WO2007046484A1 - Electrophoretic chip, electrophoretic device, and electrophoretic system - Google Patents

Electrophoretic chip, electrophoretic device, and electrophoretic system Download PDF

Info

Publication number
WO2007046484A1
WO2007046484A1 PCT/JP2006/320878 JP2006320878W WO2007046484A1 WO 2007046484 A1 WO2007046484 A1 WO 2007046484A1 JP 2006320878 W JP2006320878 W JP 2006320878W WO 2007046484 A1 WO2007046484 A1 WO 2007046484A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrophoresis
lane
migration
dielectrophoresis
Prior art date
Application number
PCT/JP2006/320878
Other languages
French (fr)
Japanese (ja)
Other versions
WO2007046484A8 (en
Inventor
Osamu Teranuma
Mayuko Sakamoto
Yoshihiro Izumi
Masayuki Fujimoto
Original Assignee
Sharp Kabushiki Kaisha
National University Corporation Shizuoka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha, National University Corporation Shizuoka University filed Critical Sharp Kabushiki Kaisha
Publication of WO2007046484A1 publication Critical patent/WO2007046484A1/en
Publication of WO2007046484A8 publication Critical patent/WO2007046484A8/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C5/00Separating dispersed particles from liquids by electrostatic effect
    • B03C5/005Dielectrophoresis, i.e. dielectric particles migrating towards the region of highest field strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C5/00Separating dispersed particles from liquids by electrostatic effect
    • B03C5/02Separators
    • B03C5/022Non-uniform field separators
    • B03C5/026Non-uniform field separators using open-gradient differential dielectric separation, i.e. using electrodes of special shapes for non-uniform field creation, e.g. Fluid Integrated Circuit [FIC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C5/00Separating dispersed particles from liquids by electrostatic effect
    • B03C5/02Separators
    • B03C5/022Non-uniform field separators
    • B03C5/028Non-uniform field separators using travelling electric fields, i.e. travelling wave dielectrophoresis [TWD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/087Multiple sequential chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0424Dielectrophoretic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/26Details of magnetic or electrostatic separation for use in medical applications

Definitions

  • Dielectrophoresis chip dielectrophoresis apparatus, and dielectrophoresis system
  • the present invention relates to a dielectrophoresis chip, a dielectrophoresis apparatus, and a dielectrophoresis system for conveying particles such as biomolecules and resin beads by dielectrophoretic force.
  • Analyzes in these chemical analysis systems are blood cell components such as erythrocytes, leukocytes, and lymphocytes obtained by separating blood; bacteria such as E. coli and Listeria; DNA (deoxyribonucleic acid) A wide range of biomolecules such as deoxyribose nucleic acid) and tannoproteins.
  • the main applications include, for example, analysis of these DNAs, proteins, cells, etc. (reaction “detection” separation ”transport); chemical synthesis (microplant);
  • the dielectrophoresis phenomenon is a non-uniform alternating electric field that can act on any particle regardless of its own charge as a driving force for transporting, separating, and collecting particles (including biomolecules) in a fluid. Suitable for particle separation 'conveyance. For this reason, since the dielectrophoresis phenomenon is suitable for selecting an object (particulate matter), research on a chemical analysis system using the dielectrophoresis phenomenon is underway (for example, Patent Documents 1 to 5). Non-patent documents 1 to 4).
  • FIG. 26 is a perspective view showing a schematic configuration of a conventional particle transport device using a dielectrophoresis phenomenon, and FIG. 26 shows a schematic configuration of the particle transport device in which a plurality of non-parallel electrode pairs are arranged. Yes.
  • Patent Document 1 As an application example of the chemical analysis system using the dielectrophoresis phenomenon, for example, in Patent Document 1, as shown in FIG. 26, the lower surface of a channel 101 for flowing a sample liquid such as a blood sample is shown. Discloses a particle conveying device 100 in which a plurality of non-parallel electrode pairs 111 and 112 are arranged. In the particle conveying device 100, particles are conveyed by the dielectrophoretic force generated by the non-uniform electric field obtained by the non-parallel electrode pairs 111 and 112.
  • FIG. 27 (a) is a side view showing a schematic configuration of a conventional dielectrophoresis apparatus that separates cells using a comb-shaped electrode
  • FIG. 27 (b) is a side view of FIG. 27 (a). It is a top view which shows the structure of the principal part (electrode formation part) in the dielectrophoresis apparatus shown.
  • Non-Patent Document 1 As shown in FIGS. 27 (a) and 27 (b), a comb electrode 202 provided on a glass substrate 201 is subjected to high frequency by an alternating current (AC) signal generator 203.
  • AC alternating current
  • a comb-shaped electrode is used to concentrate microorganisms (biological particles such as bacteria) in a sample solution by dielectrophoresis in the gap portion of the electrode that is an electric field concentration portion.
  • a technique for measuring the concentration of the microorganism by performing impedance measurement between the two is disclosed.
  • FIG. 28 is a diagram for explaining a technique for transporting cells using comb-shaped electrodes.
  • Non-Patent Document 2 and Patent Document 3 as shown in FIG. 28, the particles in the electrophoresis medium are placed above the surface of the electrode 301 depending on the phase condition of the signal applied to the adjacent electrodes 301. It is disclosed that it floats and is transported.
  • Dielectrophoresis is a phenomenon in which a force acts on particles due to the interaction between an applied electric field and an electric dipole induced thereby, and more specifically, when a nonuniform AC electric field is applied. This is a phenomenon in which a substance moves under the force (dielectrophoretic force) due to the interaction between the electric field lines generated in the field and the polarization of the substance.
  • the dielectrophoretic force depends on the dielectric constant of the particles and the solvent, the frequency of the applied voltage, and the like.
  • Dielectrophoresis is called “positive dielectrophoresis” (hereinafter referred to as “p-DEP”) in which force is applied in the direction of strong electric field depending on the dielectric constant of particles and solvent, and the frequency of applied voltage.
  • p-DEP Positive dielectrophoresis
  • n-DEP Native dielectrophoresis
  • a dipole moment When an electric field is applied to a particle force system suspended in a solvent, a dipole moment is induced.
  • the electric field is, for example, alternating current (AC)
  • the dipole moment is defined as a vector having in-phase and out-of-phase components.
  • the time average value of the dielectrophoretic force F (t) acting on the dielectric particles in the non-uniform electric field is expressed by the following formula (1) as described in Non-Patent Document 3, for example.
  • each symbol represents the following components.
  • the dielectrophoretic force has two components, a stationary DEP (DEP) and a traveling-wave DEP (hereinafter referred to as "TWD").
  • DEP stationary DEP
  • TWD traveling-wave DEP
  • DEP is a force (in-phase component of the polarization induced by the electric field; real part of equation (1)) caused by the non-uniform distribution of the electric field.
  • TWD is the force (loss component of polarization induced by the electric field; imaginary part of equation (1)) caused by the non-uniform distribution of the phase of the electric field component.
  • the electrophoretic force works in the direction of strong electric field strength.
  • a positive dielectrophoresis (p—DEP) force is applied.
  • p—DEP positive dielectrophoresis
  • Negative dielectrophoretic (n—DEP) force acts. As a result, the particles move in the direction where the electric field gradient is small.
  • the dielectrophoretic force acts in the direction of the large phase, that is, the electric field movement direction.
  • I [f] ⁇ 0 m CM the dielectrophoretic force is in the direction of the small electric field phase, that is, the direction opposite to the electric field movement direction.
  • TWD works in a direction perpendicular to the electrode wiring length direction.
  • the action of TWD varies depending on the height from the electrode plane.
  • the effect of TWD is more noticeable at a certain distance from the plane than near the electrode plane. Therefore, when transporting the target particles by TWD, the target particles are first levitated only by DEP (DEP mode). After that, the TWD can act efficiently on the target particles by transporting the target particles (TWD mode) by applying the TWD.
  • non-patent document 2 and patent document 3 describe the phase conditions of signals applied to adjacent electrodes 301 in an electrode array composed of a plurality of electrodes 301.
  • Equation (1) becomes only the real part (that is, Equation (2)).
  • the particles in the electrophoresis medium float by receiving a force (DEP) that floats above the surface of the electrode 301. Therefore, thereafter, in the above electrode example, the phase condition of the signal applied to the adjacent electrodes 301 is 0 as described in Non-Patent Document 2 and Patent Document 3.
  • 90 °, 180. , 270 °, etc., equation (1) has both real and imaginary parts.
  • the particles in the electrophoresis medium are transported by receiving a transport force (TWD).
  • TWD transport force
  • Patent Document 1 Japanese Patent Publication “JP-A-6-174630 (Publication Date: June 24, 1994)”
  • Patent Document 2 Corresponding to Japanese Patent Gazette “Special Table 2003-504196 (Publication Date: February 4, 2003)” (International Publication No. 01Z005514 Pamphlet (International Publication Date: January 25, 2001) )
  • Patent Document 3 Japanese Patent Publication “JP 2000-125846 (Publication Date: May 9, 2000)”
  • Patent Document 4 Corresponds to Japanese Patent Gazette “Special Publication 2003-504629 (Publication Date: February 4, 2003)” (International Publication No. 01Z005512 Pamphlet (International Publication Date: January 25, 2001) )
  • Patent Document 5 Japanese Patent Publication Gazette “Patent No. 3453136 (Registration Date: July 18, 2003, Publication Date: November 2, 1994)” (corresponding US Pat. No. 5,454,472) Registration date: October 3, 1995))
  • Patent Document 6 Japanese Published Patent Publication “Japanese Patent Laid-Open No. 2000-298109 (Publication Date: 24th January 2000)”
  • Non-Special Reference 1 HaiDo Li et al., Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated elec trades ", Sensors and Actuators B 86, p.215-221, 2002.
  • Non-Patent Document 2 Ronald Pethig et al ", Enhancing Traveling-Wave Dielectrophoresis with Signal Superposition", IEEE Engineering in medicine and biology magazine, p.43-50, Nov./Dec. 2003.
  • Non-Special Terms 3 Xiao- Bo Wang et al., 'Dielectrophoretic Manipulation of Particles, IE EE Trans. Ind. Applicat., Vol.33, No.3, ⁇ ⁇ 660-669, May./June 1997.
  • Non-Special Terms 4 R. Krupke et.al., "Separation of metallic from semiconducting single-walled carbon nanotubes" SCIENCE, vol.301, 18 July 2003, p.344-347
  • Non-Special Reference 5 J. Voldman et al. "Design and analysis of extruded quadrupolar dielec trophoretic t ps ⁇ , Journal of Electrostatics 57 (2003) p.69-90
  • one sample is usually placed on one semiconductor chip substrate (microarray). It is injected into a flow path provided in the semiconductor chip substrate, and an alternating current (AC) voltage is applied to a dielectrophoretic electrode (electrophoretic electrode array) provided in the flow path to manipulate particles in the sample solution. ! / Speak.
  • AC alternating current
  • the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to simultaneously place a plurality of samples under electrophoretic conditions under the same conditions without complicated setting of an experimental environment. Therefore, it is possible to provide a dielectrophoresis chip, a dielectrophoresis apparatus, and a dielectrophoresis system.
  • a dielectrophoresis chip is a dielectric that dielectrophores the dielectric substance by applying an electric field formed by an alternating voltage to a sample containing the dielectric substance.
  • the electrophoresis chip includes a plurality of electrophoresis lanes for dielectrophoretic migration of the dielectric substance on a single substrate, and a plurality of electrode forces intersecting the electrophoresis lane, and an electric field is applied to the sample injected into the electrophoresis lane.
  • an electrode array that dielectrophores the inductive substance by applying an AC voltage is provided, and each electrode in the electrode array is provided across the plurality of electrophoresis lanes. .
  • an AC voltage (electrophoresis control voltage) that applies a dielectrophoretic force to the dielectric substance can be input to each electrode in each electrophoretic lane.
  • an AC voltage (electrophoresis control voltage) that applies a dielectrophoretic force to the dielectric substance can be input to each electrode in each electrophoretic lane.
  • the dielectrophoresis apparatus and the dielectrophoresis system include the dielectrophoresis chip.
  • the dielectrophoresis apparatus and the dielectrophoresis system collectively apply an alternating voltage (electrophoresis control voltage) that applies a dielectrophoretic force to the dielectric substance to each electrode in each electrophoretic lane of the dielectrophoresis chip.
  • an alternating voltage electrophore control voltage
  • the type of sample for example, a medium such as a solvent
  • a dielectrophoresis chip having a plurality of electrophoresis lanes on one substrate. It is possible to select specific particles simultaneously by changing each lane and selecting specific particles simultaneously, or by using the same medium as the solvent and changing the electrode shape for each lane. Yes, it is possible to efficiently select a plurality of particles. Therefore, according to the above configuration, it is possible to provide a dielectrophoresis system and a dielectrophoresis device and a dielectrophoresis system compatible with a wide range of applications.
  • FIG. 1 is a perspective view showing a schematic configuration of a dielectrophoresis panel according to a first exemplary embodiment.
  • FIG. 2 is a plan view of the dielectrophoresis panel shown in FIG. 1 as viewed from the upper substrate side.
  • FIG. 3 is a cross-sectional view taken along the line AA of the dielectrophoresis panel shown in FIG.
  • FIG. 4 is a cross-sectional view of the dielectrophoresis panel shown in FIG.
  • FIG. 5 is a schematic configuration diagram of a dielectrophoresis system including the dielectrophoresis panel shown in FIG.
  • FIG. 6 is a plan view showing a schematic configuration of a dielectrophoresis panel according to a second exemplary embodiment.
  • FIG. 7 is a plan view showing a schematic configuration of a dielectrophoresis panel according to a third exemplary embodiment.
  • FIG. 8 (a) is a plan view showing a schematic configuration of a dielectrophoresis panel according to a fourth embodiment.
  • (B) to (e) are diagrams in each electrophoresis lane of the dielectrophoresis panel shown in (a).
  • FIG. 5 is a plan view schematically showing the shape of an electrophoresis electrode.
  • FIG. 9 is a plan view showing a schematic configuration of a dielectrophoresis panel according to a fifth embodiment.
  • FIG. 10 is a plan view showing a schematic configuration of a dielectrophoresis panel according to a sixth embodiment.
  • FIG. 11 is an exploded cross-sectional view of the dielectrophoresis panel shown in FIG.
  • FIG. 12 is a plan view showing a schematic configuration of a dielectrophoresis panel according to a seventh embodiment.
  • FIG. 13 is a cross-sectional view of the dielectrophoresis panel shown in FIG.
  • FIG. 14 is a plan view showing a schematic configuration of a dielectrophoresis panel according to an eighth embodiment.
  • FIG. 15 is a cross-sectional view of the dielectrophoresis panel shown in FIG.
  • FIG. 16 is a cross-sectional view of the dielectrophoresis panel shown in FIG.
  • FIG. 17 is a schematic configuration diagram of a dielectrophoresis system including the dielectrophoresis panel shown in FIG.
  • FIG. 18 is a cross-sectional view of the principal part schematically showing the state of floating and transporting the target particles in the electrophoresis medium using the dielectrophoresis system shown in FIG. 17 in the cross section of the dielectrophoresis panel shown in FIG.
  • (A) is a cross-sectional view of the main part showing how the target particles are levitated in the DEP mode
  • (b) is a cross-sectional view of the main part showing how the levitated target particles are conveyed in the TWD mode. is there.
  • FIG. 19 is a sectional view showing a schematic configuration of a dielectrophoresis panel according to a ninth embodiment.
  • FIG. 20 is a sectional view showing a schematic configuration of another dielectrophoresis panel according to the ninth embodiment.
  • FIG. 21 Levitating the target particle in the electrophoresis medium using the dielectrophoresis system shown in FIG.
  • FIG. 18 is another cross-sectional view schematically showing the main part of the dielectrophoresis panel shown in FIG. 17, and (a) is a cross-sectional view of the main part showing the state of floating the target particles. (B) And (c) is principal part sectional drawing which shows a mode that the levitated target particle is conveyed.
  • FIG. 22 is a cross-sectional view of still another main part schematically showing the state of levitation and transport of target particles in the electrophoretic medium using the dielectrophoresis system shown in FIG. 17 in the cross section of the dielectrophoresis panel shown in FIG. (A) is a cross-sectional view of the main part showing how the target particles are levitated, and (b) and (c) are cross-sectional views of the main part showing how the levitated target particles are conveyed. .
  • FIG. 23 is a plan view showing a schematic configuration of a dielectrophoresis panel according to an eleventh embodiment.
  • FIG. 24 is a plan view showing a schematic configuration of a dielectrophoresis panel according to a twelfth embodiment.
  • FIG. 25 (a) is a plan view showing a schematic configuration of the dielectrophoresis panel according to the thirteenth embodiment, and (b) to (e) are diagrams in each electrophoresis lane of the dielectrophoresis panel shown in (a). It is a top view which shows typically the shape of an electrophoresis electrode.
  • FIG. 26 is a perspective view showing a schematic configuration of a conventional particle transport device using a dielectrophoresis phenomenon.
  • FIG. 27 (a) is a side view showing a schematic configuration of a conventional dielectrophoresis apparatus for separating cells using comb-shaped electrodes, and (b) is a schematic diagram of the dielectrophoresis apparatus shown in (a). It is a top view which shows the structure of a part.
  • FIG. 28 is a diagram for explaining a technique for transporting cells using comb-shaped electrodes.
  • Electrophoretic electrode array (electrode array) a Electrophoresis electrode (electrode)
  • Electrophoresis electrode array (first electrode array) Second electrode
  • Electrophoretic electrode array (second electrode array) Spacing layer (electrophoresis lane wall) a Bulkhead (electrophoresis lane wall)
  • Control board (control unit)
  • Control board (control unit)
  • FIG. 1 is a perspective view showing a schematic configuration of a dielectrophoresis panel according to the present embodiment.
  • FIG. 2 is a plan view of the dielectrophoresis panel shown in FIG. 1 as viewed from the upper substrate side.
  • 3 is a cross-sectional view taken along the line AA of the dielectrophoresis panel shown in FIG. 2
  • FIG. 4 is a cross-sectional view taken along the line BB of the dielectrophoresis panel shown in FIG.
  • FIG. 5 is a schematic configuration diagram of a dielectrophoresis system that works on the present embodiment including the dielectrophoresis panel shown in FIG.
  • the upper substrate is indicated by a two-dot chain line.
  • the dielectrophoresis panel 10 (dielectrophoresis chip, electrophoretic array) according to the present embodiment as a so-called microchip substrate has a lower substrate 1 ( A plurality of migration lanes 3 (flow paths) having migration spaces are provided between the first substrate) and the upper substrate 2 (second substrate).
  • the electrophoresis lane 3 has a pattern of the electrophoresis lane wall 4 on one substrate of the pair of substrates, in the present embodiment, the lower substrate 1 and along the formation region of the electrophoresis lane 3. Is formed.
  • each electrophoresis lane 3 has an injection hole 5 (opening, injection) for injecting and discharging a sample (swimming medium) containing an observation object (dielectric substance) such as a sample solution.
  • the entrance is formed ing.
  • At least one of the lower substrate 1 and the upper substrate 2 is preferably formed of a transparent substrate (transparent insulator substrate) such as glass, quartz, or plastic.
  • a transparent substrate transparent insulator substrate
  • transparent substrates for example, transparent substrates of about 10 cm ⁇ 10 cm are used.
  • Electrode row (comb-type electrode) force composed of electrodes for electrophoresis) is provided in a direction perpendicular to each electrophoresis lane 3... Across each electrophoresis lane 3.
  • the migration electrode 6a is, for example, a metal material such as aluminum (A1), titanium (Ti), molybdenum (Mo), white gold (Pt), gold (Au), or an alloy containing these metals. It is formed by.
  • the migration electrode array 6 for example, migration electrodes 6 a having a film thickness of about 2000 A, an electrode length of about 10 cm, and an electrode width (L: line) of 30 m are arranged with an electrode spacing (S: space). ) Form 1000 pieces so that the force is 30 m (that is, both LZS is 30 ⁇ m).
  • the conditions such as the electrode width, the electrode interval, and the electrode length (wiring length) are not particularly limited, and the size and arrangement of particles to be analyzed (that is, particles in the electrophoresis medium) are not particularly limited. In addition, it may be set as appropriate according to the intended operation (separation, collection, transport, etc.). Further, the film thickness and electrode material of the swimming electrode 6a can also be set as appropriate, and are not particularly limited.
  • the migration electrode array 6 (that is, each migration electrode 6 a) extends over the plurality of migration lanes 3, and acts in common on each migration lane 3.
  • the electrophoresis electrode array 6 has a mounting / connecting portion 6b (input terminal portion) at one end portion of the lower substrate.
  • a flexible printed circuit (hereinafter referred to as “FPC”) 17 is mounted on the mounting / connecting portion 6b, and the control board 50 (control portion; drive) shown in FIG. Connected to the control unit).
  • the control board 50 will be described later.
  • a lower surface protective film 7 and an upper surface protective film 8 are formed on the opposing surfaces of the lower substrate 1 and the upper substrate 2, respectively.
  • the lower surface protective film 7 and the upper surface protective film 8 constitute the bottom wall and the top wall of the inner wall of the migration lane 3, respectively.
  • Examples of the material for the lower surface protective film 7 and the upper surface protective film 8 include fluorine-based resin; human cell film; organic film such as acrylic resin and polyimide resin; and the like.
  • the materials of the film 7 and the upper surface protective film 8 are not particularly limited as long as they are appropriately set according to the type of particles to be migrated.
  • the film thickness of the lower surface protective film 7 and the upper surface protective film 8 is not particularly limited as long as it can protect (cover) the inner wall of the migration lane 3, particularly the surface of each of the migration electrodes 6 a. It is not something.
  • the artificial cell membrane includes, for example, “Livisure” (registered trademark) manufactured by NOF Corporation, “PCmodifer” (registered trademark) manufactured by fcAI Neochip, and the like.
  • a material having photosensitivity can also be used as the material for the lower surface protective film 7 and the upper surface protective film 8.
  • a portion where no protective film other than the migration lane 3 is required for example, a mounting terminal portion (implementation 'connection portion 6b) Can be removed by, for example, photolithography, and the time and labor of subsequent processes can be saved.
  • the migration lane wall 4 is a frame provided with a plurality of partition walls 4a that partition the inside into a plurality of lanes as partition walls (partitions). Each partition wall 4a is perpendicular to the electrophoresis electrode array 6 so that the electrophoresis electrode array 6 (each electrophoresis electrode 6a) and the electrophoresis lane 3 intersect (orthogonal in the present embodiment). In parallel!
  • the migration lane wall 4 is formed of, for example, a sealing material (adhesive).
  • the sealing material is not particularly limited.
  • a conventionally known resin is used as the sealing material.
  • an epoxy resin or an adhesive resin (adhesive) such as an epoxy adhesive made of a resin composition containing epoxy resin as a main component is used.
  • the sealing material includes V or a loose spacer (spacing retaining material) such as a spherical spacer or a fiber-like spacer.
  • the thickness of the electrophoresis lane wall 4, that is, the upper The lane height of electrophoresis lane 3 can be made uniform.
  • spacer mixed in the sealing material for example, polytetrafluoroethylene, glass so-called Teflon (registered trademark) spacer, glass spacer or the like is used. Can do.
  • electrophoresis lanes 3 having a lane width (interval between partition walls 4a'4a) of about 1 cm and a lane length of about 6 cm are formed in parallel.
  • the width of the electrophoresis lane wall 4 is set to about 2 mm.
  • a glass spacer with a particle size of 40 ⁇ m is mixed in the sealant so that the thickness of electrophoresis lane 3 (height of electrophoresis lane wall 4) is uniform.
  • any one of the lower substrate 1 and the upper substrate 2 has an injection / discharge hole 5 for injecting and discharging the sample to and from each of the electrophoresis lanes 3 described above. Formed every three.
  • holes having a hole diameter of about 2 mm are provided at both ends of each electrophoresis lane 3 in the upper substrate 2 as the injection and discharge holes 5.
  • each electrophoresis lane 3 the extending direction (longitudinal direction) of the electrophoresis electrode array 6 and the straight line connecting the two injection / discharge holes 5 in each electrophoresis lane 3 are as vertical as possible. It is hoped that it will be provided!
  • the electrophoresis electrode array 6 is formed on the lower substrate 1.
  • a metal material is used, and after forming a metal film on the lower substrate 1 by sputtering or the like, it is patterned into an electrode shape using photolithography.
  • the migration electrode array 6 composed of 1000 electrode rows having a film thickness of about 2000 A, LZS of 30 / ⁇ ⁇ , and an electrode length of about 10 cm is formed.
  • a mounting / connecting portion 6b is formed as a mounting terminal at the end of the electrophoresis electrode array 6 as a pattern.
  • the portions overlapping with the electrophoresis lanes 3 are drilled with, for example, a drill, so that injection and discharge holes 5 having a hole diameter of about 2 mm are provided at both ends of each electrophoresis lane 3.
  • a method for forming the injection / discharge hole 5 other methods such as blasting and etching can be used.
  • an epoxy system in which, for example, a glass spacer having a particle size of 40 ⁇ m is mixed as a reactive adhesive (thermosetting adhesive) on the lower substrate 1 on which the lower surface protective film 7 is formed.
  • Apply adhesive (seal).
  • the electrophoresis lane wall 4 having a width of about 2 mm and a height of about 40 m is formed.
  • a printing method using a screen plate or a drawing method using a dispenser is used for the application of the sealing material.
  • the migration lane wall 4 is formed of the sealing material containing the glass spacer! /, And the force between the migration lanes 3 (lane height) Can be kept uniform. Further, as described above, the migration lane wall 4 having a plurality of partition walls 4a can be easily formed by patterning the sealing material using printing or a drawing method. Thereby, a plurality of electrophoresis lanes 3 can be easily formed.
  • the lower substrate 1 and the upper substrate 2 are disposed to face each other and are bonded together.
  • the migration lane 3 surrounded by the migration lane wall 4 that partitions the space between the lower substrate 1 and the upper substrate 2 and the lower substrate 1 and the upper substrate 2 is formed.
  • the lower substrate 1 and the upper substrate 2 are arranged to face each other, and hot pressing is performed from both the upper and lower surfaces.
  • the sealing material on the lower substrate 1 is softened and softened by hot pressing, and then cured and bonded to each other, whereby the migration lane 3 is formed between the two substrates.
  • the gap of the electrophoresis lane 3 is maintained by the spacer included in the sealing material constituting the electrophoresis lane wall 4.
  • four rows of electrophoresis lanes 3 having a lane width (interval between partition walls 4a'4a) of about 1 cm, a lane length of about 6 cm, and a thickness of about 40 m are formed in parallel.
  • the dielectrophoresis panel 10 which is useful for the present embodiment is formed. As shown in FIG. 5, the dielectrophoresis panel 10 is connected to the control board 50 via the FPC 17 mounted on the mounting / connecting portion 6b formed on the end of the electrophoresis electrode array 6. And A dielectrophoresis apparatus 70 according to the present embodiment includes the dielectrophoresis panel 10, a control board 50, and a DC power source 60 (power source). In addition, the dielectrophoresis system 85 that works in the present embodiment includes the dielectrophoresis apparatus 70 and the imaging system 80.
  • the control board 50 includes a frequency / timer control unit 50a, a synchronization signal control unit 50b, an oscillation circuit unit 50c, and a phase selection / amplification unit 50d.
  • the voltage (DC (direct current) voltage) output from the DC power source 60 is input to the control board 50 and drives the control board 50.
  • an AC voltage is output from the oscillation circuit unit 50c.
  • the output AC voltage is adjusted to the intended AC output by controlling the frequency, phase, amplitude, etc. by the frequency / timer control unit 50a, synchronization signal control unit 50b, and phase selection / amplification unit 50d. It is applied (input) to the dielectrophoresis panel 10 via the FPC 17.
  • the imaging system 80 includes a light source such as a laser for applying irradiation light to the observation region (measurement unit) in the migration lane 3 of the dielectrophoresis panel 10, an optical microscope, a CCD (charge coupled device; charge coupled device) is an optical system equipped with an imaging device such as a camera, and is installed in the upper or lower portion of the electrophoresis lane 3 for optical detection.
  • a light source such as a laser for applying irradiation light to the observation region (measurement unit) in the migration lane 3 of the dielectrophoresis panel 10
  • an optical microscope a CCD (charge coupled device; charge coupled device) is an optical system equipped with an imaging device such as a camera, and is installed in the upper or lower portion of the electrophoresis lane 3 for optical detection.
  • a light source such as a laser for applying irradiation light to the observation region (measurement unit) in the migration lane 3 of the dielectrophoresis panel 10
  • an optical microscope a C
  • the sample used in the present embodiment may be a sample containing an inductive substance that can induce dielectrophoretic force. More specifically, a medium made of a dielectric substance is in the medium. As long as the sample is dispersed in the sample, there is no particular limitation.
  • the "electrophoresis medium" used as the sample (sample solution) in the present embodiment is a dispersion in which "particles" (electrophoretic particles) to be electrophoresed are dispersed in a "solvent". An electrophoresis medium in which particles to be migrated are dispersed in a solvent is used as the sample.
  • the particles include dielectric particles, that is, biological cells, bacteria, viruses, parasitic microorganisms, DNA, proteins, nanopolymers, botanical particles (pollen, etc.), non-biology Particle and the like.
  • the particles include other particles that can be suspended in a liquid and can induce dielectrophoretic force.
  • the particles may be a compound or gas dissolved or suspended in a liquid (so-called dielectric gas).
  • dielectric gas a liquid
  • Non-Patent Document 4 discloses that carbon nanotubes are sorted (separation between metal and semiconductor) by dielectrophoresis.
  • carbon nanotube suspensions are prepared by dispersing carbon nanotubes that are hydrophilic and not dispersed in water using supercritical water, so that semiconductors can migrate and metals cannot migrate. The carbon nanotubes are sorted using
  • the difference in the dielectrophoretic rate between the medium is a parameter of the driving force.
  • a fine valve of gas such as air or nitrogen
  • an anaerobic substance can be carried in a gas valve such as nitrogen. That is, even an anaerobic substance can be dispersed in a solvent by being enclosed in a gas valve as described above, and can be used as particles that are useful in this embodiment.
  • the solvent for example, water, physiological saline, ethanol, methanol, butanol, oil or the like can be used as appropriate.
  • a mixed solvent in which a plurality of solvents are mixed for example, a mixed solution of water and ethanol
  • cellulose, polyvinyl alcohol or the like can be added as a regulator.
  • one lane 3 contains a diluted aqueous solution (saline) of a specific concentration of specific E. coli (before culture) as a comparative sample. Inject from the discharge hole 5.
  • each E. coli cultured in three different environments was diluted with an aqueous solution diluted to the same concentration as the comparative sample from one injection 'discharge hole 5 in each electrophoresis lane 3. inject.
  • DEP stationary DEP
  • an AC voltage is applied alternately between adjacent migration electrodes 6a at an applied voltage of 8 V, a frequency of 10 MHz, and an adjacent phase difference ⁇ .
  • live cells are trapped at the end of the migration electrode 6a, and dead cells rise near the center of the migration electrode 6a.
  • the difference due to each culture environment is confirmed. For example, the number of cells in a certain area is counted by epi-illumination observation. This enables a quantitative comparison.
  • TWD traveling wave DEP
  • an AC voltage is applied to the adjacent migration electrode 6a with an applied voltage of 8 V, a frequency of 10 MHz, and an adjacent phase difference ⁇ 2.
  • production by each culture environment is confirmed.
  • the number of dead cells that pass through a certain region in a certain time is increased by observation with an optical microscope, for example. This enables a quantitative comparison.
  • a plurality of electrophoresis lanes 3 are provided in parallel, and furthermore, the electrophoresis electrodes 6a (electrophoresis electrode array 6) acting in common on each electrophoresis lane 3 are provided.
  • the electrophoresis electrode 6a (the electrophoresis electrode array 6) is provided in common in each electrophoresis lane 3.
  • the migration control voltage can be input to the migration electrode array 6 at once.
  • the present embodiment when one type of signal is input to the comb-shaped electrode (electrophoresis electrode array 6) having the electrophoresis electrodes 6a common to the electrophoresis lanes 3 provided in parallel to each other, a plurality of signals are input.
  • An electric field can be applied to electrophoresis lane 3 of Therefore, according to the present embodiment, migration control of a plurality of samples (electrophoresis media) can be performed simultaneously in a lump.
  • a plurality of different samples for example, samples having different relative dielectric constants and viscosities of solvents, or physical property values of particles in the solvent (without the complicated setting of the experimental environment) It is possible to place samples with different dielectric constants etc.) under the same migration conditions under the same conditions, and dielectrophoresis chips and dielectrophoresis adapted to various test conditions with a wide range of application to the test conditions. It is possible to realize a device and even a dielectrophoresis system
  • the dielectrophoresis panel 10 dielectrophoresis chip having the plurality of electrophoresis lanes 3 in this way, the type of the solvent (electrophoresis medium) can be changed. It is possible to select specific particles at the same time by changing each electrode and changing the electrode shape for each lane 3 with the same solvent (electrophoresis medium). Yes, it is possible to efficiently select a plurality of particles. Therefore, according to this embodiment, it is possible to realize a dielectrophoresis chip, a dielectrophoresis apparatus, and a dielectrophoresis system compatible with a wide range of applications.
  • the migration lane wall 4 is formed on the lower substrate 1 on which the lower surface protective film 7 is formed, that is, on the lower surface protective film 7.
  • the form of the electrophoretic lane wall 4 in the lower surface protective film 7 and the upper surface protective film 8 when the lower surface protective film 7 and the upper surface protective film 8 are formed, that is, the above-described form is not limited thereto. Part or all of the overlapping region with the electrophoresis lane wall 4 (seal material) may be removed. With such a structure, even when the adhesion between the lower surface protective film 7 and the upper surface protective film 8 and the sealing material is poor, sufficient adhesion can be obtained.
  • the lower surface protective film 7 and the upper surface protective film 8 are formed on the opposing surfaces of the lower substrate 1 and the upper substrate 2, respectively.
  • the configuration is described as an example. However, this embodiment is limited to this.
  • the lower surface protective film 7 and the upper surface protective film 8 are not necessarily formed on the lower substrate 1 and the upper substrate 2.
  • the protective films that cover the migration electrodes 6a. By providing 8), it is possible to prevent the migrating particles from adsorbing to the migration electrode 6a. Therefore, depending on the kind of the particles, it is desirable that the lower protective film 7 and the upper protective film 8 are formed on the lower substrate 1 and the upper substrate 2.
  • the migration lane wall 4 is formed on the lower substrate 1 as an example.
  • the migration lane wall 4 is not necessarily provided on the lower substrate 1. It may be formed on the upper substrate 2 which need not be formed on the upper substrate 2.
  • the lower substrate 1 and the upper substrate 2 are, for example, 10 cm.
  • the embodiment is not limited to this, as long as one of the substrates is provided so as to be observable. Good.
  • only the upper substrate 2 that is the substrate opposite to the substrate on the migration electrode formation side may be formed of a transparent substrate.
  • the lower substrate 1 and the upper substrate 2 do not necessarily have to be formed of a transparent substrate on one of the substrates. Specifically, the lower substrate 1 and the upper substrate 2 are regions where the particles undergo a dielectrophoretic force. 3 and the electrophoresis electrode 6a (the electrophoresis electrode array 6) are used as an observation area, and the sample (electrophoresis medium) in the electrophoresis lane 3 may be provided to be observable in the observation area.
  • the region where the particles are subjected to the dielectrophoretic force on the substrate opposite to the substrate on which the migration electrode is formed (in this embodiment, the upper substrate 2), specifically, the migration lane 3 and the migration electrode 6a (
  • An observation window (opening or transparent area) is provided in the area (observation area) where the electrophoresis electrode array 6) overlaps, and the sample (electrophoresis medium) in the electrophoresis lane 3 is observed in this area.
  • both substrates may be formed of a non-transparent substrate (semi-transparent or opaque substrate).
  • the substrate sizes of the lower substrate 1 and the upper substrate 2 are not particularly limited as long as they are set appropriately. Furthermore, the specific size made in the present embodiment is also only an example of the embodiment, and various changes can be made according to the analysis target. That is, the above Substrate size, electrode size (electrode width, electrode spacing, electrode thickness, electrode length, etc.) of lower substrate 1 and upper substrate 2, film thickness of lower surface protective film 7 and upper surface protective film 8, layer thickness of migration lane wall 4 ( Conditions such as height), lane width, and lane length are not particularly limited, and various changes can be made according to the analysis target.
  • the case where the electrophoresis lanes 3 are formed in four rows in parallel has been described as an example.
  • the number of lanes in the electrophoresis lane 3 is appropriately set according to the number of measurement samples and the like. There is no particular limitation.
  • the case where the migration electrode 6a (migration electrode array 6) force is provided in the vertical direction with respect to each migration lane 3 is described as an example.
  • the present embodiment is not limited to this.
  • the same electrophoresis electrode 6a (electrophoresis electrode array 6) force is extended over a plurality of electrophoresis lanes 3.
  • the migration electrode 6a extends in a direction perpendicular to the migration lanes 3 as long as they act in common.
  • the observation regions in each swimming lane 3 are provided adjacent to each other. For this reason, it is preferable that the electrophoresis electrode 6a is provided in a direction perpendicular to the electrophoresis lanes 3.
  • the dielectrophoresis panel 10 in which the electrophoresis lane 3 is provided between the lower substrate 1 and the upper substrate 2 is taken as an example of the dielectrophoresis chip that works with the present embodiment.
  • the present embodiment is not limited to this, force depending on the type of the sample (sample solution), for example, the upper surface of the electrophoresis lane 3 is not covered with the upper substrate 2 You may have. That is, the electrophoresis lane 3 is not necessarily formed between a pair of substrates, for example, an electrophoresis tank (that is, the lower substrate 1 and the lower substrate 1 provided on the lower substrate 1 (surface of the lower substrate 1)).
  • the migration cell formed on the lower substrate 1 may be an electrophoresis tank composed of the migration lane wall 4 formed on the lower substrate 1. It may be a closed space formed by the substrate 2 and the electrophoresis lane wall 4.
  • the dielectrophoresis chip, dielectrophoresis apparatus, and dielectrophoresis system according to the present embodiment are used for bio research microarrays such as separation and detection of specific cells, for example, It can be suitably used in a chemical analysis system that conveys a dielectric substance such as biomolecules and resin beads by dielectrophoretic force.
  • FIG. 6 is a plan view showing a schematic configuration of a dielectrophoresis panel according to the present embodiment.
  • the upper substrate is indicated by a two-dot chain line.
  • the migration electrode array 6 has a stripe structure in which the migration electrodes 6a constituting the migration electrode array 6 are provided in parallel with each other in a stripe shape. In this case, the case is described as an example.
  • the electrode width and the electrode interval of the migration electrode 6a are overlapped with the migration lane 3 in the migration electrode 6a (migration electrode array 6).
  • the area is different from the other areas. Therefore, in the present embodiment, the electrode shape of the migration electrode 6a is different between the region where the migration electrode 6a (the migration electrode array 6) overlaps the migration lane 3 and the other regions.
  • a plurality of frame-shaped electrophoresis lanes provided independently of each other as electrophoresis lane walls between the lower substrate 1 and the upper substrate 2.
  • a plurality of electrophoresis lanes 3 that are spaced apart from each other and provided in parallel are provided, and the inside of the electrophoresis lane 3 (within the frame) and the area between the electrophoresis lanes (
  • the migration electrode array 6 is provided so that the electrode width and the electrode spacing of the migration electrode 6a are different between the gap 22), that is, outside the migration lane 3 (outside the frame).
  • the migration electrode 6a in the migration lane 3, that is, the migration electrode in the region (observation region 9) used as the observation region where the migration electrode array 6 overlaps the migration lane 3 6a is formed with, for example, an electrode width (L) of 10 ⁇ m and an electrode interval (S) of 10 (electrode pitch of 20 ⁇ m), while other regions, that is, regions not related to electrophoresis (that is, Electrophoresis electrode 6a in the outer lane 3) has an electrode width of 30 m (L) and a maximum electrode interval of 30 m (that is, an electrode interval of 30 / ⁇ ⁇ at the center between adjacent lanes 3 and 3; the center The electrode pitch at the part is 60 ⁇ m).
  • the narrow pitch required only for the swimming electrode 6a group that is, the electrophoresis electrode 6a group in the observation region 9) in the electrophoresis lane 3 necessary for observation of the electrophoresis phenomenon.
  • Wiring is used, and the other area of the migration electrode 6a group (the migration electrode 6a group with a gap of 22mm) that is unrelated to the migration phenomenon is wide-pitch wiring.
  • the resistance of the entire migration electrode array 6 can be reduced, the parasitic capacitance can be reduced, and the attenuation and delay of the input AC voltage can be suppressed.
  • the wiring shape described above is only an example, and the present invention is not limited to this.
  • FIG. 7 is a plan view showing a schematic configuration of a migration panel that works according to the present embodiment.
  • the upper substrate is indicated by a two-dot chain line.
  • the electrode width and electrode interval (electrode pitch) of the electrophoresis electrode 6a are different in each of the three electrophoresis lanes 3 provided in parallel and spaced apart from each other! This is different from the dielectrophoresis panel 10 shown in FIG.
  • the electrode width and the electrode interval of the electrophoresis electrodes 6a are so large that the migration lane 3 on the side is far from the mounting connection 6b provided at the end of the lower substrate 1.
  • the electrophoresis electrode array 6 is provided.
  • the electrophoresis electrode array 6 shown in FIG. 7 has, for example, an electrode width of 10 m, in order from the electrophoresis lane 3 on the mounting / connecting portion 6b side in a region overlapping with each electrophoresis lane 3.
  • Electrode part PI consisting of electrophoretic electrode 6a group with electrode spacing 10 m (electrode pitch 20 ⁇ m) and electrode part consisting of electrophoretic electrode 6a group with electrode width 20 ⁇ m and electrode spacing 20 m (electrode pitch 40 ⁇ m)
  • Electrophoresis electrode P3 and electrode part P3 consisting of group 6a with electrode width 30 ⁇ m and electrode spacing 30 m (electrode pitch 60 ⁇ m)
  • the migration electrode 6a between the electrode parts P1 and ⁇ 2 has, for example, an electrode width of 30 ⁇ m, an electrode interval of 10 ⁇ m at the electrode part P1 side end (electrode pitch 20 ⁇ m), and the electrode parts
  • the electrode interval is 20 ⁇ m (electrode pitch 40 ⁇ m) at the P2 side end, and the electrode interval is determined by the array width of the migration electrode array 6 (both ends on both sides of the migration electrode array 6).
  • the electrode is formed so as to change linearly according to the electrode width between the electrodes 6a and 6a.
  • the migration electrode 6a between the electrode parts ⁇ 2 and ⁇ 3 has an electrode width of 30 / ⁇ ⁇ , an electrode interval of 20 ⁇ m (electrode pitch 40 ⁇ m) at the end of the electrode part ⁇ 2, and an end of the electrode part P3 side.
  • the electrode spacing is 30 m (electrode pitch 60 m), and the electrode spacing is determined by the array width of the migration electrode array 6 (the swimming electrodes 6a at both ends of the migration electrode array 6). ⁇ It is formed to change linearly according to the electrode width between 6a!
  • Embodiments 1 to 3 differ from Embodiments 1 to 3, and components having the same functions as those used in Embodiments 1 to 3 are described. Are given the same number and their explanation is omitted.
  • Fig. 8 (a) is a plan view showing a schematic configuration of the dielectrophoresis panel 10 that works according to the present embodiment, and Figs. 8 (b) to 8 (e) show the dielectric shown in Fig. 8 (a).
  • 4 is a plan view schematically showing the shape of the electrophoresis electrode 6a in each electrophoresis lane 3 of the electrophoresis panel 10.
  • FIG. 8 (a) the upper substrate is indicated by a two-dot chain line for convenience of illustration.
  • the dielectrophoresis panel 10 according to the present embodiment is the same as the dielectrophoresis panel 10 according to the first embodiment.
  • the shape of the electrophoresis electrode 6a (the electrophoresis electrode array 6) is different! /.
  • the electrophoresis electrode array 6 has a wiring width as shown in Fig. 8 (b). It has a structure (stripe-type electrode structure) in which linear migration electrodes 6a of 30 / zm are provided in a stripe shape.
  • the electrophoresis electrode array 6 has a structure in which linear migration electrodes 6a having a wiring width of 45 m are provided in a stripe shape as shown in FIG. Stripe-type electrode structure).
  • the electrophoresis electrode array 6 is a chopped type (saw saw) with a wiring width of 30 m.
  • a plurality of electrophoretic electrodes 6a arranged in parallel at equal intervals.
  • the mounting connection 6 b force is farthest in the far lane 3D, as shown in FIG. 8 (e)
  • the migration electrode array 6 has a waveform with a wiring width of 30 m.
  • the plurality of migration electrodes 6a are arranged in parallel at equal intervals.
  • the electrode spacing (electrode pitch) of each of the migration electrodes 6a is 60 ⁇ m.
  • the dielectrophoresis behavior depends on the wiring, that is, the shape of the migration electrode 6a (migration electrode array 6), even when the same sample (migration medium) is used and driven with the same control voltage. Depending on the state of the electric field in the medium). Therefore, by changing at least one of the electrode shape, electrode width, and electrode interval of the electrophoresis electrode 6a (electrophoresis electrode array 6) for each electrophoresis lane 3 as in the present embodiment, It becomes possible to simultaneously sort and identify a plurality of specific particles. As a result, for example, a plurality of particles can be efficiently selected. In addition, according to the above configuration, there is a merit that the difference in the migration behavior of the particles in the plurality of migration lanes 3 can be collectively observed.
  • the dielectrophoresis panel 10 that works in the present embodiment, among the shape, electrode width, and electrode interval of the migration electrode 6a (migration electrode array 6), In both cases, a dielectrophoresis panel in which one condition is different for each lane 3 has been described as an example. However, the present embodiment is not limited to this.
  • the dielectrophoresis panel 10 has a predetermined gap 22 (region between lanes) between the lanes 3 and 3 adjacent to each other.
  • the gap portion 22 and the migration lane 3 have a configuration in which at least one of the shape, electrode width, and electrode spacing of the migration electrode 6a (migration electrode array 6) is different. May be.
  • the electrode shape of the migration electrode array 6 in the migration lanes 3A.3B.3C is not a stripe shape! /
  • the electrode shape of the migration electrode array 6 in the gap 22 is a strip structure, By shortening the wiring length, it is possible to suppress an increase in wiring resistance.
  • the electrode shape of the migration electrode array 6 is made different between the migration lane 3 and the gap 22 by changing the wiring width and the wiring interval of the migration electrode 6a, etc.
  • the low resistance of the migration electrode array 6 (wiring) in the dielectrophoresis panel 10 can be achieved.
  • FIG. 9 is a plan view showing a schematic configuration of the dielectrophoresis panel 10 according to the present embodiment.
  • the upper substrate is indicated by a two-dot chain line.
  • the dielectrophoresis panel 10 has mounting 'connection portions 6b at both ends of the electrophoresis electrode array 6, and these mounting'connection portions 6b' 6b Each has a configuration in which FPC17 is mounted.
  • the dielectrophoresis panel 10 according to the present exemplary embodiment it is possible to input drive AC voltages from both ends of the electrophoretic electrode array 6.
  • the FPCs 17 are each connected to the control board 50 (drive control unit, control device).
  • the dielectrophoresis panel 10 according to the present embodiment has the same drive AC voltage from the FPC 17 at both ends of the electrophoretic electrode array 6 to each electrophoretic electrode 6a during the dielectrophoresis test. Input at the same time.
  • the driving voltage is input from both ends of the migration electrode 6a, so that compared with the case where the driving voltage is also input only to one side force of the migration electrode 6a, It is possible to further suppress the effects of input voltage signal attenuation and delay due to wiring resistance and parasitic capacitance.
  • Embodiments 1 to 5 will be mainly described, and components having the same functions as those used in Embodiments 1 to 5 are described. Are given the same number and their explanation is omitted.
  • a method of injecting a sample solution (electrophoresis medium) as a sample into each electrophoresis lane 3 in the dielectrophoresis panel 10 will be mainly described.
  • either the upper substrate 2 or the lower substrate 1 is injected into the discharge hole 5 (opening portion).
  • the sample is injected from the injection / discharge hole 5 by pressurization such as a pump.
  • Patent Document 6 describes a microchip that is not a system for dielectrophoresis but has an inlet formed above the microphone channel of the channel chip. .
  • the upper substrate is formed in the previous stage in which the lower substrate 1 and the upper substrate 2 are bonded to form the dielectrophoresis panel 10. It is necessary to provide an injection / discharge hole 5 as an injection port in a portion that becomes the top wall or the bottom wall of each electrophoresis lane 3 in either one of 2 and the lower substrate 1.
  • a method for forming the injection / discharge hole 5 as shown in the first embodiment, there are methods such as drilling, blasting and etching.
  • protective layers are formed on the upper and lower substrates on the inner surface of the dielectrophoresis panel.
  • the lower substrate 1 and the upper substrate 2 are provided with a protective film (protective layer) that covers, for example, the migration electrode array 6, like the lower protective film 7 and the upper protective film 8.
  • the lower substrate 1 and the upper substrate 2 are subjected to a surface treatment such as hydrophilicity / water repellent treatment according to the sample to be injected into the electrophoresis lane 3.
  • the surface treatment agent may enter the injection port and contaminate the opening. If the surface treatment agent solidifies in the opening, it will cause an error in the opening diameter, and will cause problems such as poor connection and generation of dust when a connector is inserted.
  • the side surface of the dielectrophoresis panel 10 where the sample injection / discharge hole 5 (opening) is not the surface of either the lower substrate 1 or the upper substrate 2 ( It is provided in the cross section of the panel structure.
  • FIG. 10 is a plan view showing a schematic configuration of the dielectrophoresis panel 10 according to the present embodiment.
  • FIG. 11 is an exploded sectional view taken along line E-E of the dielectrophoresis panel 10 shown in FIG. In FIG. 10, for convenience of illustration, the upper substrate is indicated by a two-dot chain line.
  • the dielectrophoresis panel 10 replaces the injection 'discharge hole 5 according to the first embodiment as an opening for injection / discharge of the sample.
  • the injection and discharge ports 31 are provided at both ends of the electrophoresis lane 3.
  • the inlet / outlet hole 5 has a diameter of about 2 mm and a height of about 40 m (equal to the gap of the panel cavity).
  • the lane width (interval between partition walls 4a'4a) of each swimming lane 3 is about 1 cm and the lane length is about 6 cm.
  • the width of 4 is set to about 2mm.
  • a glass spacer having a particle diameter of 40 m is mixed in the sealing material used for forming the migration lane wall 4 so that the thickness of the migration lane 3 (height of the migration lane wall 4) is uniform. . Note that structures other than those described above are formed in the same manner as in the first embodiment.
  • the migration lane wall 4 is opened in each migration lane 3 by a partial force of a frame body (outer edge) connecting the partition walls 4a'4a separating the migration lanes 3 ...
  • the opening 4b as an injection and discharge port 31 extending from the opening 4b to the end of the dielectrophoresis panel 10 along the extending direction of the swimming lane 3. It has a configuration in which a flow path (passage) composed of the electrophoresis lane wall extension 4c (migration lane wall 4) is provided.
  • a transparent substrate of about 10 cm ⁇ 10 cm is used for the lower substrate 1 and the upper substrate 2. Therefore, the length of the inlet / outlet 31 (the length of the flow path (extended portion)) is about 2 cm.
  • the inner end la ′ 2a of the injection / exhaust port 31 in the lower substrate 1 and the upper substrate 2, that is, the upper substrate 2 in the lower substrate 1 is subjected to chamfering processing with chamfered corners. Is desirable.
  • a liquid feeding tube 13 having an outer diameter larger than the diameter of the injection 'discharge port 31 is connected (pressed contact) to the injection' discharge port 31 to thereby inject the sample. Discharge is possible.
  • the inner end la '2a of the injection' discharge port 31 is chamfered, so that when the injection 'discharge port 31 and the liquid feeding tube 13 are connected, both of them are connected.
  • the contact area is increased and the adhesion between the two is improved.
  • the liquid feeding tube 13 is made of a deformable material (for example, a flexible material) such as silicone resin from the viewpoint of the adhesion between the injection / discharge port 31 and the liquid feeding tube 13. It is desirable that the material is preferably made of an elastic material.
  • a force that uses a tube made of silicone resin having an outer diameter of about 3 mm and an inner diameter of about 1 mm is not limited to this. Absent.
  • the lower surface protective film 7 and the upper surface protective film 8 are end portions of the injection / discharge ports 31 (that is, the chamfering process is performed).
  • the lower substrate 1 and the upper substrate 2 are formed on the inner side of the inner end portion la ′ 2a), that is, the lower end protective film 7 and the upper surface are formed at the end portion of the injection / discharge port 31. It is desirable that the protective film 8 be formed.
  • the liquid is supplied to the injection / discharge port 31 as described above.
  • the sample injection method sample solution feeding method according to the present embodiment is as follows. It is not limited to the above method.
  • the liquid feeding tube 13 having an outer diameter larger than the diameter of the injection 'discharge port 31 is connected (pressed contact) to the injection' discharge port 31.
  • the present embodiment is not limited to this, and the liquid supply tube 13 fitted to the injection / discharge port 31 (for example, the above-described one)
  • the liquid feeding may be performed using a liquid feeding tube 13) having an outer diameter smaller than the diameter of the inlet / outlet port 31.
  • the liquid feeding tube 13 may be provided separately from the dielectrophoresis panel 10 and connected to the dielectrophoresis panel 10 only when a sample (sample solution) is injected.
  • the dielectrophoresis panel 10 may have a configuration fixed in advance.
  • the dielectrophoresis panel 10 includes the liquid feeding tube 13 as injection means for feeding (injecting) a sample to the dielectrophoresis panel 10.
  • the dielectrophoresis apparatus 70 or the dielectrophoresis system 85 may serve as an injection means (injection apparatus) for supplying (injecting) a sample to the dielectrophoresis panel 10, and the liquid supply tube 13 or You may have the structure provided with the sample injection apparatus provided with the said liquid feeding tube 13.
  • the opening (injection / discharge port 31) for feeding the sample into and out of the electrophoresis lane 3 is provided on the side surface of the dielectrophoresis panel 10, thereby allowing the swimming. It is possible to prevent impurities from entering the dynamic lane 3 and suppress the occurrence of defects in the liquid feeding system.
  • the injection 'discharge port 31 is inevitably formed on the side surface of the dielectrophoresis panel 10 by the pattern of the migration lane wall 4, so that the injection' discharge port 31 is formed. In order to do so, no additional materials or processes are required. Therefore, according to the above configuration, the dielectrophoresis panel 10 is compared with a method of providing an opening (injection 'discharge hole 5) on the dielectrophoresis panel 10 (for example, on the upper substrate 2) by a drill or the like. It is possible to relatively suppress the occurrence rate of defects. This suppression effect becomes more prominent as the number of migration lanes 3 increases.
  • the dielectrophoresis panel 1 is more efficiently compared to the case where the dielectrophoresis panel 10 is provided with an opening (injection / exhaust hole (injection / exhaust port)) with a drill or the like. 0 can be formed and is more preferable from the viewpoint of use. [Embodiment 7]
  • Embodiments 1 to 6 will be mainly described, and components having the same functions as those used in Embodiments 1 to 6 are described. Are given the same number and their explanation is omitted.
  • the injection and discharge port 31 in the dielectrophoresis panel 10 is used as a sample, and other methods for feeding a sample solution (electrophoresis medium) are mainly used. explain.
  • FIG. 12 is a plan view showing a schematic configuration of the dielectrophoresis panel 10 according to the present embodiment
  • FIG. 13 is a cross-sectional view of the dielectrophoresis panel 10 shown in FIG. FIG. Also in FIG. 12, for convenience of illustration, the upper substrate is indicated by a two-dot chain line.
  • the dielectrophoresis panel 10 is similar to the embodiment 6 in that the lane walls 4a and 4a connecting the lanes 4a and 4a separating the lanes 3 and 4 are separated.
  • a part of the outer edge portion (frame body) of each has an opening 4b opened at both ends of each electrophoresis lane 3 (both ends in the longitudinal direction of each electrophoresis lane 3).
  • 31 was extended from the opening 4b to the end of the electrophoresis panel 10 (end of the lower substrate 1) along the extending direction of the electrophoresis lane 3 (longitudinal direction of each electrophoresis lane 3).
  • it has a configuration in which a flow path (passage) composed of the migration lane wall extending portion 4c (migration lane wall 4) is provided.
  • the dielectrophoresis panel 10 that is effective in the present embodiment is also opened at both ends of the electrophoresis lane 3 so as to face the side surfaces of the dielectrophoresis panel 10 as in the sixth embodiment.
  • the inlet / outlet port 31 (electrophoresis lane wall extending portion 4c) is provided and has a structure.
  • the lane width (interval between the partition walls 4a'4a) of each electrophoresis lane 3 is about 1 cm
  • the lane length is about 6 cm
  • the inlet / outlet hole 5 has a diameter of about 2 mm and a height of about 40 m (equal to the gap of the panel cavity).
  • the length of the injection / discharge port 31 (length of each lane wall extending portion 4c) is about 2 cm.
  • the substrate length of the upper substrate 2 in the extending direction of the electrophoresis lanes 3 It is formed to be shorter than the substrate length of the lower substrate 1 in the extending direction of the dynamic lane 3. It is.
  • the side wall of the injection / discharge hole 5, that is, the swimming lane wall extending portion 4c (the migration lane wall 4) is provided so as to protrude outward from the end portion of the upper substrate 2. It has the structure which was made.
  • the substrate length of the upper substrate 2 in the extending direction of each migration lane 3 is about 4 mm shorter than the substrate length of the lower substrate 1 in the extending direction of each migration lane 3.
  • the lower substrate 1 protrudes from the upper substrate 2 by about 2 mm at each end in the extending direction of the electrophoresis lanes 3.
  • the dielectrophoresis panel 10 that is useful in the present embodiment includes the inner end portion la ⁇ 2a of the injection inlet / outlet 31 in the lower substrate 1 and the upper substrate 2. Only the inner end portion 2a has a configuration in which a chamfering process in which a force corner portion is chamfered is performed. That is, the dielectrophoresis panel 10 according to the present embodiment includes the upper substrate out of the opposed surface of the lower substrate 1 facing the upper substrate 2 and the opposed surface of the upper substrate 2 facing the lower substrate 1. Only the surface of the substrate 2 facing the lower substrate 1 has a structure in which chamfering treatment is performed on the end of the injection / discharge port 31 forming portion.
  • the dielectrophoresis panel 10 has a configuration in which a liquid delivery connector 15 is connected to the injection / discharge port 31.
  • the liquid feeding connector 15 is formed of a deformable material such as silicone resin. As shown in FIG. 13, the liquid feeding connector 15 sandwiches the ends of the dielectric swimming panel 10, that is, the ends of the lower substrate 1 and the upper substrate 2, so that the injection / discharge port 31 Connected.
  • the liquid feeding connector 15 has a plurality of U-shaped openings 15a into which the injection / discharge port 31 (electrophoresis lane wall extending portion 4c) is inserted and fitted on one side surface. ing.
  • Each electrophoresis lane 3 is structurally separated inside the liquid delivery connector 15 by inserting the injection / discharge port 31 (electrophoresis lane wall extending portion 4c) into the opening 15a.
  • the top wall (upper wall) of the liquid delivery connector 15 corresponds to the injection 'discharge port 31 and corresponds to the injection portion 31a.
  • the inner diameter of the injection / discharge port 31 is set to about 2 mm.
  • the liquid feeding connector 15 is configured so that the lower surface 1 of the lower substrate 1 at the inlet / outlet 31 is in contact with the inner wall of the opening 15a and the inlet / outlet 16 is in the plan view in the lower base. It is formed so as to be positioned above the portion where the plate 1 and the migration lane wall extending portion 4c on the lower substrate 1 are exposed (that is, the portion where the upper substrate 2 is provided).
  • the sample is injected into each electrophoresis lane 3 via the injection / discharge port 31 (liquid feeding). I am able to do it.
  • the liquid feeding connector 15 is appropriately designed according to the number of the electrophoresis lanes 3.
  • the liquid feeding connector 15 may be detachably provided on the dielectric swimming panel 10 which may be fixed to the dielectrophoresis panel 10 in advance. In the latter case, the liquid feeding connector 15 can be reused for the dielectrophoresis panel 10 of the same design.
  • the dielectrophoresis panel 10 includes the liquid feeding connector 15 as injection means for feeding (injecting) a sample to the dielectrophoresis panel 10.
  • the dielectrophoresis device 70 or the dielectrophoresis system 85 may serve as an injecting means (injection device) for injecting (injecting) a sample into the electrophoretic panel 10 as the liquid feeding connector 15 or You may have the structure provided with the sample injection device provided with the said liquid feeding connector 15.
  • an opening (injection / discharge port 31) for feeding the sample into and out of the electrophoresis lane 3 is provided on the side surface of the dielectrophoresis panel 10, so that the electrophoresis lane It is possible to prevent impurities from entering 3 and suppress the occurrence of defects in the liquid feeding system.
  • the injection / discharge port 31 is inevitably formed on the side surface of the dielectrophoresis panel 10 due to the pattern of the electrophoresis lane wall 4, the injection / discharge port 31 is formed. No additional materials or processes are required. Therefore, according to the above configuration, the dielectrophoresis panel 10 is compared with a method of providing an opening (injection 'discharge hole 5) on the dielectrophoresis panel 10 (for example, on the upper substrate 2) with a drill or the like. It is possible to relatively reduce the defect occurrence rate. This suppression effect becomes more prominent as the number of migration lanes 3 increases. Therefore, according to the above configuration, the dielectrophoresis panel 10 is provided with an injection / discharge rod with a drill or the like. The dielectrophoresis panel 10 can be formed more efficiently as compared with the case where it is opened, and it is more preferable from the viewpoint of use.
  • the lower substrate 1 is configured to protrude by about 2 mm from the upper substrate 2 at each end in the extending direction of the electrophoresis lanes 3, and the implantation is performed. 'By setting the inner diameter of the discharge port 31 to about 2 mm, the lower substrate 1 end surface lb is in contact with the inner wall of the opening 15a as shown in FIG. An example has been described in which the configuration is located at the two end portions of the upper substrate and the one end portion of the lower substrate.
  • this embodiment is not limited to this, and the lower substrate 1 end face lb is in contact with the inner wall of the opening 15a, and the edge of the injection / discharge hole 16 is If both are formed so as to be located in the exposed region of the lower substrate 1, the inner diameter of the injection hole 16 need not be the same as the protruding length of the lower substrate 1.
  • the inner diameter of the discharge hole 16 may be formed so as to be smaller than the protruding length of the lower substrate 1.
  • the inner diameter of the injection and discharge holes 16 and the protruding length of the lower substrate 1 are not limited to the above lengths, and can be appropriately set so that the sample can be smoothly injected and discharged. Is possible.
  • the method of injecting (feeding) the sample in the dielectrophoresis panel 10 having the injection 'discharge port on the side surface (electrophoresis array cross section) of the dielectrophoresis panel 10 is not limited to the above method! / ⁇ .
  • the above method is an example of the method of injecting (feeding) the sample in the dielectrophoresis panel 10.
  • various forms of injection (liquid feeding) The method is adaptable.
  • FIG. 14 is a plan view of the dielectrophoresis panel 10 that works with the present embodiment as viewed from the upper substrate side.
  • FIG. 15 is a cross-sectional view of the dielectrophoresis panel 10 shown in FIG. 14 taken along the line GG
  • FIG. 16 is a cross-sectional view of the dielectrophoresis panel shown in FIG. (Longitudinal sectional view).
  • FIG. 17 is a schematic configuration diagram of a dielectrophoresis system that works on the present embodiment including the dielectrophoresis panel shown in FIG. Also in FIG. 14, for convenience of illustration, the upper substrate is indicated by a two-dot chain line.
  • the dielectrophoresis panel 10 (dielectrophoresis chip, electrophoresis array) that works with the present embodiment is also similar to the first to seventh embodiments.
  • First substrate and upper substrate 2 (second substrate) are arranged opposite to each other via migration lane 3 (flow path, cell) having a migration space, as shown in FIGS. 14 and 15.
  • the flow path has a configuration including a plurality of electrophoresis lanes 3.
  • a transparent substrate such as glass, quartz, or plastic can be preferably used as the lower substrate 1 and the upper substrate 2.
  • the electrophoresis lane 3 is a state in which the lower substrate 1 and the upper substrate 2 are provided with a predetermined space (electrophoresis space) constituting each electrophoresis lane 3 between the two substrates. It is formed by bonding and fixing with a seal material (adhesive). That is, in the dielectrophoresis panel 10 according to the present embodiment, the lower substrate 1 and the upper substrate 2 are arranged to face each other via the spacing layer 43 (seal material layer) made of the seal material. Have the same structure.
  • the electrophoresis lane 3 is divided into one of the pair of substrates, in the present embodiment, on a surface facing the upper substrate 2 on the lower substrate 1.
  • partition walls 43a epitrophoresis lane walls
  • separating the electrophoresis lanes 3 ... 1S are patterned along the formation area of each electrophoresis lane 3.
  • the spacing layer 43 serves as the partition wall. That is, in the present embodiment, the partition wall 43a includes the spacing layer 43 and the like. Strictly speaking, it is formed of a sealing material that constitutes the spacing layer 43.
  • the electrophoresis electrode array 41A is provided on the surface of the lower substrate 1 facing the upper substrate 2.
  • Electrodesis electrode wiring, first electrode array is provided with an electrode array (first electrode array, comb-shaped electrode) composed of a plurality of electrodes (electrophoresis electrode; hereinafter referred to as “first electrode”) 41 .
  • Electrodes electrode wiring, second electrode array is provided with an electrode array (second electrode array, comb-shaped electrode) composed of a plurality of electrodes (electrophoresis electrode: hereinafter referred to as “second electrode”) 42.
  • the migration electrode array 41A and the migration electrode array 42A form an electric field by an AC voltage between the first electrodes 41 and 41 and between the second electrodes 42 and 42, respectively.
  • An electric field is applied to each of the samples injected into 3. That is, in the dielectrophoresis panel 10 according to the present embodiment, the electrophoretic electrode array 41 and the electrophoretic electrode array 42A are electric fields substantially parallel to the lower substrate 1 and the upper substrate 2, respectively, in other words. For example, an electric field (lateral electric field) substantially parallel to the lane surface of the electrophoresis lane 3 is applied to each sample injected into the electrophoresis lane 3.
  • the first electrode 41 and the second electrode 42 are overlapped with each other in a plan view via the electrophoresis lane 3 (that is, in plan view). They are placed opposite each other so as to overlap each other. Further, the first electrode 41... And the second electrode 42... Are provided so as to intersect with the electrophoresis lane 3 (orthogonal in the present embodiment).
  • the migration electrode array 41A and the migration electrode array 42A (more precisely, each first electrode in the migration electrode array 41A and the migration electrode array 42A).
  • the electrode 41 and the second electrode 42) force are extended across the plurality of swimming lanes 3 so as to straddle each of the electrophoresis lanes 3.
  • the electrode array 42A acts in common on each electrophoresis lane 3.
  • each of the partition walls 43a includes the swimming electrode array 41A.42A (the first electrode 41 and the second electrode 42), the electrophoresis lane 3 and so on. Are arranged side by side in the vertical direction with respect to the electrophoresis electrode arrays 41 and 42 so that they intersect (orthogonal in the present embodiment).
  • One electrode has at least a region where the particles receive a dielectrophoretic force, specifically, a region where the electrophoresis lane 3 overlaps the first electrode 41 and the second electrode 42 (electrophoresis electrode array 41 ⁇ ⁇ 42 ⁇ ). It is desirable that a part (area) corresponding to a part of the area (at least the observation area) is constituted by a transparent electrode.
  • the first electrode 41 and the second electrode 42 are, for example, In (Indium Tin Oxide), ZnO (Zinc Oxide), IZO (Indium Palladium). It is made of a transparent conductive oxide film (transparent electrode) such as Indium Zinc Oxide.
  • the electrode material used for the transparent electrode is not particularly limited as long as it is a transparent conductive material. Among them, ITO is preferable.
  • the first electrode 41 and the second electrode 42 are made of transparent electrodes such as ITO, so that when observing the electrophoresis medium as a sample, Observation is possible from any direction above and below the migration lane 3 (above the lower substrate 1 side and the upper substrate 2 side) without being blocked by the first electrode 41 and the second electrode 42. Therefore, the observation direction can be selected.
  • any two electrodes adjacent to each other in the first electrode row are 41x and 41x + 1, respectively.
  • the two electrodes in the second electrode array arranged at the positions overlapping with the two electrodes 41 ⁇ 41 ⁇ + 1 are 42 ⁇ and 42 ⁇ + 1, respectively, the lower substrate 1 and the upper substrate 2
  • the electrodes 41 ⁇ and 41 ⁇ + 1 refer to the Xth and ⁇ + 1st electrodes from one end of the lower substrate 1 in the first electrode row, respectively.
  • Electrodes 42 ⁇ and 42 ⁇ + 1 denote the Xth and ⁇ + 2th electrodes from the same end as the lower substrate 1 of the upper substrate 2 in the second electrode row, respectively.
  • the electrode 41x + m or the electrode 41x + n represents the x + m-th or x + n-th electrode from one end of the lower substrate 1 in the first electrode row, respectively.
  • the electrode 42x + m or 42x + n is the same one end force x + mth or x + nth electrode of the upper substrate 2 as the lower substrate 1 in the second electrode row, respectively.
  • X, m, and n are each 1 or more Indicates an arbitrary integer.
  • the electrophoretic electrode array 41A includes the lower substrate, as shown in FIG.
  • the FPC 17 is mounted on the mounting / connecting section 44 and is connected to the control board 50 (control section; drive control section) shown in FIG.
  • the electrophoretic electrode array 42A includes the upper substrate.
  • FPC flexible printed circuit board
  • a lower surface protective film 7 and an upper surface protective film 8 are formed on the opposing surfaces of the lower substrate 1 and the upper substrate 2 as electrode protective films, respectively. ing. These lower surface protective film 7 and upper surface protective film 8 constitute the bottom wall and the top wall of the inner wall of the migration lane 3! / Speak.
  • Examples of the material of the lower surface protective film 7 and the upper surface protective film 8 include the embodiments described above.
  • the materials for the lower surface protective film 7 and the upper surface protective film 8 are particularly limited as long as they are appropriately set according to the type of particles to be migrated. Not a thing.
  • the lower surface protective film 7 and the upper surface protective film 8 only need to protect (cover) the inner walls of the electrophoresis lane 3 and, in particular, the surfaces of the electrodes in the electrophoresis electrode arrays 41 ⁇ and 42 ⁇ .
  • the film thickness is not particularly limited.
  • a material having photosensitivity can be used as the material of the lower surface protective film 7 and the upper surface protective film 8.
  • a part other than the migration lane 3 where no protective film is required for example, a mounting terminal part (mounting connection part 44. 45) can be removed by, for example, photolithography, and the time and effort in the subsequent process can be saved.
  • the spacing layer 43 is provided on the lower protective film 7 and the upper protective film 8.
  • the sealing material used for the spacing layer 43 is not particularly limited, and conventionally known resin is used as the sealing material.
  • a sealing material for example, the above-mentioned A material similar to the material described in Embodiment 1 can be used.
  • the sealing material includes a so-called spacer (a spacing member) such as a spherical spacer or a fiber-like spacer.
  • spacer a spacing member
  • the migration lane wall thickness that is, the migration label is included.
  • the lane height of lane 3 can be made uniform.
  • a spacer mixed in the sealing material a spacer similar to the material described in the first embodiment can be used.
  • the sample is injected into and discharged from the electrophoresis lane 3.
  • Injecting and discharging holes 5 are formed.
  • the injection and discharge holes 5 are provided at both ends of each electrophoresis lane 3 in the upper substrate 2.
  • the extending direction (longitudinal direction) of the electrophoresis electrode arrays 41 and 42 and the straight line connecting the two injection / discharge holes 5 of the electrophoresis medium are as vertical as possible. It is desirable to have
  • transparent substrates are used for the lower substrate 1 and the upper substrate 2, and the migration electrode array 41A is formed on the lower substrate 1, and the upper substrate 2 Then, an electrophoresis electrode array 42A having the same shape as the electrophoresis electrode array 41 is formed.
  • the electrophoretic electrode array 41A and the electrophoretic electrode array 42A are formed, for example, after a conductive oxide film such as an ITO film is formed on the lower substrate 1 and the upper substrate 2 by sputtering deposition or the like. It can be easily formed by patterning the electrode shape using lithography.
  • the mounting connection portions 44 and 45 are formed as patterns on the respective ends of the migration electrode arrays 41 ⁇ and 42 ⁇ .
  • an epoxy adhesive in which, for example, a glass spacer is mixed as a reactive adhesive (thermosetting adhesive) on the lower substrate 1 on which the lower surface protective film 7 is formed.
