a diameter of several inches.
[0004] 小傾角粒界の発生を抑制する方法として、 FZ法による結晶育成において育成雰囲 気を炭酸ガス中などの低酸素分圧下や高圧酸素加圧下で育成する(特許文献 1)、 あるいは、 Al3+や Sc3+などの金属イオンを原料に添加する方法 (特許文献 2)が報告 されている。酸素分圧 3 X 10— 2気圧以下の結晶育成では、育成結晶中に酸素欠損を 生じて濃青色に着色し、この酸素欠損を低減させるために 1000°C以上で数十時間以 上の長時間にわたって酸素熱処理を施す必要があった(特許文献 1)。 [0004] As a method for suppressing the generation of low-angle grain boundaries, the growth atmosphere is grown under low oxygen partial pressure or high pressure oxygen pressurization in carbon dioxide gas or the like in crystal growth by the FZ method (Patent Document 1), or A method of adding metal ions such as Al 3+ and Sc 3+ to raw materials has been reported (Patent Document 2). The oxygen partial pressure 3 X 10- 2 atm following crystal growth, colored dark blue by oxygen deficit occurs in the grown crystal, the length of the several tens of hours or more at 1000 ° C or more in order to reduce this oxygen deficiency It was necessary to perform oxygen heat treatment over time (Patent Document 1).
[0005] 特許文献 2は大口径で格子欠陥の少ない高品質なルチル単結晶を作成する方法 として、アルミニウム原料を含む焼結原料棒を用いてルチル (Ti〇)単結晶を育成す  [0005] In Patent Document 2, as a method for producing a high-quality rutile single crystal having a large diameter and few lattice defects, a rutile (Ti 0) single crystal is grown using a sintered raw material rod containing an aluminum raw material.
2  2
る方法を開示している。しかし、発明者の知見によれば特許文献 2に記載のルチル 単結晶の製造方法では、単結晶の育成が進行するに従って、溶融帯にアルミが蓄積 され、育成結晶の後半部分ではアルミニウムを含む異相が析出し、透明性の高いル チル (Ti〇)単結晶を育成することが難しレ、ことが知れた。 The method is disclosed. However, according to the knowledge of the inventor, the rutile described in Patent Document 2 In the method for producing a single crystal, as the growth of the single crystal proceeds, aluminum accumulates in the molten zone, and a heterogeneous phase containing aluminum precipitates in the latter half of the grown crystal, resulting in a highly transparent rutile (TiO) single crystal. It was known that it was difficult to train.
2  2
特許文献 1 :特開昭 61— 101495号公報  Patent Document 1: JP-A-61-101495
特許文献 2:特開平 6— 48894号公報  Patent Document 2: Japanese Patent Laid-Open No. 6-48894
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 酸素欠損や小傾角粒径を含むルチル (TiO [0006] Rutile (TiO
2 )単結晶は、光透過率の低下や屈折率 変動を招くとともに、大口径の単結晶の育成が困難である。このため、上述したように 高圧酸素加圧下で単結晶の育成を行う、あるいは 1000°C以上で数十時間以上の長 時間にわたって酸素熱処理を施す必要があり、これらはコスト高の要因となっている。  2) A single crystal causes a decrease in light transmittance and a change in refractive index, and it is difficult to grow a single crystal having a large diameter. For this reason, it is necessary to grow single crystals under high-pressure oxygen pressurization as described above, or to perform oxygen heat treatment at 1000 ° C or higher for several tens of hours or more, which causes high costs. Yes.
[0007] そこで本発明の目的は、高純度ルチル原料に対して微量の異種金属元素を添カロ したルチル (Ti〇)溶媒、又はルチル融液 (TiO )種結晶とを接触させて、ルチル (Ti〇  Therefore, an object of the present invention is to bring a rutile (Ti 0) solvent or rutile melt (TiO 2) seed crystal containing a small amount of different metal elements into contact with a high-purity rutile raw material, Ti〇
2 2  twenty two
)単結晶を育成することにより、高圧酸素加圧下での単結晶育成、あるいは単結晶育 ) Single crystal growth under high-pressure oxygen pressurization or single crystal growth
2 2
成後の熱処理を行わなくても透過率の高レ、ルチル (TiO )単結晶の製造方法を提供  Providing a method for producing high-rutile, rutile (TiO) single crystals without the need for post-treatment heat treatment
2  2
することにある。  There is to do.
課題を解決するための手段  Means for solving the problem
[0008] (1)本発明は、所定の育成雰囲気中でルチル原料棒とルチル種結晶との接合部 分を融解させ溶融帯を形成し、前記溶融帯を移動させながらルチル (Ti〇)単結晶を [0008] (1) In the present invention, in a predetermined growth atmosphere, a rutile raw material rod and a rutile seed crystal are melted to form a molten zone, and while the molten zone is moved, a rutile (TiO) unit is formed. Crystal
2 育成するルチル (TiO )単結晶の製造方法において、前記溶融帯にチタン原子価 +  2 In the method for producing a rutile (TiO) single crystal to be grown,
2  2
4よりも低原子価の異種金属元素を添加し、前記溶融帯に含まれる前記異種金属元 素により、育成されるルチル (Ti〇)単結晶の酸素欠損を抑制することを特徴とする。  A heterogeneous metal element having a valence lower than 4 is added, and oxygen vacancies in the grown rutile (TiO) single crystal are suppressed by the dissimilar metal element contained in the melting zone.
2  2
無添カ卩高純度のルチル (Ti〇)焼結原料棒を用い、溶融帯に異種金属元素を含ませ  Use high purity rutile (Ti〇) sintered raw material rods and add different metal elements to the melting zone.
2  2
ることにより、熱処理を行わなくても透明のルチル (Ti〇)単結晶を製造することができ  This makes it possible to produce transparent rutile (Ti〇) single crystals without heat treatment.
