WO2007046504A1 - Stethoscope heart sound signal processing method and stethoscope device - Google Patents

Stethoscope heart sound signal processing method and stethoscope device Download PDF

Info

Publication number
WO2007046504A1
WO2007046504A1 PCT/JP2006/320964 JP2006320964W WO2007046504A1 WO 2007046504 A1 WO2007046504 A1 WO 2007046504A1 JP 2006320964 W JP2006320964 W JP 2006320964W WO 2007046504 A1 WO2007046504 A1 WO 2007046504A1
Authority
WO
WIPO (PCT)
Prior art keywords
heart sound
data
heart
sound signal
signal
Prior art date
Application number
PCT/JP2006/320964
Other languages
French (fr)
Japanese (ja)
Inventor
Zhongwei Jiang
Samjin Choi
Original Assignee
Yamaguchi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaguchi University filed Critical Yamaguchi University
Priority to JP2007541064A priority Critical patent/JP4848524B2/en
Priority to CN2006800390720A priority patent/CN101291628B/en
Publication of WO2007046504A1 publication Critical patent/WO2007046504A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/02Stethoscopes
    • A61B7/04Electric stethoscopes

Definitions

  • the present invention relates to an auscultation heart sound signal processing method and an auscultation apparatus.
  • a simple stethoscope listens to detected heart sounds with earphones to determine whether the heart sounds are normal or abnormal.
  • a probe is Sound is detected, and the detected heart sound signal is recorded as heart sound data.
  • the detected heart sounds or further recorded heart sounds are listened to by the earphones, and the recorded heart sound data is analyzed and used to determine whether the heart sounds are normal or abnormal.
  • the recorded heart sound signal is also transmitted over a line and used in such a form that a specialist at a remote location inspects the heart sound.
  • a computer-assisted method is used in which heart sound analysis is performed on heart sound data to assist in diagnosis of heart disease.
  • a dedicated system for professionals is large-scale and difficult to use for general users.
  • the simpler and smaller ones for general users have made it difficult to accurately identify abnormal heart sounds.
  • a stethoscope or auscultation device is disclosed in the following patent documents.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-52521
  • Patent Document 2 Japanese Patent Publication No. 10-504748
  • Patent Document 3 JP-A 61-290936
  • Patent Document 4 JP-A-5-309075
  • Patent Document 1 converts sound acquired by a microphone into an electrical signal, and selectively enhances a signal in a frequency range corresponding to a heart sound and a signal in a frequency range corresponding to a breathing sound.
  • electronic stethoscopes that set the frequency characteristics of the equalizer to selectively attenuate signals in other frequency ranges.
  • Patent Document 2 includes an electronic auscultation that includes a digital filter for pre-emphasis, hearing loss compensation, and the like, and has a pattern recognition means for suppressing repetitive signals in the observed signal and removing noise. It is written on the vessel.
  • the heart sound meter disclosed in Patent Document 3 is a heart sound meter for a general user such as a household user, and can use a heart sound waveform signal with a simple configuration using a general-purpose personal computer.
  • the heart sound detected by the heart sound probe includes noise, and when listening to the heart sound transmitted depending on how much gain adjustment is performed in the heart sound conversion device, or transmitting and receiving heart sound data.
  • Patent Document 4 in order to accurately determine heart sound data without setting a determination criterion, the amplitude of the heart sound is stored together with the elapsed time, and the characteristics of a predetermined portion of the stored amplitude are depicted. Based on the above, there is disclosed a heart sound analysis apparatus that performs predetermined recognition by a Yural network, outputs the degree of recognition, and displays the degree of abnormality of heart sounds.
  • This heart sound analyzer uses a force neural network that sets the borderline in determining the necessity of precision screening required in the primary screening of heart screening. It is not easy to use o
  • the heart sound analysis method in the preceding invention is based on the heart sound data force measured using the tympanic membrane vibration model to obtain the vibration response and analyze and evaluate the time widths of the peak I sound and stuttering sound. This is to detect abnormalities.
  • abnormalities of heart sounds can be confirmed by analyzing and evaluating the time span obtained by vibration response force, but the shape of heart sound data and vibration response is the type and characteristics of heart sound abnormalities. This analysis method may not be able to accurately grasp abnormal heart sounds for various characteristics of abnormal heart sounds.
  • the heart sound signal that can have various characteristics is efficiently removed, noise is effectively improved, the sound quality is improved, and the heart sound recording level is improved. It is inadequate to listen to and discriminate heart sounds recorded with proper sound quality, and to transmit heart sound signals to remote locations for use, making the device complicated and expensive. There was a difficulty of becoming a thing.
  • the sound quality of the heart sound auscultation sound is improved, the sound is low and the heart sound auscultation sound is easy to hear, the recording level of the heart sound signal is set appropriately, and the normal / abnormal heart sound is also detected. It was desired to analyze the heart sound signal so that it could be accurately and quantitatively determined. It was also desired to adjust the detected heart sound signal to an appropriate volume for listening to the heart sound, processing and analyzing the heart sound signal.
  • the present invention has been made to solve the above-mentioned problems, and the auscultatory heart sound signal processing method for performing heart sound analysis for detecting abnormal heart sounds according to the present invention sets model parameters of a vibration model. Detecting heart sounds, thereby obtaining heart sound data, generating feature value waveform data for the obtained heart sound data under set model parameters, and threshold (THV) For the evaluation value indicating the time width and time interval of the peak of the feature value waveform data, and the evaluation index power is also defined by using the fuzzy member function (w), the center of the data set (V) And the evaluation function J (W, V) representing the distribution of the evaluation index from the center of the evaluation index and data set, and the center of the data set so that the evaluation function is minimized by iterative calculation. To decide And the predetermined Minimum evaluation function value Ci for range THV)
  • Each step force is to select the THV that minimizes m, and to display the evaluation index obtained for the selected THV and the distribution state of the center of the data set.
  • the auscultation device includes means for setting model parameters of a vibration model, heart sound detecting means for detecting heart sounds and thereby obtaining heart sound data, and setting for the obtained heart sound data.
  • Means for obtaining the center (V) of the data set to be determined means for obtaining an evaluation function 3 ⁇ 4J (W, V) representing the distribution of the evaluation index from the center of the evaluation index and the data set, and the evaluation function A means for determining the center of a data set by iterative calculation so as to minimize, a means for obtaining a minimum evaluation function town where the evaluation function is minimum, and a dependence of J on a predetermined range of THV are obtained, and within that range
  • the auscultatory heart sound signal processing method for performing heart sound signal processing for sound quality improvement in auscultation includes setting a model parameter of a vibration model to form a vibration model and detecting a heart sound.
  • To obtain the heartbeat signal to obtain the feature value waveform data output by applying the obtained heart sound signal to the vibration model, and to obtain the heart sound signal or the signal obtained by removing high-frequency component noise as heart sound data.
  • the phase lag is calculated by taking the cross-correlation between the heart sound data and the feature value waveform data, and the phase lag is divided so that there is substantially no phase difference between the heart sound data and the feature value waveform data.
  • the output heart sound data is obtained as a product of shifting the phase of the feature value waveform data only by the product of the heart sound data and the feature value waveform data shifted in phase by the phase delay. , But also made steps force.
  • the heart sound signal may be normalized before the heart sound signal is applied to the vibration model.
  • the auscultation apparatus inputs a heart sound signal detected by the heart sound detecting means or a signal obtained by removing noise of a high frequency component from the heart sound data as a heart sound data, thereby inputting characteristic value waveform data corresponding to the heart sound data.
  • a vibration model to be output a phase lag calculation unit that calculates a phase lag of the feature value waveform data with respect to the heart sound data by cross-correlating the feature value waveform data output by the vibration model and the heart sound data;
  • a multiplication conversion unit that takes a product of the feature value waveform data and the heart sound data, the phase of which is shifted by the phase delay so that there is substantially no phase difference between the heart sound data and the feature value waveform data; It also has a heart sound signal processing unit that performs heart sound signal processing to detect abnormal heart sounds.
  • the auscultation apparatus includes a probe for converting a heart sound into an electric signal, and the probe.
  • An automatic volume adjustment recording unit that records and outputs a heart sound by adjusting and amplifying the signal of the heart sound obtained by the audio signal, and the time of the signal of the heart sound obtained by the probe by the automatic volume adjustment recording unit ⁇ Suitable for amplifying heart sound signals based on average intensity between
  • a microcomputer control unit that obtains an up gain so as to obtain a proper volume and controls amplification of a heart sound signal, and a time T following the time T according to the obtained up gain under the control of the microcomputer control unit. Amplifies the heart sound signal and records the amplified signal ab
  • It is also possible to provide a means for automatically adjusting the sound recording volume comprising an amplification adjusting unit that can be extracted as a power sound.
  • the microcomputer control unit holds a relationship of the magnitude of the up gain for amplifying the sound intensity to an appropriate sound volume with respect to the calculated average intensity of the heart sound signal, and refers to the table. Try to amplify the heart sound signal to an appropriate volume.
  • the time T force ⁇ is a time within a range of 3 seconds, and the time T force is within a range of 12 seconds.
  • the time T may be in the range of 8 to: LO seconds.
  • the heart sound recording sound volume automatic adjusting means may be configured as a transmission side unit so that the amplified heart sound signal can be transmitted to the reception side unit.
  • the heart sound feature value waveform and the heart sound signal obtained using the heart sound data and the vibration model are substantially eliminated from the phase difference, and the impulse is obtained as output heart sound data. Therefore, the heart sound of the peak part is emphasized and the noise part is weakened with respect to the original heart sound data, and the sound quality is easy to hear when played back, and it is efficient by inexpensive methods and devices.
  • the sound quality of the heart sound auscultation sound can be improved accurately, and it can contribute to the accurate determination of normal / abnormal heart sounds.
  • the evaluation index and the center of the data set are defined for the feature value waveform generated from the heart sound data using the vibration model so that the evaluation function expressed thereby is minimized.
  • the center of the data set is determined in order to obtain the evaluation index and the processing result for the center of the data set, which is easy for general users to use and takes various forms. Quantify the normality / abnormality of heart sounds with respect to the characteristics of abnormal heart sounds Can be distinguished
  • the up-gain is calculated using a reference table based on the average intensity between
  • the recorded heart sound signal is used in the form of analyzing the heart sound signal so that normality / abnormality of the heart sound can be discriminated, and further, the recorded heart sound signal is listened to, or When a heart sound signal transmitted to a remote location is listened to, it is considered to handle the heart sound signal in a heart disease diagnosis system such as that used in a rectangular shape.
  • the recorded heart sound signal is processed! Based on the eardrum vibration model, the heart sound signal is processed using the characteristic value waveform.
  • the features of the present invention are as follows: (A) feature value waveform based on vibration model, (B) heart sound signal analysis processing for abnormal heart sound detection, (C) heart sound signal processing for sound quality improvement in auscultation, (D The explanation is divided into the aspects of) automatic adjustment of the volume of heart sound recording, and (E) auscultation device configuration.
  • the heart is divided into four parts: the left atrium, the left ventricle, the right atrium, and the right ventricle. As a whole, it plays the role of a pump that circulates blood throughout the body by repeating contraction and relaxation.
  • These valve membranes prevent blood backflow. Is the sound emitted when these valve membranes close.
  • FIG. 1 is a conceptual diagram showing an eardrum vibration model.
  • 1, 1 is an object having an equivalent mass of m corresponding to the eardrum
  • 2 is an object having one end corresponding to the eardrum 1 and the other end being fixed to the fixed part
  • 3 is one end. Is a damper in which the other end is attached to the fixed part to the object corresponding to the object 1 corresponding to the eardrum.
  • the equivalent mass of object 1 corresponding to the eardrum is m
  • the spring constant of spring 2 is K
  • the viscous damping coefficient of damper 3 is C
  • the vibration response X of the eardrum is calculated from the equation (1).
  • Equation (1) Equation (1)
  • It may be an electric vibration system having a scale and electric capacity.
  • Fig. 2 (a) shows the results of the normal heart sound force vibration response X based on the tympanic membrane vibration model described in (A), and Fig. 2 (b) shows the mitral valve closure based on the tympanic membrane vibration model.
  • Incomplete heart sound force Shows the results of vibration response.
  • the heart sound data is recorded in a commercially available heart sound auscultation training material.
  • the parameter p in Eq. (3) is 10 Hz, and is 0.707.
  • the gray waveform is the original waveform of heart sound S.
  • the solid line waveform shows the vibration response, and the waveform showing this vibration response is called the feature value waveform.
  • Fig. 2 (a) represents a normal heart sound that can be heard as "dock, dock”
  • Fig. 2 (b) represents a heart sound in which the mitral regurgitation sounded as "go, goo”.
  • the waveforms in Fig. 2 (a) and (b) are characteristic value waveforms with positive and negative amplitudes, but it is only necessary to analyze either the positive or negative waveform part.
  • Fig. 3 (a) shows a feature value waveform portion having a positive amplitude when the feature value waveform is analyzed.
  • I sound and stuttering appear repeatedly in a normal heart sound waveform. This I sound is caused by the closure of the mitral and tricuspid valves, and the II sound is caused by the closure and tension of the aortic and pulmonary valves.
  • the I sound and II It is considered effective to analyze and evaluate the sound duration (peak duration).
  • Fig. 3 (a) the vertical axis indicates the intensity of the heart sound, the horizontal axis indicates the time, and the measurement time is shown for 2 seconds.
  • Two I sound peaks 48 and two stuttering peaks 49 each. It has been extracted.
  • the duration (time width) of the I sound peak 48 and the stuttering peak 49 is obtained from the point where this threshold line intersects the feature value waveform, and each The evaluation index is Tl and ⁇ 2.
  • the starting force of the I sound peak 48 followed by the end of the II sound peak 49 is also set to the duration until the start of the next I sound peak 48.
  • the evaluation index is T11.
  • Tl, T2, T12, Til are used in appropriate combination.
  • FIG. 3 (b) plots the points indicated by (Tl, T2) and (Ti l, T12) with Tl and Tl l on the horizontal axis and ⁇ 2 and ⁇ 12 on the vertical axis. Normal or abnormal heart sounds are determined. In other words, with normal heart sounds, the points represented by the evaluation index tend to gather in the categories surrounded by dotted lines as shown in Fig. 3 (b).
  • the heart sound is normal when a point represented by the evaluation index enters the region of the normal value range, and the heart sound is abnormal when the point does not fall within this region.
  • the range of normal values is the default for many healthy individuals. It is desirable to obtain data and determine statistically.
  • the horizontal axis is the type of evaluation index
  • the vertical axis is the frequency of each evaluation index during the measurement time of 10 seconds. You can compare the frequency of the index. For example, if T2 is clearly less than evaluation index T1, there is a possibility of an arrhythmia that is not observed due to the loss of II sound peak 49, and this evaluation index is used when T11 is represented by multiple bars. It is visually determined that there is a variation in the value of.
  • FIG. 2 (a) The waveforms shown in (b) have various shapes depending on the type of heart sound abnormality, and depending on the type and degree of abnormality, it may be difficult to accurately determine heart sound abnormality.
  • the threshold (THV) for defining the evaluation indices Tl, T2, Tl l, and T12 is set to 50%.
  • This THV was a force not considered otherwise.
  • the threshold setting is an important factor for heart sound analysis. It was surprising that it was greatly affected by the recording conditions and individual differences among the measurement subjects.
  • the threshold is a force that can be set in the range of 0 to: LOO%. From the actual situation, the range of 10 to 70% is reasonable.
  • Figure 4 (a) shows the relationship between the heart sound feature value waveform and T HV when THV is 15%, 30%, and 60%, respectively.
  • Figure 4 (b) and (c) 5 is a distribution diagram of points indicated by evaluation indices (T 1, T2) and (Ti l, Tl 2) obtained for THV of the present invention.
  • the distribution of the evaluation index differs as shown in Fig. 4 (b) and (c) depending on the THV setting for the characteristic value waveform shown in Fig. 4 (a).
  • the fuzzy C means (FCM) data clustering method is used as the data grouping method.
  • FCM has been proposed in various ways, and is one of the data clustering methods.
  • the cluster center position ⁇ v ⁇ is determined so that the evaluation function is minimized by iterative calculation. Specifically, first, the initial value of the member function matrix ⁇ w ⁇ is set by fuzzy theory, and the cluster center position ⁇ v ⁇ ,
  • W is recalculated as follows using the Euclidean distance d obtained in the previous calculation.
  • Normal heart sounds differ to some extent, and the effective threshold range of THV also varies slightly. Generally, in the case of normal heart sounds, the value of J becomes minimum, or the THV that reaches the valley state as shown in Fig. 7 There is a range, and in that range J can be said to be a very small value of about 0.01.
  • FIG. 7 shows the heart rate data for atrial fibrillation and atrial flutter (AF, arrhythmia), mitral stenosis (MS), and aortic regurgitation (AR).
  • the effective threshold range is 16% to 46%, and for MS in Fig. 7 (b), the effective threshold range is 45% to 66%.
  • the effective threshold range is 10% to 22%.