  • the spacing layer 43 (sealing material layer) that forms the migration lane wall is formed on the lower substrate 1.
  • the epoxy adhesive (sealant) is applied to the region where the lower substrate 1 and the upper substrate 2 except the region where the migration lane 3 is formed are disposed, and to each migration label.
  • the partition wall 43a can be formed at the same time as the spacing layer 4 3 outside the migration lane 3 formation region.
  • the electrophoresis lane 3 is formed to be perpendicular to the electrophoresis electrode array 41A. Also in this embodiment, for application of the sealing material, for example, a printing method using a screen plate or a drawing method using a dispenser can be used.
  • the lower substrate 1 and the upper substrate 2 are disposed to face each other and bonded to each other, so that the lower substrate 1 and the upper substrate 2 and between the lower substrate 1 and the upper substrate 2 are bonded.
  • the electrophoresis lane 3 surrounded by the spacing layer 43 (partition wall 43a) for partitioning the space can be formed.
  • the lower substrate 1 and the upper substrate 2 are connected to the extending direction (longitudinal direction) of the electrophoresis electrode arrays 41 ⁇ ⁇ ⁇ and 42 ⁇ ,
  • the two electrodes of the electrophoresis medium ⁇ The straight line connecting the discharge holes 5 is as vertical as possible, and the first electrode 41 ⁇ and the second electrode 42 ⁇ and the force constituting the above-mentioned electrophoresis electrode array 41A.42A
  • Electrophoresis lane 3 formation area In the region, the two substrates are bonded together by being opposed to each other so as to overlap in plan view with the migration lane 3 interposed therebetween, and being bonded and fixed by the seal material (adhesive).
  • the electrophoresis lane 3 surrounded by the lower substrate 1 and the upper substrate 2 and the spacing holding layer 43 (migration lane wall) provided between the lower substrate 1 and the upper substrate 2 is changed.
  • the lower substrate 1 and the upper substrate 2 are disposed to face each other, and hot pressing is performed from both the upper and lower surfaces.
  • the sealing material on the lower substrate 1 is softened and softened by hot pressing, and then cured and bonded to each other, whereby the migration lane 3 is formed between the two substrates.
  • the dielectrophoresis panel 10 which is effective in the present embodiment is formed.
  • a transparent substrate of about 10 cm x 10 cm is used as the lower substrate 1 and the upper substrate 2, and the lane width (interval between the partition walls 43a'43a) is about lcm, the lane length Form 5 rows of parallel lanes 3 approximately 6 cm in length.
  • the width of each partition wall 43a is set to about 2 mm.
  • a glass spacer having a particle size of 40 ⁇ m is mixed in the sealing material so that the thickness of the electrophoresis lane 3 (the height of the spacing layer 43) is uniform.
  • the specific size made in the present embodiment is merely an example of the embodiment, and the size of each component, for example, the substrate size of the lower substrate 1 and the upper substrate 2 and the electrode size.
  • the electrode size of the lower substrate 1 and the upper substrate 2 and the electrode size for example, the substrate size of the lower substrate 1 and the upper substrate 2 and the electrode size.
  • Electrode width, electrode interval, electrode thickness, electrode length, etc. film thickness of lower surface protective film 7 and upper surface protective film 8, layer thickness (height) of interval holding layer 43, lane width (interval between partition walls 43a and 43a )
  • Conditions such as lane length are not particularly limited, and can be variously changed depending on the analysis target.
  • the lane width is about 1 cm.
  • the lane width is not limited to the above size.
  • the lane width is preferably lcm (about lcm), and particularly preferably 8 mm.
  • the present embodiment as shown in FIG. 14, the case where the above-described migration lane 3 is formed in five rows in parallel has been described as an example. However, the present embodiment is not limited to this. It is not done.
  • the layer thickness of the spacing layer 43 that is, the gap (lane height) of the migration lane 3 is also the above-described sheet constituting the spacing layer 43 (migration lane wall). It is maintained uniformly by the spacers contained in the lumber.
  • the sealing material By forming a pattern using printing or a drawing method, the electrophoresis lane wall 4 having a plurality of partition walls 43a can be easily formed. Thereby, the plurality of electrophoresis lanes 3 can be easily formed.
  • the lower substrate 1 and the upper substrate 2 are connected to each other in the region where the migration lane 3 is formed.
  • the lower substrate 1 and the upper substrate 2 are bonded together by shifting them in the extending direction (longitudinal direction) of the electrophoresis electrode arrays 41 and 42 within the range where they are opposed to each other. Therefore, it is possible to easily mount the FPCs 17 and 46 on the mounting parts 44 and 45 described above.
  • the dielectrophoresis panel 10 is connected to the control board 50 via the FPC 17 mounted on the mounting 'connection portion 44 formed on the heel end portion of the electrophoresis electrode array 41. . Further, as shown in FIG. 17, the dielectrophoresis panel 10 is connected to the control board 55 via the FPC 46 mounted on the mounting / connecting portion 45 formed at the end of the electrophoresis electrode array 42A.
  • a dielectrophoresis apparatus 70 includes the dielectrophoresis panel 10, control boards 50 and 55, and a DC power source 60 (power source).
  • a dielectrophoresis system 85 according to the present embodiment includes the dielectrophoresis device 70 and an imaging system 80.
  • the control board 50 includes a frequency / timer control unit 50a, a synchronization signal control unit 50b, an oscillation circuit unit 50c, and a phase selection / amplification unit 50d.
  • the control board 55 includes a frequency timer control unit 55a, a synchronization signal control unit 55b, an oscillation circuit unit 55c, and a phase selection / amplification unit 55d.
  • the voltage (DC (direct current) voltage) output from the DC power source 60 is input to the control board 50 to drive the control board 50 and input to the control board 55. Then, the control board 55 is driven.
  • an AC voltage is output from the oscillation circuit unit 50c.
  • the output AC voltage is adjusted to the intended AC output by controlling the frequency, phase, amplitude, etc. by the frequency / timer control unit 50a, synchronization signal control unit 50b, and phase selection / amplification unit 50d.
  • a printing force U (input) is applied to the dielectrophoresis panel 10 via the FPC 17.
  • an AC voltage is output from the oscillation circuit section 55c.
  • AC output The voltage is adjusted to the intended AC output by controlling the frequency, phase, amplitude, etc. by the frequency / timer control unit 55a, the synchronization signal control unit 55b, the phase selection / amplification unit 55d, and the voltage is adjusted via the FPC 46. Applied (input) to the dielectrophoresis panel 10.
  • the synchronization signal controller 50b of the control board 50 and the synchronization signal controller 55b of the control board 55 are signals applied (input) to the dielectrophoresis panel 10 via the FPC 17.
  • the signal applied (input) to the dielectrophoresis panel 10 via the FPC 46 are synchronized and then applied (input) to the dielectrophoresis panel 10.
  • the imaging system 80 includes a light source such as a laser for applying irradiation light to the observation region (measurement unit) in the electrophoresis lane 3 of the dielectrophoresis panel 10 and an optical microscope.
  • a light source such as a laser for applying irradiation light to the observation region (measurement unit) in the electrophoresis lane 3 of the dielectrophoresis panel 10 and an optical microscope.
  • it is an optical system equipped with an image pickup device such as a CCD (charge coupled device), etc., and is installed at the upper or lower portion of the electrophoresis lane 3 for optical detection.
  • CCD charge coupled device
  • FIGS. 18 (a) and 18 (b) show how the target particles in the electrophoresis medium are floated and conveyed using the dielectrophoresis system 85 shown in FIG.
  • FIG. 15 is a cross-sectional view of an essential part schematically showing a cross section (that is, a cross section taken along line JJ of the dielectrophoresis panel 10 shown in FIG. 14).
  • Fig. 18 (a) above shows how the target particles are levitated in the DEP mode.
  • Figure 18 (b) shows the state where the levitated target particles are transported in the TWD mode.
  • n ⁇ DEP dielectrophoretic force
  • the relative permittivity ( ⁇ ) of particles 91 is greater than the relative permittivity ( ⁇ ) of solvent 92.
  • Particles 91b ( ⁇ > ⁇ ) having a large p m are trapped on the edge of the first electrode 41 or the second electrode 42.
  • the two or more kinds of particles 91 are separated by switching to a TWD (Traveling-Wave DEP) signal, and only the floating particles 9 la are transported.
  • TWD Traveling-Wave DEP
  • the first electrode 41 Alternatively, the particle 9 lb trapped at the edge of the second electrode 42 remains trapped even when the TWD signal is applied, as shown in FIG. 18 (b).
  • the electrodes adjacent to each other in each electrophoresis electrode array 41 ⁇ ⁇ 42 ⁇ have different phases depending on the control boards 50 and 55.
  • the high frequency (alternating voltage) is printed.
  • the first electrodes 41 (41x, 41x + l, 41x + 2, 41x + 3) are connected to each other via the migration lane 3 (migration medium layer).
  • the second electrode 42 (42x, 42x + l, 42x + 2, 42x + 3) placed in the overlapping position is connected to the second electrode 42 (42 X, 42x + l, 42x + 2, 42x + 3 )
  • the first electrode 41 (4 lx, 41x + l, 41x + 2, 41x + 3) arranged at positions overlapping each other, are applied with the same Cf phase high frequency.
  • a voltage having the same potential is applied to the electrophoresis electrodes facing vertically.
  • a symmetrical electric field can be applied to the particles 91 contained in the electrophoretic medium 90 from above and below, and compared to a case where an electric field is applied to the particles 91 from one direction. You can gain power.
  • the first electrode 41 (41x, 41x + l, 41x + 2 , 41x + 3) line [apply high frequency to the second electrode 42 (42x, 42x + l, 42x + 2, 42x + 3) so as to be shifted by ⁇ by Kawasaki
  • the levitation force of the particles 91a can be controlled efficiently.
  • the first electrodes 41 (41x, 41x + l, 41x + 2) are mutually connected in each electrophoresis electrode array 41A.42A. , 41x + 3) side-by-side with respect to this second electrode 42 (42x, 42x + l, 42x + 2, 42x + 3)
  • the levitated particles 9 la can be transported efficiently.
  • the distance between the first electrode 41 and the second electrode 42 (the distance between the surface of the first electrode 41 and the surface of the second electrode 42) is V, and the center of the electrode 41x and the center of the electrode 41x + n And the distance between the center of the electrode 42x and the center of the electrode 42x + n is H, the particle 91a becomes n-DEP so that the center is the surface of the first electrode 41 or the second
  • the surface force of the electrode 42 rises to a distance of about VZ2 and a distance of about HZ2 from the edges of the first electrode 41 and the second electrode 42.
  • the frequency range for separating the particles 91a and the particles 91b is not particularly limited as long as it is appropriately set depending on the types of the particles 91a and the particles 91b.
  • the frequency range is 30 kHz to 100 kHz. It is preferable to be within the range.
  • particle 91a and particle 91b are both subjected to p-DEP force, and in the high frequency region above 100 kHz, particle 91a and particle 91b Since both 1S receive n-DEP forces, separation in these frequency ranges may not be possible.
  • the DEP signal and the TWD signal can be appropriately switched in this way. From the suspension (electrophoresis medium 90) only the particles 91a that have a dielectric constant lower than that of 9 lb particles (more precisely, the relative dielectric constant) is lower than the relative dielectric constant ( ⁇ ) of solvent 92). Separate transport pm
  • the solvent 92 for example, a force in which physiological saline is used.
  • the present embodiment is not limited to this.
  • these particles 91 are decorated with a fluorescent dye before being injected into the dielectrophoresis panel 10.
  • the behavior of the particles 91 during electrophoresis can be observed, for example, from above the first electrode 41 or the second electrode 42 (transparent electrode portion (observation region)) with an optical microscope and a CCD camera (optical system 80). .
  • the relative dielectric constant ( ⁇ ) of the solvent 92 injected into the electrophoresis lane 3 is larger than the relative dielectric constant of the protective film (the lower protective film 7 and the upper protective film 8)! /
  • the relative dielectric constant ( ⁇ ) of the solvent is as small as possible, an electric field is more easily applied to the electrophoresis medium 90.
  • the thinner the protective films (the lower protective film 7 and the upper protective film 8) the easier the electric field is applied to the migration medium 90.
  • both the first electrode row and the second electrode row are comb-shaped electrodes
  • the separation and transfer of particles 91 (particles 91a '91b) should be performed effectively. Can do. Note that even when one or both of the electrode width (L) and the electrode interval (S) is smaller than 30 ⁇ m, the particles 91 (particles 91a '91b) can be separated and transported.
  • the electric field applied to the migration medium 90 is weakened, and as a result, the dielectrophoretic force applied to the particles 91, particularly the particles 91a (electrophoretic particles) may be weakened.
  • the thickness of the films is 1 m. Note that, as described above, the lane height can be controlled by the spacer (spacing holding material) included in the sealing material.
  • the first electrode 41 and the second electrode 42 are respectively disposed above and below the migration medium layer composed of the migration medium 90 injected into the migration lane 3.
  • Both electrode array forces arranged so as to overlap each other in a plane Since a high frequency is applied to the electrophoresis medium layer, a stable dielectrophoretic behavior is achieved compared to the case where one electrode array is not used.
  • the dielectrophoretic force can be increased without increasing the driving voltage.
  • the particles can be produced without increasing the driving voltage.
  • 91 can be provided with a sufficient dielectrophoretic force for migration or retention.
  • the electrodes adjacent to each other in each electrode row have high frequencies having different phases.
  • high frequency waves of the same phase are applied to the electrodes arranged at positions overlapping each other via the above-described electrophoresis lane 3 (electrophoresis medium layer), so that they are symmetrical with respect to the electrophoresis medium 90 from above and below. It is possible to apply a strong electric field, and a strong dielectrophoretic force can be obtained.
  • the levitation force of the particles 91 can be efficiently controlled by applying a high frequency so that the phases are sequentially shifted by ⁇ to the electrodes adjacent to each other in each electrode row. Further, by applying a high frequency so that the phase is sequentially shifted by ⁇ 2 to the electrodes adjacent to each other in each electrode row, the floating (floating) particles 91 can be efficiently conveyed.
  • one of the first electrode array and the second electrode example is described.
  • the case where voltage is applied to the electrode rows and the case where voltage is applied to both electrode rows can be used separately in the same experiment. Thereby, the dielectrophoretic force can be adjusted without changing the driving voltage.
  • a plurality of electrophoresis lanes 3 are provided in parallel as described above in the same manner as in the first to seventh embodiments, and the electrophoresis electrodes that act in common on each electrophoresis lane 3 (this embodiment In this embodiment, the first electrode 41 and the second electrode 42) are provided, that is, the first electrode 41 and the second electrode 42 (the electrophoresis electrode array 41 ⁇ and 42 ⁇ ) are provided in common in each electrophoresis lane 3.
  • the migration control voltage can be input to the migration electrode arrays 41 and 42 in a batch for each of the migration electrode arrays.
  • each comb electrode (electrophoresis electrode array 41A.42A) having a common electrophoresis electrode in each electrophoresis lane 3 provided in parallel to each other.
  • An electric field can be simultaneously applied to a plurality of electrophoresis lanes 3. Therefore, according to the present embodiment, migration control of a plurality of samples (electrophoresis medium 90) can be performed simultaneously in a lump.
  • a plurality of different types of samples for example, samples having different relative dielectric constants and viscosities of solvents, or particles in the solvent without complicated setting of the experimental environment.
  • Samples with different physical properties can be placed under the same conditions under the same migration conditions, and the dielectrophoresis chip that can be applied to various test conditions with a wide range of application to the test conditions. It is possible to realize a dielectrophoresis apparatus and further a dielectrophoresis system.
  • the dielectrophoresis panel 10 dielectrophoresis chip having the plurality of electrophoresis lanes 3 as described above, the type of the solvent 92 (electrophoresis medium 90) can be migrated.
  • the type of the solvent 92 electrophoresis medium 90
  • By changing each lane 3 and selecting a plurality of specific particles at the same time, or by using the same solvent 92 (electrophoresis medium 90) and changing the electrode shape for each lane 3, a specific plurality of particles 91 It is also possible to sort the particles at the same time, which makes it possible to efficiently sort multiple particles. Therefore, according to the present embodiment, it is possible to realize a dielectrophoresis chip and a dielectrophoresis device that correspond to a wide range of applications, and further a dielectrophoresis system 85.
  • the first electrode 41 and the second electrode 42 force each electrophoresis lane 3... Across each electrophoresis lane 3. Perpendicular to The case where it is provided has been described as an example. However, the present embodiment is not limited to this, and the same electrode (electrophoresis electrode array 41A) is extended over a plurality of electrophoresis lanes 3.
  • the first electrode 41 and the second electrode 42 do not necessarily need to extend in the vertical direction with respect to the migration lanes 3 as long as they act in common with respect to the third lane 3.
  • it is preferable that the observation regions in each electrophoresis lane 3 are provided adjacent to each other. Therefore, it is preferable that the first electrode 41 and the second electrode 42 are provided in a direction perpendicular to the respective electrophoresis lanes 3...
  • the electrophoresis lane 3 may have a configuration in which separate electrode arrays are formed on the top wall, bottom wall, and both side walls of the lane 3, respectively. This makes it possible to further stabilize the dielectrophoretic behavior of the dielectric material (for example, the particle 91), to transport the dielectric material more efficiently, and to achieve more complicated electrophoretic behavior. It is also possible to control.
  • the first electrode 41... And the second electrode 42 the first electrode 41... And the second electrode 42.
  • the case where the electrode shapes, electrode widths, and electrode intervals of the first electrode 41 and the second electrode 42 are formed under the same conditions so as to overlap is described as an example.
  • the present embodiment is not limited to this, and the conditions such as the shape of the first electrode 41 and the second electrode 42, the electrode width, the electrode interval, and the electrode length (wiring length) are not limited thereto.
  • the size of the particles to be analyzed that is, the particles 91 in the electrophoresis medium 90), the target operation (separation, collection, transportation, etc.), etc. may be set as appropriate.
  • the film thicknesses and electrode materials of the first electrode 41 and the second electrode 42 can also be set as appropriate, and are not particularly limited.
  • arbitrary two electrodes adjacent to each other in the first electrode row are 41x and 41x + l, respectively, and these two electrodes 41 ⁇ ⁇ 41 ⁇ +
  • the lower substrate 1 and the upper substrate 2 are connected to the electrodes 41 ⁇ ⁇ 41 ⁇ .
  • the force described with reference to the case where the electrodes 42 ⁇ ⁇ 42 ⁇ + 1 are arranged to face each other so as to overlap each other in the migration lane 3 formation region This embodiment is limited to this It is not a thing.
  • the lower substrate 1 and the upper substrate 2 have the first electrode 41 ⁇ and the second electrode 42 ⁇ in the migration lane 3 formation region. Ideally, it should be completely overlapped in plan view.
  • the electrodes 4 lx 41 ⁇ + 1 and the electrodes 42 ⁇ If the lower substrate 1 and the upper substrate 2 are arranged to face each other so that at least a part thereof overlaps with 42 ⁇ + 1 in a plan view, the lower substrate 1 and the upper substrate 2 are separated from each other in the migration lane. (3) In the formation region, the electrodes 41 ⁇ ⁇ 41 ⁇ + 1 and the electrodes 42 ⁇ ⁇ 42 ⁇ + 1 may be arranged to face each other while being shifted from each other within a partially overlapping range.
  • the first electrode 41 and the second electrode 42 are planar, as long as the electrode 41 ⁇ in the first electrode row overlaps with a part of the electrode 42 ⁇ in the second electrode row. It does not matter if the position is shifted.
  • the lower substrate 1 and the upper substrate 2 are arranged such that the electrodes in the first electrode array are sequentially 41 ⁇ , 41 ⁇ + 1 from the side closer to one injection / discharge hole 5 in the electrophoresis lane 3,
  • the electrodes in the electrode array are sequentially 42 ⁇ , 42 ⁇ + 1, for example, if the electrode is overlapped with a part of the electrode 41 ⁇ + 1 adjacent to the electrode 41 ⁇ opposite to the electrode 42 ⁇ force, the electric field density may decrease.
  • each electrode is given a phase different from the phase to be applied, so that a predictable dielectrophoretic behavior cannot be obtained or a problem such as adversely affecting the circuit board is caused. Therefore, the positional shift is suppressed within the range in which the Xth electrode 42 ⁇ does not overlap with a part of the electrode 41 ⁇ + 1 adjacent to the Xth electrode 41 ⁇ provided across the migration lane 3. Hope.
  • the spacing layer 43 (see FIG. This is not limited to this embodiment.
  • the present embodiment is not limited to this, and the force is to be formed on the lower substrate 1 on which the lower surface protective film 7 is formed, that is, on the lower surface protective film 7.
  • the lower surface protective film 7 and the upper surface protective film 8 are formed, a part or all of the overlapping region of the lower surface protective film 7 and the upper surface protective film 8 with the spacing layer 43 may be removed.
  • the lower surface protective film 7 and the upper surface protective film are formed on the opposing surfaces of the lower substrate 1 and the upper substrate 2, respectively.
  • the case where 8 is formed has been described as an example.
  • the present embodiment is not limited thereto, and the lower protective film 7 and the upper protective film 8 are not necessarily formed on the lower substrate 1 and the upper substrate 2.
  • the lower surface protective film 7 and the upper surface protective film 8 By providing (the lower surface protective film 7 and the upper surface protective film 8), it is possible to prevent the migrating particles 91 (91a) from adsorbing to the electrophoretic electrode. Therefore, it is desirable that the lower surface protective film 7 and the upper surface protective film 8 are formed on the lower substrate 1 and the upper substrate 2 depending on the kind of the particles 91.
  • the force is assumed to use a transparent substrate as the lower substrate 1 and the upper substrate 2.
  • the particle 91 is not limited to this.
  • the sample in the electrophoresis lane 3 in the area (observation area) where the electrophoresis lane 3 overlaps the first electrode 41 and the second electrode 42 (electrophoresis electrode array 41 ⁇ ⁇ 42 ⁇ ). (Migration medium 90) may be provided so as to be observable. Specifically, for example, in the dielectrophoresis panel 10, only one of the lower substrate 1 and the upper substrate 2 is formed of a transparent substrate, and the electrophoresis lane 3 and the above in the other substrate are described above.
  • An observation window (opening or transparent region) is provided in a region (observation region) where the first electrode 41 and the second electrode 42 (electrophoresis electrode array 41 ⁇ ⁇ 42 ⁇ ) overlap each other. May be.
  • the dielectrophoresis panel 10 includes the lower substrate 1 and the upper substrate 2 in which the electrophoresis lane 3, the first electrode 41, and the second electrode 42 (electrophoresis electrode array) on both substrates.
  • 41A-42A) is composed of a non-transparent substrate (semi-transparent or opaque substrate) provided with transparent regions (either one may be an opening) in the region (observation region) that overlaps with (41A-42A). You may have.
  • observation and imaging with transmitted light are possible.
  • the transmission mode is very effective for observation using fluorescence and filtering.
  • one of the lower substrate 1 and the upper substrate 2 is formed of a transparent substrate, and the other substrate is a non-transparent substrate ( Either the first electrode 41 or the second electrode 42 (electrophoresis electrode) which may have a configuration formed of a semi-transparent or opaque substrate) is formed of a transparent electrode and the other electrode
  • the electrode (electrophoresis electrode) may have a configuration formed of a non-transparent electrode such as a metal electrode. In this case, observation and photographing (optical imaging) in the electrode region are possible by using reflected (epi-illumination) light (epi-illumination mode) by the non-transparent electrode.
  • an electric field formed by an alternating voltage is applied to each sample from separate electrode arrays provided with the electrophoresis lane 3 interposed therebetween.
  • the dielectric substance can have a stable dielectrophoretic behavior, and the dielectric substance can be efficiently transported (dielectrophoresis). Can do. Therefore, even when the above configuration is adopted, the application range for the test conditions can be expanded and the observation environment can be improved as compared with the conventional case.
  • both the first electrode 41 and the second electrode 42 may be formed of a non-transparent electrode such as a metal electrode.
  • Examples of the metal material include metals such as aluminum (A1), titanium (Ti), molybdenum (Mo), platinum (Pt), and gold (Au), or alloys including these metals. use can do.
  • metals such as aluminum (A1), titanium (Ti), molybdenum (Mo), platinum (Pt), and gold (Au), or alloys including these metals. use can do.
  • the metal electrode is formed by using the metal material, forming a metal film by sputter deposition or the like, and patterning the metal film into an electrode shape using photolithography. be able to.
  • one of the lower substrate 1 and the upper substrate 2 is formed of a non-transparent substrate, or optically disposed on one side of the electrophoresis lane 3 (flow path). Since the non-transparent electrode is formed, the installation power of the imaging device (imaging system 80) such as a CCD is limited to one of the substrates in the swimming lane 3 described above.
  • At least one of the first electrode 41 and the second electrode 42 is an area where the particles 91 receive a dielectrophoretic force, specifically, the electrophoresis lane 3 and the first electrode 41. It is desirable that a portion (region) corresponding to at least a part of the region (at least the observation region) of the region where the second electrode 42 (electrophoresis electrode array 41 ⁇ ⁇ 42 ⁇ ⁇ ) overlaps is constituted by a transparent electrode.
  • dielectrophoresis panel 10 After confirming the dielectrophoretic behavior with the electrophoresis panel 10), use the double-sided metal electrode substrate (dielectrophoresis panel 10) in which all wirings on both sides of the electrophoresis lane 3 are formed with metal wirings (metal electrodes) as described above. You can do it.
  • the object may be stagnated and transported by the double-sided metal electrode substrate (dielectrophoresis panel 10).
  • the first electrode 41 and the second electrode 42 are mainly composed of various transparent electrodes such as ITO, ⁇ , and ⁇ !
  • the resistivity of transparent conductive materials such as ⁇ , ⁇ , and ⁇ is on the order of 10 2 ⁇ 'cm. This is two orders of magnitude larger than metal materials such as aluminum (Al, approximately 2.7 ⁇ -cm) and gold (Au, approximately 2.5 ⁇ ⁇ cm). Therefore, compared to the case where the first electrode 41 and the second electrode 42 are formed of metal electrodes, the electrodes (wirings) having the same shape are formed of a transparent conductive material as shown in the eighth embodiment. It becomes relatively high resistance by 1 to 2 digits.
  • the first electrode 41 and the second electrode 42 (electrophoresis electrode array 41A-42A) 1S are exemplified by the dielectrophoresis panel 10 partially formed of transparent electrodes. explain.
  • FIGS. 19 and 20 show the case where the first electrode 41 and the second electrode 42 (electrophoresis electrode array 41 ⁇ ⁇ ⁇ ⁇ 42 ⁇ ) are partially formed of transparent electrodes in the dielectrophoresis panel 10 shown in FIG. 14 corresponds to a cross-sectional view taken along the line JJ of the dielectrophoresis panel 10 shown in FIG.
  • the dielectrophoresis panel 10 has a sample in each electrophoresis lane 3 on a portion where each electrophoresis lane 3 and the electrophoresis electrode array 41A.42A overlap each other.
  • An observation area 9 is provided for observing (imaging (transmission)) the (electrophoretic medium 90).
  • the first electrode 41 in the observation region 9 is composed of the transparent electrode 41a, and the first electrode 41 in a portion that does not overlap the observation region 9
  • a metal material (metal electrode 41b) is used.
  • the second electrode 42 in the observation region 9 is composed of a transparent electrode 42a, and a metal material (metal electrode 42b) is used for the second electrode 42 that does not overlap the observation region 9.
  • the first electrode 41 and the second electrode 42 an electrode having a two-layer structure in which a metal electrode layer is partially formed on a transparent electrode layer. (Electrode arrangement Line) is used. That is, in the first electrode 41 and the second electrode 42 according to the present embodiment, only the portion of the first electrode 41 and the second electrode 42 that overlaps the observation region 9 is a single transparent electrode 41a or transparent electrode 42a. It consists of a layer electrode (single-layer wiring), and the other part is a two-layer electrode consisting of a transparent electrode 41a and a metal electrode 41b (two-layer wiring), or a two-layer electrode consisting of a transparent electrode 42a and a metal electrode 42b. (Two-layer wiring) Get help!
  • each electrophoresis lane 3 is overlapped with the first electrode 41 and the second electrode 4 2 (electrophoresis electrode array 41 ⁇ ⁇ 42 ⁇ ), that is, each electrophoresis lane 3
  • the first electrode 41 and the second electrode 42 electrophoresis electrode array 41 ⁇ ⁇ 42 ⁇
  • the transparent electrode transparent electrode 41a or transparent electrode 42a
  • the first electrode 41... And the second electrode 42... Formation region are used as the observation region 9.
  • a transparent conductive material such as ITO, ⁇ , and ⁇
  • a transparent conductive material such as ITO, ⁇ , and ⁇
  • cocoons are preferably used.
  • a metal material such as aluminum (A1), titanium (Ti), molybdenum (Mo), platinum (Pt), gold (Au), or an alloy containing these metals is used. be able to.
  • the electrode width, electrode interval, electrode length (wiring length), etc. of the first electrode 41 and the second electrode 42 are also described.
  • the conditions are not particularly limited, and are appropriately determined according to the size of the particle 91 to be analyzed (that is, the particle 91 in the electrophoresis medium 90) and the intended operation (separation, collection, transportation, etc.). You only have to set it.
  • the film thickness of the first electrode 41 and the second electrode 42 (transparent electrode 41a'42a and metal electrode 41b'42b) and the electrode material in each electrode layer can also be set as appropriate, and are particularly limited. is not.
  • the electrode length of the single-layer wiring portion of each of the transparent electrodes 41a'42a in the first electrode 41 and the second electrode 42 is not particularly limited, and the lane width of the migration lane 3 or the first electrode What is necessary is just to set suitably according to the resistivity etc. of 41 and the 2nd electrode 42 (electrophoresis electrode array 41 * 42 *).
  • the electrodes (wirings) of the same shape are formed of the transparent conductive material and the metal material as described above on the single-layer wiring portion of the transparent electrode 41a'42a in the electrophoresis electrode array 41 ⁇ and 42 ⁇ .
  • the electrode made of transparent electrode material is made of metal material The resistance is relatively high compared to the formed electrode.
  • the overlapping region of the first electrode 41 and the second electrode 42 (electrophoretic electrode array 41 ⁇ / 42 ⁇ ) with the spacing layer 43 includes a two-layer structure of the transparent electrode 41a and the metal electrode 41b and the transparent electrode 42a.
  • the first electrode 41 and the second electrode 42 force are transparent electrodes 4 la in a part of the migration lane 3 described above.
  • each of the transparent electrodes 42a has a single layer structure.
  • the present embodiment first, as in the eighth embodiment, after forming a coating film on the lower substrate 1 by sputtering deposition or the like, by patterning into an electrode shape using photolithography, On the lower substrate 1, transparent electrodes 41a are formed. On the other hand, on the upper substrate 2, after forming an ITO film by sputter deposition or the like, the transparent electrode 42 a... Is formed on the upper substrate 2 by patterning into an electrode shape using photolithography.
  • a metal material is used as described above, and a metal film is formed by sputtering deposition or the like.
  • the metal film is patterned into an electrode shape using photolithography, and the wiring portion that overlaps the observation region 9 in the patterned metal film (in this embodiment, in each electrophoresis lane 3 and each Remove the wiring pattern in the vicinity of migration lane 3).
  • the method for forming the portions other than the electrophoresis electrode arrays 41 and 42 is basically the same as in the eighth embodiment. Also in the present embodiment, at the same time as the formation of the first electrode 41 and the second electrode 42, mounting terminals are connected to the ends of the first electrode 41 and the second electrode 42. Then, the mounting and connection portions 44 and 45 are formed into a pattern.
  • the portion of the electrophoresis electrode array 41 A ⁇ 42 ⁇ that overlaps each observation region 9 provided in each electrophoresis lane 3 as described above is a transparent electrode 41a'42a
  • the other portions are composed of metal electrodes 41b'42b made of Au or the like having a lower resistance than the transparent electrodes 41a'42a, so that when the sample (electrophoresis medium 90) is observed, the first electrode 41
  • the observation should be possible from both the top and bottom of the migration lane 3 (above the lower substrate 1 side and the upper substrate 2 side) without being blocked by the second electrode 42 (the migration electrode array 41 ⁇ ⁇ ⁇ / 42 ⁇ ).
  • the resistance of the entire electrophoresis electrode array 41 ⁇ ⁇ 42 ⁇ ⁇ is compared with the case where a migration electrode array having the same shape (same pattern) as the migration electrode array 41 ⁇ ⁇ 42 ⁇ and having a transparent electrode force is used. Can be kept low. Therefore, according to the present embodiment, the observation conditions for optical observation are not limited, and the usability is excellent because the attenuation / delay of the input voltage (electrophoresis control input voltage) can be suppressed. It is possible to realize an electrophoresis panel 10 and a dielectrophoresis device 70 with high measurement accuracy, a dielectrophoresis system 85, and a dielectrophoresis system 85.
  • the electrophoretic electrode arrays 41 ⁇ and 42 ⁇ are composed of the transparent electrodes 4la'42a such as heels in the portions overlapping each observation region 9, and the other portions are transparent.
  • the electrode 41a'42a is composed of a metal electrode 41b'42b, such as Au, having a lower resistance than that of the electrode 41a'42a, but the present embodiment is not limited to this. It is sufficient if at least a part of the electrophoresis electrode array 41 ⁇ ⁇ 42 ⁇ is formed of a transparent electrode in a region overlapping with the above.
  • the migration electrode arrays 41 ⁇ and 42 ⁇ have a region where the migration electrode arrays 41 ⁇ and 42 ⁇ overlap each observation region 9 (a region where the particles 91 receive a dielectrophoretic force) (that is, the swimming electrode array 41 ⁇ ).
  • the part formed by the transparent electrode 41a • 42a that is, the part where each electrode is also the force of the transparent electrode 41a or the transparent electrode 42a
  • the metal electrode 41b ' It may have a portion provided with 42b (that is, a portion further provided with metal electrode 41b or metal electrode 42b).
  • the electrophoretic electrode array 41A.42A has the metal electrode 4 lb ⁇ 42b formed on the transparent electrode 41a'42a in a part of the region that does not overlap the electrophoretic electrode array 41A • 42A force observation region 9. It is possible to have a structure that is layered)!
  • the migration electrode array 41A ⁇ 42 ⁇ is such that at least a part of the migration electrode array 41 ⁇ ⁇ 42 ⁇ is a transparent electrode 41a'42a in the region where the migration electrode array 41 ⁇ ⁇ 42 ⁇ overlaps each observation region 9 (That is, each electrode is formed of only the transparent electrode 41a or the transparent electrode 42a), non-transparent (semi-transparent or opaque) other than metal is formed in a part of the observation region 9 or a part of the non-observation region. It is also possible to have a configuration in which a third electrode made of a conductive material (low resistance conductive material) is provided.
  • the third electrode may be provided in place of the metal electrodes 41b and 42b, or may be used in combination with the metal electrodes 4 lb and 42b.
  • the third electrode has a laminated structure with respect to the metal electrode 41b′42b, which may be provided in the same layer as the metal electrode 41b′42b, so that the first electrode 41 and the second electrode At least one of the electrodes 42 may have a multilayer structure of three or more layers.
  • the dielectrophoresis panel 10 includes, for example, only one of the lower substrate 1 and the upper substrate 2 formed of a transparent electrode, and each electrophoresis lane on the other substrate. 3 in which the first electrode 41 and the second electrode 42 (electrophoresis electrode array 41 ⁇ ⁇ 42 ⁇ ) overlap each other (observation region 9) is provided with an observation window (opening or transparent region). You may have.
  • the dielectrophoresis panel 10 includes the lower substrate 1 and the upper substrate 2 that are connected to each electrophoresis lane 3, the first electrode 41, and the second electrode 42 (electrophoresis electrode arrays 41 and 42) on both substrates.
  • first electrode 41 and the second electrode 42 in each observation region 9 (the region where the migration electrode array 41A ⁇ 42A overlaps the observation region 9).
  • Moving electrode array 41 ⁇ ⁇ 42 ⁇ is used as a transparent electrode
  • first electrode 41 and second electrode 42 in other regions are used as transparent electrodes and low resistance non-metal such as metal electrodes.
  • a non-transparent electrode that is, a non-transparent electrode structure in a plan view
  • a transparent electrode has been described as an example.
  • the migration electrode array By forming only a part of 41 ⁇ and 42 ⁇ with a transparent electrode, the transparent electrode can be used for transmission mode (observation and photographing with transmitted light) or epi-illumination mode (observation and photographing with reflected (epi-illumination) light from the object force)
  • the dielectrophoresis panel 10 capable of using an epi-illumination mode in which reflected (epi-illumination) light from a non-transparent electrode (metal electrode) is observed and projected.
  • the observation conditions can be relaxed, and more complex dielectrophoretic behavior can be observed.
  • two types of observations are possible by using both the transmission mode with a transparent electrode and the epi-illumination mode with a non-transparent electrode (reflection (epi-illumination) electrode) such as a metal electrode as described above. It is possible to provide a dielectrophoresis panel 10 that can analyze the angle of the angle.
  • Either one of the migration electrode arrays in this embodiment, for example, only the migration electrode array 41A has a region composed of a single layer structure of the transparent electrode 41a, and a two-layer in which a metal electrode 41b is further provided on the transparent electrode 41a. And the other migration electrode array 42A is formed of a single-layer structure of the transparent electrode 42a.
  • the electrophoresis electrode arrays 41 and 42 are at least at least one part of the transparent electrode cover as described above.
  • the metal electrode is provided on the side, so that the resistance of the entire migration electrode array 41A • 42A is formed, and the electrode array 41A ⁇ 42A is formed only by the transparent electrode 4la ⁇ 42a.
  • the transmission of light on the electrode surface and the transmission using the epi-illumination can be performed in view of the fact that the parasitic capacitance between the electrodes can be reduced.
  • each of the electrophoresis lanes 3 in the observation region 9 includes the electrophoresis electrode arrays 41 ⁇ and 42 ⁇ (first 1 electrode 41 and 2nd electrode 42) Both 1S is provided with a portion (transparent region 9a) which is a transparent electrode cover, and a portion where a metal electrode is provided on at least one side (an epi-illumination region 9b).
  • Different analyzes can be performed at the same time by switching between the transmission mode with the transparent electrode and the epi-illumination mode with the metal electrode in the electrophoresis lane 3. Further, according to the above configuration, more complicated dielectrophoretic behavior can be observed.
  • a portion where the metal electrode is provided on at least one of the electrophoretic electrode array 41 ⁇ 42A (first electrode 41 and second electrode 42) (epi-illumination) is not particularly limited.
  • the lower limit is 1Z3, that is, 1/3 ⁇ 9aZ9b (that is, in each observation region 9)
  • the ratio of the transparent area 9a is 1Z4 or more), more preferably 1Z3 and 9aZ9b l ⁇ 9aZ9b (that is, the ratio of the transparent area 9a in each observation area 9 is 1Z2 or more) More preferably.
  • the electrophoretic electrode array 10 is used as the dielectrophoresis panel 10 of the transmission mode Z incident mode dual-use type using light transmission Z incident on the electrode surface.
  • the force described by taking as an example the case where a part of 41 ⁇ and 42 ⁇ is formed of a transparent electrode.
  • the present embodiment is not limited to this.
  • any one of the lower substrate 1 and the upper substrate 2 is overlapped with each electrophoresis lane 3 and the electrophoresis electrode arrays 41 and 42.
  • the migration lanes 3 and 3 adjacent to each other are connected to the migration electrode arrays 41 and 42 (the first electrode 41 and the second electrode 42) force.
  • Both may have a configuration including an observation region 9 having a transparent electrode force and an observation region 9 provided with a metal electrode in at least one of them.
  • the resistance of the entire electrophoresis electrode array 41 ⁇ / 42 ⁇ can be kept low compared to the case where the electrode array 41 ⁇ / 42 ⁇ is formed only by the transparent electrodes 41a'42a, and between the electrodes.
  • a dielectrophoresis panel 10 that can use any of the transmission mode and the epi-illumination mode utilizing the light transmission Z epi-illumination on the electrode surface.
  • differences from the eighth and ninth embodiments will be mainly described, and components having the same functions as those used in the eighth and ninth embodiments are described. Are given the same numbers and their explanation is omitted.
  • FIGS. 21 (a) to 21 (c) are cross-sectional views of the dielectrophoresis panel 10 shown in FIG. 17, showing how the target particles in the electrophoresis medium are floated and transported using the dielectrophoresis system 85 shown in FIG.
  • FIG. 5 is a cross-sectional view of another main part schematically shown in FIG.
  • FIGS. 22 (a) to 22 (c) show how the target particles in the electrophoresis medium are floated and conveyed using the dielectrophoresis system 85 shown in FIG. It is other principal part sectional drawing typically shown in a cross section.
  • FIG. 21 (a) and FIG. 22 (a) show how the target particles are levitated.
  • FIG. 22 (b) and FIG. 22 (c) show how the levitated target particles are transported.
  • FIG. 21 and FIG. 22 show the case where the first electrode 41 and the second electrode 42 (electrophoresis electrode array 41 ⁇ ⁇ 42 ⁇ ) are partially formed of transparent electrodes in the dielectrophoresis panel 10 shown in FIG. 14 corresponds to a cross-sectional view taken along the line JJ of the dielectrophoresis panel 10 shown in FIG.
  • the electrophoresis electrode array 41 A ⁇ 42 ⁇ In the electrophoresis electrode arrays 41 ⁇ ⁇ ⁇ and 42 ⁇ , electrodes adjacent to each other, for example, the first electrodes 41 (41 ⁇ , 41 ⁇ + 1, 41 ⁇ + 2, 41 ⁇ + 3, 41 ⁇ + 4,..., 41x + m) are applied with high frequencies having different phases by the control board 50.
  • the second electrodes 42 (42x, 42x + l, 42x + 2, 42x + 3, 42x + 4, ..., 42x + m) adjacent to each other in the electrophoresis electrode array 42A are also controlled as described above. High frequencies having different phases are applied by the substrates 50 and 55, respectively.
  • X and m are arbitrary integers of 1 or more.
  • each of the first electrodes 41 (41x, 41x + l, 41x + 2, 41x +) is passed through the migration lane 3 (migration medium layer).
  • 3, 41x + 4, ..., 41x + m) and the second electrode 42 (42x, 42x + l, 42x + 2, 42x + 3, 42x + 4) , ..., 42x + m) and the second electrode 42 (42x, 42x + l, 42x + 2, 42x + 3, 42x + 4, ..., 42x + m)
  • represents an integer of 1 or more.
  • n 2. That is, in the electrophoresis panel 10 shown in FIGS. 21 (a) to 21 (c), as described above, the (x + 2) -th first electrode 41 (41x) with respect to the X-th first electrode 41 (41x) in the first electrode row.
  • the first electrode 41 (41x + 2) and the Xth second electrode 42 (42x) in the second electrode example facing the xth first electrode 41 (4 lx) are connected to the xth first electrode.
  • a high frequency is applied so that the phase difference from the electrode 41 is ⁇ , and the x + 2nd second electrode 42 (42 ⁇ + 2) in the second electrode array is compared with the ⁇ th first electrode 41 Apply the same high frequency (with 0 phase difference).
  • the x + first electrode 41 (41x + 3) and the x + 1 second electrode 42 (42x + 1) are connected to the x + 1 first electrode 41 (
  • a high frequency is applied so that the phase difference with respect to (41x + 1) is ⁇ , and the ⁇ + first electrode 41 (41 ⁇ + 3) is applied to the ⁇ + third electrode 42 (42 ⁇ + 3).
  • phase difference 0 By applying a high frequency, the space surrounded by the electrodes 41 ⁇ + 1, 41 ⁇ + 3, 42 ⁇ + 1, 42 ⁇ + 3 To move to the center of.
  • the x + second electrode 41 (41 ⁇ + 4) and the x + second electrode 42 (42x + 2) are connected to the x + second electrode.
  • a high frequency is applied so that the phase difference from the first electrode 41 (41x + 2) is ⁇ , and the ⁇ + second second electrode 42 (42 ⁇ + 4) is
  • the same high frequency as the electrode 41 (41 ⁇ + 2) phase difference 0
  • particles in the center of the space surrounded by the electrodes 41 ⁇ + 1, 41 ⁇ + 3, 42 ⁇ + 1, 42 ⁇ + 3 91 (91a) further moves to the center of the space surrounded by the electrodes 41x + 2, 41x + 4, 42x + 2, 42x + 4.
  • a highly efficient migration behavior can be realized.
  • a particle 91 for example, a particle 91 having a diameter of about 10 m, is shown in FIGS. 21 (a) to 21 (c). It can be efficiently transported by the new migration mechanism shown.
  • the dielectrophoresis system 85 basically uses the same dielectrophoresis system 85 as the dielectrophoresis system 85 described in the ninth embodiment, except for the signals applied to the electrode rows. .
  • the particles 91 are injected into the electrophoresis lane 3 from one injection 'discharge hole 5 in the electrophoresis lane 3.
  • the side force close to one of the injection and discharge holes 5 in the electrophoresis lane 3 is also sequentially applied to the electrodes (41x, 41x + 1, 41x + 2, 41x + 3, 41x + 4) in the first electrode row,
  • a high frequency is applied so that the phase difference between the X-th first electrode 41 (41x) and the X-th second electrode 42 (42x) is ⁇ .
  • (42 ⁇ + 2) is applied with the same (phase difference 0) high frequency (AC voltage) as the ⁇ th first electrode 41 (41 ⁇ ), the present embodiment is not limited to this. It is not a thing.
  • the electrodes in either one of the first electrode row and the second electrode row are sequentially set as Ax, Ax + 1, ..., Ax + m, and The electrodes in the other electrode array arranged at positions overlapping with the electrodes Ax, Ax + 1,..., Ax + m via electrophoresis lane 3 (electrophoresis medium layer) are connected to Bx, Bx + 1,.
  • the target electrode to which a high frequency is applied in the first electrode row and the second electrode row is set to 1 unit x consisting of a combination of the above four electrodes Ax, Ax + n, Bx, Bx + n in order 1
  • the conventional TWD mode (with respect to the second electrodes 42 adjacent to each other in each electrode row)
  • the particles 91 can be transported more efficiently compared to the mode in which a high frequency is applied so that the phases are sequentially shifted by ⁇ 2.
  • the four electrodes Ax, Ax + n, Bx, Bx + n for example, ii022 (a) [As shown, electrodes 41x, 41x + 2, 42x , 42x + 2 [Table 3] [Table 3 below]
  • n 2.
  • the target electrode to which a high frequency is applied in the first electrode row and the second electrode row is a unit of x consisting of a combination of the four electrodes Ax, Ax + n, Bx, Bx + n.
  • Electrode 4 1. 4 1 + n 4 2 ⁇ 4 2 ⁇ + ⁇
  • the migration mechanism shown in FIGS. 22 (a) to (c) is more complicated in movement of the particles 91 (91a) than the migration mechanism shown in FIGS. 22 (a) to (c). It becomes. For this reason, when a highly viscous solvent is used, the direction force particles 91 (91a) employing the migration mechanism shown in FIGS. 22 (a) to (c) are less likely to receive resistance. For this reason, when a highly viscous solvent is used, if the transport distance of the particles 91 (91a) is long, adopting the migration mechanism shown in Figs. 22 (a) to (c) is more effective than 1S. This is preferable.
  • the control of the levitation force and the transport of the particles 91 are performed separately, whereas in the present embodiment, the particles 91 are transported while giving the levitation force as described above. Therefore, there is also an advantage that the particles 91 are difficult to settle.
  • the staying particles 91 are removed. It can be lifted and transported again.
  • the particles 91 remaining in the middle of the electrophoresis lane 3 are visually confirmed, a DEP mode signal is applied, and the above table 1 is again applied.
  • the particles 91 remaining in the middle of the electrophoresis lane 3 can be transported as described above.
  • n is an integer equal to or greater than 1, and the value of n is the height of the migration space (the substrate gap between the lower substrate 1 and the upper substrate 2) and the arrangement of the electrodes. What is necessary is just to select suitably according to conditions, such as a pitch. However, if the value of n is too large, the effect of dielectrophoretic force is weakened.
  • Non-Patent Document 5 describes, for example, a pole-type gold electrode (gold pole electrode) on a glass substrate. It is disclosed that the distribution of electric field strength changes with the parameters of the distance between two parallel electrodes, the distance between two electrodes in a pair, and the radius of the gold pole electrode by arranging the bipolar electrodes. Yes.
  • n is within a range of forces 1 to 5 depending on the pitch between the first electrode example and the second electrode array, and the pitch and electrode width between the electrodes in each electrode array. Is desirable
  • the electrodes Ax, Ax + n, Bx, Bx + n are substantially square (preferably It is more preferable that the electrodes are arranged so as to be square) (n is selected above).
  • the electrodes are arranged so as to be square (n is selected above).
  • the electrodes 41x, 41x + 2, 42x, 42x + 2 are arranged so that the electrodes are substantially square (preferably square), in other words, More preferably, alternating current is applied to the electrodes 41x, 41x + 2, 42x, 42x + 2 under the phase conditions shown in Table 3 (Table 2) or Table 4.
  • the distance between the first electrode 41 and the second electrode 42 (the surface of the first electrode 41 and the second electrode).
  • the distance between the center of electrode 41x and the center of electrode 41x + n, and the distance between the center of electrode 42x and the center of electrode 42x + n is H.
  • the X-th electrode in one of the first electrode row and the second electrode row (hereinafter referred to as “first electrode row”).
  • first electrode row the Ax, x + n-th electrode is Ax + n (X and n are arbitrary integers of 1 or more), and the other electrode arranged at the position facing each of the electrodes Ax, Ax + n through the electrophoresis lane
  • Each electrode in the electrode array (hereinafter referred to as “second electrode array”) is Bx, Bx + n, the distance between the surface of Ax and the surface of Bx is V, and the center of Ax is Assuming that the distance from the center of Ax + n is H, the control board 5 0 ⁇ 55 (1)
  • the above ⁇ satisfies HZV ⁇ 5, and the phase difference of Ax + n with respect to Ax and the position of Bx Both phase differences are ⁇ , and the phase difference of Bx + n with respect to Ax is 0 Or (2) the above-menti
  • control substrates 50 and 55 apply a voltage (AC voltage) applied to each electrode so that an AC voltage is applied to each electrode under a phase condition that satisfies the above relationship.
  • the dielectric substance for example, the particle 91 (91a)
  • the dielectric substance is placed at the center of the space surrounded by the electrodes Ax, Ax + 2, Bx, Bx + 2. Can be trapped.
  • control boards 50 and 55 specify the target electrodes to which an AC voltage is applied in the "first electrode array” and the "second electrode array” as Ax, Ax + n, Bx
  • the voltage applied to each of the electrodes AC voltage
  • the dielectric substance can be transported in a state where the dielectric substance (for example, the particles 91 (91a)) is trapped in the central portion of the space surrounded by the units. Therefore, according to the above configuration, the dielectric substance can be transported more efficiently than in the conventional TWD mode.
  • the sample (electrophoresis medium 90) that can be handled is limited to the height of the gold pole electrode. For example, only a single sample or a small amount of sample (eg, a cell) can be handled. In contrast, according to the present embodiment, since the electrode length is defined only by the size of the lower substrate 1 and the upper substrate 2, the quadrupole operation with four electrodes as one unit is performed. A large amount of specimen can be handled.
  • phase relationship of the AC signal described in the present embodiment does not necessarily satisfy the relationship described in each table above, and does not necessarily satisfy (approximate) the above description. If it is within a range, it may be in a state slightly deviated from the phases described in the above tables.
  • the AC signal has an external (that is, FPC17'46) force
  • the phase shift within the range in which the dielectrophoretic behavior is obtained is within the allowable range, and the phase conditions described in the above tables include the phase shift within the allowable range. May be.
  • a plurality of particles 91 having different relative dielectric constants are identified by the difference in transport speed. can do. Specific examples thereof will be described below.
  • both latex particles and silica particles are conveyed to the injection / discharge holes 5 on the side opposite to the injection / discharge holes 5 into which the respective electrophoretic media 90 are injected.
  • the dielectrophoretic force depends on the dielectric constant of the particles and the solvent, the frequency of the applied voltage, and the like.
  • the dielectric constant of silica particles is higher than the dielectric constant of latex particles. For this reason, both particles have different migration speeds (conveyance speeds). Therefore, by applying a signal under the same conditions to a plurality of electrophoresis lanes 3 as described above, it is possible to select and identify particles having different relative dielectric constants.
  • the use of the dielectrophoresis panel 10 (dielectrophoresis chip) having the plurality of electrophoresis lanes 3 as described above involves complicated setting of the experimental environment. Multiple different types of samples (for example, samples with different relative dielectric constants and viscosities of solvents, or samples with different physical properties (relative permittivity, etc.) of particles in the solvent) under the same conditions at the same time It is possible to put.
  • the dielectrophoresis panel 10 dielectrophoresis chip having a plurality of electrophoresis lanes 3 as described above, the type of the solvent 92 (electrophoresis medium 90) is changed for each electrophoresis lane 3, and a specific plurality of It is also possible to select a plurality of particles 91 at the same time, or the same solvent 92 (electrophoresis medium 90) can be selected at the same time by changing the electrode shape for each electrophoresis lane 3. Efficient particle sorting Is possible. Therefore, also in this embodiment, the dielectrophoresis chip and dielectrophoresis apparatus corresponding to a wide range of applications that have a wide application range with respect to test conditions, and Sarakuko can realize the dielectrophoresis system 85.
  • FIG. 23 is a plan view showing a schematic configuration of the main part of the dielectrophoresis panel 10 according to the present embodiment, and FIG. 23 is an outline of the electrophoresis lane 3 forming part of the dielectrophoresis panel 10. The configuration is shown.
  • each electrode (first electrode 41, second electrode 42) in the electrophoresis electrode array 41 ⁇ and 42 ⁇ is used.
  • the electrode width and the electrode spacing are constant (LZS is 30 m) regardless of whether or not they overlap with the electrophoresis lane 3. That is, in Embodiments 8 to 10, the electrophoretic electrode arrays 41 and 42 have the stripe structures in which the electrodes in the electrophoretic electrode arrays 41 and 42 are provided in parallel with each other in the form of stripes. The case was described as an example.
  • the electrode width and the electrode interval of each of the first electrode 41 and the second electrode 42 are the same as those of the first electrode 41 and the second electrode 42, as shown in FIG.
  • the area where 2-electrode 42 (electrophoresis electrode array 41 ⁇ ⁇ 42 ⁇ ) overlaps electrophoresis lane 3 is different from the other areas. Therefore, in the present embodiment, the electrode shapes of the first electrode 41 and the second electrode 42 are such that the first electrode 41 and the second electrode 42 (migration electrode array 41A-42A) overlap with the migration lane 3. And the other areas are different
  • a frame provided as an electrophoresis lane wall (interval holding layer 43) between the lower substrate 1 and the upper substrate 2 independently of each other.
  • a plurality of swimming lane walls 21 spaced apart from each other a plurality of migration lanes 3 provided in parallel and spaced apart from each other are provided.
  • Swim so that the electrode width and the electrode interval of each of the first electrode 41 and the second electrode 42 are different in the inter-lane region (gap 22), that is, outside the migration lane 3 (outside the frame).
  • An electrode array 41A.42A is provided.
  • each electrode in the electrophoresis lane 3 that is, an area (observation area 9) where the electrophoresis electrode arrays 41 ⁇ ⁇ ⁇ and 42 ⁇ used as the observation area overlap with the electrophoresis lane 3 is observed.
  • the first electrode 41 and the second electrode 42 are each formed, for example, with an electrode width (L) m and an electrode interval (S) 10 m (electrode pitch 20 m), while other regions, That is, the first electrode 41 and the second electrode 42 in the region not related to electrophoresis (that is, outside the electrophoresis lane 3) have an electrode width of 30 / ⁇ ⁇ (and a maximum electrode interval of 30 / zm (that is, adjacent to each other). Electrode interval 30 ⁇ m at the center between electrophoresis lanes 3 and 3 and electrode pitch 60 ⁇ m at the center.
  • the first electrode 41 group and the second electrode 42 group in the electrophoresis lane 3 necessary for observation of the migration phenomenon that is, the first electrode 41 group and the second electrode 42 in the observation region 9.
  • Only the second electrode (group 42) is the required narrow-pitch wiring, and the other areas of the first electrode 41 group and the second electrode 42 group (the first electrode 41 group in the gap 22) are unrelated to the migration phenomenon.
  • the second electrode (group 42) is wide pitch wiring.
  • FIG. 24 is another plan view showing a schematic configuration of the main part of the dielectrophoresis panel 10 according to the present embodiment, and FIG. 24 is a diagram of the electrophoresis lane 3 forming part of the dielectrophoresis panel 10. A schematic configuration is shown.
  • the dielectrophoresis panel 10 shown in FIG. 24 includes the electrode width and the electrode width of each of the first electrode 41 and the second electrode 42 in each of the three electrophoresis lanes 3 provided in parallel and spaced apart from each other. It differs from the dielectrophoresis panel 10 shown in Fig. 23 in that the electrode spacing (electrode pitch) is different.
  • the electrode width and the electrode interval in each of the first electrode 41 and the second electrode 42 are, for example, one substrate end (in this embodiment, for example, the lower substrate 1 end)
  • the migration electrode arrays 41 and 42 are provided so that the migration lane 3 on the side farther from the mounting / connecting part 44) provided in the part becomes larger.
  • the electrophoresis electrode arrays 41 and 42 shown in FIG. 24 overlap the electrophoresis lane 3 on the mounting portion 44 side in the region overlapping each electrophoresis lane 3 (the migration lane 3 at the left end in FIG. 24).
  • Lane 3 In order of force, for example, electrode part P1 consisting of first electrode 41 group and second electrode 42 group with electrode width 10 ⁇ m, electrode interval 10 m (electrode pitch 20 ⁇ m), and electrode width 20 ⁇ m m, electrode interval 20 ⁇ m (electrode pitch 40 ⁇ m) electrode part P2 consisting of first electrode 41 group and second electrode 42 group, electrode width 30 ⁇ m, electrode interval 30 m (electrode pitch 60 ⁇ m)
  • the first electrode 41 group and the second electrode 42 group force electrode part P3 in total 3 types of strip-like electrode parts P1, P2, and P3.
  • the first electrode 41 and the second electrode 42 between the electrode portions P1 and P2 have, for example, an electrode width of 30 m and an electrode interval of 10 m (electrode pitch at the electrode portion PI side end portion). 20 ⁇ m), and an electrode interval of 20 m (electrode pitch 40 m) at the end portion on the electrode P2 side.
  • the electrode interval is determined by the array width of the electrophoresis electrode array 41 ⁇ ⁇ 42 ⁇ ( In the electrophoretic electrode array 41 A ⁇ 42A, the electrode width changes linearly according to the electrode width between the first electrodes 41 ⁇ 41 at both ends and the electrode width between the second electrodes 42 ⁇ 42 at both ends. Is formed.
  • the first electrode 41 and the second electrode 42 between the electrode parts ⁇ 2 and ⁇ 3 have an electrode width of 30 ⁇ m and an electrode spacing of 20 ⁇ m at the electrode part P2 side end (electrode pitch of 40 ⁇ m). m), the electrode interval at the end of the electrode P3 side is 30 ⁇ m (electrode pitch m), and the array width of the migration electrode array 41 A ⁇ 42 ⁇ (the migration electrode array 41 ⁇ ⁇ 42 ⁇ The electrode width between the first electrodes 41 and 41 at both end portions and the electrode width between the second electrodes 42 and 42 at both end portions is linearly changed.
  • the electrode shape (or electrode width, electrode spacing) of the migration electrode arrays 41 and 42 for each migration lane 3 is used.
  • Another advantage is that it is possible to observe differences in migration behavior of multiple lanes 3 at once.
  • differences from the eighth to twelfth embodiments will be mainly described, and components having the same functions as those used in the eighth to twelfth embodiments are described. Are given the same number and their explanation is omitted.
  • FIG. 25 (a) is a plan view showing a schematic configuration of a main part of the dielectrophoresis panel 10 that works on the present embodiment.
  • FIG. 25 (a) shows a schematic configuration of the electrophoresis lane 3 forming part of the dielectrophoresis panel 10.
  • FIG. 25 (b) to (e) are plan views schematically showing the shapes of the first electrode 41 and the second electrode 42 in each electrophoresis lane 3 of the dielectrophoresis panel 10 shown in FIG. 25 (a). .
  • the dielectrophoresis panel 10 includes a first electrode 41 and a second electrode 42 (in each of four electrophoresis lanes 3 provided in parallel.
  • the shape of the electrophoresis electrode array 41A.42A) is different.
  • the mounting 'connection portion 44 is provided.
  • the migration electrode array 41 A ⁇ 42 mm has a wiring width of 3 as shown in Fig. 25 (b). It has a structure (stripe-type electrode structure) in which 0 m linear first electrodes 41 and second electrodes 42 are provided in stripes.
  • the electrophoresis electrode array 41A.42A includes the linear first electrode 41 and the second electrode having a wiring width of 45 ⁇ m, as shown in FIG.
  • the electrode 42 has a structure in which stripes are provided (stripe-type electrode structure). Then, in the electrophoresis lane 3C, which is next to the mounting lane connecting portion 44 next to the electrophoresis lane 3B, the electrophoresis electrode arrays 41 ⁇ and 42 ⁇ are chopped (with a wiring width of 30 m as shown in FIG. 25 (d)). A plurality of saw-shaped) first electrodes 41 and second electrodes 42 are arranged in parallel at equal intervals. Finally, in the electrophoresis lane 3D farthest from the mounting section 44 of the four electrophoresis lanes 3 described above, the electrophoresis electrode array 41 ⁇ and 42 ⁇ are shown in FIG. 25 (e). The mold has a structure in which a plurality of first electrodes 41 and second electrodes 42 are arranged in parallel at equal intervals. The electrode spacing (electrode pitch) in each of the first electrode 41 and the second electrode 42 is 60 ⁇ m.
  • the dielectrophoresis behavior is the same as that of the first electrode 41 and the second electrode 42 (electrophoresis electrode array 4) even when the same sample (electrophoresis medium 90) is used and driven with the same control voltage. Depending on the shape of 1 ⁇ ⁇ 42 ⁇ ), it depends on the state of the electric field in the sample (electrophoresis medium 90).
  • the electrode shapes and electrodes of the first electrode 41 and the second electrode 42 (electrophoresis electrode array 41 ⁇ ⁇ 42 ⁇ ) for each electrophoresis lane 3 are as follows. By changing at least one of the width and the electrode spacing, it becomes possible to simultaneously select and identify a plurality of specific particles 91 in the electrophoresis medium 90. As a result, for example, the plurality of particles 91 can be efficiently selected. In addition, according to the above configuration, there is a merit that the difference in the migration behavior of the particles 91 in the plurality of migration lanes 3 can be collectively observed.
  • the dielectrophoresis panel 10 that works on the present embodiment, the shapes of the first electrode 41 and the second electrode 42 (electrophoresis electrode array 41 ⁇ ⁇ 42 ⁇ ), The dielectrophoresis panel in which at least one of the electrode width and the electrode interval is different for each electrophoresis lane 3 has been described as an example.
  • the present embodiment is not limited to this.
  • the dielectrophoresis panel 10 useful for the present embodiment is shown in FIG. 23 or FIG.
  • a predetermined gap portion 22 region between the migration lanes
  • the first electrode 41 and the second electrode are formed between the gap portion 22 and the migration lane 3.
  • 42 epitrophoretic electrode array 41 ⁇ ⁇ 42 ⁇
  • the electrode shape of the migration electrode array 41 ⁇ ⁇ 42 ⁇ in the migration lanes 3A '3B' 3C is not a stripe shape
  • the electrode shape of the migration electrode array 41 ⁇ ⁇ 42 ⁇ in the gap 22 is a stripe structure. By shortening the wiring length, it is possible to suppress an increase in wiring resistance.
  • the migration lane 3 and the gap 22 have different migration widths and spacings between the electrodes in the migration electrode array 41 and the migration electrode array 41.
  • the electrode shape of 42 mm is made different, the low resistance of the migration electrode array 41 ⁇ ⁇ 42 ⁇ (wiring) in the dielectrophoresis panel 10 can be achieved.
  • the electrode array is arranged only on one substrate as described above, and more complicated electrophoretic behavior can be obtained as compared with the case.
  • the dielectrophoresis chip is a dielectrophoresis chip that dielectrophores the dielectric substance by applying an electric field formed by an alternating voltage to a sample containing the dielectric substance.
  • a plurality of electrophoretic lanes for dielectrophoretic migration of the dielectric substance are provided on a single substrate, and a plurality of electrode forces intersect with the electrophoretic lane, and an alternating current is applied to apply an electric field to the sample injected into the electrophoretic lane.
  • An electrode array for dielectrophoretic migration of the dielectric substance by applying a voltage is provided, and each electrode in the electrode array is provided across the plurality of electrophoresis lanes.
  • a plurality of the electrophoresis lanes are provided on one substrate, and each electrode in the electrode array is provided across the plurality of migration lanes. That is, since each electrode is provided in common for a plurality of electrophoresis lanes, an alternating voltage (electrophoresis control voltage) that applies a dielectrophoretic force to the dielectric substance is applied to each electrode in each electrophoresis lane. Can be entered in batch. That is, according to the above configuration, when one type of signal is input to the electrode array, an electric field can be simultaneously applied to a plurality of electrophoresis lanes. Therefore, according to the above configuration, the migration control of a plurality of samples can be performed simultaneously.
  • the type of sample for example, a medium such as a solvent
  • the type of sample for example, a medium such as a solvent
  • the dielectrophoresis chip it is preferable that at least one of the shape, the electrode width, and the electrode interval of the electrode row is different between adjacent lanes. [0382] Even when the same sample is used and driven with the same control voltage, the dielectrophoretic behavior differs depending on the state of the electric field in the sample depending on the shape of the electrode array (electrode).
  • each of the electrophoresis lanes is provided apart from each other in the dielectrophoresis chip, and the electrode array is formed in each of the electrophoresis lanes and in an area between the electrophoresis lanes. It is preferable that at least one of the shape, electrode width, and electrode spacing is different.
  • the electrode shape of the electrode row in the region between the migration lanes is a stripe structure. It is also possible to suppress the increase in wiring resistance by shortening the wiring length.
  • At least one of the shape, the electrode width, and the electrode interval of the electrode array is formed in each electrophoresis lane and in an area between the electrophoresis lanes.
  • the dielectrophoresis chip is provided with an electrophoresis lane wall separating the electrophoresis lanes on the substrate, and at least a region where the electrophoresis lane wall is formed. It is preferable that a protective film covering the above electrode array is provided in a region excluding a part. Yes.
  • the protective film that covers the electrode array is provided on the substrate, the migrating dielectric substance is adsorbed to the electrode array in the electrophoresis lane. Can be prevented.
  • the protective film is provided in a region on the substrate excluding at least a part of the region where the migration lane wall is formed, whereby adhesion between the protective film and the material of the migration lane wall is achieved. Even if it is bad, if you can get enough adhesion!
  • each electrophoresis lane is provided on the substrate, the substrate, an electrophoresis lane wall separating the electrophoresis lanes, and the substrate through the electrophoresis lane wall.
  • the migration lane wall includes a spacer that maintains a distance between the substrate and the counter substrate disposed to face the substrate. , Prefer to be.
  • the migration lane wall internally holds a spacer between the pair of substrates.
  • the dielectrophoresis chip has input terminal portions for inputting the same voltage from both ends of each electrode to both ends of each electrode in the electrode row. .
  • each electrophoresis lane is provided on the substrate, the electrophoresis lane wall provided on the substrate, and separating each electrophoresis lane, and the electrophoresis lane wall.
  • Each of the electrophoresis lanes is disposed between the substrate and the opposite substrate disposed opposite to the substrate. It is preferable to have an inlet for injecting the above sample! /.
  • the injection port is inevitably formed between the pair of substrates due to the pattern of the migration lane wall. Therefore, a separate material or process is used to form the injection port. Do not need. Therefore, according to the above configuration, the dielectrophoresis chip can be formed more efficiently than the case where the dielectrophoresis chip is provided with the injection port by drill or the like.
  • the electrode array includes a first electrode array and a second electrode array in which a plurality of electrodes are arranged in the lane direction of the migration lane, and the first electrode array and the second electrode array are provided.
  • Each of the electrode arrays applies an electric field to the sample injected into the migration lane by forming an electric field with an alternating voltage between the electrodes in each electrode array, and the first electrode array and the second electrode array.
  • the electrodes in the first electrode array and the second electrode array are opposed to each other through the electrophoresis lane and intersect with the electrophoresis lane. It is preferable to be provided across a plurality of electrophoresis lanes.
  • the dielectric material is applied to the electrophoretic electrode array 6 provided in the dielectrophoresis panel 10 by the DEP mode. It is necessary to apply a signal for levitating or a signal for transporting the dielectric material to the destination by TWD mode.
  • the electrophoretic particles migrating by the dielectrophoresis have a small shape, size, and dielectric constant. Do not behave ideally due to various factors such as solvent viscosity resistance There is.
  • each electrode in the first electrode row and the second electrode row is provided to face each other via the migration lane.
  • An electrode for applying an electric field formed by an alternating voltage is provided on the sample so as to sandwich the injected sample. Therefore, an electric field formed by an AC voltage is applied to the dielectric material from both surfaces of the sample (sample layer) containing the dielectric material, that is, two opposing surfaces so as to sandwich the dielectric material. Therefore, compared to the case where the electric field is applied only from one side (one side) of the sample (sample layer), the behavior of dielectrophoresis of the inductive substance can be stabilized.
  • the electric field is applied to the dielectric substance from both sides of the sample (sample layer). Therefore, the dielectric substance is applied only from one side of the sample (sample layer). Compared with the case where an electric field is applied, the electric field exerted on the dielectric substance becomes stronger. For this reason, according to the above configuration, the dielectrophoretic force of the dielectric substance can be increased without increasing the driving voltage, compared to the case where the electric field is applied only from one side of the sample (sample layer). Can do.
  • each electrode in the first electrode row and the second electrode row is provided via the migration lane, for example. It is also possible to apply AC voltages having different conditions such as phase and amplitude to the electrode array and the second electrode array. For this reason, when the electric field is applied only from one side (one side) of the sample (sample layer), that is, compared to the case where one electrode array is not used, the migration behavior is more efficient. It is also possible to control, or to control more complicated migration behavior.
  • the first electrode row and the second electrode row may have the same shape in a region where both electrode rows and the electrophoresis lane face each other.
  • the first electrode row and the second electrode row may have the same shape in a region where both electrode rows and the electrophoresis lane face each other.
  • the first electrode array and the second electrode array are ideally suited from the viewpoints of the collection effect of the dielectric substance (dielectric particles) at the electrode ends, the control of the levitation force, and the transport control. It is desirable that they overlap with each other in plan view.
  • the first electrode array and the second electrode array overlap each other in a planar manner, for example, from both surfaces of the sample (sample layer) containing the dielectric substance, that is, from two opposing surfaces, respectively.
  • a symmetrical electric field can be applied.
  • the first electrode row and the second electrode row are exactly overlapped in a plane, the control of the levitation force and the transport control of the dielectric substance are facilitated. For this reason, it is desirable that the first electrode row and the second electrode row have the same shape in a region where both electrode rows and the migration lane face each other.
  • the migration lane has a facing surface of each of the migration lanes facing each of the electrode rows in at least a part of a region where the migration lane faces the first electrode row and the second electrode row.
  • Each of the electrodes is transparent, and at least a part of the electrode facing the transparent region in the migration lane in at least one of the first electrode row and the second electrode row is a transparent electrode. It is preferable that it is formed.
  • the migration lane includes at least one of the facing surfaces of each of the electrode rows in at least a part of a region where the migration lane and the first electrode row and the second electrode row face each other.
  • the first electrode row and the second electrode row of the first electrode row and the second electrode row opposite to the transparent region in the migration lane are the electrodes in the portion facing the transparent region in the migration lane. It is preferable that at least a part of is formed of a transparent electrode.
  • the migration lane is in at least a part of a region where the migration lane and the first electrode row and the second electrode row face each other (that is, overlap).
  • the facing surfaces of the electrophoresis lanes to the electrode rows are transparent, and are opposed to the transparent regions in the electrophoresis lane in at least one of the first electrode row and the second electrode row.
  • the migration lane is such that the migration lane is opposed to the first electrode row and the second electrode row (that is, overlapped).
  • At least one of the surfaces facing each of the electrode rows in at least a part of the region to be transparent is transparent, and the transparent region in the electrophoresis lane of the first electrode row and the second electrode row Electrode columns to counter, at least a portion of the transparent region facing the portion of the electrode in the electrophoresis lanes are formed in the transparent electrode!
  • the migration lane includes the electrodes of the migration lane in at least a part of a region where the migration lane and the first electrode row and the second electrode row face each other (that is, overlap).