2  2
る。これは前記異種金属元素が育成されるルチル (TiO )単結晶の酸素欠損を溶融  The This melts the oxygen deficiency of the rutile (TiO) single crystal where the different metal elements are grown
2  2
帯に含まれる異種金属元素が抑制するためである。  This is because different metal elements contained in the band are suppressed.
(2)前記溶融帯に含まれる異種金属元素がアルミニウム (A1)、鉄 (Fe)、カルシウム (Ca)、ニッケル (Ni)の群から選ばれる 1種の金属元素であることは好適である。また 、前記育成雰囲気が酸素 0. IMPa以上であることは好ましい。 (2) It is preferable that the different metal element contained in the molten zone is one metal element selected from the group consisting of aluminum (A1), iron (Fe), calcium (Ca), and nickel (Ni). Also It is preferable that the growing atmosphere is oxygen 0. IMPa or more.
(3)本発明により製造されるルチル (Ti〇)単結晶は、 420nm以上の波長領域にお  (3) The rutile (TiO) single crystal produced according to the present invention is in the wavelength region of 420 nm or more.
2  2
ける光透過率が、前記ルチル (TiO )単結晶の光透過方向の厚みが lmm以上にお  The light transmittance of the rutile (TiO) single crystal is 1 mm or more in the light transmission direction.
2  2
いて、 60%以上であることを特徴とする。また、本発明により製造されるルチル (Ti〇 )  60% or more. In addition, rutile (TiO) produced by the present invention
2 単結晶に含まれる前記異種金属元素の濃度は 30ppm以下である。これは、液相に 含まれる異種元素が育成結晶に取り込まれなレ、、又は取り込まれる割合が小さいこと を示しており、液相の異種元素濃度を CL、育成結晶に含まれる濃度を CSとすると CS /CLが 1に比べて極めて小さいことを意味するものである。  2 The concentration of the dissimilar metal element contained in the single crystal is 30 ppm or less. This indicates that the foreign element contained in the liquid phase is not taken into the growing crystal, or that the proportion of the foreign element contained in the growing crystal is small. The concentration of the foreign element in the liquid phase is CL, and the concentration contained in the growing crystal is CS. This means that CS / CL is very small compared to 1.
(4)従って、異種金属元素がルチル (TiO )単結晶中に固溶しているとしても、育成  (4) Therefore, even if dissimilar metal elements are dissolved in the rutile (TiO) single crystal, they are grown.
2  2
結晶に固溶する異種元素は育成結晶全体にわたって極めて微少かつ均一に固溶し てレ、ることを意味するものである。  This means that different elements that dissolve in the crystal form a very small and uniform solution throughout the grown crystal.
発明の効果  The invention's effect
[0009] 本発明によれば、酸素欠損や小傾角粒界の少なレ、ノレチル (TiO )単結晶を複雑な  [0009] According to the present invention, a single crystal having low oxygen vacancies or small tilt grain boundaries and a norretyl (TiO 2) single crystal can be obtained.
2  2
装置、あるいはルチル (TiO )単結晶育成後に高温で熱処理を行わなくても透過率の  Without the heat treatment at high temperature after growing the rutile (TiO) single crystal
2  2
高い単結晶を製造することができる。この結果、従来は不可能であった大口径のル チル (Ti〇)単結晶を製造することができる。  High single crystals can be produced. As a result, it is possible to produce a large-diameter rutile (TiO) single crystal, which was impossible before.
2  2
図面の簡単な説明  Brief Description of Drawings
[0010] [図 1]ルチル単結晶の製造方法に使用する四楕円型赤外線集中加熱炉の説明図で ある。  [0010] FIG. 1 is an explanatory diagram of a four-elliptic infrared intensive heating furnace used in a method for producing a rutile single crystal.
[図 2]溶媒原料とルチル原料との接合 (溶媒付け)、及びルチル単結晶の育成方法を 示した図である。  FIG. 2 is a diagram showing a bonding method (solvent attachment) between a solvent raw material and a rutile raw material and a method for growing a rutile single crystal.
[図 3]得られた育成結晶の色形状の写真である。  FIG. 3 is a photograph of the color shape of the obtained grown crystal.
[図 4]光透過率を測定した結果を示したグラフである。  FIG. 4 is a graph showing the results of measuring light transmittance.
符号の説明  Explanation of symbols
[0011] 1 四楕円型赤外線集中加熱装置 [0011] 1 Four ellipse type infrared central heating device
11a, l ib 両回転楕円面鏡  11a, l ib spheroid mirror
12a, 12b 赤外線ランプ  12a, 12b infrared lamp
13 石英管 14 上回転軸 13 Quartz tube 14 Upper rotation axis
15 下回転軸  15 Lower rotation axis
16 ガス排出口  16 Gas outlet
17 ガス導入口  17 Gas inlet
18 原料棒  18 Raw material bar
19 溶融帯  19 Melting zone
20 ルチル (TiO )種結  20 Rutile (TiO) seeding
2  2
21 スクリーン  21 screen
22 レンズ  22 Lens
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 以下、図面を参照して本発明の実施の形態について詳細に説明するが、本発明は これらに限定されるものではなレ、。図 1はこの発明のルチル単結晶の製造方法に使 用する四楕円型赤外線集中加熱装置 1の説明図である。  [0012] Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto. FIG. 1 is an explanatory view of a four-elliptic infrared central heating apparatus 1 used in the method for producing a rutile single crystal of the present invention.
[0013] 図 1に示す四楕円型赤外線集中加熱装置 1において、 4個の回転楕円面鏡 l la, 1 lbが、それらの各焦点 Fがー致するように構成されている。各回転楕円面鏡 l la, l ib -■ ·の他方の焦点 Fa, Fb- - -には赤外線ランプ(例えばハロゲンランプ) 12a, 12b…を 配置する。  [0013] In the four-elliptical infrared central heating apparatus 1 shown in FIG. 1, four spheroid mirrors l la and 1 lb are configured such that their respective focal points F coincide. Infrared lamps (for example, halogen lamps) 12a, 12b,... Are arranged at the other focal points Fa, Fb --- of each spheroid mirror lla, lib- ■.