  • J is lower than 0.02 in the effective threshold, and the distribution of the points represented by the center of the data set and the evaluation index is within a certain range.
  • the values at least one or more values are extremely high compared to normal heart sounds.
  • the center of the data set is about the same as in the case of normal heart sounds, and the minimum evaluation function city within the range of the force effective threshold is 0.4 compared to the case of normal heart sounds.
  • the value of J within the effective threshold range is small, but the value indicating the center of the data set is much larger than that of normal heart sounds.
  • J is not necessarily minimized at one point of THV, but may be substantially minimized within a certain range (when it becomes valley-shaped within a certain range of THV). In such a case, select the THV range and select the range internal force THV as appropriate.
  • the signal processing using the feature value waveform is performed based on the vibration model described in (A). It is advantageous to use a digital circuit for the vibration model type conversion circuit, and the auscultation heart sound is preferably converted into a digital heart sound signal by first performing AZD conversion before being input to the conversion circuit. Further, if the efficiency of signal processing is important, it is preferable to perform normality representing the signal value as a ratio to the maximum value.
  • FIG. 10 shows the result of obtaining the vibration response X by giving a heart sound signal to the vibration model, which is the same as FIG.
  • the vertical axis indicates the signal intensity.
  • the heart sound signal Y (i) has positive and negative values
  • S (i) Zm is changed to S below.
  • the gray waveform is the original waveform of the input heart sound data S (i).
  • the solid line waveform shows the vibration response x (i). This waveform data is the characteristic value waveform data.
  • the heart sound data waveform S (i) and feature value waveform data x (i) in FIG. The portion that corresponds to the heart sound, and the portion with a low value between the peaks contains noise.
  • the heart sound data Y (i) force is also extracted by wavelet analysis to extract high-frequency components of 5 kHz or more or 2.5 kHz or more. ) Is preferably used as heart sound data.
  • the heart sound data S (i) and the feature value waveform data x (i) are obtained by multiplying the peaks by matching the peaks, thereby reducing the noise in the heart sound data and reducing the heart sound itself. By emphasizing, it is considered that the heart sound data is finally reduced in noise.
  • phase delay k For this purpose, it is necessary to obtain the phase delay k and shift the phase of the waveform of x (i) by this phase delay, that is, take the product with the phase of S (i). Phase lag
  • phase difference k is obtained as the value of i when (i) is maximized.
  • p (i) is a sequence of cross-correlation functions, and S and X represent average values.
  • This k is a sequence p (i)
  • phase difference can be substantially eliminated by using k.
  • x (k + i) [x (k + l) x (k + 2) ---- x (N)]
  • the output heart sound data of TS (i) obtained in this way was reproduced by enhancing the heart sound of the peak portion and weakening the noise portion of the original heart sound data.
  • the sound quality is easy to hear, and it is also accurate for analyzing heart sounds.
  • the heart sound signal processing method for enhancing the heart sound and weakening the noise according to the present invention is shown as a flow chart in FIG.
  • the heart sound is converted into a heart sound signal with a microphone that converts it into an electrical signal, and the heart sound signal is listened to with a earphone to determine whether the heart sound is normal or abnormal, and as described in (B) and (C).
  • a heartbeat signal there is a form of performing a heartbeat analysis or processing for improving the sound quality of the heartbeat.
  • the heartbeat signal is first recorded at the stage of recording. It is important to adjust the volume to an appropriate level
  • method (i) is suitable for heart sound feature numerical analysis, it cannot be amplified because the volume is set to an appropriate level by lowering the volume. In the method (ii), the volume can be increased or decreased. However, if the input signal is too small, it becomes difficult to determine the data force volume level after AZD conversion.
  • the amplification degree of the heart sound signal is controlled from the data after the AZD conversion, and sound analysis is considered with respect to the obtained heart sound data. This method is used. In other words, the amplification level at the probe is maximized and sent to the volume control section. Set it to come out.
  • the basic idea of adjusting the recording volume of heart sounds according to the present invention is that the first relatively short !, data for gain adjustment is acquired during time T, and the subsequent time T is acquired.
  • the ab heart sound signal should be properly amplified and used.
  • appropriate gain adjustment is made by setting how much the heart sound signal is amplified in a short time before amplifying the heart sound to be used. Time to acquire data for gain adjustment T
  • a is about 1 to 3 seconds, and about 2 seconds is most appropriate. This is because the normal heartbeat period is 0.8 to 1 second, and if heart sounds of about 2 periods can be collected, it can be used as data for gain adjustment. Time to amplify heart sound to use T is about 4-12 seconds
  • the recording volume of the heart sound is adjusted according to the following procedure.
  • This volume adjustment is performed according to the following procedure according to the operation of the microcomputer on the AD signal of the detected heart sound signal.
  • the time T (1 to 3 seconds) for acquiring data and the heart sound to be used are amplified for gain adjustment as described above
  • the up gain necessary to amplify the heart sound to be used is set as a gain reference table.
  • Threshold value x is defined for heart sound volume x (i), and x (i)> x during time T
  • steps (1) to (4) are carried out at least once, but it is usually recommended to repeat several times (2 to 5) times.
  • the automatic adjustment of the heartbeat recording volume in steps (1) to (4) is performed by the microcomputer 23.
  • the microcomputer 23 holds a program necessary for such control, a gain reference table, and the like.
  • FIG. 13 is a diagram showing a state of a heart sound signal when a heart sound is recorded by the procedures (1) to (4).
  • Fig. 13 shows the original heart waveform signal
  • (b) shows the heart waveform signal during time T for calculating the gain
  • (c) shows the up-state obtained by the signal in (b).
  • a waveform signal is shown. Hearts captured during time ⁇ before recording heart sounds like this a
  • the up-gain is determined, and the heart sound signal is amplified to an appropriate volume accordingly, so that the heart sound recorded in the stage (c) of FIG. 13 has an appropriate volume.
  • Figure 14 shows the NZS ratio when the heartbeat recording volume is automatically adjusted according to steps (1) to (4) and when the heartbeat is recorded without such automatic adjustment of the heartbeat recording volume.
  • the horizontal axis indicates how many heart sounds are recorded.
  • FIG. 15 schematically shows the form of the auscultation device according to the present invention.
  • the auscultation device detects the heart sound, and the volume of the heart sound signal detected by the probe a is appropriately increased.
  • the sound volume processing and recording section b which adjusts the sound volume
  • the sound volume processing section c which performs sound volume enhancement and noise reduction processing for the heart sound signals recorded and adjusted by the automatic volume adjustment recording section b
  • Automatic sound volume adjustment recording unit b Adjusts the sound volume by the heart sound signal recorded by S, and performs heart sound analysis to determine whether the heart sound is normal or abnormal. It has a heart sound analysis processing unit d and a receiving unit e that generate data to be provided separately.
  • the heart sound signal recorded by adjusting the volume at the automatic volume adjustment recording unit b, or the heart sound signal subjected to the heart sound enhancement and noise reduction processing by the heart sound signal processing unit c can be heard by the monitoring means. In addition, it is transmitted to a remote location by the transmission means.
  • the result of the analysis of the heart sound signal recorded by the automatic sound volume control unit b with the volume adjusted is displayed on the monitor or the result of the analysis process is displayed. It is transmitted by the transmission means.
  • the receiver e can receive the transmitted heart sound signal and analyzed data and use it to determine whether the heart sound is normal or abnormal, or to process the received signal and data.
  • FIG. 15 shows an example of the configuration, and in addition to the probe a, it is possible to combine it as necessary.
  • the element parts in the apparatus configuration of FIG. 15 will be described separately.
  • FIG. 16 shows elements of the auscultation probe a, the automatic volume control recording unit b, and the receiving unit e in the auscultation apparatus of FIG.
  • the recorded heart sound signal is transmitted with the volume adjusted, and is received by the receiving unit e.
  • the heart sound signal processing unit c in FIG. A form or a form in which the transmitted heart sound is received by the receiving unit e and the heart sound signal processing unit c performs enhancement of the heart sound and noise reduction processing can be considered.
  • an auscultation probe a includes a chest piece 11 that includes a microphone that detects a heart sound and converts it into an electrical signal, an amplification unit 12 that amplifies the detected heart sound signal, and an amplified heart sound.
  • the amplifying unit 12 includes a preamplifier, a filter, and a power amplifier, and is amplified to an appropriate level and a heart sound signal is sent to the volume automatic adjustment transmission module 10.
  • the automatic volume adjustment recording unit b includes a signal adjustment unit 21, an AZD conversion unit 22, a microcomputer 23, a high-pass filter 24, an amplification adjustment unit 25, and a transmitter 26.
  • the signal adjustment unit 21 includes a high-nos filter and a signal adjustment circuit.
  • the signal adjustment unit 21 adjusts the heart sound signal received from the amplification unit 12 of the auscultation probe a and sends it to the AZD conversion unit 22 and the no-pass filter. 24 to amplifying unit 25 via 24.
  • Amplification adjustment unit 25 is also a high-pass signal conditioner of signal adjustment unit 21 It includes a control amplifier, signal conditioner, and high-pass filter that amplifies the heart sound signal sent through the filter 24 to an appropriate gain in response to a command from the microcomputer.
  • the heart sound signal sent to the AZD conversion unit 22 is converted into 8-bit (10-bit or 12-bit) digital data and processed by the microcomputer 23.
  • the amplification of the heart sound signal is controlled.
  • the time Ta (1 to 3 seconds) for acquiring data for gain adjustment and the time Tb (4 to 12 seconds) for amplifying the heart sound to be used are set in advance. Keep a reference table that gives the up-gain. Based on the average intensity of the heart sound signal obtained with the auscultation probe a during time T
  • the reference table power is calculated so that the up gain is obtained and the microcomputer control unit performs amplification control of the heart sound signal, and the time T following the time T according to the obtained up gain under the control of the microcomputer control unit. Amplifying the heart sound signal between
  • the heart sound signal is taken out and listened to by the earphone, and the amplification adjustment unit 25 amplifies and adjusts it so that it can be transmitted by the transmitter 26.
  • the receiving unit e has a receiver 31, an adjusting unit 32, and an amplifying unit 33 for receiving a heart sound signal transmitted from the transmitter 26 of the automatic volume adjustment recording unit b.
  • the signal is monitored by earphones or used for heart sound analysis by a computer. Further, it can be amplified as an analog output by an amplifier.
  • Automatic volume adjustment and recording unit b side force receiving unit The transmission to the e side may be performed by wireless transmission via an antenna or via a cable.
  • FIG. 17 (a) and 17 (b) show the configuration of the heart sound signal processing unit c.
  • Fig. 17 (a) shows the whole heart sound signal processing unit, and the heart sound signal processing unit c includes the AZD conversion unit of the automatic volume adjustment recording unit b obtained after the heart sound detection unit of the auscultation probe a.
  • the signal Y (i) converted into a digital signal at is input.
  • the signal adjustment unit 43 that takes the absolute value of the AZD-converted heart sound signal Y (i) and performs processing such as normal ⁇ , and the signal S (i) from the signal adjustment unit 43 is input and the feature value waveform X (i ) Forming the vibration model 44 and the signal from the signal adjustment unit 43.
  • Filter part 45 that outputs noise data S (i) and heart sound from filter part 45
  • the data and the characteristic value waveform data from the vibration model 44 are input and the signal processing is performed, and the heartbeat is emphasized and the noise is weakened. Yes.
  • the signal adjustment unit S (i) the force signal S (i) is input to the vibration model 44.
  • the vibration model 14 is converted to the heart sound data S (i) from which high-frequency component noise has been removed in the force filter unit 45. In that case, the same heart sound data
  • the data SW (i) is also input to the conversion circuit unit 46.
  • 47 is a parameter setting unit for setting parameters in the vibration model 44.
  • FIG. 17 (b) shows the conversion circuit unit 46 in FIG. 17 (a) in more detail.
  • the conversion circuit unit 46 includes a phase lag calculation unit 51 and an integration conversion unit 22. It is configured.
  • the heart sound data S (i) and the feature value waveform data x (i) are multiplied by the phase delay calculation unit 51, respectively.
  • the value of the phase delay k input to both of the conversion units 52 and obtained by the phase delay calculation unit 51 is input to the multiplication conversion unit 52.
  • the multiplication conversion unit 52 shifts x (i) by the phase delay k to x (k + i), calculates the product with S (i), and outputs the result.
  • the heart sound signal processing unit shown in FIGS. 17 (a) and 17 (b) includes a part for processing the digitized signal in the A / D conversion unit 12 and a memory for recording the heart sound signal. It can be configured as a digital circuit and built into the auscultation device, or it can be formed as a unique device that processes the signals using the recorded heart sound signals.
  • FIG. 18 shows the configuration of the heart sound analysis processing unit d.
  • a is a heart sound detection unit
  • b is an automatic volume adjustment recording unit that performs AZD conversion of the heart sound signal detected by the heart sound detection unit a and adjusts the volume
  • the heart sound data that has been AZD converted and volume adjusted is the heart sound processing analysis processing unit d Is input.
  • the heart sound analysis processing unit d includes a parameter setting unit 61 that sets model parameters of the vibration model, a feature value waveform generating unit 62 that generates feature value waveform data of heart sound data under the set model parameters, and a threshold value (THV).
  • TSV threshold value
  • Means for obtaining the evaluation index 63 Means for obtaining the center of the data set defined by using the member function from the evaluation index 64, Means for obtaining the evaluation function from the evaluation index and the center of the data set 65, Evaluation by iterative calculation Means to determine the center of the data set so that the function is minimized 66, for a given range of THV Means 67 for determining the THV that minimizes the minimum evaluation function value Ci), and means 68 for sending display data such as an evaluation index for the selected THV and the center of the data set to the display unit 70. .
  • the parts 62 to 67 perform arithmetic processing on the input data according to the set parameters, and these arithmetic processes may be performed to form a dedicated circuit including a memory or as shown in FIG. It may be configured to be executed by a personal computer equipped with a program for performing arithmetic processing according to the above flow.
  • the display unit 70 displays data obtained as a result of heart sound analysis, and a display having a screen such as a liquid crystal panel may be used.
  • the display contents are displayed as a graph without numerical values of the evaluation index and the distribution status at the center of the data set.
  • the result obtained by the arithmetic processing in the heart sound analysis processing unit d may be transmitted to the receiving unit at a remote location by the transmission means in addition to being displayed on the display unit 70 as display data.
  • the heart sound analysis processing unit d requires a means for accumulating and holding necessary items such as definition formulas necessary for the analysis of heart sound data, and further, actual data actually obtained by heart sound analysis is stored in a database. By providing a means for storing and storing the data, the data can be used as comparison data when performing a new heart sound analysis.
  • the present invention can be used to perform automatic adjustment of heart sound recording volume, improvement of sound quality of heart sound signals, and analysis processing of heart sound signals, respectively, and as an auscultation device in a combination of them. It can also be used.
  • FIG. 1 is a conceptual diagram showing an eardrum vibration model.
  • FIG. 2 (a) shows the results of obtaining the vibration response X of the normal heart sound force based on the tympanic membrane vibration model, and (b) shows the mitral regurgitation heart sound vibration based on the tympanic membrane vibration model. It is a figure which shows the result which calculated
  • FIG. 3 (a) is a diagram showing how to obtain the evaluation index in the case of normal heart sounds, (b) is a diagram showing the correlation of the evaluation index, and (c) is a diagram showing the frequency of the evaluation index. It is.
  • FIG. 5 (a) and (b) are diagrams showing examples of defining the center of data collection by the PCM clustering method for the correlation of evaluation indices, and (c) is the minimum evaluation obtained by the PCM clustering method. It is a figure which shows the dependence with respect to the threshold value of a function value.
  • FIG. 6 (a) and (b) are graphs showing the correlation of evaluation indices with threshold values ranging from 10% to 70%.
  • C) and (d) are threshold values ranging from 30% to 60%. It is a figure which shows the correlation of the table
  • FIG. 8 (a), (b) for arrhythmia (AF), (c), (d) for mitral stenosis (MS), (e), (f) for aortic regurgitation It is a figure which shows the correlation of an evaluation index, respectively in the case of (AR).
  • FIG. 9 is a diagram showing a flow of heart sound analysis according to the present invention.
  • FIG. 11 is a diagram showing the characteristic value waveform in FIG. 10 shifted by the phase delay.
  • FIG. 12 is a diagram showing a flow of processing of a heart sound signal.
  • FIG. 13 is a diagram showing a state of a heart sound signal when a heart sound is recorded.
  • FIG. 14 is a diagram showing a comparison of NZS ratios when the heartbeat recording volume is automatically adjusted according to the present invention and when heartbeats are recorded without automatic adjustment.
  • FIG. 15 is a diagram showing a schematic configuration of an auscultation apparatus according to the present invention.
  • FIG. 16 is a diagram showing an automatic volume adjustment recording unit and a consultation unit in the configuration of FIG.
  • FIG. 17 (a) is a diagram showing a heart sound signal processing unit in the configuration of FIG. (b) It is a figure which shows especially about the conversion circuit part among (a).
  • FIG. 18 is a diagram showing a heart sound analysis processing unit in the configuration of FIG. Explanation of symbols