  • the surface facing the column is transparent, and the first electrode column and the second electrode column are transparent at least part of the electrodes facing the transparent region in the migration lane.
  • the dielectrophoresis chip in which the restriction of the observation conditions is relaxed.
  • the dielectrophoresis chip can be observed and photographed with transmitted light. Therefore, it is very effective for observation using a lot of fluorescence observation and filtering.
  • At least one of the first electrode row and the second electrode row includes a metal electrode in a portion other than the portion facing the transparent region in the migration lane. Is preferred!
  • an electrode formed of the transparent electrode material is compared with an electrode formed of a metal material (metal electrode).
  • the resistance is relatively high.
  • the electrode row has a metal electrode in the electrode row, such as a two-layer structure of a transparent electrode and a metal electrode. Therefore, by providing the metal electrode in a portion other than the portion facing the transparent region in the electrophoresis train in the electrode example (that is, the portion not facing), observation in the electrode region is possible.
  • the resistance of the entire electrode array can be reduced as compared with the case where the electrode array is formed of only transparent electrodes, and the parasitic capacitance between the electrodes can be reduced. Therefore, according to the above configuration, observation in the electrode region is possible, and attenuation and delay of the input voltage (electrophoresis control input voltage) can be suppressed. The effect is that a dielectrophoresis chip can be provided.
  • the electrophoresis lane includes the electrophoresis lane in at least a part of a region where the electrophoresis lane and the first electrode row and the second electrode row face each other (that is, overlap).
  • the surfaces facing the respective electrode rows are transparent, and the first electrode row and the second electrode row are arranged in a portion facing the transparent region in the migration lane. It is preferable that the electrode force facing each other via the migration lane in the second electrode row is provided with a portion where both are transparent electrode forces and a portion where a metal electrode is provided on at least one side. Better!/,.
  • the electrophoresis lanes adjacent to each other differ in at least one condition among the shape of the electrode row, the electrode width, and the electrode interval.
  • the electrophoresis lanes are provided apart from each other, and the shape of the electrode row and the electrode width are determined in the electrophoresis lanes and in the region between the electrophoresis lanes. It is preferable that at least one of the electrode spacing is different.
  • the electrode shape of the electrode row in the region between the migration lanes is a stripe structure. It is also possible to suppress the increase in wiring resistance by shortening the wiring length.
  • at least one of the shape, the electrode width, and the electrode interval of the electrode array is formed in each electrophoresis lane and in a region between the electrophoresis lanes. By making the conditions different, it is possible to reduce the resistance of the electrode array.
  • the dielectrophoresis apparatus has the configuration including the dielectrophoresis chip.
  • the dielectrophoresis system has a configuration including the dielectrophoresis apparatus as described above.
  • the dielectrophoresis system includes the dielectrophoresis chip and has the configuration described above.
  • the dielectrophoresis chip included in the dielectrophoresis apparatus and the dielectrophoresis system includes a plurality of electrophoresis lanes for dielectrophoresis of the dielectric substance on a single substrate, and intersects the electrophoresis lanes.
  • the dielectrophoresis apparatus and the dielectrophoresis system are provided across the plurality of electrophoretic lanes, so that the dielectrophoresis apparatus and the dielectrophoresis system provide an alternating voltage (electrophoresis control voltage) that applies a dielectrophoretic force to the dielectric substance. It is possible to collectively input to each electrode in each electrophoresis lane of the dielectric swimming chip.
  • an electric field can be simultaneously applied to a plurality of electrophoresis lanes when one type of signal is input to the electrode array. Therefore, according to each of the above configurations, the migration control of a plurality of samples can be performed simultaneously in a lump.
  • the type of sample for example, a medium such as a solvent
  • the type of sample for example, a medium such as a solvent
  • the specific particle is selected at the same time, and the same medium such as solvent is selected, and the specific shape is selected simultaneously by changing the electrode shape for each electrophoresis lane. It is also possible to select a plurality of particles efficiently. Therefore, according to each of the above configurations, there is an effect that it is possible to provide a dielectrophoresis apparatus and a dielectrophoresis system corresponding to a wide range of uses.
  • the dielectrophoresis apparatus includes the first electrode array and the second electrode array, each having a plurality of electrodes arranged in the lane direction of the electrophoresis lane, as the dielectrophoresis chip. And, as described above, each of the electrodes in the first electrode row and the second electrode row is provided with a dielectrophoresis chip provided opposite to each other via the electrophoretic lane.
  • An electric field formed by an alternating voltage is applied to the conductive material so that the dielectric material is sandwiched between both surfaces of the sample (sample layer) containing the dielectric material, that is, two opposing surfaces. Therefore, compared to the case where the electric field is applied only from one side (one side) of the sample (sample layer), the behavior of dielectrophoresis of the dielectric substance can be stabilized.
  • the electric field is applied to both sides of the sample (sample layer), the electric field is applied only to the single-sided force of the sample (sample layer). Compared with the case where the electric field is applied, the electric field exerted on the dielectric substance becomes stronger. For this reason, according to the above configuration, the dielectrophoretic force of the dielectric substance can be increased without increasing the driving voltage, compared to the case where the electric field is applied only from one side of the sample (sample layer). it can.
  • each of the electrodes in the first electrode row and the second electrode row is provided via the migration lane. It is also possible to apply AC voltages having different conditions such as phase and amplitude to the electrode array and the second electrode array. For this reason, when the electric field is applied only from one side (one side) of the sample (sample layer), that is, compared to the case where one electrode array is not used, the migration behavior is more efficient. It is also possible to control, or to control more complicated migration behavior.
  • the dielectrophoresis apparatus includes a control unit that controls a voltage applied to the first electrode row and the second electrode row, and the control unit includes the first electrode row and the first electrode row.
  • the AC voltages having different phases are applied to the electrodes adjacent to each other, and the AC voltages having the same phase are applied to the electrodes facing each other via the migration lane. I like to talk.
  • control unit applies an AC voltage so that the phases are sequentially shifted by ⁇ with respect to the electrodes adjacent to each other in the first electrode row and the second electrode row, respectively. I prefer it to be something!
  • the levitation force of the dielectric substance is efficiently controlled by applying the AC voltage so that the phases are sequentially shifted by ⁇ to the electrodes adjacent to each other in each electrode row. If you can, it will have a positive effect.
  • control unit applies an AC voltage so that the phases are sequentially shifted by ⁇ 2 to the electrodes adjacent to each other in the first electrode row and the second electrode row, respectively. Preferably there is.
  • the above-described dielectric substance can be efficiently transported by applying the AC voltage so that the phase is sequentially shifted by ⁇ 2 to the electrodes adjacent to each other in each electrode row. If you can!
  • the dielectrophoresis apparatus includes a control unit that controls a voltage applied to the first electrode array and the second electrode array, and the control section includes the first electrode array and the first electrode array.
  • the control section includes the first electrode array and the first electrode array.
  • the dielectric material can be separated and transported only by switching the target electrode to which the voltage is applied.
  • the dielectric material can be easily separated and transported more efficiently.
  • the dielectric material is transported while giving a levitating force to the dielectric material, the dielectric material is difficult to settle and has both the effect of habit.
  • control unit (1) sets the Xth electrode in the first electrode row to Ax, X
  • the + n-th electrode is Ax + n (x and n are integers of 1 or more), and the second electrode array disposed at a position facing each of the electrodes Ax and Ax + n through the electrophoresis lane If the distance between the surface of Ax and the surface of Bx is V and the distance between the center of Ax and the center of Ax + n is H, Satisfying HZV ⁇ 5, the phase difference of Ax + n and Bx with respect to Ax is ⁇ , and the AC voltage is applied so that the phase difference of Bx + n with respect to Ax is 0.
  • the Xth electrode in the first electrode row is Ax
  • the x + nth electrode is Ax + n
  • the electrodes in the second electrode array arranged at positions facing the electrodes Ax and Ax + n are Bx and Bx + n, respectively, and the distance between the surface of Ax and the surface of Bx is V age, Assuming that the distance between the center of Ax and the center of Ax + n is H, the above-mentioned n satisfies HZV ⁇ 5 and the phase difference of one of the above-mentioned electrodes Ax + n and Bx with respect to Ax Is preferably ⁇ 2, the phase difference of the other electrode is 3 ⁇ 2, and an AC voltage is applied so that the phase difference of Bx + n with respect to Ax is ⁇ .
  • the electrodes Ax, Ax + 2, Bx in the electrophoresis lane can be applied to the electrodes by applying an alternating voltage under the phase condition satisfying the relationship described above.
  • Bx + 2 has the effect of trapping the dielectric material in the center of the space.
  • control unit intersects the first electrode row and the second electrode row. It is preferable that the target electrode to which the current voltage is applied is moved sequentially so that one unit of X, which also has the combined force of the four electrodes Ax, Ax + n, Bx, and Bx + n, increases by one. .
  • the target electrode to which the AC voltage is applied in the first electrode row and the second electrode row is composed of a combination of four electrodes Ax, Ax + n, Bx, Bx + n 1
  • the dielectric material is trapped in the center of the space surrounded by the unit to which the AC voltage is applied, and the dielectric is trapped.
  • the substance can be transported. Therefore, according to the above configuration, the dielectric substance can be efficiently transported as compared with the conventional TWD mode.
  • the dielectrophoresis system force includes a first electrode row and a second electrode row each having a plurality of electrodes arranged in the lane direction of the electrophoresis lane, and as described above, the first electrode row And a second dielectrophoresis chip provided with the respective electrodes in the second electrode array facing each other through the electrophoretic lane, or a dielectrophoresis device including the dielectrophoresis chip. Since the electric field formed by the AC voltage is applied to both the surfaces of the sample (sample layer) containing the dielectric substance so as to sandwich the dielectric substance, the electric field formed by the AC voltage is applied to the conductive substance. Compared with the case where the electric field is applied only from one side (one side) of the sample (sample layer), the behavior of dielectrophoresis of the dielectric substance can be stabilized.
  • the electric field is applied to the dielectric substance from both sides of the sample (sample layer), so the electric field is applied only to the single-sided force of the sample (sample layer). Compared with the case where the electric field is applied, the electric field exerted on the dielectric substance becomes stronger. For this reason, according to the above configuration, the dielectrophoretic force of the dielectric substance can be increased without increasing the driving voltage, compared to the case where the electric field is applied only from one side of the sample (sample layer). it can.
  • a dielectrophoresis system that can control the dielectrophoretic behavior of a dielectric substance more efficiently than before and can obtain a stable dielectrophoretic behavior. be able to.
  • each of the electrodes in the first electrode row and the second electrode row is provided via the migration lane.
  • AC voltages having different conditions such as phase and amplitude
  • the electrode array and the second electrode array For this reason, when the electric field is applied only from one side (one side) of the sample (sample layer), that is, compared to the case where one electrode array is not used, the migration behavior is more efficient. It is also possible to control, or to control more complicated migration behavior. Therefore, according to the above configuration, there is an effect that it is possible to provide a dielectrophoresis system in which the observation environment is improved as compared with the conventional case where the application range for the test conditions is wide.
  • Each of the dielectrophoresis chip, the dielectrophoresis apparatus, and the dielectrophoresis system described above can be suitably applied to, for example, a bio-research microarray such as separation and detection of specific cells.
  • the dielectrophoresis chip, dielectrophoresis apparatus, and dielectrophoresis system according to the present invention are used for bio research microarrays such as separation and detection of specific cells, for example, dielectrics such as biomolecules and resin beads.
  • the present invention can be suitably used in a chemical analysis system that conveys a sex substance by dielectrophoretic force.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Electrostatic Separation (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

An electrophoretic panel (10) causes a dielectric substance to migrate dielectrically by applying an electric field generated by an AC voltage, to a sample containing the dielectric substance. The electrophoretic panel (10) is equipped, on a lower substrate (1), with a plurality of migration lanes (3) for causing the dielectric substance to migrate dielectrically. On the lower substrate (1), there is disposed a migration electrode array (6), which includes a plurality of migration electrodes (6a) intersecting with the migration lanes (3) and which causes the dielectric substance to migrate dielectrically by applying the AC voltage so as to apply the electric field to the sample injected into the migration lanes (3). The individual migration electrodes (6a) in the migration electrode array (6) are disposed across the migration lanes (3).

Description

誘電泳動チップおよび誘電泳動装置並びに誘電泳動システム 技術分野  Dielectrophoresis chip, dielectrophoresis apparatus, and dielectrophoresis system
[0001] 本発明は、生体分子ゃ榭脂ビーズ等の粒子を誘電泳動力によって搬送する誘電 泳動チップおよび誘電泳動装置並びに誘電泳動システムに関するものである。  [0001] The present invention relates to a dielectrophoresis chip, a dielectrophoresis apparatus, and a dielectrophoresis system for conveying particles such as biomolecules and resin beads by dielectrophoretic force.
背景技術  Background art
[0002] 近年、化学分析システムとして、ラボ ·オン ·チップ(Lab- on- a- Chip; Laboratory on a Chip)や μ -TAS (Micro Total Analysis System)と称される化学分析システムの研究 開発が盛んに行われている。これら化学分析システムは、半導体の微細加工技術に より、掌にのるサイズのマイクロチップ基板を用いて、この 1つのマイクロチップ基板(1 チップ)上に、ポンプ、バルブ、反応槽、各種センサ等を集積化'小型化したものであ る。上記マイクロチップ基板としては、例えば、ガラス基板等が挙げられる。  [0002] In recent years, as chemical analysis systems, research and development of chemical analysis systems called Lab-on-a-Chip (Lab-on-a-Chip) and μ-TAS (Micro Total Analysis System) have been conducted. It is actively done. These chemical analysis systems use a microchip substrate of the size of a palm by means of semiconductor microfabrication technology. On this single microchip substrate (one chip), pumps, valves, reaction vessels, various sensors, etc. Are integrated and miniaturized. Examples of the microchip substrate include a glass substrate.
[0003] これら化学分析システムでは、このマイクロチップ基板上に設けられた微細な流路 を流れる流体中で粒子を搬送、分離、収集することにより各種分析が行われる。これ ら化学分析システムは、微量サンプルで測定が可能であり、また、反応時間の短縮、 前処理を含めた測定の自動化、装置の小型化、装置のデイスポーザブル化、低コス ト、人手の削減等の利点があり、特に、医療や環境測定の分野においてその利点を 最大限に発揮できると考えられている。これら化学分析システムは、医療分野をはじ めとして、食品衛生分野、環境モニタリング等に広く応用が可能である。  [0003] In these chemical analysis systems, various analyzes are performed by transporting, separating, and collecting particles in a fluid flowing through a fine channel provided on the microchip substrate. These chemical analysis systems can measure small amounts of sample, shorten reaction time, automate measurement including pretreatment, downsize equipment, make equipment disposable, lower cost, and manpower. There are advantages such as reduction, especially in the fields of medical care and environmental measurement. These chemical analysis systems can be widely applied to the field of food hygiene, environmental monitoring, etc., including the medical field.
[0004] これら化学分析システムにおける分析対象は、血液を分離することで得られる赤血 球、白血球、リンパ球等の血球成分;大腸菌、リステリア菌等の細菌; DNA (デォキシ リホ '酸: deoxyribonucleic acid; deoxyribose nucleic acid)、タンノヽク質等の生体分 子;等、幅広い。また、主な用途としては、例えば、これら DNA、タンパク質、細胞等 の解析 (反応'検出 '分離'搬送);化学合成 (マイクロプラント);等が挙げられる。  [0004] Analyzes in these chemical analysis systems are blood cell components such as erythrocytes, leukocytes, and lymphocytes obtained by separating blood; bacteria such as E. coli and Listeria; DNA (deoxyribonucleic acid) A wide range of biomolecules such as deoxyribose nucleic acid) and tannoproteins. The main applications include, for example, analysis of these DNAs, proteins, cells, etc. (reaction “detection” separation ”transport); chemical synthesis (microplant);
[0005] このため、これら化学分析システムは、大学病院等の大型の研究機関だけでなぐ 地域の診療所や一般の家庭での検査や健康管理ができる手段として注目を集めて いる。このため、このような分析チップには、分析精度の高さに加え、安価で取り扱い が容易であり、かつ、迅速な分析が可能であることが求められており、現在、実用化 を目指して研究が行われて 、る。 [0005] For this reason, these chemical analysis systems are attracting attention as a means for performing inspections and health management in local clinics and general households that can be performed only by large research institutions such as university hospitals. For this reason, such analysis chips are handled at low cost in addition to high analysis accuracy. Therefore, research is being conducted with the aim of putting it to practical use.
[0006] これまで、マイクロチップ基板上で解析を目的とする試料 (例えば、試料溶液 (含有 粒子溶液) )を操作する手法としては、流路加工およびマイクロポンプ等による圧力制 御や、電気泳動(electrophoresis)、誘電泳動(DEP ; dielectrophoresis)等の電気的 性質を利用した方式が提案されている。  [0006] Until now, methods for manipulating a sample (for example, a sample solution (containing particle solution)) for analysis on a microchip substrate include flow channel processing, pressure control using a micropump, and electrophoresis. Methods using electrical properties such as (electrophoresis) and dielectrophoresis (DEP) have been proposed.
[0007] 特に誘電泳動現象は、流体中での粒子 (生体分子含む)の搬送、分離、収集等の 駆動力として、粒子それ自身の電荷に関係なくあらゆる粒子に作用しうる不均一交流 電場を利用しており、粒子の分離 '搬送に適している。このため、誘電泳動現象は、 対象物 (粒子状物質)の選択操作に適していることから、この誘電泳動現象を利用し た化学分析システムの研究が進められている(例えば特許文献 1〜5、非特許文献 1 〜4参照)。  [0007] In particular, the dielectrophoresis phenomenon is a non-uniform alternating electric field that can act on any particle regardless of its own charge as a driving force for transporting, separating, and collecting particles (including biomolecules) in a fluid. Suitable for particle separation 'conveyance. For this reason, since the dielectrophoresis phenomenon is suitable for selecting an object (particulate matter), research on a chemical analysis system using the dielectrophoresis phenomenon is underway (for example, Patent Documents 1 to 5). Non-patent documents 1 to 4).
[0008] 図 26は、誘電泳動現象を利用した従来の粒子搬送装置の概略構成を示す斜視図 であり、図 26は、非平行な電極対を複数配列した粒子搬送装置の概略構成を示して いる。  FIG. 26 is a perspective view showing a schematic configuration of a conventional particle transport device using a dielectrophoresis phenomenon, and FIG. 26 shows a schematic configuration of the particle transport device in which a plurality of non-parallel electrode pairs are arranged. Yes.
[0009] 上記誘電泳動現象を利用した化学分析システムの応用例として、例えば、特許文 献 1には、図 26に示すように、血液試料等のサンプル液を流すための流路 101の下 面に、非平行な電極対 111 · 112が複数配列された粒子搬送装置 100が開示されて いる。上記粒子搬送装置 100においては、非平行な電極対 111 · 112によって得ら れる不均一電場によって生じる誘電泳動力により粒子の搬送が行われる。  [0009] As an application example of the chemical analysis system using the dielectrophoresis phenomenon, for example, in Patent Document 1, as shown in FIG. 26, the lower surface of a channel 101 for flowing a sample liquid such as a blood sample is shown. Discloses a particle conveying device 100 in which a plurality of non-parallel electrode pairs 111 and 112 are arranged. In the particle conveying device 100, particles are conveyed by the dielectrophoretic force generated by the non-uniform electric field obtained by the non-parallel electrode pairs 111 and 112.
[0010] さら〖こ、上記誘電泳動現象を利用した応用例としては、例えば、電極 (泳動電極ァ レイ)として櫛型電極を使用した誘電泳動による粒子制御の方法が知られて!/ヽる(例 えば特許文献 2〜4、非特許文献 1〜4参照)。  [0010] Sarako, As an application example using the above dielectrophoresis phenomenon, for example, a particle control method by dielectrophoresis using a comb electrode as an electrode (electrophoresis electrode array) is known! (For example, see Patent Documents 2 to 4, Non-Patent Documents 1 to 4).
[0011] 図 27 (a)は、櫛型電極を使用して細胞を分離する従来の誘電泳動装置の概略構 成を示す側面図であり、図 27 (b)は、図 27 (a)に示す誘電泳動装置における要部( 電極形成部)の構成を示す平面図である。  FIG. 27 (a) is a side view showing a schematic configuration of a conventional dielectrophoresis apparatus that separates cells using a comb-shaped electrode, and FIG. 27 (b) is a side view of FIG. 27 (a). It is a top view which shows the structure of the principal part (electrode formation part) in the dielectrophoresis apparatus shown.
[0012] 例えば、非特許文献 1には、図 27 (a) · (b)に示すように、ガラス基板 201上に設け られた櫛型電極 202に、交流 (AC)信号発生器 203により高周波を印加することで、 電極チャンバ 204 (流路)内の生細胞と死細胞とを、各々の誘電率の差から生じる誘 電泳動力を利用して分離する技術が開示されている。 [0012] For example, in Non-Patent Document 1, as shown in FIGS. 27 (a) and 27 (b), a comb electrode 202 provided on a glass substrate 201 is subjected to high frequency by an alternating current (AC) signal generator 203. By applying A technique is disclosed in which living cells and dead cells in the electrode chamber 204 (flow channel) are separated using an electrophoretic force generated from a difference in dielectric constant between the cells.
[0013] また、特許文献 2には、櫛型電極を利用し、電界集中部分となる電極のギャップ部 に、誘電泳動により試料溶液中の微生物 (細菌等の生体粒子等)を集中させ、電極 間のインピーダンス測定を行うことで該微生物の濃度を測定する技術が開示されて いる。 [0013] Further, in Patent Document 2, a comb-shaped electrode is used to concentrate microorganisms (biological particles such as bacteria) in a sample solution by dielectrophoresis in the gap portion of the electrode that is an electric field concentration portion. A technique for measuring the concentration of the microorganism by performing impedance measurement between the two is disclosed.
[0014] また、図 28は、櫛形電極を使用して細胞を搬送する技術を説明する図である。  [0014] FIG. 28 is a diagram for explaining a technique for transporting cells using comb-shaped electrodes.
[0015] 非特許文献 2および特許文献 3には、図 28に示すように、隣接する電極 301· ··に 印加する信号の位相条件によって、泳動媒体中の粒子が、電極 301面より上方に浮 上、搬送されることが開示されている。 [0015] In Non-Patent Document 2 and Patent Document 3, as shown in FIG. 28, the particles in the electrophoresis medium are placed above the surface of the electrode 301 depending on the phase condition of the signal applied to the adjacent electrodes 301. It is disclosed that it floats and is transported.
[0016] このように、粒子 (細胞等の生体物質を含む)を含む泳動媒体に対して、適当な周 波数および電圧の高周波を印加することで、該粒子を分離、浮上、搬送させる操作 技術が知られている。 [0016] In this way, an operation technique for separating, floating, and transporting particles by applying a high frequency of an appropriate frequency and voltage to an electrophoretic medium containing particles (including biological substances such as cells). It has been known.
[0017] 誘電泳動とは、印加した電界とそれにより誘起される電気双極子との相互作用によ り粒子に力が働く現象であり、より具体的には、不均一交流電場を印加した際に発生 する電気力線場と物質の分極との相互作用により物質が力 (誘電泳動力)を受けて 移動する現象である。誘電泳動力は、粒子と溶媒の誘電率、印加電圧の周波数等に 依存する。誘電泳動(DEP)には、粒子と溶媒の誘電率、さらに印加電圧の周波数に より、電界の強い方向へと力が働く「正の誘電泳動」(以下、「p— DEP」と記す)と、弱 い方向へ力が働く「負の誘電泳動」(以下、「n— DEP」と記す)とがある。  [0017] Dielectrophoresis is a phenomenon in which a force acts on particles due to the interaction between an applied electric field and an electric dipole induced thereby, and more specifically, when a nonuniform AC electric field is applied. This is a phenomenon in which a substance moves under the force (dielectrophoretic force) due to the interaction between the electric field lines generated in the field and the polarization of the substance. The dielectrophoretic force depends on the dielectric constant of the particles and the solvent, the frequency of the applied voltage, and the like. Dielectrophoresis (DEP) is called “positive dielectrophoresis” (hereinafter referred to as “p-DEP”) in which force is applied in the direction of strong electric field depending on the dielectric constant of particles and solvent, and the frequency of applied voltage. “Negative dielectrophoresis” (hereinafter referred to as “n-DEP”), in which force is applied in a weak direction.
[0018] 以下に、誘電泳動の原理について説明する。  [0018] Hereinafter, the principle of dielectrophoresis will be described.
[0019] 溶媒中に懸濁した粒子力 なる系に電場をカ卩えると、双極子モーメントが誘起され る。前記したように電場が例えば交流 (AC)である場合、双極子モーメントは同位相 および異位相成分を有するベクトルとして定義される。  [0019] When an electric field is applied to a particle force system suspended in a solvent, a dipole moment is induced. As described above, when the electric field is, for example, alternating current (AC), the dipole moment is defined as a vector having in-phase and out-of-phase components.
[0020] 不均一電界中で誘電粒子に作用する誘電泳動力 F (t)の時間平均値は、例えば非 特許文献 3に記載されているように、下記式(1)で表わされる。  [0020] The time average value of the dielectrophoretic force F (t) acting on the dielectric particles in the non-uniform electric field is expressed by the following formula (1) as described in Non-Patent Document 3, for example.
[0021] [数 1]
Figure imgf000006_0001
[0021] [Equation 1]
Figure imgf000006_0001
f CM= ( £ / ( ε ' p + 2 ε m) f CM = ( £ / (ε 'p + 2 ε m )
ε ε p— j (σρ/ ω) (1) ε ε p — j (σ ρ / ω) (1)
[0022] なお、式(1)中、各記号は、以下の成分を表す。 [0022] In the formula (1), each symbol represents the following components.
F:不均一電界中で誘電粒子に作用する誘電泳動力 F(t)の時間平均値 [Ν] ε :  F: Time average value of dielectrophoretic force F (t) acting on dielectric particles in non-uniform electric field [Ν] ε:
0 真空の誘電率 [FZm] r:粒子半径 [m] Ε :電界 [VZm]の 2乗平均平方根、 E :各々の電界
Figure imgf000006_0002
0 Dielectric constant of vacuum [FZm] r: Particle radius [m] :: Root mean square of electric field [VZm] E: Each electric field
Figure imgf000006_0002
成分の位相 [rad] f :クラジウス モソッティ係数 (粒子の誘電率の周波数依存性  Component phase [rad] f : Clasius Mosotti coefficient (frequency dependence of dielectric constant of particles
CM  CM
を表す)、 ε :粒子の比誘電率、 ε :溶媒の比誘電率、 :粒子の複素誘電率 [F  ): Dielectric constant of particle, ε: Dielectric constant of solvent,: Complex dielectric constant of particle [F
P m P  P m P
Zm] ε * :溶媒の複素誘電率 [FZm] ω:角周波数 [radZs] σ :粒子の導電 m p  Zm] ε *: Complex permittivity of solvent [FZm] ω: Angular frequency [radZs] σ: Conductivity of particles m p
率 [Q_1'm_1] σ :溶媒の導電率[0_1'111_1]、 虚数単位、1^:複素数の実数 部、 Im:複素数の虚数部、▽:勾配ベクトル (グラジェント)。 Rate [Q _1 'm _1 ] σ: Conductivity of solvent [0 _1 ' 111 _1 ], Imaginary unit, 1 ^: Real part of complex number, Im: Imaginary part of complex number, ▽: Gradient vector (gradient).
[0023] 式(1)に示されるように、誘電泳動力は、定常 DEP(DEP)および進行波 DEP(Tra veling- Wave DEP:以下、「TWD」と記す)の 2つの成分を有する。 [0023] As shown in Equation (1), the dielectrophoretic force has two components, a stationary DEP (DEP) and a traveling-wave DEP (hereinafter referred to as "TWD").
[0024] DEPは電界の大きさの不均一分布に起因して生じる力(電界により誘導された分 極の同位相成分;式(1)の実数部分)である。一方、 TWDは、電界成分の位相の不 均一分布に起因して生じる力(電界により誘導された分極の損失成分;式(1)の虚数 部分)である。このように誘電泳動挙動は、電界の大きさの不均一性及び電界の位相 の不均一性により誘起される。 [0024] DEP is a force (in-phase component of the polarization induced by the electric field; real part of equation (1)) caused by the non-uniform distribution of the electric field. On the other hand, TWD is the force (loss component of polarization induced by the electric field; imaginary part of equation (1)) caused by the non-uniform distribution of the phase of the electric field component. Thus, the dielectrophoretic behavior is induced by the non-uniformity of the electric field magnitude and the non-uniformity of the electric field phase.
[0025] 電界位相が一定、すなわち TWD成分がゼロである場合、 DEPのみが作用すること となる。この結果、式(1)は下記式(2)に示すように簡略ィ匕される(定常 DEP)。 [0025] When the electric field phase is constant, that is, when the TWD component is zero, only DEP acts. As a result, equation (1) is simplified as shown in equation (2) below (steady DEP).
[0026] [数 2] [0026] [Equation 2]
Ρ-2 π £ o £ mr 3Re[ f CM]VE2 rms
Figure imgf000006_0003
Ρ-2 π £ o £ m r 3 Re [f CM ] VE 2 rms
Figure imgf000006_0003
· · (2) [0027] ここで、 T はマクスゥエル.ワグナー (Maxwell Wagner)の荷電緩和時間であり、次(2) [0027] where T is the charge relaxation time of Maxwell Wagner,
MW MW
式(3)に示すように表される。  It is expressed as shown in Equation (3).
[0028] [数 3]
Figure imgf000007_0001
( ε ρ + 2 £ m) / ( σ ρ + 2 σ η) … ( 3 )
[0028] [Equation 3]
Figure imgf000007_0001
ρ + 2 £ m ) / (σ ρ + 2 σ η )… (3)
[0029] DEPのみを考えた場合、 ε = ε * ε = ε *であり、粒子の比誘電率( ε )が溶 p m m p 媒の比誘電率(ε )よりも大きい場合(ε > ε )、すなわち Re[f ] >0の場合、誘 m p m CM [0029] When considering only DEP, ε = ε * ε = ε *, and the relative permittivity of the particles (ε) is larger than the relative permittivity of the solvent (ε) (ε> ε), That is, if Re [f]> 0, invite mpm CM
電泳動力は、電界強度の強い方向に働く。つまり、正の誘電泳動 (p— DEP)力が作 用する。この結果、粒子は電界勾配の大きい方向へ移動する。  The electrophoretic force works in the direction of strong electric field strength. In other words, a positive dielectrophoresis (p—DEP) force is applied. As a result, the particles move in the direction in which the electric field gradient is large.
[0030] 一方、粒子の比誘電率(ε )が溶媒の比誘電率(ε )よりも小さい場合( ε < ε ) p m p m[0030] On the other hand, when the relative dielectric constant (ε) of the particles is smaller than the relative dielectric constant (ε) of the solvent (ε <ε) p m p m
、すなわち Re[f ] < 0の場合、誘電泳動力は、電界強度の弱い方向に働く。つまり、 That is, when Re [f] <0, the dielectrophoretic force acts in the direction where the electric field strength is weak. That means
CM  CM
負の誘電泳動 (n— DEP)力が作用する。この結果、粒子は電界勾配の小さい方向 へ移動する。  Negative dielectrophoretic (n—DEP) force acts. As a result, the particles move in the direction where the electric field gradient is small.
[0031] 具体的な挙動としては、前記したように電極として櫛型電極を使用する場合、溶媒 の比誘電率 m)よりも大きい比誘電率(ε )  [0031] As a specific behavior, when a comb electrode is used as the electrode as described above, the relative dielectric constant (ε) larger than the relative dielectric constant m) of the solvent.
pを有する粒子は電極上、より詳しくは電 極端辺にトラップされる。一方、溶媒の比誘電率(ε )  Particles with p are trapped on the electrode, more specifically on the extreme side of the electrode. On the other hand, the dielectric constant of the solvent (ε)
mよりも小さい比誘電率(ε ) pを 持つ粒子は、電極上方に浮揚する。なお、電界位相が一定でない場合、式(1)より D EPおよび TWDの両方が作用し得る。  Particles having a relative dielectric constant (ε) p smaller than m float above the electrode. If the electric field phase is not constant, both DEP and TWD can act from equation (1).
[0032] 従って、 2種の粒子を分離する場合、 1種の粒子については Re[f ] >0となり、もう [0032] Therefore, when separating two types of particles, Re [f]> 0 for one type of particle,
CM  CM
1種の粒子にっ 、ては Re[f ] < 0となるような周波数を選択すればょ 、。  For a single particle, choose a frequency such that Re [f] <0.
CM  CM
[0033] 一方、 TWDの場合は、上記 DEPの場合と同様に、 I [f ] >0の場合に電場の位 m CM  [0033] On the other hand, in the case of TWD, as in the case of DEP above, the electric field position m CM when I [f]> 0.
相の大きい方向、すなわち電場の移動方向に沿って誘電泳動力が働き、 I [f ] < 0 m CM の場合に、電場の位相の小さい方向、すなわち電場の移動方向と反対方向に誘電 泳動力が働く。  The dielectrophoretic force acts in the direction of the large phase, that is, the electric field movement direction. When I [f] <0 m CM, the dielectrophoretic force is in the direction of the small electric field phase, that is, the direction opposite to the electric field movement direction. Work.
[0034] 櫛型電極を用いた場合、 TWDは電極配線長方向と垂直な方向へ働く。ここで、 T WDは電極平面からの高さにより作用が変化する。すなわち電極平面付近よりは、平 面から一定の距離離れている方が TWDの影響を顕著に受ける。このことから、 TWD による目的粒子の搬送の際、最初に DEPのみによる目的粒子の浮揚 (DEPモード) を行い、その後、 TWDを作用させて目的粒子の搬送 (TWDモード)を行うことにより 、目的粒子に TWDを効率的に作用させることができる。 When a comb electrode is used, TWD works in a direction perpendicular to the electrode wiring length direction. Here, the action of TWD varies depending on the height from the electrode plane. In other words, the effect of TWD is more noticeable at a certain distance from the plane than near the electrode plane. Therefore, when transporting the target particles by TWD, the target particles are first levitated only by DEP (DEP mode). After that, the TWD can act efficiently on the target particles by transporting the target particles (TWD mode) by applying the TWD.
次に、図 28を用いて、従来の誘電泳動装置における印加電圧の位相条件を説明 する。例えば、図 28に示すように、複数の電極 301· ··からなる電極列において、隣接 する電極 301 · · ·に印加する信号の位相条件を、非特許文献 2および特許文献 3に記 載されているように、 0° 、 180。 、0。 、 180。 、…と設定すると、式(1)は実部のみ( すなわち式(2) )となる。この結果、泳動媒体中の粒子は、電極 301面より上方に浮 揚する力(DEP)を受けて浮上する。そこで、その後、上記電極例において、隣接す る電極 301 · · ·に印加する信号の位相条件を、非特許文献 2および特許文献 3に記載 されているように、0。 、90° 、 180。 、 270° 、…と設定すると、式(1)は実数部、虚 数部とも持つことになる。この結果、泳動媒体中の粒子は、搬送力(TWD)を受けて 搬送される。  Next, the phase condition of the applied voltage in the conventional dielectrophoresis apparatus will be described with reference to FIG. For example, as shown in FIG. 28, non-patent document 2 and patent document 3 describe the phase conditions of signals applied to adjacent electrodes 301 in an electrode array composed of a plurality of electrodes 301. As 0 °, 180 °. , 0. 180. ...,..., Equation (1) becomes only the real part (that is, Equation (2)). As a result, the particles in the electrophoresis medium float by receiving a force (DEP) that floats above the surface of the electrode 301. Therefore, thereafter, in the above electrode example, the phase condition of the signal applied to the adjacent electrodes 301 is 0 as described in Non-Patent Document 2 and Patent Document 3. , 90 °, 180. , 270 °, etc., equation (1) has both real and imaginary parts. As a result, the particles in the electrophoresis medium are transported by receiving a transport force (TWD).
特許文献 1 :日本国公開特許公報「特開平 6— 174630号公報 (公開日: 1994年 6月 24日)」 Patent Document 1: Japanese Patent Publication “JP-A-6-174630 (Publication Date: June 24, 1994)”
特許文献 2 :日本国公表特許公報「特表 2003— 504196号公報 (公表日: 2003年 2 月 4日)」(国際公開第 01Z005514号パンフレット(国際公開日: 2001年 1月 25日) に対応) Patent Document 2: Corresponding to Japanese Patent Gazette “Special Table 2003-504196 (Publication Date: February 4, 2003)” (International Publication No. 01Z005514 Pamphlet (International Publication Date: January 25, 2001) )
特許文献 3 :日本国公開特許公報「特開 2000— 125846号公報 (公開日: 2000年 5 月 9日)」 Patent Document 3: Japanese Patent Publication “JP 2000-125846 (Publication Date: May 9, 2000)”
特許文献 4:日本国公表特許公報「特表 2003 - 504629号公報 (公表日: 2003年 2 月 4日)」(国際公開第 01Z005512号パンフレット(国際公開日: 2001年 1月 25日) に対応) Patent Document 4: Corresponds to Japanese Patent Gazette “Special Publication 2003-504629 (Publication Date: February 4, 2003)” (International Publication No. 01Z005512 Pamphlet (International Publication Date: January 25, 2001) )
特許文献 5 :日本国特許掲載公報「特許第 3453136号公報 (登録日:2003年 7月 1 8日、公表日: 1994年 11月 2日)」(対応米国特許第 5, 454, 472号 (登録日: 1995 年 10月 3日)) Patent Document 5: Japanese Patent Publication Gazette “Patent No. 3453136 (Registration Date: July 18, 2003, Publication Date: November 2, 1994)” (corresponding US Pat. No. 5,454,472) Registration date: October 3, 1995))
特許文献 6 :日本国公開特許公報「特開 2000— 298109号公報 (公開日: 2000年 1 0月 24日)」 Patent Document 6: Japanese Published Patent Publication “Japanese Patent Laid-Open No. 2000-298109 (Publication Date: 24th January 2000)”
非特干文献 1 : HaiDo Li et al., Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated elec trades", Sensors and Actuators B 86, p.215-221, 2002. Non-Special Reference 1: HaiDo Li et al., Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated elec trades ", Sensors and Actuators B 86, p.215-221, 2002.
非特言午文献 2 : Ronald Pethig et al",, Enhancing Traveling-Wave Dielectrophoresis wi th Signal Superposition", IEEE Engineering in medicine and biology magazine, p.43-5 0, Nov./Dec. 2003.  Non-Patent Document 2: Ronald Pethig et al ", Enhancing Traveling-Wave Dielectrophoresis with Signal Superposition", IEEE Engineering in medicine and biology magazine, p.43-50, Nov./Dec. 2003.
非特言午文献 3 : Xiao- Bo Wang et al., 'Dielectrophoretic Manipulation of Particles,IE EE Trans. Ind. Applicat., vol.33, No.3, ρ·660- 669, May./June 1997.  Non-Special Terms 3: Xiao- Bo Wang et al., 'Dielectrophoretic Manipulation of Particles, IE EE Trans. Ind. Applicat., Vol.33, No.3, ρ · 660-669, May./June 1997.
非特言午文献 4 : R. Krupke et.al., "Separation of metallic from semiconducting single- walled carbon nanotubes" SCIENCE, vol.301, 18 July 2003, p.344-347  Non-Special Terms 4: R. Krupke et.al., "Separation of metallic from semiconducting single-walled carbon nanotubes" SCIENCE, vol.301, 18 July 2003, p.344-347
非特言午文献 5 : J. Voldman et al. "Design and analysis of extruded quadrupolar dielec trophoretic t ps〃, Journal of Electrostatics 57 (2003) p.69-90  Non-Special Reference 5: J. Voldman et al. "Design and analysis of extruded quadrupolar dielec trophoretic t ps〃, Journal of Electrostatics 57 (2003) p.69-90
発明の開示  Disclosure of the invention
[0036] しカゝしながら、現在、提案、開発されている、誘電泳動現象を利用した化学分析シ ステムにおける半導体チップ基板 (誘電泳動チップ)並びにこれを用いた粒子搬送用 装置 (誘電泳動装置)は、以下に示すような課題を有している。  [0036] However, a semiconductor chip substrate (dielectrophoresis chip) in a chemical analysis system using a dielectrophoresis phenomenon and a particle transport apparatus (dielectrophoresis apparatus) using the same have been proposed and developed. ) Has the following problems.
[0037] 誘電泳動試験に際し、従来は、図 26および図 27 (a) · (b)等に示すように、通常、 一つの半導体チップ基板 (マイクロアレイ)にっき一つの試料 (泳動媒体)を、該半導 体チップ基板に設けられた流路に注入し、該流路に設けられた誘電泳動電極 (泳動 電極アレイ)に交流 (AC)電圧を印加して試料溶液中の粒子の操作を行って!/ヽる。  In the dielectrophoresis test, conventionally, as shown in FIG. 26 and FIG. 27 (a), (b), etc., one sample (electrophoresis medium) is usually placed on one semiconductor chip substrate (microarray). It is injected into a flow path provided in the semiconductor chip substrate, and an alternating current (AC) voltage is applied to a dielectrophoretic electrode (electrophoretic electrode array) provided in the flow path to manipulate particles in the sample solution. ! / Speak.
[0038] このため、例えば複数の試料を同じ誘電泳動条件でその挙動を比較する場合、試 料溶液と同数のマイクロアレイが必要となる。また、この場合、各マイクロアレイに同駆 動電圧 (AC)を入力する必要があり、実験環境の設定等が煩雑になる。  For this reason, for example, when comparing the behavior of a plurality of samples under the same dielectrophoresis conditions, the same number of microarrays as the sample solution are required. In this case, it is necessary to input the same drive voltage (AC) to each microarray, and the setting of the experiment environment becomes complicated.
[0039] 本発明は、上記従来の問題点に鑑みなされたものであり、その目的は、実験環境 の煩雑な設定を伴うことなく複数の試料を同一条件で同時に被泳動条件下に置くこ とが可能であり、試験条件に対する応用範囲が広!、誘電泳動チップおよび誘電泳動 装置並びに誘電泳動システムを提供することにある。  [0039] The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to simultaneously place a plurality of samples under electrophoretic conditions under the same conditions without complicated setting of an experimental environment. Therefore, it is possible to provide a dielectrophoresis chip, a dielectrophoresis apparatus, and a dielectrophoresis system.
[0040] 上記課題を解決するために、誘電泳動チップは、誘電性物質を含む試料に交流電 圧により形成された電界を印加することにより上記誘電性物質を誘電泳動させる誘電 泳動チップであって、一つの基板上に、上記誘電性物質を誘電泳動させる泳動レー ンを複数備えるとともに、上記泳動レーンと交差する複数の電極力 なり、上記泳動 レーンに注入された試料に電界を印加するために交流電圧を印加することで上記誘 電性物質を誘電泳動させる電極列を備え、上記電極列における各電極は、上記複 数の泳動レーンに跨がって設けられて 、る。 [0040] In order to solve the above problems, a dielectrophoresis chip is a dielectric that dielectrophores the dielectric substance by applying an electric field formed by an alternating voltage to a sample containing the dielectric substance. The electrophoresis chip includes a plurality of electrophoresis lanes for dielectrophoretic migration of the dielectric substance on a single substrate, and a plurality of electrode forces intersecting the electrophoresis lane, and an electric field is applied to the sample injected into the electrophoresis lane. In order to apply an AC voltage, an electrode array that dielectrophores the inductive substance by applying an AC voltage is provided, and each electrode in the electrode array is provided across the plurality of electrophoresis lanes. .
[0041] このため、上記誘電性物質に誘電泳動力を与える交流電圧 (泳動制御電圧)を、上 記各泳動レーンにおける各電極に一括して入力することができる。し力も、上記の構 成によれば、実験環境の煩雑な設定を伴うことなぐ複数種の異なる試料を、同一条 件で同時に被泳動条件下に置くことが可能である。よって、上記の構成によれば、試 験条件に対する応用範囲が広ぐ様々な試験条件に適応する誘電泳動チップを提 供することができるという効果を奏する。  [0041] For this reason, an AC voltage (electrophoresis control voltage) that applies a dielectrophoretic force to the dielectric substance can be input to each electrode in each electrophoretic lane. In addition, according to the above configuration, it is possible to place a plurality of different samples under the same conditions under the same conditions without complicated setting of the experimental environment. Therefore, according to the above configuration, there is an effect that it is possible to provide a dielectrophoresis chip adapted to various test conditions with a wide range of application to the test conditions.
[0042] また、上記誘電泳動装置並びに誘電泳動システムは、上記誘電泳動チップを備え ている。  The dielectrophoresis apparatus and the dielectrophoresis system include the dielectrophoresis chip.
[0043] このため、上記誘電泳動装置並びに誘電泳動システムは、上記誘電性物質に誘電 泳動力を与える交流電圧 (泳動制御電圧)を、上記誘電泳動チップの各泳動レーン における各電極に一括して入力することができる。したがって、上記の構成によれば 、実験環境の煩雑な設定を伴うことなぐ複数種の異なる試料を、同一条件で同時に 被泳動条件下に置くことが可能であり、試験条件に対する応用範囲が広ぐ様々な 試験条件に適応する誘電泳動装置並びに誘電泳動システムを提供することができる という効果を奏する。  [0043] Therefore, the dielectrophoresis apparatus and the dielectrophoresis system collectively apply an alternating voltage (electrophoresis control voltage) that applies a dielectrophoretic force to the dielectric substance to each electrode in each electrophoretic lane of the dielectrophoresis chip. Can be entered. Therefore, according to the above configuration, it is possible to place a plurality of different types of samples under the same conditions at the same time under the electrophoresis conditions without complicated setting of the experimental environment, and the application range for the test conditions is widened. It is possible to provide a dielectrophoresis apparatus and a dielectrophoresis system that can be adapted to various test conditions.
[0044] さらに、上記の構成によれば、上記したように、一つの基板上に複数の泳動レーン を有する誘電泳動チップを使用することで、試料 (例えば溶媒等の媒体)の種類を泳 動レーン毎に変更し、特定の複数の粒子を同時に選別することや、溶媒等の媒体は 同一で、泳動レーン毎に電極形状を変えることで特定の複数の粒子を同時に選別す ることも可能であり、複数粒子の選別を効率良く行うことが可能になる。従って、上記 の構成によれば、幅広 ヽ用途に対応した誘電泳動チップおよび誘電泳動装置並び に誘電泳動システムを提供することができるという効果を併せて奏する。  Furthermore, according to the above-described configuration, as described above, the type of sample (for example, a medium such as a solvent) can be moved by using a dielectrophoresis chip having a plurality of electrophoresis lanes on one substrate. It is possible to select specific particles simultaneously by changing each lane and selecting specific particles simultaneously, or by using the same medium as the solvent and changing the electrode shape for each lane. Yes, it is possible to efficiently select a plurality of particles. Therefore, according to the above configuration, it is possible to provide a dielectrophoresis system and a dielectrophoresis device and a dielectrophoresis system compatible with a wide range of applications.
図面の簡単な説明 [図 1]実施の形態 1にかかる誘電泳動パネルの概略構成を示す斜視図である。 Brief Description of Drawings FIG. 1 is a perspective view showing a schematic configuration of a dielectrophoresis panel according to a first exemplary embodiment.
[図 2]図 1に示す誘電泳動パネルを上側基板側カゝら見た平面図である。 FIG. 2 is a plan view of the dielectrophoresis panel shown in FIG. 1 as viewed from the upper substrate side.
[図 3]図 2に示す誘電泳動パネルの A— A線矢視断面図である。 3 is a cross-sectional view taken along the line AA of the dielectrophoresis panel shown in FIG.
[図 4]図 2に示す誘電泳動パネルの B—B線矢視断面図である。 4 is a cross-sectional view of the dielectrophoresis panel shown in FIG.
[図 5]図 1に示す誘電泳動パネルを備えた誘電泳動システムの概略構成図である。 FIG. 5 is a schematic configuration diagram of a dielectrophoresis system including the dielectrophoresis panel shown in FIG.
[図 6]実施の形態 2にかかる誘電泳動パネルの概略構成を示す平面図である。 FIG. 6 is a plan view showing a schematic configuration of a dielectrophoresis panel according to a second exemplary embodiment.
[図 7]実施の形態 3にかかる誘電泳動パネルの概略構成を示す平面図である。 FIG. 7 is a plan view showing a schematic configuration of a dielectrophoresis panel according to a third exemplary embodiment.
[図 8] (a)は、実施の形態 4にかかる誘電泳動パネルの概略構成を示す平面図であり 、(b)〜(e)は、(a)に示す誘電泳動パネルの各泳動レーンにおける泳動電極の形 状を模式的に示す平面図である。 [Fig. 8] (a) is a plan view showing a schematic configuration of a dielectrophoresis panel according to a fourth embodiment. (B) to (e) are diagrams in each electrophoresis lane of the dielectrophoresis panel shown in (a). FIG. 5 is a plan view schematically showing the shape of an electrophoresis electrode.
[図 9]実施の形態 5にかかる誘電泳動パネルの概略構成を示す平面図である。  FIG. 9 is a plan view showing a schematic configuration of a dielectrophoresis panel according to a fifth embodiment.
[図 10]実施の形態 6にかかる誘電泳動パネルの概略構成を示す平面図である。  FIG. 10 is a plan view showing a schematic configuration of a dielectrophoresis panel according to a sixth embodiment.
[図 11]図 10に示す誘電泳動パネルの E— E線矢視断面分解図である。  FIG. 11 is an exploded cross-sectional view of the dielectrophoresis panel shown in FIG.
[図 12]実施の形態 7にかかる誘電泳動パネルの概略構成を示す平面図である。  FIG. 12 is a plan view showing a schematic configuration of a dielectrophoresis panel according to a seventh embodiment.
[図 13]図 12に示す誘電泳動パネルの F—F線矢視断面図である。  FIG. 13 is a cross-sectional view of the dielectrophoresis panel shown in FIG.
[図 14]実施の形態 8にかかる誘電泳動パネルの概略構成を示す平面図である。  FIG. 14 is a plan view showing a schematic configuration of a dielectrophoresis panel according to an eighth embodiment.
[図 15]図 14に示す誘電泳動パネルの G— G線矢視断面図である。  15 is a cross-sectional view of the dielectrophoresis panel shown in FIG.
[図 16]図 14に示す誘電泳動パネルの J J線矢視断面図である。  FIG. 16 is a cross-sectional view of the dielectrophoresis panel shown in FIG.
[図 17]図 14に示す誘電泳動パネルを備えた誘電泳動システムの概略構成図である  FIG. 17 is a schematic configuration diagram of a dielectrophoresis system including the dielectrophoresis panel shown in FIG.
[図 18]図 17に示す誘電泳動システムを用いて泳動媒体中の目的粒子の浮揚'搬送 を行う様子を、図 17に示す誘電泳動パネルの断面にて模式的に示す要部断面図で あり、(a)は、 DEPモードにより、目的粒子の浮揚を行う様子を示す要部断面図であ り、(b)は、浮揚した目的粒子を TWDモードにより搬送する様子を示す要部断面図 である。 FIG. 18 is a cross-sectional view of the principal part schematically showing the state of floating and transporting the target particles in the electrophoresis medium using the dielectrophoresis system shown in FIG. 17 in the cross section of the dielectrophoresis panel shown in FIG. (A) is a cross-sectional view of the main part showing how the target particles are levitated in the DEP mode, and (b) is a cross-sectional view of the main part showing how the levitated target particles are conveyed in the TWD mode. is there.
[図 19]実施の形態 9にかかる誘電泳動パネルの概略構成を示す断面図である。  FIG. 19 is a sectional view showing a schematic configuration of a dielectrophoresis panel according to a ninth embodiment.
[図 20]実施の形態 9にかかる他の誘電泳動パネルの概略構成を示す断面図である。 FIG. 20 is a sectional view showing a schematic configuration of another dielectrophoresis panel according to the ninth embodiment.
[図 21]図 17に示す誘電泳動システムを用いて泳動媒体中の目的粒子の浮揚'搬送 を行う様子を、図 17に示す誘電泳動パネルの断面にて模式的に示す他の要部断面 図であり、(a)は、目的粒子の浮揚を行う様子を示す要部断面図であり、(b)および( c)は、浮揚した目的粒子を搬送する様子を示す要部断面図である。 [FIG. 21] Levitating the target particle in the electrophoresis medium using the dielectrophoresis system shown in FIG. FIG. 18 is another cross-sectional view schematically showing the main part of the dielectrophoresis panel shown in FIG. 17, and (a) is a cross-sectional view of the main part showing the state of floating the target particles. (B) And (c) is principal part sectional drawing which shows a mode that the levitated target particle is conveyed.
[図 22]図 17に示す誘電泳動システムを用いて泳動媒体中の目的粒子の浮揚'搬送 を行う様子を、図 17に示す誘電泳動パネルの断面にて模式的に示すさらに他の要 部断面図であり、(a)は、目的粒子の浮揚を行う様子を示す要部断面図であり、 (b) および (c)は、浮揚した目的粒子を搬送する様子を示す要部断面図である。 FIG. 22 is a cross-sectional view of still another main part schematically showing the state of levitation and transport of target particles in the electrophoretic medium using the dielectrophoresis system shown in FIG. 17 in the cross section of the dielectrophoresis panel shown in FIG. (A) is a cross-sectional view of the main part showing how the target particles are levitated, and (b) and (c) are cross-sectional views of the main part showing how the levitated target particles are conveyed. .
[図 23]実施の形態 11にカゝかる誘電泳動パネルの概略構成を示す平面図である。 FIG. 23 is a plan view showing a schematic configuration of a dielectrophoresis panel according to an eleventh embodiment.
[図 24]実施の形態 12にかかる誘電泳動パネルの概略構成を示す平面図である。 FIG. 24 is a plan view showing a schematic configuration of a dielectrophoresis panel according to a twelfth embodiment.
[図 25] (a)は、実施の形態 13にかかる誘電泳動パネルの概略構成を示す平面図で あり、(b)〜(e)は、(a)に示す誘電泳動パネルの各泳動レーンにおける泳動電極の 形状を模式的に示す平面図である。 FIG. 25 (a) is a plan view showing a schematic configuration of the dielectrophoresis panel according to the thirteenth embodiment, and (b) to (e) are diagrams in each electrophoresis lane of the dielectrophoresis panel shown in (a). It is a top view which shows typically the shape of an electrophoresis electrode.
圆 26]誘電泳動現象を利用した従来の粒子搬送装置の概略構成を示す斜視図であ る。 [26] FIG. 26 is a perspective view showing a schematic configuration of a conventional particle transport device using a dielectrophoresis phenomenon.
[図 27] (a)は、櫛型電極を使用して細胞を分離する従来の誘電泳動装置の概略構成 を示す側面図であり、(b)は、(a)に示す誘電泳動装置における要部の構成を示す 平面図である。  [FIG. 27] (a) is a side view showing a schematic configuration of a conventional dielectrophoresis apparatus for separating cells using comb-shaped electrodes, and (b) is a schematic diagram of the dielectrophoresis apparatus shown in (a). It is a top view which shows the structure of a part.
圆 28]櫛形電極を使用して細胞を搬送する技術を説明する図である。 [28] FIG. 28 is a diagram for explaining a technique for transporting cells using comb-shaped electrodes.
符号の説明 Explanation of symbols
1 下側基板 (基板)  1 Lower board (board)
2 上側基板 (基板)  2 Upper board (board)
3 泳動レーン  3 Electrophoresis lane
4 泳動レーン壁  4 electrophoresis lane wall
4a 隔壁  4a Bulkhead
4b 開口部  4b opening
4c 泳動レーン壁延設部  4c Running lane wall extension
5 注入'排出口(注入口)  5 Injection 'outlet (inlet)
6 泳動電極アレイ(電極列) a 泳動電極(電極)6 Electrophoretic electrode array (electrode array) a Electrophoresis electrode (electrode)
b 実装,接続部 b Mounting and connection
下面保護膜 (保護膜)  Bottom protective film (Protective film)
上面保護膜 (保護膜)  Upper surface protective film (Protective film)
観察領域  Observation area
誘電泳動パネル (誘電泳動チップ) FPC  Dielectrophoresis panel (Dielectrophoresis chip) FPC
泳動レーン壁  Electrophoresis lane wall
間隙部  Gap
注入'排出口(注入口)  Injection 'outlet (inlet)
第 1電極 1st electrode
a 透明電極a Transparent electrode
b 金属電極 b Metal electrode
A 泳動電極アレイ(第 1の電極列) 第 2電極A Electrophoresis electrode array (first electrode array) Second electrode
a 透明電極a Transparent electrode
b 金属電極b Metal electrode
A 泳動電極アレイ(第 2の電極列) 間隔保持層 (泳動レーン壁)a 隔壁(泳動レーン壁) A Electrophoretic electrode array (second electrode array) Spacing layer (electrophoresis lane wall) a Bulkhead (electrophoresis lane wall)
実装,接続部  Mounting and connection
実装,接続部  Mounting and connection
FPC  FPC
制御基板 (制御部)  Control board (control unit)
制御基板 (制御部)  Control board (control unit)
DC電源  DC power supply
AC— DCコンバータ  AC—DC converter
AC— DCコンバータ 70 誘電泳動装置 AC—DC converter 70 Dielectrophoresis machine
80 撮像系  80 Imaging system
85 誘電泳動システム  85 Dielectrophoresis system
91 粒子  91 particles
91a 粒子  91a particles
91b 粒子  91b particles
92 溶媒  92 Solvent
PI 電極部  PI electrode
P2 電極部  P2 electrode
P3 電極部  P3 electrode
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0047] 〔実施の形態 1〕  [Embodiment 1]
本実施の形態について図 1〜図 5に基づいて説明すれば、以下の通りである。図 1 は、本実施の形態にカゝかる誘電泳動パネルの概略構成を示す斜視図である。また、 図 2は、図 1に示す誘電泳動パネルを上側基板側から見た平面図である。図 3は、図 2に示す誘電泳動パネルの A— A線矢視断面図であり、図 4は、図 2に示す誘電泳動 パネルの B— B線矢視断面図である。また、図 5は、図 1に示す誘電泳動パネルを備 えた本実施の形態に力かる誘電泳動システムの概略構成図である。なお、図 2にお いては、図示の便宜上、上側基板を二点鎖線にて示す。  The present embodiment will be described below with reference to FIGS. FIG. 1 is a perspective view showing a schematic configuration of a dielectrophoresis panel according to the present embodiment. FIG. 2 is a plan view of the dielectrophoresis panel shown in FIG. 1 as viewed from the upper substrate side. 3 is a cross-sectional view taken along the line AA of the dielectrophoresis panel shown in FIG. 2, and FIG. 4 is a cross-sectional view taken along the line BB of the dielectrophoresis panel shown in FIG. FIG. 5 is a schematic configuration diagram of a dielectrophoresis system that works on the present embodiment including the dielectrophoresis panel shown in FIG. In FIG. 2, for convenience of illustration, the upper substrate is indicated by a two-dot chain line.
[0048] 図 1〜図 4に示すように、いわゆるマイクロチップ基板としての本実施の形態にかか る誘電泳動パネル 10 (誘電泳動チップ、泳動アレイ)は、対向配置された下側基板 1 (第 1基板)と上側基板 2 (第 2基板)との間に、泳動空間を有する複数の泳動レーン 3 (流路)が設けられた構成を有して 、る。  As shown in FIGS. 1 to 4, the dielectrophoresis panel 10 (dielectrophoresis chip, electrophoretic array) according to the present embodiment as a so-called microchip substrate has a lower substrate 1 ( A plurality of migration lanes 3 (flow paths) having migration spaces are provided between the first substrate) and the upper substrate 2 (second substrate).
[0049] 上記泳動レーン 3は、上記一対の基板のうち一方の基板、本実施の形態では、上 記下側基板 1上に、上記泳動レーン 3の形成領域に沿って泳動レーン壁 4がパター ン形成されている。  [0049] The electrophoresis lane 3 has a pattern of the electrophoresis lane wall 4 on one substrate of the pair of substrates, in the present embodiment, the lower substrate 1 and along the formation region of the electrophoresis lane 3. Is formed.
[0050] また、各泳動レーン 3には、試料溶液等の、被観察物 (誘電性物質)を含む試料 (泳 動媒体)を注入および排出するための注入'排出孔 5 (開口部、注入口)が形成され ている。 [0050] Further, each electrophoresis lane 3 has an injection hole 5 (opening, injection) for injecting and discharging a sample (swimming medium) containing an observation object (dielectric substance) such as a sample solution. The entrance) is formed ing.
[0051] 上記下側基板 1および上側基板 2のうち少なくとも一方の基板は、好適には、ガラス 、石英、プラスチック等の透明基板 (透明絶縁体基板)で形成される。本実施の形態 では、上記下側基板 1および上側基板 2として、例えば、 10cm X 10cm程度の透明 基板を使用する。  [0051] At least one of the lower substrate 1 and the upper substrate 2 is preferably formed of a transparent substrate (transparent insulator substrate) such as glass, quartz, or plastic. In the present embodiment, as the lower substrate 1 and the upper substrate 2, for example, transparent substrates of about 10 cm × 10 cm are used.
[0052] これら下側基板 1および上側基板 2のうち、例えば下側基板 1における上側基板 2と の対向面上には、泳動電極アレイ 6 (泳動電極配線)として、複数の泳動電極 6a (誘 電泳動用の電極)からなる電極列 (櫛型電極)力 各泳動レーン 3…を跨ぐように、各 泳動レーン 3· · ·に対して垂直方向に設けられて 、る。  [0052] Among these lower substrate 1 and upper substrate 2, for example, on the surface of lower substrate 1 facing upper substrate 2, a plurality of electrophoresis electrodes 6a (induction electrodes) are provided as migration electrode array 6 (migration electrode wiring). Electrode row (comb-type electrode) force composed of electrodes for electrophoresis) is provided in a direction perpendicular to each electrophoresis lane 3... Across each electrophoresis lane 3.
[0053] 上記泳動電極 6aは、例えば、アルミニウム (A1)、チタン (Ti)、モリブデン(Mo)、白 金 (Pt)、金 (Au)等の金属、あるいはこれら金属を含む合金等の金属材料で形成さ れている。本実施の形態では、上記泳動電極アレイ 6として、例えば、膜厚約 2000 A、電極長約 10cm、電極幅(L :ライン)30 mの泳動電極 6aを、電極間隔(S :スぺ ース)力 30 m (つまり、 LZSがともに 30 μ m)となるように、 1000本形成する。  [0053] The migration electrode 6a is, for example, a metal material such as aluminum (A1), titanium (Ti), molybdenum (Mo), white gold (Pt), gold (Au), or an alloy containing these metals. It is formed by. In the present embodiment, as the migration electrode array 6, for example, migration electrodes 6 a having a film thickness of about 2000 A, an electrode length of about 10 cm, and an electrode width (L: line) of 30 m are arranged with an electrode spacing (S: space). ) Form 1000 pieces so that the force is 30 m (that is, both LZS is 30 μm).
[0054] 但し、これら電極幅、電極間隔、および電極長(配線長)等の条件は、特に限定さ れるものではなぐ分析対象となる粒子 (つまり、泳動媒体中の粒子)の大きさ、並び に、目的とする操作 (分離、収集、搬送等)等に応じて適宜設定すればよい。また、泳 動電極 6aの膜厚や電極材料もまた適宜設定可能であり、特に限定されるものではな い。  However, the conditions such as the electrode width, the electrode interval, and the electrode length (wiring length) are not particularly limited, and the size and arrangement of particles to be analyzed (that is, particles in the electrophoresis medium) are not particularly limited. In addition, it may be set as appropriate according to the intended operation (separation, collection, transport, etc.). Further, the film thickness and electrode material of the swimming electrode 6a can also be set as appropriate, and are not particularly limited.
[0055] 上記泳動電極アレイ 6 (すなわち各泳動電極 6a)は、複数の泳動レーン 3· ··に亘っ て延設されており、各泳動レーン 3に共通で作用する。上記泳動電極アレイ 6は、上 記下側基板 1端部に実装 ·接続部 6b (入力端子部)を有して ヽる。上記実装 ·接続部 6bには、フレキシブル配線基板 (Flexible Printed Circuit,以下、「FPC」と記す) 17が 実装されており、この FPC17を介して、図 5に示す制御基板 50 (制御部;駆動制御 部)と接続される。なお、制御基板 50については後述する。  The migration electrode array 6 (that is, each migration electrode 6 a) extends over the plurality of migration lanes 3, and acts in common on each migration lane 3. The electrophoresis electrode array 6 has a mounting / connecting portion 6b (input terminal portion) at one end portion of the lower substrate. A flexible printed circuit (hereinafter referred to as “FPC”) 17 is mounted on the mounting / connecting portion 6b, and the control board 50 (control portion; drive) shown in FIG. Connected to the control unit). The control board 50 will be described later.
[0056] 上記下側基板 1および上側基板 2における互いの対向面には、各々、下面保護膜 7および上面保護膜 8が形成されている。これら下面保護膜 7および上面保護膜 8は 、各々、上記泳動レーン 3内壁における底壁および天壁を構成している。 [0057] これら下面保護膜 7および上面保護膜 8の材料としては、例えば、フッ素系榭脂;人 ェ細胞膜;アクリル榭脂、ポリイミド榭脂等の有機膜;等が挙げられるが、これら下面 保護膜 7および上面保護膜 8の材料は、泳動させる粒子の種類に応じて適宜設定す ればよぐ特に限定されるものでない。また、上記下面保護膜 7および上面保護膜 8 は、上記泳動レーン 3内壁、特に、上記各泳動電極 6a表面を保護 (カバー)すること ができさえすればよぐその膜厚は、特に限定されるものではない。なお、上記人工 細胞膜としては、例えば、日本油脂株式会社製の「リビジユア」(登録商標)、株式会 ネ: fcAIノィォチップ製の「PCmodifer」(登録商標)等が挙げられる。また、下面保護膜 7 および上面保護膜 8の材料としては、感光性を有する材料を使用することもできる。 上記下面保護膜 7および上面保護膜 8の材料として感光性を有する材料を使用する ことで、例えば、泳動レーン 3以外の保護膜が不要な部分、例えば実装端子部分 (実 装'接続部 6b)を、例えばフォトリソグラフィ等で除去することができ、後工程での手間 を省くことができる。 A lower surface protective film 7 and an upper surface protective film 8 are formed on the opposing surfaces of the lower substrate 1 and the upper substrate 2, respectively. The lower surface protective film 7 and the upper surface protective film 8 constitute the bottom wall and the top wall of the inner wall of the migration lane 3, respectively. Examples of the material for the lower surface protective film 7 and the upper surface protective film 8 include fluorine-based resin; human cell film; organic film such as acrylic resin and polyimide resin; and the like. The materials of the film 7 and the upper surface protective film 8 are not particularly limited as long as they are appropriately set according to the type of particles to be migrated. Further, the film thickness of the lower surface protective film 7 and the upper surface protective film 8 is not particularly limited as long as it can protect (cover) the inner wall of the migration lane 3, particularly the surface of each of the migration electrodes 6 a. It is not something. The artificial cell membrane includes, for example, “Livisure” (registered trademark) manufactured by NOF Corporation, “PCmodifer” (registered trademark) manufactured by fcAI Neochip, and the like. In addition, as the material for the lower surface protective film 7 and the upper surface protective film 8, a material having photosensitivity can also be used. By using a material having photosensitivity as the material for the lower surface protective film 7 and the upper surface protective film 8, for example, a portion where no protective film other than the migration lane 3 is required, for example, a mounting terminal portion (implementation 'connection portion 6b) Can be removed by, for example, photolithography, and the time and labor of subsequent processes can be saved.
[0058] また、本実施の形態によれば、上記下面保護膜 7が設けられた下側基板 1上には、 前記したように、上記上側基板 2との対向面に、各泳動レーン 3· · ·を隔てる泳動レー ン壁 4が設けられている。  In addition, according to the present embodiment, on the lower substrate 1 provided with the lower surface protective film 7, as described above, the respective electrophoresis lanes 3. · There is a migration lane wall 4 separating
[0059] 上記泳動レーン壁 4は、仕切り壁(間仕切)として、内部を複数のレーンに間仕切る 複数の隔壁 4aを備えた枠体である。各隔壁 4aは、上記泳動電極アレイ 6 (各泳動電 極 6a)と泳動レーン 3· · ·とが交差 (本実施の形態では直交)するように、上記泳動電 極アレイ 6に対して垂直方向に並設されて!/、る。  [0059] The migration lane wall 4 is a frame provided with a plurality of partition walls 4a that partition the inside into a plurality of lanes as partition walls (partitions). Each partition wall 4a is perpendicular to the electrophoresis electrode array 6 so that the electrophoresis electrode array 6 (each electrophoresis electrode 6a) and the electrophoresis lane 3 intersect (orthogonal in the present embodiment). In parallel!
[0060] 上記泳動レーン壁 4は、例えば、シール材 (接着剤)〖こより形成される。上記シール 材としては、特に限定されるものではなぐ例えば、シール材として従来公知の榭脂 が使用される。このようなシール材としては、例えば、エポキシ榭脂、あるいは、ェポキ シ榭脂を主成分として含む榭脂組成物からなるエポキシ系接着剤等の接着榭脂 (接 着剤)が使用される。上記シール材は、球状スぺーサまたはファイバ状スぺーサ等の V、わゆるスぺーサ(間隔保持材)を含むことが好ましぐ上記シール材がこれら球状ス ぺーサ、ファイバ状スぺーサ等のスぺーサを含有することで、上記下側基板 1と上側 基板 2とを対向配置させて貼り合わせる際に、上記泳動レーン壁 4の厚み、つまり、上 記泳動レーン 3のレーン高さを均一にすることができる。 [0060] The migration lane wall 4 is formed of, for example, a sealing material (adhesive). The sealing material is not particularly limited. For example, a conventionally known resin is used as the sealing material. As such a sealing material, for example, an epoxy resin or an adhesive resin (adhesive) such as an epoxy adhesive made of a resin composition containing epoxy resin as a main component is used. It is preferable that the sealing material includes V or a loose spacer (spacing retaining material) such as a spherical spacer or a fiber-like spacer. By containing a spacer such as a spacer, when the lower substrate 1 and the upper substrate 2 are disposed facing each other and bonded together, the thickness of the electrophoresis lane wall 4, that is, the upper The lane height of electrophoresis lane 3 can be made uniform.
[0061] 上記シール材中に混入されるスぺーサとしては、例えばポリテトラフルォロエチレン 、ガラス等力もなる、いわゆるテフロン (登録商標)スぺーサや、ガラススぺーサ等を使 用することができる。 [0061] As the spacer mixed in the sealing material, for example, polytetrafluoroethylene, glass so-called Teflon (registered trademark) spacer, glass spacer or the like is used. Can do.
[0062] 本実施の形態では、レーン幅(隔壁 4a'4a間の間隔)約 lcm、レーン長さ約 6cmの 泳動レーン 3を、並列に 4列形成する。また、泳動レーン壁 4の幅は約 2mmに設定す る。また、泳動レーン 3の厚み (泳動レーン壁 4の高さ)が均一となるように、上記シー ル材には、粒径 40 μ mのガラススぺーサを混入する。  [0062] In the present embodiment, four rows of electrophoresis lanes 3 having a lane width (interval between partition walls 4a'4a) of about 1 cm and a lane length of about 6 cm are formed in parallel. The width of the electrophoresis lane wall 4 is set to about 2 mm. In addition, a glass spacer with a particle size of 40 μm is mixed in the sealant so that the thickness of electrophoresis lane 3 (height of electrophoresis lane wall 4) is uniform.
[0063] また、上記下側基板 1および上側基板 2における何れか一方の基板には、上記各 泳動レーン 3に試料を注入および排出するための注入 ·排出孔 5が、上記各泳動レ ーン 3毎に形成される。本実施の形態では、上記注入'排出孔 5として、上記上側基 板 2における各泳動レーン 3の両端部に、それぞれ、約 2mmの孔径を有する孔を設 ける。  [0063] In addition, any one of the lower substrate 1 and the upper substrate 2 has an injection / discharge hole 5 for injecting and discharging the sample to and from each of the electrophoresis lanes 3 described above. Formed every three. In the present embodiment, holes having a hole diameter of about 2 mm are provided at both ends of each electrophoresis lane 3 in the upper substrate 2 as the injection and discharge holes 5.
[0064] なお、上記各泳動レーン 3は、上記泳動電極アレイ 6の延設方向(長手方向)と、各 泳動レーン 3における 2つの注入 ·排出孔 5を結んだ直線とができる限り垂直となるよ うに設けられて 、ることが望まし!/、。  [0064] In each electrophoresis lane 3, the extending direction (longitudinal direction) of the electrophoresis electrode array 6 and the straight line connecting the two injection / discharge holes 5 in each electrophoresis lane 3 are as vertical as possible. It is hoped that it will be provided!
[0065] 次に、本実施の形態に力かる上記誘電泳動パネル 10の作製方法について以下に 説明する。  [0065] Next, a method for manufacturing the dielectrophoresis panel 10 according to the present embodiment will be described below.