[0014] 前記中央の焦点 Fの位置には、相互に逆方向に回転する原料棒 18と種結晶 20との 間に形成される溶融帯 19が配置される。これらは石英ガラス等からなる赤外線透過 性の円筒体 13内に位置し、原料棒 18と種結晶 20は、それぞれ回転駆動機構で駆動 される上回転軸 14および下回転軸 15に結合されている。  [0014] At the position of the central focal point F, a melting zone 19 formed between the raw material rod 18 and the seed crystal 20 rotating in opposite directions is disposed. These are located in an infrared-transmitting cylindrical body 13 made of quartz glass or the like, and the raw material rod 18 and the seed crystal 20 are respectively coupled to an upper rotating shaft 14 and a lower rotating shaft 15 driven by a rotation driving mechanism. .
[0015] なお、上記原料棒 18は、 TiO粉末をゴムチューブに詰め、冷間等方圧プレス機 (CI  [0015] The raw material rod 18 is a cold isostatic press (CI) packed with TiO powder in a rubber tube.
2  2
P)により 300MPaの静水圧プレスで加圧成型し、 1200°Cで 12時間空気中で焼結させ て得た焼結体からなってレ、る。  It is made of a sintered body obtained by pressure molding with a 300MPa hydrostatic press according to P) and sintering in air at 1200 ° C for 12 hours.
[0016] 上記円筒体 13内にはその上部にガス排出口 16が、またその下部にガス導入口 17 が連通させてあり、円筒体 13内の育成雰囲気として酸素をガス導入口 17から導入し、 円筒体 13内において一定の酸素圧を保持させるようになつている。 A gas exhaust port 16 is communicated with the upper portion of the cylindrical body 13 and a gas inlet port 17 is communicated with the lower portion thereof, and oxygen is introduced from the gas inlet port 17 as a growing atmosphere in the cylindrical body 13. A constant oxygen pressure is maintained in the cylindrical body 13.
[0017] ルチル (Ti〇)単結晶の製造に際しては、ガス導入口 17から酸素を供給し、 0.3MPa 以上の酸素圧中でルチル原料棒の下端とルチル (Ti〇)種結晶 20の上端を融解して [0017] In the production of a rutile (TiO) single crystal, oxygen is supplied from the gas inlet 17 and 0.3 MPa In the above oxygen pressure, melt the lower end of the rutile raw material rod and the upper end of the rutile (Ti〇) seed crystal 20
2  2
溶融帯 19を形成した後、種結晶 20と加熱位置を毎時 3mm以上の速度で相対的に移 動させることによって溶融帯 19を移動させて種結晶 20にルチルを結晶化させて単結 晶を得る。  After forming the melting zone 19, the melting zone 19 is moved by relatively moving the seed crystal 20 and the heating position at a speed of 3 mm / hour or more to cause rutile to crystallize in the seed crystal 20 to form a single crystal. obtain.
実施例  Example
[0018] ルチル原料棒 18を次の手順により作製した。ルチル原料: Ti〇 (99.9%) (東邦チタ二  [0018] A rutile raw material rod 18 was produced by the following procedure. Rutile raw material: Ti〇 (99.9%) (Toho Chitani)
2  2
ゥム株式会社製)を細長いラバーチューブに詰めて、棒状に成型し、 30分間ァスピレ 一ターで真空吸引してチューブ内の空気を抜き、冷間等方圧プレス機 (CIP)により 30 OMPaの静水圧プレスで成型後、ゴムチューブから取り出し片側にドリルで穴を開け 、白金線を通し、抵抗加熱炉で 1400°C、 12時間、空気中で焼結し、丸棒状の原料棒 18を作製した。作成した原料棒 18のサイズは直径 7〜9.5mm、長さが 45〜60mmであ る。  (Made by UM Co., Ltd.) packed in a long and thin rubber tube, molded into a rod shape, vacuumed with an aspirator for 30 minutes to evacuate the tube, and 30 OMPa with a cold isostatic press (CIP) After forming with hydrostatic press, take out from rubber tube, drill a hole on one side, pass platinum wire, sinter in air at 1400 ° C for 12 hours in resistance heating furnace, and make round rod-shaped raw material rod 18 did. The size of the prepared raw material rod 18 is 7 to 9.5 mm in diameter and 45 to 60 mm in length.
[0019] 次の溶媒原料を次の手順により作製した。先ず、出発原料としては Ti〇(99.9%) (東  [0019] The following solvent raw materials were prepared by the following procedure. First, as starting materials, Ti〇 (99.9%) (East
2 邦チタニウム株式会社製)を選定した。また、出発原料に添加する異種金属元素とし て Al O (99.99%) (大朋化学株式会社製)、 Fe O (99%) (関東化学株式会社製)、 Ni  2 Japanese Titanium Co., Ltd.) was selected. In addition, as a foreign metal element added to the starting material, Al O (99.99%) (manufactured by Otsuchi Chemical Co., Ltd.), Fe O (99%) (manufactured by Kanto Chemical Co., Ltd.), Ni
2 3 2 3  2 3 2 3
0(99.9%) (和光純薬工業株式会社製)、 GaO(99.99%) (株式会社レアメタリック製)、 C aCO (99.99%) (株式会社レアメタリック製)、 Y O (99.99%) (株式会社レアメタリック製) 0 (99.9%) (Wako Pure Chemical Industries, Ltd.), GaO (99.99%) (Rare Metallic, Inc.), CaCO (99.99%) (Rare Metallic, Inc.), YO (99.99%) (Inc. (Made of rare metal)
3 2 3 3 2 3
を選定した。  Was selected.