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

[PROBLEMS] The detected heart sound signal is adjusted to an adequate volume and quantitavely analyzed with high accuracy, and a processing to improve the sound quality of the heart sound signal to make the heart sound signal easy to listen to. [MEANS FOR SOLVING PROBLEMS] In analyzing a heart sound, an evaluation index of a heart sound feature value waveform generated by using heart sound data and a vibration model is determined, the center of a data set is so determined that the evaluation function expressing the dispersion of the evaluation index takes on a minimum value, and the evaluation index for a threshold and the distribution of the center of the data set are determined. To improve the quality of the heart sound, after substantially eliminating the phase difference and multiply the heart sound signal and the heart sound feature value waveform, the product is used as output heart sound data. In adjusting the volume of the heart sound signal, the up gain is determined using a reference table according to the average intensity for a time Ta of the detected heart sound signal, and the heart sound signal for a time Tb after the time Ta is amplified and recorded.

Description

明 細 書  Specification
聴診心音信号の処理方法及び聴診装置  Auscultation heart sound signal processing method and auscultation apparatus
技術分野  Technical field
[0001] 本発明は、聴診心音信号の処理方法及び聴診装置に関する。  The present invention relates to an auscultation heart sound signal processing method and an auscultation apparatus.
背景技術  Background art
[0002] 日本国内で心臓病による死亡率は高ぐ 1985年には脳卒中を抜いて第 2位になつ ている。心臓病のうちでは心不全や虚血性心疾患といわれる心筋梗塞が多ぐその ほか原因不明の急性死が 3割を占めている。心血管障害のような生活習慣病は病状 の変化が緩やかであるため、長期間にわたり定量的な経過観察をしなければ的確に 診断されず、発見されないケースが多いと言われている。  [0002] Mortality from heart disease is high in Japan. In 1985, it surpassed stroke and was ranked second. Among heart diseases, myocardial infarction, which is said to be heart failure or ischemic heart disease, is common, and acute death of unknown cause accounts for 30%. Life-style related diseases such as cardiovascular disorders are said to have a gradual change in disease state, and it is said that there are many cases in which they are not diagnosed accurately and cannot be discovered without quantitative follow-up over a long period of time.
[0003] 近年、家庭や会社で健康管理 '診断を行うシステムの開発が進められており、体重 計、体温計、血圧計などとともに聴診器が心音や呼吸音などを聴診するものとして普 及してはいる力 それほど聴診器が活用されているとは言えない。その理由として、 聴診音の診断が熟練を必要とし、困難であることがあげられる。聴診器を当てる部位 は聴診に大きく影響するものであり、熟練した医師は聴診器を当てる部位を変えなが ら心音が最もよく聞こえる部位で心音が正常か異常かの判別を行う。このように熟練 を要する聴診技術は、熟練度の低 、一般的ユーザにとって修得し難 、ものである。  [0003] In recent years, the development of a system for performing health management 'diagnosis at home and in the company has been promoted, and it is widely used as a stethoscope to auscultate heart sounds and breathing sounds together with a weight scale, thermometer, blood pressure monitor, etc. The power of the stethoscope It cannot be said that the stethoscope is used so much. The reason is that diagnosis of auscultation sounds requires skill and is difficult. The part to which the stethoscope is applied greatly affects auscultation, and the skilled doctor determines whether the heart sound is normal or abnormal at the part where the heart sound is best heard while changing the part to which the stethoscope is applied. As described above, the auscultation technique requiring skill is low in skill and difficult for general users to learn.
[0004] 単純な聴診器は検出された心音をィャフォンで聴取し、心音の正常'異常を判別す るものであるが、心音のより精密な検査を行うための聴診装置としては、プローブで心 音を検出し、検出された心音信号を心音データとして収録する。検出された心音ある いはさらに収録された心音はィャフォンで聴取され、また収録された心音データは解 析処理を行って、心音の正常'異常の判別に利用される。また、収録された心音信号 は、回線を介して伝送し、遠隔位置にいる専門医が心音の検査を行うような形でも利 用される。  [0004] A simple stethoscope listens to detected heart sounds with earphones to determine whether the heart sounds are normal or abnormal. As a stethoscope for more precise examination of heart sounds, a probe is Sound is detected, and the detected heart sound signal is recorded as heart sound data. The detected heart sounds or further recorded heart sounds are listened to by the earphones, and the recorded heart sound data is analyzed and used to determine whether the heart sounds are normal or abnormal. The recorded heart sound signal is also transmitted over a line and used in such a form that a specialist at a remote location inspects the heart sound.
[0005] 収録された心音を聴取する上で、また心音信号につ!、て精度よく解析処理を行う 上で、心音の収録音量レベルを適切に設定することが重要である。再生音質の面か らは収録音量レベルを高くする方が有利ではある力 そのように収録された心音信号 でも、専門医が聴診する場合に音声信号にノイズが含まれて聞き取りづらいことが多 い。一般的なノイズ削除ないし低減の手段を講じても、医師が通常聞き慣れた音と異 なったり、有用な情報が削除されることがある。 [0005] In order to listen to the recorded heart sounds and to accurately analyze the heart sound signal, it is important to set the recording sound volume level appropriately. From the aspect of playback sound quality, it is advantageous to increase the recording volume level. However, it is often difficult for a specialist to auscultate because the audio signal contains noise. Even if general noise removal or reduction measures are taken, the sound that is usually used by doctors may be different or useful information may be deleted.
[0006] また、収録された心音信号を聴取することのほかに、心音データについての心音解 析を行い、心疾患診断の補助とするというコンピュータ支援による手法が用いられる。 このような心音解析を用いた心疾患診断システムとして、専門家向けの専用システム は大規模のものになり、一般的ユーザには利用し難いものである。また、一般的ユー ザ向けのより簡易で小規模のものでは、心音の異常を的確に判別し難いものとなつ ていた。  [0006] In addition to listening to the recorded heart sound signal, a computer-assisted method is used in which heart sound analysis is performed on heart sound data to assist in diagnosis of heart disease. As a heart disease diagnosis system using such heart sound analysis, a dedicated system for professionals is large-scale and difficult to use for general users. In addition, the simpler and smaller ones for general users have made it difficult to accurately identify abnormal heart sounds.
聴診器な 、し聴診装置に関して、次のような特許文献に開示されて ヽる。  A stethoscope or auscultation device is disclosed in the following patent documents.
[0007] 特許文献 1 :特開 2005— 52521号公報 [0007] Patent Document 1: Japanese Patent Laid-Open No. 2005-52521
特許文献 2:特表平 10 - 504748号公報  Patent Document 2: Japanese Patent Publication No. 10-504748
特許文献 3:特開昭 61 - 290936号  Patent Document 3: JP-A 61-290936
特許文献 4:特開平 5 - 309075号  Patent Document 4: JP-A-5-309075
[0008] 特許文献 1には、マイクにより取得した音を電気信号に変換し、この電気信号のうち 心音に対応する周波数範囲の信号と呼吸音に対応する周波数範囲の信号とを選択 的に増強し、他の周波数範囲の信号を選択的に減衰させるようにイコライザの周波 数特性を設定した電子聴診器にっ ヽて記載されて ヽる。 [0008] Patent Document 1 converts sound acquired by a microphone into an electrical signal, and selectively enhances a signal in a frequency range corresponding to a heart sound and a signal in a frequency range corresponding to a breathing sound. However, it is described on electronic stethoscopes that set the frequency characteristics of the equalizer to selectively attenuate signals in other frequency ranges.
この電子聴診器において、心音データの特性はある程度個人差があるため、場合 によっては心音として増強されるべきものが減衰されることがあり、ノイズを効果的に 減少させられるとは限らない事態も生じ得るものであった。  In this electronic stethoscope, since the characteristics of heart sound data vary to some extent, what should be enhanced as heart sounds may be attenuated in some cases, and noise may not be effectively reduced. It was possible.
[0009] 特許文献 2には、プリエンファシス、聴力損失の補償等のためのデジタルフィルタを 備え、観測される信号中の反復信号を抑制し雑音を除去するためのパターン認識手 段を有する電子聴診器にっ ヽて記載されて ヽる。 Patent Document 2 includes an electronic auscultation that includes a digital filter for pre-emphasis, hearing loss compensation, and the like, and has a pattern recognition means for suppressing repetitive signals in the observed signal and removing noise. It is written on the vessel.
しカゝしながら、これらの電子聴診器において、インパルス伝達関数を確率するフィル タ手段、プリエンファシスを行うためパターン認識手段等の要素を備えるために、装 置が煩雑になり、心音の個人差によりフィルタ手段、パターン認識手段によって効果 的にノイズが減少させられない場合も生じるものである。 [0010] 特許文献 3では、心音検出プローブにより検出された心音波形信号を信号変換装 置においてゲイン調整し、 AD変換して汎用パーソナルコンピュータの入力信号とし 、汎用パーソナルコンピュータで目的に応じた演算処理を行う心音計について開示 されている。特許文献 3に示される心音計は、家庭用のような一般的ユーザ向けの心 音計として、汎用パーソナルコンピュータを用いた簡易な構成により心音波形の信号 を利用し得るようにしたものである。ところで、心音プローブにより検出される心音には ノイズが含まれており、心音変換装置においてどの程度にゲイン調整を行うかによつ て送出される心音を聴取する際、あるいは心音データを送信、受信して解析処理を 行う上での信頼性に大きな影響が与えられるのであるが、特許文献 3においては、心 音解析を行う上で検出された心音波形信号をどのようにゲイン調整するのがよいかと いう点について考慮してはおらず、心音解析を的確に行う上では不十分なものであ つた o However, since these electronic stethoscopes are equipped with elements such as a filter means for probing the impulse transfer function and a pattern recognition means for pre-emphasis, the apparatus becomes complicated, and individual differences in heart sounds occur. As a result, noise may not be effectively reduced by the filter means and pattern recognition means. [0010] In Patent Document 3, gain adjustment of a heart sound waveform signal detected by a heart sound detection probe is performed in a signal conversion device, and AD conversion is performed as an input signal of a general-purpose personal computer. The phonocardiograph that performs this is disclosed. The heart sound meter disclosed in Patent Document 3 is a heart sound meter for a general user such as a household user, and can use a heart sound waveform signal with a simple configuration using a general-purpose personal computer. By the way, the heart sound detected by the heart sound probe includes noise, and when listening to the heart sound transmitted depending on how much gain adjustment is performed in the heart sound conversion device, or transmitting and receiving heart sound data. However, in Patent Document 3, it is better to adjust the gain of the detected heart sound waveform signal in performing the heart sound analysis. However, it was not enough for accurate analysis of heart sounds.
[0011] 特許文献 4において、判定基準を設けることなく正確に心音データを判定するため に、心音の振幅を経過時間とともに記憶し、記憶された振幅のうち所定箇所の特徴を 描出し、その結果に基づいて-ユーラルネットワークにより所定の認識を行い、認識 の程度を出力し、心音の異常の程度を表示するようにした心音解析装置が開示され ている。  [0011] In Patent Document 4, in order to accurately determine heart sound data without setting a determination criterion, the amplitude of the heart sound is stored together with the elapsed time, and the characteristics of a predetermined portion of the stored amplitude are depicted. Based on the above, there is disclosed a heart sound analysis apparatus that performs predetermined recognition by a Yural network, outputs the degree of recognition, and displays the degree of abnormality of heart sounds.
この心音解析装置により、心臓検診の一次検診で求められる精密検診の必要性の 判断におけるボーダーラインの設定がなされるものではある力 ニューラルネットヮー クを用いているため、構成が簡易ではなぐ一般ユーザには利用し易いものではなか つた o  This heart sound analyzer uses a force neural network that sets the borderline in determining the necessity of precision screening required in the primary screening of heart screening. It is not easy to use o
[0012] また、本発明者は、一般的ユーザに用いられる簡易な構成で心音診断が可能なデ ジタル聴診解析システムの発明につ 、て、先行する特許出願 (特願 2005 - 80720 号)として出願した。この先行する発明における心音解析の手法は、鼓膜の振動モデ ルを用いて測定された心音データ力も振動応答を求め、ピーク値となる I音及び Π音 の時間幅を解析、評価することによって心音の異常を検出するものである。この心音 解析の手法は、振動応答力 得られ時間幅を解析、評価することにより、心音の異常 性を確認することがなされるが、心音データ、振動応答の形は心音異常の種類、特 徴に応じて多様になるため、この解析手法によっては、多様な心音の異常の特性に 対して、心音の異常を的確に把握できな 、ことがあった [0012] Further, the present inventor has made a prior patent application (Japanese Patent Application No. 2005-80720) concerning the invention of a digital auscultation analysis system capable of heart sound diagnosis with a simple configuration used by general users. I applied. The heart sound analysis method in the preceding invention is based on the heart sound data force measured using the tympanic membrane vibration model to obtain the vibration response and analyze and evaluate the time widths of the peak I sound and stuttering sound. This is to detect abnormalities. In this heart sound analysis method, abnormalities of heart sounds can be confirmed by analyzing and evaluating the time span obtained by vibration response force, but the shape of heart sound data and vibration response is the type and characteristics of heart sound abnormalities. This analysis method may not be able to accurately grasp abnormal heart sounds for various characteristics of abnormal heart sounds.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0013] 前述のように、従来技術の聴診装置においては、多様な特性をもち得る心音信号 について効率的でノイズを有効に除去し音質を向上させて聞き易いものにすること、 心音の収録レベルを適切にして収録された心音の聴取、判別を精度よくし、さらに心 音信号を遠隔地に伝送して利用に供せられるようにすることにおいて不十分であり、 装置が煩雑で、高価なものになるという難点があった。  [0013] As described above, in the conventional auscultation apparatus, the heart sound signal that can have various characteristics is efficiently removed, noise is effectively improved, the sound quality is improved, and the heart sound recording level is improved. It is inadequate to listen to and discriminate heart sounds recorded with proper sound quality, and to transmit heart sound signals to remote locations for use, making the device complicated and expensive. There was a difficulty of becoming a thing.
また、収録された心音信号を解析し、多様な心音の異常特性について、心音の正 常 ·異常を精度よく定量的に判別する上で有効なものではなぐ解析処理を用いた心 疾患診断システムとして規模が大きくなり、一般的なユーザが利用し難いものであつ た。  As a heart disease diagnosis system using analysis processing that is not effective for analyzing the heartbeat signals and analyzing abnormalities of various heart sounds accurately and quantitatively for the normality / abnormality of heart sounds. The scale was large and it was difficult for general users to use.
[0014] そのため、安価な方法、装置により、心音聴診音の音質を向上させノイズが少なく 聞き易い心音聴診音とし、心音信号の収録レベルを適切に設定し、また、心音の正 常 ·異常を精度よく定量的に判別できるように心音信号の解析処理を行うことが望ま れていた。また、心音の聴取、心音信号の処理、解析を行う上で検出された心音信 号を適切な音量に調節することが望まれて 、た。  [0014] Therefore, by using inexpensive methods and devices, the sound quality of the heart sound auscultation sound is improved, the sound is low and the heart sound auscultation sound is easy to hear, the recording level of the heart sound signal is set appropriately, and the normal / abnormal heart sound is also detected. It was desired to analyze the heart sound signal so that it could be accurately and quantitatively determined. It was also desired to adjust the detected heart sound signal to an appropriate volume for listening to the heart sound, processing and analyzing the heart sound signal.
課題を解決するための手段  Means for solving the problem
[0015] 本発明は、前述した課題を解決すべくなしたものであり、本発明による異常心音検 出のための心音解析を行う聴診心音信号の処理方法は、振動モデルのモデルパラ メータを設定することと、心音を検出しそれにより心音データを得ることと、得られた心 音データに対して、設定されたモデルパラメータの下で特徴値波形データを生成す ることと、閾値 (THV)に対して、前記特徴値波形データのピークの時間幅及び時間 間隔を示す評価指数を求めることと、該評価指数力もファジーメンバー関数 (w )を , 用いて規定されるデータ集合の中心 (V )を求めることと、評価指数及びデータ集合 の中心から評価指数の分散の状況を表す評価関 ¾J (W, V)を求めることと、反復 計算により該評価関数が最小となるようにデータ集合の中心を決定することと、所定 範囲の THVに対する最小評価関数値 Ci ) [0015] The present invention has been made to solve the above-mentioned problems, and the auscultatory heart sound signal processing method for performing heart sound analysis for detecting abnormal heart sounds according to the present invention sets model parameters of a vibration model. Detecting heart sounds, thereby obtaining heart sound data, generating feature value waveform data for the obtained heart sound data under set model parameters, and threshold (THV) For the evaluation value indicating the time width and time interval of the peak of the feature value waveform data, and the evaluation index power is also defined by using the fuzzy member function (w), the center of the data set (V) And the evaluation function J (W, V) representing the distribution of the evaluation index from the center of the evaluation index and data set, and the center of the data set so that the evaluation function is minimized by iterative calculation. To decide And the predetermined Minimum evaluation function value Ci for range THV)
mの依存性を求め、その範囲で J  Dependency of m is calculated and J
mが最小と なる THVを選定することと、選定された THVに対して求められた評価指数及びデー タ集合の中心の分布状態を表示することと、の各ステップ力 なるものである。  Each step force is to select the THV that minimizes m, and to display the evaluation index obtained for the selected THV and the distribution state of the center of the data set.
[0016] 前記評価指数が THVに対する特徴値波形データにおける I音及び II音の時間幅( T1、T2)と時間間隔 (T11、T12)であり、 W= {w }、V= {v }とし、 d = || v— z [0016] The evaluation index is the time width (T1, T2) and time interval (T11, T12) of sound I and sound II in the characteristic value waveform data for THV, and W = {w}, V = {v} , D = || v—z
j j k, j j j k, j
IIがデータ集合の中心とデータ位置との間のユークリッド距離であるとして、前記評 価関数が Given that II is the Euclidean distance between the center of the data set and the data position, the evaluation function is
[数 7]
Figure imgf000007_0001
[Equation 7]
Figure imgf000007_0001
'•-1ゾ- 1 で表されるようにしてちょい。  '• -1 Zo-1 as shown.
[0017] 本発明による聴診装置は、振動モデルのモデルパラメータを設定する手段と、心音 を検出しそれにより心音データを得るための心音検出手段と、得られた心音データに 対して、設定されたモデルパラメータの下で特徴値波形データを生成する手段と、閾 値 (THV)に対して、前記特徴値波形データのピークの時間幅及び時間間隔を示す 評価指数を求める手段と、前記評価指数力もファジーメンバー関数 (w )を用いて規 ,  [0017] The auscultation device according to the present invention includes means for setting model parameters of a vibration model, heart sound detecting means for detecting heart sounds and thereby obtaining heart sound data, and setting for the obtained heart sound data. Means for generating feature value waveform data under model parameters, means for obtaining an evaluation index indicating a time width and a time interval of a peak of the feature value waveform data with respect to a threshold value (THV), and the evaluation index power Using fuzzy member function (w),
定されるデータ集合の中心 (V )を求める手段と、前記評価指数及びデータ集合の中 心から評価指数の分散の状況を表す評価関 ¾J (W, V)を求める手段と、該評価関 数が最小になるように反復計算によりデータ集合の中心を決定する手段と、前記評 価関数が最小となる最小評価関数街を求める手段と、所定範囲の THVに対する J の依存性を求め、その範囲で CF )が最小となる THVを選定する手段と、前記選定 m m  Means for obtaining the center (V) of the data set to be determined, means for obtaining an evaluation function ¾J (W, V) representing the distribution of the evaluation index from the center of the evaluation index and the data set, and the evaluation function A means for determining the center of a data set by iterative calculation so as to minimize, a means for obtaining a minimum evaluation function town where the evaluation function is minimum, and a dependence of J on a predetermined range of THV are obtained, and within that range The means to select the THV that minimizes (CF), and the selection mm
された THVに対して求められた評価指数及びデータ集合の中心の分布状態を表示 する手段と、からなる異常心音検出のための心音信号解析を行う心音解析処理部を 備えるものである。  And a means for displaying the evaluation index obtained for the obtained THV and the distribution state of the center of the data set, and a heart sound analysis processing unit for performing heart sound signal analysis for detecting abnormal heart sounds.