[0066] 本実施の形態では、上記したように、下側基板 1および上側基板 2に、例えば 10c m X 10cmの透明基板を使用する。まず、上記下側基板 1上に、泳動電極アレイ 6を 形成する。  In the present embodiment, as described above, for example, 10 cm × 10 cm transparent substrates are used for the lower substrate 1 and the upper substrate 2. First, the electrophoresis electrode array 6 is formed on the lower substrate 1.
[0067] 本実施の形態では、前記したように金属材料を使用し、上記下側基板 1上に、スパ ッタ蒸着等による金属膜形成後、フォトリソグラフィを用いて電極形状にパターユング する。これ〖こより、上記したように、例えば、膜厚約 2000A、 LZSがともに 30 /ζ πι、 電極長約 10cmの 1000本の電極列からなる泳動電極アレイ 6を形成する。また、同 時に、泳動電極アレイ 6の端部に、実装端子として、実装'接続部 6bをパターン形成 する。  In the present embodiment, as described above, a metal material is used, and after forming a metal film on the lower substrate 1 by sputtering or the like, it is patterned into an electrode shape using photolithography. Thus, as described above, for example, the migration electrode array 6 composed of 1000 electrode rows having a film thickness of about 2000 A, LZS of 30 / ζ πι, and an electrode length of about 10 cm is formed. At the same time, a mounting / connecting portion 6b is formed as a mounting terminal at the end of the electrophoresis electrode array 6 as a pattern.
[0068] 次に、上記下側基板 1と上側基板 2とを貼り合わせたときに、上記上側基板 2におい て泳動レーン 3と重畳する部分を、例えばドリルで穿孔することにより、各泳動レーン 3の両端部に、それぞれ、孔径約 2mmの注入'排出孔 5を設ける。なお、上記注入' 排出孔 5の形成方法としては、他に、ブラストや、エッチング等の方法を用いることが できる。 Next, when the lower substrate 1 and the upper substrate 2 are bonded together, the upper substrate 2 Then, the portions overlapping with the electrophoresis lanes 3 are drilled with, for example, a drill, so that injection and discharge holes 5 having a hole diameter of about 2 mm are provided at both ends of each electrophoresis lane 3. As a method for forming the injection / discharge hole 5, other methods such as blasting and etching can be used.
[0069] 次に、上記泳動電極アレイ 6が形成された下側基板 1、および、注入 ·排出孔 5が形 成された上側基板 2上に、例えば前記した保護膜材料を塗布することにより、それぞ れ、下面保護膜 7および上面保護膜 8を形成する。  Next, for example, by applying the above-described protective film material on the lower substrate 1 on which the migration electrode array 6 is formed and the upper substrate 2 on which the injection / discharge holes 5 are formed, A lower protective film 7 and an upper protective film 8 are formed respectively.
[0070] 次に、下面保護膜 7が形成された下側基板 1上に、反応性接着剤 (熱硬化性接着 剤)として、例えば粒経 40 μ mのガラススぺーサが混入されたエポキシ系接着剤(シ 一ル材)を塗布する。これ〖こより、例えば、幅約 2mm、高さ約 40 mの泳動レーン壁 4を形成する。シール材の塗布には、例えば、スクリーン版を使用する印刷方法や、 ディスペンサーを使用する描画方法を使用する。  [0070] Next, an epoxy system in which, for example, a glass spacer having a particle size of 40 μm is mixed as a reactive adhesive (thermosetting adhesive) on the lower substrate 1 on which the lower surface protective film 7 is formed. Apply adhesive (seal). From this, for example, the electrophoresis lane wall 4 having a width of about 2 mm and a height of about 40 m is formed. For the application of the sealing material, for example, a printing method using a screen plate or a drawing method using a dispenser is used.
[0071] 本実施の形態によれば、上記したように、泳動レーン壁 4を、ガラススぺーサを含有 するシール材で形成して!/、ること力 、各泳動レーン 3のギャップ(レーン高さ)を均一 に維持することができる。また、上記したように、シール材を、印刷あるいは描写法を 用いてパターン形成することにより、複数の隔壁 4aを備えた泳動レーン壁 4を簡便に 形成することができる。これにより、複数の泳動レーン 3を、簡便に形成することができ る。  [0071] According to the present embodiment, as described above, the migration lane wall 4 is formed of the sealing material containing the glass spacer! /, And the force between the migration lanes 3 (lane height) Can be kept uniform. Further, as described above, the migration lane wall 4 having a plurality of partition walls 4a can be easily formed by patterning the sealing material using printing or a drawing method. Thereby, a plurality of electrophoresis lanes 3 can be easily formed.
[0072] その後、上記下側基板 1および上側基板 2を対向配置させて貼り合わせを行う。こ れにより、上記下側基板 1および上側基板 2と、これら下側基板 1と上側基板 2との間 の空間を仕切る、上記泳動レーン壁 4とで囲まれた泳動レーン 3を形成する。  Thereafter, the lower substrate 1 and the upper substrate 2 are disposed to face each other and are bonded together. As a result, the migration lane 3 surrounded by the migration lane wall 4 that partitions the space between the lower substrate 1 and the upper substrate 2 and the lower substrate 1 and the upper substrate 2 is formed.
[0073] 具体的には、下側基板 1および上側基板 2を対向配置させ、上下両面から熱プレス を行う。熱プレスにより下側基板 1上のシール材がー且軟ィ匕した後、硬化し、両基板 が接着されることで、両基板間に泳動レーン 3が形成される。泳動レーン 3のギャップ は、泳動レーン壁 4を構成する上記シール材中に含まれるスぺーサにより維持される 。本実施の形態では、前記したように、レーン幅(隔壁 4a'4a間の間隔)約 lcm、レー ン長さ約 6cm、厚さ約 40 mの泳動レーン 3を、並列に 4列形成する。以上の工程に より、本実施の形態に力かる誘電泳動パネル 10が形成される。 [0074] 上記誘電泳動パネル 10は、図 5に示すように、上記泳動電極アレイ 6端部に形成さ れた実装 ·接続部 6bに実装された FPC 17を介して、制御基板 50と接続されて 、る。 本実施の形態にカゝかる誘電泳動装置 70は、上記誘電泳動パネル 10と、制御基板 5 0と、 DC電源 60 (電源)とを備えている。また、本実施の形態に力かる誘電泳動シス テム 85は、上記誘電泳動装置 70と、撮像系 80とを備えている。 Specifically, the lower substrate 1 and the upper substrate 2 are arranged to face each other, and hot pressing is performed from both the upper and lower surfaces. The sealing material on the lower substrate 1 is softened and softened by hot pressing, and then cured and bonded to each other, whereby the migration lane 3 is formed between the two substrates. The gap of the electrophoresis lane 3 is maintained by the spacer included in the sealing material constituting the electrophoresis lane wall 4. In the present embodiment, as described above, four rows of electrophoresis lanes 3 having a lane width (interval between partition walls 4a'4a) of about 1 cm, a lane length of about 6 cm, and a thickness of about 40 m are formed in parallel. Through the above steps, the dielectrophoresis panel 10 which is useful for the present embodiment is formed. As shown in FIG. 5, the dielectrophoresis panel 10 is connected to the control board 50 via the FPC 17 mounted on the mounting / connecting portion 6b formed on the end of the electrophoresis electrode array 6. And A dielectrophoresis apparatus 70 according to the present embodiment includes the dielectrophoresis panel 10, a control board 50, and a DC power source 60 (power source). In addition, the dielectrophoresis system 85 that works in the present embodiment includes the dielectrophoresis apparatus 70 and the imaging system 80.
[0075] 上記制御基板 50は、周波数 ·タイマー制御部 50a、同期信号制御部 50b、発振回 路部 50c、位相選択'増幅部 50dを備えている。  The control board 50 includes a frequency / timer control unit 50a, a synchronization signal control unit 50b, an oscillation circuit unit 50c, and a phase selection / amplification unit 50d.
[0076] 上記誘電泳動装置 70において、 DC電源 60から出力された電圧(DC (直流)電圧 )は、上記制御基板 50に入力され、上記制御基板 50を駆動する。  In the dielectrophoresis apparatus 70, the voltage (DC (direct current) voltage) output from the DC power source 60 is input to the control board 50 and drives the control board 50.
[0077] 上記制御基板 50では、上記発振回路部 50cから AC電圧が出力される。出力され る AC電圧は、上記周波数 ·タイマー制御部 50a、同期信号制御部 50b、位相選択 · 増幅部 50dにより周波数、位相、振幅等が制御されることにより、意図する AC出力に 調整され、上記 FPC17を介して上記誘電泳動パネル 10に印加 (入力)される。  [0077] In the control board 50, an AC voltage is output from the oscillation circuit unit 50c. The output AC voltage is adjusted to the intended AC output by controlling the frequency, phase, amplitude, etc. by the frequency / timer control unit 50a, synchronization signal control unit 50b, and phase selection / amplification unit 50d. It is applied (input) to the dielectrophoresis panel 10 via the FPC 17.
[0078] また、上記撮像系 80は、上記誘電泳動パネル 10の泳動レーン 3における観察領 域 (測定部)に照射光を与えるためのレーザ等の光源や、光学顕微鏡、 CCD (電荷 結合素子; charge coupled device)カメラ等の撮像素子等を備えた光学系であり、上 記泳動レーン 3の上部または下部に設置されて光学検出を行うようになっている。  In addition, the imaging system 80 includes a light source such as a laser for applying irradiation light to the observation region (measurement unit) in the migration lane 3 of the dielectrophoresis panel 10, an optical microscope, a CCD (charge coupled device; charge coupled device) is an optical system equipped with an imaging device such as a camera, and is installed in the upper or lower portion of the electrophoresis lane 3 for optical detection.
[0079] 本実施の形態において用いられる試料としては、誘電泳動力が誘導され得る、誘 電性物質を含有する試料であればよぐより具体的には、誘電性物質からなる媒質が 媒体中に分散されてなる試料であれば、特に限定されるものではな 、。  [0079] The sample used in the present embodiment may be a sample containing an inductive substance that can induce dielectrophoretic force. More specifically, a medium made of a dielectric substance is in the medium. As long as the sample is dispersed in the sample, there is no particular limitation.
[0080] また、本実施の形態にお!ヽて上記試料 (試料溶液)として用いられる「泳動媒体」と は、泳動対象となる「粒子」(泳動粒子)が「溶媒」に分散された分散液を示し、前記試 料には、この泳動対象となる粒子が溶媒に分散された泳動媒体が使用される。  [0080] In addition, the "electrophoresis medium" used as the sample (sample solution) in the present embodiment is a dispersion in which "particles" (electrophoretic particles) to be electrophoresed are dispersed in a "solvent". An electrophoresis medium in which particles to be migrated are dispersed in a solvent is used as the sample.
[0081] 上記粒子としては、具体的には、誘電体粒子、すなわち生物学的細胞、細菌、ウイ ルス、寄生性微生物、 DNA、タンパク質、ノィォポリマー、植物学的粒子 (花粉等)、 非生物学的粒子等が挙げられる。  [0081] Specific examples of the particles include dielectric particles, that is, biological cells, bacteria, viruses, parasitic microorganisms, DNA, proteins, nanopolymers, botanical particles (pollen, etc.), non-biology Particle and the like.
[0082] また、上記粒子には、液体中に懸濁させることができ、誘電泳動力が誘導され得る 他の粒子も含まれる。 [0083] さらに、上記粒子 (誘電体粒子)としては、液体中に溶解または懸濁した化合物また は気体 (いわゆる誘電気体)であってもよい。例えば、非特許文献 4には、誘電泳動 でカーボンナノチューブの選別 (金属と半導体との分別)を行うことが開示されている 。上記非特許文献 4では、嫌水性で水に分散しないカーボンナノチューブを、超臨界 水を利用して分散させることにより、カーボンナノチューブのサスペンジョンを調製し、 半導体が泳動可、金属が泳動不可であることを利用して上記カーボンナノチューブ の選別を行っている。 [0082] The particles include other particles that can be suspended in a liquid and can induce dielectrophoretic force. [0083] Further, the particles (dielectric particles) may be a compound or gas dissolved or suspended in a liquid (so-called dielectric gas). For example, Non-Patent Document 4 discloses that carbon nanotubes are sorted (separation between metal and semiconductor) by dielectrophoresis. In Non-Patent Document 4 above, carbon nanotube suspensions are prepared by dispersing carbon nanotubes that are hydrophilic and not dispersed in water using supercritical water, so that semiconductors can migrate and metals cannot migrate. The carbon nanotubes are sorted using
[0084] 誘電泳動では、媒体と媒質との誘電泳動率の差が駆動力のパラメータとなる。この ため、適当な粘性媒体を使用することで、空気あるいは窒素のような気体の微小バル ブを搬送することも可能である。また、嫌水性物質は、窒素等の気体バルブの中に入 れて搬送することが可能である。すなわち、嫌水性物質であっても、上記したように気 体バルブの中に封入することで溶媒に分散可能であり、本実施の形態に力かる粒子 として使用することができる。  In dielectrophoresis, the difference in the dielectrophoretic rate between the medium is a parameter of the driving force. For this reason, it is also possible to convey a fine valve of gas such as air or nitrogen by using an appropriate viscous medium. Also, an anaerobic substance can be carried in a gas valve such as nitrogen. That is, even an anaerobic substance can be dispersed in a solvent by being enclosed in a gas valve as described above, and can be used as particles that are useful in this embodiment.
[0085] また、溶媒としては、例えば、水、生理食塩水、エタノール、メタノール、ブタノール、 オイル等を適宜用いることができる。また、溶媒の比誘電率を調整するために、複数 の溶媒を混合した混合溶媒 (例えば、水とエタノールとの混合液)を使用することもで きる。さらに、溶媒の粘性抵抗を調整するために、セルローズやポリビニルアルコール 等を調整剤として添加することもできる。  [0085] As the solvent, for example, water, physiological saline, ethanol, methanol, butanol, oil or the like can be used as appropriate. In order to adjust the relative dielectric constant of the solvent, a mixed solvent in which a plurality of solvents are mixed (for example, a mixed solution of water and ethanol) can be used. Furthermore, in order to adjust the viscous resistance of the solvent, cellulose, polyvinyl alcohol or the like can be added as a regulator.
[0086] なお、上記粒子として大腸菌を使用する場合等、泳動媒体中の粒子の種類によつ ては、実験 (測定)の直前に、上記泳動レーン 3の内壁への非特異性吸着を防ぐため に、泳動レーン 3の内壁の表面処理 (界面活性剤や人工細胞膜の付与)を行うことが 望ましい。  [0086] Depending on the type of particles in the electrophoresis medium, such as when using E. coli as the particles, nonspecific adsorption to the inner wall of the electrophoresis lane 3 is prevented immediately before the experiment (measurement). Therefore, it is desirable to perform surface treatment of the inner wall of electrophoresis lane 3 (addition of surfactant or artificial cell membrane).
[0087] 以下に、本実施の形態における上記誘電泳動システム 85の使用方法の一例につ いて具体的に説明する。但し、本実施の形態は、これに限定されるものではない。ま た、以下の説明においては、大腸菌の生細胞と死細胞との分離 ·比較を例に挙げて 説明する力 これもまた単なる例示の一つにすぎず、本実施の形態は、これにより何 ら限定されるものではない。  [0087] Hereinafter, an example of a method of using the dielectrophoresis system 85 in the present embodiment will be specifically described. However, the present embodiment is not limited to this. Also, in the following explanation, the power of explaining the separation and comparison of E. coli live cells and dead cells as an example. This is also merely an example. However, it is not limited.
[0088] 一般的に、生細胞と死細胞とでは誘電率の周波数特性が異なることが知られてい る。これにより、誘電泳動現象による生死細胞の分離が可能である。 [0088] Generally, it is known that the frequency characteristics of dielectric constant are different between live cells and dead cells. The Thereby, it is possible to separate live and dead cells by the dielectrophoresis phenomenon.
[0089] 本例では、 3つの異なる環境下で培養された大腸菌の差異を定量的に観察する場 合を例に挙げて説明する。観察には、並列に 4つの泳動レーン 3が設けられた、上記 誘電泳動パネル 10を備えた誘電泳動システム 85を用いる。  [0089] In this example, a case where the difference between E. coli cultured in three different environments is quantitatively observed will be described as an example. For observation, a dielectrophoresis system 85 provided with the dielectrophoresis panel 10 provided with four electrophoresis lanes 3 in parallel is used.
[0090] なお、泳動レーン 3の内壁への大腸菌の非特異性吸着を防ぐために、各泳動レー ン 3内壁の表面処理 (界面活性剤や人工細胞膜の付与)を事前に行うことが望ましい  [0090] In order to prevent non-specific adsorption of Escherichia coli to the inner wall of electrophoresis lane 3, it is desirable to perform surface treatment (providing a surfactant or an artificial cell membrane) on the inner wall of each electrophoresis lane 3 in advance.
[0091] 4つの泳動レーン 3のうち 1つの泳動レーン 3には、比較サンプルとして、一定濃度 の特定の大腸菌 (培養前)の希釈水溶液 (生理食塩水)を、上記泳動レーン 3におけ る一方の注入'排出孔 5から注入する。残りの 3つの泳動レーン 3には、 3つの異なる 環境下で培養されたそれぞれの大腸菌をそれぞれ比較サンプルと同様の濃度に希 釈した水溶液を、各泳動レーン 3における一方の注入'排出孔 5から注入する。 [0091] In one of the four lanes 3, one lane 3 contains a diluted aqueous solution (saline) of a specific concentration of specific E. coli (before culture) as a comparative sample. Inject from the discharge hole 5. In the remaining three electrophoresis lanes 3, each E. coli cultured in three different environments was diluted with an aqueous solution diluted to the same concentration as the comparative sample from one injection 'discharge hole 5 in each electrophoresis lane 3. inject.
[0092] まず最初に、定常 DEP (DEP)により、生細胞と死細胞とを分離する。具体的には、 例えば、印加電圧 8V、周波数 10MHz、隣接位相差 πで、隣接する泳動電極 6a〖こ 交互に AC電圧を印加する。これにより、生細胞は泳動電極 6aの端部にトラップされ 、死細胞は泳動電極 6aの中央付近で浮上する。  [0092] First, live cells and dead cells are separated by stationary DEP (DEP). Specifically, for example, an AC voltage is applied alternately between adjacent migration electrodes 6a at an applied voltage of 8 V, a frequency of 10 MHz, and an adjacent phase difference π. As a result, live cells are trapped at the end of the migration electrode 6a, and dead cells rise near the center of the migration electrode 6a.
[0093] この泳動電極 6aの端部にトラップされた生細胞を、上記撮像系 80により観察する。  [0093] The living cells trapped at the end of the electrophoresis electrode 6a are observed by the imaging system 80.
この泳動電極 6aの端部にトラップされた生細胞を、比較サンプルと比較することによ り、各培養環境による差異を確認する。例えば、一定領域内の細胞数を、落射観察 によりカウントする。これにより、定量的な比較が可能となる。  By comparing the living cells trapped at the end of the electrophoresis electrode 6a with a comparative sample, the difference due to each culture environment is confirmed. For example, the number of cells in a certain area is counted by epi-illumination observation. This enables a quantitative comparison.
[0094] 次に、進行波 DEP (TWD)により、死細胞のみを移動させる。具体的には、例えば 、印加電圧 8V、周波数 10MHz、隣接位相差 π Ζ2で、隣接する泳動電極 6aに AC 電圧を印加する。これにより、各培養環境による死細胞発生の差異を確認する。例え ば、一定時間に一定領域を通過する死細胞数を、例えば光学顕微鏡の観察により力 ゥントする。これにより、定量的な比較が可能となる。  Next, only dead cells are moved by traveling wave DEP (TWD). Specifically, for example, an AC voltage is applied to the adjacent migration electrode 6a with an applied voltage of 8 V, a frequency of 10 MHz, and an adjacent phase difference π 2. Thereby, the difference of the dead cell generation | occurrence | production by each culture environment is confirmed. For example, the number of dead cells that pass through a certain region in a certain time is increased by observation with an optical microscope, for example. This enables a quantitative comparison.
[0095] 本実施の形態によれば、上記したように泳動レーン 3を並列に複数個設け、さらに、 各泳動レーン 3に共通で作用する泳動電極 6a (泳動電極アレイ 6)を設けること、すな わち、上記泳動電極 6a (泳動電極アレイ 6)を、各泳動レーン 3に共通で設けることで 、泳動制御電圧を、上記泳動電極アレイ 6に一括して入力することができる。このよう に、本実施の形態によれば、互いに平行に設けられた各泳動レーン 3に共通の泳動 電極 6aを備えた櫛型電極 (泳動電極アレイ 6)に一種類の信号を入力すると、複数の 泳動レーン 3に同時に電界を印加することができる。従って、本実施の形態によれば 、複数の試料 (泳動媒体)の泳動制御を、一括して同時に行うことができる。このため 、本実施の形態によれば、実験環境の煩雑な設定を伴うことなぐ複数種の異なる試 料 (例えば溶媒の比誘電率や粘度が異なる試料、あるいは、溶媒中の粒子の物性値 (比誘電率等)が異なる試料等)を、同一条件で同時に被泳動条件下に置くことが可 能であり、試験条件に対する応用範囲が広ぐ様々な試験条件に適応する誘電泳動 チップおよび誘電泳動装置、さらには誘電泳動システムを実現することが可能である [0095] According to the present embodiment, as described above, a plurality of electrophoresis lanes 3 are provided in parallel, and furthermore, the electrophoresis electrodes 6a (electrophoresis electrode array 6) acting in common on each electrophoresis lane 3 are provided. In other words, the electrophoresis electrode 6a (the electrophoresis electrode array 6) is provided in common in each electrophoresis lane 3. The migration control voltage can be input to the migration electrode array 6 at once. As described above, according to the present embodiment, when one type of signal is input to the comb-shaped electrode (electrophoresis electrode array 6) having the electrophoresis electrodes 6a common to the electrophoresis lanes 3 provided in parallel to each other, a plurality of signals are input. An electric field can be applied to electrophoresis lane 3 of Therefore, according to the present embodiment, migration control of a plurality of samples (electrophoresis media) can be performed simultaneously in a lump. Therefore, according to the present embodiment, a plurality of different samples (for example, samples having different relative dielectric constants and viscosities of solvents, or physical property values of particles in the solvent (without the complicated setting of the experimental environment) It is possible to place samples with different dielectric constants etc.) under the same migration conditions under the same conditions, and dielectrophoresis chips and dielectrophoresis adapted to various test conditions with a wide range of application to the test conditions. It is possible to realize a device and even a dielectrophoresis system
[0096] また、本実施の形態によれば、このように複数の泳動レーン 3を有する誘電泳動パ ネル 10 (誘電泳動チップ)を使用することで、溶媒 (泳動媒体)の種類を泳動レーン 3 毎に変更し、特定の複数の粒子を同時に選別することや、溶媒 (泳動媒体)は同一で 、泳動レーン 3毎に電極形状を変えることで特定の複数の粒子を同時に選別すること も可能であり、複数粒子の選別を効率良く行うことが可能になる。従って、本実施の 形態によれば、幅広い用途に対応した誘電泳動チップおよび誘電泳動装置、さら〖こ は誘電泳動システムを実現することが可能である。 [0096] Also, according to the present embodiment, by using the dielectrophoresis panel 10 (dielectrophoresis chip) having the plurality of electrophoresis lanes 3 in this way, the type of the solvent (electrophoresis medium) can be changed. It is possible to select specific particles at the same time by changing each electrode and changing the electrode shape for each lane 3 with the same solvent (electrophoresis medium). Yes, it is possible to efficiently select a plurality of particles. Therefore, according to this embodiment, it is possible to realize a dielectrophoresis chip, a dielectrophoresis apparatus, and a dielectrophoresis system compatible with a wide range of applications.
[0097] なお、本実施の形態では、上記泳動レーン壁 4を、下面保護膜 7が形成された下側 基板 1上、つまり、上記下面保護膜 7上に形成するものとしたが、本実施の形態は、こ れに限定されるものではなぐ上記下面保護膜 7および上面保護膜 8形成時に、上記 下面保護膜 7および上面保護膜 8における、上記泳動レーン壁 4形成領域、すなわ ち上記泳動レーン壁 4 (シール材)との重畳領域における一部あるいは全部を除去し ておいてもよい。このような構造にすることにより、上記下面保護膜 7および上面保護 膜 8とシール材との密着性が悪 ヽ場合でも、十分な接着性を得ることができる。  In the present embodiment, the migration lane wall 4 is formed on the lower substrate 1 on which the lower surface protective film 7 is formed, that is, on the lower surface protective film 7. The form of the electrophoretic lane wall 4 in the lower surface protective film 7 and the upper surface protective film 8 when the lower surface protective film 7 and the upper surface protective film 8 are formed, that is, the above-described form is not limited thereto. Part or all of the overlapping region with the electrophoresis lane wall 4 (seal material) may be removed. With such a structure, even when the adhesion between the lower surface protective film 7 and the upper surface protective film 8 and the sealing material is poor, sufficient adhesion can be obtained.
[0098] また、本実施の形態に力かる上記誘電泳動パネル 10では、上記下側基板 1および 上側基板 2における互いの対向面に、各々、下面保護膜 7および上面保護膜 8が形 成されている構成を例に挙げて説明した。しかしながら、本実施の形態はこれに限定 されるものではなぐ上記下側基板 1および上側基板 2に上記下面保護膜 7および上 面保護膜 8が形成されている必要は必ずしもない。但し、上記下側基板 1および上側 基板 2における互いの対向面、特に、上記泳動レーン 3内における上記泳動電極 6a …上に、これら泳動電極 6aを覆う保護膜 (下面保護膜 7および上面保護膜 8)が設け られて 、ることで、泳動する粒子が上記泳動電極 6aに吸着することを防ぐことができ る。よって、上記粒子の種類によっては、上記下側基板 1および上側基板 2に上記下 面保護膜 7および上面保護膜 8が形成されて 、ることが望ま 、。 [0098] Further, in the dielectrophoresis panel 10 according to the present embodiment, the lower surface protective film 7 and the upper surface protective film 8 are formed on the opposing surfaces of the lower substrate 1 and the upper substrate 2, respectively. The configuration is described as an example. However, this embodiment is limited to this. However, the lower surface protective film 7 and the upper surface protective film 8 are not necessarily formed on the lower substrate 1 and the upper substrate 2. However, on the opposing surfaces of the lower substrate 1 and the upper substrate 2, particularly on the migration electrodes 6a in the migration lane 3, the protective films (the lower surface protection film 7 and the upper surface protection film) that cover the migration electrodes 6a. By providing 8), it is possible to prevent the migrating particles from adsorbing to the migration electrode 6a. Therefore, depending on the kind of the particles, it is desirable that the lower protective film 7 and the upper protective film 8 are formed on the lower substrate 1 and the upper substrate 2.
[0099] また、本実施の形態では、上記泳動レーン壁 4を、上記下側基板 1上に形成する場 合を例に挙げて説明したが、上記泳動レーン壁 4は、必ずしも下側基板 1上に形成 する必要はなぐ上側基板 2上に形成しても構わな 、。  Further, in the present embodiment, the case where the migration lane wall 4 is formed on the lower substrate 1 has been described as an example. However, the migration lane wall 4 is not necessarily provided on the lower substrate 1. It may be formed on the upper substrate 2 which need not be formed on the upper substrate 2.
[0100] また、本実施の形態では、上記下側基板 1および上側基板 2として、例えば、 10cm  [0100] In the present embodiment, the lower substrate 1 and the upper substrate 2 are, for example, 10 cm.
X 10cm程度の透明基板を使用する場合を例に挙げて説明したが、本実施の形態 は、これに限定されるものではなぐ何れか一方の基板が、観察可能に設けられてさ えいればよい。具体的には、例えば、泳動電極形成側の基板とは反対側の基板であ る上側基板 2のみが透明基板で形成されて 、ても構わな 、。  Although a case where a transparent substrate of about 10 cm is used has been described as an example, this embodiment is not limited to this, as long as one of the substrates is provided so as to be observable. Good. Specifically, for example, only the upper substrate 2 that is the substrate opposite to the substrate on the migration electrode formation side may be formed of a transparent substrate.
[0101] また、上記下側基板 1および上側基板 2は、必ずしも一方の基板が透明基板にて 形成されている必要はなぐ粒子が誘電泳動力を受ける領域、具体的には、上記泳 動レーン 3と各泳動電極 6a (泳動電極アレイ 6)とが重畳する領域を観察領域として 使用し、該観察領域において泳動レーン 3内の試料 (泳動媒体)が観察可能に設け られていればよい。例えば、泳動電極形成側の基板とは反対側の基板 (本実施の形 態では上側基板 2)における、粒子が誘電泳動力を受ける領域、具体的には、上記 泳動レーン 3と泳動電極 6a (泳動電極アレイ 6)とが重畳する領域 (観察領域)に観察 窓(開口部あるいは透明領域)が設けられる等して、該領域にお!、て泳動レーン 3内 の試料 (泳動媒体)が観察可能に設けられて ヽれば、両基板とも非透明基板 (半透 明あるいは不透明な基板)で形成されて ヽても構わな 、。  [0101] Further, the lower substrate 1 and the upper substrate 2 do not necessarily have to be formed of a transparent substrate on one of the substrates. Specifically, the lower substrate 1 and the upper substrate 2 are regions where the particles undergo a dielectrophoretic force. 3 and the electrophoresis electrode 6a (the electrophoresis electrode array 6) are used as an observation area, and the sample (electrophoresis medium) in the electrophoresis lane 3 may be provided to be observable in the observation area. For example, the region where the particles are subjected to the dielectrophoretic force on the substrate opposite to the substrate on which the migration electrode is formed (in this embodiment, the upper substrate 2), specifically, the migration lane 3 and the migration electrode 6a ( An observation window (opening or transparent area) is provided in the area (observation area) where the electrophoresis electrode array 6) overlaps, and the sample (electrophoresis medium) in the electrophoresis lane 3 is observed in this area. If possible, both substrates may be formed of a non-transparent substrate (semi-transparent or opaque substrate).
[0102] また、上記下側基板 1および上側基板 2の基板サイズは適宜設定すればよぐ特に 限定されるものではない。さらに、本実施の形態でなした具体的なサイズもまた、実施 の形態の一例にすぎず、分析対象に応じて種々変更が可能である。すなわち、上記 下側基板 1および上側基板 2の基板サイズ、電極サイズ (電極幅、電極間隔、電極厚 、電極長等)、下面保護膜 7および上面保護膜 8の膜厚、泳動レーン壁 4の層厚 (高 さ)、レーン幅、レーン長さ等の条件は特に限定されるものではなぐ分析対象に応じ て種々変更が可能である。 [0102] The substrate sizes of the lower substrate 1 and the upper substrate 2 are not particularly limited as long as they are set appropriately. Furthermore, the specific size made in the present embodiment is also only an example of the embodiment, and various changes can be made according to the analysis target. That is, the above Substrate size, electrode size (electrode width, electrode spacing, electrode thickness, electrode length, etc.) of lower substrate 1 and upper substrate 2, film thickness of lower surface protective film 7 and upper surface protective film 8, layer thickness of migration lane wall 4 ( Conditions such as height), lane width, and lane length are not particularly limited, and various changes can be made according to the analysis target.
[0103] また、本実施の形態では、泳動レーン 3を、並列に 4列形成する場合を例に挙げて 説明したが、該泳動レーン 3のレーン数は、測定サンプル数等に応じて適宜設定す ればよぐ特に限定されるものではない。  [0103] In the present embodiment, the case where the electrophoresis lanes 3 are formed in four rows in parallel has been described as an example. However, the number of lanes in the electrophoresis lane 3 is appropriately set according to the number of measurement samples and the like. There is no particular limitation.
[0104] また、本実施の形態では、上記泳動電極 6a (泳動電極アレイ 6)力 各泳動レーン 3 …に対して垂直方向に設けられている場合を例に挙げて説明した。し力しながら、本 実施の形態はこれに限定されるものではなぐ同一の泳動電極 6a (泳動電極アレイ 6 )力 複数の泳動レーン 3…に亘つて延設されており、各泳動レーン 3に対して共通し て作用しさえすればよぐ必ずしも上記泳動電極 6aが上記各泳動レーン 3に対して 垂直方向に延設さえている必要はない。但し、粒子の比較観察のし易さから、各泳 動レーン 3における観察領域は、互いに隣接して設けられていることが好ましい。この ため、上記泳動電極 6aは、各泳動レーン 3· · ·に対して垂直方向に設けられているこ とが好ましい。  Further, in the present embodiment, the case where the migration electrode 6a (migration electrode array 6) force is provided in the vertical direction with respect to each migration lane 3 is described as an example. However, the present embodiment is not limited to this. The same electrophoresis electrode 6a (electrophoresis electrode array 6) force is extended over a plurality of electrophoresis lanes 3. However, it is not always necessary that the migration electrode 6a extends in a direction perpendicular to the migration lanes 3 as long as they act in common. However, from the viewpoint of ease of comparative observation of particles, it is preferable that the observation regions in each swimming lane 3 are provided adjacent to each other. For this reason, it is preferable that the electrophoresis electrode 6a is provided in a direction perpendicular to the electrophoresis lanes 3.
[0105] なお、本実施の形態では、本実施の形態に力かる誘電泳動チップとして、下側基 板 1と上側基板 2との間に泳動レーン 3が設けられた誘電泳動パネル 10を例に挙げ て説明したが、本実施の形態はこれに限定されるものではなぐ上記試料 (試料溶液 )の種類にもよる力 例えば上記泳動レーン 3の上面が、上記上側基板 2で覆われて いない構成を有していても構わない。すなわち、上記泳動レーン 3は、必ずしも一対 の基板間に形成されている必要はなぐ例えば上記下側基板 1上(下側基板 1表面) に設けられた泳動槽 (つまり、上記下側基板 1と、該下側基板 1上に形成された泳動 レーン壁 4とからなる泳動槽)であってもよぐ上記下側基板 1上に形成された泳動セ ル (つまり、上記下側基板 1と上側基板 2と泳動レーン壁 4とで形成された閉空間)で あってもよい。  [0105] In the present embodiment, the dielectrophoresis panel 10 in which the electrophoresis lane 3 is provided between the lower substrate 1 and the upper substrate 2 is taken as an example of the dielectrophoresis chip that works with the present embodiment. Although the present embodiment is not limited to this, force depending on the type of the sample (sample solution), for example, the upper surface of the electrophoresis lane 3 is not covered with the upper substrate 2 You may have. That is, the electrophoresis lane 3 is not necessarily formed between a pair of substrates, for example, an electrophoresis tank (that is, the lower substrate 1 and the lower substrate 1 provided on the lower substrate 1 (surface of the lower substrate 1)). The migration cell formed on the lower substrate 1 (that is, the lower substrate 1 and the upper side) may be an electrophoresis tank composed of the migration lane wall 4 formed on the lower substrate 1. It may be a closed space formed by the substrate 2 and the electrophoresis lane wall 4.
[0106] 本実施の形態にカゝかる誘電泳動チップおよび誘電泳動装置並びに誘電泳動シス テムは、特定細胞の分離、検出等のバイオ研究用マイクロアレイ等の用途、例えば、 生体分子ゃ榭脂ビーズ等の誘電性物質を誘電泳動力によって搬送する化学分析シ ステムに好適に使用することができる。これら化学分析システムは、医療分野をはじ めとして、食品衛生分野、環境モニタリング等に広く応用が可能であり、血液を分離 することで得られる赤血球、白血球、リンパ球等の血球成分;大腸菌、リステリア菌等 の糸田菌; DNA (テオキシリボ核酸: deoxyribonucleic acid; deoxyribose nucleic acid) 、タンパク質等の生体分子;等の幅広い範囲の誘電性物質を対象とし、例えば、 DN A、タンパク質、細胞等の解析 (反応 '検出'分離'搬送);ィ匕学合成 (マイクロプラント) ;等の用途に好適に使用することができる。 [0106] The dielectrophoresis chip, dielectrophoresis apparatus, and dielectrophoresis system according to the present embodiment are used for bio research microarrays such as separation and detection of specific cells, for example, It can be suitably used in a chemical analysis system that conveys a dielectric substance such as biomolecules and resin beads by dielectrophoretic force. These chemical analysis systems can be widely applied to the medical field, food sanitation field, environmental monitoring, etc., and blood cell components such as red blood cells, white blood cells, and lymphocytes obtained by separating blood; Escherichia coli, Listeria It targets a wide range of dielectric materials such as DNA (deoxyribonucleic acid; deoxyribose nucleic acid), biomolecules such as proteins, and analyzes, for example, DNA, proteins, cells, etc. (reactions) It can be suitably used for applications such as 'detection'separation'conveyance); chemical synthesis (microplant);
[0107] 〔実施の形態 2〕 [Embodiment 2]
本実施の形態について主に図 6に基づいて説明する。なお、本実施の形態では、 主に、前記実施の形態 1との相違点について説明するものとし、前記実施の形態 1で 用いた構成要素と同一の機能を有する構成要素には同一の番号を付し、その説明 を省略する。  This embodiment will be described mainly based on FIG. In the present embodiment, differences from the first embodiment will be mainly described, and components having the same functions as those used in the first embodiment will be denoted by the same reference numerals. The explanation is omitted.
[0108] 図 6は、本実施の形態にカゝかる誘電泳動パネルの概略構成を示す平面図である。  FIG. 6 is a plan view showing a schematic configuration of a dielectrophoresis panel according to the present embodiment.
なお、図 6においても、図示の便宜上、上側基板は二点鎖線にて示す。  Also in FIG. 6, for convenience of illustration, the upper substrate is indicated by a two-dot chain line.
[0109] 図 1〜図 5に示したように、前記実施の形態 1では、泳動電極アレイ 6における各泳 動電極 6aの電極幅および電極間隔は、泳動レーン 3との重畳部であるか否かに拘ら ず一定 (LZSがともに 30 /z m)である場合を例に挙げて説明した。すなわち、前記実 施の形態 1では、上記泳動電極アレイ 6が、該泳動電極アレイ 6を構成する各泳動電 極 6aがストライプ状に互 、に並行して設けられて 、るストライプ構造を有して 、る場 合を例に挙げて説明した。  As shown in FIGS. 1 to 5, in the first embodiment, whether or not the electrode width and the electrode interval of each of the moving electrodes 6a in the electrophoresis electrode array 6 are overlapping portions with the electrophoresis lane 3 or not. Regardless of this, the case where it is constant (LZS is 30 / zm for both) has been described as an example. That is, in the first embodiment, the migration electrode array 6 has a stripe structure in which the migration electrodes 6a constituting the migration electrode array 6 are provided in parallel with each other in a stripe shape. In this case, the case is described as an example.
[0110] しかしながら、本実施の形態では、図 6に示すように、上記泳動電極 6aの電極幅お よび電極間隔は、該泳動電極 6a (泳動電極アレイ 6)が泳動レーン 3と重畳している 領域と、それ以外の領域とで異なっている。このため、本実施の形態では、上記泳動 電極 6aの電極形状は、該泳動電極 6a (泳動電極アレイ 6)が泳動レーン 3と重畳して いる領域と、それ以外の領域とで異なっている。  However, in the present embodiment, as shown in FIG. 6, the electrode width and the electrode interval of the migration electrode 6a are overlapped with the migration lane 3 in the migration electrode 6a (migration electrode array 6). The area is different from the other areas. Therefore, in the present embodiment, the electrode shape of the migration electrode 6a is different between the region where the migration electrode 6a (the migration electrode array 6) overlaps the migration lane 3 and the other regions.
[0111] 誘電泳動実験において、狭ピッチの泳動電極アレイ 6を形成すると、泳動電極ァレ ィ 6全体の配線抵抗が高くなり、なおかつ泳動電極アレイ 6を構成する各泳動電極 6a 間の寄生容量も大きくなる。このため、狭ピッチの泳動電極アレイ 6を形成すると、入 力 AC電圧の減衰、遅延の影響が大きくなることは避けられな!/、。 [0111] In the dielectrophoresis experiment, when the narrow pitch electrophoretic electrode array 6 is formed, the wiring resistance of the entire electrophoretic electrode array 6 is increased, and each electrophoretic electrode 6a constituting the electrophoretic electrode array 6 is formed. The parasitic capacitance between them also increases. For this reason, it is inevitable that the influence of the attenuation and delay of the input AC voltage will increase if the narrow pitch electrophoresis electrode array 6 is formed!
[0112] そこで、本実施の形態では、図 6に示すように、下側基板 1と上側基板 2との間に、 泳動レーン壁として、互いに独立して設けられた枠状の複数の泳動レーン壁 21を互 いに間隔を空けて設けることで、互いに離間して並列に設けられた複数の泳動レー ン 3を設けるとともに、上記泳動レーン 3内(枠内)と、上記泳動レーン間領域(間隙部 22)、つまり、上記泳動レーン 3外 (枠外)とで、泳動電極 6aの電極幅および電極間 隔が異なるように泳動電極アレイ 6を設ける。  Therefore, in the present embodiment, as shown in FIG. 6, a plurality of frame-shaped electrophoresis lanes provided independently of each other as electrophoresis lane walls between the lower substrate 1 and the upper substrate 2. By providing the walls 21 at a distance from each other, a plurality of electrophoresis lanes 3 that are spaced apart from each other and provided in parallel are provided, and the inside of the electrophoresis lane 3 (within the frame) and the area between the electrophoresis lanes ( The migration electrode array 6 is provided so that the electrode width and the electrode spacing of the migration electrode 6a are different between the gap 22), that is, outside the migration lane 3 (outside the frame).
[0113] 具体的には、上記泳動レーン 3内の泳動電極 6a、つまり、観察領域として使用され る、上記泳動電極アレイ 6が泳動レーン 3と重畳している領域 (観察領域 9)における 泳動電極 6aは、例えば、電極幅(L) 10 μ m、電極間隔(S) 10 (電極ピッチ 20 μ m)で形成されるのに対し、それ以外の領域、すなわち電気泳動とは関係ない領域( つまり、泳動レーン 3外)の泳動電極 6aは、電極幅 30 m (L)、最大電極間隔 30 m (つまり、互いに隣接する泳動レーン 3 · 3間の中心部における電極間隔 30 /ζ πι、 該中心部における電極ピッチ 60 μ m)とする。  [0113] Specifically, the migration electrode 6a in the migration lane 3, that is, the migration electrode in the region (observation region 9) used as the observation region where the migration electrode array 6 overlaps the migration lane 3 6a is formed with, for example, an electrode width (L) of 10 μm and an electrode interval (S) of 10 (electrode pitch of 20 μm), while other regions, that is, regions not related to electrophoresis (that is, Electrophoresis electrode 6a in the outer lane 3) has an electrode width of 30 m (L) and a maximum electrode interval of 30 m (that is, an electrode interval of 30 / ζ πι at the center between adjacent lanes 3 and 3; the center The electrode pitch at the part is 60 μm).
[0114] このように、本実施の形態では、泳動現象の観察に必要である泳動レーン 3内の泳 動電極 6a群(つまり、観察領域 9における泳動電極 6a群)のみを要求される狭ピッチ 配線とし、それ以外の、泳動現象とは無関係の領域の泳動電極 6a群(間隙部 22〖こ おける泳動電極 6a群)を広ピッチ配線とする。これにより、泳動電極アレイ 6全体の抵 抗を低くし、かつ寄生容量を低減することができ、入力 AC電圧の減衰や遅延を抑制 することができる。なお、上記した配線形状はほんの一例であり、これに限定されるも のではない。  [0114] Thus, in this embodiment, the narrow pitch required only for the swimming electrode 6a group (that is, the electrophoresis electrode 6a group in the observation region 9) in the electrophoresis lane 3 necessary for observation of the electrophoresis phenomenon. Wiring is used, and the other area of the migration electrode 6a group (the migration electrode 6a group with a gap of 22mm) that is unrelated to the migration phenomenon is wide-pitch wiring. As a result, the resistance of the entire migration electrode array 6 can be reduced, the parasitic capacitance can be reduced, and the attenuation and delay of the input AC voltage can be suppressed. The wiring shape described above is only an example, and the present invention is not limited to this.
[0115] 〔実施の形態 3〕  [Embodiment 3]
本実施の形態について主に図 7に基づいて説明する。なお、本実施の形態では、 主に、前記実施の形態 1、 2との相違点について説明するものとし、前記実施の形態 1、 2で用いた構成要素と同一の機能を有する構成要素には同一の番号を付し、そ の説明を省略する。  This embodiment will be described mainly based on FIG. In the present embodiment, the differences from the first and second embodiments will be mainly described, and the components having the same functions as the components used in the first and second embodiments are described. The same number is assigned and its description is omitted.
[0116] 図 7は、本実施の形態に力かる泳動パネルの概略構成を示す平面図である。なお 、図 7においても、図示の便宜上、上側基板は二点鎖線にて示す。 [0116] FIG. 7 is a plan view showing a schematic configuration of a migration panel that works according to the present embodiment. In addition Also in FIG. 7, for convenience of illustration, the upper substrate is indicated by a two-dot chain line.
[0117] 図 7に示す誘電泳動パネル 10は、互いに離間して並列に設けられた 3つの泳動レ ーン 3の各々で、泳動電極 6aの電極幅および電極間隔(電極ピッチ)が異なって!/、る 点で、図 6に示す誘電泳動パネル 10と相違している。図 7に示す誘電泳動パネル 10 は、泳動電極 6aの電極幅および電極間隔が、下側基板 1端部に設けられた実装 '接 続部 6bから遠 、側の泳動レーン 3ほど大きくなるように、上記泳動電極アレイ 6が設 けられている。 [0117] In the dielectrophoresis panel 10 shown in Fig. 7, the electrode width and electrode interval (electrode pitch) of the electrophoresis electrode 6a are different in each of the three electrophoresis lanes 3 provided in parallel and spaced apart from each other! This is different from the dielectrophoresis panel 10 shown in FIG. In the dielectrophoresis panel 10 shown in FIG. 7, the electrode width and the electrode interval of the electrophoresis electrodes 6a are so large that the migration lane 3 on the side is far from the mounting connection 6b provided at the end of the lower substrate 1. The electrophoresis electrode array 6 is provided.
[0118] より具体的には、図 7に示す泳動電極アレイ 6は、各泳動レーン 3と重畳する領域に 、上記実装 ·接続部 6b側の泳動レーン 3から順に、例えば、電極幅 10 m、電極間 隔 10 m (電極ピッチ 20 μ m)の泳動電極 6a群からなる電極部 PIと、電極幅 20 μ m、電極間隔 20 m (電極ピッチ 40 μ m)の泳動電極 6a群からなる電極部 P2と、電 極幅 30 μ m、電極間隔 30 m (電極ピッチ 60 μ m)の泳動電極 6a群からなる電極 部 P3の計 3種類の異なる大きさの帯状の電極部 P1 · P2 · P3を備えた構成を有して いる。  [0118] More specifically, the electrophoresis electrode array 6 shown in FIG. 7 has, for example, an electrode width of 10 m, in order from the electrophoresis lane 3 on the mounting / connecting portion 6b side in a region overlapping with each electrophoresis lane 3. Electrode part PI consisting of electrophoretic electrode 6a group with electrode spacing 10 m (electrode pitch 20 μm) and electrode part consisting of electrophoretic electrode 6a group with electrode width 20 μm and electrode spacing 20 m (electrode pitch 40 μm) Electrophoresis electrode P3 and electrode part P3 consisting of group 6a with electrode width 30 μm and electrode spacing 30 m (electrode pitch 60 μm) A total of three different types of strip-shaped electrode parts P1, P2, P3 It has a configuration equipped.
[0119] また、上記電極部 P1 ·Ρ2間の泳動電極 6aは、例えば、電極幅 30 μ m、上記電極 部 P1側端部における電極間隔 10 μ m (電極ピッチ 20 μ m)、上記電極部 P2側端部 における電極間隔 20 μ m (電極ピッチ 40 μ m)となるように形成されており、上記電 極間隔は、上記泳動電極アレイ 6のアレイ幅(上記泳動電極アレイ 6における両側端 部の泳動電極 6a · 6a間の電極幅)に応じて直線的に変化するように形成されて!、る 。さらに、上記電極部 Ρ2·Ρ3間の泳動電極 6aは、電極幅 30 /ζ πι、上記電極部 Ρ2側 端部における電極間隔 20 μ m (電極ピッチ 40 μ m)、上記電極部 P3側端部におけ る電極間隔 30 m (電極ピッチ 60 m)となるように形成されており、上記電極間隔 は、上記泳動電極アレイ 6のアレイ幅(上記泳動電極アレイ 6における両側端部の泳 動電極 6a · 6a間の電極幅)に応じて直線的に変化するように形成されて!、る。  [0119] The migration electrode 6a between the electrode parts P1 and Ρ2 has, for example, an electrode width of 30 μm, an electrode interval of 10 μm at the electrode part P1 side end (electrode pitch 20 μm), and the electrode parts The electrode interval is 20 μm (electrode pitch 40 μm) at the P2 side end, and the electrode interval is determined by the array width of the migration electrode array 6 (both ends on both sides of the migration electrode array 6). The electrode is formed so as to change linearly according to the electrode width between the electrodes 6a and 6a. Further, the migration electrode 6a between the electrode parts Ρ2 and Ρ3 has an electrode width of 30 / ζ πι, an electrode interval of 20 μm (electrode pitch 40 μm) at the end of the electrode part Ρ2, and an end of the electrode part P3 side. The electrode spacing is 30 m (electrode pitch 60 m), and the electrode spacing is determined by the array width of the migration electrode array 6 (the swimming electrodes 6a at both ends of the migration electrode array 6). · It is formed to change linearly according to the electrode width between 6a!
[0120] 本実施の形態によれば、上記したように、泳動レーン 3毎に上記泳動電極アレイ 6 の電極形状 (あるいは電極幅、電極間隔)を変えることで、特定の複数の粒子を同時 に選別'同定することが可能となり、複数粒子の選別を効率よく行うことが可能になる 。また、複数の泳動レーン 3の泳動挙動の差異を一括で観察することができるといつ たメリットもある。 [0120] According to the present embodiment, as described above, by changing the electrode shape (or electrode width, electrode interval) of the migration electrode array 6 for each migration lane 3, a plurality of specific particles are simultaneously introduced. Sorting can be identified, and multiple particles can be sorted efficiently. In addition, when it is possible to observe the difference in migration behavior of multiple lanes 3 at once, There are also benefits.
[0121] 〔実施の形態 4〕  [Embodiment 4]
本実施の形態について主に図 8 (a)〜(e)に基づいて説明する。なお、本実施の形 態では、主に、前記実施の形態 1〜3との相違点について説明するものとし、前記実 施の形態 1〜3で用いた構成要素と同一の機能を有する構成要素には同一の番号 を付し、その説明を省略する。  The present embodiment will be described mainly based on FIGS. 8 (a) to (e). In this embodiment, differences from Embodiments 1 to 3 are mainly described, and components having the same functions as those used in Embodiments 1 to 3 are described. Are given the same number and their explanation is omitted.
[0122] 図 8 (a)は、本実施の形態に力かる誘電泳動パネル 10の概略構成を示す平面図で あり、図 8 (b)〜(e)は、図 8 (a)に示す誘電泳動パネル 10の各泳動レーン 3における 泳動電極 6aの形状を模式的に示す平面図である。なお、図 8 (a)においても、図示 の便宜上、上側基板は二点鎖線にて示す。  [0122] Fig. 8 (a) is a plan view showing a schematic configuration of the dielectrophoresis panel 10 that works according to the present embodiment, and Figs. 8 (b) to 8 (e) show the dielectric shown in Fig. 8 (a). 4 is a plan view schematically showing the shape of the electrophoresis electrode 6a in each electrophoresis lane 3 of the electrophoresis panel 10. FIG. In FIG. 8 (a), the upper substrate is indicated by a two-dot chain line for convenience of illustration.
[0123] 本実施の形態に力かる誘電泳動パネル 10は、図 8 (a)に示すように、前記実施の 形態 1に示す誘電泳動パネル 10において、並列に設けられた 4つの泳動レーン 3各 々で、泳動電極 6a (泳動電極アレイ 6)の形状が異なって!/、る。  [0123] As shown in Fig. 8 (a), the dielectrophoresis panel 10 according to the present embodiment is the same as the dielectrophoresis panel 10 according to the first embodiment. However, the shape of the electrophoresis electrode 6a (the electrophoresis electrode array 6) is different! /.
[0124] 具体的には、上記 4つの泳動レーン 3のうち、最も実装'接続部 6bに近い泳動レー ン 3Aでは、上記泳動電極アレイ 6は、図 8 (b)に示すように、配線幅 30 /z mの直線状 の泳動電極 6aがストライプ状に設けられた構造 (ストライプ型電極構造)を有して!/ヽる 。次いで実装'接続部 6bに近い泳動レーン 3Bでは、上記泳動電極アレイ 6は、図 8 ( c)に示すように、配線幅 45 mの直線状の泳動電極 6aがストライプ状に設けられた 構造 (ストライプ型電極構造)を有している。そして、上記泳動レーン 3Bの次に上記 実装 ·接続部 6bに近い泳動レーン 3Cでは、図 8 (d)に示すように、上記泳動電極ァ レイ 6は、配線幅 30 mの山切り型 (鋸状)の泳動電極 6aが等間隔で複数並設され た構造を有している。最後に、上記 4つの泳動レーン 3のうち最も上記実装'接続部 6 b力 遠い泳動レーン 3Dでは、図 8 (e)に示すように、上記泳動電極アレイ 6は、配線 幅 30 mの波型の泳動電極 6aが等間隔で複数並設された構造を有している。なお 、上記各泳動電極 6aの電極間隔(電極ピッチ)は、何れも 60 μ mである。  [0124] Specifically, among the four electrophoresis lanes 3 described above, in the electrophoresis lane 3A that is closest to the mounting portion 6b, the electrophoresis electrode array 6 has a wiring width as shown in Fig. 8 (b). It has a structure (stripe-type electrode structure) in which linear migration electrodes 6a of 30 / zm are provided in a stripe shape. Next, in the electrophoresis lane 3B close to the mounting / connecting portion 6b, the electrophoresis electrode array 6 has a structure in which linear migration electrodes 6a having a wiring width of 45 m are provided in a stripe shape as shown in FIG. Stripe-type electrode structure). Then, in the electrophoresis lane 3C next to the mounting lane 3B next to the mounting lane 3B, as shown in FIG. 8 (d), the electrophoresis electrode array 6 is a chopped type (saw saw) with a wiring width of 30 m. A plurality of electrophoretic electrodes 6a arranged in parallel at equal intervals. Finally, among the four migration lanes 3 described above, the mounting connection 6 b force is farthest in the far lane 3D, as shown in FIG. 8 (e), the migration electrode array 6 has a waveform with a wiring width of 30 m. The plurality of migration electrodes 6a are arranged in parallel at equal intervals. The electrode spacing (electrode pitch) of each of the migration electrodes 6a is 60 μm.
[0125] 誘電泳動挙動は、同一の試料 (泳動媒体)を使用し、同一の制御電圧で駆動する 場合でも、配線、すなわち、泳動電極 6a (泳動電極アレイ 6)の形状により、上記試料 (泳動媒体)中の電界の状態に応じて異なる。 [0126] 従って、本実施の形態のように泳動レーン 3毎に泳動電極 6a (泳動電極アレイ 6)の 電極形状、電極幅、電極間隔の少なくとも 1つを変更することにより、上記泳動媒体 中の特定の複数の粒子を同時に選別'同定することが可能となる。この結果、例えば 複数の粒子の選別を効率良く行うことができる。また、上記の構成によれば、複数の 泳動レーン 3における上記粒子の泳動挙動の差異を一括して観察することができると ヽつたメリットもある。 [0125] The dielectrophoresis behavior depends on the wiring, that is, the shape of the migration electrode 6a (migration electrode array 6), even when the same sample (migration medium) is used and driven with the same control voltage. Depending on the state of the electric field in the medium). Therefore, by changing at least one of the electrode shape, electrode width, and electrode interval of the electrophoresis electrode 6a (electrophoresis electrode array 6) for each electrophoresis lane 3 as in the present embodiment, It becomes possible to simultaneously sort and identify a plurality of specific particles. As a result, for example, a plurality of particles can be efficiently selected. In addition, according to the above configuration, there is a merit that the difference in the migration behavior of the particles in the plurality of migration lanes 3 can be collectively observed.
[0127] なお、本実施の形態では、上記したように、本実施の形態に力かる誘電泳動パネル 10として、泳動電極 6a (泳動電極アレイ 6)の形状、電極幅、電極間隔のうち、少なく とも一つの条件が泳動レーン 3毎に異なる誘電泳動パネルを例に挙げて説明した。 しかしながら、本実施の形態は、これに限定されるものではない。  [0127] In the present embodiment, as described above, as the dielectrophoresis panel 10 that works in the present embodiment, among the shape, electrode width, and electrode interval of the migration electrode 6a (migration electrode array 6), In both cases, a dielectrophoresis panel in which one condition is different for each lane 3 has been described as an example. However, the present embodiment is not limited to this.
[0128] 例えば、本実施の形態に力かる誘電泳動パネル 10は、前記図 6または図 7に示す ように、互いに隣り合う泳動レーン 3 · 3間に、所定の間隙部 22 (泳動レーン間領域) を有し、該間隙部 22と上記泳動レーン 3とで、泳動電極 6a (泳動電極アレイ 6)の形 状、電極幅、電極間隔のうち、少なくとも一つの条件が異なっている構成を有してい てもよい。  For example, as shown in FIG. 6 or FIG. 7, the dielectrophoresis panel 10 according to the present embodiment has a predetermined gap 22 (region between lanes) between the lanes 3 and 3 adjacent to each other. The gap portion 22 and the migration lane 3 have a configuration in which at least one of the shape, electrode width, and electrode spacing of the migration electrode 6a (migration electrode array 6) is different. May be.
[0129] 例えば、上記泳動レーン 3A.3B .3Cにおける泳動電極アレイ 6の電極形状がストラ イブ状ではな!/、場合、上記間隙部 22における泳動電極アレイ 6の電極形状をストライ プ構造にして配線長を短縮することにより、配線抵抗の増大を抑えることが可能とな る。  [0129] For example, if the electrode shape of the migration electrode array 6 in the migration lanes 3A.3B.3C is not a stripe shape! /, If the electrode shape of the migration electrode array 6 in the gap 22 is a strip structure, By shortening the wiring length, it is possible to suppress an increase in wiring resistance.
[0130] また、前記図 6に示すように、泳動レーン 3と間隙部 22とで、泳動電極 6aの配線幅 や配線間隔を異ならしめる等して泳動電極アレイ 6の電極形状を異ならしめた場合、 上記誘電泳動パネル 10における泳動電極アレイ 6 (配線)の低抵抗ィ匕を図ることがで きる。  In addition, as shown in FIG. 6, when the electrode shape of the migration electrode array 6 is made different between the migration lane 3 and the gap 22 by changing the wiring width and the wiring interval of the migration electrode 6a, etc. The low resistance of the migration electrode array 6 (wiring) in the dielectrophoresis panel 10 can be achieved.
[0131] 〔実施の形態 5〕  [Embodiment 5]
本実施の形態について主に図 9に基づいて説明する。なお、本実施の形態では、 主に、前記実施の形態 1〜4との相違点について説明するものとし、前記実施の形態 1〜4で用いた構成要素と同一の機能を有する構成要素には同一の番号を付し、そ の説明を省略する。 [0132] 図 9は、本実施の形態にカゝかる誘電泳動パネル 10の概略構成を示す平面図であ る。なお、図 9においても、図示の便宜上、上側基板は二点鎖線にて示す。 This embodiment will be described mainly based on FIG. In the present embodiment, the differences from the first to fourth embodiments will be mainly described, and the components having the same functions as the components used in the first to fourth embodiments will be described. The same number is assigned and its description is omitted. FIG. 9 is a plan view showing a schematic configuration of the dielectrophoresis panel 10 according to the present embodiment. In FIG. 9 as well, for convenience of illustration, the upper substrate is indicated by a two-dot chain line.
[0133] 本実施の形態に力かる誘電泳動パネル 10は、図 9に示すように、上記泳動電極ァ レイ 6の両端部に実装'接続部 6bを有し、これら実装'接続部 6b' 6bの各々に FPC1 7が各々実装されている構成を有している。これにより、本実施の形態にかかる誘電 泳動パネル 10は、上記泳動電極アレイ 6の両端部から、それぞれ駆動 AC電圧が入 力可能となっている。  As shown in FIG. 9, the dielectrophoresis panel 10 according to the present embodiment has mounting 'connection portions 6b at both ends of the electrophoresis electrode array 6, and these mounting'connection portions 6b' 6b Each has a configuration in which FPC17 is mounted. As a result, in the dielectrophoresis panel 10 according to the present exemplary embodiment, it is possible to input drive AC voltages from both ends of the electrophoretic electrode array 6.
[0134] 上記 FPC17は、各々、前記制御基板 50 (駆動制御部、制御装置)と接続される。こ れにより、本実施の形態に力かる上記誘電泳動パネル 10は、誘電泳動試験時に、 上記泳動電極アレイ 6の両端部の FPC17から、各泳動電極 6aに、それぞれ、同一 の駆動 AC電圧が、同時に入力される。  The FPCs 17 are each connected to the control board 50 (drive control unit, control device). As a result, the dielectrophoresis panel 10 according to the present embodiment has the same drive AC voltage from the FPC 17 at both ends of the electrophoretic electrode array 6 to each electrophoretic electrode 6a during the dielectrophoresis test. Input at the same time.
[0135] このように、本実施の形態によれば、泳動電極 6aの両端部から駆動電圧が入力さ れることで、泳動電極 6aの片側力ものみ駆動電圧が入力される場合と比較して、配 線抵抗および寄生容量による入力電圧信号の減衰や遅延の影響を、より一層抑制 することが可能である。  As described above, according to the present embodiment, the driving voltage is input from both ends of the migration electrode 6a, so that compared with the case where the driving voltage is also input only to one side force of the migration electrode 6a, It is possible to further suppress the effects of input voltage signal attenuation and delay due to wiring resistance and parasitic capacitance.
[0136] 〔実施の形態 6〕  [Embodiment 6]
本実施の形態について主に図 10および図 11に基づいて説明する。なお、本実施 の形態では、主に、前記実施の形態 1〜5との相違点について説明するものとし、前 記実施の形態 1〜5で用いた構成要素と同一の機能を有する構成要素には同一の 番号を付し、その説明を省略する。  The present embodiment will be described mainly based on FIG. 10 and FIG. In the present embodiment, differences from Embodiments 1 to 5 will be mainly described, and components having the same functions as those used in Embodiments 1 to 5 are described. Are given the same number and their explanation is omitted.
[0137] 本実施の形態では、上記誘電泳動パネル 10における各泳動レーン 3に、試料とし て、試料溶液 (泳動媒体)を注入する方法について主に説明する。  In the present embodiment, a method of injecting a sample solution (electrophoresis medium) as a sample into each electrophoresis lane 3 in the dielectrophoresis panel 10 will be mainly described.
[0138] 従来、誘電泳動パネルに試料を注入する方法としては、前記実施の形態 1にも示し たように、上側基板 2および下側基板 1の何れか一方に注入'排出孔 5 (開口部)を設 け、ポンプ等の加圧操作により上記注入'排出孔 5から試料を注入する方法が一般 的である。  Conventionally, as a method for injecting a sample into a dielectrophoresis panel, as shown in the first embodiment, either the upper substrate 2 or the lower substrate 1 is injected into the discharge hole 5 (opening portion). In general, the sample is injected from the injection / discharge hole 5 by pressurization such as a pump.
[0139] 例えば、特許文献 6には、誘電泳動用のシステムではないものの、流路チップのマ イク口チャンネル上部に注入口が形成されたマイクロチップにつ 、て記載されて 、る 。この構造を上記誘電泳動パネル 10に適用する場合、前記実施の形態 1に示したよ うに、下側基板 1と上側基板 2とを貼り合わせて誘電泳動パネル 10を形成する前段 階で、上記上側基板 2および下側基板 1の何れか一方における各泳動レーン 3の天 壁あるいは底壁となる部分に、注入口として、注入 ·排出孔 5を設ける必要がある。注 入'排出孔 5の形成方法としては、前記実施の形態 1に示したように、ドリルやブラスト 、エッチング等の方法がある。 [0139] For example, Patent Document 6 describes a microchip that is not a system for dielectrophoresis but has an inlet formed above the microphone channel of the channel chip. . When this structure is applied to the dielectrophoresis panel 10, as shown in the first embodiment, the upper substrate is formed in the previous stage in which the lower substrate 1 and the upper substrate 2 are bonded to form the dielectrophoresis panel 10. It is necessary to provide an injection / discharge hole 5 as an injection port in a portion that becomes the top wall or the bottom wall of each electrophoresis lane 3 in either one of 2 and the lower substrate 1. As a method for forming the injection / discharge hole 5, as shown in the first embodiment, there are methods such as drilling, blasting and etching.
[0140] ところで、前記実施の形態 1にも示したように、一般的に、誘電泳動パネル内面に は、上下両基板上に保護層を形成している。前記実施の形態 1では、上記下側基板 1および上側基板 2に、下面保護膜 7および上面保護膜 8のように、例えば泳動電極 アレイ 6をカバーする保護膜 (保護層)を設けている。また、上記下側基板 1および上 側基板 2には、泳動レーン 3に注入する試料に応じて親水'撥水処理等の表面処理 を施している。 By the way, as shown in the first embodiment, generally, protective layers are formed on the upper and lower substrates on the inner surface of the dielectrophoresis panel. In the first embodiment, the lower substrate 1 and the upper substrate 2 are provided with a protective film (protective layer) that covers, for example, the migration electrode array 6, like the lower protective film 7 and the upper protective film 8. Further, the lower substrate 1 and the upper substrate 2 are subjected to a surface treatment such as hydrophilicity / water repellent treatment according to the sample to be injected into the electrophoresis lane 3.
[0141] しカゝしながら、このように基板上に保護膜を形成した後で、該基板に注入口を形成 すると、開口処理に伴う表面処理材料や基板のダストが基板の表面処理部に付着す ることが懸念される。表面処理部に付着したダストは洗浄処理を行っても除去し難ぐ 誘電泳動パネルを形成した際に不純物として製品不良の原因となる。  [0141] However, after forming the protective film on the substrate in this manner and then forming the injection port in the substrate, the surface treatment material and the dust of the substrate accompanying the opening treatment are applied to the surface treatment portion of the substrate. There is concern about adhesion. Dust adhering to the surface treatment part is difficult to remove even if it is washed. When a dielectrophoresis panel is formed, it becomes a cause of product failure as an impurity.
[0142] また、注入口を作製した後に基板の表面処理を行う場合、表面処理剤が注入口に 浸入して開口部を汚染するおそれがある。開口部内で表面処理剤が固化すると開口 径誤差の原因となり、コネクタ等を挿入した際、接続不良やダストの発生等の問題を 生じさせる。  [0142] In addition, when the surface treatment of the substrate is performed after the injection port is manufactured, the surface treatment agent may enter the injection port and contaminate the opening. If the surface treatment agent solidifies in the opening, it will cause an error in the opening diameter, and will cause problems such as poor connection and generation of dust when a connector is inserted.
[0143] さらに、上記したように、誘電泳動パネル 10が複数の泳動レーン 3を有する場合、 従来のように基板上に注入口を形成する方法では、泳動レーンの数に応じて複数の 注入口を形成する必要があり、製造工程が煩雑になると共に、不良発生の確率も高 くなる。  [0143] Further, as described above, when the dielectrophoresis panel 10 has a plurality of electrophoresis lanes 3, in the conventional method of forming the inlets on the substrate, a plurality of inlets are provided according to the number of electrophoresis lanes. Therefore, the manufacturing process becomes complicated and the probability of occurrence of defects increases.
[0144] そこで本実施の形態では、試料の注入'排出孔 5 (開口部)を、下側基板 1および上 側基板 2の何れか一方の基板の表面ではなぐ上記誘電泳動パネル 10の側面 (パ ネル構造の断面)に設けている。  Therefore, in the present embodiment, the side surface of the dielectrophoresis panel 10 where the sample injection / discharge hole 5 (opening) is not the surface of either the lower substrate 1 or the upper substrate 2 ( It is provided in the cross section of the panel structure.
[0145] 図 10は、本実施の形態にカゝかる誘電泳動パネル 10の概略構成を示す平面図であ り、図 11は、図 10に示す誘電泳動パネル 10の E—E線矢視断面分解図である。な お、図 10においても、図示の便宜上、上側基板は二点鎖線にて示す。 FIG. 10 is a plan view showing a schematic configuration of the dielectrophoresis panel 10 according to the present embodiment. FIG. 11 is an exploded sectional view taken along line E-E of the dielectrophoresis panel 10 shown in FIG. In FIG. 10, for convenience of illustration, the upper substrate is indicated by a two-dot chain line.
[0146] 本実施の形態に力かる誘電泳動パネル 10は、図 10に示すように、試料の注入'排 出用の開口部として、前記実施の形態 1にかかる注入'排出孔 5に代えて、上記下側 基板 1と上側基板 2との間、つまり、具体的には、上記誘電泳動パネル 10の側面に、 泳動レーン壁 4により形成された注入 '排出口 31が設けられて 、る構成を有して!/、る 。本実施の形態では、上記泳動レーン 3の両端部に、それぞれ上記注入'排出口 31 が設けられている。 As shown in FIG. 10, the dielectrophoresis panel 10 according to the present embodiment replaces the injection 'discharge hole 5 according to the first embodiment as an opening for injection / discharge of the sample. A configuration in which an injection / discharge port 31 formed by the migration lane wall 4 is provided between the lower substrate 1 and the upper substrate 2, that is, specifically, on the side surface of the dielectrophoresis panel 10. Have! / In the present embodiment, the injection and discharge ports 31 are provided at both ends of the electrophoresis lane 3.
[0147] 上記注入 ·排出孔 5の口径は、幅約 2mm、高さ約 40 m (パネル空洞部のギヤッ プと等しい)である。なお、本実施の形態でも、前記実施の形態 1と同様、上記各泳 動レーン 3のレーン幅(隔壁 4a'4a間の間隔)は約 lcm、レーン長さは約 6cmであり、 泳動レーン壁 4の幅は約 2mmに設定する。また、泳動レーン 3の厚み(泳動レーン壁 4の高さ)が均一となるように、上記泳動レーン壁 4の形成に使用されるシール材には 、粒径 40 mのガラススぺーサを混入する。なお、上記以外の構成は、前記実施の 形態 1と同様にして形成する。  [0147] The inlet / outlet hole 5 has a diameter of about 2 mm and a height of about 40 m (equal to the gap of the panel cavity). Also in this embodiment, as in the first embodiment, the lane width (interval between partition walls 4a'4a) of each swimming lane 3 is about 1 cm and the lane length is about 6 cm. The width of 4 is set to about 2mm. In addition, a glass spacer having a particle diameter of 40 m is mixed in the sealing material used for forming the migration lane wall 4 so that the thickness of the migration lane 3 (height of the migration lane wall 4) is uniform. . Note that structures other than those described above are formed in the same manner as in the first embodiment.
[0148] すなわち、本実施の形態では、上記泳動レーン壁 4は、各泳動レーン 3· · ·を隔てる 隔壁 4a '4aを結ぶ枠体 (外縁部)の一部力 各泳動レーン 3において開口された開 口部 4b…を有しているとともに、注入'排出口 31として、上記開口部 4bから、上記泳 動レーン 3の延長方向に沿って上記誘電泳動パネル 10端部まで延設された、泳動 レーン壁延設部 4c (泳動レーン壁 4)からなる流路 (通路)が設けられた構成を有して いる。  That is, in the present embodiment, the migration lane wall 4 is opened in each migration lane 3 by a partial force of a frame body (outer edge) connecting the partition walls 4a'4a separating the migration lanes 3 ... In addition to the opening 4b as an injection and discharge port 31 extending from the opening 4b to the end of the dielectrophoresis panel 10 along the extending direction of the swimming lane 3. It has a configuration in which a flow path (passage) composed of the electrophoresis lane wall extension 4c (migration lane wall 4) is provided.
[0149] また、本実施の形態でも、上記下側基板 1および上側基板 2には、約 10cm X 10c mの透明基板を使用する。よって、上記注入'排出口 31の長さ(流路 (延設部)の長 さ)は、それぞれ約 2cmである。  Also in this embodiment, a transparent substrate of about 10 cm × 10 cm is used for the lower substrate 1 and the upper substrate 2. Therefore, the length of the inlet / outlet 31 (the length of the flow path (extended portion)) is about 2 cm.
[0150] また、図 11に示すように、上記下側基板 1および上側基板 2における上記注入'排 出口 31の内側端部 la ' 2a、すなわち、上記下側基板 1における上記上側基板 2との 対向面および上側基板 2における上記下側基板 1との対向面における、上記注入- 排出口 31形成部分の各端辺は、角部が面取りされた面取り処理が施されていること が望ましい。 Further, as shown in FIG. 11, the inner end la ′ 2a of the injection / exhaust port 31 in the lower substrate 1 and the upper substrate 2, that is, the upper substrate 2 in the lower substrate 1 Each end side of the injection / discharge port 31 forming portion on the opposing surface and the upper substrate 2 facing the lower substrate 1 is subjected to chamfering processing with chamfered corners. Is desirable.