[0020] それぞれの添加物を金属原子換算で表 1に示すようにして、アルミナ乳鉢で湿式混 合し、アルミナ坩堝に入れ、カンタル炉で 1000°C、 12時間、空気中で焼成し溶媒粉 末を作製した。  [0020] As shown in Table 1 in terms of metal atoms, each additive was wet mixed in an alumina mortar, placed in an alumina crucible, baked in air at 1000 ° C for 12 hours in a cantal furnace, and solvent powder. The powder was made.
[0021] その溶媒粉末を細長いラバーチューブに詰め、棒状に成型し、 30分間ァスピレータ 一で真空吸引してチューブ内の空気を抜き、冷間等方圧プレス機 (CIP)により 300M Paの静水圧プレスで成型後、ゴムチューブから取り出し片側にドリルで穴を開け、白 金線を通し、スーパーカンタル炉で 1200°C、 12時間、空気中で焼結し、溶媒原料の 焼結体を作製した。  [0021] The solvent powder is packed into a long and narrow rubber tube, molded into a rod shape, vacuumed for 30 minutes with an aspirator, and the air in the tube is evacuated, and a hydrostatic pressure of 300 MPa is applied by a cold isostatic press (CIP). After molding with a press, it was taken out from the rubber tube, drilled on one side, passed through a white wire, and sintered in air in a super cantal furnace at 1200 ° C for 12 hours to produce a sintered body of solvent raw material .
[0022] [表 1] 溶媒成分 溶媒濃度(ppm) [0022] [Table 1] Solvent component Solvent concentration (ppm)
Al 13.5  Al 13.5
1350  1350
27000  27000
Fe 70  Fe 70
700  700
Ca 750  Ca 750
Ni 300  Ni 300
Y 1700  Y 1700
Ga 1 75  Ga 1 75
[0023] 溶媒原料とルチル原料との接合 (溶媒付け)には、ルチル単結晶育成装置を用い た。この装置は、 l.OkWのハロゲンランプ 4つを光源とする四楕円鏡型赤外線集光加 熱装置 1((株)クリスタルシステム製 FZ-T-4000-H)である。この装置の石英管には、 育成雰囲気が酸素 O. lMPaの場合は肉厚 2mmのもの、酸素 0.5MPaの場合は肉厚 5 mmのものを使用した。 [0023] A rutile single crystal growth apparatus was used for joining (solvent attachment) of the solvent raw material and the rutile raw material. This device is a four elliptical mirror type infrared condensing heating device 1 (FZ-T-4000-H manufactured by Crystal System Co., Ltd.) using four l.OkW halogen lamps as light sources. The quartz tube of this equipment was 2 mm thick when the growth atmosphere was oxygen O. lMPa, and 5 mm thick when oxygen was 0.5 MPa.
[0024] 図 2(a)に示すように、原料棒を白金線でアルミナ管に固定し、原料棒先端に溶媒原 料を 0.3g載せ (セッティング)、雰囲気は空気中で約 1時間半かけてランプ出力を 172V , 18A(85%)まであげた後に、ランプ電圧を調整し溶媒を融かし原料棒先端に溶媒原 料を付着させた (溶融 ·凝固)。  [0024] As shown in Fig. 2 (a), the raw material rod is fixed to the alumina tube with a platinum wire, 0.3 g of the solvent raw material is placed on the tip of the raw material rod (setting), and the atmosphere takes about 1.5 hours in the air. After increasing the lamp output to 172V and 18A (85%), the lamp voltage was adjusted to melt the solvent and attach the solvent raw material to the tip of the raw material rod (melting / solidification).
[0025] ルチル単結晶の育成条件は、 5mm/hで酸素 1気圧または 5気圧、ルチル種結晶 20 は方位 < 001 >で直径 3mmサイズの CO 中で育成したルチル単結晶を用いた。図 2  [0025] The growth conditions for the rutile single crystal were 5 mm / h at 1 atmosphere or 5 atmospheres of oxygen, and the rutile seed crystal 20 was a rutile single crystal grown in CO with an orientation <001> and a diameter of 3 mm. Figure 2
2  2
(b)に示すように、溶媒付着済みの原料棒を白金線で上シャフトのフックに引っ掛け、 下シャフトにはルチル種結晶 20を設置した。石英管を装着したのち酸素圧を任意の 値まで加圧し、約 1時間半かけてランプ出力を 3.17〜3.44kWまで上げ、上下シャフト を互いに逆方向に lOrpm (上)と 30rpm (下)で回転させた。まず、溶融帯 19を形成する ために原料棒 18の先端を溶融させた(図 2(b)溶融)。その後、種結晶 20を加熱帯まで 上昇させ種結晶 20を加熱した後、原料棒 18に接合させて溶融帯 19を形成した(図 2( b)種付け)。加熱帯を相対的に上向きに 5mm/hで移動させ、ルチル種結晶 20の方 位 < 001 >に成長させた。 [0026] ここで、加熱帯の相対的な移動は、加熱炉を上方に移動させる方法と原料棒 18と 種結晶 20を同時に下方に移動させる方法があるが、どちらを用いてもよい。育成中は 溶融帯 19の状況を見て、ランプ電圧を調整した(図 2(b)育成)。育成終了時にはラン プ電圧を徐々に低下させ、約 20分間で育成結晶と原料棒 18を切り離した(図 2(b)溶 融帯の切り離し)。 As shown in (b), the solvent-adhered material rod was hooked on the hook of the upper shaft with a platinum wire, and the rutile seed crystal 20 was installed on the lower shaft. After attaching the quartz tube, pressurize the oxygen pressure to an arbitrary value, increase the lamp output to 3.17 to 3.44 kW over about 1.5 hours, and rotate the upper and lower shafts in opposite directions at lOrpm (up) and 30 rpm (down) I let you. First, the tip of the raw material rod 18 was melted to form the melting zone 19 (FIG. 2 (b) melting). Thereafter, the seed crystal 20 was raised to the heating zone and the seed crystal 20 was heated, and then joined to the raw material rod 18 to form a melting zone 19 (see FIG. 2 (b) seeding). The heating zone was moved relatively upward at 5 mm / h to grow the rutile seed crystal 20 in the direction <001>. [0026] Here, the relative movement of the heating zone includes a method in which the heating furnace is moved upward and a method in which the raw material rod 18 and the seed crystal 20 are simultaneously moved downward, either of which may be used. During the growth, the lamp voltage was adjusted by looking at the situation in the melting zone 19 (Fig. 2 (b)). At the end of the growth, the ramp voltage was gradually decreased, and the grown crystal and the material rod 18 were separated in about 20 minutes (Fig. 2 (b) Melting zone separation).