[0018] 前記評価指数が THVに対する特徴値波形データにおける I音及び II音の時間幅( T1、T2)と時間間隔 (T11、T12)であり、 W= {w }、V= {v }とし、 d = || v— z  [0018] The evaluation index is the time width (T1, T2) and time interval (T11, T12) of the I sound and the II sound in the characteristic value waveform data for THV, and W = {w}, V = {v} , D = || v— z
j j k, j j j k, j
IIがデータ集合の中心とデータ位置との間のユークリッド距離であるとして、前記評 価関数が , ( =∑∑ ,., )' ' )2 (?) で表されるようにしてちょい。 Given that II is the Euclidean distance between the center of the data set and the data position, the evaluation function is , (= ∑∑,.,) '') 2 (?)
[0019] また、本発明による聴診における音質向上のための心音信号処理を行う聴診心音 信号の処理方法は、振動モデルのモデルパラメータを設定して振動モデルを形成す ることと、心音を検出して心音信号を得ることと、得られた心音信号を前記振動モデ ルに与えて出力された特徴値波形データを得ることと、前記心音信号またはそれから 高周波成分のノイズを除去したものを心音データとして、前記心音データと前記特徴 値波形データとの相互相関をとつて位相遅れを算出し、前記心音データと前記特徴 値波形データとの間に実質的に位相差がないように該位相遅れの分だけ前記特徴 値波形データの位相をずらすことと、前記心音データと前記位相遅れの分だけ位相 をずらした特徴値波形データとの積として出力心音データを得ることと、の各ステップ 力もなるものである。  [0019] Further, the auscultatory heart sound signal processing method for performing heart sound signal processing for sound quality improvement in auscultation according to the present invention includes setting a model parameter of a vibration model to form a vibration model and detecting a heart sound. To obtain the heartbeat signal, to obtain the feature value waveform data output by applying the obtained heart sound signal to the vibration model, and to obtain the heart sound signal or the signal obtained by removing high-frequency component noise as heart sound data. The phase lag is calculated by taking the cross-correlation between the heart sound data and the feature value waveform data, and the phase lag is divided so that there is substantially no phase difference between the heart sound data and the feature value waveform data. The output heart sound data is obtained as a product of shifting the phase of the feature value waveform data only by the product of the heart sound data and the feature value waveform data shifted in phase by the phase delay. , But also made steps force.
[0020] 前記心音信号を前記振動モデルに与える前に前記心音信号を正規化するようにし てもよい。  [0020] The heart sound signal may be normalized before the heart sound signal is applied to the vibration model.
本発明による聴診装置は、心音検出手段により検出された心音信号またはそれか ら高周波成分のノイズをフィルタ手段により除去したものを心音データとして入力する ことにより該心音データに対応する特徴値波形データを出力する振動モデルと、該 振動モデルにより出力された特徴値波形データと前記心音データとの相互相関をと つて前記心音データに対する特徴値波形データの位相遅れを算出する位相遅れ算 出部と、前記心音データと前記特徴値波形データとの間に実質的に位相差がないよ うに前記位相遅れの分だけ位相をずらした特徴値波形データと前記心音データとの 積をとる乗算変換部と、力 なる異常心音検出のための心音信号処理を行う心音信 号処理部を備えるものとしてもょ 、。  The auscultation apparatus according to the present invention inputs a heart sound signal detected by the heart sound detecting means or a signal obtained by removing noise of a high frequency component from the heart sound data as a heart sound data, thereby inputting characteristic value waveform data corresponding to the heart sound data. A vibration model to be output; a phase lag calculation unit that calculates a phase lag of the feature value waveform data with respect to the heart sound data by cross-correlating the feature value waveform data output by the vibration model and the heart sound data; A multiplication conversion unit that takes a product of the feature value waveform data and the heart sound data, the phase of which is shifted by the phase delay so that there is substantially no phase difference between the heart sound data and the feature value waveform data; It also has a heart sound signal processing unit that performs heart sound signal processing to detect abnormal heart sounds.
前記振動モデルに入力する前に心音信号を正規化するための正規化手段をさら に有するようにしてもよい。  You may make it further have a normalization means for normalizing a heart sound signal before inputting into the said vibration model.
[0021] また、本発明による聴診装置は、心音を電気信号に変換するプローブと、該プロー ブにより得られた心音の信号の調整及び増幅を行って心音を収録する自動音量調 整収録部と、を有し、前記自動音量調整収録部が前記プローブにより得られた心音 の信号の時間 τの間における平均強度に基づいて心音の信号を増幅する際に適切 [0021] Further, the auscultation apparatus according to the present invention includes a probe for converting a heart sound into an electric signal, and the probe. An automatic volume adjustment recording unit that records and outputs a heart sound by adjusting and amplifying the signal of the heart sound obtained by the audio signal, and the time of the signal of the heart sound obtained by the probe by the automatic volume adjustment recording unit τ Suitable for amplifying heart sound signals based on average intensity between
a  a
な音量になるようにアップゲインを求め心音の信号の増幅制御を行うマイコン制御部 と、該マイコン制御部による制御を受けて前記求められたアップゲインに応じて前記 時間 Tに続く時間 Tの間の心音の信号を増幅するとともに増幅された信号を収録す a b  A microcomputer control unit that obtains an up gain so as to obtain a proper volume and controls amplification of a heart sound signal, and a time T following the time T according to the obtained up gain under the control of the microcomputer control unit. Amplifies the heart sound signal and records the amplified signal ab
べき心音として取り出せるようにした増幅調整部とからなる心音収録音量の自動調整 手段を備えるものとしてもよ 、。  It is also possible to provide a means for automatically adjusting the sound recording volume comprising an amplification adjusting unit that can be extracted as a power sound.
[0022] 前記マイコン制御部は、前記算出された心音の信号の平均強度に対する適切な音 量に増幅するためのアップゲインの大きさの関係をテーブルとして保持しておき、該 テーブルを参照して心音の信号を適切な音量に増幅するようにしてもょ ヽ。 [0022] The microcomputer control unit holds a relationship of the magnitude of the up gain for amplifying the sound intensity to an appropriate sound volume with respect to the calculated average intensity of the heart sound signal, and refers to the table. Try to amplify the heart sound signal to an appropriate volume.
前記時間 T力^〜 3秒の範囲内の時間であり、前記時間 T力 〜 12秒の範囲内の  The time T force ^ is a time within a range of 3 seconds, and the time T force is within a range of 12 seconds.
a b  a b
時間であるようにしてもよぐまた、前記時間 Tが 8〜: LO秒の範囲内の時間であるよう  The time T may be in the range of 8 to: LO seconds.
b  b
にしてもよい。  It may be.
前記心音収録音量の自動調整手段を送信側ユニットとして構成し、増幅された心 音の信号を受信側ユニットに送信できるようにしてもよい。  The heart sound recording sound volume automatic adjusting means may be configured as a transmission side unit so that the amplified heart sound signal can be transmitted to the reception side unit.
発明の効果  The invention's effect
[0023] 本発明によれば、心音データと振動モデルを用いて得られた心音特徴値波形と心 音信号とを、実質的に位相差をなくして力 積をとつて出力心音データとすることによ り、もとの心音データに対して、ピーク部分の心音が強調され、ノイズ部分が弱められ ることになり、再生した場合に聞き易い音質となり、安価な方法、装置により、効率的 で正確に心音聴診音の音質を向上させることができ、心音の正常'異常を正確に判 別するのに寄与することができる。  [0023] According to the present invention, the heart sound feature value waveform and the heart sound signal obtained using the heart sound data and the vibration model are substantially eliminated from the phase difference, and the impulse is obtained as output heart sound data. Therefore, the heart sound of the peak part is emphasized and the noise part is weakened with respect to the original heart sound data, and the sound quality is easy to hear when played back, and it is efficient by inexpensive methods and devices. The sound quality of the heart sound auscultation sound can be improved accurately, and it can contribute to the accurate determination of normal / abnormal heart sounds.
[0024] また、本発明によれば、振動モデルを用いて心音データから生成した特徴値波形 に対し、評価指数、データ集合の中心を規定し、それにより表される評価関数が最小 になるようにデータ集合の中心を決定して評価指数、データ集合の中心についての 処理結果を得るものであって、一般的ユーザにぉ 、て利用し易 、ように簡易な形態 をとり、かつ、多様な心音の異常の特性に対して、心音の正常 ·異常を精度よぐ定量 的に判別できるものである [0024] Further, according to the present invention, the evaluation index and the center of the data set are defined for the feature value waveform generated from the heart sound data using the vibration model so that the evaluation function expressed thereby is minimized. The center of the data set is determined in order to obtain the evaluation index and the processing result for the center of the data set, which is easy for general users to use and takes various forms. Quantify the normality / abnormality of heart sounds with respect to the characteristics of abnormal heart sounds Can be distinguished
[0025] さらに、心音の音量調整に関し、検出された心音信号について時間 T (1〜3秒)の  [0025] Further, regarding the adjustment of the volume of the heart sound, the time T (1 to 3 seconds) of the detected heart sound signal
a  a
間の平均強度に基づいて参照テーブルを用いてアップゲインを求め、この時間 Tに  The up-gain is calculated using a reference table based on the average intensity between
a 続く時間 T (4〜 12秒)の間の心音の信号の増幅を行って心音の信号を収録するよ  a Record the heart sound signal by amplifying the heart sound signal for the following time T (4-12 seconds)
b  b
うにしたことにより、心音を常に適切な強度になるように増幅することができ、心音をモ 二ター上で聴き易くなり、心音の解析を行う上でも精度よくなされる。  By doing so, it is possible to amplify the heart sound so as to always have an appropriate intensity, making it easier to listen to the heart sound on the monitor, and also to accurately analyze the heart sound.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0026] 本発明においては、収録された心音信号について、心音の正常'異常を判別でき るように心音信号の解析処理を行うという形で用い、さらには収録された心音信号を 聴取し、あるいは遠隔地に伝送された心音信号を聴取すると 、う形で用いるような心 疾患診断システムでの心音信号の扱いを考えるものである。その際、収録された心 音信号の処理にお!、て、鼓膜の振動モデルに基づ 、た特徴値波形を用いた心音信 号の処理を行う。そこで、本発明の特徴について、(A)振動モデルによる特徴値波 形、(B)異常心音検出のための心音信号の解析処理、(C)聴診における音質向上 のための心音信号処理、(D)心音収録音量の自動調整、(E)聴診装置の形態、とい う面に分けて説明する。  [0026] In the present invention, the recorded heart sound signal is used in the form of analyzing the heart sound signal so that normality / abnormality of the heart sound can be discriminated, and further, the recorded heart sound signal is listened to, or When a heart sound signal transmitted to a remote location is listened to, it is considered to handle the heart sound signal in a heart disease diagnosis system such as that used in a rectangular shape. At that time, the recorded heart sound signal is processed! Based on the eardrum vibration model, the heart sound signal is processed using the characteristic value waveform. Therefore, the features of the present invention are as follows: (A) feature value waveform based on vibration model, (B) heart sound signal analysis processing for abnormal heart sound detection, (C) heart sound signal processing for sound quality improvement in auscultation, (D The explanation is divided into the aspects of) automatic adjustment of the volume of heart sound recording, and (E) auscultation device configuration.
[0027] (A)振動モでルによる特徴値波形  [0027] (A) Feature value waveform by vibration mode
心臓は左心房、左心室、右心房、右心室の 4つの部分に分かれており、全体で収 縮と弛緩を繰り返して血液を全身に循環させるポンプの役割を担って 、る。左心房の 入口に僧帽弁、左心室の入口に大動脈弁、右心室の入口に三尖弁、右心房の入口 に肺動脈弁があり、これらの弁膜が血液の逆流を防止しており、心音はこれらの弁膜 が閉じる際に発する音である。  The heart is divided into four parts: the left atrium, the left ventricle, the right atrium, and the right ventricle. As a whole, it plays the role of a pump that circulates blood throughout the body by repeating contraction and relaxation. There is a mitral valve at the entrance of the left atrium, an aortic valve at the entrance of the left ventricle, a tricuspid valve at the entrance of the right ventricle, and a pulmonary valve at the entrance of the right atrium. These valve membranes prevent blood backflow. Is the sound emitted when these valve membranes close.
[0028] 聴診による心音が正常力 異常力を正確に聞き分けるのには専門的な知識、経験 を要するが、一般の者でも比較的簡単に聞き分けられるものもある。これは、鼓膜が 聴診器からの音波で拍動された際に発生する低次モードの振動を人間の耳で感じ 取り易いためと考えられる。この発想から、鼓膜の振動をモデル近似し、聴診器から 採取した心音と振動モデルの振動応答との関係力 心音信号の処理を行うのが有効 であると考えられる。 [0029] 図 1は鼓膜の振動モデルを示す概念図である。図 1において、 1は鼓膜に相当する 等価質量が mの物体であり、 2は一端が鼓膜に相当する物体 1に他端が固定部に取 り付けられて 、るばねであり、 3は一端が鼓膜に相当する物体 1に相当する物体に他 端が固定部に取り付けられているダンパーである。鼓膜に相当する物体 1の等価質 量を m、ばね 2のばね定数を K、ダンパー 3の粘性減衰係数を C、聴診器からの心 [0028] Heart sound by auscultation is normal force. Accurately distinguishing abnormal force requires specialized knowledge and experience, but some people can recognize it relatively easily. This is thought to be because it is easy for the human ear to sense the low-order mode vibration that occurs when the eardrum is pulsated by the sound waves from the stethoscope. Based on this idea, it is considered effective to approximate the vibration of the eardrum and to process the heart sound signal as the relationship between the heart sound collected from the stethoscope and the vibration response of the vibration model. FIG. 1 is a conceptual diagram showing an eardrum vibration model. In FIG. 1, 1 is an object having an equivalent mass of m corresponding to the eardrum, 2 is an object having one end corresponding to the eardrum 1 and the other end being fixed to the fixed part, and 3 is one end. Is a damper in which the other end is attached to the fixed part to the object corresponding to the object 1 corresponding to the eardrum. The equivalent mass of object 1 corresponding to the eardrum is m, the spring constant of spring 2 is K, the viscous damping coefficient of damper 3 is C, the heart from the stethoscope
h h  h h
音を Sとすると、鼓膜の振動応答 Xは式(1)から算出される。  When the sound is S, the vibration response X of the eardrum is calculated from the equation (1).
[数 1] mx + cx + L· = ύ ( 1) 式(1)の両辺を mで割り、さらに心音信号入力値を  [Equation 1] mx + cx + L · = ύ (1) Divide both sides of equation (1) by m, and further calculate the input value of the heart sound signal.
[数 2] = ±|57m| とし、固有振動数を p、減衰比係数を ξとすると、式(1)は  If [Equation 2] = ± | 57m |, the natural frequency is p, and the damping ratio coefficient is ξ, Equation (1) is
[数 3]  [Equation 3]
X + 2ξρχ + p2x ^ S (2) となる。このことから固有振動数 p及び減衰比係数 ξを設定すると、式 (2)から鼓膜の 振動応答 Xを求めることができ、この固有振動数 ρおよび減衰比係数 ξはモデルパラ メータとして振動モデルの特徴を示すものである。振動モデルは等価質量 m、機械 的ダンパー C、ばね定数 K力もなる機械的振動系の代わりに、インダクタンスレ抵 X + 2ξρχ + p 2 x ^ S (2) Therefore, when the natural frequency p and damping ratio coefficient ξ are set, the vibration response X of the eardrum can be obtained from Eq. (2), and this natural frequency ρ and damping ratio coefficient ξ are used as model parameters for the vibration model. It shows the characteristics. Instead of a mechanical vibration system with equivalent mass m, mechanical damper C, spring constant K force,
h h  h h
抗尺、電気容量 cカゝらなる電気的振動系としてもよい。  It may be an electric vibration system having a scale and electric capacity.
[0030] (B)異常心音検出のための心音信号の解析処理  [0030] (B) Analysis processing of heart sound signal for detection of abnormal heart sound
図 2 (a)は、(A)で説明した鼓膜の振動モデルに基づいて正常心音力 振動応答 X を求めた結果を示し、図 2 (b)は鼓膜の振動モデルに基づいて僧帽弁閉鎖不全心音 力 振動応答を求めた結果を示して 、る。心音データは市販の心音聴診トレーニン グ教材に収録されたものを使用しており、式(3)のパラメータ pは 10Hz、 は 0. 707 としたものである。図 2 (a)、(b)において、灰色の波形は心音 Sの原波形である。実 線の波形は振動応答を示すものであり、この振動応答を示す波形を特徴値波形とい う。図 2 (a)の波形は「ドック、ドック」と聞こえる正常心音を表し、図 2 (b)は「グー、グー 」と聞こえる僧帽弁閉鎖不全心音を表している。図 2 (a)、(b)の波形は正負の振幅を もつ特徴値波形となっているが、正負いずれかの波形部分について解析を行えばよ い。 Fig. 2 (a) shows the results of the normal heart sound force vibration response X based on the tympanic membrane vibration model described in (A), and Fig. 2 (b) shows the mitral valve closure based on the tympanic membrane vibration model. Incomplete heart sound force Shows the results of vibration response. The heart sound data is recorded in a commercially available heart sound auscultation training material. The parameter p in Eq. (3) is 10 Hz, and is 0.707. In Fig. 2 (a) and (b), the gray waveform is the original waveform of heart sound S. The solid line waveform shows the vibration response, and the waveform showing this vibration response is called the feature value waveform. Yeah. The waveform in Fig. 2 (a) represents a normal heart sound that can be heard as "dock, dock", and Fig. 2 (b) represents a heart sound in which the mitral regurgitation sounded as "go, goo". The waveforms in Fig. 2 (a) and (b) are characteristic value waveforms with positive and negative amplitudes, but it is only necessary to analyze either the positive or negative waveform part.
[0031] 図 3 (a)は特徴値波形の解析を行うに際し、正の振幅の特徴値波形部分を示したも のである。一般に正常な心音の波形では、 I音及び Π音と呼ばれるピークが繰り返し 現れることが知られている。この I音は僧帽弁及び三尖弁の閉鎖によって生じ、 II音は 大動脈弁及び肺動脈弁の閉鎖並びに緊張によって生じるのであり、心音の正常、異 常を判断するためには、 I音及び II音の持続時間(ピークの時間幅)を解析、評価す るのが有効であると考えられる。  [0031] Fig. 3 (a) shows a feature value waveform portion having a positive amplitude when the feature value waveform is analyzed. In general, it is known that peaks called I sound and stuttering appear repeatedly in a normal heart sound waveform. This I sound is caused by the closure of the mitral and tricuspid valves, and the II sound is caused by the closure and tension of the aortic and pulmonary valves. To determine whether the heart sound is normal or abnormal, the I sound and II It is considered effective to analyze and evaluate the sound duration (peak duration).
[0032] 図 3 (a)において、縦軸は心音の強度、横軸は時間を示し、測定時間における 2秒 間分を示しており、 I音ピーク 48及び Π音ピーク 49がそれぞれ 2本ずつ抽出されてい る。図 3 (a)において、最大強度の 50%を閾値として、この閾値ラインが特徴値波形と 交叉する点から、 I音ピーク 48及び Π音ピーク 49の持続時間(時間幅)を求め、それ ぞれ評価指数 Tl、 Τ2とする。また、心臓弁の閉鎖不全等により I音と II音との間に持 続的な雑音が現れることを考慮するために、 I音ピーク 48の開始力 それに続く II音 ピーク 49の終了までの持続時間を評価指数 T12とし、さらに、不整脈や心拍の乱れ により I音間の間隔が変化することを考慮するために、 II音ピーク 48の開始力も次の I 音ピーク 48の開始までの持続時間を評価指数 T11とする。心音解析には、これらの 評価指数 Tl、 T2、 T12、 Ti lを適宜組み合わせて用いる。  [0032] In Fig. 3 (a), the vertical axis indicates the intensity of the heart sound, the horizontal axis indicates the time, and the measurement time is shown for 2 seconds. Two I sound peaks 48 and two stuttering peaks 49 each. It has been extracted. In Fig. 3 (a), with 50% of the maximum intensity as a threshold, the duration (time width) of the I sound peak 48 and the stuttering peak 49 is obtained from the point where this threshold line intersects the feature value waveform, and each The evaluation index is Tl and Τ2. In addition, in order to take into account the appearance of continuous noise between the I and II sounds due to heart valve insufficiency, etc., the starting force of the I sound peak 48 followed by the end of the II sound peak 49 In order to consider that the interval between I sounds changes due to arrhythmia and heartbeat disturbance, the time for the starting force of II sound peak 48 is also set to the duration until the start of the next I sound peak 48. The evaluation index is T11. For the heart sound analysis, these evaluation indices Tl, T2, T12, Til are used in appropriate combination.
[0033] I音ピーク 48及び II音ピーク 49の 1組毎に評価指数 Tl、 T2、 T12、 Ti lが 1組規 定され、複数の組についての評価指数をプロットする。図 3 (b)は横軸を Tl、 Tl l、 縦軸を Τ2、Τ12として、 (Tl, T2)、 (Ti l, T12)が示す点をプロットしたものであり、 この図から視覚的に心音の正常、異常が判断される。すなわち、正常な心音では、 図 3 (b)のように評価指数の表す点がそれぞれ点線で囲まれた範隨こ集まる傾向に ある。このことから、正常値範囲の領域に評価指数の表す点が入る場合に心音が正 常であり、この領域に入っていない場合に心音が異常であると判断できる。ただし、 心音データには個人差があるので、正常値の範囲は、多数の健常者についてのデ ータを取得して統計的に決定するのが望ましい。 [0033] One set of evaluation indices Tl, T2, T12, Ti l is defined for each pair of the I sound peak 48 and the II sound peak 49, and the evaluation indices for a plurality of groups are plotted. Figure 3 (b) plots the points indicated by (Tl, T2) and (Ti l, T12) with Tl and Tl l on the horizontal axis and Τ2 and Τ12 on the vertical axis. Normal or abnormal heart sounds are determined. In other words, with normal heart sounds, the points represented by the evaluation index tend to gather in the categories surrounded by dotted lines as shown in Fig. 3 (b). From this, it can be determined that the heart sound is normal when a point represented by the evaluation index enters the region of the normal value range, and the heart sound is abnormal when the point does not fall within this region. However, since there are individual differences in heart sound data, the range of normal values is the default for many healthy individuals. It is desirable to obtain data and determine statistically.