[0151] 本実施の形態では、上記注入'排出口 31に、上記注入 '排出口 31の口径よりも外 径が大きな送液チューブ 13が接続 (押圧接触)されることにより、試料の注入'排出が 可能となる。  [0151] In the present embodiment, a liquid feeding tube 13 having an outer diameter larger than the diameter of the injection 'discharge port 31 is connected (pressed contact) to the injection' discharge port 31 to thereby inject the sample. Discharge is possible.
[0152] 従って、上記したように上記注入 '排出口 31の内側端部 la ' 2aが面取り処理されて いることで、注入'排出口 31と送液チューブ 13とを接続する際に、両者の接触面積 が大きくなり、両者の密着性が向上する。  [0152] Therefore, as described above, the inner end la '2a of the injection' discharge port 31 is chamfered, so that when the injection 'discharge port 31 and the liquid feeding tube 13 are connected, both of them are connected. The contact area is increased and the adhesion between the two is improved.
[0153] 上記送液チューブ 13は、上記したように、注入'排出口 31と送液チューブ 13との 密着性の観点から、例えばシリコン榭脂等の変形可能な材質 (可撓性を有する材料 、好適には弾性を有する材料)で形成されていることが望ましい。本実施の形態では 、上記送液チューブ 13として、例えば、外径約 3mm、内径約 lmmのシリコン榭脂か らなるチューブを使用するものとする力 本実施の形態はこれに限定されるものでは ない。  [0153] As described above, the liquid feeding tube 13 is made of a deformable material (for example, a flexible material) such as silicone resin from the viewpoint of the adhesion between the injection / discharge port 31 and the liquid feeding tube 13. It is desirable that the material is preferably made of an elastic material. In the present embodiment, as the liquid feeding tube 13, for example, a force that uses a tube made of silicone resin having an outer diameter of about 3 mm and an inner diameter of about 1 mm is not limited to this. Absent.
[0154] また、図 11に示すように、上記誘電泳動パネル 10において、上記下面保護膜 7お よび上面保護膜 8は、上記注入'排出口 31の端部(つまり、上記面取り処理が施され た上記下側基板 1および上側基板 2における内側端部 la ' 2a)よりも基板内側に形 成されていること、つまり、上記注入'排出口 31端部には上記下面保護膜 7および上 面保護膜 8が形成されて 、な 、ことが望ま 、。  In addition, as shown in FIG. 11, in the dielectrophoresis panel 10, the lower surface protective film 7 and the upper surface protective film 8 are end portions of the injection / discharge ports 31 (that is, the chamfering process is performed). In addition, the lower substrate 1 and the upper substrate 2 are formed on the inner side of the inner end portion la ′ 2a), that is, the lower end protective film 7 and the upper surface are formed at the end portion of the injection / discharge port 31. It is desirable that the protective film 8 be formed.
[0155] このように上記注入'排出口 31端部には上記下面保護膜 7および上面保護膜 8が 形成されていない構造とすることで、上記注入'排出口 31の口径が大きくなり、上記 注入 '排出口 31と送液チューブ 13との密着性がより向上する。また、上記の構成によ れば、面取り処理の際に、上記下面保護膜 7および上面保護膜 8が不要な塵となり 泳動レーン 3内に残留することを防ぐ効果もある。  [0155] As described above, by adopting a structure in which the lower surface protective film 7 and the upper surface protective film 8 are not formed at the end portion of the injection and discharge port 31, the diameter of the injection and discharge port 31 is increased. Adhesion between the inlet and outlet 31 and the liquid feeding tube 13 is further improved. Further, according to the above configuration, there is an effect of preventing the lower surface protective film 7 and the upper surface protective film 8 from becoming unnecessary dust and remaining in the electrophoresis lane 3 during the chamfering process.
[0156] なお、本実施の形態では、上記注入'排出口 31を介して各泳動レーン 3内に試料( 試料溶液)を注入する方法として、上記したように上記注入'排出口 31に送液チュー ブ 13を接続することで上記注入'排出口 31に試料溶液を送液する方法について説 明したが、本実施の形態にカゝかる試料の注入方法 (試料溶液の送液方法)は、上記 の方法に限定されるものではな 、。 [0157] また、本実施の形態では、上記注入'排出口 31に、上記注入'排出口 31の口径よ りも外径が大きな送液チューブ 13が接続 (押圧接触)されることにより、上記注入'排 出口 31に試料溶液を送液する方法について説明したが、本実施の形態はこれに限 定されるものではなぐ上記注入'排出口 31に嵌合する送液チューブ 13 (例えば上 記注入 ·排出口 31の口径よりも小さ 、外径を有する送液チューブ 13)を用 、て上記 送液を行ってもよい。 In the present embodiment, as a method for injecting a sample (sample solution) into each electrophoresis lane 3 via the injection / discharge port 31, the liquid is supplied to the injection / discharge port 31 as described above. Although the method of feeding the sample solution to the injection / discharge port 31 by connecting the tube 13 has been described, the sample injection method (sample solution feeding method) according to the present embodiment is as follows. It is not limited to the above method. In the present embodiment, the liquid feeding tube 13 having an outer diameter larger than the diameter of the injection 'discharge port 31 is connected (pressed contact) to the injection' discharge port 31. Although the method of feeding the sample solution to the injection / discharge port 31 has been described, the present embodiment is not limited to this, and the liquid supply tube 13 fitted to the injection / discharge port 31 (for example, the above-described one) The liquid feeding may be performed using a liquid feeding tube 13) having an outer diameter smaller than the diameter of the inlet / outlet port 31.
[0158] また、上記送液チューブ 13は、上記したように上記誘電泳動パネル 10とは別体で 設けられ、試料 (試料溶液)注入時にのみ上記誘電泳動パネル 10に接続される構成 としてもよく、上記誘電泳動パネル 10に予め固定された構成を有していてもよい。  [0158] Further, as described above, the liquid feeding tube 13 may be provided separately from the dielectrophoresis panel 10 and connected to the dielectrophoresis panel 10 only when a sample (sample solution) is injected. The dielectrophoresis panel 10 may have a configuration fixed in advance.
[0159] すなわち、本実施の形態に力かる上記誘電泳動パネル 10は、該誘電泳動パネル 1 0に試料を送液 (注入)する注入手段として、上記送液チューブ 13を備えて 、る構成 を有していてもよいし、上記誘電泳動装置 70あるいは誘電泳動システム 85が、上記 誘電泳動パネル 10に試料を送液 (注入)する注入手段(注入装置)として、上記送液 チューブ 13、あるいは、上記送液チューブ 13を備えた試料注入装置を備えている構 成を有していても構わない。  That is, the dielectrophoresis panel 10 according to the present embodiment includes the liquid feeding tube 13 as injection means for feeding (injecting) a sample to the dielectrophoresis panel 10. The dielectrophoresis apparatus 70 or the dielectrophoresis system 85 may serve as an injection means (injection apparatus) for supplying (injecting) a sample to the dielectrophoresis panel 10, and the liquid supply tube 13 or You may have the structure provided with the sample injection apparatus provided with the said liquid feeding tube 13. FIG.
[0160] 本実施の形態によれば、上記したように試料を泳動レーン 3内外に送液するための 開口部(注入'排出口 31)を上記誘電泳動パネル 10側面に設けることにより、上記泳 動レーン 3内への不純物の混入を防止し、送液系における不良発生を抑制すること が可能である。  [0160] According to the present embodiment, as described above, the opening (injection / discharge port 31) for feeding the sample into and out of the electrophoresis lane 3 is provided on the side surface of the dielectrophoresis panel 10, thereby allowing the swimming. It is possible to prevent impurities from entering the dynamic lane 3 and suppress the occurrence of defects in the liquid feeding system.
[0161] また、本実施の形態によれば、上記泳動レーン壁 4のパターンにより上記誘電泳動 パネル 10側面に注入 '排出口 31が必然的に形成されることから、注入'排出口 31を 形成するために別途材料や工程を必要としない。従って、上記の構成によれば、ドリ ル等で、上記誘電泳動パネル 10上 (例えば上側基板 2上)に、開口部(注入'排出孔 5)を設ける方法と比較して上記誘電泳動パネル 10の不良発生率を相対的に抑制す ることが可能である。なお、この抑制効果は泳動レーン 3の数が多いほど顕著である。 よって、上記の構成によれば、上記誘電泳動パネル 10にドリル等で開口部(注入'排 出孔 (注入'排出口))を設ける場合と比較して、より効率的に上記誘電泳動パネル 1 0を形成することができるとともに、使用上の観点からもより好ましい。 [0162] 〔実施の形態 7〕 [0161] Also, according to the present embodiment, the injection 'discharge port 31 is inevitably formed on the side surface of the dielectrophoresis panel 10 by the pattern of the migration lane wall 4, so that the injection' discharge port 31 is formed. In order to do so, no additional materials or processes are required. Therefore, according to the above configuration, the dielectrophoresis panel 10 is compared with a method of providing an opening (injection 'discharge hole 5) on the dielectrophoresis panel 10 (for example, on the upper substrate 2) by a drill or the like. It is possible to relatively suppress the occurrence rate of defects. This suppression effect becomes more prominent as the number of migration lanes 3 increases. Therefore, according to the above configuration, the dielectrophoresis panel 1 is more efficiently compared to the case where the dielectrophoresis panel 10 is provided with an opening (injection / exhaust hole (injection / exhaust port)) with a drill or the like. 0 can be formed and is more preferable from the viewpoint of use. [Embodiment 7]
本実施の形態について主に図 12および図 13に基づいて説明する。なお、本実施 の形態では、主に、前記実施の形態 1〜6との相違点について説明するものとし、前 記実施の形態 1〜6で用いた構成要素と同一の機能を有する構成要素には同一の 番号を付し、その説明を省略する。  The present embodiment will be described mainly with reference to FIGS. In the present embodiment, differences from Embodiments 1 to 6 will be mainly described, and components having the same functions as those used in Embodiments 1 to 6 are described. Are given the same number and their explanation is omitted.
[0163] 本実施の形態では、上記誘電泳動パネル 10における上記注入'排出口 31〖こ、試 料として、試料溶液 (泳動媒体)を送液するための他の方法につ!、て主に説明する。  [0163] In this embodiment, the injection and discharge port 31 in the dielectrophoresis panel 10 is used as a sample, and other methods for feeding a sample solution (electrophoresis medium) are mainly used. explain.
[0164] 図 12は、本実施の形態にカゝかる誘電泳動パネル 10の概略構成を示す平面図であ り、図 13は、図 12に示す誘電泳動パネル 10の F—F線矢視断面図である。なお、図 12においても、図示の便宜上、上側基板は二点鎖線にて示す。  FIG. 12 is a plan view showing a schematic configuration of the dielectrophoresis panel 10 according to the present embodiment, and FIG. 13 is a cross-sectional view of the dielectrophoresis panel 10 shown in FIG. FIG. Also in FIG. 12, for convenience of illustration, the upper substrate is indicated by a two-dot chain line.
[0165] 本実施の形態に力かる誘電泳動パネル 10は、図 12に示すように、前記実施の形 態 6同様、各泳動レーン 3 · · ·を隔てる隔壁 4a · 4aを結ぶ泳動レーン壁 4の外縁部(枠 体)の一部が、各泳動レーン 3の両端部(各泳動レーン 3の長手方向両端部)におい て開口された開口部 4b…を有しているとともに、注入'排出口 31として、上記開口部 4bから、上記泳動レーン 3の延長方向(各泳動レーン 3の長手方向)に沿って上記誘 電泳動パネル 10端部(下側基板 1の端部)まで延設された、泳動レーン壁延設部 4c (泳動レーン壁 4)からなる流路 (通路)が設けられた構成を有して ヽる。  [0165] As shown in Fig. 12, the dielectrophoresis panel 10 according to the present embodiment is similar to the embodiment 6 in that the lane walls 4a and 4a connecting the lanes 4a and 4a separating the lanes 3 and 4 are separated. A part of the outer edge portion (frame body) of each has an opening 4b opened at both ends of each electrophoresis lane 3 (both ends in the longitudinal direction of each electrophoresis lane 3). 31 was extended from the opening 4b to the end of the electrophoresis panel 10 (end of the lower substrate 1) along the extending direction of the electrophoresis lane 3 (longitudinal direction of each electrophoresis lane 3). In addition, it has a configuration in which a flow path (passage) composed of the migration lane wall extending portion 4c (migration lane wall 4) is provided.
[0166] これにより、本実施の形態に力かる誘電泳動パネル 10もまた、前記実施の形態 6同 様、泳動レーン 3の両端部に、上記誘電泳動パネル 10の側面に面して開口された注 入'排出口 31 (泳動レーン壁延設部 4c)が設けられて 、る構成を有して 、る。  Accordingly, the dielectrophoresis panel 10 that is effective in the present embodiment is also opened at both ends of the electrophoresis lane 3 so as to face the side surfaces of the dielectrophoresis panel 10 as in the sixth embodiment. The inlet / outlet port 31 (electrophoresis lane wall extending portion 4c) is provided and has a structure.
[0167] 本実施の形態でも、前記実施の形態 6同様、上記各泳動レーン 3のレーン幅(隔壁 4a'4a間の間隔)は約 lcm、レーン長さは約 6cm、泳動レーン壁 4の幅は約 2mmと し、上記注入 ·排出孔 5の口径は、幅約 2mm、高さ約 40 m (パネル空洞部のギヤッ プと等しい)とする。また、上記注入'排出口 31の長さ(各泳動レーン壁延設部 4cの 長さ)は、それぞれ約 2cmとする。  [0167] Also in this embodiment, the lane width (interval between the partition walls 4a'4a) of each electrophoresis lane 3 is about 1 cm, the lane length is about 6 cm, and the width of the electrophoresis lane wall 4 as in Embodiment 6 above. The inlet / outlet hole 5 has a diameter of about 2 mm and a height of about 40 m (equal to the gap of the panel cavity). The length of the injection / discharge port 31 (length of each lane wall extending portion 4c) is about 2 cm.
[0168] 但し、本実施の形態に力かる誘電泳動パネル 10は、図 12および図 13に示すよう に、上記各泳動レーン 3の延設方向における上記上側基板 2の基板長が、上記各泳 動レーン 3の延設方向における上記下側基板 1の基板長よりも短くなるように形成さ れている。このため、本実施の形態では、上記注入'排出孔 5の側壁、つまり、上記泳 動レーン壁延設部 4c (泳動レーン壁 4)が、上記上側基板 2端部より外方に突出して 設けられた構成を有している。本実施の形態では、上記各泳動レーン 3の延設方向 における上記上側基板 2の基板長が、上記各泳動レーン 3の延設方向における上記 下側基板 1の基板長よりも約 4mm短くなるように形成する。すなわち、本実施の形態 では、上記下側基板 1が、上記各泳動レーン 3の延設方向各端部において、上記上 側基板 2よりも各々約 2mmずつ突出している構成とする。 However, as shown in FIGS. 12 and 13, in the dielectrophoresis panel 10 which is useful in the present embodiment, the substrate length of the upper substrate 2 in the extending direction of the electrophoresis lanes 3 It is formed to be shorter than the substrate length of the lower substrate 1 in the extending direction of the dynamic lane 3. It is. For this reason, in the present embodiment, the side wall of the injection / discharge hole 5, that is, the swimming lane wall extending portion 4c (the migration lane wall 4) is provided so as to protrude outward from the end portion of the upper substrate 2. It has the structure which was made. In this embodiment, the substrate length of the upper substrate 2 in the extending direction of each migration lane 3 is about 4 mm shorter than the substrate length of the lower substrate 1 in the extending direction of each migration lane 3. To form. In other words, in the present embodiment, the lower substrate 1 protrudes from the upper substrate 2 by about 2 mm at each end in the extending direction of the electrophoresis lanes 3.
[0169] また、本実施の形態に力かる誘電泳動パネル 10は、図 13に示すように、上記下側 基板 1および上側基板 2における上記注入 '排出口 31の内側端部 la · 2aのうち上記 内側端部 2aのみ力 角部が面取りされた面取り処理が施されている構成を有してい る。すなわち、本実施の形態に力かる誘電泳動パネル 10は、上記下側基板 1におけ る上記上側基板 2との対向面および上側基板 2における上記下側基板 1との対向面 のうち、上記上側基板 2における下側基板 1との対向面のみ力 上記注入'排出口 3 1形成部分の端辺に面取り処理が施されて ヽる構成を有して ヽる。  In addition, as shown in FIG. 13, the dielectrophoresis panel 10 that is useful in the present embodiment includes the inner end portion la · 2a of the injection inlet / outlet 31 in the lower substrate 1 and the upper substrate 2. Only the inner end portion 2a has a configuration in which a chamfering process in which a force corner portion is chamfered is performed. That is, the dielectrophoresis panel 10 according to the present embodiment includes the upper substrate out of the opposed surface of the lower substrate 1 facing the upper substrate 2 and the opposed surface of the upper substrate 2 facing the lower substrate 1. Only the surface of the substrate 2 facing the lower substrate 1 has a structure in which chamfering treatment is performed on the end of the injection / discharge port 31 forming portion.
[0170] さらに、本実施の形態に力かる誘電泳動パネル 10は、上記注入'排出口 31に、送 液コネクタ 15が接続されて 、る構成を有して 、る。  [0170] Furthermore, the dielectrophoresis panel 10 according to the present embodiment has a configuration in which a liquid delivery connector 15 is connected to the injection / discharge port 31.
[0171] 上記送液コネクタ 15は、前記送液チューブ 13同様、シリコン榭脂等の変形可能な 材質により形成されている。上記送液コネクタ 15は、図 13に示すように、上記誘電泳 動パネル 10端部、すなわち、上記下側基板 1および上側基板 2の端部を挟持するこ とにより、上記注入'排出口 31と接続される。  [0171] Like the liquid feeding tube 13, the liquid feeding connector 15 is formed of a deformable material such as silicone resin. As shown in FIG. 13, the liquid feeding connector 15 sandwiches the ends of the dielectric swimming panel 10, that is, the ends of the lower substrate 1 and the upper substrate 2, so that the injection / discharge port 31 Connected.
[0172] また、上記送液コネクタ 15は、一方の側面に、上記注入'排出口 31 (泳動レーン壁 延設部 4c)が挿嵌される複数のコの字状の開口部 15aを有している。各泳動レーン 3 は、上記開口部 15aに上記注入'排出口 31 (泳動レーン壁延設部 4c)が挿嵌される ことで、上記送液コネクタ 15内部で構造的に分離されて ヽる。  [0172] Further, the liquid feeding connector 15 has a plurality of U-shaped openings 15a into which the injection / discharge port 31 (electrophoresis lane wall extending portion 4c) is inserted and fitted on one side surface. ing. Each electrophoresis lane 3 is structurally separated inside the liquid delivery connector 15 by inserting the injection / discharge port 31 (electrophoresis lane wall extending portion 4c) into the opening 15a.
[0173] また、上記送液コネクタ 15の天壁(上壁)には、上記注入'排出口 31に対応して、 上記開口部 15aに連通する注入'排出孔 16 (注入'排出部、開口部)が設けられてい る。  In addition, the top wall (upper wall) of the liquid delivery connector 15 corresponds to the injection 'discharge port 31 and corresponds to the injection portion 31a. The injection' discharge hole 16 (injection 'discharge portion, opening) Part).
[0174] 本実施の形態において、上記注入'排出口 31の内径は約 2mmに設定されている 。上記送液コネクタ 15は、上記注入'排出口 31における下側基板 1端面 lbが上記開 口部 15aの内壁に当接した状態で、上記注入 ·排出孔 16が、平面視で上記下側基 板 1並びに該下側基板 1上の泳動レーン壁延設部 4cが露出している部分 (すなわち 上記上側基板 2が設けられて 、な 、部分)の上方に位置するように形成されて!、る。 In the present embodiment, the inner diameter of the injection / discharge port 31 is set to about 2 mm. . The liquid feeding connector 15 is configured so that the lower surface 1 of the lower substrate 1 at the inlet / outlet 31 is in contact with the inner wall of the opening 15a and the inlet / outlet 16 is in the plan view in the lower base. It is formed so as to be positioned above the portion where the plate 1 and the migration lane wall extending portion 4c on the lower substrate 1 are exposed (that is, the portion where the upper substrate 2 is provided). RU
[0175] これにより、本実施の形態によれば、上記注入 ·排出孔 16に試料を注入することで 、上記注入'排出口 31を介して各泳動レーン 3内に試料を注入 (送液)することがで きるようになつている。 Thus, according to the present embodiment, by injecting the sample into the injection / discharge hole 16, the sample is injected into each electrophoresis lane 3 via the injection / discharge port 31 (liquid feeding). I am able to do it.
[0176] 上記送液コネクタ 15は、泳動レーン 3の数に応じて適宜設計される。また、上記送 液コネクタ 15は、上記誘電泳動パネル 10に予め固定されていてもよぐ上記誘電泳 動パネル 10に着脱可能に設けられていてもよい。後者の場合、上記送液コネクタ 15 は、同一設計の誘電泳動パネル 10に対しては使い回しが可能である。  [0176] The liquid feeding connector 15 is appropriately designed according to the number of the electrophoresis lanes 3. The liquid feeding connector 15 may be detachably provided on the dielectric swimming panel 10 which may be fixed to the dielectrophoresis panel 10 in advance. In the latter case, the liquid feeding connector 15 can be reused for the dielectrophoresis panel 10 of the same design.
[0177] すなわち、本実施の形態でも、上記誘電泳動パネル 10は、該誘電泳動パネル 10 に試料を送液 (注入)する注入手段として、上記送液コネクタ 15を備えて 、る構成を 有していてもよいし、上記誘電泳動装置 70あるいは誘電泳動システム 85が、上記誘 電泳動パネル 10に試料を送液 (注入)する注入手段(注入装置)として、上記送液コ ネクタ 15、あるいは、上記送液コネクタ 15を備えた試料注入装置を備えている構成 を有していても構わない。  That is, also in this embodiment, the dielectrophoresis panel 10 includes the liquid feeding connector 15 as injection means for feeding (injecting) a sample to the dielectrophoresis panel 10. The dielectrophoresis device 70 or the dielectrophoresis system 85 may serve as an injecting means (injection device) for injecting (injecting) a sample into the electrophoretic panel 10 as the liquid feeding connector 15 or You may have the structure provided with the sample injection device provided with the said liquid feeding connector 15. FIG.
[0178] 本実施の形態においても、上記したように試料を泳動レーン 3内外に送液するため の開口部(注入'排出口 31)を上記誘電泳動パネル 10側面に設けることにより、上記 泳動レーン 3内への不純物の混入を防止し、送液系における不良発生を抑制するこ とが可能である。  Also in the present embodiment, as described above, an opening (injection / discharge port 31) for feeding the sample into and out of the electrophoresis lane 3 is provided on the side surface of the dielectrophoresis panel 10, so that the electrophoresis lane It is possible to prevent impurities from entering 3 and suppress the occurrence of defects in the liquid feeding system.
[0179] また、本実施の形態においても泳動レーン壁 4のパターンにより上記誘電泳動パネ ル 10側面に注入'排出口 31が必然的に形成されることから、注入'排出口 31を形成 するために別途材料や工程を必要としない。従って、上記の構成によれば、ドリル等 で、上記誘電泳動パネル 10上 (例えば上側基板 2上)に、開口部(注入'排出孔 5)を 設ける方法と比較して上記誘電泳動パネル 10の不良発生率を相対的に抑制するこ とが可能である。なお、この抑制効果は泳動レーン 3の数が多いほど顕著である。よ つて、上記の構成によれば、上記誘電泳動パネル 10にドリル等で注入'排出ロを設 ける場合と比較して、より効率的に上記誘電泳動パネル 10を形成することができると ともに、使用上の観点からもより好ましい。 Also in this embodiment, since the injection / discharge port 31 is inevitably formed on the side surface of the dielectrophoresis panel 10 due to the pattern of the electrophoresis lane wall 4, the injection / discharge port 31 is formed. No additional materials or processes are required. Therefore, according to the above configuration, the dielectrophoresis panel 10 is compared with a method of providing an opening (injection 'discharge hole 5) on the dielectrophoresis panel 10 (for example, on the upper substrate 2) with a drill or the like. It is possible to relatively reduce the defect occurrence rate. This suppression effect becomes more prominent as the number of migration lanes 3 increases. Therefore, according to the above configuration, the dielectrophoresis panel 10 is provided with an injection / discharge rod with a drill or the like. The dielectrophoresis panel 10 can be formed more efficiently as compared with the case where it is opened, and it is more preferable from the viewpoint of use.
[0180] なお、本実施の形態では、上記下側基板 1が、上記各泳動レーン 3の延設方向各 端部において、上記上側基板 2よりも各々約 2mmずつ突出している構成とし、上記 注入'排出口 31の内径を約 2mmとすることで、図 13に示すように、上記下側基板 1 端面 lbが上記開口部 15aの内壁に当接した状態において、上記注入'排出孔 16縁 部が上記上側基板 2端部並びに下側基板 1端部に位置する構成とする場合を例に 挙げて説明した。し力しながら、本実施の形態はこれに限定されるものではなぐ上 記下側基板 1端面 lbが上記開口部 15aの内壁に当接した状態において、上記注入 •排出孔 16縁部が、何れも上記下側基板 1の露出領域内に位置するように形成され ていれば、上記注入'排出孔 16の内径が上記下側基板 1の突出長さと同じである必 要はなぐ上記注入'排出孔 16の内径が上記下側基板 1の突出長さよりも小さくなる ように形成されて ヽても構わな 、。  [0180] In the present embodiment, the lower substrate 1 is configured to protrude by about 2 mm from the upper substrate 2 at each end in the extending direction of the electrophoresis lanes 3, and the implantation is performed. 'By setting the inner diameter of the discharge port 31 to about 2 mm, the lower substrate 1 end surface lb is in contact with the inner wall of the opening 15a as shown in FIG. An example has been described in which the configuration is located at the two end portions of the upper substrate and the one end portion of the lower substrate. However, this embodiment is not limited to this, and the lower substrate 1 end face lb is in contact with the inner wall of the opening 15a, and the edge of the injection / discharge hole 16 is If both are formed so as to be located in the exposed region of the lower substrate 1, the inner diameter of the injection hole 16 need not be the same as the protruding length of the lower substrate 1. The inner diameter of the discharge hole 16 may be formed so as to be smaller than the protruding length of the lower substrate 1.
[0181] また、上記注入'排出孔 16の内径並びに上記下側基板 1の突出長さも上記長さに 限定されるものではなぐ試料の注入'排出を円滑に行うことができるように適宜設定 が可能である。  [0181] In addition, the inner diameter of the injection and discharge holes 16 and the protruding length of the lower substrate 1 are not limited to the above lengths, and can be appropriately set so that the sample can be smoothly injected and discharged. Is possible.
[0182] なお、上記誘電泳動パネル 10側面 (泳動アレイ断面)に注入'排出口を有する誘電 泳動パネル 10における試料の注入 (送液)方法としては、上記方法に限定されるもの ではな!/ヽ。上記方法は上記誘電泳動パネル 10における試料の注入 (送液)方法の 一例であり、上記誘電泳動パネル 10の使用方法、試料 (泳動媒体)の種類に応じて 様々な形態の注入 (送液)方法が適応可能である。  [0182] Note that the method of injecting (feeding) the sample in the dielectrophoresis panel 10 having the injection 'discharge port on the side surface (electrophoresis array cross section) of the dielectrophoresis panel 10 is not limited to the above method! / ヽ. The above method is an example of the method of injecting (feeding) the sample in the dielectrophoresis panel 10. Depending on the method of use of the dielectrophoresis panel 10 and the type of sample (electrophoresis medium), various forms of injection (liquid feeding) The method is adaptable.
[0183] 上記した各実施形態では、誘電泳動パネル 10力 泳動レーン 3の片面(つまり、 1 面のみ)に電極例 (泳動電極アレイ 6)が配置された構成を有している場合を例に挙 げて説明した。  [0183] In each of the embodiments described above, an example in which the electrode example (electrophoresis electrode array 6) is arranged on one side (that is, only one side) of the dielectrophoresis panel 10 force electrophoresis lane 3 is taken as an example. I explained.
[0184] 以下の実施形態では、泳動レーン 3における対向する 2面に電極例(泳動電極ァレ ィ)が配置された構成を有している場合を例に挙げて説明する。  In the following embodiment, a case will be described as an example where a configuration in which electrode examples (electrophoretic electrode arrays) are arranged on two opposing surfaces in the electrophoresis lane 3 is described.
[0185] 〔実施の形態 8〕 [Embodiment 8]
本実施の形態について主に図 14〜図 18 (a) · (b)に基づいて説明する。なお、本 実施の形態では、主に、前記実施の形態 1〜7との相違点について説明するものとし 、前記実施の形態 1〜7で用いた構成要素と同一の機能を有する構成要素には同一 の番号を付し、その説明を省略する。 The present embodiment will be described mainly based on FIGS. 14 to 18 (a) and (b). Book In the embodiment, the difference from the first to seventh embodiments will be mainly described, and the same reference numerals are given to the components having the same functions as those used in the first to seventh embodiments. The description is omitted.
[0186] 図 14は、本実施の形態に力かる誘電泳動パネル 10を上側基板側から見た平面図 である。図 15は、図 14に示す誘電泳動パネル 10の G— G線矢視断面図であり、図 1 6は、図 14に示す誘電泳動パネルの J J線矢視断面図(すなわち、泳動レーン 3の 長手方向断面図)である。また、図 17は、図 14に示す誘電泳動パネルを備えた本実 施の形態に力かる誘電泳動システムの概略構成図である。なお、図 14においても、 図示の便宜上、上記上側基板は二点鎖線にて示す。  FIG. 14 is a plan view of the dielectrophoresis panel 10 that works with the present embodiment as viewed from the upper substrate side. FIG. 15 is a cross-sectional view of the dielectrophoresis panel 10 shown in FIG. 14 taken along the line GG, and FIG. 16 is a cross-sectional view of the dielectrophoresis panel shown in FIG. (Longitudinal sectional view). FIG. 17 is a schematic configuration diagram of a dielectrophoresis system that works on the present embodiment including the dielectrophoresis panel shown in FIG. Also in FIG. 14, for convenience of illustration, the upper substrate is indicated by a two-dot chain line.
[0187] 図 14〜図 16に示すように、本実施の形態に力かる誘電泳動パネル 10 (誘電泳動 チップ、泳動アレイ)もまた、前記実施の形態 1〜7と同様に、下側基板 1 (第 1基板)と 上側基板 2 (第 2基板)とが、泳動空間を有する泳動レーン 3 (流路、セル)を介して対 向配置されているとともに、図 14および図 15に示すように、流路として、複数の泳動 レーン 3を備えた構成を有して 、る。  As shown in FIG. 14 to FIG. 16, the dielectrophoresis panel 10 (dielectrophoresis chip, electrophoresis array) that works with the present embodiment is also similar to the first to seventh embodiments. (First substrate) and upper substrate 2 (second substrate) are arranged opposite to each other via migration lane 3 (flow path, cell) having a migration space, as shown in FIGS. 14 and 15. The flow path has a configuration including a plurality of electrophoresis lanes 3.
[0188] また、本実施の形態でも、上記下側基板 1および上側基板 2には、好適には、ガラ ス、石英、プラスチック等の透明基板 (透明絶縁体基板)を用いることができる。  [0188] Also in the present embodiment, as the lower substrate 1 and the upper substrate 2, a transparent substrate (transparent insulator substrate) such as glass, quartz, or plastic can be preferably used.
[0189] 本実施の形態において、上記泳動レーン 3は、上記下側基板 1と上側基板 2とを、 両基板間に、各泳動レーン 3を構成する所定の空間 (泳動空間)を設けた状態で、シ ール材 (接着剤)により接着固定することにより形成されている。すなわち、本実施の 形態に力かる上記誘電泳動パネル 10は、上記下側基板 1と上側基板 2とが、上記シ ール材からなる間隔保持層 43 (シール材層)を介して対向配置された構成を有して いる。  [0189] In the present embodiment, the electrophoresis lane 3 is a state in which the lower substrate 1 and the upper substrate 2 are provided with a predetermined space (electrophoresis space) constituting each electrophoresis lane 3 between the two substrates. It is formed by bonding and fixing with a seal material (adhesive). That is, in the dielectrophoresis panel 10 according to the present embodiment, the lower substrate 1 and the upper substrate 2 are arranged to face each other via the spacing layer 43 (seal material layer) made of the seal material. Have the same structure.
[0190] 上記泳動レーン 3は、図 15に示すように、上記一対の基板のうち一方の基板、本実 施の形態では、上記下側基板 1上における上側基板 2との対向面に、仕切り壁(間仕 切)として、各泳動レーン 3· ··を隔てる隔壁 43a (泳動レーン壁) 1S 各泳動レーン 3の 形成領域に沿ってパターン形成されて ヽる。  [0190] As shown in FIG. 15, the electrophoresis lane 3 is divided into one of the pair of substrates, in the present embodiment, on a surface facing the upper substrate 2 on the lower substrate 1. As walls (intercutting), partition walls 43a (electrophoresis lane walls) separating the electrophoresis lanes 3 ... 1S are patterned along the formation area of each electrophoresis lane 3.
[0191] 本実施の形態では、上記間隔保持層 43が上記仕切り壁としての役割を果たしてい る。すなわち、本実施の形態において、上記隔壁 43aは、上記間隔保持層 43、より 厳密には、上記間隔保持層 43を構成するシール材により形成されている。 [0191] In the present embodiment, the spacing layer 43 serves as the partition wall. That is, in the present embodiment, the partition wall 43a includes the spacing layer 43 and the like. Strictly speaking, it is formed of a sealing material that constitutes the spacing layer 43.
[0192] また、上記下側基板 1における上側基板 2との対向面上には、泳動電極アレイ 41A  [0192] Further, on the surface of the lower substrate 1 facing the upper substrate 2, the electrophoresis electrode array 41A is provided.
(泳動電極配線、第 1の電極列)として、複数の電極 (泳動電極;以下、「第 1電極」と 記す) 41からなる電極列 (第 1電極列、櫛型電極)が設けられている。  (Electrophoresis electrode wiring, first electrode array) is provided with an electrode array (first electrode array, comb-shaped electrode) composed of a plurality of electrodes (electrophoresis electrode; hereinafter referred to as “first electrode”) 41 .
[0193] また、上記上側基板 2における下側基板 1との対向面上には、泳動電極アレイ 42A  [0193] Further, on the surface of the upper substrate 2 facing the lower substrate 1, there is a migration electrode array 42A.
(泳動電極配線、第 2の電極列)として、複数の電極 (泳動電極:以下、「第 2電極」と 記す) 42からなる電極列(第 2電極列、櫛型電極)が設けられて 、る。  (Electrophoresis electrode wiring, second electrode array) is provided with an electrode array (second electrode array, comb-shaped electrode) composed of a plurality of electrodes (electrophoresis electrode: hereinafter referred to as “second electrode”) 42. The
[0194] これにより、上記泳動電極アレイ 41Aおよび泳動電極アレイ 42Aは、第 1電極 41 ·4 1間および第 2電極 42·42間に各々交流電圧による電界を形成することで、上記泳 動レーン 3に注入された試料に各々電界を印加するようになっている。つまり、本実 施の形態に力かる上記誘電泳動パネル 10において、上記泳動電極アレイ 41 Αおよ び泳動電極アレイ 42Aは、各々、上記下側基板 1および上側基板 2に略平行な電界 、言い換えれば、上記泳動レーン 3のレーン面に略平行な電界 (横方向の電界)を、 上記泳動レーン 3に注入された試料に各々印加するようになっている。  [0194] Thus, the migration electrode array 41A and the migration electrode array 42A form an electric field by an AC voltage between the first electrodes 41 and 41 and between the second electrodes 42 and 42, respectively. An electric field is applied to each of the samples injected into 3. That is, in the dielectrophoresis panel 10 according to the present embodiment, the electrophoretic electrode array 41 and the electrophoretic electrode array 42A are electric fields substantially parallel to the lower substrate 1 and the upper substrate 2, respectively, in other words. For example, an electric field (lateral electric field) substantially parallel to the lane surface of the electrophoresis lane 3 is applied to each sample injected into the electrophoresis lane 3.
[0195] 上記下側基板 1と上側基板 2とは、上記第 1電極 41と第 2電極 42とが、上記泳動レ ーン 3を介して平面的に互 ヽに重畳(つまり、平面視で互 ヽに重畳)するように対向 配置されている。また、上記第 1電極 41· ··および第 2電極 42· ··は、上記泳動レーン 3 と交差 (本実施の形態では直交)するように設けられて 、る。  [0195] In the lower substrate 1 and the upper substrate 2, the first electrode 41 and the second electrode 42 are overlapped with each other in a plan view via the electrophoresis lane 3 (that is, in plan view). They are placed opposite each other so as to overlap each other. Further, the first electrode 41... And the second electrode 42... Are provided so as to intersect with the electrophoresis lane 3 (orthogonal in the present embodiment).
[0196] 本実施の形態でも、図 14に示すように、上記泳動電極アレイ 41 Aおよび泳動電極 アレイ 42A (より厳密には、上記泳動電極アレイ 41 Aおよび泳動電極アレイ 42Aにお ける各第 1電極 41および第 2電極 42)力 各泳動レーン 3· ··を跨ぐように、複数の泳 動レーン 3· · .に亘つて延設されて 、ることで、これら泳動電極アレイ 41 Aおよび泳動 電極アレイ 42Aは、各泳動レーン 3に共通で作用する。  [0196] Also in the present embodiment, as shown in Fig. 14, the migration electrode array 41A and the migration electrode array 42A (more precisely, each first electrode in the migration electrode array 41A and the migration electrode array 42A). The electrode 41 and the second electrode 42) force are extended across the plurality of swimming lanes 3 so as to straddle each of the electrophoresis lanes 3. The electrode array 42A acts in common on each electrophoresis lane 3.
[0197] すなわち、本実施の形態において、上記各隔壁 43a (間隔保持層 43)は、上記泳 動電極アレイ 41A.42A (第 1電極 41および第 2電極 42)と泳動レーン 3· ··とが交差( 本実施の形態では直交)するように、上記泳動電極アレイ 41Α·42Αに対して垂直方 向に並設されている。  That is, in the present embodiment, each of the partition walls 43a (the spacing layer 43) includes the swimming electrode array 41A.42A (the first electrode 41 and the second electrode 42), the electrophoresis lane 3 and so on. Are arranged side by side in the vertical direction with respect to the electrophoresis electrode arrays 41 and 42 so that they intersect (orthogonal in the present embodiment).
[0198] また、本実施の形態において、上記第 1電極 41および第 2電極 42のうち少なくとも 一方の電極は、粒子が誘電泳動力を受ける領域、具体的には、上記泳動レーン 3と 、上記第 1電極 41および第 2電極 42 (泳動電極アレイ 41Α·42Α)とが重畳する領域 の少なくとも一部の領域 (少なくとも観察領域)に相当する部分 (領域)が、透明電極 により構成されて 、ることが望まし 、。 [0198] In the present embodiment, at least one of the first electrode 41 and the second electrode 42 described above. One electrode has at least a region where the particles receive a dielectrophoretic force, specifically, a region where the electrophoresis lane 3 overlaps the first electrode 41 and the second electrode 42 (electrophoresis electrode array 41Α · 42Α). It is desirable that a part (area) corresponding to a part of the area (at least the observation area) is constituted by a transparent electrode.
[0199] 本実施の形態では、上記第 1電極 41および第 2電極 42は、例えば、 ΙΤΟ (インジゥ ム錫酸化物: Indium Tin Oxide)、 ZnO (酸化亜 : Zinc Oxide)、 IZO (インジウム亜 鉛酸ィ匕物: Indium Zinc Oxide)等の透明な導電性酸ィ匕膜 (透明電極)で形成されてい る。上記透明電極に使用される電極材料としては、透明導電材料であれば特に限定 されるものではないが、そのなかでも、 ITOが好ましい。  [0199] In the present embodiment, the first electrode 41 and the second electrode 42 are, for example, In (Indium Tin Oxide), ZnO (Zinc Oxide), IZO (Indium Palladium). It is made of a transparent conductive oxide film (transparent electrode) such as Indium Zinc Oxide. The electrode material used for the transparent electrode is not particularly limited as long as it is a transparent conductive material. Among them, ITO is preferable.
[0200] 本実施の形態によれば、上記したように上記第 1電極 41および第 2電極 42が、 IT O等の透明電極で構成されることにより、試料として泳動媒体を観察する際、上記第 1電極 41および第 2電極 42に遮られることなぐ上記泳動レーン 3の上下(上記下側 基板 1側および上側基板 2側)の何れの方向からも観察が可能である。このため、観 察方向の選択が可能である。  [0200] According to the present embodiment, as described above, the first electrode 41 and the second electrode 42 are made of transparent electrodes such as ITO, so that when observing the electrophoresis medium as a sample, Observation is possible from any direction above and below the migration lane 3 (above the lower substrate 1 side and the upper substrate 2 side) without being blocked by the first electrode 41 and the second electrode 42. Therefore, the observation direction can be selected.
[0201] また、本実施の形態では、図 14および図 16に示すように、上記第 1電極列内で互 いに隣接し合う任意の 2本の電極を、各々 41x、 41x+ lとし、これら 2本の電極 41χ· 41χ+ 1に重畳する位置に配置された、上記第 2電極列内の 2本の電極を、各々 42χ 、 42χ+ 1とした場合、上記下側基板 1と上側基板 2とは、上記電極 41χ·41χ+ 1と、 これら電極 41χ·41χ+ 1に対向する電極 42χ·42χ+ 1と力 上記泳動レーン 3形成 領域において各々ァライメント精度の許す限りぴったりと重なるような対向位置に配 置されている。なお、電極 41χ、 41χ+ 1とは、それぞれ、上記第 1電極列内における 、下側基板 1の一方の端から X番目、 χ + 1番目の電極を示す。また、電極 42χ、 42χ + 1とは、それぞれ、上記第 2電極列内における、上側基板 2の、上記下側基板 1と 同じ一方の端から X番目、 χ + 2番目の電極を示す。以下、電極 41x+m、あるいは電 極 41x+nとは、それぞれ、上記第 1電極列内における、下側基板 1の一方の端から x+m番目、あるいは x+n番目の電極を示し、電極 42x+m、あるいは 42x+nとは、 それぞれ、上記第 2電極列内における、上側基板 2の、上記下側基板 1と同じ一方の 端力 x+m番目、あるいは x+n番目の電極を示し、 x、 m、 nは、それぞれ、 1以上の 任意の整数を示す。 In this embodiment, as shown in FIGS. 14 and 16, any two electrodes adjacent to each other in the first electrode row are 41x and 41x + 1, respectively. When the two electrodes in the second electrode array arranged at the positions overlapping with the two electrodes 41χ 41χ + 1 are 42χ and 42χ + 1, respectively, the lower substrate 1 and the upper substrate 2 The electrode 41χ · 41χ + 1 and the electrode 42χ · 42χ + 1 opposite to these electrodes 41χ · 41χ + 1 and the force opposite to each other as far as the alignment accuracy allows, Is located. The electrodes 41χ and 41χ + 1 refer to the Xth and χ + 1st electrodes from one end of the lower substrate 1 in the first electrode row, respectively. Electrodes 42χ and 42χ + 1 denote the Xth and χ + 2th electrodes from the same end as the lower substrate 1 of the upper substrate 2 in the second electrode row, respectively. Hereinafter, the electrode 41x + m or the electrode 41x + n represents the x + m-th or x + n-th electrode from one end of the lower substrate 1 in the first electrode row, respectively. The electrode 42x + m or 42x + n is the same one end force x + mth or x + nth electrode of the upper substrate 2 as the lower substrate 1 in the second electrode row, respectively. X, m, and n are each 1 or more Indicates an arbitrary integer.
[0202] また、上記泳動電極アレイ 41 Aは、図 14および図 15に示すように、上記下側基板  [0202] Further, as shown in FIGS. 14 and 15, the electrophoretic electrode array 41A includes the lower substrate, as shown in FIG.
1端部に実装 ·接続部 44 (入力端子部)を有して!/ヽる。上記実装 ·接続部 44には FP C 17が実装され、この FPC17を介して、図 17に示す制御基板 50 (制御部;駆動制 御部)と接続される。  Mounted at one end · Hold connection section 44 (input terminal section)! The FPC 17 is mounted on the mounting / connecting section 44 and is connected to the control board 50 (control section; drive control section) shown in FIG.
[0203] 一方、上記泳動電極アレイ 42Aは、図 14および図 15に示すように、上記上側基板  On the other hand, as shown in FIGS. 14 and 15, the electrophoretic electrode array 42A includes the upper substrate.
2端部に実装'接続部 45 (入力端子部)を有している。上記実装'接続部 45 (入力端 子部)には、フレキシブル配線基板 (以下、「FPC」と記す) 46が実装され、この FPC4 6を介して、図 17に示す制御基板 55 (制御部;駆動制御部)と接続される。なお、制 御基板 50 · 55につ 、ては後述する。  Two end parts have mounting 'connection part 45 (input terminal part). A flexible printed circuit board (hereinafter referred to as “FPC”) 46 is mounted on the mounting / connecting section 45 (input terminal section), and the control board 55 (control section; Drive control unit). The control boards 50 and 55 will be described later.
[0204] 図 15および図 16に示すように、上記下側基板 1および上側基板 2における互いの 対向面には、各々、電極保護膜として、下面保護膜 7および上面保護膜 8が形成さ れている。これら下面保護膜 7および上面保護膜 8は、各々、上記泳動レーン 3内壁 における底壁および天壁を構成して!/ヽる。  [0204] As shown in FIGS. 15 and 16, a lower surface protective film 7 and an upper surface protective film 8 are formed on the opposing surfaces of the lower substrate 1 and the upper substrate 2 as electrode protective films, respectively. ing. These lower surface protective film 7 and upper surface protective film 8 constitute the bottom wall and the top wall of the inner wall of the migration lane 3! / Speak.
[0205] これら下面保護膜 7および上面保護膜 8の材料としては、例えば、前記実施の形態  [0205] Examples of the material of the lower surface protective film 7 and the upper surface protective film 8 include the embodiments described above.
1に記載の材料と同様の材料を用いることができるが、これら下面保護膜 7および上 面保護膜 8の材料は、泳動させる粒子の種類に応じて適宜設定すればよぐ特に限 定されるものでない。また、上記下面保護膜 7および上面保護膜 8は、上記泳動レー ン 3内壁、特に、上記泳動電極アレイ 41Α·42Αにおける各電極の表面を保護 (カバ 一)することができさえすればよぐその膜厚は、特に限定されるものではない。なお、 本実施の形態においても、上記下面保護膜 7および上面保護膜 8の材料としては、 感光性を有する材料を使用することもできる。上記下面保護膜 7および上面保護膜 8 の材料として感光性を有する材料を使用することで、例えば、泳動レーン 3以外の保 護膜が不要な部分、例えば実装端子部分 (実装'接続部 44·45)を、例えばフォトリソ グラフィ等で除去することができ、後工程での手間を省くことができる。  Materials similar to those described in 1 can be used, but the materials for the lower surface protective film 7 and the upper surface protective film 8 are particularly limited as long as they are appropriately set according to the type of particles to be migrated. Not a thing. The lower surface protective film 7 and the upper surface protective film 8 only need to protect (cover) the inner walls of the electrophoresis lane 3 and, in particular, the surfaces of the electrodes in the electrophoresis electrode arrays 41Α and 42Α. The film thickness is not particularly limited. In the present embodiment also, a material having photosensitivity can be used as the material of the lower surface protective film 7 and the upper surface protective film 8. By using a material having photosensitivity as the material of the lower surface protective film 7 and the upper surface protective film 8, for example, a part other than the migration lane 3 where no protective film is required, for example, a mounting terminal part (mounting connection part 44. 45) can be removed by, for example, photolithography, and the time and effort in the subsequent process can be saved.
[0206] 間隔保持層 43は、上記下面保護膜 7および上面保護膜 8上に設けられている。  [0206] The spacing layer 43 is provided on the lower protective film 7 and the upper protective film 8.
[0207] 上記間隔保持層 43に使用されるシール材もまた特に限定されるものではなぐシー ル材として従来公知の榭脂が使用される。このようなシール材としては、例えば、前記 実施の形態 1に記載の材料と同様の材料を用いることができる。なお、本実施の形態 においても、上記シール材は、球状スぺーサまたはファイバ状スぺーサ等のいわゆる スぺーサ(間隔保持材)を含むことが好ましぐ上記シール材がこれら球状スぺーサ、 ファイバ状スぺーサ等のスぺーサを含有することで、上記下側基板 1と上側基板 2と を対向配置させて貼り合わせる際に、上記泳動レーン壁の厚み、つまり、上記泳動レ ーン 3のレーン高さを均一にすることができる。上記シール材中に混入されるスぺー サとしては、前記実施の形態 1に記載の材料と同様のスぺーサを使用することができ る。 [0207] The sealing material used for the spacing layer 43 is not particularly limited, and conventionally known resin is used as the sealing material. As such a sealing material, for example, the above-mentioned A material similar to the material described in Embodiment 1 can be used. Also in this embodiment, it is preferable that the sealing material includes a so-called spacer (a spacing member) such as a spherical spacer or a fiber-like spacer. When the lower substrate 1 and the upper substrate 2 are bonded to each other so that the lower substrate 1 and the upper substrate 2 are bonded to each other, the migration lane wall thickness, that is, the migration label is included. The lane height of lane 3 can be made uniform. As a spacer mixed in the sealing material, a spacer similar to the material described in the first embodiment can be used.
[0208] また、本実施の形態にお!、ても、上記下側基板 1および上側基板 2における何れか 一方の基板には、上記泳動レーン 3に試料 (泳動媒体)を注入および排出するため の注入'排出孔 5が形成される。本実施の形態では、図 16に示すように、上記上側基 板 2における各泳動レーン 3の両端部に、上記注入'排出孔 5をそれぞれ設ける。  [0208] Further, in this embodiment, even if any of the lower substrate 1 and the upper substrate 2 is used, the sample (electrophoresis medium) is injected into and discharged from the electrophoresis lane 3. Injecting and discharging holes 5 are formed. In the present embodiment, as shown in FIG. 16, the injection and discharge holes 5 are provided at both ends of each electrophoresis lane 3 in the upper substrate 2.
[0209] なお、上記泳動レーン 3は、上記泳動電極アレイ 41 Α·42Αの延設方向(長手方向 )と、泳動媒体の 2つの注入'排出孔 5を結んだ直線とができる限り垂直となるように設 けられていることが望ましい。  [0209] In addition, in the migration lane 3, the extending direction (longitudinal direction) of the electrophoresis electrode arrays 41 and 42 and the straight line connecting the two injection / discharge holes 5 of the electrophoresis medium are as vertical as possible. It is desirable to have
[0210] 次に、本実施の形態に力かる上記誘電泳動パネル 10の作製方法について以下に 説明する。  [0210] Next, a method for manufacturing the above-described dielectrophoresis panel 10 that works according to the present embodiment will be described below.
[0211] 本実施の形態では、上記したように、下側基板 1および上側基板 2に透明基板を使 用し、上記下側基板 1上に泳動電極アレイ 41Aを形成するとともに、上側基板 2上に 、上記泳動電極アレイ 41 Αと同一形状の泳動電極アレイ 42Aを形成する。  [0211] In the present embodiment, as described above, transparent substrates are used for the lower substrate 1 and the upper substrate 2, and the migration electrode array 41A is formed on the lower substrate 1, and the upper substrate 2 Then, an electrophoresis electrode array 42A having the same shape as the electrophoresis electrode array 41 is formed.
[0212] 上記泳動電極アレイ 41 Aおよび上記泳動電極アレイ 42Aは、例えば、上記下側基 板 1および上側基板 2上に、スパッタ蒸着等による ITO膜等の導電性酸ィ匕膜形成後 、フォトリソグラフィを用いて電極形状にパターユングすることにより、容易に形成する ことができる。本実施の形態では、上記泳動電極アレイ 41Α·42Αの形成と同時に、 これら泳動電極アレイ 41Α·42Αの各々の端部に、実装端子として、実装'接続部 44 •45をそれぞれパターン形成する。  [0212] The electrophoretic electrode array 41A and the electrophoretic electrode array 42A are formed, for example, after a conductive oxide film such as an ITO film is formed on the lower substrate 1 and the upper substrate 2 by sputtering deposition or the like. It can be easily formed by patterning the electrode shape using lithography. In the present embodiment, simultaneously with the formation of the migration electrode arrays 41Α and 42 実 装, the mounting connection portions 44 and 45 are formed as patterns on the respective ends of the migration electrode arrays 41Α and 42Α.
[0213] 次に、上記下側基板 1と上側基板 2とを貼り合わせたときに、上記上側基板 2におい て泳動レーン 3と重畳する部分を、例えばドリルで穿孔することにより、泳動レーン 3の 両端部となる部分に、それぞれ、所定の孔径を有する注入'排出孔 5を設ける。なお 、上記注入'排出孔 5の形成方法としては、他に、ブラストや、エッチング等の方法を 用!/、ることができる。 [0213] Next, when the lower substrate 1 and the upper substrate 2 are bonded to each other, a portion of the upper substrate 2 that overlaps the electrophoresis lane 3 is drilled with, for example, a drill, so that Injecting / discharging holes 5 each having a predetermined hole diameter are provided at both ends. In addition, as a method for forming the injection and discharge holes 5, other methods such as blasting and etching can be used.
[0214] 次に、上記泳動電極アレイ 41Aが形成された下側基板 1、および、上記泳動電極 アレイ 42A並びに注入 ·排出孔 5が形成された上側基板 2上に、例えば前記した保 護膜材料を塗布することにより、それぞれ、下面保護膜 7および上面保護膜 8を形成 する。  [0214] Next, on the lower substrate 1 on which the migration electrode array 41A is formed, and on the upper substrate 2 on which the migration electrode array 42A and the injection / discharge holes 5 are formed, for example, the above-described protective film material Are applied to form a lower surface protective film 7 and an upper surface protective film 8, respectively.
[0215] 次に、下面保護膜 7が形成された下側基板 1上に、反応性接着剤 (熱硬化性接着 剤)として、例えばガラススぺーサが混入されたエポキシ系接着剤(シール材)を、泳 動レーン 3形成領域を除ぐ上記下側基板 1と上側基板 2とが対向配置される領域( すなわち、泳動レーン 3形成領域並びに実装'接続部 44側端部を除く上記下側基板 1全面下面)に塗布する。これにより、上記下側基板 1上に、泳動レーン壁を構成する 間隔保持層 43 (シール材層)を形成する。  [0215] Next, an epoxy adhesive (sealant) in which, for example, a glass spacer is mixed as a reactive adhesive (thermosetting adhesive) on the lower substrate 1 on which the lower surface protective film 7 is formed. A region where the lower substrate 1 and the upper substrate 2 excluding the swimming lane 3 formation region are disposed opposite to each other (that is, the lower substrate excluding the migration lane 3 formation region and the mounting 'connection portion 44 side end portion). 1Apply to the entire bottom surface. As a result, the spacing layer 43 (sealing material layer) that forms the migration lane wall is formed on the lower substrate 1.
[0216] このとき、上記エポキシ系接着剤(シール材)を、上記した、泳動レーン 3形成領域 を除ぐ上記下側基板 1と上側基板 2とが対向配置される領域、並びに、各泳動レー ン 3間に塗布することで、上記隔壁 43aを、泳動レーン 3形成領域外の間隔保持層 4 3と同時に形成することができる。  [0216] At this time, the epoxy adhesive (sealant) is applied to the region where the lower substrate 1 and the upper substrate 2 except the region where the migration lane 3 is formed are disposed, and to each migration label. By coating between the three layers 3, the partition wall 43a can be formed at the same time as the spacing layer 4 3 outside the migration lane 3 formation region.
[0217] 上記泳動レーン 3は、上記泳動電極アレイ 41 Aに対して垂直となるように形成する 。本実施の形態においても、上記シール材の塗布には、例えば、スクリーン版を使用 する印刷方法や、ディスペンサーを使用する描画方法を使用することができる。  [0217] The electrophoresis lane 3 is formed to be perpendicular to the electrophoresis electrode array 41A. Also in this embodiment, for application of the sealing material, for example, a printing method using a screen plate or a drawing method using a dispenser can be used.
[0218] その後、上記下側基板 1および上側基板 2を対向配置させて貼り合わせを行うこと で、上記下側基板 1および上側基板 2と、これら下側基板 1と上側基板 2との間の空 間を仕切る、上記間隔保持層 43 (隔壁 43a)とで囲まれた泳動レーン 3を形成するこ とがでさる。  [0218] After that, the lower substrate 1 and the upper substrate 2 are disposed to face each other and bonded to each other, so that the lower substrate 1 and the upper substrate 2 and between the lower substrate 1 and the upper substrate 2 are bonded. The electrophoresis lane 3 surrounded by the spacing layer 43 (partition wall 43a) for partitioning the space can be formed.
[0219] より具体的には、上記間隔保持層 43 (隔壁 43a)形成後、上記下側基板 1および上 側基板 2を、上記泳動電極アレイ 41Α·42Αの延設方向(長手方向)と、泳動媒体の 2つの注入 ·排出孔 5を結んだ直線とができる限り垂直になるとともに、上記泳動電極 アレイ 41A.42Aを構成する第 1電極 41· ··と第 2電極 42· ··と力 泳動レーン 3形成領 域において、上記泳動レーン 3を挟んで平面視で重畳するように対向配置し、上記シ ール材 (接着剤)により接着固定することで、両基板の貼り合わせを行う。これにより、 上記下側基板 1および上側基板 2と、これら下側基板 1と上側基板 2との間に設けら れた上記間隔保持層 43 (泳動レーン壁)とで囲まれた泳動レーン 3を形成する。 [0219] More specifically, after the formation of the spacing layer 43 (partition wall 43a), the lower substrate 1 and the upper substrate 2 are connected to the extending direction (longitudinal direction) of the electrophoresis electrode arrays 41 ア レ イ and 42Α, The two electrodes of the electrophoresis medium · The straight line connecting the discharge holes 5 is as vertical as possible, and the first electrode 41 ··· and the second electrode 42 ··· and the force constituting the above-mentioned electrophoresis electrode array 41A.42A Electrophoresis lane 3 formation area In the region, the two substrates are bonded together by being opposed to each other so as to overlap in plan view with the migration lane 3 interposed therebetween, and being bonded and fixed by the seal material (adhesive). As a result, the electrophoresis lane 3 surrounded by the lower substrate 1 and the upper substrate 2 and the spacing holding layer 43 (migration lane wall) provided between the lower substrate 1 and the upper substrate 2 is changed. Form.
[0220] 具体的には、下側基板 1および上側基板 2を対向配置させ、上下両面から熱プレス を行う。熱プレスにより下側基板 1上のシール材がー且軟ィ匕した後、硬化し、両基板 が接着されることで、両基板間に泳動レーン 3が形成される。  [0220] Specifically, the lower substrate 1 and the upper substrate 2 are disposed to face each other, and hot pressing is performed from both the upper and lower surfaces. The sealing material on the lower substrate 1 is softened and softened by hot pressing, and then cured and bonded to each other, whereby the migration lane 3 is formed between the two substrates.
[0221] 以上の工程により、本実施の形態に力かる誘電泳動パネル 10が形成される。  [0221] Through the above-described steps, the dielectrophoresis panel 10 which is effective in the present embodiment is formed.
[0222] 本実施の形態では、例えば、上記下側基板 1および上側基板 2として、 10cm X 10 cm程度の透明基板を使用し、レーン幅(隔壁 43a'43a間の間隔)約 lcm、レーン長 さ約 6cmの泳動レーン 3を、並列に 5列形成する。また、上記各隔壁 43aの幅は約 2 mmに設定する。また、泳動レーン 3の厚み(間隔保持層 43の高さ)が均一となるよう に、上記シール材には、粒径 40 μ mのガラススぺーサを混入する。  [0222] In the present embodiment, for example, a transparent substrate of about 10 cm x 10 cm is used as the lower substrate 1 and the upper substrate 2, and the lane width (interval between the partition walls 43a'43a) is about lcm, the lane length Form 5 rows of parallel lanes 3 approximately 6 cm in length. The width of each partition wall 43a is set to about 2 mm. In addition, a glass spacer having a particle size of 40 μm is mixed in the sealing material so that the thickness of the electrophoresis lane 3 (the height of the spacing layer 43) is uniform.
[0223] 但し、本実施の形態でなした具体的なサイズは、実施の形態の一例にすぎず、各 構成要素のサイズ、例えば、上記下側基板 1および上側基板 2の基板サイズ、電極 サイズ (電極幅、電極間隔、電極厚、電極長等)、下面保護膜 7および上面保護膜 8 の膜厚、間隔保持層 43の層厚(高さ)、レーン幅(隔壁 43a '43a間の間隔)、レーン 長さ等の条件は、特に限定されるものではなぐ分析対象に応じて種々変更が可能 である。  [0223] However, the specific size made in the present embodiment is merely an example of the embodiment, and the size of each component, for example, the substrate size of the lower substrate 1 and the upper substrate 2 and the electrode size. (Electrode width, electrode interval, electrode thickness, electrode length, etc.), film thickness of lower surface protective film 7 and upper surface protective film 8, layer thickness (height) of interval holding layer 43, lane width (interval between partition walls 43a and 43a ) Conditions such as lane length are not particularly limited, and can be variously changed depending on the analysis target.
[0224] 例えば、本実施の形態では、上記レーン幅を約 lcmとする場合を例に挙げて説明 したが、上記レーン幅は、上記サイズにのみ限定されるものではない。上記レーン幅 は、 lcm (約 lcm)であることが好ましいが、特に好適には 8mmである。  For example, in the present embodiment, the case where the lane width is about 1 cm has been described as an example. However, the lane width is not limited to the above size. The lane width is preferably lcm (about lcm), and particularly preferably 8 mm.
[0225] さらに、本実施の形態では、図 14に示すように、上記泳動レーン 3が、並列に 5列 形成されている場合を例に挙げて説明したが、本実施の形態はこれに限定されるも のではない。  Furthermore, in the present embodiment, as shown in FIG. 14, the case where the above-described migration lane 3 is formed in five rows in parallel has been described as an example. However, the present embodiment is not limited to this. It is not done.
[0226] なお、本実施の形態においても、上記間隔保持層 43の層厚、つまり、泳動レーン 3 のギャップ (レーン高さ)は、上記間隔保持層 43 (泳動レーン壁)を構成する上記シー ル材中に含まれるスぺーサにより均一に維持される。また、上記したように、シール材 を、印刷あるいは描写法を用いてパターン形成することにより、複数の隔壁 43aを備 えた泳動レーン壁 4を簡便に形成することができる。これにより、複数の泳動レーン 3 を、簡便に形成することができる。 In the present embodiment, the layer thickness of the spacing layer 43, that is, the gap (lane height) of the migration lane 3 is also the above-described sheet constituting the spacing layer 43 (migration lane wall). It is maintained uniformly by the spacers contained in the lumber. In addition, as described above, the sealing material By forming a pattern using printing or a drawing method, the electrophoresis lane wall 4 having a plurality of partition walls 43a can be easily formed. Thereby, the plurality of electrophoresis lanes 3 can be easily formed.
[0227] また、本実施の形態によれば、図 14に示すように、上記下側基板 1と上側基板 2と を、上記泳動レーン 3形成領域で上記下側基板 1と上側基板 2とが対向配置される範 囲内で、上記泳動電極アレイ 41 Α·42Αの延設方向(長手方向)にずらして対向配 置させることで、上記下側基板 1と上側基板 2とを貼り合わせたときに、上記実装 '接 続部 44 · 45への FPC 17 · 46の実装を容易に行うことができる。  Also, according to the present embodiment, as shown in FIG. 14, the lower substrate 1 and the upper substrate 2 are connected to each other in the region where the migration lane 3 is formed. When the lower substrate 1 and the upper substrate 2 are bonded together by shifting them in the extending direction (longitudinal direction) of the electrophoresis electrode arrays 41 and 42 within the range where they are opposed to each other. Therefore, it is possible to easily mount the FPCs 17 and 46 on the mounting parts 44 and 45 described above.
[0228] 上記誘電泳動パネル 10は、図 17に示すように、上記泳動電極アレイ 41 Α端部に 形成された実装'接続部 44に実装された FPC17を介して、制御基板 50と接続され る。また、上記誘電泳動パネル 10は、図 17に示すように、上記泳動電極アレイ 42A 端部に形成された実装 ·接続部 45に実装された FPC46を介して、制御基板 55と接 続される。  As shown in FIG. 17, the dielectrophoresis panel 10 is connected to the control board 50 via the FPC 17 mounted on the mounting 'connection portion 44 formed on the heel end portion of the electrophoresis electrode array 41. . Further, as shown in FIG. 17, the dielectrophoresis panel 10 is connected to the control board 55 via the FPC 46 mounted on the mounting / connecting portion 45 formed at the end of the electrophoresis electrode array 42A.
[0229] 本実施の形態に力かる誘電泳動装置 70は、上記誘電泳動パネル 10と、制御基板 50 · 55と、 DC電源 60 (電源)とを備えている。また、本実施の形態にカゝかる誘電泳動 システム 85は、上記誘電泳動装置 70と、撮像系 80とを備えている。  A dielectrophoresis apparatus 70 according to the present embodiment includes the dielectrophoresis panel 10, control boards 50 and 55, and a DC power source 60 (power source). A dielectrophoresis system 85 according to the present embodiment includes the dielectrophoresis device 70 and an imaging system 80.
[0230] 上記制御基板 50は、周波数 ·タイマー制御部 50a、同期信号制御部 50b、発振回 路部 50c、位相選択 ·増幅部 50dを備えている。また上記制御基板 55は、周波数 'タ イマ一制御部 55a、同期信号制御部 55b、発振回路部 55c、位相選択 ·増幅部 55d を備えている。  [0230] The control board 50 includes a frequency / timer control unit 50a, a synchronization signal control unit 50b, an oscillation circuit unit 50c, and a phase selection / amplification unit 50d. The control board 55 includes a frequency timer control unit 55a, a synchronization signal control unit 55b, an oscillation circuit unit 55c, and a phase selection / amplification unit 55d.
[0231] 上記誘電泳動装置 70において、 DC電源 60から出力された電圧(DC (直流)電圧 )は、上記制御基板 50に入力され、上記制御基板 50を駆動するとともに、上記制御 基板 55に入力され、上記制御基板 55を駆動する。  In the dielectrophoresis apparatus 70, the voltage (DC (direct current) voltage) output from the DC power source 60 is input to the control board 50 to drive the control board 50 and input to the control board 55. Then, the control board 55 is driven.
[0232] 上記制御基板 50では、上記発振回路部 50cから AC電圧が出力される。出力され る AC電圧は、上記周波数 ·タイマー制御部 50a、同期信号制御部 50b、位相選択 · 増幅部 50dにより周波数、位相、振幅等が制御されることにより、意図する AC出力に 調整され、上記 FPC17を介して上記誘電泳動パネル 10に印力 U (入力)される。上記 制御基板 55では、上記発振回路部 55cから AC電圧が出力される。出力される AC 電圧は、上記周波数 ·タイマー制御部 55a、同期信号制御部 55b、位相選択,増幅 部 55dにより周波数、位相、振幅等が制御されることにより、意図する AC出力に調整 され、上記 FPC46を介して上記誘電泳動パネル 10に印加(入力)される。 [0232] In the control board 50, an AC voltage is output from the oscillation circuit unit 50c. The output AC voltage is adjusted to the intended AC output by controlling the frequency, phase, amplitude, etc. by the frequency / timer control unit 50a, synchronization signal control unit 50b, and phase selection / amplification unit 50d. A printing force U (input) is applied to the dielectrophoresis panel 10 via the FPC 17. In the control board 55, an AC voltage is output from the oscillation circuit section 55c. AC output The voltage is adjusted to the intended AC output by controlling the frequency, phase, amplitude, etc. by the frequency / timer control unit 55a, the synchronization signal control unit 55b, the phase selection / amplification unit 55d, and the voltage is adjusted via the FPC 46. Applied (input) to the dielectrophoresis panel 10.
[0233] このとき上記制御基板 50の同期信号制御部 50bと上記制御基板 55の同期信号制 御部 55bとは、上記 FPC 17を介して上記誘電泳動パネル 10に印加(入力)される信 号と上記 FPC46を介して上記誘電泳動パネル 10に印加 (入力)される信号とを同期 してから、上記誘電泳動パネル 10に印加(入力)される。  At this time, the synchronization signal controller 50b of the control board 50 and the synchronization signal controller 55b of the control board 55 are signals applied (input) to the dielectrophoresis panel 10 via the FPC 17. And the signal applied (input) to the dielectrophoresis panel 10 via the FPC 46 are synchronized and then applied (input) to the dielectrophoresis panel 10.
[0234] 本実施の形態においても、上記撮像系 80は、上記誘電泳動パネル 10の泳動レー ン 3における観察領域 (測定部)に照射光を与えるためのレーザ等の光源や、光学顕 微鏡あるいは CCD (電荷結合素子; charge coupled device)等の撮像素子等を備え た光学系であり、上記泳動レーン 3の上部または下部に設置されて光学検出を行うよ うになつている。  Also in the present embodiment, the imaging system 80 includes a light source such as a laser for applying irradiation light to the observation region (measurement unit) in the electrophoresis lane 3 of the dielectrophoresis panel 10 and an optical microscope. Alternatively, it is an optical system equipped with an image pickup device such as a CCD (charge coupled device), etc., and is installed at the upper or lower portion of the electrophoresis lane 3 for optical detection.
[0235] 以下に、本実施の形態における上記誘電泳動システム 85を用いた上記泳動媒体 中の粒子の挙動について説明する。  [0235] The behavior of the particles in the electrophoresis medium using the dielectrophoresis system 85 in the present embodiment will be described below.
[0236] 図 18 (a) · (b)は、図 17に示す誘電泳動システム 85を用いて泳動媒体中の目的粒 子の浮揚'搬送を行う様子を、図 17に示す誘電泳動パネル 10の断面(すなわち、図 14に示す誘電泳動パネル 10の J J線矢視断面)にて模式的に示す要部断面図で ある。上記図 18 (a)は、 DEPモードにより、目的粒子の浮揚を行う様子を示している 。また、図 18 (b)は、浮揚した目的粒子を TWDモードにより搬送する様子を示してい る。  FIGS. 18 (a) and 18 (b) show how the target particles in the electrophoresis medium are floated and conveyed using the dielectrophoresis system 85 shown in FIG. FIG. 15 is a cross-sectional view of an essential part schematically showing a cross section (that is, a cross section taken along line JJ of the dielectrophoresis panel 10 shown in FIG. 14). Fig. 18 (a) above shows how the target particles are levitated in the DEP mode. Figure 18 (b) shows the state where the levitated target particles are transported in the TWD mode.
[0237] 図 18 (a) · (b)では、上記制御基板 50 · 55により、上記泳動電極アレイ 41Α·42Α に DEP (Dielectrophoresis)信号を与えることにより、負の誘電泳動力(n— DEP)によ り、粒子 91のうち、その比誘電率(ε )が溶媒 92の比誘電率(ε )よりも小さな粒子  In FIGS. 18 (a) and 18 (b), a negative dielectrophoretic force (n−DEP) is obtained by applying a DEP (Dielectrophoresis) signal to the electrophoresis electrode arrays 41 ア レ イ and 42Α by the control boards 50 and 55. Therefore, among the particles 91, the particles whose relative dielectric constant (ε) is smaller than the relative dielectric constant (ε) of the solvent 92
p m  p m
91a ( s < ε )を、目的粒子 (泳動粒子)として浮上 (浮揚)させ、正の誘電泳動力 (ρ p m  91a (s <ε) is levitated (levitated) as the target particle (electrophoretic particle) and positive dielectrophoretic force (ρ p m
DEP)により、粒子 91のうち、その比誘電率( ε )が溶媒 92の比誘電率( ε )より  DEP), the relative permittivity (ε) of particles 91 is greater than the relative permittivity (ε) of solvent 92.
p m も大きな粒子 91b ( ε > ε )を、上記第 1電極 41または第 2電極 42のエッジにトラッ  Particles 91b (ε> ε) having a large p m are trapped on the edge of the first electrode 41 or the second electrode 42.
p m  p m
プすることにより、 2種類以上の粒子 91を分離し、その後、 TWD (Traveling-Wave D EP)信号に切り替えて、浮上している粒子 9 laだけ搬送する。なお、上記第 1電極 41 または第 2電極 42のエッジにトラップされている粒子 9 lbは、図 18(b)に示すように、 TWD信号を与えてもトラップされたままである。 The two or more kinds of particles 91 are separated by switching to a TWD (Traveling-Wave DEP) signal, and only the floating particles 9 la are transported. The first electrode 41 Alternatively, the particle 9 lb trapped at the edge of the second electrode 42 remains trapped even when the TWD signal is applied, as shown in FIG. 18 (b).