[0027] その後、約 1時間をかけてランプ出力を 0Wにした。酸素圧力は、ランプ出力が 0W になり育成結晶を炉から取り出すまで維持した。  [0027] Thereafter, the lamp output was set to 0 W over about 1 hour. The oxygen pressure was maintained until the lamp output was 0 W and the grown crystal was removed from the furnace.
[0028] なお、本実施例で用いた赤外線集光加熱法の原理は次の通りである。  [0028] The principle of the infrared ray condensing heating method used in this example is as follows.
[0029] アルミニウム膜や金膜がコーティングされた回転楕円体の一方の焦点にハロゲンラ ンプをおき、もう一方の焦点には上シャフトに吊るした原料棒の先端と下シャフトに固 定された種結晶 20の上端がくるように配置する。ハロゲンランプの電圧を調整するこ とにより、一方の焦点にあるハロゲンランプから放射された赤外線はもう一方の焦点 に集光し、原料棒 18と種結晶 20の一部を融解させ、それらを接合させて溶融帯 19を 形成し、その溶融帯 19を順次上方向に移動させることにより単結晶が育成される。  [0029] A halogen lamp is placed at one focal point of a spheroid coated with an aluminum film or a gold film, and a seed crystal fixed to the tip of the raw material rod suspended on the upper shaft and the lower shaft at the other focal point. Arrange so that the top of 20 comes. By adjusting the voltage of the halogen lamp, the infrared light emitted from the halogen lamp at one focal point is condensed at the other focal point, melting part of the raw material rod 18 and seed crystal 20 and joining them together. Thus, a melting zone 19 is formed, and the melting zone 19 is sequentially moved upward to grow a single crystal.
[0030] ルチル (Ti〇)単結晶育成中の溶融帯 19の様子は、レンズ 22を通して育成装置画  [0030] The state of the melting zone 19 during the growth of the rutile (Ti 0) single crystal is shown in the growth apparatus drawing through the lens 22.
2  2
面のスクリーン 21に投影されるので、溶融帯を観察しながらランプ電圧や上下シャフ トの位置を調節し、安定な溶融帯 19を維持する。また、結晶育成部は、透明石英管 によって大気から遮断されているので、任意の雰囲気ガス中で結晶育成が可能であ る。なお、溶融帯形成には坩堝などの容器が必要でないので、坩堝からの汚染ゃ坩 堝と原料の化学反応などの問題がない。  Since it is projected on the screen 21 of the surface, the stable melting zone 19 is maintained by adjusting the lamp voltage and the position of the upper and lower shafts while observing the melting zone. In addition, since the crystal growth section is shielded from the atmosphere by a transparent quartz tube, it is possible to grow crystals in any atmospheric gas. In addition, since a container such as a crucible is not required for forming the molten zone, there is no problem such as chemical reaction between the crucible and the raw material due to contamination from the crucible.
[0031] 得られた育成結晶の形状は c軸方向と平行に 4つのファセットがあらわれていたため 四角柱であった。ルチル溶媒への添カ卩物によって育成結晶の色に違いがあった。図 3に示す通り、 Al,Fe,Caについては育成雰囲気の酸素圧にかかわらずルチル本来 の淡黄色であつたが、 Niは黄色と青色の中間色であり、 Y,Gaでは青色より少し黄色 かかった色を呈していた。  [0031] The shape of the grown crystal was a quadrangular prism because four facets appeared in parallel with the c-axis direction. There was a difference in the color of the grown crystal depending on the additive to the rutile solvent. As shown in Fig. 3, Al, Fe, and Ca were rutile's original pale yellow color regardless of the oxygen pressure in the growth atmosphere, but Ni is a neutral color between yellow and blue, and Y and Ga are slightly yellower than blue. It had a different color.
[0032] 育成したルチル単結晶を < 001 >に平行で厚さ 2 mmのウェハ状に切り出し、それ を lmmまで両面を鏡面研磨した後、偏光顕微鏡により品質を評価した。図 4は光透 過率を測定した結果を示したグラフである。ここで用いた試料は、厚さ l〜2mm、研磨 剤 l x mで鏡面研磨済、未熱処理のものである。この試料について、 UV_Spectrophot ometerを使用し、室温で 200〜900nm波長範囲の光透過率を測定したところ、図 4に 示す通り、 0.5MPaの酸素圧力で育成したルチル (TiO )単結晶が 420nm以上の波 [0032] The grown rutile single crystal was cut into a wafer having a thickness of 2 mm parallel to <001>, and both surfaces were mirror-polished to lmm, and the quality was evaluated with a polarizing microscope. Figure 4 is a graph showing the results of measuring the light transmittance. The sample used here is l-2mm thick and polished Mirror-polished with lxm agent, unheat-treated. The UV_Spectrophotometer was used to measure the light transmittance in the 200 to 900 nm wavelength range at room temperature, and as shown in FIG. 4, the rutile (TiO) single crystal grown at an oxygen pressure of 0.5 MPa was 420 nm or more. wave
2  2
長領域で約 50%弱の光透過率であつたの対し、 Al、 Feを添加した溶媒を溶融帯 19と して用いた場合には、ァニールを行わなくても 420nm以上の波長領域で約 60。/。の光 透過率を得ることができた。  In contrast to the light transmittance of about 50% in the long region, when a solvent with Al or Fe added is used as the melting zone 19, it is approximately in the wavelength region of 420 nm or more without annealing. 60. /. Was obtained.