[0034] 図 3 (c)では、横軸を評価指数の種類として、縦軸を測定時間である 10秒間におけ る各評価指数の頻度として、棒グラフで示したものであり、これにより各評価指数の出 現頻度を比較できる。例えば、評価指数 T1よりも T2の方が明らかに少なければ、 II 音ピーク 49が欠損して観測されない不整脈の可能性があり、また、 T11が複数の棒 で表される場合に、この評価指数の値にばらつきがあることが視覚的に判断される。  [0034] In Fig. 3 (c), the horizontal axis is the type of evaluation index, and the vertical axis is the frequency of each evaluation index during the measurement time of 10 seconds. You can compare the frequency of the index. For example, if T2 is clearly less than evaluation index T1, there is a possibility of an arrhythmia that is not observed due to the loss of II sound peak 49, and this evaluation index is used when T11 is represented by multiple bars. It is visually determined that there is a variation in the value of.
[0035] 先行する特許出願の発明にお 、ては、このような評価指数を用いて心音の異常を 判断し、必要に応じてモデルパラメータ ρ、 ξを変更している力 図 2 (a)、(b)に示さ れる波形は、心音の異常の種類により多様な形になるため、異常の種類、程度によつ ては、心音の異常が的確に判断し難いこともあり得た。  [0035] In the invention of the prior patent application, such an evaluation index is used to judge abnormalities in heart sounds, and to change model parameters ρ and ξ as necessary. Fig. 2 (a) The waveforms shown in (b) have various shapes depending on the type of heart sound abnormality, and depending on the type and degree of abnormality, it may be difficult to accurately determine heart sound abnormality.
[0036] これについて考えると、先行する特許出願 (特願 2005— 80720号)の発明におい ては、評価指数 Tl、 T2、 Tl l、 T12を規定する際の閾値 (THV)を 50%としており、 この THVについてはそれ以外に考慮していな力つた。ところが、さらに検討したとこ ろ、心音の異常の判断に際して、その結果が閾値の設定に大きく依存し、 THVの設 定が心音解析に重要な要素になること、閾値の設定は聴診器ハードウェアや録音時 の条件、測定対象者の個体差等により大きな影響を受けることがわ力つた。原理的に は、閾値は 0〜: LOO%の範囲で設定可能である力 実際の状況からすれば、 10〜7 0%の範囲が妥当なところである。  [0036] Considering this, in the invention of the prior patent application (Japanese Patent Application No. 2005-80720), the threshold (THV) for defining the evaluation indices Tl, T2, Tl l, and T12 is set to 50%. This THV was a force not considered otherwise. However, as a result of further investigation, when determining abnormalities in heart sounds, the results greatly depend on the threshold setting, and THV setting is an important factor for heart sound analysis. It was surprising that it was greatly affected by the recording conditions and individual differences among the measurement subjects. In principle, the threshold is a force that can be set in the range of 0 to: LOO%. From the actual situation, the range of 10 to 70% is reasonable.
[0037] 図 4 (a)は、 THVをそれぞれ 15%、 30%、 60%とした場合の心音特徴値波形と T HVとの関係を示し、図 4 (b)、(c)は、それぞれの THVについて求めた評価指数 (T 1, T2)、 (Ti l, Tl 2)の示す点の分布図である。図 4 (b)、(c)で、 THV= 15% (口 で示す)、 THV=60% (〇で示す)の場合には、(Tl, T2)または (Ti l, T12)の分 布がかなり広がりを見せている力 THV= 30% (▲で示す)の場合には集中している 。これは、図 4 (a)でみた場合に、 THV= 30%の閾値ラインは全ての心音特徴値波 形のピークと交差しているのに対し、 THV= 60%では一部のピーク波形と交差しな い部分があり、 THV= 15%では特徴値波形の下側のノイズ部分とも交差する部分 力 Sあることと関連するちのと考免られる。  [0037] Figure 4 (a) shows the relationship between the heart sound feature value waveform and T HV when THV is 15%, 30%, and 60%, respectively. Figure 4 (b) and (c) 5 is a distribution diagram of points indicated by evaluation indices (T 1, T2) and (Ti l, Tl 2) obtained for THV of the present invention. Fig. 4 (b) and (c) When THV = 15% (indicated by mouth) and THV = 60% (indicated by ○), distribution of (Tl, T2) or (Ti l, T12) Is concentrated when THV = 30% (indicated by ▲). As seen in Fig. 4 (a), the threshold line of THV = 30% intersects with the peaks of all heart sound feature waveform waveforms, whereas at THV = 60%, it shows some peak waveforms. There is a part that does not intersect, and when THV = 15%, it is considered that there is a partial force S that intersects the noise part below the feature value waveform.
[0038] このように、同じ心音の特徴値波形を解析をするに際しても、 THVの設定により評 価指数の示す点の分布の集中の度合いが異なる。この例では、 THV= 15%、 THV = 60%より、 THV= 30%の方が良好であると言える。しかしながら、この状況は、心 音の異常の種類によっては、特徴値波形が多様な形状になるので、心音解析に良 好な THVはそれらの異なる状況に応じて設定するのがよいと考えられる。 [0038] As described above, when analyzing the characteristic value waveform of the same heart sound, it is evaluated by setting the THV. The degree of concentration of the distribution of points indicated by the price index is different. In this example, THV = 30% is better than THV = 15% and THV = 60%. However, in this situation, depending on the type of heart sound abnormality, the feature value waveform has various shapes. Therefore, it is recommended that a good THV for heart sound analysis be set according to these different situations.
[0039] 図 4 (a)のような特徴値波形に対し、 THVの設定に応じて図 4 (b)、 (c)のように評 価指数の分布が異なるのであるが、心音異常をより良好に判断するためには、同じ 特徴値波形については、評価指数の散らばり方が少ないのがよいと考えられる。この ことから、本発明においては、データグルーピングの手法として、ファジー Cミーンズ( FCM)データクラスタリングの手法を用いる。 FCMは種々提案されて!、るデータクラ スタリング法の 1つであり、概略次のようなものである。  [0039] The distribution of the evaluation index differs as shown in Fig. 4 (b) and (c) depending on the THV setting for the characteristic value waveform shown in Fig. 4 (a). In order to make a good judgment, it is better that the evaluation feature index is less scattered for the same feature value waveform. Therefore, in the present invention, the fuzzy C means (FCM) data clustering method is used as the data grouping method. FCM has been proposed in various ways, and is one of the data clustering methods.
[0040] 例えば、データの集合  [0040] For example, a set of data
画 ニ フ,… ,…  Nif, ..., ...
v 1 2 ; " 1 (3) v 1 2; "1 (3)
ZJ = [∑, ,..., zk ,..., zc ] . 力 sc個のグループに群がっているとする。この場合 i番目に群がっているグループの 中心位置 v.を Z J = [∑,, ..., z k , ..., z c ]. Suppose we have groups of sc forces. In this case, the center position v. Of the i-th group
[数 5]  [Equation 5]
Figure imgf000014_0001
Figure imgf000014_0001
U= I, 2, ·.·, C) と定義する。ここに、 w は U = I, 2,..., C). Where w is
 ,
[数 6]  [Equation 6]
> w, y = 1 , j= 1, 2,…, n (5) ゾ > w, y = 1, j = 1, 2, ..., n (5)
を満足する 0と 1の間のファジーメンバー関数である。また me [l,∞)はウェイティン グ.エタスポネントと言い、一般的には m= 2と設定するのがよい。 i番目のクラスター 中心位置 Vと j番目のデータ位置 z との間のユークリッド距離 d を A fuzzy member function between 0 and 1 that satisfies Me (l, ∞) is a waitin This is called an etasponent, and in general it is better to set m = 2. The Euclidean distance d between the i th cluster center position V and the j th data position z
k, j  k, j
d = II v -z  d = II v -z
j II (6)  j II (6)
j k,  j k,
と定義する。 FCMクラスタリングのための評価関数が  It is defined as Evaluation function for FCM clustering is
[数 7]
Figure imgf000015_0001
[Equation 7]
Figure imgf000015_0001
'•-1ゾ- 1 と表される。ここで、 w= {w }、 v= {v }である。評価関 #α (w, v)はデータの散ら ,  '• -1 Zo-1 is represented. Here, w = {w} and v = {v}. Evaluation function # α (w, v) is scattered data,
ばり具合を表すものであり、評価関 ¾J (W, V)が小さいほど散らばり方が少ないと 言える。データの散らばり方を最小にするには、評価関数が反復計算により最小にな るように、クラスターの中心位置 {v }を決める。具体的には、まずファジー理論によりメ ンバー関数マトリックス {w }の初期値を設定し、式 (4)によりクラスター中心位置 {v } ,  This represents the degree of scatter, and it can be said that the smaller the evaluation function ¾J (W, V), the less the dispersion. In order to minimize the data dispersion, the cluster center position {v} is determined so that the evaluation function is minimized by iterative calculation. Specifically, first, the initial value of the member function matrix {w} is set by fuzzy theory, and the cluster center position {v},
を計算する。式 (6)によりユークリッド距離 d を求め、式 (7)に代入する。評価関数が ,  Calculate Obtain Euclidean distance d from Equation (6) and substitute it into Equation (7). The evaluation function is,
最小でなければ、 W を、前段階計算で得たユークリッド距離 d を用いて次のように 再計算する。  If it is not the minimum, W is recalculated as follows using the Euclidean distance d obtained in the previous calculation.
[数 8]  [Equation 8]
= -—— 1—— - (8) = -—— 1 ——-(8)
∑、d,Jd ^  ∑, d, Jd ^
FCMクラスタリング法はメンバー関数 w の初期値に依存するため、初期値の異な , Since the FCM clustering method depends on the initial value of the member function w,
るメンバー関数を用いて上記のアルゴリズムを実行するのがよいとされる。  It is recommended to execute the above algorithm using a member function.
[0041] このような FCMクラスタリングの手法を心音解析に適用するのである力 その際、心 音特徴値波形により求めたデータ集合 [Tl, T2, Ti l, T12]を式(3)におけるデー タ集合 [z , z , z , z ]として、 FCMクラスタリングのアルゴリズムを適用する。  [0041] The force that applies this FCM clustering method to heart sound analysis. At that time, the data set [Tl, T2, Til, T12] obtained from the heart sound feature value waveform is used as the data in Equation (3). Apply FCM clustering algorithm as set [z, z, z, z].
1 2 3 4 ]  1 2 3 4]
[0042] [Tl, T2, Ti l, T12]を (Tl, T2)と(Ti l, T1)に分け、それらを分散図として j j j  [0042] Divide [Tl, T2, Ti l, T12] into (Tl, T2) and (Ti l, T1)
示すと、図 5 (a)、(b)のようになる。式 (4)から (Tl, T2)の表す点の分布の中心 (V , V )と、(Ti l, T12)の表す点の分布の中心 (V , V )とがそれぞれ求められ、これら Figure 5 (a) and (b) are shown. The center (V, V) of the distribution of the point represented by (Tl, T2) and the center (V, V) of the distribution of the point represented by (Ti l, T12) are obtained from Equation (4).
2 3 4 2 3 4
の中心をそれぞれく A〉、〈B〉と表す。また、正常な心音について得られたデータから 求められた閾値 (THV)、評価関 ¾J (W、V)の最小表関数街 、データ集合の中 m m The centers of are denoted as A> and <B>, respectively. From the data obtained for normal heart sounds Calculated threshold value (THV), evaluation function ¾J (W, V) minimum table function city, inside the data set mm
心 [v , v , v , v ]の値を表 1に示し、表 1における最小表関数値 J は THVに応じて The values of the heart [v, v, v, v] are shown in Table 1, and the minimum table function value J in Table 1 depends on THV.
1 2 3 4 m 1 2 3 4 m
図 5 (c)に示すように変化する。 THVが 10%から 70%の範囲で 10%ずつ増加した 場合に、 THVが 30%〜60%の範囲で最小評価関数街 が特に小さい値になり、こ の範囲で図 5 (c)に示すように谷底状態になっている。また、 THVが 10%から 70% の範囲で 10%ずつ増加する際にそれぞれ得られた (Tl, T2)、 (Ti l, T12)の分布 を図 6 (a)、(b)に示し、 30%〜60%の範囲で求めたデータについて図 6 (c)、(d)に 示す。 THVが 10%〜70%の範囲のものでは、データがかなりばらついているが、 T HVが 30%〜60%の範囲のものではデータのばらつきが少なぐまとまつていること がわかる。このように、表 1及び図 6 (a)〜(d)から判断して、表 1において J が 0. 01 より小さくなる THV (30%〜60%)が有効値であると言える。  It changes as shown in Fig. 5 (c). When THV increases by 10% in the range of 10% to 70%, the minimum evaluation function town becomes particularly small when THV is in the range of 30% to 60%, and this range is shown in Fig. 5 (c). It is in a valley bottom state. The distributions of (Tl, T2) and (Ti l, T12) obtained when the THV increases by 10% in the range of 10% to 70% are shown in Figs. 6 (a) and (b). Figures 6 (c) and 6 (d) show the data obtained in the range of 30% to 60%. It can be seen that when the THV is in the range of 10% to 70%, the data varies considerably, but in the range where the THV is in the range of 30% to 60%, there is little variation in the data. Thus, judging from Table 1 and Figures 6 (a) to (d), it can be said that THV (30% to 60%) in which J is smaller than 0.01 in Table 1 is an effective value.
[0043] データ集合の中心 V、 V、 V、 Vや最小評価関数街の THVに対する依存性は、 [0043] The dependence of the data center V, V, V, V and the minimum evaluation function city on THV is
1 2 3 4 m  1 2 3 4 m
正常の心音についてもある程度異なり、 THVの有効閾値の範囲も若干異なってくる 力 一般的に正常心音の場合には、 J の値が極小となる、あるいは図 7のように谷底 状態となる THVの範囲が存在し、その範囲で J が非常に 0. 01程度の小さい値にな ると言える。  Normal heart sounds differ to some extent, and the effective threshold range of THV also varies slightly. Generally, in the case of normal heart sounds, the value of J becomes minimum, or the THV that reaches the valley state as shown in Fig. 7 There is a range, and in that range J can be said to be a very small value of about 0.01.
[0044] 次に、異常心音のデータに対して FCMクラスタリングの手法を適用した場合につい て考える。図 7は、それぞれ心房細動と心房粗動 (AF、不整脈)、僧帽弁狭窄症 (M S)、大動脈閉鎖不全症 (AR)の心音のデータ力 得られた閾値 (THV)に対する最 小評価関数値 (J )の依存性 (a〜c)と、 THVに対するデータ集合の中心 [V , V , V m 1 2 3 Next, let us consider the case where the FCM clustering method is applied to abnormal heart sound data. Figure 7 shows the heart rate data for atrial fibrillation and atrial flutter (AF, arrhythmia), mitral stenosis (MS), and aortic regurgitation (AR). Function value (J) dependency (a to c) and center of data set for THV [V, V, V m 1 2 3
, V ]の依存性 (d〜; f)を示している。この図で最小評価関数街 力 、さくなるというこ, V] shows the dependence (d ~; f). In this figure, the minimum evaluation function city force
4 m 4 m
と力ら、図 7 (a)の AFについては有効閾値範囲が 16%〜46%、図 7 (b)の MSにつ いては有効閾値範囲が 45%〜66%、図 7 (c)の ARについては有効閾値範囲が 10 %〜22%となる。  As shown in Fig. 7 (a), the effective threshold range is 16% to 46%, and for MS in Fig. 7 (b), the effective threshold range is 45% to 66%. For AR, the effective threshold range is 10% to 22%.
[0045] 図 7の結果に基づき、 AF、 MS、 ARの場合について THVを有効閾値範囲内の値 に設定して求められた評価指数 (Tl, T2)、 (Ti l, T12)の表す点をプロットすると、 図 8のようになる。図 8で、それぞれ (a)、(b)は AFの場合、(c)、(d)は MSの場合、 ( e)、(f)は ARの場合についての(Tl, T2)、 (Ti l, Tl 2)の分布を示している。図 8 における AF、 MS、 ARの場合の評価指数の表す点の分布は、図 6 (c)、 (d)に示さ れるような正常心音の場合と明らかにことなるものであることがわかり、このような評価 指数の表す点の分布の図から、心音の正常 ·異常が精度よく判別される。 [0045] Based on the results in Fig. 7, points represented by evaluation indices (Tl, T2) and (Ti l, T12) obtained by setting THV to a value within the effective threshold range for AF, MS, and AR Is plotted as shown in Figure 8. In Figure 8, (a) and (b) are for AF, (c) and (d) are for MS, (e) and (f) are for (Tl, T2), (Ti The distribution of l, Tl 2) is shown. Fig 8 The distribution of the points represented by the evaluation index for AF, MS, and AR is clearly different from that for normal heart sounds as shown in Figs. 6 (c) and (d). From the distribution of the points represented by the index, normal / abnormal heart sounds can be accurately identified.
[0046] このように、最小評価関数街 、データ集合の中心 [V , V , V , V ]、有効閾値の範 m 1 2 3 4 [0046] Thus, the minimum evaluation function city, the center [V, V, V, V] of the data set, the effective threshold range m 1 2 3 4
囲内に閾値を設定して求められた評価指数 [Tl, T2, Ti l, T12]の表す点の分布 状況をもとに、正常心音と異常心音とを判別することが可能になる。正常心音の場合 、有効閾値において J は 0. 02より低い値になり、データ集合の中心、評価指数の表 す点の分布がある程度の範囲内にあるが、異常心音の場合には、これらの値の中に 、少なくとも 1つ以上が正常心音の場合に比べてきわめて高い値をもつ。例えば、 AF と MSの場合、それらのデータ集合の中心は正常心音の場合と同程度である力 有 効閾値の範囲内での最小評価関数街 は 0. 4というように正常心音の場合に比して 20倍程度になり、また、その場合には、有効閾値の範囲内での Jの値は小さいが、 データ集合の中心を示す値が正常心音の場合よりも非常に大きくなつている。  Based on the distribution of points represented by the evaluation index [Tl, T2, Til, T12] obtained by setting a threshold in the box, it is possible to discriminate between normal and abnormal heart sounds. In the case of normal heart sounds, J is lower than 0.02 in the effective threshold, and the distribution of the points represented by the center of the data set and the evaluation index is within a certain range. Among the values, at least one or more values are extremely high compared to normal heart sounds. For example, in the case of AF and MS, the center of the data set is about the same as in the case of normal heart sounds, and the minimum evaluation function city within the range of the force effective threshold is 0.4 compared to the case of normal heart sounds. In this case, the value of J within the effective threshold range is small, but the value indicating the center of the data set is much larger than that of normal heart sounds.
[0047] 正常心音、異常心音のいずれの場合にも最小評価関数街 が極小になる、あるい は谷底状態となる有効閾値の範囲があり、心音解析のためには、このような有効閾値 の範囲内の 1つの THVの値を適宜選定すればよい。 [0047] For both normal heart sounds and abnormal heart sounds, there is a range of effective thresholds where the minimum evaluation function city is minimized or in a valley bottom state. One THV value within the range should be selected appropriately.
[0048] 以上の本発明による FCMクラスタリングの手法を用いた心音解析は、図 9のフロー で示すような形でなされる。 The heart sound analysis using the FCM clustering method according to the present invention described above is performed in the form shown in the flow of FIG.
(1)モデルパラメータ( 、 p)を設定する。  (1) Set the model parameters (, p).
(2)心音を検出しそれにより心音データを得る。  (2) Heart sound is detected and heart sound data is obtained.
(3)得られた心音データに対して、設定されたモデルパラメータの下で特徴値波形 データを生成する。  (3) Generate feature value waveform data under the set model parameters for the obtained heart sound data.
(4) THVに対して、評価指数 Tl, T2, Ti l, T12を求める。  (4) Obtain evaluation indices Tl, T2, Ti l, and T12 for THV.
(5)評価指数 Tl, T2, Ti l, T12からメンバー関数を用いて規定されるデータ集合 の中心 V , V , V , Vを求める。  (5) Find the centers V, V, V, V of the data set defined by the member function from the evaluation indices Tl, T2, Til, T12.
1 2 3 4  1 2 3 4
(6)評価指数及びデータ集合の中心から評価指数の分散の状況を表す評価関 ¾J (6) Evaluation function that shows the distribution of evaluation index from the center of evaluation index and data set ¾J
(w, v)を求める。 Find (w, v).
(7)反復計算により評価関数が最小となるようにデータ集合の中心を決定する。 (8)所定範囲の THVに対する最小評価関数値 Ci ) (7) The center of the data set is determined so that the evaluation function is minimized by iterative calculation. (8) Minimum evaluation function value Ci for a predetermined range of THV)
mの依存性を求め、その範囲で J  Dependency of m is calculated and J
m が最小となる THVを選定する。  Select the THV that minimizes m.
(9)選定された THVに対して求められた評価指数及びデータ集合の中心の分布状 態を表示する。  (9) Display the evaluation index obtained for the selected THV and the distribution state of the center of the data set.
ここで、(8)において、 J が最小になるのは 1点の THVとは限らず、ある範囲で実質 的に最小になる場合があり(THVのある範囲で谷底状になる場合)、そのような場合 には、 THVの範囲を選定し、その範囲内力 THVを適宜選定すればよい。  Here, in (8), J is not necessarily minimized at one point of THV, but may be substantially minimized within a certain range (when it becomes valley-shaped within a certain range of THV). In such a case, select the THV range and select the range internal force THV as appropriate.
このように FCMクラスタリングの手法を用いた心音解析の結果により、心音の正常、 異常の判別を簡易な構成により、精度よく行うことが可能になる。  In this way, based on the results of heart sound analysis using the FCM clustering method, normal and abnormal heart sounds can be discriminated accurately with a simple configuration.
[0049] (C)聴診における音質向上のための心音信号処理 [0049] (C) Heart sound signal processing for sound quality improvement in auscultation