[0238] 本実施の形態によれば、図 18 (a) · (b)に示すように、上記泳動電極アレイ 41 Α· 4 2Aにおいて、各泳動電極アレイ 41Α·42Α内で互いに隣り合う電極、例えば、上記 泳動電極アレイ 41A内で互!ヽ【こ隨り合う第 1電極 41 (41χ, 41χ+1, 41χ+2, 41χ + 3)には、上記制御基板 50· 55により、各々異なる位相の高周波(交流電圧)が印 カロされる。また、図 18 (a) · (b)に示すように、上記泳動レーン 3 (泳動媒体層)を介し て上記各第 1電極 41(41x, 41x+l, 41x+2, 41x+ 3)と互いに重畳する位置に 酉己置された第 2電極 42 (42x, 42x+l, 42x+2, 42x+3)には、該第 2電極 42(42 X, 42x+l, 42x+2, 42x+ 3)と互いに重畳する位置に配置された第 1電極 41 (4 lx, 41x+l, 41x+2, 41x+ 3)と同 Cf立相の高周波がそれぞれ印加される。すな わち、本実施の形態では、上下に対向する泳動電極に、同電位の電圧を印加する。 これにより、泳動媒体 90中に含まれる粒子 91に対して上下方向から対称的な電界を かけることが可能となり、上記粒子 91に対して一方向から電界をかける場合と比較し て、強い誘電泳動力を得ることができる。  [0238] According to the present embodiment, as shown in FIGS. 18 (a) and 18 (b), in the electrophoresis electrode array 41Α42A, the electrodes adjacent to each other in each electrophoresis electrode array 41Α · 42Α, For example, the first electrodes 41 (41χ, 41χ + 1, 41χ + 2, 41χ + 3) that are mutually connected in the electrophoresis electrode array 41A have different phases depending on the control boards 50 and 55. The high frequency (alternating voltage) is printed. In addition, as shown in FIGS. 18 (a) and 18 (b), the first electrodes 41 (41x, 41x + l, 41x + 2, 41x + 3) are connected to each other via the migration lane 3 (migration medium layer). The second electrode 42 (42x, 42x + l, 42x + 2, 42x + 3) placed in the overlapping position is connected to the second electrode 42 (42 X, 42x + l, 42x + 2, 42x + 3 ) And the first electrode 41 (4 lx, 41x + l, 41x + 2, 41x + 3) arranged at positions overlapping each other, are applied with the same Cf phase high frequency. In other words, in the present embodiment, a voltage having the same potential is applied to the electrophoresis electrodes facing vertically. As a result, a symmetrical electric field can be applied to the particles 91 contained in the electrophoretic medium 90 from above and below, and compared to a case where an electric field is applied to the particles 91 from one direction. You can gain power.
[0239] また、図 18 (a)〖こ示すように、 DEPモードにおいて、各泳動電極アレイ 41A.42A 内で互 ヽ【こ隨り合う第 1電極 41 (41x, 41x+l, 41x+2, 41x+3)並び【こ第 2電極 42(42x, 42x+l, 42x+2, 42x+3)に対し、それぞれ、川頁次 πずつ位ネ目カずれ るように高周波を印加することで、上記粒子 91aの浮揚力の制御を効率良く行うこと ができる。  [0239] As shown in Fig. 18 (a), in the DEP mode, the first electrode 41 (41x, 41x + l, 41x + 2 , 41x + 3) line [apply high frequency to the second electrode 42 (42x, 42x + l, 42x + 2, 42x + 3) so as to be shifted by π by Kawasaki Thus, the levitation force of the particles 91a can be controlled efficiently.
[0240] また、図 18(b)〖こ示すように、 TWDモードにおいて、各泳動電極アレイ 41A.42A 内で互 ヽ【こ隨り合う第 1電極 41 (41x, 41x+l, 41x+2, 41x+3)並び【こ第 2電極 42(42x, 42x+l, 42x+2, 42x+3)に対し、それぞれ、川頁次 π /2ずつ位ネ目カ Sず れるように高周波を印加することで、浮上した粒子 9 laの搬送を効率良く行うことがで きる。  [0240] Also, as shown in Fig. 18 (b), in the TWD mode, the first electrodes 41 (41x, 41x + l, 41x + 2) are mutually connected in each electrophoresis electrode array 41A.42A. , 41x + 3) side-by-side with respect to this second electrode 42 (42x, 42x + l, 42x + 2, 42x + 3) By applying this, the levitated particles 9 la can be transported efficiently.
[0241] 以下に、図 18 (a) · (b)を参照してより具体的に説明する。以下の説明では、誘電 率の異なる 2種類の粒子 91a' 91bを、誘電率および周波数特性の違いにより分離し 、一方の粒子(2)のみを搬送して取り除く場合を例に挙げて説明する。なお、以下の 説明では、溶媒 92に粒子 91a' 91bを懸濁させてなる懸濁液を試料として用いるもの とするが、本実施の形態は、これに限定されるものではない。 [0241] This will be described more specifically with reference to FIGS. 18 (a) and (b). In the following description, two types of particles 91a '91b having different dielectric constants are separated by the difference in dielectric constant and frequency characteristics, and only one particle (2) is conveyed and removed as an example. The following In the description, a suspension obtained by suspending particles 91a '91b in a solvent 92 is used as a sample. However, the present embodiment is not limited to this.
[0242] まず、各々 10 m程度の大きさを有する粒子 9 laと粒子 9 lbとを混合した懸濁液を 準備し、この懸濁液を、図 18 (a) · (b)に示す誘電泳動パネル 10に注入する。続いて 、この懸濁液に、例えば、 4. 5V、 50Hzの交流を DEPで印加する。すると、粒子 91b は p— DEPにより第 1電極 41または第 2電極 42のエッジ部にトラップされ、粒子 91a は、 n—DEPにより、図 18 (a)に示すように、上下の泳動電極 (第 1電極 41および第 2 電極 42)に挟まれた泳動レーン 3の中心部に浮上する。すなわち、上記第 1電極 41 と第 2電極 42との電極間距離 (第 1電極 41表面と第 2電極 42表面との間の距離)を V とし、電極 41xの中心と電極 41x+nの中心との間の距離、並びに、電極 42xの中心 と電極 42x+nの中心との間の距離を Hとすると、粒子 91aは、 n—DEPにより、その 中心が、第 1電極 41表面または第 2電極 42表面力 約 VZ2の距離、かつ、第 1電 極 41および第 2電極 42のエッジから約 HZ2の距離に浮上する。  [0242] First, a suspension in which particles 9 la and particles 9 lb each having a size of about 10 m are prepared, and this suspension is subjected to dielectric shown in Figs. 18 (a) and 18 (b). Inject into electrophoresis panel 10. Subsequently, for example, 4.5 V, 50 Hz alternating current is applied to the suspension by DEP. Then, the particles 91b are trapped at the edge of the first electrode 41 or the second electrode 42 by p-DEP, and the particles 91a are trapped by the n-DEP as shown in FIG. 18 (a). It floats in the center of electrophoresis lane 3 between 1 electrode 41 and 2nd electrode 42). That is, the distance between the first electrode 41 and the second electrode 42 (the distance between the surface of the first electrode 41 and the surface of the second electrode 42) is V, and the center of the electrode 41x and the center of the electrode 41x + n And the distance between the center of the electrode 42x and the center of the electrode 42x + n is H, the particle 91a becomes n-DEP so that the center is the surface of the first electrode 41 or the second The surface force of the electrode 42 rises to a distance of about VZ2 and a distance of about HZ2 from the edges of the first electrode 41 and the second electrode 42.
[0243] なお、上記粒子 91aと粒子 91bとを分離するための周波数範囲は、粒子 91aおよび 粒子 91bの種類によって適宜設定すればよぐ特に限定されるものではないが、例え ば、 30kHz〜100kHzの範囲内であることが好ましい。粒子 9 laおよび粒子 9 lbの 種類にもよるが、 30kHz未満の低周波領域では、粒子 91aおよび粒子 91bが、とも に p— DEP力を受け、 100kHzを超える高周波領域では、粒子 91aおよび粒子 91b 1S ともに n— DEP力を受けるために、これらの周波数範囲での分離は不可能である 場合がある。  [0243] The frequency range for separating the particles 91a and the particles 91b is not particularly limited as long as it is appropriately set depending on the types of the particles 91a and the particles 91b. For example, the frequency range is 30 kHz to 100 kHz. It is preferable to be within the range. Depending on the type of particle 9 la and particle 9 lb, in the low frequency region below 30 kHz, particle 91a and particle 91b are both subjected to p-DEP force, and in the high frequency region above 100 kHz, particle 91a and particle 91b Since both 1S receive n-DEP forces, separation in these frequency ranges may not be possible.
[0244] 上記 DEPモードにより粒子 91aと粒子 91bとを分離後、 TWDモードに信号を切り 替えると、図 18 (b)に示すように、浮上した粒子 91aのみ力 泳動レーン 3末端の注 入'排出孔 5の方向に搬送される。粒子 91bは TWD信号を与えても第 1電極 41のェ ッジ部にトラップされたままとなる。 TWDモードで粒子 91aを搬送中、重力の影響に より浮上高が低くなつた場合は、再び DEP信号を上記第 1電極列並びに第 2電極列 に印加することで、この浮上高が低くなつた粒子 91aを、再度浮上させることができる  [0244] After separating the particles 91a and 91b by the above DEP mode, when the signal is switched to the TWD mode, as shown in Fig. 18 (b), only the floating particle 91a is injected at the end of the electrophoresis lane 3 ' It is conveyed in the direction of the discharge hole 5. The particles 91b remain trapped in the edge portion of the first electrode 41 even when the TWD signal is given. If the flying height is lowered due to the influence of gravity while transporting the particles 91a in TWD mode, the flying height is lowered by applying the DEP signal to the first electrode row and the second electrode row again. Particle 91a can be lifted again
[0245] 本実施の形態によれば、このように、 DEP信号と TWD信号とを適当に切り替えるこ とにより、懸濁液 (泳動媒体 90)から、粒子 9 lbよりも誘電率が低い(より厳密には、比 誘電率 )が溶媒 92の比誘電率(ε )よりも低い)粒子 91aだけを分離搬送するこ p m [0245] According to the present embodiment, the DEP signal and the TWD signal can be appropriately switched in this way. From the suspension (electrophoresis medium 90) only the particles 91a that have a dielectric constant lower than that of 9 lb particles (more precisely, the relative dielectric constant) is lower than the relative dielectric constant (ε) of solvent 92). Separate transport pm
とができる。上記溶媒 92としては、例えば生理食塩水が用いられる力 本実施の形 態は、これに限定されるものではない。  You can. As the solvent 92, for example, a force in which physiological saline is used. The present embodiment is not limited to this.
[0246] なお、これら粒子 91 (粒子 91a ' 91b)は、上記誘電泳動パネル 10に注入する前に 蛍光色素で装飾することが望ましい。泳動中の粒子 91の挙動は、例えば、上記第 1 電極 41または第 2電極 42の上方 (透明電極部 (観察領域) )から、光学顕微鏡および CCDカメラ (光学系 80)で観察することができる。  [0246] It is desirable that these particles 91 (particles 91a and 91b) are decorated with a fluorescent dye before being injected into the dielectrophoresis panel 10. The behavior of the particles 91 during electrophoresis can be observed, for example, from above the first electrode 41 or the second electrode 42 (transparent electrode portion (observation region)) with an optical microscope and a CCD camera (optical system 80). .
[0247] また、一般的に、泳動レーン 3に注入する溶媒 92の比誘電率( ε )が、保護膜 (下 面保護膜 7および上面保護膜 8)の比誘電率に比べて大き!/、場合、溶媒の比誘電率 ( ε )は、できるだけ小さい方が、泳動媒体 90に電界が印加され易い。さらに、保護 膜 (下面保護膜 7および上面保護膜 8)の厚さは薄い方が、泳動媒体 90に電界が印 加され易い。  [0247] In general, the relative dielectric constant (ε) of the solvent 92 injected into the electrophoresis lane 3 is larger than the relative dielectric constant of the protective film (the lower protective film 7 and the upper protective film 8)! / In this case, when the relative dielectric constant (ε) of the solvent is as small as possible, an electric field is more easily applied to the electrophoresis medium 90. Furthermore, the thinner the protective films (the lower protective film 7 and the upper protective film 8), the easier the electric field is applied to the migration medium 90.
[0248] また、粒子 91の種類にもよる力 上記したように直径 10 m程度の粒子 91を分離 、搬送する場合、例えば、第 1電極列および第 2電極列がともに櫛型電極であり、力 つ、電極幅(L)および電極間隔(S)が、ともに約30 111(し73 = 30 111)でぁるとき 、粒子 91 (粒子 91a' 91b)の分離および搬送を効果的に行うことができる。なお、上 記電極幅 (L)および電極間隔(S)の何れか一方もしくは両方が 30 μ mよりも小さ ヽ 場合でも粒子 91 (粒子 91a' 91b)の分離、搬送は可能である。し力しながら、この場 合、泳動媒体 90に力かる電界が弱くなり、その結果、粒子 91、特に粒子 91a (泳動 粒子)が受ける誘電泳動力も弱くなるおそれがある。特に好適な条件としては、例え ば、上記泳動レーン 3のレーン高さが 40 m (具体的には、レーン高さが 40 mであ り、レーン幅が 8mm)であるとき、溶媒 92の比誘電率( ε )力 ε = 50であり、保護  [0248] In addition, when the particles 91 having a diameter of about 10 m are separated and transported as described above, for example, both the first electrode row and the second electrode row are comb-shaped electrodes, When the electrode width (L) and electrode spacing (S) are both approximately 30 111 (73 = 30 111), the separation and transfer of particles 91 (particles 91a '91b) should be performed effectively. Can do. Note that even when one or both of the electrode width (L) and the electrode interval (S) is smaller than 30 μm, the particles 91 (particles 91a '91b) can be separated and transported. However, in this case, the electric field applied to the migration medium 90 is weakened, and as a result, the dielectrophoretic force applied to the particles 91, particularly the particles 91a (electrophoretic particles) may be weakened. Particularly suitable conditions include, for example, when the lane height of migration lane 3 is 40 m (specifically, the lane height is 40 m and the lane width is 8 mm), the ratio of solvent 92 Dielectric constant (ε) force ε = 50, protection
m m  m m
膜 (下面保護膜 7および上面保護膜 8)の厚さが 1 mである。なお、上記レーン高さ は、前記したように、シール材に含まれるスぺーサ(間隔保持材)により制御すること ができる。  The thickness of the films (the lower protective film 7 and the upper protective film 8) is 1 m. Note that, as described above, the lane height can be controlled by the spacer (spacing holding material) included in the sealing material.
[0249] 本実施の形態によれば、上記したように、上記泳動レーン 3に注入された泳動媒体 90からなる泳動媒体層の上下に各々配置され、かつ、第 1電極 41と第 2電極 42とが それぞれ平面的に重畳するように配置された両電極列力 上記泳動媒体層に高周 波が印加されるので、一方の電極列しカゝ使用しない場合と比較して、安定した誘電 泳動挙動を得ることができるとともに、駆動電圧を上げずに誘電泳動力を大きくする ことが可能になる。 [0249] According to the present embodiment, as described above, the first electrode 41 and the second electrode 42 are respectively disposed above and below the migration medium layer composed of the migration medium 90 injected into the migration lane 3. Toga Both electrode array forces arranged so as to overlap each other in a plane Since a high frequency is applied to the electrophoresis medium layer, a stable dielectrophoretic behavior is achieved compared to the case where one electrode array is not used. In addition, the dielectrophoretic force can be increased without increasing the driving voltage.
[0250] すなわち、本実施の形態によれば、上記したように、上下の基板に位置し、互いに 畳重する電極に、それぞれ同位相の高周波を印加することにより、駆動電圧を上げ ずに粒子 91に泳動もしくは滞留に十分な誘電泳動力を与えることができる。  That is, according to the present embodiment, as described above, by applying high-frequency waves of the same phase to the electrodes positioned on the upper and lower substrates and overlapping each other, the particles can be produced without increasing the driving voltage. 91 can be provided with a sufficient dielectrophoretic force for migration or retention.
[0251] また、上下各々の電極列に、位相や振幅等の条件が異なる高周波を印加すること ができるので、一方の電極列しか使用しない場合と比較して、より効率的に泳動挙動 を制御することができる。また、本実施の形態によれば、上記一方の電極列しか使用 しない場合と比較して、より複雑な泳動挙動を制御することも可能となる。  [0251] In addition, since high frequencies with different conditions such as phase and amplitude can be applied to the upper and lower electrode rows, the behavior of electrophoresis can be controlled more efficiently than when only one electrode row is used. can do. In addition, according to the present embodiment, it is possible to control more complicated electrophoretic behavior as compared with the case where only one of the electrode arrays is used.
[0252] 例えば、第 1電極列と第 2電極列とにおいて、図 18 (a) · (b)に示したように、各電極 列内で互いに隣接し合う電極には各々異なる位相の高周波を印加するとともに、上 記泳動レーン 3 (泳動媒体層)を介して互いに重畳する位置に配置された電極には 各々同じ位相の高周波を印加することで、泳動媒体 90に対して上下方向から対称 的な電界をかけることが可能となり、強い誘電泳動力を得ることができる。この際、各 電極列内で互いに隣接し合う電極に対し、順次 πずつ位相がずれるように高周波を 印加することで、粒子 91の浮揚力の制御を効率良く行うことができる。また、各電極 列内で互いに隣接し合う電極に対し、順次 π Ζ2ずつ位相がずれるように高周波を 印加することで、浮上 (浮揚)した粒子 91の搬送を効率良く行うことができる。  For example, in the first electrode row and the second electrode row, as shown in FIGS. 18 (a) and (b), the electrodes adjacent to each other in each electrode row have high frequencies having different phases. In addition to the application, high frequency waves of the same phase are applied to the electrodes arranged at positions overlapping each other via the above-described electrophoresis lane 3 (electrophoresis medium layer), so that they are symmetrical with respect to the electrophoresis medium 90 from above and below. It is possible to apply a strong electric field, and a strong dielectrophoretic force can be obtained. At this time, the levitation force of the particles 91 can be efficiently controlled by applying a high frequency so that the phases are sequentially shifted by π to the electrodes adjacent to each other in each electrode row. Further, by applying a high frequency so that the phase is sequentially shifted by ππ2 to the electrodes adjacent to each other in each electrode row, the floating (floating) particles 91 can be efficiently conveyed.
[0253] なお、本実施の形態では、図 18 (a) · (b)に示すように、 DEPモードで粒子 91a' 91 bの分離を行った後、 TWDモードにより、浮上している粒子 9 laのみを搬送する場合 を例に挙げて説明を行った力 本実施の形態は、これに限定されるものではない。本 実施の形態において、上記両モードはそれぞれ単独でも使用が可能である。例えば 、流路 (泳動流路)すなわち泳動レーン 3の微細化等の影響により、粒子 91に、重力 よりも誘電泳動力や浮力が大きく影響する場合、 TWD信号のみを与えることにより、 粒子 91を搬送することができる。  In this embodiment, as shown in FIGS. 18 (a) and 18 (b), after separating particles 91a '91b in DEP mode, particles floating in TWD mode 9 The force described by taking the case of conveying only la as an example This embodiment is not limited to this. In the present embodiment, both of the above modes can be used alone. For example, if the dielectrophoretic force or buoyancy is greater than the gravity due to the influence of the flow path (electrophoresis flow path), that is, the migration lane 3, and the like, the particle 91 is changed by giving only the TWD signal. Can be transported.
[0254] また、本実施の形態によれば、上記第 1電極列および第 2電極例の何れか一方の 電極列に電圧を印加する場合と、上記両電極列に電圧を印加する場合とを、同一の 実験中に使い分けることができる。これにより、駆動電圧を変えることなく誘電泳動力 を調節することができる。 [0254] Also, according to the present embodiment, one of the first electrode array and the second electrode example is described. The case where voltage is applied to the electrode rows and the case where voltage is applied to both electrode rows can be used separately in the same experiment. Thereby, the dielectrophoretic force can be adjusted without changing the driving voltage.
[0255] また、本実施の形態でも、前記実施の形態 1〜7同様、上記したように泳動レーン 3 を並列に複数個設け、さらに、各泳動レーン 3に共通で作用する泳動電極 (本実施の 形態では第 1電極 41および第 2電極 42)を設けること、すなわち、上記第 1電極 41お よび第 2電極 42 (泳動電極アレイ 41Α·42Α)を、各泳動レーン 3に共通で設けること で、泳動制御電圧を、上記泳動電極アレイ 41Α·42Αに、これら泳動電極アレイ毎に それぞれ一括して入力することができる。このように、本実施の形態によれば、互いに 平行に設けられた各泳動レーン 3に共通の泳動電極を備えた各櫛型電極 (泳動電極 アレイ 41A.42A)に一種類の信号を入力すると、複数の泳動レーン 3に同時に電界 を印加することができる。従って、本実施の形態によれば、複数の試料 (泳動媒体 90 )の泳動制御を、一括して同時に行うことができる。  [0255] Also in this embodiment, a plurality of electrophoresis lanes 3 are provided in parallel as described above in the same manner as in the first to seventh embodiments, and the electrophoresis electrodes that act in common on each electrophoresis lane 3 (this embodiment In this embodiment, the first electrode 41 and the second electrode 42) are provided, that is, the first electrode 41 and the second electrode 42 (the electrophoresis electrode array 41Α and 42Α) are provided in common in each electrophoresis lane 3. The migration control voltage can be input to the migration electrode arrays 41 and 42 in a batch for each of the migration electrode arrays. As described above, according to the present embodiment, when one type of signal is input to each comb electrode (electrophoresis electrode array 41A.42A) having a common electrophoresis electrode in each electrophoresis lane 3 provided in parallel to each other. An electric field can be simultaneously applied to a plurality of electrophoresis lanes 3. Therefore, according to the present embodiment, migration control of a plurality of samples (electrophoresis medium 90) can be performed simultaneously in a lump.
[0256] このため、本実施の形態によれば、実験環境の煩雑な設定を伴うことなぐ複数種 の異なる試料 (例えば溶媒の比誘電率や粘度が異なる試料、あるいは、溶媒中の粒 子の物性値 (比誘電率等)が異なる試料等)を、同一条件で同時に被泳動条件下に 置くことが可能であり、試験条件に対する応用範囲が広ぐ様々な試験条件に適応 する誘電泳動チップおよび誘電泳動装置、さらには誘電泳動システムを実現すること が可能である。  [0256] Therefore, according to the present embodiment, a plurality of different types of samples (for example, samples having different relative dielectric constants and viscosities of solvents, or particles in the solvent without complicated setting of the experimental environment). Samples with different physical properties (such as relative dielectric constants) can be placed under the same conditions under the same migration conditions, and the dielectrophoresis chip that can be applied to various test conditions with a wide range of application to the test conditions. It is possible to realize a dielectrophoresis apparatus and further a dielectrophoresis system.
[0257] また、本実施の形態によれば、このように複数の泳動レーン 3を有する誘電泳動パ ネル 10 (誘電泳動チップ)を使用することで、溶媒 92 (泳動媒体 90)の種類を泳動レ ーン 3毎に変更し、特定の複数の粒子を同時に選別することや、溶媒 92 (泳動媒体 9 0)は同一で、泳動レーン 3毎に電極形状を変えることで特定の複数の粒子 91を同時 に選別することも可能であり、複数粒子の選別を効率良く行うことが可能になる。した がって、本実施の形態によれば、幅広い用途に対応した誘電泳動チップおよび誘電 泳動装置、さらには誘電泳動システム 85を実現することが可能である。  [0257] Further, according to the present embodiment, by using the dielectrophoresis panel 10 (dielectrophoresis chip) having the plurality of electrophoresis lanes 3 as described above, the type of the solvent 92 (electrophoresis medium 90) can be migrated. By changing each lane 3 and selecting a plurality of specific particles at the same time, or by using the same solvent 92 (electrophoresis medium 90) and changing the electrode shape for each lane 3, a specific plurality of particles 91 It is also possible to sort the particles at the same time, which makes it possible to efficiently sort multiple particles. Therefore, according to the present embodiment, it is possible to realize a dielectrophoresis chip and a dielectrophoresis device that correspond to a wide range of applications, and further a dielectrophoresis system 85.
[0258] なお、本実施の形態では、上記第 1電極 41および第 2電極 42 (泳動電極アレイ 41 Α-42Α)力 各泳動レーン 3· ··を跨ぐように、各泳動レーン 3· ··に対して垂直方向に 設けられている場合を例に挙げて説明した。し力しながら、本実施の形態はこれに限 定されるものではなぐ同一の電極(泳動電極アレイ 41A)が、複数の泳動レーン 3· ·· に亘つて延設されており、各泳動レーン 3に対して共通して作用しさえすればよぐ必 ずしも上記第 1電極 41および第 2電極 42が上記各泳動レーン 3に対して垂直方向に 延設さえている必要はない。但し、粒子の比較観察のし易さから、各泳動レーン 3に おける観察領域は、互いに隣接して設けられていることが好ましい。このため、上記 第 1電極 41および第 2電極 42は、各泳動レーン 3· · ·に対して垂直方向に設けられて 、ることが好まし!/、。 In the present embodiment, the first electrode 41 and the second electrode 42 (electrophoresis electrode array 41 Α-42Α) force each electrophoresis lane 3... Across each electrophoresis lane 3. Perpendicular to The case where it is provided has been described as an example. However, the present embodiment is not limited to this, and the same electrode (electrophoresis electrode array 41A) is extended over a plurality of electrophoresis lanes 3. The first electrode 41 and the second electrode 42 do not necessarily need to extend in the vertical direction with respect to the migration lanes 3 as long as they act in common with respect to the third lane 3. However, from the viewpoint of ease of comparative observation of particles, it is preferable that the observation regions in each electrophoresis lane 3 are provided adjacent to each other. Therefore, it is preferable that the first electrode 41 and the second electrode 42 are provided in a direction perpendicular to the respective electrophoresis lanes 3...
[0259] また、本実施の形態では、上記泳動レーン 3を介して 2つの電極列が、上記泳動レ ーンを介して互いに対向(重畳)して設けられている場合を例に挙げて説明したが、 本実施の形態はこれに限定されるものではなぐ前記したように、上記第 1電極 41お よび第 2電極 42 (泳動電極アレイ 41A.42A)力 各泳動レーン 3· ··を跨ぐように複数 の泳動レーン 3に渡って延設されてさえいれば、上記泳動レーン 3を介してさらに 2つ の電極列(第 3電極列および第 4電極列)が設けられて 、る構成を有して 、てもよ!/、。 すなわち、上記泳動レーン 3の天壁、底壁、両側壁に、それぞれ独立して別個の電 極列が形成されている構成を有していてもよい。これにより、誘電性物質 (例えば粒 子 91)の誘電泳動の挙動をより一層安定させることが可能であり、より効率的な誘電 性物質の搬送を行うことができるとともに、より複雑な泳動挙動を制御することも可能 である。  [0259] Also, in the present embodiment, a case where two electrode arrays are provided so as to face each other (overlap) via the electrophoresis lane 3 will be described as an example. However, as described above, the present embodiment is not limited to this. The first electrode 41 and the second electrode 42 (electrophoresis electrode array 41A.42A) force straddle each electrophoresis lane 3. As long as it extends over the plurality of migration lanes 3 as described above, two electrode rows (third electrode row and fourth electrode row) are further provided via the migration lane 3. Have it! / In other words, the electrophoresis lane 3 may have a configuration in which separate electrode arrays are formed on the top wall, bottom wall, and both side walls of the lane 3, respectively. This makes it possible to further stabilize the dielectrophoretic behavior of the dielectric material (for example, the particle 91), to transport the dielectric material more efficiently, and to achieve more complicated electrophoretic behavior. It is also possible to control.
[0260] また、本実施の形態では、前記したように、上記泳動レーン 3形成領域にぉ 、て上 記第 1電極 41· ··と第 2電極 42· ··とが平面視でぴったりと重なるように、上記第 1電極 41および第 2電極 42の電極形状、電極幅、並びに電極間隔を同一条件にて形成す る場合を例に挙げて説明した。し力しながら、本実施の形態は、これに限定されるも のではなぐこれら第 1電極 41および第 2電極 42の形状、電極幅、電極間隔、および 電極長 (配線長)等の条件は、分析対象となる粒子 (つまり、泳動媒体 90中の粒子 9 1)の大きさ、並びに、目的とする操作 (分離、収集、搬送等)等に応じて適宜設定す ればよい。また、これら第 1電極 41および第 2電極 42の膜厚や電極材料もまた適宜 設定可能であり、特に限定されるものではない。 [0261] また、本実施の形態では、上記したように、第 1電極列内で互いに隣接し合う任意 の 2本の電極を、各々 41x, 41x+ lとし、これら 2本の電極 41χ·41χ+ 1に重畳する 位置に配置された、第 2電極列内の 2本の電極を、各々 42χ, 42χ+ 1とした場合に、 上記下側基板 1と上側基板 2とが、上記電極 41χ·41χ+ 1と、上記電極 42χ·42χ+ 1とが上記泳動レーン 3形成領域において各々ぴったりと重なるように対向配置され ている場合を例に挙げて説明した力 本実施の形態はこれに限定されるものではな い。 In the present embodiment, as described above, the first electrode 41... And the second electrode 42. The case where the electrode shapes, electrode widths, and electrode intervals of the first electrode 41 and the second electrode 42 are formed under the same conditions so as to overlap is described as an example. However, the present embodiment is not limited to this, and the conditions such as the shape of the first electrode 41 and the second electrode 42, the electrode width, the electrode interval, and the electrode length (wiring length) are not limited thereto. The size of the particles to be analyzed (that is, the particles 91 in the electrophoresis medium 90), the target operation (separation, collection, transportation, etc.), etc. may be set as appropriate. The film thicknesses and electrode materials of the first electrode 41 and the second electrode 42 can also be set as appropriate, and are not particularly limited. [0261] In the present embodiment, as described above, arbitrary two electrodes adjacent to each other in the first electrode row are 41x and 41x + l, respectively, and these two electrodes 41χ · 41χ + When the two electrodes in the second electrode array arranged at the position overlapping 1 are 42χ and 42χ + 1, respectively, the lower substrate 1 and the upper substrate 2 are connected to the electrodes 41χ · 41χ. +1 and the force described with reference to the case where the electrodes 42χ · 42χ + 1 are arranged to face each other so as to overlap each other in the migration lane 3 formation region This embodiment is limited to this It is not a thing.
[0262] 上記下側基板 1と上側基板 2とは、図 14に示したように、上記泳動レーン 3形成領 域において、上記第 1電極 41 · · ·と第 2電極 42· · ·とが、平面視で、理想的には完全に 重なっていることが望ましい。し力しながら、上記下側基板 1と上側基板 2とを貼り合わ せる際の両基板のずれを考慮し、上記泳動レーン 3形成領域において、上記電極 4 lx · 41χ + 1と上記電極 42χ ·42χ+ 1とが平面視でその少なくとも一部が重畳するよ うに上記下側基板 1と上側基板 2とが対向配置されていれば、上記下側基板 1と上側 基板 2とは、上記泳動レーン 3形成領域において、上記電極 41χ·41χ+ 1と上記電 極 42χ·42χ+ 1とが、各々、一部重畳する範囲内で互いにずれた状態で対向配置さ れていても構わない。  [0262] As shown in Fig. 14, the lower substrate 1 and the upper substrate 2 have the first electrode 41 ··· and the second electrode 42 ··· in the migration lane 3 formation region. Ideally, it should be completely overlapped in plan view. In consideration of the displacement of both substrates when the lower substrate 1 and the upper substrate 2 are bonded together, the electrodes 4 lx 41χ + 1 and the electrodes 42χ If the lower substrate 1 and the upper substrate 2 are arranged to face each other so that at least a part thereof overlaps with 42χ + 1 in a plan view, the lower substrate 1 and the upper substrate 2 are separated from each other in the migration lane. (3) In the formation region, the electrodes 41χ · 41χ + 1 and the electrodes 42χ · 42χ + 1 may be arranged to face each other while being shifted from each other within a partially overlapping range.
[0263] 具体的には、上記第 1電極 41と第 2電極 42とは、第 1電極列における電極 41χと第 2電極列における電極 42χの一部とが畳重する範囲内で、平面的に位置がずれてい ても構わない。但し、上記下側基板 1と上側基板 2とは、上記泳動レーン 3における一 方の注入'排出孔 5に近い側から上記第 1電極列内の電極を順に 41χ, 41χ+ 1とし 、第 2電極列内の電極を順に 42χ, 42χ+ 1としたときに、例えば、電極 42χ力 対向 する電極 41χの隣の電極 41χ+ 1の一部に重畳すると、電界密度の減少を惹起する という問題や、各々の電極に、印加したい位相とは異なる位相を与えてしまい、予想 できる誘電泳動挙動が得られない、あるいは、回路基板に悪影響を及ぼす等の問題 を生じること力も望ましくない。したがって、上記位置ずれは、 X番目の電極 42χが、 上記泳動レーン 3を挟んで設けられた X番目の電極 41χの隣の電極 41χ+ 1の一部 に重畳しな 、範囲内に抑えることが望ま 、。  [0263] Specifically, the first electrode 41 and the second electrode 42 are planar, as long as the electrode 41χ in the first electrode row overlaps with a part of the electrode 42χ in the second electrode row. It does not matter if the position is shifted. However, the lower substrate 1 and the upper substrate 2 are arranged such that the electrodes in the first electrode array are sequentially 41χ, 41χ + 1 from the side closer to one injection / discharge hole 5 in the electrophoresis lane 3, When the electrodes in the electrode array are sequentially 42χ, 42χ + 1, for example, if the electrode is overlapped with a part of the electrode 41χ + 1 adjacent to the electrode 41χ opposite to the electrode 42χ force, the electric field density may decrease. Also, it is not desirable that each electrode is given a phase different from the phase to be applied, so that a predictable dielectrophoretic behavior cannot be obtained or a problem such as adversely affecting the circuit board is caused. Therefore, the positional shift is suppressed within the range in which the Xth electrode 42χ does not overlap with a part of the electrode 41χ + 1 adjacent to the Xth electrode 41χ provided across the migration lane 3. Hope.
[0264] また、本実施の形態では、前記したように、泳動レーン壁として間隔保持層 43 (シ ール材層)を、下面保護膜 7が形成された下側基板 1上、つまり、上記下面保護膜 7 上に形成するものとした力 本実施の形態は、これに限定されるものではなぐ上記 下面保護膜 7および上面保護膜 8形成時に、上記下面保護膜 7および上面保護膜 8 における、上記間隔保持層 43との重畳領域における一部あるいは全部を除去して おいてもよい。このような構造にすることにより、上記下面保護膜 7および上面保護膜 8とシール材との密着性が悪 ヽ場合でも、十分な接着性を得ることができる。 [0264] Further, in the present embodiment, as described above, the spacing layer 43 (see FIG. This is not limited to this embodiment. The present embodiment is not limited to this, and the force is to be formed on the lower substrate 1 on which the lower surface protective film 7 is formed, that is, on the lower surface protective film 7. When the lower surface protective film 7 and the upper surface protective film 8 are formed, a part or all of the overlapping region of the lower surface protective film 7 and the upper surface protective film 8 with the spacing layer 43 may be removed. By adopting such a structure, even when the adhesion between the lower surface protective film 7 and the upper surface protective film 8 and the sealing material is poor, sufficient adhesion can be obtained.
[0265] また、本実施の形態に力かる上記誘電泳動パネル 10では、上記したように、上記 下側基板 1および上側基板 2における互いの対向面に、各々、下面保護膜 7および 上面保護膜 8が形成されている場合を例に挙げて説明した。し力しながら、本実施の 形態はこれに限定されるものではなぐ上記下側基板 1および上側基板 2に上記下 面保護膜 7および上面保護膜 8が形成されている必要は必ずしもない。但し、上記下 側基板 1および上側基板 2における互いの対向面、特に、上記泳動レーン 3内にお ける上記第 1電極 41および第 2電極 42上に、これら電極 (泳動電極)を覆う保護膜( 下面保護膜 7および上面保護膜 8)が設けられていることで、泳動する粒子 91 (91a) が上記泳動電極に吸着することを防ぐことができる。よって、上記粒子 91の種類によ つては、上記下側基板 1および上側基板 2に上記下面保護膜 7および上面保護膜 8 が形成されて ヽることが望ま ヽ。  [0265] Further, in the dielectrophoresis panel 10 that is effective in the present embodiment, as described above, the lower surface protective film 7 and the upper surface protective film are formed on the opposing surfaces of the lower substrate 1 and the upper substrate 2, respectively. The case where 8 is formed has been described as an example. However, the present embodiment is not limited thereto, and the lower protective film 7 and the upper protective film 8 are not necessarily formed on the lower substrate 1 and the upper substrate 2. However, a protective film covering these electrodes (electrophoresis electrodes) on the opposing surfaces of the lower substrate 1 and the upper substrate 2, particularly on the first electrode 41 and the second electrode 42 in the electrophoresis lane 3. By providing (the lower surface protective film 7 and the upper surface protective film 8), it is possible to prevent the migrating particles 91 (91a) from adsorbing to the electrophoretic electrode. Therefore, it is desirable that the lower surface protective film 7 and the upper surface protective film 8 are formed on the lower substrate 1 and the upper substrate 2 depending on the kind of the particles 91.
[0266] また、本実施の形態では、上記下側基板 1および上側基板 2として透明基板を使用 するものとした力 本実施の形態は、これに限定されるものではなぐ粒子 91が誘電 泳動力を受ける領域、具体的には、上記泳動レーン 3と上記第 1電極 41および第 2 電極 42 (泳動電極アレイ 41Α·42Α)とが重畳する領域 (観察領域)において泳動レ ーン 3内の試料 (泳動媒体 90)が観察可能に設けられていればよい。具体的には、 例えば、上記誘電泳動パネル 10は、上記下側基板 1および上側基板 2の何れか一 方の基板のみが透明基板で形成され、他方の基板における、上記泳動レーン 3と上 記第 1電極 41および第 2電極 42 (泳動電極アレイ 41Α·42Α)とが重畳する領域 (観 察領域)に観察窓(開口部ある 、は透明領域)が設けられて 、る構成を有して 、ても よい。また、上記誘電泳動パネル 10は、上記下側基板 1および上側基板 2が、両基 板における、上記泳動レーン 3と上記第 1電極 41および第 2電極 42 (泳動電極アレイ 41A-42A)とが重畳する領域 (観察領域)にそれぞれ透明領域 (何れか一方は開口 部であってもよい)が設けられた非透明基板 (半透明あるいは不透明な基板)からな る構成を有していてもよい。 [0266] Further, in the present embodiment, the force is assumed to use a transparent substrate as the lower substrate 1 and the upper substrate 2. In the present embodiment, the particle 91 is not limited to this. The sample in the electrophoresis lane 3 in the area (observation area) where the electrophoresis lane 3 overlaps the first electrode 41 and the second electrode 42 (electrophoresis electrode array 41Α · 42Α). (Migration medium 90) may be provided so as to be observable. Specifically, for example, in the dielectrophoresis panel 10, only one of the lower substrate 1 and the upper substrate 2 is formed of a transparent substrate, and the electrophoresis lane 3 and the above in the other substrate are described above. An observation window (opening or transparent region) is provided in a region (observation region) where the first electrode 41 and the second electrode 42 (electrophoresis electrode array 41Α · 42Α) overlap each other. May be. Further, the dielectrophoresis panel 10 includes the lower substrate 1 and the upper substrate 2 in which the electrophoresis lane 3, the first electrode 41, and the second electrode 42 (electrophoresis electrode array) on both substrates. 41A-42A) is composed of a non-transparent substrate (semi-transparent or opaque substrate) provided with transparent regions (either one may be an opening) in the region (observation region) that overlaps with (41A-42A). You may have.
[0267] 本実施の形態によれば、上記何れの構成においても、透過光による観察、撮影 (透 過モードによる観察、撮影)が可能である。  [0267] According to this embodiment, in any of the configurations described above, observation and imaging with transmitted light (observation and imaging with transmission mode) are possible.
[0268] 本実施の形態によれば、上記したように透過モードを使用することで、投影による観 察システムの構築が可能となる。また、透過モードは、蛍光観察やフィルタリングを多 用する観察に非常に有効である。  [0268] According to the present embodiment, it is possible to construct an observation system by projection by using the transmission mode as described above. In addition, the transmission mode is very effective for observation using fluorescence and filtering.
[0269] 但し、本実施の形態は、これに限定されるものではなぐ上記下側基板 1および上 側基板 2の何れか一方の基板が透明基板で形成され、他方の基板が非透明基板 ( 半透明あるいは不透明な基板)で形成されている構成を有していてもよぐ上記第 1 電極 41および第 2電極 42の何れか一方の電極(泳動電極)が透明電極で形成され 、他方の電極 (泳動電極)が、金属電極等の非透明電極で形成されている構成を有 していてもよい。この場合、上記非透明電極による反射 (落射)光 (落射モード)を用 いること〖こより、電極領域での観察、撮影 (光学撮像)が可能である。  However, this embodiment is not limited to this, and one of the lower substrate 1 and the upper substrate 2 is formed of a transparent substrate, and the other substrate is a non-transparent substrate ( Either the first electrode 41 or the second electrode 42 (electrophoresis electrode) which may have a configuration formed of a semi-transparent or opaque substrate) is formed of a transparent electrode and the other electrode The electrode (electrophoresis electrode) may have a configuration formed of a non-transparent electrode such as a metal electrode. In this case, observation and photographing (optical imaging) in the electrode region are possible by using reflected (epi-illumination) light (epi-illumination mode) by the non-transparent electrode.
[0270] すなわち、本実施の形態によれば、上記したように、試料に対し、泳動レーン 3を挟 んで設けられた別個の電極列から、それぞれ交流電圧により形成された電界を印加 することで、泳動レーンの片面からのみ上記電界が印加される場合と比較して、上記 誘電性物質の安定した誘電泳動挙動を得ることができ、誘電性物質の効率的な搬送 (誘電泳動)を行うことができる。よって、上記の構成を採用する場合であっても、従来 よりも、試験条件に対する応用範囲が広げることができるとともに、観察環境を改善す ることがでさる。  [0270] That is, according to the present embodiment, as described above, an electric field formed by an alternating voltage is applied to each sample from separate electrode arrays provided with the electrophoresis lane 3 interposed therebetween. Compared to the case where the electric field is applied only from one side of the electrophoresis lane, the dielectric substance can have a stable dielectrophoretic behavior, and the dielectric substance can be efficiently transported (dielectrophoresis). Can do. Therefore, even when the above configuration is adopted, the application range for the test conditions can be expanded and the observation environment can be improved as compared with the conventional case.
[0271] また、本実施の形態において、上記下側基板 1および上側基板 2を透明基板にて 形成するか、あるいは、非透明基板を用いる場合であっても、上記泳動レーン 3の一 部に観察窓 (透明領域)を設ける等して観察領域を形成する場合、上記第 1電極 41 および第 2電極 42は、ともに、金属電極等の非透明電極で形成されていてもよい。  [0271] Further, in the present embodiment, even when the lower substrate 1 and the upper substrate 2 are formed of a transparent substrate or a non-transparent substrate is used, a part of the electrophoresis lane 3 is used. When the observation region is formed by providing an observation window (transparent region) or the like, both the first electrode 41 and the second electrode 42 may be formed of a non-transparent electrode such as a metal electrode.
[0272] 上記金属材料としては、例えば、アルミニウム (A1)、チタン (Ti)、モリブデン (Mo)、 白金 (Pt)、金 (Au)等の金属、あるいはこれら金属を含む合金等の金属材料を使用 することができる。 [0272] Examples of the metal material include metals such as aluminum (A1), titanium (Ti), molybdenum (Mo), platinum (Pt), and gold (Au), or alloys including these metals. use can do.
[0273] なお、上記金属電極は、上記金属材料を使用し、スパッタ蒸着等により金属膜を形 成し、この金属膜を、フォトリソグラフィを用いて電極形状にパターユングすることによ り形成することができる。  [0273] The metal electrode is formed by using the metal material, forming a metal film by sputter deposition or the like, and patterning the metal film into an electrode shape using photolithography. be able to.
[0274] 但し、前者の場合、上記下側基板 1および上側基板 2の何れか一方の基板が非透 明基板で形成されるか、もしくは上記泳動レーン 3 (流路)の片面に光学的に非透明 な電極が形成されていることで、 CCD等の撮像装置 (撮像系 80)の設置力 上記泳 動レーン 3における何れか一方の基板側に限られる。  [0274] However, in the former case, one of the lower substrate 1 and the upper substrate 2 is formed of a non-transparent substrate, or optically disposed on one side of the electrophoresis lane 3 (flow path). Since the non-transparent electrode is formed, the installation power of the imaging device (imaging system 80) such as a CCD is limited to one of the substrates in the swimming lane 3 described above.
[0275] また、後者の場合のように、上記泳動レーン 3 (流路)の両面 (上下面)に非透明な 電極を形成する場合、少なくとも電極領域での光学撮像は不可能となる。  [0275] Further, as in the latter case, when non-transparent electrodes are formed on both surfaces (upper and lower surfaces) of the electrophoresis lane 3 (flow path), optical imaging at least in the electrode region becomes impossible.
[0276] このため、上記第 1電極 41および第 2電極 42のうち少なくとも一方の電極は、粒子 91が誘電泳動力を受ける領域、具体的には、上記泳動レーン 3と、上記第 1電極 41 および第 2電極 42 (泳動電極アレイ 41Α·42Α)とが重畳する領域の少なくとも一部 の領域 (少なくとも観察領域)に相当する部分 (領域)が透明電極により構成されてい ることが望ましい。  [0276] Therefore, at least one of the first electrode 41 and the second electrode 42 is an area where the particles 91 receive a dielectrophoretic force, specifically, the electrophoresis lane 3 and the first electrode 41. It is desirable that a portion (region) corresponding to at least a part of the region (at least the observation region) of the region where the second electrode 42 (electrophoresis electrode array 41Α · 42 重 畳) overlaps is constituted by a transparent electrode.
[0277] 但し、配線抵抗、寄生容量の観点からは、上記泳動レーン 3の両面全ての配線、す なわち、上記第 1電極 41および第 2電極 42がともに金属配線 (金属電極)である場合 に、最も大きい誘電泳動力が得られる。このため、制限された電圧で最大限の誘電 泳動力を得たい場合、まず泳動レーン 3の少なくとも一部に上記泳動電極アレイ 41 Α ·42Αが透明電極カゝらなる領域を設けた基板 (誘電泳動パネル 10)により誘電泳動 挙動を確認した後、上記したように上記泳動レーン 3の両面全ての配線が金属配線 ( 金属電極)にて形成された両面金属電極基板 (誘電泳動パネル 10)を利用してもよ い。この場合、例えば、予め上記したように泳動レーン 3の少なくとも一部に上記泳動 電極アレイ 41Α·42Αが透明電極力もなる領域を設けた基板 (誘電泳動パネル 10) を用いて被観察物の誘電泳動挙動を確認し、挙動観察よりも被観察物の滞留 ·搬送 が目的の実験等は、上記両面金属電極基板 (誘電泳動パネル 10)にて対象物を滞 留'搬送してもよい。  [0277] However, from the viewpoint of wiring resistance and parasitic capacitance, all wiring on both sides of the migration lane 3, that is, the first electrode 41 and the second electrode 42 are both metal wiring (metal electrode). In addition, the largest dielectrophoretic force can be obtained. For this reason, to obtain the maximum dielectrophoretic force at a limited voltage, first, a substrate (dielectric material) in which at least a part of the electrophoretic lane 3 is provided with a region where the electrophoretic electrode arrays 41 Α and 42 ゝ are formed as transparent electrode caps. After confirming the dielectrophoretic behavior with the electrophoresis panel 10), use the double-sided metal electrode substrate (dielectrophoresis panel 10) in which all wirings on both sides of the electrophoresis lane 3 are formed with metal wirings (metal electrodes) as described above. You can do it. In this case, for example, as described above, dielectrophoresis of an object to be observed using a substrate (dielectrophoresis panel 10) in which at least a part of the electrophoresis lane 3 is provided with a region in which the electrophoresis electrode arrays 41Α and 42Α also have a transparent electrode force is provided. In an experiment in which the behavior is confirmed and the object is to be retained and transported rather than the behavior observation, the object may be stagnated and transported by the double-sided metal electrode substrate (dielectrophoresis panel 10).
[0278] 〔実施の形態 9〕 本実施の形態について主に図 14、図 19、図 20に基づいて説明する。なお、本実 施の形態では、主に、前記実施の形態 8との相違点について説明するものとし、前記 実施の形態 8で用いた構成要素と同一の機能を有する構成要素には同一の番号を 付し、その説明を省略する。 [Embodiment 9] The present embodiment will be described mainly based on FIG. 14, FIG. 19, and FIG. In the present embodiment, differences from the eighth embodiment will be mainly described, and components having the same functions as those used in the eighth embodiment have the same numbers. The description is omitted.
[0279] 前記実施の形態 8では、主に、上記第 1電極 41および第 2電極 42が、 ITO、 ΖηΟ、 ΙΖΟ等の ヽゎゆる透明電極で構成されて!、る場合を例に挙げて説明した。しかしな がら、一般的に、 ΙΤΟや ΖηΟ、 ΙΖΟ等の透明導電材料の抵抗率は、 102 μ Ω ' cmの オーダーである。これは、アルミニウム(Al、約 2. 7 μ Ω - cm)、金(Au、約 2. 5 Ω · cm)等の金属材料と比較すると 2桁大きい。従って、第 1電極 41および第 2電極 42を 金属電極にて形成する場合と比較して、前記実施の形態 8に示すように同形状の電 極 (配線)をともに透明導電材料で形成する場合、相対的に 1〜2桁高抵抗になって しまう。 [0279] In the eighth embodiment, the first electrode 41 and the second electrode 42 are mainly composed of various transparent electrodes such as ITO, ΖηΟ, and ΙΖΟ! The case has been described as an example. However, in general, the resistivity of transparent conductive materials such as ΙΤΟ, ΖηΟ, and ΙΖΟ is on the order of 10 2 μΩ 'cm. This is two orders of magnitude larger than metal materials such as aluminum (Al, approximately 2.7 μΩ-cm) and gold (Au, approximately 2.5 Ω · cm). Therefore, compared to the case where the first electrode 41 and the second electrode 42 are formed of metal electrodes, the electrodes (wirings) having the same shape are formed of a transparent conductive material as shown in the eighth embodiment. It becomes relatively high resistance by 1 to 2 digits.
[0280] そこで、本実施の形態では、上記第 1電極 41および第 2電極 42 (泳動電極アレイ 4 1A-42A) 1S 部分的に透明電極で形成されている誘電泳動パネル 10を例に挙げ て説明する。  [0280] Therefore, in the present embodiment, the first electrode 41 and the second electrode 42 (electrophoresis electrode array 41A-42A) 1S are exemplified by the dielectrophoresis panel 10 partially formed of transparent electrodes. explain.
[0281] 図 19および図 20は、図 14に示す誘電泳動パネル 10において、第 1電極 41およ び第 2電極 42 (泳動電極アレイ 41Α·42Α)を、部分的に透明電極で形成する場合 における、図 14に示す誘電泳動パネル 10の J J線矢視断面図に相当する。  FIGS. 19 and 20 show the case where the first electrode 41 and the second electrode 42 (electrophoresis electrode array 41 ア レ イ · 42Α) are partially formed of transparent electrodes in the dielectrophoresis panel 10 shown in FIG. 14 corresponds to a cross-sectional view taken along the line JJ of the dielectrophoresis panel 10 shown in FIG.
[0282] 本実施の形態に力かる誘電泳動パネル 10は、図 14に破線で示すように、各泳動 レーン 3と泳動電極アレイ 41A.42Aとが重畳する部分に、各泳動レーン 3内の試料( 泳動媒体 90)を観察 ·撮像 (透過撮影)するための観察領域 9を設けて ヽる。本実施 の形態に力かる誘電泳動パネル 10は、図 19に示すように、観察領域 9における第 1 電極 41が透明電極 41aで構成されており、観察領域 9と重畳しない部分の第 1電極 41には、金属材料 (金属電極 41b)が使用される。また、観察領域 9における第 2電 極 42は透明電極 42aで構成されており、観察領域 9と重畳しない部分の第 2電極 42 には、金属材料 (金属電極 42b)が使用される。  As shown by the broken line in FIG. 14, the dielectrophoresis panel 10 according to the present embodiment has a sample in each electrophoresis lane 3 on a portion where each electrophoresis lane 3 and the electrophoresis electrode array 41A.42A overlap each other. An observation area 9 is provided for observing (imaging (transmission)) the (electrophoretic medium 90). As shown in FIG. 19, in the dielectrophoresis panel 10 according to the present embodiment, the first electrode 41 in the observation region 9 is composed of the transparent electrode 41a, and the first electrode 41 in a portion that does not overlap the observation region 9 For this, a metal material (metal electrode 41b) is used. The second electrode 42 in the observation region 9 is composed of a transparent electrode 42a, and a metal material (metal electrode 42b) is used for the second electrode 42 that does not overlap the observation region 9.
[0283] より具体的には、本実施の形態では、上記第 1電極 41および第 2電極 42として、透 明電極層上に部分的に金属電極層が形成された、二層構造を有する電極 (電極配 線)が使用される。すなわち、本実施の形態にカゝかる第 1電極 41および第 2電極 42 は、これら第 1電極 41および第 2電極 42における観察領域 9と重畳する部分のみが 透明電極 41aまたは透明電極 42aの単層電極 (単層配線)からなり、それ以外の部 分は、透明電極 41aと金属電極 41bとの二層電極(二層配線)、もしくは、透明電極 4 2aと金属電極 42bとの二層電極(二層配線)力らなって!/、る。 [0283] More specifically, in the present embodiment, as the first electrode 41 and the second electrode 42, an electrode having a two-layer structure in which a metal electrode layer is partially formed on a transparent electrode layer. (Electrode arrangement Line) is used. That is, in the first electrode 41 and the second electrode 42 according to the present embodiment, only the portion of the first electrode 41 and the second electrode 42 that overlaps the observation region 9 is a single transparent electrode 41a or transparent electrode 42a. It consists of a layer electrode (single-layer wiring), and the other part is a two-layer electrode consisting of a transparent electrode 41a and a metal electrode 41b (two-layer wiring), or a two-layer electrode consisting of a transparent electrode 42a and a metal electrode 42b. (Two-layer wiring) Get help!
[0284] このように、本実施の形態によれば、各泳動レーン 3と第 1電極 41および第 2電極 4 2 (泳動電極アレイ 41Α·42Α)とが重畳する部分、つまり、各泳動レーン 3内の第 1電 極 41および第 2電極 42 (泳動電極アレイ 41 Α·42Α)の少なくとも一部を透明電極( 透明電極 41aまたは透明電極 42a)のみで構成することで、この透明電極カゝらなる第 1電極 41· ··および第 2電極 42…形成領域を、観察領域 9として使用する。  [0284] Thus, according to the present embodiment, each electrophoresis lane 3 is overlapped with the first electrode 41 and the second electrode 4 2 (electrophoresis electrode array 41Α · 42Α), that is, each electrophoresis lane 3 By forming at least a part of the first electrode 41 and the second electrode 42 (electrophoresis electrode array 41 Α · 42 で) of the transparent electrode (transparent electrode 41a or transparent electrode 42a) alone, The first electrode 41... And the second electrode 42... Formation region are used as the observation region 9.
[0285] 上記透明電極 41a'42aの材料としては、例えば、 ITO、 ΖηΟ、 ΙΖΟ等の透明導電 材料を使用することができる。これら透明導電材料のなかでも、 ΙΤΟが好適に使用さ れる。また、上記金属材料としては、アルミニウム (A1)、チタン (Ti)、モリブデン (Mo) 、白金 (Pt)、金 (Au)等の金属、あるいはこれら金属を含む合金等の金属材料を使 用することができる。  [0285] As the material of the transparent electrodes 41a'42a, for example, a transparent conductive material such as ITO, ΖηΟ, and ΙΖΟ can be used. Among these transparent conductive materials, cocoons are preferably used. In addition, as the metal material, a metal material such as aluminum (A1), titanium (Ti), molybdenum (Mo), platinum (Pt), gold (Au), or an alloy containing these metals is used. be able to.
[0286] なお、本実施の形態でも、上記第 1電極 41および第 2電極 42 (透明電極 41a'42a および金属電極 41b *42b)の電極幅、電極間隔、および電極長(配線長)等の条件 は、特に限定されるものではなぐ分析対象となる粒子 91 (つまり、泳動媒体 90中の 粒子 91)の大きさ、並びに、目的とする操作 (分離、収集、搬送等)等に応じて適宜 設定すればよい。また、上記第 1電極 41および第 2電極 42 (透明電極 41a'42aおよ び金属電極 41b'42b)の膜厚や各電極層における電極材料もまた適宜設定可能で あり、特に限定されるものではない。  In this embodiment, the electrode width, electrode interval, electrode length (wiring length), etc. of the first electrode 41 and the second electrode 42 (transparent electrode 41a'42a and metal electrode 41b * 42b) are also described. The conditions are not particularly limited, and are appropriately determined according to the size of the particle 91 to be analyzed (that is, the particle 91 in the electrophoresis medium 90) and the intended operation (separation, collection, transportation, etc.). You only have to set it. The film thickness of the first electrode 41 and the second electrode 42 (transparent electrode 41a'42a and metal electrode 41b'42b) and the electrode material in each electrode layer can also be set as appropriate, and are particularly limited. is not.
[0287] さらに、上記第 1電極 41および第 2電極 42における上記透明電極 41a'42aの各々 の単層配線部分の電極長も特に限定されるものではなぐ泳動レーン 3のレーン幅や 第 1電極 41および第 2電極 42 (泳動電極アレイ 41Α·42Α)の抵抗率等に応じて適 宜設定すればよい。但し、上記泳動電極アレイ 41Α·42Αにおける上記透明電極 41 a '42aの単層配線部分にぉ 、て、前記したように同形状の電極 (配線)を透明導電 材料と金属材料とで形成する場合、透明電極材料で形成された電極は、金属材料で 形成された電極と比較して相対的に高抵抗である。このため、抵抗率をできるだけ低 く抑えるためには、少なくとも、上記第 1電極 41および第 2電極 42 (泳動電極アレイ 4 1A-42A)における上記泳動レーン 3外に相当する領域、すなわち、上記第 1電極 4 1および第 2電極 42 (泳動電極アレイ 41Α·42Α)における上記間隔保持層 43との重 畳領域は、上記透明電極 41aと金属電極 41bとの二層構造並びに上記透明電極 42 aと金属電極 42bとの二層構造を有していることが好ましぐ図 20に示すように、上記 第 1電極 41および第 2電極 42力 上記泳動レーン 3内の一部において、透明電極 4 laまたは透明電極 42aの単層構造をそれぞれ有していることがより望ましい。 [0287] Furthermore, the electrode length of the single-layer wiring portion of each of the transparent electrodes 41a'42a in the first electrode 41 and the second electrode 42 is not particularly limited, and the lane width of the migration lane 3 or the first electrode What is necessary is just to set suitably according to the resistivity etc. of 41 and the 2nd electrode 42 (electrophoresis electrode array 41 * 42 *). However, when the electrodes (wirings) of the same shape are formed of the transparent conductive material and the metal material as described above on the single-layer wiring portion of the transparent electrode 41a'42a in the electrophoresis electrode array 41Α and 42Α. The electrode made of transparent electrode material is made of metal material The resistance is relatively high compared to the formed electrode. Therefore, in order to keep the resistivity as low as possible, at least the area corresponding to the outside of the migration lane 3 in the first electrode 41 and the second electrode 42 (migration electrode array 41A-42A), that is, the first electrode. The overlapping region of the first electrode 41 and the second electrode 42 (electrophoretic electrode array 41Α / 42Α) with the spacing layer 43 includes a two-layer structure of the transparent electrode 41a and the metal electrode 41b and the transparent electrode 42a. As shown in FIG. 20 which preferably has a two-layer structure with the metal electrode 42b, the first electrode 41 and the second electrode 42 force are transparent electrodes 4 la in a part of the migration lane 3 described above. Alternatively, it is more preferable that each of the transparent electrodes 42a has a single layer structure.
[0288] 以下に、本実施の形態に力かる上記泳動電極アレイ 41Α·42Αの形成方法につい て説明する。 [0288] Hereinafter, a method for forming the migration electrode arrays 41Α and 42Α, which is useful for the present embodiment, will be described.
[0289] 本実施の形態では、まず、実施の形態 8と同様に、上記下側基板 1上に、スパッタ 蒸着等による ΙΤΟ膜形成後、フォトリソグラフィを用いて電極形状にパターユングする ことにより、下側基板 1上に、透明電極 41a…を形成する。一方、上記上側基板 2上 にも、スパッタ蒸着等による ITO膜形成後、フォトリソグラフィを用いて電極形状にパ ターニングすることにより、該上側基板 2上に、透明電極 42a…を形成する。  In the present embodiment, first, as in the eighth embodiment, after forming a coating film on the lower substrate 1 by sputtering deposition or the like, by patterning into an electrode shape using photolithography, On the lower substrate 1, transparent electrodes 41a are formed. On the other hand, on the upper substrate 2, after forming an ITO film by sputter deposition or the like, the transparent electrode 42 a... Is formed on the upper substrate 2 by patterning into an electrode shape using photolithography.
[0290] 次に、この透明電極 41a…または透明電極 42a…が形成された下側基板 1および 上側基板 2上に、前記したように金属材料を使用し、スパッタ蒸着等により金属膜を 形成し、この金属膜を、フォトリソグラフィを用いて電極形状にパターユングするととも に、このパターン形成された金属膜における観察領域 9と重畳する配線部分 (本実施 の形態では、各泳動レーン 3内および各泳動レーン 3近傍の配線部分)のパターンを 除去する。  [0290] Next, on the lower substrate 1 and the upper substrate 2 on which the transparent electrodes 41a ... or the transparent electrodes 42a ... are formed, a metal material is used as described above, and a metal film is formed by sputtering deposition or the like. In addition, the metal film is patterned into an electrode shape using photolithography, and the wiring portion that overlaps the observation region 9 in the patterned metal film (in this embodiment, in each electrophoresis lane 3 and each Remove the wiring pattern in the vicinity of migration lane 3).
[0291] これにより、上記第 1電極 41および第 2電極 42における各観察領域 9と重畳する部 分のみが ITO単層配線 (透明電極 41aまたは透明電極 42a)となり、それ以外の部分 は、 Au等の金属電極 (金属電極 41bまたは金属電極 42b) ZlTO等の透明電極 (透 明電極 41aまたは透明電極 42a)の二層配線が形成される。  [0291] As a result, only the portion of the first electrode 41 and the second electrode 42 that overlaps each observation region 9 becomes the ITO single-layer wiring (transparent electrode 41a or transparent electrode 42a), and the other portions are Au. A two-layer wiring of a transparent electrode (transparent electrode 41a or transparent electrode 42a) such as ZlTO is formed.
[0292] なお、泳動電極アレイ 41Α·42Α以外の部分の形成方法については、基本的に前 記実施の形態 8と同様である。また、本実施の形態でも、上記第 1電極 41および第 2 電極 42の形成と同時に、これら第 1電極 41および第 2電極 42の端部に、実装端子と して、実装'接続部 44· 45をパターン形成する。 [0292] The method for forming the portions other than the electrophoresis electrode arrays 41 and 42 is basically the same as in the eighth embodiment. Also in the present embodiment, at the same time as the formation of the first electrode 41 and the second electrode 42, mounting terminals are connected to the ends of the first electrode 41 and the second electrode 42. Then, the mounting and connection portions 44 and 45 are formed into a pattern.
[0293] 本実施の形態によれば、上記泳動電極アレイ 41 A ·42Αを、上記したように各泳動 レーン 3内に設けた各観察領域 9と重畳する部分は ΙΤΟ等の透明電極 41a'42aで 構成し、それ以外の部分を、透明電極 41a'42aより低抵抗の Au等の金属電極 41b ' 42bで構成することにより、試料 (泳動媒体 90)を観察する際に上記第 1電極 41およ び第 2電極 42(泳動電極アレイ 41Α·42Α)に遮られることなぐ上記泳動レーン 3の 上下 (上記下側基板 1側および上側基板 2側)の何れの方向からも観察が可能である ことに加えて、上記泳動電極アレイ 41 Α·42Α全体の抵抗を、該泳動電極アレイ 41 Α·42Αと同一形状(同一パターン)の ΙΤΟ等の透明電極力もなる泳動電極アレイを 使用する場合と比較して、低く抑えることができる。よって、本実施の形態によれば、 光学的観察に対する観察条件が制限されることがなぐかつ、入力電圧 (泳動制御入 力電圧)の減衰 ·遅延を抑制することが可能な、使い勝手が良ぐ測定精度の高い誘 電泳動パネル 10および誘電泳動装置 70、延!、ては誘電泳動システム 85を実現す ることがでさる。 [0293] According to the present embodiment, the portion of the electrophoresis electrode array 41 A · 42Α that overlaps each observation region 9 provided in each electrophoresis lane 3 as described above is a transparent electrode 41a'42a The other portions are composed of metal electrodes 41b'42b made of Au or the like having a lower resistance than the transparent electrodes 41a'42a, so that when the sample (electrophoresis medium 90) is observed, the first electrode 41 In addition, the observation should be possible from both the top and bottom of the migration lane 3 (above the lower substrate 1 side and the upper substrate 2 side) without being blocked by the second electrode 42 (the migration electrode array 41 ア レ イ / 42Α). In addition, the resistance of the entire electrophoresis electrode array 41 Α · 42 上 記 is compared with the case where a migration electrode array having the same shape (same pattern) as the migration electrode array 41 Α · 42 も and having a transparent electrode force is used. Can be kept low. Therefore, according to the present embodiment, the observation conditions for optical observation are not limited, and the usability is excellent because the attenuation / delay of the input voltage (electrophoresis control input voltage) can be suppressed. It is possible to realize an electrophoresis panel 10 and a dielectrophoresis device 70 with high measurement accuracy, a dielectrophoresis system 85, and a dielectrophoresis system 85.
[0294] なお、本実施の形態では、上記泳動電極アレイ 41Α·42Αを、各観察領域 9と重畳 する部分は ΙΤΟ等の透明電極 4 la '42aで構成し、それ以外の部分は、これら透明 電極 41a'42aよりも低抵抗の Au等の金属電極 41b '42bで構成するものとしたが、 本実施の形態はこれに限定されるものではなぐ上記泳動電極アレイ 41Α·42Αが 各観察領域 9と重畳する領域において上記泳動電極アレイ 41Α·42Αの少なくとも 一部が透明電極で形成されて 、ればよ 、。  [0294] In the present embodiment, the electrophoretic electrode arrays 41Α and 42Α are composed of the transparent electrodes 4la'42a such as heels in the portions overlapping each observation region 9, and the other portions are transparent. The electrode 41a'42a is composed of a metal electrode 41b'42b, such as Au, having a lower resistance than that of the electrode 41a'42a, but the present embodiment is not limited to this. It is sufficient if at least a part of the electrophoresis electrode array 41Α · 42Α is formed of a transparent electrode in a region overlapping with the above.
[0295] 例えば、上記泳動電極アレイ 41Α·42Αは、上記泳動電極アレイ 41Α·42Αが各 観察領域 9 (粒子 91が誘電泳動力を受ける領域)と重畳する領域 (すなわち、上記泳 動電極アレイ 41Α·42Αが各泳動レーン 3と重畳する領域)において、透明電極 41a •42aで形成されている部分(つまり、各電極が透明電極 41aまたは透明電極 42aの み力もなる部分)と、金属電極 41b '42bが設けられている部分 (つまり、さらに金属電 極 41bまたは金属電極 42bが設けられている部分)とを有していてもよい。また、上記 泳動電極アレイ 41A.42Aは、透明電極 41a'42aに対し、上記泳動電極アレイ 41A • 42A力 観察領域 9と重畳しない領域の一部に上記金属電極 4 lb · 42bが形成 (積 層)されて 、る構成を有して 、てもよ!/、。 [0295] For example, the migration electrode arrays 41Α and 42Α have a region where the migration electrode arrays 41Α and 42Α overlap each observation region 9 (a region where the particles 91 receive a dielectrophoretic force) (that is, the swimming electrode array 41Α). · In the area where 42Α overlaps each electrophoresis lane 3), the part formed by the transparent electrode 41a • 42a (that is, the part where each electrode is also the force of the transparent electrode 41a or the transparent electrode 42a) and the metal electrode 41b ' It may have a portion provided with 42b (that is, a portion further provided with metal electrode 41b or metal electrode 42b). In addition, the electrophoretic electrode array 41A.42A has the metal electrode 4 lb · 42b formed on the transparent electrode 41a'42a in a part of the region that does not overlap the electrophoretic electrode array 41A • 42A force observation region 9. It is possible to have a structure that is layered)!
[0296] さらに、上記泳動電極アレイ 41 A ·42Αは、上記泳動電極アレイ 41Α·42Αが各観 察領域 9と重畳する領域において上記泳動電極アレイ 41Α·42Αの少なくとも一部が 透明電極 41a'42aで形成(つまり、各電極が透明電極 41aまたは透明電極 42aのみ で形成)されていれば、観察領域 9の一部あるいは非観察領域の一部に、金属以外 の非透明な (半透明もしくは不透明な)導電材料 (低抵抗導電材料)からなる第 3の電 極が設けられている構成を有していてもよい。上記第 3の電極は、上記金属電極 41b •42bに代えて設けられて 、てもよく、上記金属電極 4 lb · 42bと併用されて 、てもよ い。この場合、上記第 3の電極は、上記金属電極 41b '42bと同層に設けられていて もよぐ上記金属電極 41b '42bに対し積層構造とすることで、上記第 1電極 41および 第 2電極 42の少なくとも一方の電極が、 3層以上の多層構造を有する構成としてもよ い。  [0296] Furthermore, the migration electrode array 41A · 42Α is such that at least a part of the migration electrode array 41Α · 42Α is a transparent electrode 41a'42a in the region where the migration electrode array 41Α · 42Α overlaps each observation region 9 (That is, each electrode is formed of only the transparent electrode 41a or the transparent electrode 42a), non-transparent (semi-transparent or opaque) other than metal is formed in a part of the observation region 9 or a part of the non-observation region. It is also possible to have a configuration in which a third electrode made of a conductive material (low resistance conductive material) is provided. The third electrode may be provided in place of the metal electrodes 41b and 42b, or may be used in combination with the metal electrodes 4 lb and 42b. In this case, the third electrode has a laminated structure with respect to the metal electrode 41b′42b, which may be provided in the same layer as the metal electrode 41b′42b, so that the first electrode 41 and the second electrode At least one of the electrodes 42 may have a multilayer structure of three or more layers.
[0297] また、本実施の形態でも、前記実施の形態 8同様、上記下側基板 1および上側基 板 2として、例えば、 10cm X 10cm程度の透明基板を使用するものとした力 本実施 の形態は、これに限定されるものではなぐ各泳動レーン 3と上記第 1電極 41および 第 2電極 42 (泳動電極アレイ 41Α·42Α)とが重畳する領域 (観察領域 9)において各 泳動レーン 3内の試料 (泳動媒体 90)が観察可能に設けられていればよい。すなわ ち、本実施の形態でも、上記誘電泳動パネル 10は、例えば、上記下側基板 1および 上側基板 2の何れか一方の基板のみが透明電極で形成され、他方の基板における、 各泳動レーン 3と上記第 1電極 41および第 2電極 42 (泳動電極アレイ 41Α·42Α)と が重畳する領域 (観察領域 9)に、それぞ 察窓(開口部あるいは透明領域)が設 けられている構成を有していてもよい。また、上記誘電泳動パネル 10は、上記下側 基板 1および上側基板 2が、両基板における、各泳動レーン 3と上記第 1電極 41およ び第 2電極 42 (泳動電極アレイ 41Α·42Α)とが重畳する領域 (観察領域 9)にそれぞ れ透明領域 (何れか一方は開口部であってもよ!ヽ)が設けられた非透明基板 (半透 明あるいは不透明な基板)力もなる構成を有して 、てもよ 、。  [0297] Also in the present embodiment, as in the case of the eighth embodiment, as the lower substrate 1 and the upper substrate 2, for example, a force that uses a transparent substrate of about 10 cm x 10 cm is used. In the region (observation region 9) where each of the electrophoresis lanes 3 and the first electrode 41 and the second electrode 42 (the electrophoresis electrode array 41Α · 42 重 畳) overlap with each other is not limited to this, It is sufficient that the sample (electrophoresis medium 90) is provided so as to be observable. That is, also in the present embodiment, the dielectrophoresis panel 10 includes, for example, only one of the lower substrate 1 and the upper substrate 2 formed of a transparent electrode, and each electrophoresis lane on the other substrate. 3 in which the first electrode 41 and the second electrode 42 (electrophoresis electrode array 41Α · 42Α) overlap each other (observation region 9) is provided with an observation window (opening or transparent region). You may have. In addition, the dielectrophoresis panel 10 includes the lower substrate 1 and the upper substrate 2 that are connected to each electrophoresis lane 3, the first electrode 41, and the second electrode 42 (electrophoresis electrode arrays 41 and 42) on both substrates. A structure that also has a non-transparent substrate (semi-transparent or opaque substrate) force in which transparent regions (either one may be an opening! Have it.