[0033] 溶媒組成 A11350ppm、酸素圧 O. lMPaで育成したルチル (Ti〇)結晶をワイヤーソ [0033] Solvent composition A11 350ppm, oxygen pressure O. lMPa grown rutile (TiO) crystal
2  2
一でそれぞれの部分を切り出し、育成結晶先端部 (0.252g)後半部 (0.208g)を硫酸中 9 0°Cで 3.5時間処理した試料を 0. lg秤量し、アルカリ融解し、融解塩を塩酸で溶解した 。本溶液に含まれるアルミニウム (A1)を誘導結合プラズマ発光分光分析法により測定 (使用装置: SPS-1700HVR型)したところ、表 2に示す通り、 Al、 Feともに測定装置の 検出限界以下であった。  Each sample was cut out with a sample, 0.1 g of a sample obtained by treating the tip of the grown crystal (0.252 g) and the latter half (0.208 g) in sulfuric acid at 90 ° C for 3.5 hours, weighed with alkali, and the molten salt was dissolved in hydrochloric acid. Dissolved in. Aluminum (A1) contained in this solution was measured by inductively coupled plasma optical emission spectrometry (device used: SPS-1700HVR type). As shown in Table 2, both Al and Fe were below the detection limit of the measuring device. .
[0034] 溶融帯に添加した異種元素が育成結晶中に固溶すると仮定すると原料棒に無添 加の純粋な酸化チタンを用いているので育成結晶の初期部に異種元素が析出する 現象が見られ、融液中に含まれる異種元素の量は、育成が進むにしたがって減少す るはずである。しかし、本実施例が示すようにルチル (TiO )結晶中に含まれる Al、 Fe [0034] Assuming that the dissimilar elements added to the molten zone are dissolved in the grown crystal, pure titanium oxide with no additive is used for the raw material rod. Therefore, the amount of different elements contained in the melt should decrease as the growth progresses. However, as this example shows, Al, Fe contained in rutile (TiO) crystal
2  2
が検出限界以下であることは、製造されたルチル (TiO )単結晶は、初期部と終期部  Is below the detection limit, the manufactured rutile (TiO) single crystal has an initial part and an end part.
2  2
で色の違レ、が無レ、ことからも裏付けられる。  This is supported by the fact that there is no color difference.
[0035] [表 2] 定量分析結果 g /g ) [0035] [Table 2] Quantitative analysis results g / g)
試料 Fe AI  Sample Fe AI
① く 20  ① Ku 20
② く 20 ―  ② Ku 20 ―
③ ― 30  ③ ― 30
④ ― く 20  ④ ― ku 20
⑤ 30 く 20 本明細書は、 2005年 11月 1日出願の特願 2005— 318706に基づく。この内容は すべてここに含めておく。 ⑤ 30 This specification is based on Japanese Patent Application No. 2005-318706 filed on Nov. 1, 2005. All this content is included here.

Claims

請求の範囲 The scope of the claims
[1] 所定の育成雰囲気中でルチル原料棒とルチル種結晶との接合部分を融解させ溶 融帯を形成し、前記溶融帯を移動させながらルチル (TiO )単結晶を育成するルチル  [1] A rutile that melts a joint between a rutile raw material rod and a rutile seed crystal in a predetermined growth atmosphere to form a melt zone, and grows a rutile (TiO 2) single crystal while moving the melt zone.
2  2
(TiO )単結晶の製造方法において、  In the method for producing a (TiO 2) single crystal,
2  2
前記溶融帯にチタン原子価 + 4よりも低原子価の異種金属元素を添加し、 前記溶融帯に含まれる前記異種金属元素により、育成されるルチル (TiO )単結晶  A rutile (TiO 2) single crystal grown by adding a dissimilar metal element having a lower valence than titanium valence + 4 to the molten zone, and growing by the dissimilar metal element contained in the molten zone
2 の酸素欠損を抑制することを特徴とするルチル (TiO )単結晶の製造方法。  2. A method for producing a rutile (TiO 2) single crystal, characterized by suppressing oxygen deficiency 2.
2  2
[2] 前記異種金属元素は、アルミニウム (A1)、鉄(Fe)、カルシウム(Ca)、ニッケル (Ni )の群から選ばれる 1種の金属元素であることを特徴とする請求項 1に記載のルチル( TiO )単結晶の製造方法。  2. The dissimilar metal element is one metal element selected from the group consisting of aluminum (A1), iron (Fe), calcium (Ca), and nickel (Ni). Method for producing rutile (TiO) single crystal.
2  2
[3] 前記育成雰囲気が酸素 0. IMPa以上であることを特徴とする請求項 1又は 2に記 載のルチル (Ti〇)単結晶の製造方法。  [3] The method for producing a rutile (TiO) single crystal according to claim 1 or 2, wherein the growth atmosphere is oxygen of not more than 0.1 IMPa.
2  2
[4] 420nm以上の波長領域における光透過率力 前記ルチル (TiO )単結晶の光透過  [4] Light transmittance power in the wavelength region of 420 nm or more Light transmission of the rutile (TiO) single crystal
2  2
方向の厚みが lmm以上において、 60%以上であることを特徴とする請求項 1から 3 のいずれかに記載のルチル (Ti〇)単結晶の製造方法により製造されたルチル (TiO  The rutile (TiO) produced by the method for producing a rutile (TiO) single crystal according to any one of claims 1 to 3, wherein the thickness in the direction is at least 60% at lmm or more.
2 2 twenty two
)単結晶。 ) Single crystal.