心音信号を聴取して心音の正常 ·異常を判別する上で、収録された信号のノイズを 少なくし、聴取し易いものにするため、また収録された心音信号を遠隔位地に伝送し て利用する際に心音信号の劣化を少なくするために、(A)で説明した振動モデルに 基づ 、た特徴値波形を用いた信号の処理を行う。振動モデル型の変換回路はデジ タル回路を用いるのが有利であり、聴診心音はこの変換回路に入力する前にまず A ZD変換を行ってデジタル信号化された心音信号としておくのがよい。また、信号処 理の効率ィ匕の面力 すれば、信号の値を最大値に対する比で表す正規ィ匕を行うの が好ましい。  Listening to the heart sound signal to determine whether the heart sound is normal or abnormal, to reduce the noise of the recorded signal and make it easier to hear, and to transmit the recorded heart sound signal to a remote location In order to reduce the deterioration of the heart sound signal, the signal processing using the feature value waveform is performed based on the vibration model described in (A). It is advantageous to use a digital circuit for the vibration model type conversion circuit, and the auscultation heart sound is preferably converted into a digital heart sound signal by first performing AZD conversion before being input to the conversion circuit. Further, if the efficiency of signal processing is important, it is preferable to perform normality representing the signal value as a ratio to the maximum value.
[0050] 図 10は振動モデルに対し、心音信号を与えて振動応答 Xを求めた結果を示してお り、図 3と同様のものである。横軸は時間を表すが、時間 tについて、サンプリング周 期 A tを基準にして表し、 t=i A tとして、離散的変数 iで時間を示しており、心音信号 を Y(i)、振動応答を x(i)というように表す。縦軸は信号の強度を示す。  FIG. 10 shows the result of obtaining the vibration response X by giving a heart sound signal to the vibration model, which is the same as FIG. The horizontal axis represents time, but for time t, the sampling period At is used as a reference, and t = i At, and the time is indicated by a discrete variable i, the heart sound signal is Y (i), vibration Express the response as x (i). The vertical axis indicates the signal intensity.
[0051] 心音信号 Y(i)は正負の値をもつが、振動の作用をみる上で Y(i)の絶対値をとつた S (i) (S (i) = I Y(i) I )を心音データとして考えればよい。また、式(1)、(2)との関 係から、以下では S (i) Zmを改めて Sとする。図 10において灰色の波形は入力され る心音データ S (i)の原波形である。また、実線の波形は振動応答 x(i)の波形を示し ており、この波形のデータを特徴値波形データと!/、う。  [0051] Although the heart sound signal Y (i) has positive and negative values, S (i) (S (i) = IY (i) I) takes the absolute value of Y (i) when looking at the action of vibration. Can be considered as heart sound data. Also, from the relationship with equations (1) and (2), S (i) Zm is changed to S below. In Fig. 10, the gray waveform is the original waveform of the input heart sound data S (i). The solid line waveform shows the vibration response x (i). This waveform data is the characteristic value waveform data.
[0052] 図 10における心音データ波形 S (i)、特徴値波形データ x (i)では、ピークとして示さ れる部分が心音に相当し、ピーク間の値の低い部分にはノイズが含まれている。特に 最初に得られた心音信号において高周波成分のノイズが含まれることが多いので、 心音データ Y(i)力もウェーブレット解析により 5kHz以上または 2.5kHz以上の高周 波成分を抽出し削除した S (i)を求め、これを心音データとして用いるのが好ましい。 [0052] In the heart sound data waveform S (i) and feature value waveform data x (i) in FIG. The portion that corresponds to the heart sound, and the portion with a low value between the peaks contains noise. In particular, since the heart sound signal obtained initially often contains high-frequency component noise, the heart sound data Y (i) force is also extracted by wavelet analysis to extract high-frequency components of 5 kHz or more or 2.5 kHz or more. ) Is preferably used as heart sound data.
W  W
[0053] 本発明では、心音データ S(i)と特徴値波形データ x(i)とを、ピーク同士を合わせる ようにしてそれらの積をとることにより、心音データにおけるノイズを弱め、心音自体を 強調することにより、最終的にノイズの少ない心音データとすることを考える。  [0053] In the present invention, the heart sound data S (i) and the feature value waveform data x (i) are obtained by multiplying the peaks by matching the peaks, thereby reducing the noise in the heart sound data and reducing the heart sound itself. By emphasizing, it is considered that the heart sound data is finally reduced in noise.
[0054] ところで、図 10における特徴値波形データ x(i)は、心音データ S (i)に対して位相  [0054] By the way, the feature value waveform data x (i) in FIG.
W  W
遅れ (k)がある。そのために、位相遅れ kを求め、この位相遅れ分だけ x(i)の波形の 位相をずらし、すなわち、 S (i)の位相と合わせて力も積をとる必要がある。位相遅れ  There is a delay (k). For this purpose, it is necessary to obtain the phase delay k and shift the phase of the waveform of x (i) by this phase delay, that is, take the product with the phase of S (i). Phase lag
W  W
kは  k is
[数 9]
Figure imgf000019_0001
[Equation 9]
Figure imgf000019_0001
∑ [S w U)― S Warg ) W {x(j)― Xayg ) ∑ ( S w U) ― S Warg ) W (x (j) ― X ayg )
7-0  7-0
から、 (i)が最大となる時の iの値として位相差 kが求められる。ここで、 p (i)は相互 相関関数の数列であり、 S 、 X はそれぞれ平均値を表す。この kを数列 p (i)が  Therefore, the phase difference k is obtained as the value of i when (i) is maximized. Here, p (i) is a sequence of cross-correlation functions, and S and X represent average values. This k is a sequence p (i)
Wavg avg  Wavg avg
最大となる時の iの値として用いる。演算上では kを用いて実質的に位相差をなくすこ とがでさる。  Used as the value of i at the maximum. In computation, the phase difference can be substantially eliminated by using k.
[0055] 位相遅れ kの分だけ特徴値波形データ X (i)の波形をずらすと、図 11に示すように、 心音データ波形 S (i)と特徴値波形 x(i)とはピーク部分が実質的に重なるようになる  [0055] When the waveform of the feature value waveform data X (i) is shifted by the phase delay k, as shown in Fig. 11, the heart sound data waveform S (i) and the feature value waveform x (i) have a peak portion. Substantially overlap
W  W
。その上で心音データ波形 S (i)と特徴値波形 7? (i)から位相遅れ分をずらした x(k  . Then, the phase lag is shifted from the heart sound data waveform S (i) and the feature value waveform 7? (I) x (k
W  W
+i)との積をとる変換を行う。 S (i)と x(i)とを、それぞれ  Perform a transformation that takes the product of + i). Let S (i) and x (i) be
W  W
S (i) = [S (1)S (2)----S (N-k)]  S (i) = [S (1) S (2) ---- S (N-k)]
W W W w  W W W w
x(k+i) = [ x(k+l)x(k + 2)---- x(N)]  x (k + i) = [x (k + l) x (k + 2) ---- x (N)]
のように行列で表した場合に、心音データ S (i)と位相をずらした特徴値波形データ  When expressed in a matrix as shown in Fig. 2, feature value waveform data with a phase shifted from the heart sound data S (i)
W  W
x(k+i)との積の変換は行列演算として TS (i) =S (i) -x(k + i)T Conversion of product with x (k + i) is a matrix operation TS (i) = S (i) -x (k + i) T
w  w
で表される。ただし、上式で、 x(k+i)Tは転置行列である。 It is represented by Where x (k + i) T is a transposed matrix.
[0056] このようにして得られた TS (i)の出力心音データは、もとの心音データに対して、ピ ーク部分の心音が強調され、ノイズ部分が弱められることになり、再生した場合に聞き 易い音質となり、また心音の解析を行うにも精度よくなされるものである。このように、 本発明により心音を強調し、ノイズを弱める心音信号の処理方法をフロー図として示 すと図 12のようになる。  [0056] The output heart sound data of TS (i) obtained in this way was reproduced by enhancing the heart sound of the peak portion and weakening the noise portion of the original heart sound data. In this case, the sound quality is easy to hear, and it is also accurate for analyzing heart sounds. In this way, the heart sound signal processing method for enhancing the heart sound and weakening the noise according to the present invention is shown as a flow chart in FIG.
[0057] (D)心音収録音量の自動調整  [0057] (D) Automatic adjustment of sound recording volume
聴診装置において、心音を電気信号に変換するマイクロフォンで心音信号に変換 し、この心音信号をィャフォンで聴取して心音の正常 ·異常を判別し、また、(B)、 (C )で説明したような心音信号の処理として、心音解析を行い、あるいは心音の音質を 向上させる処理を行うというような形態がある力 このように心音信号を利用する上で 、最初に心音を収録する段階で心音の音量を適切なレベルにすることが重要である  In the auscultation device, the heart sound is converted into a heart sound signal with a microphone that converts it into an electrical signal, and the heart sound signal is listened to with a earphone to determine whether the heart sound is normal or abnormal, and as described in (B) and (C). As the processing of a heartbeat signal, there is a form of performing a heartbeat analysis or processing for improving the sound quality of the heartbeat. When using a heartbeat signal in this way, the heartbeat signal is first recorded at the stage of recording. It is important to adjust the volume to an appropriate level
[0058] プローブで収録した心音信号を自動音量調整収録部にお 、て音量調整を行って 収録し、さらに送信を行うというような聴診システムにおいて心音の収録音量を調整 するのには、 [0058] In order to adjust the recording volume of the heart sound in an auscultation system in which the heart sound signal recorded by the probe is recorded in the automatic volume adjustment recording section by adjusting the volume and then transmitting it.
(i)プローブのチェストピースに組み込まれたマイクロフォンの増幅音量を最大にし、 デジタル制御型オーディオアツテネータを用いて適切なレベルに減衰させる (i) Maximize the amplification volume of the microphone built into the probe's chest piece and attenuate it to an appropriate level using a digitally controlled audio attenuator
(ii)プローブのチェストピースに組み込まれたマイクロフォンの音量を検出し、ゲイン 可調整アンプにより適切なレベルに増幅する (ii) Detects the volume of the microphone built into the probe chest piece and amplifies it to an appropriate level by a gain-adjustable amplifier
というような方法がある。(i)の方法は心音特徴数値解析に適しているが、音量を下げ て適切なレベルに設定するものであるので、増幅はできない。(ii)の方法では、音量 の上げ下げは可能であるが、入力信号があまり小さいと、 AZD変換した後のデータ 力 音量レベルを決定することが難しくなる。  There is a method like this. Although method (i) is suitable for heart sound feature numerical analysis, it cannot be amplified because the volume is set to an appropriate level by lowering the volume. In the method (ii), the volume can be increased or decreased. However, if the input signal is too small, it becomes difficult to determine the data force volume level after AZD conversion.
[0059] 本発明では、 AZD変換した後のデータから心音の信号の増幅度の制御を行い、 また、得られた心音データに関し、音解析を行うことを考慮していることから、(i)の方 法を用いる。すなわち、プローブにおける増幅度を最大にした上で音量調整部に送 出するように設定しておく。 [0059] In the present invention, the amplification degree of the heart sound signal is controlled from the data after the AZD conversion, and sound analysis is considered with respect to the obtained heart sound data. This method is used. In other words, the amplification level at the probe is maximized and sent to the volume control section. Set it to come out.
[0060] 本発明による心音の収録音量の調整の基本的な考え方は、最初の比較的短!、時 間 Tの間にゲイン調整のためのデータを取得し、それに続くより長い時間 Tの間の a b 心音の信号を適切に増幅して用いるようにする、ということである。このように、利用す る心音を増幅する前の短い時間に、どの程度心音の信号を増幅するかを設定するこ とにより、適切なゲイン調整がなされる。ゲイン調整のためデータを取得する時間 T  [0060] The basic idea of adjusting the recording volume of heart sounds according to the present invention is that the first relatively short !, data for gain adjustment is acquired during time T, and the subsequent time T is acquired. The ab heart sound signal should be properly amplified and used. Thus, appropriate gain adjustment is made by setting how much the heart sound signal is amplified in a short time before amplifying the heart sound to be used. Time to acquire data for gain adjustment T
a は、 1〜3秒程度であり、 2秒程度が最も妥当である。これは、通常の心拍周期が 0. 8 〜1秒であり、 2周期分ほどの心音が採取できればゲイン調整のためのデータとして 利用できると考えられることによる。利用する心音を増幅する時間 Tは 4〜12秒程度  a is about 1 to 3 seconds, and about 2 seconds is most appropriate. This is because the normal heartbeat period is 0.8 to 1 second, and if heart sounds of about 2 periods can be collected, it can be used as data for gain adjustment. Time to amplify heart sound to use T is about 4-12 seconds
b  b
である。これは、心音特徴値波形解析では、約 10周期分のデータがあれば、妥当な 解析結果が得られることによるもので、標準的には特に 8〜: LO秒程度が適当である。  It is. This is because, in heart sound feature value waveform analysis, if there are about 10 cycles of data, a reasonable analysis result can be obtained.
[0061] このような心音の収録音量の調整にっ 、ての基本的な考え方に基づ 、て次のよう な手順により心音の収録音量の調整を行う。この音量の調整は検出された心音信号 を AD変換したものに対してマイコンの動作により次の手順でなされる。その際、前述 したゲイン調整のためデータを取得する時間 T (1〜3秒)及び利用する心音を増幅 [0061] Based on the basic concept described above, the recording volume of the heart sound is adjusted according to the following procedure. This volume adjustment is performed according to the following procedure according to the operation of the microcomputer on the AD signal of the detected heart sound signal. At this time, the time T (1 to 3 seconds) for acquiring data and the heart sound to be used are amplified for gain adjustment as described above
a  a
する時間 T (4〜 12秒)を設定しておき、また、ゲイン調整のために取得されたデータ  Set the time T (4 to 12 seconds) to be used and the data acquired for gain adjustment.
b  b
に応じて利用する心音を増幅する際に必要なアップゲインをゲイン参照テーブルとし て設定しておく。  The up gain necessary to amplify the heart sound to be used is set as a gain reference table.
[0062] <心音の収録音量の調整の手順 > [0062] <Procedure for adjusting the recording volume of heart sounds>
(1)検出された心音信号に対して信号調整を行い AZDコンバータで 8ビット(10ビッ ト、 12ビットでもよい)のデジタルデータに変換し、このデジタルデータを時間 Tの間  (1) Signal adjustment is performed on the detected heart sound signal and converted to 8-bit (10-bit or 12-bit) digital data by the AZD converter.
a に取り込む。  Import into a.
(2)時間 Tの間における N個の心音の大きさを示す x (i)の平均値 Y(Y= [∑x(i) ]  (2) Average value of x (i) indicating the magnitude of N heart sounds during time T Y (Y = [∑x (i)]
a  a
/N)を求める。  / N).
(3) Yの値をゲイン参照テーブルと対比させ、アップゲインを決定する。  (3) Compare the Y value with the gain reference table to determine the up gain.
(4)ゲインをコントロールアンプにセットし、時間 Τに続く時間 Τの間の心音の信号を  (4) Set the gain to the control amplifier and output the heart sound signal during the time Τ following the time Τ.
a b  a b
セットされたアップゲインにより増幅し、適切な音量として収録する。  Amplified by the set up gain and recorded as an appropriate volume.
ただし、(2)において、平均値 Yを求める際に、ノイズ部分を除外するのが適切であ り、心音の大きさ x(i)に対して閾値 xを規定しておき、時間 Tの間において x(i) >x However, in (2), it is appropriate to exclude the noise part when calculating the average value Y. Threshold value x is defined for heart sound volume x (i), and x (i)> x during time T
O a 0 となる x (i)の個数を Nとして平均を取るのがよ!/、。  Take the average of the number of x (i) that become O a 0 as N! /.
[0063] 以上の(1)〜 (4)の手順を少なくとも 1回行うが、通常は数回(2〜5)回反復するの がよい。 (1)〜 (4)の手順での心音の収録音量の自動調整はマイコン 23の制御によ りなされる。マイコン 23はこのような制御に必要なプログラム、ゲイン参照テーブル等 を保持している。 [0063] The above steps (1) to (4) are carried out at least once, but it is usually recommended to repeat several times (2 to 5) times. The automatic adjustment of the heartbeat recording volume in steps (1) to (4) is performed by the microcomputer 23. The microcomputer 23 holds a program necessary for such control, a gain reference table, and the like.
[0064] 図 13は(1)〜 (4)の手順により心音を収録する場合の心音の信号の状態を示す図 である。図 13で (a)は元の心音波形信号を示し、(b)はゲインを算出するための時間 Tの間の心音波形信号を示し、(c)は (b)の信号により得られたアップゲインにより(a a  FIG. 13 is a diagram showing a state of a heart sound signal when a heart sound is recorded by the procedures (1) to (4). In Fig. 13, (a) shows the original heart waveform signal, (b) shows the heart waveform signal during time T for calculating the gain, and (c) shows the up-state obtained by the signal in (b). By gain (aa
)の心音波形信号のうち、各時間 Tに続く時間 Tの間に増幅されて収録された心音 a b  ) Of heart sound signals recorded in amplified during time T following each time T
波形信号を示している。このように心音を収録する前の時間 τの間に取り込んだ心 a  A waveform signal is shown. Hearts captured during time τ before recording heart sounds like this a
音の信号に基づ 、てアップゲインを決定し、それに応じて心音の信号を適切な音量 にまで増幅するので、図 13の(c)の段階で収録される心音は適切な音量になる。  Based on the sound signal, the up-gain is determined, and the heart sound signal is amplified to an appropriate volume accordingly, so that the heart sound recorded in the stage (c) of FIG. 13 has an appropriate volume.
[0065] 図 14は、(1)〜 (4)の手順により心音の収録音量を自動調整した場合と、このよう な心音の収録音量の自動調整を行わずに心音を収録した場合の NZS比を対比し て示すものであり、横軸は何回目の心音収録かを示している。図 14において、〇は 心音の収録音量の自動調整を全く行わない場合、口は T b = 10秒として(1)〜(4)の 手順による心音の自動調整を行った場合、令は丁 = 12秒として(1)〜(4)の手順に b [0065] Figure 14 shows the NZS ratio when the heartbeat recording volume is automatically adjusted according to steps (1) to (4) and when the heartbeat is recorded without such automatic adjustment of the heartbeat recording volume. The horizontal axis indicates how many heart sounds are recorded. In Fig. 14, ○ indicates that the automatic adjustment of the recording sound volume of the heart sound is not performed at all, the mouth is T b = 10 seconds, and the automatic adjustment of the heart sound is performed according to the procedures (1) to (4). 12 steps to (1) to (4)
よる心音の自動調整を行った場合をそれぞれ示して ヽる。このように( 1)〜 (4)の手 順による心音の自動調整を行うことにより、 NZS比が向上し、聴診音をモニターする 上で有利になり、心音の解析を行う上でも精度よくなされることになる。  Each of the cases where the automatic adjustment of heart sounds is shown. In this way, automatic adjustment of heart sounds according to steps (1) to (4) improves the NZS ratio, which is advantageous for monitoring auscultatory sounds, and is also accurate for analyzing heart sounds. Will be.
[0066] (E)聴診装置の形態 [0066] (E) Form of auscultation device
図 15は、本発明による聴診装置の形態について概略的に示しており、全体として みると、聴診装置は心音を検出する聴診プローブ a、プローブ aで検出された心音信 号の音量を適切な大きさに調整し、音信号を収録する自動音量調整収録部 b、自動 音量調整収録部 bにより音量調整がなされ収録された心音信号について心音の強調 、ノイズ低下の処理を行う心音信号処理部 c、自動音量調整収録部 bにより音量調整 力 Sなされ収録された心音信号にっ 、て心音解析処理を行 、心音の正常 ·異常の判 別に供するデータを生成する心音解析処理部 d、受信部 eを有する。 FIG. 15 schematically shows the form of the auscultation device according to the present invention. As a whole, the auscultation device detects the heart sound, and the volume of the heart sound signal detected by the probe a is appropriately increased. The sound volume processing and recording section b, which adjusts the sound volume, and the sound volume processing section c, which performs sound volume enhancement and noise reduction processing for the heart sound signals recorded and adjusted by the automatic volume adjustment recording section b, Automatic sound volume adjustment recording unit b Adjusts the sound volume by the heart sound signal recorded by S, and performs heart sound analysis to determine whether the heart sound is normal or abnormal. It has a heart sound analysis processing unit d and a receiving unit e that generate data to be provided separately.
[0067] 自動音量調整収録部 bで音量調整され収録された心音信号、あるいはさらに心音 信号処理部 cで心音の強調、ノイズ低下の処理がなされた心音信号はモニター手段 により聴取できるものであり、また、送信手段により遠隔位置に送信される。自動音量 調節部 bで音量調節されて収録された心音信号につ 、て心音解析処理部 dにお 、 て解析処理された結果は、モニターにより表示され、あるいは解析処理の結果のデ ータが送信手段により送信される。受信部 eでは、送信された心音信号や解析処理さ れたデータを受信し、心音の正常 *異常の判別に利用し、あるいはさらに受信された 信号、データについて処理を行うようにすることができる。図 15に示すのは構成形態 の一例であり、プローブ aのほかは必要に応じて組み合わせた形態が可能である。以 下、図 15の装置形態における要素部分について各別に説明する。  [0067] The heart sound signal recorded by adjusting the volume at the automatic volume adjustment recording unit b, or the heart sound signal subjected to the heart sound enhancement and noise reduction processing by the heart sound signal processing unit c can be heard by the monitoring means. In addition, it is transmitted to a remote location by the transmission means. The result of the analysis of the heart sound signal recorded by the automatic sound volume control unit b with the volume adjusted is displayed on the monitor or the result of the analysis process is displayed. It is transmitted by the transmission means. The receiver e can receive the transmitted heart sound signal and analyzed data and use it to determine whether the heart sound is normal or abnormal, or to process the received signal and data. . FIG. 15 shows an example of the configuration, and in addition to the probe a, it is possible to combine it as necessary. Hereinafter, the element parts in the apparatus configuration of FIG. 15 will be described separately.
[0068] <自動音量調整収録部 >  [0068] <Automatic volume control recording unit>