[0298] また、本実施の形態では、上記したように各観察領域 9 (上記泳動電極アレイ 41 A · 42Aが上記観察領域 9と重畳する領域)における第 1電極 41および第 2電極 42 (泳 動電極アレイ 41Α·42Α)を透明電極とし、それ以外の領域における第 1電極 41およ び第 2電極 42 (泳動電極アレイ 41Α·42Α)を、例えば透明電極と、金属電極等の低 抵抗非透明電極との積層構造とすることで非透明電極 (すなわち平面視で非透明な 電極構造)とする場合を例に挙げて説明した。し力しながら、本実施の形態によれば 、例えば、図 20に示すように、各観察領域 9、すなわち、各泳動レーン 3と泳動電極 アレイ 41Α·42Αとが重畳する領域において上記泳動電極アレイ 41Α·42Αの一部 のみを透明電極で形成することにより、透明電極による透過モード (透過光による観 察、撮影)あるいは落射モード (被観察物力ゝらの反射 (落射)光による観察、撮影)に 加えて、非透明電極 (金属電極)からの反射 (落射)光を観察、投影に利用する落射 モードの使用が可能な誘電泳動パネル 10を提供することができる。これにより、観察 条件を緩和することができることに加え、より複雑な誘電泳動挙動の観察を行うことも 可能となる。この結果、上記したように透明電極による透過モード、および、金属電極 等の非透明電極 (反射 (落射)電極)による落射モードの両モードを使用することで 2 種類の観察が可能となり、 2種類の角度カゝら解析が可能な誘電泳動パネル 10を提供 することができる。 [0298] Also, in the present embodiment, as described above, the first electrode 41 and the second electrode 42 (swimming) in each observation region 9 (the region where the migration electrode array 41A · 42A overlaps the observation region 9). Moving electrode array 41Α ・ 42Α) is used as a transparent electrode, and first electrode 41 and second electrode 42 (electrophoretic electrode array 41Α ・ 42 に お け る) in other regions are used as transparent electrodes and low resistance non-metal such as metal electrodes. The case where a non-transparent electrode (that is, a non-transparent electrode structure in a plan view) is formed as a laminated structure with a transparent electrode has been described as an example. However, according to the present embodiment, for example, as shown in FIG. 20, in each observation region 9, that is, in each of the migration lanes 3 and the region where the migration electrode arrays 41Α and 42Α overlap each other, the migration electrode array By forming only a part of 41Α and 42Α with a transparent electrode, the transparent electrode can be used for transmission mode (observation and photographing with transmitted light) or epi-illumination mode (observation and photographing with reflected (epi-illumination) light from the object force) In addition, it is possible to provide the dielectrophoresis panel 10 capable of using an epi-illumination mode in which reflected (epi-illumination) light from a non-transparent electrode (metal electrode) is observed and projected. As a result, the observation conditions can be relaxed, and more complex dielectrophoretic behavior can be observed. As a result, two types of observations are possible by using both the transmission mode with a transparent electrode and the epi-illumination mode with a non-transparent electrode (reflection (epi-illumination) electrode) such as a metal electrode as described above. It is possible to provide a dielectrophoresis panel 10 that can analyze the angle of the angle.
[0299] この場合、例えば、図 20に示すように、各観察領域 9、すなわち、各泳動レーン 3と 泳動電極アレイ 41Α·42Αとが重畳する領域において、これら泳動電極アレイ 41 Α· 42Αのうち何れか一方の泳動電極アレイ、本実施の形態では、例えば泳動電極ァレ ィ 41Aのみ力 透明電極 41aの単層構造からなる領域と、透明電極 41a上にさらに 金属電極 41bが設けられた二層構造カゝらなる領域とを有し、他方の泳動電極アレイ 4 2Aは、透明電極 42aの単層構造にて形成されて 、る構成とすればよ!、。  In this case, for example, as shown in FIG. 20, in each observation region 9, that is, in each of the migration lanes 3 and the migration electrode arrays 41Α and 42Α, Either one of the migration electrode arrays, in this embodiment, for example, only the migration electrode array 41A has a region composed of a single layer structure of the transparent electrode 41a, and a two-layer in which a metal electrode 41b is further provided on the transparent electrode 41a. And the other migration electrode array 42A is formed of a single-layer structure of the transparent electrode 42a.
[0300] このように、各観察領域 9において上記泳動電極アレイ 41Α·42Α (第 1電極 41お よび第 2電極 42)が、上記したように両方とも透明電極カゝらなる部分と、少なくとも一 方に金属電極が設けられて 、る部分とを備えて 、ることで、上記泳動電極アレイ 41 A • 42A全体の抵抗を、該電極アレイ 41 A · 42Aを透明電極 4 la · 42aのみで形成する 場合と比較して、低く抑えることができ、かつ、各電極間の寄生容量を低減することが できることにカ卩えて、上記したように、電極面での光の透過 Z落射を利用する透過モ ードおよび落射モードの何れのモードも使用可能な誘電泳動パネル 10を提供するこ とがでさる。 [0300] Thus, in each observation region 9, the electrophoresis electrode arrays 41 and 42 (the first electrode 41 and the second electrode 42) are at least at least one part of the transparent electrode cover as described above. The metal electrode is provided on the side, so that the resistance of the entire migration electrode array 41A • 42A is formed, and the electrode array 41A · 42A is formed only by the transparent electrode 4la · 42a. Compared to the case of the above, as described above, the transmission of light on the electrode surface and the transmission using the epi-illumination can be performed in view of the fact that the parasitic capacitance between the electrodes can be reduced. To provide a dielectrophoresis panel 10 that can be used in both a mode and an epi-illumination mode. Togashi.
[0301] また、上記したように、一つの基板上に複数の泳動レーン 3が設けられているととも に、上記各泳動レーン 3で、観察領域 9において上記泳動電極アレイ 41 Α·42Α (第 1電極 41および第 2電極 42) 1S 両方とも透明電極カゝらなる部分 (透明領域 9a)と、 少なくとも一方に金属電極が設けられている部分 (落射領域 9b)とを備えていることで 、泳動レーン 3によって透明電極による透過モードと金属電極による落射モードとを 切り換えれば、異なる解析を同時に行うことも可能である。また、上記の構成によれば 、より複雑な誘電泳動挙動を観察することもできる。  [0301] Further, as described above, a plurality of electrophoresis lanes 3 are provided on one substrate, and each of the electrophoresis lanes 3 in the observation region 9 includes the electrophoresis electrode arrays 41 電極 and 42Α (first 1 electrode 41 and 2nd electrode 42) Both 1S is provided with a portion (transparent region 9a) which is a transparent electrode cover, and a portion where a metal electrode is provided on at least one side (an epi-illumination region 9b). Different analyzes can be performed at the same time by switching between the transmission mode with the transparent electrode and the epi-illumination mode with the metal electrode in the electrophoresis lane 3. Further, according to the above configuration, more complicated dielectrophoretic behavior can be observed.
[0302] 本実施の形態において、上記各観察領域 9における、上記泳動電極アレイ 41 Α· 4 2A (第 1電極 41および第 2電極 42)の少なくとも一方に金属電極が設けられている 部分 (落射領域 9b)に対する、上記泳動電極アレイ 41Α·42Α (第 1電極 41および第 2電極 42)が両方ともに透明電極力 なる部分 (透明領域 9a)の割合 (9aZ9b)は、 特に限定されるものではないが、例えば、トラップされた粒子 (誘電体粒子)あるいは 泳動中の粒子 (誘電体粒子)の観察記録のため、その下限値が 1Z3、つまり、 1/3 ≤ 9aZ9b (つまり、各観察領域 9における透明領域 9aの割合が 1Z4以上)であるこ と力 子ましく、 1Z3く 9aZ9bであることがより好ましぐ l≤9aZ9b (つまり、各観察 領域 9における透明領域 9aの割合が 1Z2以上)であることがさらに好ましい。また、 上記割合(9aZ9b)は、 9aZ9b< 3であることが好ましぐ上記した範囲内の中でも、 9a/9b = 1に設定することが特に好ま 、。  [0302] In the present embodiment, in each observation region 9, a portion where the metal electrode is provided on at least one of the electrophoretic electrode array 41Α42A (first electrode 41 and second electrode 42) (epi-illumination) The ratio (9aZ9b) of the portion (transparent region 9a) in which the migration electrode array 41Α and 42Α (first electrode 41 and second electrode 42) both have transparent electrode force with respect to region 9b) is not particularly limited. For example, because of the observation record of trapped particles (dielectric particles) or migrating particles (dielectric particles), the lower limit is 1Z3, that is, 1/3 ≤ 9aZ9b (that is, in each observation region 9) The ratio of the transparent area 9a is 1Z4 or more), more preferably 1Z3 and 9aZ9b l≤9aZ9b (that is, the ratio of the transparent area 9a in each observation area 9 is 1Z2 or more) More preferably. Further, the ratio (9aZ9b) is preferably 9aZ9b <3, and it is particularly preferable to set 9a / 9b = 1.
[0303] なお、本実施の形態では、上記したように、電極面での光の透過 Z落射を利用する 透過モード Z落射モード両用型の誘電泳動パネル 10として、上記したように泳動電 極アレイ 41Α·42Αの一部を透明電極で形成する場合を例に挙げて説明した力 本 実施の形態はこれに限定されるものではない。  [0303] In the present embodiment, as described above, as described above, the electrophoretic electrode array 10 is used as the dielectrophoresis panel 10 of the transmission mode Z incident mode dual-use type using light transmission Z incident on the electrode surface. The force described by taking as an example the case where a part of 41Α and 42Α is formed of a transparent electrode. The present embodiment is not limited to this.
[0304] 例えば、前記実施の形態 8にお ヽて、上記下側基板 1および上側基板 2の何れか 一方の基板を、該基板における、各泳動レーン 3と泳動電極アレイ 41Α·42Αとが重 畳する領域 (各観察領域 9)の一部に透明領域を有する非透明基板にて形成すると ともに、他方の基板を、透明基板、もしくは、各泳動レーン 3と泳動電極アレイ 41Α·4 2Αとが重畳する領域 (各観察領域 9)に観察窓(開口部あるいは透明領域)を有する 非透明基板にて形成することによつても、透過モード z落射モード両用型の誘電泳 動パネル 10を提供することができる。 [0304] For example, in the eighth embodiment, any one of the lower substrate 1 and the upper substrate 2 is overlapped with each electrophoresis lane 3 and the electrophoresis electrode arrays 41 and 42. A non-transparent substrate having a transparent region in a part of the region to be folded (each observation region 9), and the other substrate is a transparent substrate, or each electrophoresis lane 3 and electrophoresis electrode array 41 Α 4 2 Α Overlapping areas (each observation area 9) have observation windows (openings or transparent areas) By forming it with a non-transparent substrate, it is also possible to provide a transmission panel 10 for both transmission mode and epi-illumination mode.
[0305] さらに、本実施の形態によれば、泳動レーン 3毎、例えば、互いに隣り合う泳動レー ン 3 · 3が、上記泳動電極アレイ 41Α·42Α (第 1電極 41および第 2電極 42)力 両方 とも透明電極力 なる観察領域 9と、少なくとも一方に金属電極が設けられている観 察領域 9とを備えている構成としてもよい。上記構成によっても、上記泳動電極アレイ 41Α·42Α全体の抵抗を、該電極アレイ 41Α·42Αを透明電極 41a '42aのみで形成 する場合と比較して、低く抑えることができ、かつ、各電極間の寄生容量を低減するこ とができることに加えて、電極面での光の透過 Z落射を利用する透過モードおよび 落射モードの何れのモードも使用可能な誘電泳動パネル 10を提供することができる  [0305] Furthermore, according to the present embodiment, the migration lanes 3 and 3 adjacent to each other, for example, the migration lanes 3 and 3 are connected to the migration electrode arrays 41 and 42 (the first electrode 41 and the second electrode 42) force. Both may have a configuration including an observation region 9 having a transparent electrode force and an observation region 9 provided with a metal electrode in at least one of them. Also with the above configuration, the resistance of the entire electrophoresis electrode array 41Α / 42Α can be kept low compared to the case where the electrode array 41Α / 42Α is formed only by the transparent electrodes 41a'42a, and between the electrodes. In addition to being able to reduce the parasitic capacitance of the electrode, it is possible to provide a dielectrophoresis panel 10 that can use any of the transmission mode and the epi-illumination mode utilizing the light transmission Z epi-illumination on the electrode surface.
[0306] 〔実施の形態 10〕 [Embodiment 10]
本実施の形態にっ ヽて、主に図 21 (a)〜(c)および図 22 (a)〜(c)に基づ ヽて説 明する。なお、本実施の形態では、主に、前記実施の形態 8、 9との相違点について 説明するものとし、前記実施の形態 8、 9で用いた構成要素と同一の機能を有する構 成要素には同一の番号を付し、その説明を省略する。  This embodiment will be described mainly based on FIGS. 21 (a) to (c) and FIGS. 22 (a) to (c). In the present embodiment, differences from the eighth and ninth embodiments will be mainly described, and components having the same functions as those used in the eighth and ninth embodiments are described. Are given the same numbers and their explanation is omitted.
[0307] 図 21 (a)〜(c)は、図 17に示す誘電泳動システム 85を用いて泳動媒体中の目的 粒子の浮揚 ·搬送を行う様子を、図 17に示す誘電泳動パネル 10の断面にて模式的 に示す他の要部断面図である。また、図 22 (a)〜(c)は、図 17に示す誘電泳動シス テム 85を用いて泳動媒体中の目的粒子の浮揚'搬送を行う様子を、図 17に示す誘 電泳動パネル 10の断面にて模式的に示すさらに他の要部断面図である。上記図 21 (a)および図 22 (a)は、目的粒子の浮揚を行う様子を示している。また、図 21 (b)お よび図 21 (c)、並びに、図 22 (b)および図 22 (c)は、浮揚した目的粒子を搬送する 様子を示している。  FIGS. 21 (a) to 21 (c) are cross-sectional views of the dielectrophoresis panel 10 shown in FIG. 17, showing how the target particles in the electrophoresis medium are floated and transported using the dielectrophoresis system 85 shown in FIG. FIG. 5 is a cross-sectional view of another main part schematically shown in FIG. FIGS. 22 (a) to 22 (c) show how the target particles in the electrophoresis medium are floated and conveyed using the dielectrophoresis system 85 shown in FIG. It is other principal part sectional drawing typically shown in a cross section. FIG. 21 (a) and FIG. 22 (a) show how the target particles are levitated. FIG. 21 (b) and FIG. 21 (c), and FIG. 22 (b) and FIG. 22 (c) show how the levitated target particles are transported.
[0308] 図 21および図 22は、図 14に示す誘電泳動パネル 10において、第 1電極 41およ び第 2電極 42 (泳動電極アレイ 41Α·42Α)を、部分的に透明電極で形成する場合 における、図 14に示す誘電泳動パネル 10の J J線矢視断面図に相当する。  FIG. 21 and FIG. 22 show the case where the first electrode 41 and the second electrode 42 (electrophoresis electrode array 41Α · 42Α) are partially formed of transparent electrodes in the dielectrophoresis panel 10 shown in FIG. 14 corresponds to a cross-sectional view taken along the line JJ of the dielectrophoresis panel 10 shown in FIG.
[0309] 本実施の形態では、図 21 (a)〜(c)に示すように、上記泳動電極アレイ 41 A ·42Α において、各泳動電極アレイ 41Α·42Α内で互いに隣り合う電極、例えば、上記泳動 電極アレイ 41A内で互!ヽ【こ隨り合う第 1電極 41(41χ, 41χ+1, 41χ+2, 41χ+3, 41χ+4, ···, 41x+m)には、上記制御基板 50· 55により、各々異なる位相の高周 波を印加している。同様に、上記泳動電極アレイ 42A内で互いに隣り合う第 2電極 4 2(42x, 42x+l, 42x+2, 42x+3, 42x+4, ···, 42x+m)〖こも、上記制御基板 5 0·55により、各々異なる位相の高周波を印加している。なお、 x、 mは、 1以上の任意 の整数を示す。 In the present embodiment, as shown in FIGS. 21 (a) to (c), the electrophoresis electrode array 41 A · 42Α In the electrophoresis electrode arrays 41 ア レ イ and 42Α, electrodes adjacent to each other, for example, the first electrodes 41 (41χ, 41χ + 1, 41χ + 2, 41χ + 3, 41χ + 4,..., 41x + m) are applied with high frequencies having different phases by the control board 50. Similarly, the second electrodes 42 (42x, 42x + l, 42x + 2, 42x + 3, 42x + 4, ..., 42x + m) adjacent to each other in the electrophoresis electrode array 42A are also controlled as described above. High frequencies having different phases are applied by the substrates 50 and 55, respectively. X and m are arbitrary integers of 1 or more.
[0310] また、図 21 (a)〜(c)に示すように、上記泳動レーン 3 (泳動媒体層)を介して上記 各第 1電極 41(41x, 41x+l, 41x+2, 41x+3, 41x+4, ···, 41x+m)と互!/、に 重畳する位置に酉己置された第 2電極 42 (42x, 42x+l, 42x+2, 42x+3, 42x+ 4, ···, 42x+m)に ίま、該第 2電極 42(42x, 42x+l, 42x+2, 42x+3, 42x+4 , ···, 42x+m)と互いに重畳する位置に酉己置された第 1電極 41(41x, 41x+l, 41 x+2, 41x+3, 41x+4, ···, 41x+m)とは異なる位相の高周波をそれぞれ印加し ている。  [0310] As shown in FIGS. 21 (a) to (c), each of the first electrodes 41 (41x, 41x + l, 41x + 2, 41x +) is passed through the migration lane 3 (migration medium layer). 3, 41x + 4, ..., 41x + m) and the second electrode 42 (42x, 42x + l, 42x + 2, 42x + 3, 42x + 4) , ..., 42x + m) and the second electrode 42 (42x, 42x + l, 42x + 2, 42x + 3, 42x + 4, ..., 42x + m) A high frequency with a phase different from that of the first electrode 41 (41x, 41x + l, 41 x + 2, 41x + 3, 41x + 4,. .
[0311] 本実施の形態では、上記第 1電極列および第 2電極列において上下に対向する泳 動電極に、下記表 1に記載の位相条件を満足する高周波をそれぞれ印加する。  [0311] In the present embodiment, high frequencies satisfying the phase conditions shown in Table 1 below are respectively applied to the swimming electrodes facing vertically in the first electrode row and the second electrode row.
[0312] [表 1]
Figure imgf000066_0001
[0312] [Table 1]
Figure imgf000066_0001
[0313] 本実施の形態において、上記 ηは 1以上の整数を示す。また、図 21 (a)〜(c)に示 す誘電泳動パネル 10においては、 n=2とした。すなわち、図 21(a)〜(c)に示す誘 電泳動パネル 10においては、上記したように、第 1電極列における X番目の第 1電極 41 (41x)に対し、 x+2番目の第 1電極 41 (41x+2)と、上記 x番目の第 1電極 41 (4 lx)と対向する、第 2電極例における X番目の第 2電極 42(42x)とに、上記 x番目の 第 1電極 41との位相差が πとなるように高周波を印加するとともに、第 2電極列にお ける x+2番目の第 2電極 42 (42χ+2)に対し、上記 χ番目の第 1電極 41と同じ (位相 差 0)の高周波を印加する。 In the present embodiment, η represents an integer of 1 or more. In the dielectrophoresis panel 10 shown in FIGS. 21 (a) to 21 (c), n = 2. That is, in the electrophoresis panel 10 shown in FIGS. 21 (a) to 21 (c), as described above, the (x + 2) -th first electrode 41 (41x) with respect to the X-th first electrode 41 (41x) in the first electrode row. The first electrode 41 (41x + 2) and the Xth second electrode 42 (42x) in the second electrode example facing the xth first electrode 41 (4 lx) are connected to the xth first electrode. A high frequency is applied so that the phase difference from the electrode 41 is π, and the x + 2nd second electrode 42 (42χ + 2) in the second electrode array is compared with the χth first electrode 41 Apply the same high frequency (with 0 phase difference).
[0314] このように、上記各電極に対して、上記表 1の関係を満たす位相条件で高周波を印 加することにより、図 21 (a)に示すように、上記泳動レーン 3 (泳動媒体層)における、 上記電極 41x, 41x+ 2、 42x, 42x+ 2で囲まれた空間の中心部、具体的には、上 記電極 41x+ 1と 42x+ 1との中心に、粒子 91 (粒子 91a)をトラップすることができる [0314] Thus, high frequency is applied to each of the electrodes under a phase condition that satisfies the relationship in Table 1 above. As shown in FIG. 21 (a), the center of the space surrounded by the electrodes 41x, 41x + 2, 42x, 42x + 2 in the electrophoresis lane 3 (migration medium layer), specifically, The particle 91 (particle 91a) can be trapped in the center of the electrodes 41x + 1 and 42x + 1
[0315] さらに、図 21 (b) · (c)に示すように、第 1電極列および第 2電極列における高周波 を印加する対象電極を、 4本の電極 4 lx, 41x+n, 42x, 42x+nの組み合わせから なる 1ユニットの xが、順次 1ずつ大きくなる(つまり、 x= l、 2、 3、…と変化する)ように 、高周波を印加する対象電極を順位移動させることにより、従来の TWDモード (各電 極列内で互いに隣接し合う電極に対し、順次 π Ζ2ずつ位相がずれるように高周波 を印加するモード)に比べて、粒子 91 (91a)の搬送を効率良く行うことができる。 [0315] Further, as shown in FIGS. 21 (b) and 21 (c), the target electrode to which a high frequency is applied in the first electrode row and the second electrode row is divided into four electrodes 4lx, 41x + n, 42x, By moving the target electrodes to which high frequency is applied in order so that x of one unit consisting of 42x + n is sequentially increased by 1 (that is, x = l, 2, 3, ...), Compared to the conventional TWD mode (a mode in which high-frequency waves are applied so that the phases of the electrodes adjacent to each other in each electrode array are sequentially shifted by πΖ2), the particles 91 (91a) can be transported more efficiently. Can do.
[0316] 図 21 (a)〜(c)によれば、図 21 (a)に示すように、 x+ 2番目の第 1電極 41 (41x+ 2)と X番目の第 2電極 42 (42x)とに、上記 x番目の第 1電極 41 (41x)との位相差が πとなるように高周波を印加するとともに、 x + 2番目の第 2電極 42 (42χ+ 2)に対し 、上記 X番目の第 1電極 41と同じ (位相差 0)の高周波を印加することで上記電極 41χ , 41χ+ 2、42χ, 42χ+ 2で囲まれた空間の中心部にトラップされた粒子 91 (粒子 91 a)は、図 21 (b)に示すように、 x+ 3番目の第 1電極 41 (41x+ 3)と x+ 1番目の第 2 電極 42 (42x+ 1)とに、上記 x+ 1番目の第 1電極 41 (41x+ 1)との位相差が πとな るように高周波を印加するとともに、 χ+ 3番目の第 2電極 42 (42χ+ 3)に対し、上記 χ+ 1番目の第 1電極 41 (41χ+ 1)と同じ (位相差 0)高周波を印加することで、上記 電極 41χ+ 1, 41χ+ 3、42χ+ 1, 42χ+ 3で囲まれた空間の中心部に移動する。  [0316] According to Figs. 21 (a) to (c), as shown in Fig. 21 (a), the x + second first electrode 41 (41x + 2) and the X th second electrode 42 (42x) In addition, a high frequency is applied so that the phase difference from the x-th first electrode 41 (41x) is π, and the x-th second electrode 42 (42χ + 2) is Particle 91 (particle 91 a) trapped in the center of the space surrounded by the electrodes 41χ, 41χ + 2, 42χ, 42χ + 2 by applying the same high frequency as the first electrode 41 (phase difference 0) As shown in FIG. 21 (b), the x + first electrode 41 (41x + 3) and the x + 1 second electrode 42 (42x + 1) are connected to the x + 1 first electrode 41 ( A high frequency is applied so that the phase difference with respect to (41x + 1) is π, and the χ + first electrode 41 (41χ + 3) is applied to the χ + third electrode 42 (42χ + 3). Same as 1) (phase difference 0) By applying a high frequency, the space surrounded by the electrodes 41χ + 1, 41χ + 3, 42χ + 1, 42χ + 3 To move to the center of.
[0317] そして、図 21 (c)に示すように、 χ+4番目の第 1電極 41 (41χ+4)と x+ 2番目の第 2電極 42 (42x+ 2)とに、上記 x+ 2番目の第 1電極 41 (41x+ 2)との位相差が πと なるように高周波を印加するとともに、 χ+4番目の第 2電極 42 (42χ+4)に対し、上 記 χ+ 2番目の第 1電極 41 (41χ+ 2)と同じ (位相差 0)の高周波を印加することで、 上記電極 41χ+ 1, 41χ+ 3、42χ+ 1, 42χ+ 3で囲まれた空間の中心部の粒子 91 (91a)は、さらに上記電極 41x+ 2, 41x+4、 42x+ 2, 42x+4で囲まれた空間の 中心部に移動する。これにより、本実施の形態によれば、高率的な泳動挙動を実現 することができる。 [0318] 本実施の形態によれば、本実施の形態に力かる誘電泳動システム 85を用いて、粒 子 91、例えば直径 10 m程度の粒子 91を、図 21 (a)〜(c)に示す新しい泳動メカ -ズムにより効率良く搬送することができる。なお、上記誘電泳動システム 85には、上 記各電極列に印加する信号以外は、基本的に、前記実施の形態 9で説明した誘電 泳動システム 85と同じ誘電泳動システム 85を使用するものとする。 [0317] Then, as shown in FIG. 21 (c), the x + second electrode 41 (41χ + 4) and the x + second electrode 42 (42x + 2) are connected to the x + second electrode. A high frequency is applied so that the phase difference from the first electrode 41 (41x + 2) is π, and the χ + second second electrode 42 (42χ + 4) is By applying the same high frequency as the electrode 41 (41χ + 2) (phase difference 0), particles in the center of the space surrounded by the electrodes 41χ + 1, 41χ + 3, 42χ + 1, 42χ + 3 91 (91a) further moves to the center of the space surrounded by the electrodes 41x + 2, 41x + 4, 42x + 2, 42x + 4. Thereby, according to the present embodiment, a highly efficient migration behavior can be realized. [0318] According to the present embodiment, using the dielectrophoresis system 85 that works well with the present embodiment, a particle 91, for example, a particle 91 having a diameter of about 10 m, is shown in FIGS. 21 (a) to 21 (c). It can be efficiently transported by the new migration mechanism shown. The dielectrophoresis system 85 basically uses the same dielectrophoresis system 85 as the dielectrophoresis system 85 described in the ninth embodiment, except for the signals applied to the electrode rows. .
[0319] 具体的には、まず、上記泳動レーン 3における一方の注入'排出孔 5から粒子 91を 上記泳動レーン 3内に注入する。  [0319] Specifically, first, the particles 91 are injected into the electrophoresis lane 3 from one injection 'discharge hole 5 in the electrophoresis lane 3.
[0320] 次に、上記泳動レーン 3における一方の注入'排出孔 5に近い側力も順に、上記第 1電極列内の電極(41x, 41x+ l, 41x+ 2, 41x+ 3, 41x+4)を、 Al, A2, A3, A4とし、上記泳動レーン 3 (泳動媒体層)を介して上記各電極 Al, A2, A3, A4と互 いに重畳する位置に配置された第 2電極列内の電極 (42x, 42x+ l, 42x+ 2, 42x + 3, 42x+4)を、 Bl, B2, B3, B4とすると、上記電極 Al, A3, Bl, B3の 4本の 電極に振幅 4. 5V、周波数 50kHzの交流を、表 1において n= 2としたときの関係を 満たす位相条件で印加すると、泳動媒体層における上記電極 A1, A3, Bl, B3で 囲まれた空間の中心部に、注入された粒子 91がトラップされる。  [0320] Next, the side force close to one of the injection and discharge holes 5 in the electrophoresis lane 3 is also sequentially applied to the electrodes (41x, 41x + 1, 41x + 2, 41x + 3, 41x + 4) in the first electrode row, The electrodes in the second electrode array (Al, A2, A3, A4) are arranged so as to overlap with the electrodes Al, A2, A3, A4 via the migration lane 3 (migration medium layer) ( 42x, 42x + l, 42x + 2, 42x + 3, 42x + 4) is Bl, B2, B3, B4, the above electrodes Al, A3, Bl, B3 have an amplitude of 4.5V and a frequency of 50kHz. Is applied under the phase condition that satisfies the relationship when n = 2 in Table 1, the particles injected into the center of the space surrounded by the electrodes A1, A3, Bl, B3 in the electrophoresis medium layer 91 is trapped.
[0321] 続いて、電極 A2, A4, B2, B4の 4本の電極に振幅 4. 5V、周波数 50kHzの交流 を表 1の関係を満たす位相条件で印加し、同時に電極 A1と電極 B 1とに印加して ヽ た電圧を切ると、 A1, A3, Bl, B3で囲まれた空間の中心部にトラップされていた粒 子 91が、 A2, A4, B2, B4で囲まれた空間の中心部に移動する。このようにして上 記第 1電極列および第 2電極列における高周波を印加する対象電極を順次移動させ ることにより、粒子 91を、他方の注入'排出孔 5形成方向に連続的に搬送することが できる。この結果、目的の粒子 91を、所望の場所まで搬送することができる。  [0321] Subsequently, an alternating current with an amplitude of 4.5 V and a frequency of 50 kHz was applied to the four electrodes A2, A4, B2, and B4 under the phase conditions satisfying the relationship shown in Table 1, and at the same time, the electrodes A1 and B1 When the voltage applied to is cut off, the particles 91 trapped in the center of the space surrounded by A1, A3, Bl, and B3 become the center of the space surrounded by A2, A4, B2, and B4. Move to the department. In this way, by sequentially moving the target electrodes to which the high frequency is applied in the first electrode row and the second electrode row, the particles 91 are continuously transported in the direction of forming the other injection and discharge holes 5. Is possible. As a result, the target particles 91 can be transported to a desired location.
[0322] なお、本実施の形態では、図 21 (a)〜(c)に示すように、 x番目の第 1電極 41 (41x )に対し、 x+ 2番目の第 1電極 41 (41x+ 2)と X番目の第 2電極 42 (42x)とに、上記 X番目の第 1電極 41 (41x)との位相差が πとなるように高周波を印加するとともに、 X + 2番目の第 2電極 42 (42χ+ 2)に対し、上記 χ番目の第 1電極 41 (41χ)と同じ (位 相差 0)高周波(交流電圧)が印加される構成としたが、本実施の形態はこれに限定さ れるものではない。 [0323] 本実施の形態によれば、上記第 1電極列および第 2電極列のうち何れか一方の電 極列内の電極を順に Ax, Ax+ 1, · ··, Ax+mとし、上記泳動レーン 3 (泳動媒体層) を介して上記各電極 Ax, Ax+ 1, · ··, Ax+mに重畳する位置に配置された、他方 の電極列内の電極を Bx, Bx+ 1, · ··, Bx + mとした場合、各々の電極に対して、下 記表 2の関係を満たす位相条件で高周波(交流電圧)を印加することで、上記泳動レ ーン 3 (泳動媒体層)における上記電極 Ax, Ax+n, Bx, Bx+nで囲まれた空間の 中心部に、粒子 91 (91a)をトラップすることができる。 In the present embodiment, as shown in FIGS. 21 (a) to (c), the (x +) second first electrode 41 (41x + 2) with respect to the xth first electrode 41 (41x). And the X-th second electrode 42 (42x), a high frequency is applied so that the phase difference between the X-th first electrode 41 (41x) and the X-th second electrode 42 (42x) is π. Although (42χ + 2) is applied with the same (phase difference 0) high frequency (AC voltage) as the χth first electrode 41 (41χ), the present embodiment is not limited to this. It is not a thing. [0323] According to the present embodiment, the electrodes in either one of the first electrode row and the second electrode row are sequentially set as Ax, Ax + 1, ..., Ax + m, and The electrodes in the other electrode array arranged at positions overlapping with the electrodes Ax, Ax + 1,..., Ax + m via electrophoresis lane 3 (electrophoresis medium layer) are connected to Bx, Bx + 1,. · When Bx + m, applying high frequency (alternating voltage) to each electrode under the phase conditions satisfying the relationship shown in Table 2 below, in the migration lane 3 (migration medium layer) The particles 91 (91a) can be trapped in the center of the space surrounded by the electrodes Ax, Ax + n, Bx, Bx + n.
[0324] [表 2]
Figure imgf000069_0001
[0324] [Table 2]
Figure imgf000069_0001
[0325] さらに、第 1電極列および第 2電極列における高周波を印加する対象電極を、上記 4本の電極 Ax, Ax+n, Bx, Bx+nの組み合わせからなる 1ユニットの xが順次 1ず つ大きくなる(つまり、 x= l、 2、 3、…と変化する)ように順次移動させることにより、従 来の TWDモード (各電極列内で互いに隣接し合う第 2電極 42に対し、順次 π Ζ2ず つ位相がずれるように高周波を印加するモード)に比べて、粒子 91 (粒子 91a)の搬 送を効率良く行うことができる。 [0325] Furthermore, the target electrode to which a high frequency is applied in the first electrode row and the second electrode row is set to 1 unit x consisting of a combination of the above four electrodes Ax, Ax + n, Bx, Bx + n in order 1 By sequentially moving so as to become larger (that is, x = l, 2, 3,...), The conventional TWD mode (with respect to the second electrodes 42 adjacent to each other in each electrode row) The particles 91 (particles 91a) can be transported more efficiently compared to the mode in which a high frequency is applied so that the phases are sequentially shifted by πΖ2.
[0326] また、本実施の形態によれば、上記 Ax, Ax+n, Bx, Bx+nの 4本の電極、例え ii022 (a)【こ示すよう【こ、電極 41x, 41x+ 2, 42x, 42x+ 2【こ、下記表 3【こ示す位 相条件で交流を印加する場合であっても、上記 4本の電極の内部を回転する方向に 発生する TWDにより、粒子 91 (91a)をトラップすることができる。なお、図 22 (a)〜( c)に示す誘電泳動パネル 10においても、 n= 2とした。さら〖こ、上記第 1電極列およ び第 2電極列における高周波を印加する対象電極を、上記 4本の電極 Ax, Ax+n, Bx, Bx+nの組み合わせからなる 1ユニットの xが順次 1ずつ大きくなる(つまり、 x= 1、 2、 3、…と変化する)ように順次移動させることにより、トラップされた粒子 91 (91a) を搬送することができる。  [0326] Also, according to the present embodiment, the four electrodes Ax, Ax + n, Bx, Bx + n, for example, ii022 (a) [As shown, electrodes 41x, 41x + 2, 42x , 42x + 2 [Table 3] [Table 3 below] Even when AC is applied under the phase conditions shown below, particles 91 (91a) are trapped by the TWD generated in the direction of rotation inside the four electrodes. can do. In the dielectrophoresis panel 10 shown in FIGS. 22 (a) to (c), n = 2. Furthermore, the target electrode to which a high frequency is applied in the first electrode row and the second electrode row is a unit of x consisting of a combination of the four electrodes Ax, Ax + n, Bx, Bx + n. The trapped particles 91 (91a) can be transported by sequentially moving them so as to increase one by one (that is, x = 1, 2, 3,...).
[0327] [表 3] 電極 4 1 . 4 1 + n 4 2 χ 4 2 χ + η  [0327] [Table 3] Electrode 4 1. 4 1 + n 4 2 χ 4 2 χ + η
位相のずれ 0 π / 2 3 π / 2 π [0328] さらに、上記 Ax, Ax+n, Bx, Bx+nの 4本の電極、例えば図 22 (a)に示すように 、電極 41x, 41x+ 2, 42x, 42x+ 2に、下記表 4に示す位相条件で交流を印加する 場合であっても、上記 4本の電極の内部を回転する方向に発生する TWDにより、粒 子 91 (91a)をトラップすることができる。さらに、上記第 1電極列および第 2電極列に おける高周波を印加する対象電極を、上記 4本の電極 Ax, Ax+n, Bx, Bx+nの組 み合わせ力もなる 1ユニットの xが順次 1ずつ大きくなる(つまり、 x= l、 2、 3、…と変 化する)ように順次移動させることにより、トラップされた粒子 91 (91a)を搬送すること ができる。但し、この場合、粒子 91 (91a)は、表 3に記載した場合とは逆方向に回転 する形で、上記電極 Ax, Ax+n, Bx, Bx+nで囲まれた空間の中心部にトラップさ れる。 Phase shift 0 π / 2 3 π / 2 π [0328] Further, the four electrodes Ax, Ax + n, Bx, Bx + n, for example, as shown in FIG. 22 (a), electrodes 41x, 41x + 2, 42x, 42x + 2, and Table 4 below. Even when alternating current is applied under the phase conditions shown, particles 91 (91a) can be trapped by TWD generated in the direction of rotation inside the four electrodes. Furthermore, the target electrode to which a high frequency is applied in the first electrode row and the second electrode row is sequentially changed to one unit of x that also has the combined force of the four electrodes Ax, Ax + n, Bx, Bx + n. The trapped particles 91 (91a) can be transported by sequentially moving them so as to increase by 1 (ie, x = l, 2, 3, ...). However, in this case, the particle 91 (91a) rotates in the opposite direction to that described in Table 3 and is located at the center of the space surrounded by the electrodes Ax, Ax + n, Bx, Bx + n. Trapped.
[0329] [表 4]
Figure imgf000070_0001
[0329] [Table 4]
Figure imgf000070_0001
[0330] 以上のように、本実施の形態によれば、上記第 1電極列と第 2電極列とにおいて、 各電極列内で隣接し合う電極には各々異なる位相の高周波を印加するとともに、上 記泳動媒体層を介して互いに重畳する位置に配置された電極には各々異なる位相 の高周波を印加することで、より効率の良い泳動挙動を実現することが可能になる。 [0330] As described above, according to the present embodiment, in the first electrode row and the second electrode row, high-frequency waves having different phases are applied to adjacent electrodes in each electrode row, It is possible to realize more efficient migration behavior by applying high-frequency waves of different phases to the electrodes arranged at positions overlapping with each other via the migration medium layer.
[0331] 但し、図 22 (a)〜(c)に示す泳動メカニズムは、図 22 (a)〜(c)に示す泳動メカ-ズ ムと比較して、粒子 91 (91a)の動きが複雑となる。このため、粘性の大きい溶媒を用 いる場合には、図 22 (a)〜(c)に示す泳動メカニズムを採用する方力 粒子 91 (91a )が抵抗を受け難くなる。このため、粘性の大きい溶媒を用いる場合、粒子 91 (91a) の搬送距離が長 ヽ場合には、図 22 (a)〜(c)に示す泳動メカニズムを採用すること 1S より優れた効果が得られることから好ましい。  [0331] However, the migration mechanism shown in FIGS. 22 (a) to (c) is more complicated in movement of the particles 91 (91a) than the migration mechanism shown in FIGS. 22 (a) to (c). It becomes. For this reason, when a highly viscous solvent is used, the direction force particles 91 (91a) employing the migration mechanism shown in FIGS. 22 (a) to (c) are less likely to receive resistance. For this reason, when a highly viscous solvent is used, if the transport distance of the particles 91 (91a) is long, adopting the migration mechanism shown in Figs. 22 (a) to (c) is more effective than 1S. This is preferable.
[0332] また、本実施の形態によれば、前記実施の形態 8に示す泳動メカニズムを採用する 場合、図 18 (a) · (b)に示すように、ー且、モードの切り替えが必要であるのに対し、 図 21 (a)〜(c)および図 22 (a)〜(c)に示す泳動メカニズムを採用する場合、上記し たモードの切り替えが不要であり、電圧を印加する対象電極を切り替えるだけで、粒 子 91の分離、搬送を行うことができることから、図 18 (a) · (b)に示す泳動メカニズム を採用する場合よりもさらに粒子 91の分離、搬送効率が高ぐ制御もより容易であると いうメリットがある。また、前記実施の形態 8では、浮揚力の制御と粒子 91の搬送とが 別個に行われるのに対し、本実施の形態では、上記したように、浮揚力を与えながら 粒子 91の搬送を行うので、粒子 91が沈降し難いというメリットもまたある。 [0332] Also, according to the present embodiment, when the migration mechanism shown in the eighth embodiment is adopted, as shown in FIGS. 18 (a) and 18 (b), it is necessary to switch modes. On the other hand, when the migration mechanism shown in FIGS. 21 (a) to (c) and FIGS. 22 (a) to (c) is adopted, it is not necessary to switch the mode, and the target electrode to which a voltage is applied is applied. Since the particles 91 can be separated and transported by simply switching, the migration mechanism shown in Fig. 18 (a) and (b) There is a merit that it is easier to control the separation and transport efficiency of the particles 91 than when adopting the above. In the eighth embodiment, the control of the levitation force and the transport of the particles 91 are performed separately, whereas in the present embodiment, the particles 91 are transported while giving the levitation force as described above. Therefore, there is also an advantage that the particles 91 are difficult to settle.
[0333] 但し、粒子 91の種類によっては、その形状や大きさ、誘電率の僅かな違い、溶媒 9 2の粘性抵抗等の様々な要因により、理想的な挙動をとらないことも多ぐ場合によつ ては、搬送されるべき粒子 91が途中で滞留してしまうこともある。  [0333] However, depending on the type of particle 91, there are many cases where it does not take ideal behavior due to various factors such as slight difference in shape and size, dielectric constant, viscosity resistance of solvent 92, etc. Therefore, the particles 91 to be transported may stay on the way.
[0334] し力しながら、例えばこのような場合であっても、本実施の形態によれば、例えば前 記実施の形態 8に記載の DEPモードを与えることにより、滞留している粒子 91を浮上 させて力 再び搬送することができる。  [0334] However, even in such a case, according to the present embodiment, for example, by giving the DEP mode described in the eighth embodiment, the staying particles 91 are removed. It can be lifted and transported again.
[0335] 例えば、理想的にトラップや搬送されずに、泳動レーン 3の途中に残存した粒子 91 については、まず、 DEPモードの信号 (実施の形態 8参照)を印加して、この泳動レ ーン 3の途中に残存 (滞留)した粒子 91を浮上させた後、この粒子 91付近の 4本の電 極 Ax, Ax+n, Bx, Bx+nに対して、表 2 (例えば表 1)〜表 4の何れかの関係を満 たす位相条件で交流電圧 (高周波)を印加して、この粒子 91をトラップする。その後、 さらに高周波を印加する対象電極を順次移動させることで、このトラップされた粒子 9 1を搬送させる。このように DEPモードによる粒子 91の浮上と新しい泳動メカニズムに よる搬送を繰り返すことにより、多くの粒子 91を目的の位置に搬送することができる。  [0335] For example, for particles 91 that are not ideally trapped or transported and remain in the middle of electrophoresis lane 3, first, a DEP mode signal (see Embodiment 8) is applied, and this electrophoresis After the particles 91 remaining (residual) in the middle of the particle 3 are levitated, the four electrodes Ax, Ax + n, Bx, Bx + n near the particles 91 are shown in Table 2 (for example, Table 1). To trap this particle 91 by applying an AC voltage (high frequency) under a phase condition that satisfies any of the relationships in Table 4. Thereafter, the trapped particles 91 are transported by sequentially moving the target electrodes to which a high frequency is applied. In this way, by repeatedly floating the particles 91 in the DEP mode and transporting them by a new migration mechanism, many particles 91 can be transported to the target position.
[0336] 泳動レーン 3の途中に残存した粒子 91については、目視で確認することができる。  [0336] The particles 91 remaining in the middle of the electrophoresis lane 3 can be visually confirmed.
本実施の形態によれば、大部分の細胞を目的位置まで搬送した後、泳動レーン 3の 途中に残存している粒子 91を目視で確認し、 DEPモードの信号を印加し、再び上記 表 1〜表 4の何れかに記載の新しいメカニズムを用いることで、上記したように泳動レ ーン 3の途中に残存した粒子 91を搬送することができる。  According to the present embodiment, after most of the cells are transported to the target position, the particles 91 remaining in the middle of the electrophoresis lane 3 are visually confirmed, a DEP mode signal is applied, and the above table 1 is again applied. By using the new mechanism described in any of Table 4, the particles 91 remaining in the middle of the electrophoresis lane 3 can be transported as described above.
[0337] なお、本実施の形態において、上記 nは 1以上の整数であり、 nの値は、泳動空間 の高さ(下側基板 1と上側基板 2との基板間隙)や各電極の配列ピッチ等の条件によ つて適宜選択すればよい。但し、 nの値が大きすぎると誘電泳動力の作用が弱くなる  [0337] In the present embodiment, n is an integer equal to or greater than 1, and the value of n is the height of the migration space (the substrate gap between the lower substrate 1 and the upper substrate 2) and the arrangement of the electrodes. What is necessary is just to select suitably according to conditions, such as a pitch. However, if the value of n is too large, the effect of dielectrophoretic force is weakened.
[0338] 非特許文献 5には、例えばポール型の金電極 (金ポール電極)をガラス基板上に 4 重極配置することで、平行な 2対の電極間の距離と、対を成す 2つの電極間の距離と 、上記金ポール電極の半径をパラメータとして電界強度分布が変化することが開示さ れている。 [0338] Non-Patent Document 5 describes, for example, a pole-type gold electrode (gold pole electrode) on a glass substrate. It is disclosed that the distribution of electric field strength changes with the parameters of the distance between two parallel electrodes, the distance between two electrodes in a pair, and the radius of the gold pole electrode by arranging the bipolar electrodes. Yes.
[0339] そこで、上記 nの値は、第 1電極例と第 2電極列との間のピッチ並びに各電極列に おける電極間のピッチおよび電極幅にもよる力 1〜5の範囲内とすることが望ましい  [0339] Therefore, the value of n is within a range of forces 1 to 5 depending on the pitch between the first electrode example and the second electrode array, and the pitch and electrode width between the electrodes in each electrode array. Is desirable
[0340] より具体的には、例えば、図 14に示す誘電泳動パネル 10の J J線矢視断面図に おいて、上記電極 Ax, Ax+n, Bx, Bx+nが略正方形 (好適には正方形)となるよう に上記電極が配置されて 、ること(上記 nが選択されて 、ること)がより好ま 、。すな わち、図 21 (&)〜(じ)ぉょび図22 (&)〜((:)に示す泳動メカニズムにおいては、上記 図 21 (a)〜(c)および図 22 (a)〜(c)に示す断面図にお 、て、電極 41x, 41x+ 2, 42x, 42x+ 2が略正方形 (好適には正方形)となるように上記電極が配置されている こと、言 、換えれば、、電極 41x, 41x+ 2, 42x, 42x+ 2に対し、表 3 (表 2)または表 4に示す位相条件で交流を印加することが、より好ましい。 More specifically, for example, in the sectional view taken along line JJ of the dielectrophoresis panel 10 shown in FIG. 14, the electrodes Ax, Ax + n, Bx, Bx + n are substantially square (preferably It is more preferable that the electrodes are arranged so as to be square) (n is selected above). In other words, in the migration mechanism shown in Fig. 21 (&) to (J) and Fig. 22 (&) to ( ( :)), the above-mentioned Fig. 21 (a) to (c) and Fig. 22 (a) In the cross-sectional view shown in (c), the electrodes 41x, 41x + 2, 42x, 42x + 2 are arranged so that the electrodes are substantially square (preferably square), in other words, More preferably, alternating current is applied to the electrodes 41x, 41x + 2, 42x, 42x + 2 under the phase conditions shown in Table 3 (Table 2) or Table 4.
[0341] 本実施の形態において、図 18 (a)および図 21 (a)に示すように、上記第 1電極 41と 第 2電極 42との電極間距離 (第 1電極 41表面と第 2電極 42表面との間の距離)を Vと し、電極 41xの中心と電極 41x+nの中心との間の距離、並びに、電極 42xの中心と 電極 42x+nの中心との間の距離を Hとした場合、上記 nは、 V:H≤1 : 5、つまり、 H ZV≤ 5を満足して 、ることが好ましく、 HZV≤ 2を満足して 、ることがより好ましく、 HZVがほぼ 1であることがさらに好ましぐ HZV= 1であることが特に好ましい。  In the present embodiment, as shown in FIGS. 18 (a) and 21 (a), the distance between the first electrode 41 and the second electrode 42 (the surface of the first electrode 41 and the second electrode). The distance between the center of electrode 41x and the center of electrode 41x + n, and the distance between the center of electrode 42x and the center of electrode 42x + n is H. , N is preferably V: H≤1: 5, that is, H ZV≤5 is satisfied, more preferably, HZV≤2 is satisfied, and HZV is approximately 1 It is particularly preferable that HZV = 1.
[0342] すなわち、本実施の形態によれば、上記第 1電極列および第 2電極列のうち何れか 一方の電極列(以下、「第 1の電極列」と記す)内の X番目の電極を Ax、 x+n番目の 電極を Ax+n (Xおよび nは 1以上の任意の整数)とし、上記泳動レーンを介して上記 各電極 Ax、 Ax+nに対向する位置に配置された他方の電極列(以下、「第 2の電極 列」と記す)内の各電極をそれぞれ Bx、 Bx+nとし、上記 Axの表面と Bxの表面との 間の距離を Vとし、 Axの中心と Ax+nの中心との間の距離を Hとすると、制御基板 5 0· 55は、(1)上記 ηが HZV≤5を満足するとともに、上記 Axに対する Ax+nの位相 差および Bxの位相差がともに πとなり、上記 Axに対する Bx + nの位相差が 0となる ように交流電圧を印加する力 あるいは、(2)上記 nが HZV≤5を満足するとともに、 上記 Axに対する上記 Ax+nおよび Bxの何れか一方の電極の位相差が π Ζ2、他 方の電極の位相差が 3 π Ζ2であり、上記 Axに対する Βχ + ηの位相差が πとなるよう に交流電圧を印加するものであることが好まし 、。 That is, according to the present embodiment, the X-th electrode in one of the first electrode row and the second electrode row (hereinafter referred to as “first electrode row”). Is the Ax, x + n-th electrode is Ax + n (X and n are arbitrary integers of 1 or more), and the other electrode arranged at the position facing each of the electrodes Ax, Ax + n through the electrophoresis lane Each electrode in the electrode array (hereinafter referred to as “second electrode array”) is Bx, Bx + n, the distance between the surface of Ax and the surface of Bx is V, and the center of Ax is Assuming that the distance from the center of Ax + n is H, the control board 5 0 · 55 (1) The above η satisfies HZV≤5, and the phase difference of Ax + n with respect to Ax and the position of Bx Both phase differences are π, and the phase difference of Bx + n with respect to Ax is 0 Or (2) the above-mentioned n satisfies HZV≤5, and the phase difference of either Ax + n or Bx with respect to Ax is π 、 2, the other electrode It is preferable that an AC voltage is applied so that the phase difference of 3πΖ2 is π and the phase difference of Βχ + η with respect to Ax is π.
[0343] このように、制御基板 50· 55が、上記各電極に対して、上記の関係を満たす位相 条件で交流電圧が印加されるように、上記各電極に印加する電圧 (交流電圧)を制 御することで、上記泳動レーン 3 (試料層)における、上記電極 Ax, Ax+ 2、 Bx, Bx + 2で囲まれた空間の中心部に、前記誘電性物質 (例えば粒子 91 (91a) )をトラップ することができる。 [0343] In this way, the control substrates 50 and 55 apply a voltage (AC voltage) applied to each electrode so that an AC voltage is applied to each electrode under a phase condition that satisfies the above relationship. By controlling, in the migration lane 3 (sample layer), the dielectric substance (for example, the particle 91 (91a)) is placed at the center of the space surrounded by the electrodes Ax, Ax + 2, Bx, Bx + 2. Can be trapped.
[0344] そして、この場合、上記制御基板 50· 55が、上記「第 1の電極列」および「第 2の電 極列」において交流電圧を印加する対象電極を、 Ax、 Ax+n, Bx、 Bx+nの 4つの 電極の組み合わせ力 なる 1ユニットの xが 1ずつ大きくなるように順次移動させるよう に、上記各電極に印加する電圧(交流電圧)を制御することで、交流電圧が印加され て 、る上記ユニットで囲まれた空間の中心部に上記誘電性物質 (例えば粒子 91 (91 a) )がトラップされた状態で、上記誘電性物質を搬送することができる。よって、上記 の構成によれば、従来の TWDモードに比べて、上記誘電性物質の搬送を効率良く 行うことができる。  [0344] In this case, the control boards 50 and 55 specify the target electrodes to which an AC voltage is applied in the "first electrode array" and the "second electrode array" as Ax, Ax + n, Bx By combining the four electrodes Bx + n, which is the combined force of one unit, the voltage applied to each of the electrodes (AC voltage) is controlled so that the x of each unit is increased by one. Thus, the dielectric substance can be transported in a state where the dielectric substance (for example, the particles 91 (91a)) is trapped in the central portion of the space surrounded by the units. Therefore, according to the above configuration, the dielectric substance can be transported more efficiently than in the conventional TWD mode.
[0345] 上記非特許文献 5に記載の電極構造では、取り扱える試料 (泳動媒体 90)が上記 金ポール電極の高さに限定されてしま 、、例えば単数もしくは少量の検体 (例えば細 胞)しか取り扱えないのに対し、本実施の形態によれば、電極長さは、上記下側基板 1および上側基板 2の大きさにしか規定されないので、 4つの電極を 1ユニットとする 4 重極操作により、大量の検体を取り扱うことが可能となる。  [0345] In the electrode structure described in Non-Patent Document 5, the sample (electrophoresis medium 90) that can be handled is limited to the height of the gold pole electrode. For example, only a single sample or a small amount of sample (eg, a cell) can be handled. In contrast, according to the present embodiment, since the electrode length is defined only by the size of the lower substrate 1 and the upper substrate 2, the quadrupole operation with four electrodes as one unit is performed. A large amount of specimen can be handled.
[0346] なお、本実施の形態で説明した上記交流信号の位相の関係は、上記各表に記載 の関係を完璧に満足している必要は必ずしもなぐ実質的に上記説明を満足 (近似) する範囲であれば、上記各表に記載の位相から多少ずれた状態であっても構わな 、  [0346] Note that the phase relationship of the AC signal described in the present embodiment does not necessarily satisfy the relationship described in each table above, and does not necessarily satisfy (approximate) the above description. If it is within a range, it may be in a state slightly deviated from the phases described in the above tables.
[0347] つまり、交流信号は、外部(つまり、 FPC17'46)力も上記泳動電極アレイ 41Α·42[0347] In other words, the AC signal has an external (that is, FPC17'46) force, and the migration electrode array 41Α · 42
Αに入力する。このとき配線抵抗による信号遅延を完全に無くすことは不可能であり、 DC電源 60に近い部分と遠い部分とでは位相がずれてしまう。したがって、本実施の 形態によれば、上記誘電泳動挙動が得られる範囲での位相のずれは許容範囲内で あり、上記各表に記載の位相条件は、この許容範囲の位相のずれを含んでいてもよ い。 Enter in Α. At this time, it is impossible to completely eliminate signal delay due to wiring resistance. The phase near the DC power supply 60 is far from the phase. Therefore, according to the present embodiment, the phase shift within the range in which the dielectrophoretic behavior is obtained is within the allowable range, and the phase conditions described in the above tables include the phase shift within the allowable range. May be.
[0348] 本実施の形態によれば、上記泳動レーン 3を複数備えた、図 17に示す誘電泳動シ ステム 85を用いて、比誘電率が異なる複数の粒子 91を、搬送速度の違いにより同定 することができる。以下に、その具体例について説明する。  [0348] According to the present embodiment, using the dielectrophoresis system 85 shown in Fig. 17 provided with a plurality of the above-described migration lanes 3, a plurality of particles 91 having different relative dielectric constants are identified by the difference in transport speed. can do. Specific examples thereof will be described below.
[0349] 本例においては、まず、例えば、ラテックス粒子とシリカ粒子とが各々の溶媒(同一 溶媒)に分散された 2種類の泳動媒体 90を、それぞれ別の泳動レーン 3に、各泳動 レーン 3における一方の注入'排出孔 5から注入する。その後、前記実施の形態 10と 同様に、例えば、振幅 4. 5V、周波数 50kHzの交流を、前記表 1の関係を満たす位 相条件で印加し、さらに第 1電極列および第 2電極列における高周波を印加する対 象電極を順次移動させる。これにより、ラテックス粒子およびシリカ粒子は、ともに、各 泳動媒体 90を注入した注入 ·排出孔 5とは反対側の注入 ·排出孔 5に向力つて搬送 される。前記したように、誘電泳動力は、粒子と溶媒の誘電率、印加電圧の周波数等 に依存する。本例の場合、シリカ粒子の誘電率は、ラテックス粒子の誘電率と比べて 高い。このため、両粒子は、泳動速度 (搬送速度)が互いに異なる。したがって、上記 したように複数の泳動レーン 3に同じ条件の信号を印加することにより、比誘電率の 異なる粒子の選別'同定を行うことができる。  [0349] In this example, first, for example, two types of migration media 90 in which latex particles and silica particles are dispersed in respective solvents (the same solvent) are transferred to different migration lanes 3 respectively. Inject from one injection hole 5 in the discharge hole 5. Thereafter, in the same manner as in the tenth embodiment, for example, an alternating current with an amplitude of 4.5 V and a frequency of 50 kHz is applied under the phase condition satisfying the relationship of Table 1, and the high frequency in the first electrode row and the second electrode row is further applied. The target electrodes to be applied are moved sequentially. As a result, both latex particles and silica particles are conveyed to the injection / discharge holes 5 on the side opposite to the injection / discharge holes 5 into which the respective electrophoretic media 90 are injected. As described above, the dielectrophoretic force depends on the dielectric constant of the particles and the solvent, the frequency of the applied voltage, and the like. In this example, the dielectric constant of silica particles is higher than the dielectric constant of latex particles. For this reason, both particles have different migration speeds (conveyance speeds). Therefore, by applying a signal under the same conditions to a plurality of electrophoresis lanes 3 as described above, it is possible to select and identify particles having different relative dielectric constants.
[0350] 以上のように、本実施の形態でも、上記したように複数の泳動レーン 3を有する誘電 泳動パネル 10 (誘電泳動チップ)を使用することで、実験環境の煩雑な設定を伴うこ となぐ複数種の異なる試料 (例えば溶媒の比誘電率や粘度が異なる試料、あるいは 、溶媒中の粒子の物性値 (比誘電率等)が異なる試料等)を、同一条件で同時に被 泳動条件下に置くことが可能である。そして、上記したように複数の泳動レーン 3を有 する誘電泳動パネル 10 (誘電泳動チップ)を使用することで、溶媒 92 (泳動媒体 90) の種類を泳動レーン 3毎に変更し、特定の複数の粒子を同時に選別することや、溶 媒 92 (泳動媒体 90)は同一で、泳動レーン 3毎に電極形状を変えることで特定の複 数の粒子 91を同時に選別することも可能であり、複数粒子の選別を効率良く行うこと が可能になる。したがって、本実施の形態においても、試験条件に対する応用範囲 が広ぐ幅広い用途に対応した誘電泳動チップおよび誘電泳動装置、さら〖こは誘電 泳動システム 85を実現することができる。 [0350] As described above, also in the present embodiment, the use of the dielectrophoresis panel 10 (dielectrophoresis chip) having the plurality of electrophoresis lanes 3 as described above involves complicated setting of the experimental environment. Multiple different types of samples (for example, samples with different relative dielectric constants and viscosities of solvents, or samples with different physical properties (relative permittivity, etc.) of particles in the solvent) under the same conditions at the same time It is possible to put. Then, by using the dielectrophoresis panel 10 (dielectrophoresis chip) having a plurality of electrophoresis lanes 3 as described above, the type of the solvent 92 (electrophoresis medium 90) is changed for each electrophoresis lane 3, and a specific plurality of It is also possible to select a plurality of particles 91 at the same time, or the same solvent 92 (electrophoresis medium 90) can be selected at the same time by changing the electrode shape for each electrophoresis lane 3. Efficient particle sorting Is possible. Therefore, also in this embodiment, the dielectrophoresis chip and dielectrophoresis apparatus corresponding to a wide range of applications that have a wide application range with respect to test conditions, and Sarakuko can realize the dielectrophoresis system 85.
[0351] 〔実施の形態 11〕 [Embodiment 11]
本実施の形態について主に図 23に基づいて説明する。なお、本実施の形態では、 主に、前記実施の形態 8〜10との相違点について説明するものとし、前記実施の形 態 8〜10で用いた構成要素と同一の機能を有する構成要素には同一の番号を付し This embodiment will be described mainly based on FIG. In the present embodiment, differences from the eighth to tenth embodiments will be mainly described, and components having the same functions as those used in the eighth to tenth embodiments are described. Are given the same number
、その説明を省略する。 The description is omitted.
[0352] 図 23は、本実施の形態にカゝかる誘電泳動パネル 10の要部の概略構成を示す平 面図であり、図 23は、上記誘電泳動パネル 10の泳動レーン 3形成部の概略構成を 示している。 FIG. 23 is a plan view showing a schematic configuration of the main part of the dielectrophoresis panel 10 according to the present embodiment, and FIG. 23 is an outline of the electrophoresis lane 3 forming part of the dielectrophoresis panel 10. The configuration is shown.
[0353] 図 14ないし図 22 (a)〜(c)に示したように、前記実施の形態 8〜10では、泳動電極 アレイ 41Α·42Αにおける各電極(第 1電極 41、第 2電極 42)の電極幅および電極間 隔は、泳動レーン 3との重畳部であるか否かに拘らず、それぞれ一定 (LZSがともに 30 m)である場合を例に挙げて説明した。すなわち、前記実施の形態 8〜10では 、上記泳動電極アレイ 41Α·42Α力 これら泳動電極アレイ 41Α·42Αにおける各電 極がストライプ状に互いに並行して設けられて 、るストライプ構造をそれぞれ有して ヽ る場合を例に挙げて説明した。  [0353] As shown in Figs. 14 to 22 (a) to (c), in Embodiments 8 to 10, each electrode (first electrode 41, second electrode 42) in the electrophoresis electrode array 41Α and 42Α is used. In the above description, the electrode width and the electrode spacing are constant (LZS is 30 m) regardless of whether or not they overlap with the electrophoresis lane 3. That is, in Embodiments 8 to 10, the electrophoretic electrode arrays 41 and 42 have the stripe structures in which the electrodes in the electrophoretic electrode arrays 41 and 42 are provided in parallel with each other in the form of stripes. The case was described as an example.
[0354] し力しながら、本実施の形態では、図 23に示すように、上記第 1電極 41および第 2 電極 42の各々の電極における電極幅および電極間隔は、これら第 1電極 41および 第 2電極 42 (泳動電極アレイ 41Α·42Α)が泳動レーン 3と重畳している領域と、それ 以外の領域とで異なっている。このため、本実施の形態では、上記第 1電極 41およ び第 2電極 42の電極形状は、これら第 1電極 41および第 2電極 42 (泳動電極アレイ 41A-42A)が泳動レーン 3と重畳している領域と、それ以外の領域とで異なっている  [0354] However, in the present embodiment, as shown in FIG. 23, the electrode width and the electrode interval of each of the first electrode 41 and the second electrode 42 are the same as those of the first electrode 41 and the second electrode 42, as shown in FIG. The area where 2-electrode 42 (electrophoresis electrode array 41Α · 42Α) overlaps electrophoresis lane 3 is different from the other areas. Therefore, in the present embodiment, the electrode shapes of the first electrode 41 and the second electrode 42 are such that the first electrode 41 and the second electrode 42 (migration electrode array 41A-42A) overlap with the migration lane 3. And the other areas are different
[0355] 誘電泳動実験において、狭ピッチの泳動電極アレイ 41 Α·42Αを形成すると、各々 の泳動電極アレイ 41A.42A全体の配線抵抗が高くなり、なおかつ泳動電極アレイ 4 1Α·42Αを構成する各電極間の寄生容量 (すなわち、第 1電極 41 ·41間および第 2 電極 42 ·42間の寄生容量)も大きくなる。このため、狭ピッチの泳動電極アレイ 41 Α· 42Αを形成すると、入力 AC電圧の減衰、遅延の影響が大きくなることは避けられな い。 [0355] In a dielectrophoresis experiment, when the narrow-pitch electrophoretic electrode arrays 41 Α and 42 配線 are formed, the wiring resistance of each electrophoretic electrode array 41A.42A is increased, and each of the electrophoretic electrode arrays 4 1 and 42 構成 is formed. Parasitic capacitance between electrodes (i.e. between first electrode 41 and 41 and second The parasitic capacitance between the electrodes 42 and 42 is also increased. For this reason, if the electrophoretic electrode arrays 41 and 42 having a narrow pitch are formed, it is inevitable that the influence of the attenuation and delay of the input AC voltage will increase.
[0356] そこで、本実施の形態では、図 23に示すように、下側基板 1と上側基板 2との間に、 泳動レーン壁(間隔保持層 43)として、互いに独立して設けられた枠状の複数の泳 動レーン壁 21を互いに間隔を空けて設けることで、互いに離間して並列に設けられ た複数の泳動レーン 3を設けるとともに、上記泳動レーン 3内(枠内)と、上記泳動レ ーン間領域 (間隙部 22)、つまり、上記泳動レーン 3外 (枠外)とで、上記第 1電極 41 および第 2電極 42の各々の電極における電極幅および電極間隔が異なるように泳 動電極アレイ 41A.42Aを設ける。  Therefore, in the present embodiment, as shown in FIG. 23, a frame provided as an electrophoresis lane wall (interval holding layer 43) between the lower substrate 1 and the upper substrate 2 independently of each other. By providing a plurality of swimming lane walls 21 spaced apart from each other, a plurality of migration lanes 3 provided in parallel and spaced apart from each other are provided. Swim so that the electrode width and the electrode interval of each of the first electrode 41 and the second electrode 42 are different in the inter-lane region (gap 22), that is, outside the migration lane 3 (outside the frame). An electrode array 41A.42A is provided.
[0357] 具体的には、上記泳動レーン 3内の各電極、つまり、観察領域として使用される、上 記泳動電極アレイ 41Α·42Αが泳動レーン 3と重畳している領域 (観察領域 9)にお ける第 1電極 41および第 2電極 42は、各々、例えば、電極幅 (L) m、電極間隔 (S) 10 m (電極ピッチ 20 m)で形成されるのに対し、それ以外の領域、すなわち 電気泳動とは関係ない領域 (つまり、泳動レーン 3外)における第 1電極 41および第 2 電極 42は、各々、電極幅 30 /ζ πι( 、最大電極間隔 30 /z m (つまり、互いに隣接す る泳動レーン 3 · 3間の中心部における電極間隔 30 μ m、該中心部における電極ピッ チ 60 μ m)とする。  [0357] Specifically, each electrode in the electrophoresis lane 3, that is, an area (observation area 9) where the electrophoresis electrode arrays 41 ア レ イ and 42Α used as the observation area overlap with the electrophoresis lane 3 is observed. The first electrode 41 and the second electrode 42 are each formed, for example, with an electrode width (L) m and an electrode interval (S) 10 m (electrode pitch 20 m), while other regions, That is, the first electrode 41 and the second electrode 42 in the region not related to electrophoresis (that is, outside the electrophoresis lane 3) have an electrode width of 30 / ζ πι (and a maximum electrode interval of 30 / zm (that is, adjacent to each other). Electrode interval 30 μm at the center between electrophoresis lanes 3 and 3 and electrode pitch 60 μm at the center.
[0358] このように、本実施の形態では、泳動現象の観察に必要である泳動レーン 3内の第 1電極 41群および第 2電極 42群(つまり、観察領域 9における第 1電極 41群および 第 2電極 42群)のみを要求される狭ピッチ配線とし、それ以外の、泳動現象とは無関 係の領域の第 1電極 41群および第 2電極 42群(間隙部 22における第 1電極 41群お よび第 2電極 42群)を広ピッチ配線とする。これにより、泳動電極アレイ 41Α·42Α全 体の抵抗を低くし、かつ寄生容量を低減することができ、入力 AC電圧の減衰や遅延 を抑制することができる。なお、上記した配線形状はほんの一例であり、これに限定さ れるものではない。  [0358] Thus, in the present embodiment, the first electrode 41 group and the second electrode 42 group in the electrophoresis lane 3 necessary for observation of the migration phenomenon (that is, the first electrode 41 group and the second electrode 42 in the observation region 9). Only the second electrode (group 42) is the required narrow-pitch wiring, and the other areas of the first electrode 41 group and the second electrode 42 group (the first electrode 41 group in the gap 22) are unrelated to the migration phenomenon. And the second electrode (group 42) is wide pitch wiring. As a result, the resistance of the entire electrophoresis electrode arrays 41 and 42 can be lowered, the parasitic capacitance can be reduced, and the attenuation and delay of the input AC voltage can be suppressed. The above-described wiring shape is only an example, and the present invention is not limited to this.
[0359] 〔実施の形態 12〕  [Embodiment 12]
本実施の形態について主に図 24に基づいて説明する。なお、本実施の形態では、 主に、前記実施の形態 8〜11との相違点について説明するものとし、前記実施の形 態 8〜11で用いた構成要素と同一の機能を有する構成要素には同一の番号を付し 、その説明を省略する。 This embodiment will be described mainly based on FIG. In this embodiment, Differences from the eighth to eleventh embodiments will be mainly described, and components having the same functions as those used in the eighth to eleventh embodiments are denoted by the same reference numerals. The description is omitted.
[0360] 図 24は、本実施の形態にカゝかる誘電泳動パネル 10の要部の概略構成を示す他の 平面図であり、図 24は、上記誘電泳動パネル 10の泳動レーン 3形成部の概略構成 を示している。  FIG. 24 is another plan view showing a schematic configuration of the main part of the dielectrophoresis panel 10 according to the present embodiment, and FIG. 24 is a diagram of the electrophoresis lane 3 forming part of the dielectrophoresis panel 10. A schematic configuration is shown.
[0361] 図 24に示す誘電泳動パネル 10は、互いに離間して並列に設けられた 3つの泳動 レーン 3の各々で、第 1電極 41および第 2電極 42の各々の電極における電極幅およ び電極間隔(電極ピッチ)が異なっている点で、図 23に示す誘電泳動パネル 10と相 違している。図 24に示す誘電泳動パネル 10は、上記第 1電極 41および第 2電極 42 の各々の電極における電極幅および電極間隔が例えば一方の基板端部 (本実施の 形態では、例えば下側基板 1端部に設けられた、前記実装'接続部 44)から遠い側 の泳動レーン 3ほど大きくなるように、上記泳動電極アレイ 41 Α·42Αが設けられてい る。  [0361] The dielectrophoresis panel 10 shown in FIG. 24 includes the electrode width and the electrode width of each of the first electrode 41 and the second electrode 42 in each of the three electrophoresis lanes 3 provided in parallel and spaced apart from each other. It differs from the dielectrophoresis panel 10 shown in Fig. 23 in that the electrode spacing (electrode pitch) is different. In the dielectrophoresis panel 10 shown in FIG. 24, the electrode width and the electrode interval in each of the first electrode 41 and the second electrode 42 are, for example, one substrate end (in this embodiment, for example, the lower substrate 1 end) The migration electrode arrays 41 and 42 are provided so that the migration lane 3 on the side farther from the mounting / connecting part 44) provided in the part becomes larger.
[0362] より具体的には、図 24に示す泳動電極アレイ 41Α·42Αは、各泳動レーン 3と重畳 する領域に、上記実装'接続部 44側の泳動レーン 3 (図 24中、左端の泳動レーン 3) 力ら順に、例えば、電極幅 10 μ m、電極間隔 10 m (電極ピッチ 20 μ m)の第 1電 極 41群および第 2電極 42群からなる電極部 P1と、電極幅 20 μ m、電極間隔 20 μ m (電極ピッチ 40 μ m)の第 1電極 41群および第 2電極 42群からなる電極部 P2と、電 極幅 30 μ m、電極間隔 30 m (電極ピッチ 60 μ m)の第 1電極 41群および第 2電極 42群力 なる電極部 P3の計 3種類の異なる大きさの帯状の電極部 P1 · P2 · P3を備 えた構成を有している。  [0362] More specifically, the electrophoresis electrode arrays 41 and 42 shown in FIG. 24 overlap the electrophoresis lane 3 on the mounting portion 44 side in the region overlapping each electrophoresis lane 3 (the migration lane 3 at the left end in FIG. 24). Lane 3) In order of force, for example, electrode part P1 consisting of first electrode 41 group and second electrode 42 group with electrode width 10 μm, electrode interval 10 m (electrode pitch 20 μm), and electrode width 20 μm m, electrode interval 20 μm (electrode pitch 40 μm) electrode part P2 consisting of first electrode 41 group and second electrode 42 group, electrode width 30 μm, electrode interval 30 m (electrode pitch 60 μm) The first electrode 41 group and the second electrode 42 group force electrode part P3 in total 3 types of strip-like electrode parts P1, P2, and P3.