[5] ルチル (Ti〇)単結晶に含まれる前記異種金属元素の濃度が 30ppm以下であるこ  [5] The concentration of the dissimilar metal element contained in the rutile (TiO) single crystal is 30 ppm or less.
2  2
とを特徴とする請求項 1から 3のいずれかに記載のルチル (TiO )単結晶の製造方法  A method for producing a rutile (TiO) single crystal according to any one of claims 1 to 3,
2  2
により製造されたルチル (TiO )単結晶。  Rutile (TiO) single crystal produced by
2  2
[6] 所定の育成雰囲気中で容器中のルチル (Ti〇)融液とルチル (Ti〇)種結晶とを接  [6] The rutile (Ti〇) melt in the container is contacted with the rutile (Ti〇) seed crystal in a predetermined growth atmosphere.
2 2  twenty two
触させてルチル (TiO )単結晶を製造するルチル (TiO )単結晶の製造方法において  In a method for producing a rutile (TiO) single crystal in which a rutile (TiO) single crystal is produced by touching
2 2 前記ルチル (Ti〇)融液中にチタン原子価 + 4よりも低原子価の異種金属元素を添  2 2 Add dissimilar metal element with lower valence than titanium valence + 4 in the rutile (Ti〇) melt.
2  2
加し、  And
前記溶融帯に含まれる前記異種金属元素により、育成されるルチル (TiO )単結晶  Rutile (TiO) single crystal grown by the dissimilar metal element contained in the melting zone
2 の酸素欠損を抑制することを特徴とするルチル (TiO )単結晶の製造方法。  2. A method for producing a rutile (TiO 2) single crystal, characterized by suppressing oxygen deficiency 2.
2  2
[7] 前記異種金属元素は、アルミニウム (A1)、鉄(Fe)、カルシウム(Ca)、ニッケル (Ni )の群から選ばれる 1種の金属元素であることを特徴とする請求項 6に記載のルチル( TiO )単結晶の製造方法。 7. The dissimilar metal element is one metal element selected from the group consisting of aluminum (A1), iron (Fe), calcium (Ca), and nickel (Ni). Rutile ( (TiO 2) Single crystal production method.
2  2
[8] 前記育成雰囲気が酸素 0. IMPa以上であることを特徴とする請求項 6又は 7に記 載のルチル (Ti〇)単結晶の製造方法。  [8] The method for producing a rutile (TiO) single crystal as described in [6] or [7], wherein the growth atmosphere is oxygen at 0. IMPa or more.
2  2
[9] 420nm以上の波長領域における光透過率力 前記ルチル (TiO )単結晶の光透過  [9] Light transmittance power in the wavelength region of 420 nm or more Light transmission of the rutile (TiO) single crystal
2  2
方向の厚みが lmm以上において、 60%以上であることを特徴とする請求項 6から 8 のいずれかに記載のルチル (Ti〇)単結晶の製造方法により製造されたルチル (TiO  The rutile (TiO) produced by the method for producing a rutile (TiO) single crystal according to any one of claims 6 to 8, wherein the thickness in the direction is at least 60% at lmm or more.
2 2 twenty two
)単結晶。 ) Single crystal.
[10] ルチル (TiO )単結晶に含まれる前記異種金属元素の濃度が 30ppm以下であるこ  [10] The concentration of the dissimilar metal element contained in the rutile (TiO) single crystal is 30 ppm or less.
2  2
とを特徴とする請求項 6から 8のいずれかに記載のルチル (TiO )単結晶の製造方法  A method for producing a rutile (TiO 2) single crystal according to any one of claims 6 to 8,
2  2
により製造されたルチル (TiO )単結晶。  Rutile (TiO) single crystal produced by
2  2
[11] TiO粉末を加圧'成形し、 1000°C以上で所定時間焼結することにより TiO原料棒  [11] TiO raw material rod by pressing and forming TiO powder and sintering at 1000 ° C or higher for a predetermined time
2 2 を作製し、  2 2
+ 3価以下の異種金属元素を含む TiO粉末 (以下、溶媒粉末)を加圧'成形し、  + Pressurize 'TiO powder (hereinafter referred to as solvent powder) containing a trivalent or less dissimilar metal element,
2  2
1000°C以上で所定時間焼結することにより溶媒原料を作製し、  A solvent raw material is produced by sintering at 1000 ° C or higher for a predetermined time,
前記 TiO原料棒の一端部に前記溶媒原料を溶解固着し、  The solvent raw material is dissolved and fixed to one end of the TiO raw material rod,
2  2
赤外線集中加熱炉を用いたフローティングゾーン (FZ)法によって、所定の育成雰 囲気中で、前記溶媒原料とルチル種結晶とを溶融させながら溶融帯を形成し、 前記溶融帯を移動させながらルチル (Ti〇)単結晶を育成することにより、  By a floating zone (FZ) method using an infrared intensive heating furnace, a melt zone is formed while melting the solvent raw material and the rutile seed crystal in a predetermined growth atmosphere, and the rutile ( Ti〇) By growing single crystals,
2  2
育成されるルチル (Ti〇)単結晶の酸素欠損を抑制することを特徴とするルチル (Ti〇  Rutile (Ti〇) characterized by suppressing oxygen deficiency in the grown rutile (Ti〇) single crystal
2  2
)単結晶の製造方法。  ) A method for producing a single crystal.
2  2
[12] 前記異種金属元素は、アルミニウム(A1)、鉄(Fe)、カルシウム(Ca)、ニッケル(Ni )の群から選ばれる 1種の金属元素であることを特徴とする請求項 11に記載のルチ ル (TiO )単結晶の製造方法。  12. The dissimilar metal element is one metal element selected from the group consisting of aluminum (A1), iron (Fe), calcium (Ca), and nickel (Ni). Of manufacturing rutile (TiO) single crystals.