図 16は、図 15の聴診装置における聴診プローブ a、自動音量調整収録部 b、受信 部 eの要素部分を示している。この場合、音量調整がなされ収録された心音信号を送 信し、受信部 eで受信しているが、図 15における心音信号処理部 cにより心音の強調 、ノイズ低下の処理を行ってから送信する形態、あるいは送信された心音を受信部 e にお 、て受信して力 心音信号処理部 cにより心音の強調、ノイズ低下の処理を行う という形態が考えられる。  FIG. 16 shows elements of the auscultation probe a, the automatic volume control recording unit b, and the receiving unit e in the auscultation apparatus of FIG. In this case, the recorded heart sound signal is transmitted with the volume adjusted, and is received by the receiving unit e. However, the heart sound signal processing unit c in FIG. A form or a form in which the transmitted heart sound is received by the receiving unit e and the heart sound signal processing unit c performs enhancement of the heart sound and noise reduction processing can be considered.
[0069] 図 16において、聴診プローブ aは、心音を検出し電気信号に変換するマイクロフォ ンを み込んだチヱストピース 11、検出された心音の信号を増幅する増幅部 12、増 幅された心音を聴取するヘッドセットを有している。増幅部 12はプリアンプ、フィルタ 、パワータアンプを含み、適当なレベルに増幅されて心音の信号が音量自動調整送 信モジュール 10に送出される。  [0069] In FIG. 16, an auscultation probe a includes a chest piece 11 that includes a microphone that detects a heart sound and converts it into an electrical signal, an amplification unit 12 that amplifies the detected heart sound signal, and an amplified heart sound. Has a headset to listen to. The amplifying unit 12 includes a preamplifier, a filter, and a power amplifier, and is amplified to an appropriate level and a heart sound signal is sent to the volume automatic adjustment transmission module 10.
[0070] 自動音量調整収録部 bは、信号調整部 21, AZD変換部 22、マイコン 23、ハイパ スフィルタ 24、増幅調整部 25、送信器 26を有している。信号調整部 21はハイノ スフ ィルタ、信号調整回路を含み、聴診プローブ aの増幅部 12から受け取った心音の信 号を調整して、 AZD変換部 22及に送出し、また、ノ、ィパスフィルタ 24を介して増幅 部 25に送る。増幅調整部 25は信号調整部 21のシグナルコンディショナカもハイパス フィルタ 24を介して送出された心音の信号をマイコン力 の指令を受けて適切なゲイ ンとなるように増幅するコントロールアンプ、シグナルコンデイショナ、ハイパスフィルタ を含む。 The automatic volume adjustment recording unit b includes a signal adjustment unit 21, an AZD conversion unit 22, a microcomputer 23, a high-pass filter 24, an amplification adjustment unit 25, and a transmitter 26. The signal adjustment unit 21 includes a high-nos filter and a signal adjustment circuit. The signal adjustment unit 21 adjusts the heart sound signal received from the amplification unit 12 of the auscultation probe a and sends it to the AZD conversion unit 22 and the no-pass filter. 24 to amplifying unit 25 via 24. Amplification adjustment unit 25 is also a high-pass signal conditioner of signal adjustment unit 21 It includes a control amplifier, signal conditioner, and high-pass filter that amplifies the heart sound signal sent through the filter 24 to an appropriate gain in response to a command from the microcomputer.
[0071] AZD変換部 22に送られた心音の信号は、 8ビット(10ビット、 12ビットでもよい)の デジタルデータに変換されてマイコン 23により処理され、マイコン 23ではそれに基づ いて、前述したように心音の信号の増幅の制御を行う。すなわち、あらかじめゲイン調 整のためのデータを取得する時間 Ta (1〜3秒)と利用する心音を増幅する時間 Tb ( 4〜12秒)とを設定しておき、またマイコン 23においては増幅時のアップゲインを与 える参照テーブルを保持するようにしておく。聴診プローブ aで得られた心音信号の 時間 Tの間における平均強度に基づいて心音の信号を増幅する際に適切な音量に a  [0071] The heart sound signal sent to the AZD conversion unit 22 is converted into 8-bit (10-bit or 12-bit) digital data and processed by the microcomputer 23. Thus, the amplification of the heart sound signal is controlled. In other words, the time Ta (1 to 3 seconds) for acquiring data for gain adjustment and the time Tb (4 to 12 seconds) for amplifying the heart sound to be used are set in advance. Keep a reference table that gives the up-gain. Based on the average intensity of the heart sound signal obtained with the auscultation probe a during time T
なるように参照テーブル力 アップゲインを求め心音の信号の増幅制御を行うマイコ ン制御部と、該マイコン制御部による制御を受けて前記求められたアップゲインに応 じて前記時間 Tに続く時間 Tの間の心音の信号を増幅し、メモリー 27に一時的に収  The reference table power is calculated so that the up gain is obtained and the microcomputer control unit performs amplification control of the heart sound signal, and the time T following the time T according to the obtained up gain under the control of the microcomputer control unit. Amplifying the heart sound signal between
a b  a b
録するとともに、心音信号を取り出してィャフォンにより聴取し、また、増幅調整部 25 にお 、て増幅 ·調整して送信器 26により送信できるようにしてある。  In addition to recording, the heart sound signal is taken out and listened to by the earphone, and the amplification adjustment unit 25 amplifies and adjusts it so that it can be transmitted by the transmitter 26.
[0072] 受信部 eは自動音量調整収録部 bの送信器 26から送信された心音信号を受信する 受信器 31、調整部 32、増幅部 33を有し、調整部 32から送出される心音の信号はィ ャフォンでモニターされ、あるいは、コンピュータにより心音解析処理を行うのに利用 される。さらに、増幅部で増幅してアナログ出力として取り出すこともできる。自動音量 調整収録部 b側力 受信部 e側への送信は、アンテナを介してワイヤレス送信を行うも のでも、あるいは、ケーブルを介して送信するものでもよい。  [0072] The receiving unit e has a receiver 31, an adjusting unit 32, and an amplifying unit 33 for receiving a heart sound signal transmitted from the transmitter 26 of the automatic volume adjustment recording unit b. The signal is monitored by earphones or used for heart sound analysis by a computer. Further, it can be amplified as an analog output by an amplifier. Automatic volume adjustment and recording unit b side force receiving unit The transmission to the e side may be performed by wireless transmission via an antenna or via a cable.
[0073] <心音信号処理部 >  [0073] <Heart sound signal processor>
図 17 (a) , (b)は、心音信号処理部 cの構成を示すものである。図 17 (a)は心音信 号処理部を全体的に示しており、心音信号処理部 cには、聴診プローブ aの心音検 出部で得られた後自動音量調整収録部 bの AZD変換部でデジタル信号に変換さ れた信号 Y(i)が入力される。 AZD変換された心音信号 Y(i)の絶対値をとり正規ィ匕 等の処理を行う信号調整部 43、信号調整部 43からの信号 S (i)を入力して特徴値波 形 X (i)を形成する振動モデル 44、信号調整部 43からの信号カゝら高周波成分のノィ ズを除去し、音データ S (i)として出力するフィルタ部 45,フィルタ部 45からの心音 17 (a) and 17 (b) show the configuration of the heart sound signal processing unit c. Fig. 17 (a) shows the whole heart sound signal processing unit, and the heart sound signal processing unit c includes the AZD conversion unit of the automatic volume adjustment recording unit b obtained after the heart sound detection unit of the auscultation probe a. The signal Y (i) converted into a digital signal at is input. The signal adjustment unit 43 that takes the absolute value of the AZD-converted heart sound signal Y (i) and performs processing such as normal 匕, and the signal S (i) from the signal adjustment unit 43 is input and the feature value waveform X (i ) Forming the vibration model 44 and the signal from the signal adjustment unit 43. Filter part 45 that outputs noise data S (i) and heart sound from filter part 45
W  W
データと振動モデル 44からの特徴値波形データとを入力して信号処理を行い心音 が強調されノイズが弱められた心音データ TS (i)として出力するための変換回路部 4 6とで構成されている。ここで、信号調整部 S (i)力もの信号 S (i)を振動モデル 44に 入力している力 フィルタ部 45において高周波成分のノイズを除去した心音データ S (i)とした後に振動モデル 14に入力するようにしてもよぐその場合、同じ心音デー The data and the characteristic value waveform data from the vibration model 44 are input and the signal processing is performed, and the heartbeat is emphasized and the noise is weakened. Yes. Here, the signal adjustment unit S (i) the force signal S (i) is input to the vibration model 44. The vibration model 14 is converted to the heart sound data S (i) from which high-frequency component noise has been removed in the force filter unit 45. In that case, the same heart sound data
W W
タ SW(i)を変換回路部 46にも入力することになる。 47は振動モデル 44におけるパラ メータを設定するためのパラメータ設定部である。  The data SW (i) is also input to the conversion circuit unit 46. 47 is a parameter setting unit for setting parameters in the vibration model 44.
[0074] 図 17 (b)は図 17 (a)における変換回路部 46の部分をより詳細に示すものであり、 変換回路部 46は、位相遅れ演算部 51と積算変換部 22とを備えて構成されている。 心音データ S (i)と特徴値波形データ x(i)とは、それぞれ位相遅れ演算部 51と乗算 FIG. 17 (b) shows the conversion circuit unit 46 in FIG. 17 (a) in more detail. The conversion circuit unit 46 includes a phase lag calculation unit 51 and an integration conversion unit 22. It is configured. The heart sound data S (i) and the feature value waveform data x (i) are multiplied by the phase delay calculation unit 51, respectively.
W  W
変換部 52との両方に入力され、位相遅れ演算部 51において求められた位相遅れ k の値は乗算変換部 52に入力される。乗算変換部 52においては、位相遅れ kの分だ け x (i)をずらして x(k+i)とし、 S (i)との積を演算して出力する。  The value of the phase delay k input to both of the conversion units 52 and obtained by the phase delay calculation unit 51 is input to the multiplication conversion unit 52. The multiplication conversion unit 52 shifts x (i) by the phase delay k to x (k + i), calculates the product with S (i), and outputs the result.
W  W
[0075] 図 17 (a)、 (b)に示される心音信号処理部は、 A/D変換部 12においてデジタル 化された信号を処理する部分、心音信号を収録するメモリーを含み、小規模のデジ タル回路として構成とし、聴診装置に組み込んだ形とするか、また、収録された心音 信号を用いて信号を処理する独自の装置として形成してもよ 、。  [0075] The heart sound signal processing unit shown in FIGS. 17 (a) and 17 (b) includes a part for processing the digitized signal in the A / D conversion unit 12 and a memory for recording the heart sound signal. It can be configured as a digital circuit and built into the auscultation device, or it can be formed as a unique device that processes the signals using the recorded heart sound signals.
[0076] <心音解析処理部 >  [0076] <Heart sound analysis processing unit>
図 18は心音解析処理部 dの構成を示している。 aは心音検出部、 bは心音検出部 a で検出された心音信号を AZD変換し音量調整を行う自動音量調整収録部であり、 AZD変換され音量調整された心音データが心音処理解析処理部 dに入力される。 心音解析処理部 dは、振動モデルのモデルパラメータを設定するパラメータ設定部 61、設定されたモデルパラメータの下で心音データの特徴値波形データを生成する 特徴値波形生成手段 62、閾値 (THV)に対して評価指数を求める手段 63、評価指 数からメンバー関数を用いて規定されるデータ集合の中心を求める手段 64、評価指 数及びデータ集合の中心から評価関数を求める手段 65、反復計算により評価関数 が最小になるようにデータ集合の中心を決定する手段 66、所定範囲の THVに対し て最小評価関数値 Ci )が最小となる THVを決定する手段 67、選定された THVに対 する評価指数、データ集合の中心等の表示データを表示部 70に送出する手段 68を 有している。 62〜67の部分は、設定されたパラメータに応じて入力されたデータに 対して演算処理を行う部分であり、これらの演算処理を行いメモリーを含む専用回路 として形成してもよぐあるいは図 9のフローによる演算処理を行うためのプログラムを 備えたパーソナルコンピュータにより実行する形態としてもよい。 FIG. 18 shows the configuration of the heart sound analysis processing unit d. a is a heart sound detection unit, b is an automatic volume adjustment recording unit that performs AZD conversion of the heart sound signal detected by the heart sound detection unit a and adjusts the volume, and the heart sound data that has been AZD converted and volume adjusted is the heart sound processing analysis processing unit d Is input. The heart sound analysis processing unit d includes a parameter setting unit 61 that sets model parameters of the vibration model, a feature value waveform generating unit 62 that generates feature value waveform data of heart sound data under the set model parameters, and a threshold value (THV). Means for obtaining the evaluation index 63, Means for obtaining the center of the data set defined by using the member function from the evaluation index 64, Means for obtaining the evaluation function from the evaluation index and the center of the data set 65, Evaluation by iterative calculation Means to determine the center of the data set so that the function is minimized 66, for a given range of THV Means 67 for determining the THV that minimizes the minimum evaluation function value Ci), and means 68 for sending display data such as an evaluation index for the selected THV and the center of the data set to the display unit 70. . The parts 62 to 67 perform arithmetic processing on the input data according to the set parameters, and these arithmetic processes may be performed to form a dedicated circuit including a memory or as shown in FIG. It may be configured to be executed by a personal computer equipped with a program for performing arithmetic processing according to the above flow.
[0077] 表示部 70は、心音解析の結果として得られたデータを表示するものであり、液晶パ ネル等の画面を有するものを用いるのがよい。表示内容は、評価指数、データ集合 の中心の分布状況を数値な 、しグラフで表示する。このような心音データの表示によ り心音の正常、異常が精度よぐ定量的に把握できる。心音解析処理部 dでの演算処 理により得られた結果は、表示データとして表示部 70に表示する以外に、送信手段 により遠隔位置の受信部に送信できるようにしてもょ 、。 [0077] The display unit 70 displays data obtained as a result of heart sound analysis, and a display having a screen such as a liquid crystal panel may be used. The display contents are displayed as a graph without numerical values of the evaluation index and the distribution status at the center of the data set. By displaying such heart sound data, normality and abnormality of heart sounds can be quantitatively grasped with accuracy. The result obtained by the arithmetic processing in the heart sound analysis processing unit d may be transmitted to the receiving unit at a remote location by the transmission means in addition to being displayed on the display unit 70 as display data.
心音解析処理部 dにお 1、ては、心音データの解析に必要な定義式等の必要事項 を蓄積保持する手段が必要であり、さらに、実際に心音解析により得られた実績デー タをデータベース化して保持する手段を備えることにより、新たに心音解析を行う際 の比較データとして利用できるようにもなる。  The heart sound analysis processing unit d requires a means for accumulating and holding necessary items such as definition formulas necessary for the analysis of heart sound data, and further, actual data actually obtained by heart sound analysis is stored in a database. By providing a means for storing and storing the data, the data can be used as comparison data when performing a new heart sound analysis.
産業上の利用可能性  Industrial applicability
[0078] 本発明は、心音収録音量の自動調整、心音信号の音質の向上、心音信号の解析 処理をそれぞれ独自に行うものとして利用することができ、また、それらを組み合わせ た形の聴診装置として利用することもできる。 [0078] The present invention can be used to perform automatic adjustment of heart sound recording volume, improvement of sound quality of heart sound signals, and analysis processing of heart sound signals, respectively, and as an auscultation device in a combination of them. It can also be used.
図面の簡単な説明  Brief Description of Drawings
[0079] [図 1]鼓膜の振動モデルを示す概念図である。 FIG. 1 is a conceptual diagram showing an eardrum vibration model.
[図 2] (a)は鼓膜の振動モデルに基づいて正常心音力も振動応答 Xを求めた結果を 示す図であり、 (b)は鼓膜の振動モデルに基づいて僧帽弁閉鎖不全心音力 振動 応答を求めた結果を示す図である。  [Fig. 2] (a) shows the results of obtaining the vibration response X of the normal heart sound force based on the tympanic membrane vibration model, and (b) shows the mitral regurgitation heart sound vibration based on the tympanic membrane vibration model. It is a figure which shows the result which calculated | required the response.
[図 3] (a)は正常心音の場合における評価指数の求め方を示す図であり、 (b)は評価 指数の相関関係を示す図であり、(c)は評価指数の頻度を示す図である。  [Fig. 3] (a) is a diagram showing how to obtain the evaluation index in the case of normal heart sounds, (b) is a diagram showing the correlation of the evaluation index, and (c) is a diagram showing the frequency of the evaluation index. It is.
圆 4] (a)は振動応答を表す特徴値波形と閾値との関係を示す図であり、(b)、(c)は 評価指数の相関関係が閾値により異なる状況を示す図である。 (4) (a) is a diagram showing the relationship between the characteristic value waveform representing the vibration response and the threshold, and (b) and (c) It is a figure which shows the condition where the correlation of an evaluation index changes with threshold values.
[図 5] (a)、 (b)は評価指数の相関関係について PCMクラスタリング法によりデータ集 合の中心を規定する例を示す図あり、(c)は PCMクラスタリング法により得られた最 小評価関数値の閾値に対する依存性を示す図である。 [Fig. 5] (a) and (b) are diagrams showing examples of defining the center of data collection by the PCM clustering method for the correlation of evaluation indices, and (c) is the minimum evaluation obtained by the PCM clustering method. It is a figure which shows the dependence with respect to the threshold value of a function value.
[図 6] (a)、 (b)は閾値が 10%〜70%の範囲で示した評価指数の相関関係を示す図 であり、(c)、(d)は閾値が 30%〜60%の範囲で示した表か指数の相関関係を示す 図である。  [Fig. 6] (a) and (b) are graphs showing the correlation of evaluation indices with threshold values ranging from 10% to 70%. (C) and (d) are threshold values ranging from 30% to 60%. It is a figure which shows the correlation of the table | surface or index | exponent shown in the range.
圆 7] (a)は不整脈 (AF)の場合、(b)は僧帽弁狭窄症 (MS)の場合、(c)は大動脈 閉鎖不全症 (AR)の場合につ 1、て、それぞれ閾値に対する最小評価関数値の依存 性を示す図であり、(d)は不整脈 (AF)の場合、(e)は僧帽弁狭窄症 (MS)の場合、 ( f )は大動脈閉鎖不全症 (AR)の場合にっ 、て、それぞれ閾値に対するデータ集合 の中心の依存性を示す図である。 7) (a) for arrhythmia (AF), (b) for mitral stenosis (MS), (c) for aortic insufficiency (AR) (D) for arrhythmia (AF), (e) for mitral stenosis (MS), and (f) for aortic atresia (AR) ), It is a diagram showing the dependence of the center of the data set on the threshold value.
[図 8] (a)、(b)は不整脈 (AF)の場合、(c)、(d)は僧帽弁狭窄症 (MS)の場合、 (e) 、(f)は大動脈閉鎖不全症 (AR)の場合について、それぞれ評価指数の相関関係を 示す図である。  [Fig. 8] (a), (b) for arrhythmia (AF), (c), (d) for mitral stenosis (MS), (e), (f) for aortic regurgitation It is a figure which shows the correlation of an evaluation index, respectively in the case of (AR).
[図 9]本発明による心音解析のフローを示す図である。  FIG. 9 is a diagram showing a flow of heart sound analysis according to the present invention.
圆 10]心音データと振動モデルによる振動応答としての特徴値波形を示す図である [10] It is a diagram showing a characteristic value waveform as a vibration response by heart sound data and a vibration model.
[図 11]図 10のうち特徴値波形を位相遅れ分だけずらして示した図である。 FIG. 11 is a diagram showing the characteristic value waveform in FIG. 10 shifted by the phase delay.
[図 12]心音信号の処理のフローを示す図である。  FIG. 12 is a diagram showing a flow of processing of a heart sound signal.
圆 13]心音を収録する場合の心音の信号の状態を示す図である。 [13] FIG. 13 is a diagram showing a state of a heart sound signal when a heart sound is recorded.
[図 14]本発明により心音の収録音量を自動調整した場合と自動調整を行わずに心 音を収録した場合との NZS比を対比して示す図である。  FIG. 14 is a diagram showing a comparison of NZS ratios when the heartbeat recording volume is automatically adjusted according to the present invention and when heartbeats are recorded without automatic adjustment.
圆 15]本発明による聴診装置の概略的構成を示す図である。 [15] FIG. 15 is a diagram showing a schematic configuration of an auscultation apparatus according to the present invention.
[図 16]図 15の構成のうち、自動音量調整収録部、受診部を示す図である。  FIG. 16 is a diagram showing an automatic volume adjustment recording unit and a consultation unit in the configuration of FIG.
[図 17] (a)図 15の構成のうち心音信号処理部を示す図である。 (b) (a)のうち特に 変換回路部につ 、て示す図である。  FIG. 17 (a) is a diagram showing a heart sound signal processing unit in the configuration of FIG. (b) It is a figure which shows especially about the conversion circuit part among (a).
圆 18]図 15の構成のうち心音解析処理部を示す図である。 符号の説明 [18] FIG. 18 is a diagram showing a heart sound analysis processing unit in the configuration of FIG. Explanation of symbols
a 聴診プローブ a auscultation probe
b 自動音量調整収録部 b Automatic volume control recording section
c 心音信号処理部 c Heart sound signal processor
d 心音解析処理部 d Heart sound analysis processor
e 受診部 e Consultation Department
1 物体  1 object
2 ばね  2 Spring
3 ダンパー  3 Damper
11 チェストピース  11 Chestpiece
12 増幅部  12 Amplifier
21 信号調整部  21 Signal adjustment section
22 AZD変換部  22 AZD converter
23 マイコン  23 Microcomputer
25 増幅部  25 Amplifier
26 送信器  26 Transmitter
43 信号調整部  43 Signal adjustment section
44 振動モデル  44 Vibration model
45 フイノレタ咅 ^  45 Huinoleta 咅 ^
46 変換回路部  46 Conversion circuit
47 パラメータ設定部  47 Parameter setting section
51 演算部  51 Calculation unit
52 乗算変換部  52 Multiplication converter
61 パラメータ設定部  61 Parameter setting section
62 特徴値波形生成手段  62 Feature value waveform generation means
63 評価指数を求める手段  63 Means for obtaining the evaluation index
64 データ集合の中心を求める手段 64 Means of finding the center of a data set
65 評価関数を求める手段 評価関数最小化手段 65 Means for obtaining the evaluation function Evaluation function minimization means
最小評価関数値が最小の範囲を決定する手段 表示部 Means for determining the smallest evaluation function value range Display section

Claims

請求の範囲 The scope of the claims
[1] 振動モデルのモデルパラメータを設定することと、  [1] Setting model parameters for the vibration model;
心音を検出しそれにより心音データを得ることと、  Detecting heart sounds and thereby obtaining heart sound data;
得られた心音データに対して、設定されたモデルパラメータの下で特徴値波形デ ータを生成することと、  Generating characteristic value waveform data under the set model parameters for the obtained heart sound data;
閾値 (THV)に対して、前記特徴値波形データのピークの時間幅及び時間間隔を 示す評価指数を求めることと、  Obtaining an evaluation index indicating a time width and a time interval of a peak of the feature value waveform data with respect to a threshold value (THV);
該評価指数力もファジーメンバー関数 (w )を用いて規定されるデータ集合の中心 ,  The evaluation index power is the center of the data set defined by the fuzzy member function (w),
(V )を求めることと、  Seeking (V),
評価指数及びデータ集合の中心から評価指数の分散の状況を表す評価関 ¾J ( w, v)を求めることと、  Obtaining an evaluation function ¾J (w, v) representing the distribution of the evaluation index from the center of the evaluation index and the data set;
反復計算により該評価関数が最小となるようにデータ集合の中心を決定することと、 所定範囲の THVに対する最小評価関数値 CF )  The center of the data set is determined so that the evaluation function is minimized by iterative calculation, and the minimum evaluation function value CF for a predetermined range of THV)
mの依存性を求め、その範囲で J mが 最小となる THVを選定することと、  Find the dependency of m, select the THV that minimizes J m within that range,
選定された THVに対して求められた評価指数及びデータ集合の中心の分布状態 を表示することと、  Display the evaluation index obtained for the selected THV and the distribution state of the center of the data set;
の各ステップカゝらなる異常心音検出のための心音解析を行うことを特徴とする聴診心 音信号の処理方法。  A method of processing an auscultatory heart sound signal, comprising performing heart sound analysis for detecting an abnormal heart sound.
[2] 前記評価指数が THVに対する特徴値波形データにおける I音及び II音の時間幅( T1、T2)と時間間隔 (T11、T12)であり、 W= {w }、V= {v }とし、 d = || v— z j j k, j [2] The evaluation index is the time width (T1, T2) and time interval (T11, T12) of sound I and sound II in the characteristic value waveform data for THV, and W = {w} and V = {v}. , D = || v— zjjk, j
IIがデータ集合の中心とデータ位置との間のユークリッド距離であるとして、前記評 価関数が Given that II is the Euclidean distance between the center of the data set and the data position, the evaluation function is
[数 7]  [Equation 7]
Jm (W, V) -∑∑{ id (7) J m (W, V) -∑∑ {id (7)
,'— 1ゾ— 1 で表されることを特徴とする請求項 1に記載の聴診心音信号の処理方法。  , ′ — 1—1 The method for processing an auscultatory heart sound signal according to claim 1, wherein:
[3] 振動モデルのモデルパラメータを設定する手段と、 心音を検出しそれにより心音データを得るための心音検出手段と、 得られた心音データに対して、設定されたモデルパラメータの下で特徴値波形デ ータを生成する手段と、 [3] means for setting model parameters of the vibration model; Heart sound detecting means for detecting heart sounds and thereby obtaining heart sound data; means for generating feature value waveform data for the obtained heart sound data under set model parameters;
閾値 (THV)に対して、前記特徴値波形データのピークの時間幅及び時間間隔を 示す評価指数を求める手段と、  Means for obtaining an evaluation index indicating a time width and a time interval of a peak of the feature value waveform data with respect to a threshold value (THV);
前記評価指数力もファジーメンバー関数 (w )を用いて規定されるデータ集合の中 ,  The evaluation index power is also in a data set defined by using a fuzzy member function (w),
心 (Vi)を求める手段と、 Means to find the heart ( Vi ),
前記評価指数及びデータ集合の中心から評価指数の分散の状況を表す評価関数 Evaluation function representing the distribution of evaluation index from the center of the evaluation index and data set
J (W, V)を求める手段と、 Means for obtaining J (W, V);
該評価関数が最小になるように反復計算によりデータ集合の中心を決定する手段 と、  Means for determining the center of the data set by iterative calculation so that the evaluation function is minimized;
前記評価関数が最小となる最小評価関数 »を求める手段と、  Means for obtaining a minimum evaluation function »that minimizes the evaluation function;
所定範囲の THVに対する J  J for a given range of THV
mの依存性を求め、その範囲で (J )  Dependency of m is calculated and within that range (J)
mが最小となる THV を選定する手段と、  means to select the THV that minimizes m,
前記選定された THVに対して求められた評価指数及びデータ集合の中心の分布 状態を表示する手段と、  Means for displaying the evaluation index obtained for the selected THV and the distribution state of the center of the data set;
力 なる異常心音検出のための心音信号解析を行う心音解析処理部を備えることを 特徴とする聴診装置。  An auscultation apparatus comprising a heart sound analysis processing unit for performing heart sound signal analysis for detecting abnormal abnormal heart sounds.
[4] 前記評価指数が THVに対する特徴値波形データにおける I音及び II音の時間幅( T1、T2)と時間間隔 (T11、T12)であり、 W= {w }、V= {v }とし、 d = || v— z  [4] The evaluation index is the time width (T1, T2) and time interval (T11, T12) of sound I and sound II in the characteristic value waveform data for THV, and W = {w} and V = {v}. , D = || v— z
j j k, j j j k, j
IIがデータ集合の中心とデータ位置との間のユークリッド距離であるとして、前記評 価関数が Given that II is the Euclidean distance between the center of the data set and the data position, the evaluation function is
[数 7]  [Equation 7]
^(^n =∑∑( ,, )"k,/)2 (7) ^ (^ n = ∑∑ (,,) "k, / ) 2 (7)
'• 1ゾ- 1 で表されることを特徴とする請求項 3に記載の聴診装置。  4. The auscultation device according to claim 3, characterized in that it is represented by '• 1-1.
[5] 振動モデルのモデルパラメータを設定して振動モデルを形成することと、 [5] Setting the model parameters of the vibration model to form the vibration model;
心音を検出して心音信号を得ることと、 得られた心音信号を前記振動モデルに与えて出力された特徴値波形データを得る ことと、 Detecting a heart sound and obtaining a heart sound signal; Applying the obtained heart sound signal to the vibration model to obtain output characteristic value waveform data;
前記心音信号またはそれから高周波成分のノイズを除去したものを心音データとし て、前記心音データと前記特徴値波形データとの相互相関をとつて位相遅れを算出 し、前記心音データと前記特徴値波形データとの間に実質的に位相差がないように 該位相遅れの分だけ前記特徴値波形データの位相をずらすことと、  The heart sound signal or a signal obtained by removing high-frequency noise from the heart sound signal is used as heart sound data, a phase lag is calculated by cross-correlating the heart sound data and the feature value waveform data, and the heart sound data and the feature value waveform data are calculated. Shifting the phase of the feature value waveform data by the phase delay so that there is substantially no phase difference between
前記心音データと前記位相遅れの分だけ位相をずらした特徴値波形データとの積 として出力心音データを得ることと、  Obtaining output heart sound data as a product of the heart sound data and feature value waveform data shifted in phase by the phase delay;
の各ステップ力 なる聴診における音質向上のための心音信号処理を行うことを特徴 とする聴診心音信号の処理方法。  A processing method for an auscultatory heart sound signal, characterized by performing a heart sound signal processing for sound quality improvement in the auscultation of each step.
[6] 前記心音信号を前記振動モデルに与える前に前記心音信号を正規化することを 特徴とする請求項 5に記載の聴診心音信号の処理方法。  6. The auscultatory heart sound signal processing method according to claim 5, wherein the heart sound signal is normalized before the heart sound signal is applied to the vibration model.
[7] 心音検出手段により検出された心音信号またはそれから高周波成分のノイズをフィ ルタ手段により除去したものを心音データとして入力することにより該心音データに対 応する特徴値波形データを出力する振動モデルと、 [7] A vibration model for outputting feature value waveform data corresponding to the heart sound data by inputting a heart sound signal detected by the heart sound detecting means or a signal obtained by removing the high frequency component noise from the heart sound data as the heart sound data. When,
該振動モデルにより出力された特徴値波形データと前記心音データとの相互相関 をとつて前記心音データに対する特徴値波形データの位相遅れを算出する位相遅 れ算出部と、  A phase lag calculation unit for calculating a phase lag of the feature value waveform data with respect to the heart sound data by taking a cross-correlation between the feature value waveform data output by the vibration model and the heart sound data;
前記心音データと前記特徴値波形データとの間に実質的に位相差がないように前 記位相遅れの分だけ位相をずらした特徴値波形データと前記心音データとの積をと る乗算変換部と、  Multiplication conversion unit that takes the product of the feature value waveform data and the heart sound data, the phase of which is shifted by the amount of the phase delay so that there is substantially no phase difference between the heart sound data and the feature value waveform data When,
力 なる異常心音検出のための心音信号処理を行う心音信号処理部を備えることを 特徴とする聴診装置。  An auscultation apparatus comprising a heart sound signal processing unit that performs heart sound signal processing for detecting a powerful abnormal heart sound.
[8] 前記振動モデルに入力する前に心音信号を正規化するための正規化手段をさら に有することを特徴とする請求項 7に記載の聴診装置。  8. The auscultation apparatus according to claim 7, further comprising normalization means for normalizing a heart sound signal before inputting to the vibration model.
[9] 心音を電気信号に変換するプローブと、 [9] a probe that converts heart sounds into electrical signals;
該プローブにより得られた心音の信号の調整及び増幅を行って心音を収録する自 動音量調整収録部と、 を有し、前記自動音量調整収録部が前記プローブにより得られた心音の信号の時間 Tの間における平均強度に基づいて心音の信号を増幅する際に適切な音量になる a An automatic volume control recording unit for recording the heart sound by adjusting and amplifying the signal of the heart sound obtained by the probe; When the automatic sound volume adjustment recording unit amplifies the heart sound signal based on the average intensity during the time T of the heart sound signal obtained by the probe a
ようにアップゲインを求め心音の信号の増幅制御を行うマイコン制御部と、該マイコン 制御部による制御を受けて前記求められたアップゲインに応じて前記時間 Tに続く  A microcomputer control unit for obtaining an up gain and performing amplification control of a heart sound signal, and following the time T according to the obtained up gain under the control of the microcomputer control unit
a 時間 Tの間の心音の信号を増幅するとともに増幅された信号を収録すべき心音とし b  a Amplify the heart sound signal during time T and use the amplified signal as the heart sound to be recorded b
て取り出せるようにした増幅調整部とからなる心音収録音量の自動調整手段を備え ることを特徴とする聴診装置。  An auscultation device comprising an automatic adjustment means for recording sound of heart sounds, comprising an amplification adjustment section adapted to be removed.
[10] 前記マイコン制御部は、前記算出された心音の信号の平均強度に対する適切な音 量に増幅するためのアップゲインの大きさの関係をテーブルとして保持しておき、該 テーブルを参照して心音の信号を適切な音量に増幅するようにしたことを特徴とする 請求項 9に記載の聴診装置。  [10] The microcomputer control unit holds a relationship of the magnitude of the up gain for amplifying to an appropriate sound volume with respect to the average intensity of the calculated heart sound signal, and refers to the table. 10. The auscultation apparatus according to claim 9, wherein a heart sound signal is amplified to an appropriate volume.
[11] 前記時間 T力^〜 3秒の範囲内の時間であり、前記時間 T力 〜 12秒の範囲内の [11] The time T-force ^ is a time within a range of 3 seconds, and the time T-force is within a range of 12 seconds.
a b  a b
時間であることを特徴とする請求項 9または 10のいずれか 1項に記載の聴診装置。  The auscultation device according to claim 9, wherein the auscultation device is time.
[12] 前記時間 Tが 8〜10秒の範囲内の時間であることを特徴とする請求項 11に記載 12. The time T is a time within a range of 8 to 10 seconds.
b  b
の聴診装置。  Auscultation device.
[13] 請求項 9〜 12のいずれか 1項に記載の心音収録音量の自動調整手段を送信側ュ ニットとして構成し、増幅された心音の信号を受信側ユニットに送信できるようにしたこ とを特徴とする聴診装置。  [13] The means for automatically adjusting the heart sound recording volume according to any one of claims 9 to 12 is configured as a transmitting unit so that an amplified heart sound signal can be transmitted to the receiving unit. Auscultation device characterized by.
PCT/JP2006/320964 2005-10-21 2006-10-20 Stethoscope heart sound signal processing method and stethoscope device WO2007046504A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007541064A JP4848524B2 (en) 2005-10-21 2006-10-20 Auscultation heart sound signal processing method and auscultation apparatus
CN2006800390720A CN101291628B (en) 2005-10-21 2006-10-20 Stethoscope heart sound signal processing method and stethoscope device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005306625 2005-10-21
JP2005-306625 2005-10-21
JP2005-332993 2005-11-17
JP2005332993 2005-11-17
JP2006101429 2006-04-03
JP2006-101429 2006-04-03

Publications (1)

Publication Number Publication Date
WO2007046504A1 true WO2007046504A1 (en) 2007-04-26

Family

ID=37962596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320964 WO2007046504A1 (en) 2005-10-21 2006-10-20 Stethoscope heart sound signal processing method and stethoscope device

Country Status (3)

Country Link
JP (1) JP4848524B2 (en)
CN (1) CN101291628B (en)
WO (1) WO2007046504A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009240527A (en) * 2008-03-31 2009-10-22 Yamaguchi Univ Apparatus and method for analyzing heart sound frequency
JP2012183139A (en) * 2011-03-04 2012-09-27 Seiko Epson Corp Measuring device
JP2013034670A (en) * 2011-08-08 2013-02-21 Jvc Kenwood Corp Cardiac sound information processor, cardiac sound information processing method, and cardiac sound information processing program
CN103584881A (en) * 2013-11-29 2014-02-19 成都工业学院 Electronic stethoscope based on double controllers
JP2014233598A (en) * 2013-06-05 2014-12-15 国立大学法人山口大学 Auscultatory cardiac sound signal processing method, auscultatory cardiac sound signal processing apparatus, and auscultatory cardiac sound signal processing program
JP2015525606A (en) * 2012-07-05 2015-09-07 パルモネリ エイピーピーエス、 エルエルシー Wireless stethoscope and method of using the same
JP2018033984A (en) * 2017-10-24 2018-03-08 パイオニア株式会社 Signal-processing device and method, computer program, and storage medium
JP2018200733A (en) * 2018-10-01 2018-12-20 タイト ケア リミテッド System and method for performing automatic and remote trained personnel guided medical examination
JPWO2021020203A1 (en) * 2019-07-26 2021-02-04
CN112515698A (en) * 2020-11-24 2021-03-19 英华达(上海)科技有限公司 Auscultation system and control method thereof
CN112614503A (en) * 2020-12-14 2021-04-06 北京远鉴信息技术有限公司 Method and device for processing heart sound signal, electronic equipment and readable storage medium
CN112971838A (en) * 2019-12-02 2021-06-18 美国亚德诺半导体公司 Normalization of heart sounds

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103315767B (en) * 2013-06-18 2015-05-13 西华大学 Determining method and system for heart sound signals
KR20150010255A (en) * 2013-07-18 2015-01-28 삼성전자주식회사 Apparatus for diagnostic using habit and mathod for diagnostic of thereof
CN105212960B (en) * 2015-08-19 2018-03-30 四川长虹电器股份有限公司 Cardiechema signals method for evaluating quality
CN107348971A (en) * 2017-08-17 2017-11-17 上海交通大学 A kind of heart disease screening system based on heart sound detection and machine learning algorithm
CN108041689A (en) * 2018-02-14 2018-05-18 深圳市研桥科技有限公司 Electronic cigarette igniter and its control method
KR102364440B1 (en) * 2020-02-18 2022-02-18 스마트사운드주식회사 Pet Surgery Monitoring System and Method in Operating Room

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583408A (en) * 1981-06-23 1983-01-10 シ−メンス・アクチエンゲゼルシヤフト Variable gain pulse amplifier
JPS5889240A (en) * 1981-11-20 1983-05-27 松下電工株式会社 Circuit for detecting pulse
JPS60149603U (en) * 1984-03-16 1985-10-04 カシオ計算機株式会社 heart rate monitor
JPH10234684A (en) * 1997-02-28 1998-09-08 Seiko Epson Corp Measurement device
JP2005296643A (en) * 2004-03-19 2005-10-27 Yamaguchi Univ Digital auscultatory analytical system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149603A (en) * 1984-01-17 1985-08-07 Kuraray Co Ltd Photopolymerizable resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583408A (en) * 1981-06-23 1983-01-10 シ−メンス・アクチエンゲゼルシヤフト Variable gain pulse amplifier
JPS5889240A (en) * 1981-11-20 1983-05-27 松下電工株式会社 Circuit for detecting pulse
JPS60149603U (en) * 1984-03-16 1985-10-04 カシオ計算機株式会社 heart rate monitor
JPH10234684A (en) * 1997-02-28 1998-09-08 Seiko Epson Corp Measurement device
JP2005296643A (en) * 2004-03-19 2005-10-27 Yamaguchi Univ Digital auscultatory analytical system

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009240527A (en) * 2008-03-31 2009-10-22 Yamaguchi Univ Apparatus and method for analyzing heart sound frequency
JP2012183139A (en) * 2011-03-04 2012-09-27 Seiko Epson Corp Measuring device
JP2013034670A (en) * 2011-08-08 2013-02-21 Jvc Kenwood Corp Cardiac sound information processor, cardiac sound information processing method, and cardiac sound information processing program
JP2019162442A (en) * 2012-07-05 2019-09-26 パルモネリ エイピーピーエス、 エルエルシー Wireless stethoscope and method of use thereof
US10925574B2 (en) 2012-07-05 2021-02-23 Pulmonary Apps, Llc Wireless stethoscope and method of use thereof
JP2015525606A (en) * 2012-07-05 2015-09-07 パルモネリ エイピーピーエス、 エルエルシー Wireless stethoscope and method of using the same
US9974515B2 (en) 2012-07-05 2018-05-22 Pulmonary Apps, Llc Wireless stethoscope and method of use thereof
US10433812B2 (en) 2012-07-05 2019-10-08 Pulmonary Apps, Llc Wireless stethoscope and method of use thereof
US10987082B2 (en) 2012-07-05 2021-04-27 Pulmonary Apps, Llc Wireless stethoscope and method of use thereof
JP2014233598A (en) * 2013-06-05 2014-12-15 国立大学法人山口大学 Auscultatory cardiac sound signal processing method, auscultatory cardiac sound signal processing apparatus, and auscultatory cardiac sound signal processing program
CN103584881B (en) * 2013-11-29 2015-12-02 成都工业学院 Based on the electronic stethoscope of dual controller
CN103584881A (en) * 2013-11-29 2014-02-19 成都工业学院 Electronic stethoscope based on double controllers
JP2018033984A (en) * 2017-10-24 2018-03-08 パイオニア株式会社 Signal-processing device and method, computer program, and storage medium
JP2018200733A (en) * 2018-10-01 2018-12-20 タイト ケア リミテッド System and method for performing automatic and remote trained personnel guided medical examination
JPWO2021020203A1 (en) * 2019-07-26 2021-02-04
WO2021020203A1 (en) * 2019-07-26 2021-02-04 富士フイルム株式会社 Stethoscope
CN114206221A (en) * 2019-07-26 2022-03-18 富士胶片株式会社 Stethoscope and method for making same
JP7242863B2 (en) 2019-07-26 2023-03-20 富士フイルム株式会社 Stethoscope
CN112971838A (en) * 2019-12-02 2021-06-18 美国亚德诺半导体公司 Normalization of heart sounds
CN112515698A (en) * 2020-11-24 2021-03-19 英华达(上海)科技有限公司 Auscultation system and control method thereof
CN112614503A (en) * 2020-12-14 2021-04-06 北京远鉴信息技术有限公司 Method and device for processing heart sound signal, electronic equipment and readable storage medium

Also Published As

Publication number Publication date
JP4848524B2 (en) 2011-12-28
JPWO2007046504A1 (en) 2009-04-23
CN101291628B (en) 2011-11-16
CN101291628A (en) 2008-10-22

Similar Documents

Publication Publication Date Title
JP4848524B2 (en) Auscultation heart sound signal processing method and auscultation apparatus
CN103313662B (en) System, the stethoscope of the risk of instruction coronary artery disease
US6898459B2 (en) System and method for diagnosing pathologic heart conditions
US7520860B2 (en) Detection of coronary artery disease using an electronic stethoscope
JP4819687B2 (en) Method and apparatus for analyzing auscultatory sounds using singular value decomposition
EP2249706B1 (en) Non invasive analysis of body sounds
US20060161064A1 (en) Computer-assisted detection of systolic murmurs associated with hypertrophic cardiomyopathy
JP2008528124A (en) Analysis of auscultatory sounds using speech recognition
Roy et al. Heart sound: Detection and analytical approach towards diseases
TW201221118A (en) Processing of periodic physiological signals
JP4759727B2 (en) Digital auscultation analysis system
JP2023179702A (en) Automatic measuring device and method for auditory brainstem response
JP6103591B2 (en) Auscultation heart sound signal processing method, auscultation heart sound signal processing apparatus, and program for processing auscultation heart sound signal
Pratiwi et al. A review of equipment and signal processing of the automated auscultation for blood pressure measurement
Potdar et al. Design and Analysis of a PCG Acquisition and Denoising Circuit
JP7320867B2 (en) Medical devices and programs
JP3687135B2 (en) Sound vibration evaluation device
Naufal et al. Advancement on automatic blood pressure measurement using auscultatory method: A literature review
Rohman et al. Analysis of the Effectiveness of Using Digital Filters in Electronic Stethoscopes
Szymanowska et al. Development of an electronic stethoscope
CN211300037U (en) Lung sound signal acquisition device
KR102294354B1 (en) The system for diagnosing arrhythmia signs
FR2973998A1 (en) Method for assisting doctor during diagnosing heart disease of patient in e.g. hospital, involves matching acoustic, pressure and electric waves for estimating parameters, and displaying estimated parameters for performing diagnosis process
JP2022075910A (en) Shunt murmur analyzing device
Lukkarinen Phonocardiography: Development of a clinical system and its application to screening for paediatric heart murmurs

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680039072.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2007541064

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06812093

Country of ref document: EP

Kind code of ref document: A1