2  2
[13] 前記育成雰囲気が酸素 0. IMPa以上であることを特徴とする請求項 11又は 12に記 載のルチル (Ti〇)単結晶の製造方法。  [13] The method for producing a rutile (TiO) single crystal as described in [11] or [12], wherein the growth atmosphere is oxygen of 0.1 IMPa or more.
2  2
[14] 420nm以上の波長領域における光透過率力 前記ルチル (TiO )単結晶の光透過  [14] Light transmittance power in the wavelength region of 420 nm or more Light transmission of the rutile (TiO) single crystal
2  2
方向の厚みが lmm以上において、 60%以上であることを特徴とする請求項 11から 13のいずれかに記載のルチル (TiO )単結晶の製造方法により製造されたルチル (Ti O )単結晶。 The rutile (Ti) produced by the method for producing a rutile (TiO 2) single crystal according to any one of claims 11 to 13, characterized in that the thickness in the direction is 60% or more at a thickness of 1 mm or more. O) Single crystal.
2  2
[15] ルチル (Ti〇)単結晶に含まれる前記異種金属元素の濃度が 30PPm以下であること [15] The concentration of the dissimilar metal element contained in the rutile (TiO) single crystal is 30 PP m or less.
2  2
を特徴とする請求項 11から 13のいずれかに記載のルチル (TiO )単結晶の製造方法  A method for producing a rutile (TiO) single crystal according to any one of claims 11 to 13,
2  2
により製造されたルチル (TiO )単結晶。  Rutile (TiO) single crystal produced by
2  2
[16] 請求項 4, 5, 9, 10, 14, 15のいずれかに記載のルチル (TiO )単結晶を含む光アイ  [16] An optical eye comprising the rutile (TiO) single crystal according to any one of claims 4, 5, 9, 10, 14, and 15.
2  2
ソレータ。  Solator.
PCT/JP2006/321705 2005-11-01 2006-10-31 PROCESS FOR PRODUCING RUTILE (TiO2) SINGLE CRYSTAL, RUTILE (TiO2) SINGLE CRYSTAL, AND OPTICAL ISOLATOR COMPRISING THE SAME WO2007052632A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007542744A JP4882075B2 (en) 2005-11-01 2006-10-31 Rutile (TiO2) single crystal manufacturing method, rutile (TiO2) single crystal, and optical isolator using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-318706 2005-11-01
JP2005318706 2005-11-01

Publications (1)

Publication Number Publication Date
WO2007052632A1 true WO2007052632A1 (en) 2007-05-10

Family

ID=38005784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321705 WO2007052632A1 (en) 2005-11-01 2006-10-31 PROCESS FOR PRODUCING RUTILE (TiO2) SINGLE CRYSTAL, RUTILE (TiO2) SINGLE CRYSTAL, AND OPTICAL ISOLATOR COMPRISING THE SAME

Country Status (2)

Country Link
JP (1) JP4882075B2 (en)
WO (1) WO2007052632A1 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HATTA K. ET AL: "Floating zone growth and characterization of aluminum-doped rutile single crystals", JOURNAL OF CRYSTAL GROWTH, vol. 163, 1996, pages 279 - 284, XP003012605 *
PARK J.K. ET AL: "Characteristics of rutile single crystals grown under two different oxygen partial pressures", JOURNAL OF CRYSTAL GROWTH, vol. 268, 2004, pages 103 - 107, XP003012606 *

Also Published As

Publication number Publication date
JPWO2007052632A1 (en) 2009-04-30
JP4882075B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
JP4430949B2 (en) Quartz glass crucible and method for producing the crucible
TWI405728B (en) Silica container and method of manufacturing the same
TWI405729B (en) Silica container and method of manufacturing the same
JP5528827B2 (en) Optical isolator
CN102395535A (en) Silica container and method for producing same
JP4038137B2 (en) Dispersion containing silicon-titanium-mixed oxide powder, method for producing the same, molded product produced thereby, method for producing the same, glass molded article, method for producing the same, and use thereof
CN102197002A (en) Silica container and method for producing same
JP5337011B2 (en) Terbium oxide crystals for magneto-optic elements
JP5067596B2 (en) Sapphire single crystal manufacturing method and manufacturing apparatus thereof
JPWO2009075361A1 (en) Method for producing Ca-La-F translucent ceramics, Ca-La-F translucent ceramics, optical member, optical system, and ceramic forming composition
JP2009013028A (en) Aluminum oxide-gallium oxide solid solution and method for producing the same
CN108314325B (en) Self-crystallization microcrystalline glass with ultra-wideband near-infrared luminescence and preparation method and application thereof
WO2007052632A1 (en) PROCESS FOR PRODUCING RUTILE (TiO2) SINGLE CRYSTAL, RUTILE (TiO2) SINGLE CRYSTAL, AND OPTICAL ISOLATOR COMPRISING THE SAME
JP2002249399A (en) Method for manufacturing single crystal and single crystal
JP2003040697A (en) Active oxygen source calthrate calcia alumina single crystal and manufacturing the same
JP2016047786A (en) Crystal material and method of manufacturing the same
CN116573860B (en) Transparent microcrystalline glass containing calcium tantalate nanocrystalline and preparation method and application thereof
JP3531254B2 (en) Single crystal manufacturing method
JP2008254938A (en) PRODUCTION METHOD OF RUTILE (TiO2) SINGLE CRYSTAL, RUTILE (TiO2) SINGLE CRYSTAL, AND ORNAMENT OBTAINED BY USING THE SINGLE CRYSTAL
JP5729569B2 (en) Method for producing metal compound crystal and method for producing decorative article
TWI481562B (en) Oxide and magnetic optics
JP4839204B2 (en) Fluorite
JPH04338191A (en) Production of single crystal
JPS59152285A (en) Preparation of single crystal
JPH04243998A (en) Production of barium beta-metaborate single crystal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2007542744

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06822634

Country of ref document: EP

Kind code of ref document: A1