[0363] また、上記電極部 P1 ·Ρ2間における上記第 1電極 41および第 2電極 42は、各々、 例えば、電極幅 30 m、上記電極部 PI側端部における電極間隔 10 m (電極ピッ チ 20 μ m)、上記電極部 P2側端部における電極間隔 20 m (電極ピッチ 40 m)と なるように形成されており、上記電極間隔は、上記泳動電極アレイ 41Α·42Αのァレ ィ幅(上記泳動電極アレイ 41 A · 42Aにおける、両側端部の第 1電極 41 · 41間の電 極幅および両側端部の第 2電極 42· 42間の電極幅)に応じて直線的に変化するよう に形成されている。さら〖こ、上記電極部 Ρ2·Ρ3間における上記第 1電極 41および第 2電極 42は、各々、電極幅 30 μ m、上記電極部 P2側端部における電極間隔 20 μ m (電極ピッチ 40 μ m)、上記電極部 P3側端部における電極間隔 30 μ m (電極ピッ チ m)となるように形成されており、上記泳動電極アレイ 41 A ·42Αのアレイ幅( 上記泳動電極アレイ 41Α·42Αにおける、両側端部の第 1電極 41 ·41間の電極幅お よび両側端部の第 2電極 42· 42間の電極幅)に応じて直線的に変化するように形成 されている。 [0363] The first electrode 41 and the second electrode 42 between the electrode portions P1 and P2 have, for example, an electrode width of 30 m and an electrode interval of 10 m (electrode pitch at the electrode portion PI side end portion). 20 μm), and an electrode interval of 20 m (electrode pitch 40 m) at the end portion on the electrode P2 side. The electrode interval is determined by the array width of the electrophoresis electrode array 41Α · 42Α ( In the electrophoretic electrode array 41 A · 42A, the electrode width changes linearly according to the electrode width between the first electrodes 41 · 41 at both ends and the electrode width between the second electrodes 42 · 42 at both ends. Is formed. Furthermore, the first electrode 41 and the second electrode 42 between the electrode parts Ρ2 and Ρ3 have an electrode width of 30 μm and an electrode spacing of 20 μm at the electrode part P2 side end (electrode pitch of 40 μm). m), the electrode interval at the end of the electrode P3 side is 30 μm (electrode pitch m), and the array width of the migration electrode array 41 A · 42Α (the migration electrode array 41Α · 42Α The electrode width between the first electrodes 41 and 41 at both end portions and the electrode width between the second electrodes 42 and 42 at both end portions is linearly changed.
[0364] 本実施の形態にぉ 、ても、前記実施の形態 3および 4同様、上記したように、泳動 レーン 3毎に上記泳動電極アレイ 41Α·42Αの電極形状(あるいは電極幅、電極間 隔)を変えることで、特定の複数の粒子を同時に選別'同定することが可能となり、複 数粒子の選別を効率良く行うことが可能になる。また、複数の泳動レーン 3の泳動挙 動の差異を一括で観察することができるといったメリットもある。  [0364] In this embodiment, as described in the third and fourth embodiments, as described above, the electrode shape (or electrode width, electrode spacing) of the migration electrode arrays 41 and 42 for each migration lane 3 is used. ) Can be used to select and identify a plurality of specific particles at the same time, and it is possible to efficiently select a plurality of particles. Another advantage is that it is possible to observe differences in migration behavior of multiple lanes 3 at once.
[0365] 〔実施の形態 13〕  [Embodiment 13]
本実施の形態について主に図 25 (a)〜(e)に基づいて説明する。なお、本実施の 形態では、主に、前記実施の形態 8〜 12との相違点について説明するものとし、前 記実施の形態 8〜12で用いた構成要素と同一の機能を有する構成要素には同一の 番号を付し、その説明を省略する。  This embodiment will be described mainly based on FIGS. 25 (a) to (e). In the present embodiment, differences from the eighth to twelfth embodiments will be mainly described, and components having the same functions as those used in the eighth to twelfth embodiments are described. Are given the same number and their explanation is omitted.
[0366] 図 25 (a)は、本実施の形態に力かる誘電泳動パネル 10の要部の概略構成を示す 平面図である。図 25 (a)は、上記誘電泳動パネル 10の泳動レーン 3形成部の概略 構成を示している。また、図 25 (b)〜(e)は、図 25 (a)に示す誘電泳動パネル 10の 各泳動レーン 3における第 1電極 41および第 2電極 42の形状を模式的に示す平面 図である。  FIG. 25 (a) is a plan view showing a schematic configuration of a main part of the dielectrophoresis panel 10 that works on the present embodiment. FIG. 25 (a) shows a schematic configuration of the electrophoresis lane 3 forming part of the dielectrophoresis panel 10. FIG. 25 (b) to (e) are plan views schematically showing the shapes of the first electrode 41 and the second electrode 42 in each electrophoresis lane 3 of the dielectrophoresis panel 10 shown in FIG. 25 (a). .
[0367] 本実施の形態に力かる誘電泳動パネル 10は、例えば図 25 (a)に示すように、並列 に設けられた 4つの泳動レーン 3各々で、第 1電極 41および第 2電極 42 (泳動電極ァ レイ 41A.42A)の形状が異なっている。  As shown in FIG. 25 (a), for example, as shown in FIG. 25 (a), the dielectrophoresis panel 10 according to the present embodiment includes a first electrode 41 and a second electrode 42 (in each of four electrophoresis lanes 3 provided in parallel. The shape of the electrophoresis electrode array 41A.42A) is different.
[0368] 具体的には、上記 4つの泳動レーン 3のうち、例えば一方の基板端部、本実施の形 態では、例えば下側基板 1端部に設けられた、前記実装'接続部 44に最も近い泳動 レーン 3Aでは、上記泳動電極アレイ 41 A ·42Αは、図 25 (b)に示すように、配線幅 3 0 mの直線状の第 1電極 41および第 2電極 42がストライプ状に設けられた構造 (ス トライプ型電極構造)を有している。次いで実装'接続部 44に近い泳動レーン 3Bで は、上記泳動電極アレイ 41A.42Aは、図 25 (c)に示すように、配線幅 45 μ mの直 線状の第 1電極 41および第 2電極 42がストライプ状に設けられた構造 (ストライプ型 電極構造)を有している。そして、上記泳動レーン 3Bの次に上記実装'接続部 44に 近い泳動レーン 3Cでは、上記泳動電極アレイ 41Α·42Αは、図 25 (d)に示すように 、配線幅 30 mの山切り型 (鋸状)の第 1電極 41および第 2電極 42が等間隔で複数 並設された構造を有している。最後に、上記 4つの泳動レーン 3のうち最も上記実装' 接続部 44から遠い泳動レーン 3Dでは、上記泳動電極アレイ 41Α·42Αは、図 25 (e )に示すように、配線幅 30 mの波型の第 1電極 41および第 2電極 42が等間隔で複 数並設された構造を有している。なお、上記第 1電極 41および第 2電極 42の各々の 電極における電極間隔(電極ピッチ)は、何れも 60 μ mである。 [0368] Specifically, among the four migration lanes 3, for example, at one end of the substrate, in the present embodiment, for example, at the end of the lower substrate 1, the mounting 'connection portion 44 is provided. In the closest migration lane 3A, the migration electrode array 41 A · 42 mm has a wiring width of 3 as shown in Fig. 25 (b). It has a structure (stripe-type electrode structure) in which 0 m linear first electrodes 41 and second electrodes 42 are provided in stripes. Next, in the electrophoresis lane 3B close to the mounting / connecting portion 44, the electrophoresis electrode array 41A.42A includes the linear first electrode 41 and the second electrode having a wiring width of 45 μm, as shown in FIG. The electrode 42 has a structure in which stripes are provided (stripe-type electrode structure). Then, in the electrophoresis lane 3C, which is next to the mounting lane connecting portion 44 next to the electrophoresis lane 3B, the electrophoresis electrode arrays 41Α and 42Α are chopped (with a wiring width of 30 m as shown in FIG. 25 (d)). A plurality of saw-shaped) first electrodes 41 and second electrodes 42 are arranged in parallel at equal intervals. Finally, in the electrophoresis lane 3D farthest from the mounting section 44 of the four electrophoresis lanes 3 described above, the electrophoresis electrode array 41Α and 42Α are shown in FIG. 25 (e). The mold has a structure in which a plurality of first electrodes 41 and second electrodes 42 are arranged in parallel at equal intervals. The electrode spacing (electrode pitch) in each of the first electrode 41 and the second electrode 42 is 60 μm.
[0369] 誘電泳動挙動は、同一の試料 (泳動媒体 90)を使用し、同一の制御電圧で駆動す る場合でも、配線、すなわち、上記第 1電極 41および第 2電極 42 (泳動電極アレイ 4 1Α·42Α)の形状により、上記試料 (泳動媒体 90)中の電界の状態に応じて異なる。  [0369] The dielectrophoresis behavior is the same as that of the first electrode 41 and the second electrode 42 (electrophoresis electrode array 4) even when the same sample (electrophoresis medium 90) is used and driven with the same control voltage. Depending on the shape of 1Α · 42Α), it depends on the state of the electric field in the sample (electrophoresis medium 90).
[0370] したがって、前記実施の形態 3、 4および 12同様、本実施の形態でも、泳動レーン 3 毎に上記第 1電極 41および第 2電極 42 (泳動電極アレイ 41Α·42Α)の電極形状、 電極幅、電極間隔の少なくとも 1つを変更することにより、上記泳動媒体 90中の特定 の複数の粒子 91を同時に選別'同定することが可能となる。この結果、例えば複数の 粒子 91の選別を効率良く行うことができる。また、上記の構成によれば、複数の泳動 レーン 3における上記粒子 91の泳動挙動の差異を一括して観察することができると ヽつたメリットもある。  [0370] Therefore, as in Embodiments 3, 4, and 12, in this embodiment, the electrode shapes and electrodes of the first electrode 41 and the second electrode 42 (electrophoresis electrode array 41Α · 42Α) for each electrophoresis lane 3 are as follows. By changing at least one of the width and the electrode spacing, it becomes possible to simultaneously select and identify a plurality of specific particles 91 in the electrophoresis medium 90. As a result, for example, the plurality of particles 91 can be efficiently selected. In addition, according to the above configuration, there is a merit that the difference in the migration behavior of the particles 91 in the plurality of migration lanes 3 can be collectively observed.
[0371] なお、本実施の形態では、上記したように、本実施の形態に力かる誘電泳動パネル 10として、上記第 1電極 41および第 2電極 42 (泳動電極アレイ 41Α·42Α)の形状、 電極幅、電極間隔のうち、少なくとも一つの条件が泳動レーン 3毎に異なる誘電泳動 パネルを例に挙げて説明した。し力しながら、本実施の形態は、これに限定されるも のではない。  [0371] In the present embodiment, as described above, as the dielectrophoresis panel 10 that works on the present embodiment, the shapes of the first electrode 41 and the second electrode 42 (electrophoresis electrode array 41Α · 42Α), The dielectrophoresis panel in which at least one of the electrode width and the electrode interval is different for each electrophoresis lane 3 has been described as an example. However, the present embodiment is not limited to this.
[0372] 例えば、本実施の形態に力かる誘電泳動パネル 10は、前記図 23または図 24に示 すように、互いに隣り合う泳動レーン 3 · 3間に、所定の間隙部 22 (泳動レーン間領域 )を有し、該間隙部 22と上記泳動レーン 3とで、第 1電極 41および第 2電極 42 (泳動 電極アレイ 41Α·42Α)の形状、電極幅、電極間隔のうち、少なくとも一つの条件が異 なって!/ヽる構成を有して!/ヽてもよ!/ヽ。 [0372] For example, the dielectrophoresis panel 10 useful for the present embodiment is shown in FIG. 23 or FIG. As described above, a predetermined gap portion 22 (region between the migration lanes) is provided between the migration lanes 3 and 3 adjacent to each other, and the first electrode 41 and the second electrode are formed between the gap portion 22 and the migration lane 3. 42 (electrophoretic electrode array 41Α · 42Α) has a configuration in which at least one of the shape, electrode width, and electrode spacing is different! / ヽ!
[0373] 例えば、上記泳動レーン 3A' 3B' 3Cにおける泳動電極アレイ 41Α·42Αの電極形 状がストライプ状ではない場合、上記間隙部 22における泳動電極アレイ 41Α·42Α の電極形状をストライプ構造にして配線長を短縮することにより、配線抵抗の増大を 抑えることが可能となる。  [0373] For example, when the electrode shape of the migration electrode array 41Α · 42Α in the migration lanes 3A '3B' 3C is not a stripe shape, the electrode shape of the migration electrode array 41Α · 42Α in the gap 22 is a stripe structure. By shortening the wiring length, it is possible to suppress an increase in wiring resistance.
[0374] また、前記図 23に示すように、泳動レーン 3と間隙部 22とで、上記泳動電極アレイ 4 1Α·42Αにおける各電極の配線幅や配線間隔を異ならしめる等して泳動電極アレイ 41Α·42Αの電極形状を異ならしめた場合、上記誘電泳動パネル 10における泳動 電極アレイ 41 Α·42Α (配線)の低抵抗ィ匕を図ることができる。  In addition, as shown in FIG. 23, the migration lane 3 and the gap 22 have different migration widths and spacings between the electrodes in the migration electrode array 41 and the migration electrode array 41. When the electrode shape of 42 mm is made different, the low resistance of the migration electrode array 41 Α · 42 Α (wiring) in the dielectrophoresis panel 10 can be achieved.
[0375] 以上のように、上記した各実施の形態によれば、片側の基板に配置された電極列 のみで、粒子の浮上 (DEPモード)や搬送 (TWDモード)を制御する場合と比較して 、より効率的に泳動挙動を制御することができるとともに、安定した誘電泳動挙動を得 ることができる誘電泳動チップおよび誘電泳動装置並びに誘電泳動システムを提供 することができる。よって、上記の各実施形態によれば、従来と比較して、試験条件に 対する応用範囲を広げることができるとともに、観察環境を、大幅に改善することがで きる。さらに、上記した各実施の形態によれば、上記したように片側の基板にしか電 極列が配置されて 、な 、場合と比較して、より複雑な泳動挙動を得ることができるとと もに、より測定精度の高い誘電泳動チップおよび誘電泳動装置並びに誘電泳動シス テムを提供することができる。  [0375] As described above, according to each of the above-described embodiments, compared to the case where particle floating (DEP mode) and transport (TWD mode) are controlled by only the electrode array arranged on one substrate. Thus, it is possible to provide a dielectrophoresis chip, a dielectrophoresis apparatus, and a dielectrophoresis system that can control the electrophoretic behavior more efficiently and obtain a stable dielectrophoretic behavior. Therefore, according to each of the above embodiments, the application range for the test conditions can be expanded and the observation environment can be greatly improved as compared to the conventional case. Furthermore, according to each of the above-described embodiments, the electrode array is arranged only on one substrate as described above, and more complicated electrophoretic behavior can be obtained as compared with the case. In addition, it is possible to provide a dielectrophoresis chip, a dielectrophoresis apparatus, and a dielectrophoresis system with higher measurement accuracy.
[0376] また、上記したように、片側の基板に配置された電極列のみで、粒子の浮上 (DEP モード)や搬送 (TWDモード)を制御する場合、強い誘電泳動力を得るためには、電 極に印加する駆動電圧を大きくする必要があり、駆動系統 (駆動 IC (集積回路; integ rated circuit)等)の負荷が大きくなるのに対し、上記した各実施の形態によれば、片 側の基板にしか電極列が配置されて 、な 、場合と比較して、駆動電圧を増加させる ことなく誘電泳動力を大きくすることができる。 [0377] 以上のように、上記誘電泳動チップは、誘電性物質を含む試料に交流電圧により 形成された電界を印加することにより上記誘電性物質を誘電泳動させる誘電泳動チ ップであって、一つの基板上に、上記誘電性物質を誘電泳動させる泳動レーンを複 数備えるとともに、上記泳動レーンと交差する複数の電極力 なり、上記泳動レーン に注入された試料に電界を印加するために交流電圧を印加することで上記誘電性 物質を誘電泳動させる電極列を備え、上記電極列における各電極は、上記複数の 泳動レーンに跨がって設けられて 、る構成を有して 、る。 [0376] Also, as described above, in order to obtain a strong dielectrophoretic force when controlling the floating (DEP mode) and transport (TWD mode) of particles using only the electrode array arranged on one substrate, While it is necessary to increase the drive voltage applied to the electrode, the load on the drive system (drive IC (integrated circuit; integ rated circuit), etc.) increases. If the electrode array is arranged only on the substrate, the dielectrophoretic force can be increased without increasing the driving voltage as compared with the case. [0377] As described above, the dielectrophoresis chip is a dielectrophoresis chip that dielectrophores the dielectric substance by applying an electric field formed by an alternating voltage to a sample containing the dielectric substance. A plurality of electrophoretic lanes for dielectrophoretic migration of the dielectric substance are provided on a single substrate, and a plurality of electrode forces intersect with the electrophoretic lane, and an alternating current is applied to apply an electric field to the sample injected into the electrophoretic lane. An electrode array for dielectrophoretic migration of the dielectric substance by applying a voltage is provided, and each electrode in the electrode array is provided across the plurality of electrophoresis lanes.
[0378] 上記の構成によれば、上記泳動レーンが、一つの基板上に複数設けられており、 かつ、上記電極列における各電極が、上記複数の泳動レーンに跨がって設けられて いること、つまり、上記各電極が、複数の泳動レーンに共通して設けられていることで 、上記誘電性物質に誘電泳動力を与える交流電圧 (泳動制御電圧)を、上記各泳動 レーンにおける各電極に一括して入力することができる。すなわち、上記の構成によ れば、上記電極列に一種類の信号を入力すると、複数の泳動レーンに同時に電界を 印加することができる。従って、上記の構成によれば、複数の試料の泳動制御を、一 括して同時に行うことができる。  [0378] According to the above configuration, a plurality of the electrophoresis lanes are provided on one substrate, and each electrode in the electrode array is provided across the plurality of migration lanes. That is, since each electrode is provided in common for a plurality of electrophoresis lanes, an alternating voltage (electrophoresis control voltage) that applies a dielectrophoretic force to the dielectric substance is applied to each electrode in each electrophoresis lane. Can be entered in batch. That is, according to the above configuration, when one type of signal is input to the electrode array, an electric field can be simultaneously applied to a plurality of electrophoresis lanes. Therefore, according to the above configuration, the migration control of a plurality of samples can be performed simultaneously.
[0379] このため、上記の構成によれば、実験環境の煩雑な設定を伴うことなぐ複数種の 異なる試料 (例えば溶媒の比誘電率や粘度が異なる試料、あるいは、溶媒中の粒子 の物性値 (比誘電率等)が異なる試料等)を、同一条件で同時に被泳動条件下に置 くことが可能であり、試験条件に対する応用範囲が広ぐ様々な試験条件に適応する 誘電泳動チップを提供することが可能である。  [0379] For this reason, according to the above configuration, a plurality of different samples (for example, samples having different relative dielectric constants and viscosities of solvents, or physical property values of particles in the solvent) without complicated setting of the experimental environment. (Dielectric samples with different dielectric constants, etc.) can be placed under migration conditions under the same conditions at the same time, and a dielectrophoresis chip suitable for various test conditions with a wide range of application to test conditions is provided. Is possible.
[0380] また、上記の構成によれば、上記したように、一つの基板上に複数の泳動レーンを 有する誘電泳動チップを使用することで、試料 (例えば溶媒等の媒体)の種類を泳動 レーン毎に変更し、特定の複数の粒子を同時に選別することや、溶媒等の媒体は同 一で、泳動レーン毎に電極形状を変えることで特定の複数の粒子を同時に選別する ことも可能であり、複数粒子の選別を効率良く行うことが可能になる。従って、上記の 構成によれば、幅広 ヽ用途に対応した誘電泳動チップを提供することができる。  [0380] Further, according to the above configuration, as described above, by using a dielectrophoresis chip having a plurality of electrophoresis lanes on a single substrate, the type of sample (for example, a medium such as a solvent) can be changed. It is possible to select specific particles at the same time by changing each electrode and changing the shape of the electrode for each electrophoresis lane. This makes it possible to efficiently select a plurality of particles. Therefore, according to the above configuration, it is possible to provide a dielectrophoresis chip corresponding to a wide range of uses.
[0381] 上記誘電泳動チップは、互いに隣り合う泳動レーン同士で、上記電極列の形状、 電極幅、および電極間隔のうち少なくとも一つの条件が異なっていることが好ましい。 [0382] 誘電泳動挙動は、同一の試料を使用し、同一の制御電圧で駆動する場合でも、電 極列(電極)の形状により、上記試料中の電界の状態に応じて異なる。 [0381] In the dielectrophoresis chip, it is preferable that at least one of the shape, the electrode width, and the electrode interval of the electrode row is different between adjacent lanes. [0382] Even when the same sample is used and driven with the same control voltage, the dielectrophoretic behavior differs depending on the state of the electric field in the sample depending on the shape of the electrode array (electrode).
[0383] 従って、上記の構成によれば、上記したように互いに隣り合う泳動レーン同士で、上 記電極列の形状、電極幅、および電極間隔のうち少なくとも一つの条件を異ならしめ ることで、特定の複数の誘電性物質を同時に選別'同定することが可能となり、複数 の誘電性物質の選別を効率よく行うことが可能になるという効果を有している。また、 上記の構成によれば、複数の泳動レーンの泳動挙動の差異を一括で観察することが できると ヽつたメリッ卜もある。  [0383] Therefore, according to the above configuration, by changing at least one of the shape of the electrode row, the electrode width, and the electrode interval between the electrophoresis lanes adjacent to each other as described above, It is possible to select and identify a plurality of specific dielectric materials at the same time, and it is possible to efficiently select a plurality of dielectric materials. In addition, according to the above configuration, there is a merit that it is possible to observe the difference in migration behavior of a plurality of migration lanes at once.
[0384] また、上記誘電泳動チップにお!、て、上記各泳動レーンは互いに離間して設けら れ、上記各泳動レーン内と、各泳動レーン同士の間の領域とでは、上記電極列の形 状、電極幅、および電極間隔のうち少なくとも一つの条件が異なっていることが好まし い。  [0384] In addition, each of the electrophoresis lanes is provided apart from each other in the dielectrophoresis chip, and the electrode array is formed in each of the electrophoresis lanes and in an area between the electrophoresis lanes. It is preferable that at least one of the shape, electrode width, and electrode spacing is different.
[0385] 上記の構成によれば、例えば、泳動現象の観察に必要である泳動レーン内の電極 列のみを要求される狭ピッチ配線とし、それ以外の、泳動現象とは無関係の領域の 電極列(上記各泳動レーン同士の間の領域)を広ピッチ配線とすることで、上記電極 列全体の抵抗を低くし、かつ寄生容量を低減することで、入力 AC電圧の減衰や遅 延を抑制することが可能となる。  [0385] According to the above configuration, for example, only the electrode rows in the electrophoresis lane necessary for observation of the migration phenomenon are required to have a narrow pitch wiring, and the other electrode rows in the region unrelated to the migration phenomenon. By using wide-pitch wiring (regions between the migration lanes), the resistance of the entire electrode array is lowered, and parasitic capacitance is reduced, thereby suppressing attenuation and delay of the input AC voltage. It becomes possible.
[0386] また、上記の構成によれば、例えば上記泳動レーン内の電極列における電極形状 力 Sストライプ状ではな 、場合、各泳動レーン同士の間の領域における上記電極列の 電極形状をストライプ構造にして配線長を短縮する等して配線抵抗の増大を抑えるこ とも可能である。  [0386] According to the above configuration, for example, in the case where the electrode shape force in the electrode row in the migration lane is not S stripe shape, the electrode shape of the electrode row in the region between the migration lanes is a stripe structure. It is also possible to suppress the increase in wiring resistance by shortening the wiring length.
[0387] このように、上記の構成によれば、上記各泳動レーン内と、各泳動レーン同士の間 の領域とで、上記電極列の形状、電極幅、および電極間隔のうち少なくとも一つの条 件を異ならしめることで、上記電極列の低抵抗ィ匕を図ることができると 、う効果を奏す る。  [0387] Thus, according to the above-described configuration, at least one of the shape, the electrode width, and the electrode interval of the electrode array is formed in each electrophoresis lane and in an area between the electrophoresis lanes. By making the conditions different, it is possible to reduce the resistance of the electrode array.
[0388] また、上記誘電泳動チップにお!、て、上記基板上には、上記各泳動レーンを隔て る泳動レーン壁が設けられているとともに、該泳動レーン壁が形成されている領域の 少なくとも一部を除く領域に、上記電極列を覆う保護膜が設けられていることが好まし い。 [0388] In addition, the dielectrophoresis chip is provided with an electrophoresis lane wall separating the electrophoresis lanes on the substrate, and at least a region where the electrophoresis lane wall is formed. It is preferable that a protective film covering the above electrode array is provided in a region excluding a part. Yes.
[0389] 上記の構成によれば、上記基板上に、上記電極列を覆う保護膜が設けられている ことで、泳動する誘電性物質が、上記泳動レーン内において上記電極列に吸着する ことを防ぐことができる。そして、上記保護膜が、上記基板上における上記泳動レーン 壁が形成されている領域の少なくとも一部を除く領域に設けられていることで、上記 保護膜と上記泳動レーン壁の材料との密着性が悪 ヽ場合でも、十分な接着性を得る ことができると!/、う効果を奏する。  [0389] According to the above configuration, since the protective film that covers the electrode array is provided on the substrate, the migrating dielectric substance is adsorbed to the electrode array in the electrophoresis lane. Can be prevented. The protective film is provided in a region on the substrate excluding at least a part of the region where the migration lane wall is formed, whereby adhesion between the protective film and the material of the migration lane wall is achieved. Even if it is bad, if you can get enough adhesion!
[0390] さらに、上記誘電泳動チップにおいて、上記各泳動レーンは、上記基板と、上記基 板上に設けられ、上記各泳動レーンを隔てる泳動レーン壁と、上記泳動レーン壁を 介して上記基板に対向配置された対向基板とで形成されており、上記泳動レーン壁 は、内部に、上記基板と、上記基板に対向配置された対向基板との間の間隔を保持 するスぺーサを含有して 、ることが好まし 、。  [0390] Further, in the dielectrophoresis chip, each electrophoresis lane is provided on the substrate, the substrate, an electrophoresis lane wall separating the electrophoresis lanes, and the substrate through the electrophoresis lane wall. The migration lane wall includes a spacer that maintains a distance between the substrate and the counter substrate disposed to face the substrate. , Prefer to be.
[0391] 上記の構成によれば、このように上記泳動レーンが一対の基板間に形成されてい る場合、上記泳動レーン壁が、内部に、上記一対の基板間の間隔を保持するスぺー サを含有していることで、上記泳動レーンのレーン高さを均一に保持することができる という効果を奏する。  [0391] According to the above configuration, when the migration lane is formed between a pair of substrates in this way, the migration lane wall internally holds a spacer between the pair of substrates. By containing the above, there is an effect that the lane height of the electrophoresis lane can be kept uniform.
[0392] また、上記誘電泳動チップは、上記電極列における各電極の両端部に、各電極に 各電極の両端から同一の電圧を入力するための入力端子部を有していることが好ま しい。  [0392] Further, it is preferable that the dielectrophoresis chip has input terminal portions for inputting the same voltage from both ends of each electrode to both ends of each electrode in the electrode row. .
[0393] 上記の構成によれば、誘電泳動試験時に、上記電極列における各電極の両端から 、各電極に、それぞれ、同一の電圧、すなわち、同一の交流電圧が、同時に入力さ れる。  [0393] According to the above configuration, at the time of the dielectrophoresis test, the same voltage, that is, the same AC voltage is simultaneously input to each electrode from both ends of each electrode in the electrode array.
[0394] 従って、上記の構成によれば、上記各電極の両端部から同一の電圧が入力される ことで、各電極に、各電極の片側カゝらのみ電圧が入力される場合と比較して、配線抵 抗および寄生容量による入力電圧信号の減衰や遅延の影響を抑制することができる という効果を奏する。  [0394] Therefore, according to the above configuration, the same voltage is input from both ends of each electrode, so that the voltage is input to each electrode only from one side of each electrode. As a result, the effects of attenuation and delay of the input voltage signal due to wiring resistance and parasitic capacitance can be suppressed.
[0395] また、上記誘電泳動チップにお!、て、上記各泳動レーンは、上記基板と、上記基板 上に設けられ、上記各泳動レーンを隔てる泳動レーン壁と、上記泳動レーン壁を介し て上記基板に対向配置された対向基板とで形成されており、かつ、上記各泳動レー ンは、上記基板と、上記基板に対向配置された対向基板との間に、上記各泳動レー ンに上記試料を注入するための注入口を有して!/、ることが好まし!/、。 [0395] Also, in the dielectrophoresis chip, each electrophoresis lane is provided on the substrate, the electrophoresis lane wall provided on the substrate, and separating each electrophoresis lane, and the electrophoresis lane wall. Each of the electrophoresis lanes is disposed between the substrate and the opposite substrate disposed opposite to the substrate. It is preferable to have an inlet for injecting the above sample! /.
[0396] 上記の構成によれば、このように泳動レーンが一対の基板間に形成されている場 合、該泳動レーンに上記試料を注入するための注入口を、上記基板にドリル等で孔 を開ける等して形成する場合と比較して、上記泳動レーン内への不純物の混入を防 止し、上記誘電泳動チップの不良発生率を相対的に抑制することができるという効果 を奏する。  [0396] According to the above configuration, when the migration lane is formed between a pair of substrates in this way, an injection port for injecting the sample into the migration lane is provided with a hole or the like in the substrate. Compared with the case of forming by opening, etc., it is possible to prevent the entry of impurities into the electrophoresis lane and to relatively suppress the defect occurrence rate of the dielectrophoresis chip.
[0397] また、上記の構成によれば、上記泳動レーン壁のパターンにより上記一対の基板 間に上記注入口が必然的に形成されることから、上記注入口を形成するために別途 材料や工程を必要としない。従って、上記の構成によれば、上記誘電泳動チップにド リル等で上記注入口を設ける場合と比較して、より効率的に上記誘電泳動チップを 形成することができるという効果を併せて奏する。  [0397] Further, according to the above configuration, the injection port is inevitably formed between the pair of substrates due to the pattern of the migration lane wall. Therefore, a separate material or process is used to form the injection port. Do not need. Therefore, according to the above configuration, the dielectrophoresis chip can be formed more efficiently than the case where the dielectrophoresis chip is provided with the injection port by drill or the like.
[0398] また、上記電極列は、上記泳動レーンのレーン方向に各々電極が複数配設されて なる第 1の電極列および第 2の電極列を備え、上記第 1の電極列および第 2の電極 列は、各々の電極列における電極間に各々交流電圧による電界を形成することで上 記泳動レーンに注入された試料に各々電界を印加し、上記第 1の電極列および第 2 の電極列における各々の電極は、上記泳動レーンを介して互いに対向するとともに 上記泳動レーンに交差して設けられており、かつ、上記第 1の電極列および第 2の電 極列における各々の電極は、上記複数の泳動レーンに跨がって設けられていること が好ましい。  [0398] In addition, the electrode array includes a first electrode array and a second electrode array in which a plurality of electrodes are arranged in the lane direction of the migration lane, and the first electrode array and the second electrode array are provided. Each of the electrode arrays applies an electric field to the sample injected into the migration lane by forming an electric field with an alternating voltage between the electrodes in each electrode array, and the first electrode array and the second electrode array The electrodes in the first electrode array and the second electrode array are opposed to each other through the electrophoresis lane and intersect with the electrophoresis lane. It is preferable to be provided across a plurality of electrophoresis lanes.
[0399] 上記したように、誘電泳動を利用して誘電性物質を搬送、分離、収集する場合、上 記誘電泳動パネル 10に設けられた泳動電極アレイ 6に、 DEPモードにより誘電性物 質を浮揚させる信号や、 TWDモードにより誘電性物質を目的場所に搬送させる信号 を印加する必要がある。  [0399] As described above, when a dielectric substance is transported, separated, and collected using dielectrophoresis, the dielectric material is applied to the electrophoretic electrode array 6 provided in the dielectrophoresis panel 10 by the DEP mode. It is necessary to apply a signal for levitating or a signal for transporting the dielectric material to the destination by TWD mode.
[0400] し力しながら、上記誘電性物質として、前記したように例えば粒子を泳動 (搬送)さ せる場合、上記誘電泳動により泳動する泳動粒子は、粒子の形状や大きさ、誘電率 の僅かな違い、溶媒の粘性抵抗等、様々な要因により、理想的な挙動をとらないこと がある。 [0400] As described above, for example, when particles are migrated (conveyed) as the dielectric substance, the electrophoretic particles migrating by the dielectrophoresis have a small shape, size, and dielectric constant. Do not behave ideally due to various factors such as solvent viscosity resistance There is.
[0401] 特に、前記した従来の半導体チップ基板 (誘電泳動チップ基板)並びにこれを用い た粒子搬送用装置では、泳動粒子が、安定した誘電泳動挙動を得ることが困難であ つたり、粒子の効率的な搬送ができな力つたりするという問題を生じ易い。  [0401] In particular, in the above-described conventional semiconductor chip substrate (dielectrophoresis chip substrate) and particle transport apparatus using the same, it is difficult for the migrating particles to obtain stable dielectrophoretic behavior, It is easy to cause a problem that force cannot be efficiently conveyed.
[0402] これに対し、泳動レーンを挟んで設けられた別個の電極列から、それぞれ交流電 圧により形成された電界を試料に印加することで、泳動レーンの片面力 のみ上記 電界が印加される場合と比較して、上記誘電性物質の安定した誘電泳動挙動を得る ことができ、誘電性物質の効率的な搬送 (誘電泳動)を行うことができる。  [0402] On the other hand, when the above electric field is applied only to the single-sided force of the electrophoresis lane by applying the electric field formed by the AC voltage to the sample from separate electrode arrays provided across the electrophoresis lane. As compared with the above, it is possible to obtain a stable dielectrophoretic behavior of the dielectric material, and it is possible to efficiently transport the dielectric material (dielectrophoresis).
[0403] すなわち、上記の構成によれば、上記第 1の電極列および第 2の電極列における 各々の電極は、上記泳動レーンを介して互いに対向して設けられているので、上記 泳動レーンに注入された試料を挟むように、該試料に交流電圧により形成された電 界を印加する電極が設けられていることになる。よって、上記誘電性物質には、該誘 電性物質を挟むように、該誘電性物質を含む試料 (試料層)の両面、すなわち対向 する 2つの面からそれぞれ交流電圧により形成された電界が印加されるので、上記 試料 (試料層)の片面(1面)からのみ上記電界が印加される場合に比べて、上記誘 電性物質の誘電泳動の挙動を安定させることができる。  [0403] That is, according to the above configuration, each electrode in the first electrode row and the second electrode row is provided to face each other via the migration lane. An electrode for applying an electric field formed by an alternating voltage is provided on the sample so as to sandwich the injected sample. Therefore, an electric field formed by an AC voltage is applied to the dielectric material from both surfaces of the sample (sample layer) containing the dielectric material, that is, two opposing surfaces so as to sandwich the dielectric material. Therefore, compared to the case where the electric field is applied only from one side (one side) of the sample (sample layer), the behavior of dielectrophoresis of the inductive substance can be stabilized.
[0404] しかも、泳動レーンの片面にのみ電極列が形成されている場合、強い誘電泳動力 を得るためには、電極に印加する駆動電圧を大きくする必要があり、駆動系統 (駆動 I C (集積回路; integrated circuit)等)の負荷が大きくなると!/、つた問題を生じる。  [0404] Moreover, when an electrode array is formed only on one side of the electrophoresis lane, in order to obtain a strong dielectrophoretic force, it is necessary to increase the drive voltage applied to the electrode, and the drive system (drive IC (integrated If the load of the integrated circuit) is increased, it will cause problems!
[0405] し力しながら、上記の構成によれば、上記誘電性物質には、上記試料 (試料層)の 両面から上記電界が印加されるので、上記試料 (試料層)の片面からのみ上記電界 が印加される場合と比べて、上記誘電性物質に力かる電界が強くなる。このため、上 記の構成によれば、上記試料 (試料層)の片面からのみ上記電界が印加される場合 と比べて、駆動電圧を上げることなく上記誘電性物質の誘電泳動力を大きくすること ができる。  [0405] However, according to the above-described configuration, the electric field is applied to the dielectric substance from both sides of the sample (sample layer). Therefore, the dielectric substance is applied only from one side of the sample (sample layer). Compared with the case where an electric field is applied, the electric field exerted on the dielectric substance becomes stronger. For this reason, according to the above configuration, the dielectrophoretic force of the dielectric substance can be increased without increasing the driving voltage, compared to the case where the electric field is applied only from one side of the sample (sample layer). Can do.
[0406] よって、上記の構成によれば、従来よりも効率的に誘電性物質の誘電泳動挙動を 制御することができるとともに、安定した誘電泳動挙動を得ることができる誘電泳動チ ップを提供することができるという効果を奏する。 [0407] し力も、上記の構成によれば、上記第 1の電極列および第 2の電極列における各々 の電極が、上記泳動レーンを介して各々設けられていることで、例えば、上記第 1の 電極列および第 2の電極列に、位相や振幅等の条件が異なる交流電圧を印加するこ とも可能である。このため、上記試料 (試料層)の片面(1面)からのみ上記電界が印 加される場合、すなわち、一方の電極列しカゝ使用しない場合と比較して、より効率的 な泳動挙動の制御、あるいはより複雑な泳動挙動の制御を行うことも可能である。 [0406] Thus, according to the above configuration, a dielectrophoresis chip that can control the dielectrophoretic behavior of a dielectric substance more efficiently than before and can obtain a stable dielectrophoretic behavior is provided. There is an effect that can be done. [0407] According to the above-described configuration, each electrode in the first electrode row and the second electrode row is provided via the migration lane, for example. It is also possible to apply AC voltages having different conditions such as phase and amplitude to the electrode array and the second electrode array. For this reason, when the electric field is applied only from one side (one side) of the sample (sample layer), that is, compared to the case where one electrode array is not used, the migration behavior is more efficient. It is also possible to control, or to control more complicated migration behavior.
[0408] さらに、上記の構成によれば、上記第 1の電極列および第 2の電極例の何れか一方 の電極列に電圧を印加する場合と、上記両電極列に電圧を印加する場合とを、同一 の実験中に使い分けることができる。これにより、駆動電圧を変えることなく誘電泳動 力を調節することもできる。  [0408] Further, according to the above configuration, a case where a voltage is applied to one of the first electrode row and the second electrode row, and a case where a voltage is applied to both the electrode rows, Can be used properly during the same experiment. As a result, the dielectrophoretic force can be adjusted without changing the driving voltage.
[0409] 上記誘電泳動チップにおいて、上記第 1の電極列と第 2の電極列とは、両電極列と 上記泳動レーンとが対向する領域にぉ 、て同じ形状を有して 、ることが好ま 、。  [0409] In the dielectrophoresis chip, the first electrode row and the second electrode row may have the same shape in a region where both electrode rows and the electrophoresis lane face each other. Favored ,.
[0410] 上記第 1の電極列と第 2の電極列とは、電極端での誘電性物質 (誘電体粒子)の捕 集効果および浮揚力の制御並びに搬送制御の観点から、理想的には、平面的にぴ つたりと重なることが望ましい。上記第 1の電極列と第 2の電極列とが平面的にびった りと重なることで、例えば、該誘電性物質を含む試料 (試料層)の両面、すなわち対向 する 2つの面から、それぞれ、対称的な電界をかけることができる。また、上記第 1の 電極列と第 2の電極列とが平面的にぴったりと重なることで、上記誘電性物質の浮揚 力の制御並びに搬送制御が容易となる。このため、上記第 1の電極列と第 2の電極 列とは、両電極列と上記泳動レーンとが対向する領域において同じ形状を有してい ることが望ましい。  [0410] The first electrode array and the second electrode array are ideally suited from the viewpoints of the collection effect of the dielectric substance (dielectric particles) at the electrode ends, the control of the levitation force, and the transport control. It is desirable that they overlap with each other in plan view. When the first electrode array and the second electrode array overlap each other in a planar manner, for example, from both surfaces of the sample (sample layer) containing the dielectric substance, that is, from two opposing surfaces, respectively. A symmetrical electric field can be applied. In addition, since the first electrode row and the second electrode row are exactly overlapped in a plane, the control of the levitation force and the transport control of the dielectric substance are facilitated. For this reason, it is desirable that the first electrode row and the second electrode row have the same shape in a region where both electrode rows and the migration lane face each other.
[0411] また、上記泳動レーンは、上記泳動レーンと上記第 1の電極列および第 2の電極列 とが対向する領域の少なくとも一部における上記泳動レーンの上記各電極列との対 向面がそれぞれ透明であり、かつ、上記第 1の電極列および第 2の電極列のうち少な くとも一方の電極列における、上記泳動レーンにおける透明な領域と対向する部分 の電極の少なくとも一部が透明電極で形成されていることが好ましい。  [0411] Further, the migration lane has a facing surface of each of the migration lanes facing each of the electrode rows in at least a part of a region where the migration lane faces the first electrode row and the second electrode row. Each of the electrodes is transparent, and at least a part of the electrode facing the transparent region in the migration lane in at least one of the first electrode row and the second electrode row is a transparent electrode. It is preferable that it is formed.
[0412] また、上記泳動レーンは、上記泳動レーンと上記第 1の電極列および第 2の電極列 とが対向する領域の少なくとも一部における上記各電極列との対向面の少なくとも一 方が透明であり、かつ、上記第 1の電極列および第 2の電極列のうち上記泳動レーン における透明な領域と対向する電極列は、上記泳動レーンにおける透明な領域と対 向する部分の電極の少なくとも一部が透明電極で形成されていることが好ましい。 [0412] In addition, the migration lane includes at least one of the facing surfaces of each of the electrode rows in at least a part of a region where the migration lane and the first electrode row and the second electrode row face each other. The first electrode row and the second electrode row of the first electrode row and the second electrode row opposite to the transparent region in the migration lane are the electrodes in the portion facing the transparent region in the migration lane. It is preferable that at least a part of is formed of a transparent electrode.
[0413] 上記泳動レーンの両面に非透明な電極を形成する場合、少なくとも電極領域での 光学撮像は不可能となり、観察条件が制限されることになる。  [0413] When non-transparent electrodes are formed on both surfaces of the electrophoresis lane, optical imaging at least in the electrode region becomes impossible, and the observation conditions are limited.
[0414] そこで、上記したように、例えば、(1)上記泳動レーンは、上記泳動レーンと上記第 1の電極列および第 2の電極列とが対向(すなわち重畳)する領域の少なくとも一部 における上記泳動レーンの上記各電極列との対向面がそれぞれ透明であり、かつ、 上記第 1の電極列および第 2の電極列のうち少なくとも一方の電極列における、上記 泳動レーンにおける透明な領域と対向する部分の電極の少なくとも一部が透明電極 で形成されているか、あるいは、(2)上記泳動レーンは、上記泳動レーンと上記第 1 の電極列および第 2の電極列とが対向(すなわち重畳)する領域の少なくとも一部に おける上記各電極列との対向面の少なくとも一方が透明であり、かつ、上記第 1の電 極列および第 2の電極列のうち上記泳動レーンにおける透明な領域と対向する電極 列は、上記泳動レーンにおける透明な領域と対向する部分の電極の少なくとも一部 が透明電極で形成されて!、ることで、電極領域での上記誘電性物質の誘電泳動挙 動の観察並びに光学撮像を容易に行うことができるという効果を奏する。  [0414] Therefore, as described above, for example, (1) the migration lane is in at least a part of a region where the migration lane and the first electrode row and the second electrode row face each other (that is, overlap). The facing surfaces of the electrophoresis lanes to the electrode rows are transparent, and are opposed to the transparent regions in the electrophoresis lane in at least one of the first electrode row and the second electrode row. Or (2) the migration lane is such that the migration lane is opposed to the first electrode row and the second electrode row (that is, overlapped). At least one of the surfaces facing each of the electrode rows in at least a part of the region to be transparent is transparent, and the transparent region in the electrophoresis lane of the first electrode row and the second electrode row Electrode columns to counter, at least a portion of the transparent region facing the portion of the electrode in the electrophoresis lanes are formed in the transparent electrode! Thus, it is possible to easily observe the dielectrophoretic behavior of the dielectric substance in the electrode region and to perform optical imaging.
[0415] そして、特に、上記泳動レーンは、上記泳動レーンと上記第 1の電極列および第 2 の電極列とが対向(すなわち重畳)する領域の少なくとも一部における上記泳動レー ンの上記各電極列との対向面がそれぞれ透明であり、かつ、上記第 1の電極列およ び第 2の電極列は、上記泳動レーンにおける透明な領域と対向する部分の電極の少 なくとも一部が透明電極で形成されていることで、上記試料を観察する際に、上記泳 動レーンの上方および下方の何れの方向力もも、電極領域における観察が可能とな る。このため、上記の構成によれば、観察方向の選択が可能となる。また、上記の構 成によれば、透過光による観察、撮影 (透過モードによる観察、撮影)が可能となるこ とから、投影による観察システムの構築が可能となる。よって、上記の構成によれば、 観察条件の制限が緩和された誘電泳動チップを提供することができるという効果を奏 する。上記誘電泳動チップは、上記したように透過光による観察、撮影が可能となる ことから、蛍光観察やフィルタリングを多用する観察に非常に有効である。 [0415] In particular, the migration lane includes the electrodes of the migration lane in at least a part of a region where the migration lane and the first electrode row and the second electrode row face each other (that is, overlap). The surface facing the column is transparent, and the first electrode column and the second electrode column are transparent at least part of the electrodes facing the transparent region in the migration lane. By being formed of electrodes, when observing the sample, any directional force above and below the swimming lane can be observed in the electrode region. For this reason, according to said structure, selection of an observation direction is attained. In addition, according to the above configuration, observation with a transmitted light and photographing (observation with a transmission mode, photographing) can be performed, so that an observation system by projection can be constructed. Therefore, according to the above configuration, it is possible to provide a dielectrophoresis chip in which the restriction of the observation conditions is relaxed. As described above, the dielectrophoresis chip can be observed and photographed with transmitted light. Therefore, it is very effective for observation using a lot of fluorescence observation and filtering.
[0416] また、上記第 1の電極列および第 2の電極列のうち少なくとも一方の電極列は、上 記泳動レーンにおける透明な領域と対向する部分以外の部分に金属電極を備えて 、ることが好まし!/、。  [0416] In addition, at least one of the first electrode row and the second electrode row includes a metal electrode in a portion other than the portion facing the transparent region in the migration lane. Is preferred!
[0417] 同形状の電極を透明導電材料と金属材料とで形成する場合、透明電極材料で形 成された電極 (透明電極)は、金属材料で形成された電極 (金属電極)と比較して相 対的に高抵抗である。このため、抵抗率をできるだけ低く抑えるためには、上記電極 列は、透明電極と金属電極との二層構造とする等、上記電極列内に金属電極を備え ていることが好ましい。そこで、上記金属電極を、上記電極例内における上記泳動レ ーンにおける透明な領域と対向する部分以外の部分 (すなわち、対向しない部分)に 設けることで、電極領域での観察が可能であることにカ卩えて、上記電極列全体の抵 抗を、該電極列を透明電極のみで形成する場合と比較して、低く抑えることができる とともに、電極間の寄生容量を低減することができる。よって、上記の構成によれば、 電極領域での観察が可能であり、かつ、入力電圧 (泳動制御入力電圧)の減衰'遅 延を抑制することが可能な、使い勝手が良ぐ測定精度の高い誘電泳動チップを提 供することができるという効果を奏する。  [0417] When an electrode of the same shape is formed of a transparent conductive material and a metal material, an electrode formed of the transparent electrode material (transparent electrode) is compared with an electrode formed of a metal material (metal electrode). The resistance is relatively high. For this reason, in order to keep the resistivity as low as possible, it is preferable that the electrode row has a metal electrode in the electrode row, such as a two-layer structure of a transparent electrode and a metal electrode. Therefore, by providing the metal electrode in a portion other than the portion facing the transparent region in the electrophoresis train in the electrode example (that is, the portion not facing), observation in the electrode region is possible. On the other hand, the resistance of the entire electrode array can be reduced as compared with the case where the electrode array is formed of only transparent electrodes, and the parasitic capacitance between the electrodes can be reduced. Therefore, according to the above configuration, observation in the electrode region is possible, and attenuation and delay of the input voltage (electrophoresis control input voltage) can be suppressed. The effect is that a dielectrophoresis chip can be provided.
[0418] また、上記誘電泳動チップにおいて、上記泳動レーンは、上記泳動レーンと上記第 1の電極列および第 2の電極列とが対向(すなわち重畳)する領域の少なくとも一部 における上記泳動レーンの上記各電極列との対向面がそれぞれ透明であり、かつ、 上記第 1の電極列および第 2の電極列は、上記泳動レーンにおける透明な領域と対 向する部分に、上記第 1の電極列および第 2の電極列における上記泳動レーンを介 して互いに対向する電極力 両方とも透明電極力 なる部分と、少なくとも一方に金 属電極が設けられて 、る部分とを備えて 、ることが好まし!/、。  [0418] Further, in the dielectrophoresis chip, the electrophoresis lane includes the electrophoresis lane in at least a part of a region where the electrophoresis lane and the first electrode row and the second electrode row face each other (that is, overlap). The surfaces facing the respective electrode rows are transparent, and the first electrode row and the second electrode row are arranged in a portion facing the transparent region in the migration lane. It is preferable that the electrode force facing each other via the migration lane in the second electrode row is provided with a portion where both are transparent electrode forces and a portion where a metal electrode is provided on at least one side. Better!/,.
[0419] このように、上記第 1の電極列および第 2の電極列において上記泳動レーンにおけ る透明な領域と対向する部分に、上記第 1の電極列および第 2の電極列における上 記泳動レーンを介して互いに対向する電極力 両方とも透明電極力 なる部分と、少 なくとも一方に金属電極が設けられている部分とを備えていることで、上記電極列全 体の抵抗を、該電極列を透明電極のみで形成する場合と比較して、低く抑えることが でき、かつ、電極間の寄生容量を低減することができることに加え、透明電極を透過 する透過光による観察、撮影 (透過モード)および上記金属電極からの反射 (落射) 光による観察、撮影 (落射モード)の何れのモードも使用可能な誘電泳動チップを提 供することができるという効果を奏する。 [0419] As described above, in the first electrode row and the second electrode row, in the portion facing the transparent region in the migration lane, the above in the first electrode row and the second electrode row. By providing a portion in which both electrode forces facing each other through the electrophoresis lane are transparent electrode forces and a portion in which at least one metal electrode is provided, the resistance of the entire electrode array can be reduced. Compared to the case where the electrode array is formed only with transparent electrodes, it should be kept low. In addition to reducing the parasitic capacitance between the electrodes, observation and photographing with transmitted light that passes through the transparent electrode (transmission mode) and reflection from the metal electrode (epi-illumination) observation and photographing (epi-illumination) There is an effect that it is possible to provide a dielectrophoresis chip that can be used in any mode.
[0420] また、上記誘電泳動チップは、互いに隣り合う泳動レーン同士で、上記電極列の形 状、電極幅、および電極間隔のうち少なくとも一つの条件が異なっていることが好まし い。  [0420] Further, in the dielectrophoresis chip, it is preferable that the electrophoresis lanes adjacent to each other differ in at least one condition among the shape of the electrode row, the electrode width, and the electrode interval.
[0421] 誘電泳動挙動は、同一の試料を使用し、同一の制御電圧で駆動する場合でも、電 極列(電極)の形状により、上記試料中の電界の状態に応じて異なる。  [0421] Even when the same sample is used and driven with the same control voltage, the dielectrophoretic behavior varies depending on the state of the electric field in the sample depending on the shape of the electrode array (electrode).
[0422] 従って、上記の構成によれば、上記したように互いに隣り合う泳動レーン同士で、上 記電極列の形状、電極幅、および電極間隔のうち少なくとも一つの条件を異ならしめ ることで、特定の複数の誘電性物質を同時に選別'同定することが可能となり、複数 の誘電性物質の選別を効率良く行うことが可能になると 、う効果を有して 、る。また、 上記の構成によれば、複数の泳動レーンにおける泳動挙動の差異を一括して観察 することができると ヽつたメリットもある。  [0422] Therefore, according to the configuration described above, by changing at least one of the shape of the electrode row, the electrode width, and the electrode interval between the electrophoresis lanes adjacent to each other as described above, It becomes possible to select and identify a plurality of specific dielectric materials at the same time, and it is possible to efficiently select a plurality of dielectric materials. In addition, according to the above configuration, there is a merit that the difference in migration behavior in a plurality of migration lanes can be observed collectively.
[0423] さらに、上記誘電泳動チップにおいて、上記各泳動レーンは、互いに離間して設け られ、上記各泳動レーン内と、各泳動レーン同士の間の領域とでは、上記電極列の 形状、電極幅、および電極間隔のうち少なくとも一つの条件が異なっていることが好 ましい。  [0423] Further, in the dielectrophoresis chip, the electrophoresis lanes are provided apart from each other, and the shape of the electrode row and the electrode width are determined in the electrophoresis lanes and in the region between the electrophoresis lanes. It is preferable that at least one of the electrode spacing is different.
[0424] 上記の構成によれば、例えば、泳動現象の観察に必要である泳動レーン内の電極 列のみを要求される狭ピッチ配線とし、それ以外の、泳動現象とは無関係の領域の 電極列(上記各泳動レーン同士の間の領域)を広ピッチ配線とすることで、上記電極 列全体の抵抗を低くし、かつ寄生容量を低減することで、入力 AC電圧の減衰や遅 延を抑制することが可能となる。  [0424] According to the above configuration, for example, only the electrode array in the electrophoresis lane necessary for observation of the electrophoresis phenomenon is used as the narrow pitch wiring required, and the other electrode arrays in the region unrelated to the electrophoresis phenomenon. By using wide-pitch wiring (regions between the migration lanes), the resistance of the entire electrode array is lowered, and parasitic capacitance is reduced, thereby suppressing attenuation and delay of the input AC voltage. It becomes possible.
[0425] また、上記の構成によれば、例えば上記泳動レーン内の電極列における電極形状 力 Sストライプ状ではな 、場合、各泳動レーン同士の間の領域における上記電極列の 電極形状をストライプ構造にして配線長を短縮する等して配線抵抗の増大を抑えるこ とも可能である。 [0426] このように、上記の構成によれば、上記各泳動レーン内と、各泳動レーン同士の間 の領域とで、上記電極列の形状、電極幅、および電極間隔のうち少なくとも一つの条 件を異ならしめることで、上記電極列の低抵抗ィ匕を図ることができると 、う効果を奏す る。 [0425] Also, according to the above configuration, for example, when the electrode shape force in the electrode row in the migration lane is not S stripe shape, the electrode shape of the electrode row in the region between the migration lanes is a stripe structure. It is also possible to suppress the increase in wiring resistance by shortening the wiring length. [0426] Thus, according to the above-described configuration, at least one of the shape, the electrode width, and the electrode interval of the electrode array is formed in each electrophoresis lane and in a region between the electrophoresis lanes. By making the conditions different, it is possible to reduce the resistance of the electrode array.
[0427] また、上記誘電泳動装置は、以上のように、上記誘電泳動チップを備えて 、る構成 を有している。また、上記誘電泳動システムは、以上のように、上記誘電泳動装置を 備えている構成を有している。すなわち、上記誘電泳動システムは、上記誘電泳動 チップを備えて 、る構成を有して 、る。  [0427] Further, as described above, the dielectrophoresis apparatus has the configuration including the dielectrophoresis chip. The dielectrophoresis system has a configuration including the dielectrophoresis apparatus as described above. In other words, the dielectrophoresis system includes the dielectrophoresis chip and has the configuration described above.
[0428] 上記誘電泳動装置並びに誘電泳動システムが有する誘電泳動チップが、前記した ように、一つの基板上に、上記誘電性物質を誘電泳動させる泳動レーンを複数備え るとともに、上記泳動レーンと交差する複数の電極力 なり、上記泳動レーンに注入 された試料に電界を印加するために交流電圧を印加することで上記誘電性物質を誘 電泳動させる電極列を備え、上記電極列における各電極は、上記複数の泳動レーン に跨がって設けられて!/、ることで、上記誘電泳動装置並びに誘電泳動システムは、 上記誘電性物質に誘電泳動力を与える交流電圧 (泳動制御電圧)を、上記誘電泳 動チップの各泳動レーンにおける各電極に一括して入力することができる。すなわち 、上記各構成によれば、上記電極列に一種類の信号を入力すると、複数の泳動レー ンに同時に電界を印加することができる。従って、上記各構成によれば、複数の試料 の泳動制御を、一括して同時に行うことができる。  [0428] As described above, the dielectrophoresis chip included in the dielectrophoresis apparatus and the dielectrophoresis system includes a plurality of electrophoresis lanes for dielectrophoresis of the dielectric substance on a single substrate, and intersects the electrophoresis lanes. A plurality of electrode forces, and an electrode array for inducing electrophoresis of the dielectric substance by applying an alternating voltage to apply an electric field to the sample injected into the electrophoresis lane, and each electrode in the electrode array The dielectrophoresis apparatus and the dielectrophoresis system are provided across the plurality of electrophoretic lanes, so that the dielectrophoresis apparatus and the dielectrophoresis system provide an alternating voltage (electrophoresis control voltage) that applies a dielectrophoretic force to the dielectric substance. It is possible to collectively input to each electrode in each electrophoresis lane of the dielectric swimming chip. That is, according to each of the above configurations, an electric field can be simultaneously applied to a plurality of electrophoresis lanes when one type of signal is input to the electrode array. Therefore, according to each of the above configurations, the migration control of a plurality of samples can be performed simultaneously in a lump.
[0429] このため、上記各構成によれば、実験環境の煩雑な設定を伴うことなぐ複数種の 異なる試料 (例えば溶媒の比誘電率や粘度が異なる試料、あるいは、溶媒中の粒子 の物性値 (比誘電率等)が異なる試料等)を、同一条件で同時に被泳動条件下に置 くことが可能であり、試験条件に対する応用範囲が広ぐ様々な試験条件に適応する 誘電泳動装置並びに誘電泳動システムを提供することが可能である。  [0429] For this reason, according to each of the above-described configurations, a plurality of different types of samples (for example, samples having different relative dielectric constants and viscosities of solvents, or physical property values of particles in the solvent) without complicated setting of the experimental environment. (Samples with different relative dielectric constants, etc.) can be placed under electrophoresis conditions under the same conditions at the same time. It is possible to provide an electrophoresis system.
[0430] また、上記各構成によれば、上記したように、一つの基板上に複数の泳動レーンを 有する誘電泳動チップを使用することで、試料 (例えば溶媒等の媒体)の種類を泳動 レーン毎に変更し、特定の複数の粒子を同時に選別することや、溶媒等の媒体は同 一で、泳動レーン毎に電極形状を変えることで特定の複数の粒子を同時に選別する ことも可能であり、複数粒子の選別を効率良く行うことが可能になる。従って、上記各 構成によれば、幅広 ヽ用途に対応した誘電泳動装置並びに誘電泳動システムを提 供することができるという効果を奏する。 [0430] Also, according to each of the above configurations, as described above, by using a dielectrophoresis chip having a plurality of electrophoresis lanes on one substrate, the type of sample (for example, a medium such as a solvent) can be changed. Each specific particle is selected at the same time, and the same medium such as solvent is selected, and the specific shape is selected simultaneously by changing the electrode shape for each electrophoresis lane. It is also possible to select a plurality of particles efficiently. Therefore, according to each of the above configurations, there is an effect that it is possible to provide a dielectrophoresis apparatus and a dielectrophoresis system corresponding to a wide range of uses.
[0431] また、以上のように、上記誘電泳動装置が、上記誘電泳動チップとして、泳動レー ンのレーン方向に各々電極が複数配設されてなる第 1の電極列および第 2の電極列 を備え、前記したように、上記第 1の電極列および第 2の電極列における各々の電極 が上記泳動レーンを介して互いに対向して設けられている誘電泳動チップを備えて いることで、上記誘電性物質には、該誘電性物質を挟むように、該誘電性物質を含 む試料 (試料層)の両面、すなわち対向する 2つの面カゝらそれぞれ交流電圧により形 成された電界が印加されるので、上記試料 (試料層)の片面(1面)からのみ上記電界 が印加される場合に比べて、上記誘電性物質の誘電泳動の挙動を安定させることが できる。  [0431] In addition, as described above, the dielectrophoresis apparatus includes the first electrode array and the second electrode array, each having a plurality of electrodes arranged in the lane direction of the electrophoresis lane, as the dielectrophoresis chip. And, as described above, each of the electrodes in the first electrode row and the second electrode row is provided with a dielectrophoresis chip provided opposite to each other via the electrophoretic lane. An electric field formed by an alternating voltage is applied to the conductive material so that the dielectric material is sandwiched between both surfaces of the sample (sample layer) containing the dielectric material, that is, two opposing surfaces. Therefore, compared to the case where the electric field is applied only from one side (one side) of the sample (sample layer), the behavior of dielectrophoresis of the dielectric substance can be stabilized.
[0432] また、上記の構成によれば、上記誘電性物質には、上記試料 (試料層)の両面から 上記電界が印加されるので、上記試料 (試料層)の片面力 のみ上記電界が印加さ れる場合と比べて、上記誘電性物質に力かる電界が強くなる。このため、上記の構成 によれば、上記試料 (試料層)の片面からのみ上記電界が印加される場合と比べて、 駆動電圧を上げることなく上記誘電性物質の誘電泳動力を大きくすることができる。  [0432] Further, according to the above configuration, since the electric field is applied to both sides of the sample (sample layer), the electric field is applied only to the single-sided force of the sample (sample layer). Compared with the case where the electric field is applied, the electric field exerted on the dielectric substance becomes stronger. For this reason, according to the above configuration, the dielectrophoretic force of the dielectric substance can be increased without increasing the driving voltage, compared to the case where the electric field is applied only from one side of the sample (sample layer). it can.
[0433] よって、上記の構成によれば、従来よりも効率的に誘電性物質の誘電泳動挙動を 制御することができるとともに、安定した誘電泳動挙動を得ることができる誘電泳動装 置を提供することができる。  [0433] Therefore, according to the above configuration, it is possible to provide a dielectrophoresis apparatus that can control the dielectrophoretic behavior of a dielectric substance more efficiently than before and can obtain a stable dielectrophoretic behavior. be able to.
[0434] し力も、上記の構成によれば、上記第 1の電極列および第 2の電極列における各々 の電極が、上記泳動レーンを介して各々設けられていることで、例えば、上記第 1の 電極列および第 2の電極列に、位相や振幅等の条件が異なる交流電圧を印加するこ とも可能である。このため、上記試料 (試料層)の片面(1面)からのみ上記電界が印 加される場合、すなわち、一方の電極列しカゝ使用しない場合と比較して、より効率的 な泳動挙動の制御、あるいはより複雑な泳動挙動の制御を行うことも可能である。  [0434] According to the above-described configuration, each of the electrodes in the first electrode row and the second electrode row is provided via the migration lane. It is also possible to apply AC voltages having different conditions such as phase and amplitude to the electrode array and the second electrode array. For this reason, when the electric field is applied only from one side (one side) of the sample (sample layer), that is, compared to the case where one electrode array is not used, the migration behavior is more efficient. It is also possible to control, or to control more complicated migration behavior.
[0435] さらに、上記の構成によれば、上記第 1の電極列および第 2の電極例の何れか一方 の電極列に電圧を印加する場合と、上記両電極列に電圧を印加する場合とを、同一 の実験中に使い分けることができる。これにより、駆動電圧を変えることなく誘電泳動 力を調節することもできる。 [0435] Further, according to the above configuration, a case where a voltage is applied to one of the first electrode row and the second electrode example, and a case where a voltage is applied to both the electrode rows, The same Can be used properly during the experiment. As a result, the dielectrophoretic force can be adjusted without changing the driving voltage.
[0436] また、上記誘電泳動装置は、上記第 1の電極列および第 2の電極列に印加する電 圧を制御する制御部を備え、上記制御部は、上記第 1の電極列内および第 2の電極 列内でそれぞれ互いに隣り合う電極にはそれぞれ異なる位相の交流電圧を印加す るとともに、上記泳動レーンを介して互いに対向する電極同士には同じ位相の交流 電圧を印加する構成を有して ヽることが好ま 、。  [0436] The dielectrophoresis apparatus includes a control unit that controls a voltage applied to the first electrode row and the second electrode row, and the control unit includes the first electrode row and the first electrode row. In the two electrode rows, the AC voltages having different phases are applied to the electrodes adjacent to each other, and the AC voltages having the same phase are applied to the electrodes facing each other via the migration lane. I like to talk.
[0437] 上記の構成によれば、上記第 1の電極列内および第 2の電極列内でそれぞれ互い に隣り合う電極にそれぞれ異なる位相の交流電圧を印加されるとともに、上記泳動レ ーンを介して互いに対向する電極同士には同じ位相の交流電圧が印加されることで 、上記誘電性物質には、該誘電性物質を含む試料 (試料層)の両面、すなわち対向 する 2つの面から、それぞれ、対称的な電界をかけることができる。従って、上記の構 成によれば、強い誘電泳動力を得ることができるという効果を奏する。  [0437] According to the above configuration, AC voltages having different phases are applied to the electrodes adjacent to each other in the first electrode row and the second electrode row, and the migration train is An AC voltage having the same phase is applied to the electrodes facing each other through the two electrodes, so that the dielectric substance can be applied to both surfaces of the sample (sample layer) containing the dielectric substance, that is, from the two opposing faces. Each can apply a symmetric electric field. Therefore, according to the above configuration, there is an effect that a strong dielectrophoretic force can be obtained.
[0438] また、この場合、上記制御部は、上記第 1の電極列内および第 2の電極列内でそれ ぞれ互いに隣り合う電極に対し、順次 πずつ位相がずれるように交流電圧を印加す るものであることが好まし!/、。  [0438] Also, in this case, the control unit applies an AC voltage so that the phases are sequentially shifted by π with respect to the electrodes adjacent to each other in the first electrode row and the second electrode row, respectively. I prefer it to be something!
[0439] このように、各電極列内でそれぞれ互いに隣り合う電極に対し、順次 πずつ位相が ずれるように交流電圧を印加することで、上記誘電性物質の浮揚力の制御を効率良 く行うことができると 、う効果を奏する。  [0439] As described above, the levitation force of the dielectric substance is efficiently controlled by applying the AC voltage so that the phases are sequentially shifted by π to the electrodes adjacent to each other in each electrode row. If you can, it will have a positive effect.
[0440] また、上記制御部は、上記第 1の電極列内および第 2の電極列内でそれぞれ互い に隣り合う電極に対し、順次 π Ζ2ずつ位相がずれるように交流電圧を印加するもの であることが好ましい。  [0440] Further, the control unit applies an AC voltage so that the phases are sequentially shifted by πΖ2 to the electrodes adjacent to each other in the first electrode row and the second electrode row, respectively. Preferably there is.
[0441] このように、各電極列内でそれぞれ互いに隣り合う電極に対し、順次 π Ζ2ずつ位 相がずれるように交流電圧を印加することで、上記誘電性物質の搬送を効率良く行う ことができると!/、う効果を奏する。  [0441] As described above, the above-described dielectric substance can be efficiently transported by applying the AC voltage so that the phase is sequentially shifted by πΖ2 to the electrodes adjacent to each other in each electrode row. If you can!
[0442] また、上記誘電泳動装置は、上記第 1の電極列および第 2の電極列に印加する電 圧を制御する制御部を備え、上記制御部は、上記第 1の電極列内および第 2の電極 列内でそれぞれ互いに隣り合う電極にそれぞれ異なる位相の交流電圧を印加すると ともに、上記泳動レーンを介して互いに対向する電極同士にそれぞれ異なる位相の 交流電圧を印加する構成を有して ヽることが好ま 、。 [0442] Further, the dielectrophoresis apparatus includes a control unit that controls a voltage applied to the first electrode array and the second electrode array, and the control section includes the first electrode array and the first electrode array. When AC voltages with different phases are applied to the electrodes adjacent to each other in the two electrode arrays, Both preferably have a configuration in which alternating voltages having different phases are applied to the electrodes facing each other via the electrophoresis lane.
[0443] 上記の構成によれば、 DEPモードと TWDモードとの切り替えが不要であり、電圧を 印加する対象電極を切り替えるだけで、上記誘電性物質の分離、搬送を行うことがで きること力 、上記誘電性物質の分離、搬送効率が高ぐ制御もより容易であるという 効果を奏する。また、上記の構成によれば、上記誘電性物質に浮揚力を与えながら 該誘電性物質の搬送を行うので、上記誘電性物質が沈降し難!ヽと ヽぅ効果を併せて 奏する。 [0443] According to the above configuration, there is no need to switch between the DEP mode and the TWD mode, and the dielectric material can be separated and transported only by switching the target electrode to which the voltage is applied. In addition, the dielectric material can be easily separated and transported more efficiently. In addition, according to the above configuration, since the dielectric material is transported while giving a levitating force to the dielectric material, the dielectric material is difficult to settle and has both the effect of habit.
[0444] また、この場合、上記制御部は、 (1)上記第 1の電極列内の X番目の電極を Ax、 X  [0444] In this case, the control unit (1) sets the Xth electrode in the first electrode row to Ax, X
+n番目の電極を Ax+n (xおよび nは 1以上の整数)とし、上記泳動レーンを介して 上記各電極 Ax、Ax+nに対向する位置に配置された上記第 2の電極列内の各電極 をそれぞれ Bx、 Bx+nとし、上記 Axの表面と Bxの表面との間の距離を Vとし、 Axの 中心と Ax+nの中心との間の距離を Hとすると、上記 nが HZV≤5を満足するととも に、上記 Axに対する Ax + nの位相差および Bxの位相差がともに πとなり、上記 Ax に対する Bx+nの位相差が 0となるように交流電圧を印加する力、あるいは、(2)上 記第 1の電極列内の X番目の電極を Ax、 x+n番目の電極を Ax+n (Xおよび nは 1 以上の整数)とし、上記泳動レーンを介して上記各電極 Ax、 Ax+nに対向する位置 に配置された上記第 2の電極列内の各電極をそれぞれ Bx、 Bx+nとし、上記 Axの 表面と Bxの表面との間の距離を Vとし、 Axの中心と Ax+nの中心との間の距離を H とすると、上記 nが HZV≤5を満足するとともに、上記 Axに対する上記 Ax+nおよ び Bxの何れか一方の電極の位相差が π Ζ2、他方の電極の位相差が 3 π Ζ2であり 、上記 Axに対する Bx + nの位相差が πとなるように交流電圧を印加するものである ことが好ましい。  The + n-th electrode is Ax + n (x and n are integers of 1 or more), and the second electrode array disposed at a position facing each of the electrodes Ax and Ax + n through the electrophoresis lane If the distance between the surface of Ax and the surface of Bx is V and the distance between the center of Ax and the center of Ax + n is H, Satisfying HZV≤5, the phase difference of Ax + n and Bx with respect to Ax is π, and the AC voltage is applied so that the phase difference of Bx + n with respect to Ax is 0. Or (2) the Xth electrode in the first electrode row is Ax, and the x + nth electrode is Ax + n (X and n are integers of 1 or more), The electrodes in the second electrode array arranged at positions facing the electrodes Ax and Ax + n are Bx and Bx + n, respectively, and the distance between the surface of Ax and the surface of Bx is V age, Assuming that the distance between the center of Ax and the center of Ax + n is H, the above-mentioned n satisfies HZV≤5 and the phase difference of one of the above-mentioned electrodes Ax + n and Bx with respect to Ax Is preferably πΖ2, the phase difference of the other electrode is 3πΖ2, and an AC voltage is applied so that the phase difference of Bx + n with respect to Ax is π.
[0445] 上記何れの場合においても、上記各電極に対して、上記の関係を満たす位相条件 で交流電圧を印加することにより、上記泳動レーン (試料層)における、上記電極 Ax , Ax+ 2、 Bx, Bx+ 2で囲まれた空間の中心部に、上記誘電性物質をトラップするこ とができると!、う効果を奏する。  [0445] In any of the above cases, the electrodes Ax, Ax + 2, Bx in the electrophoresis lane (sample layer) can be applied to the electrodes by applying an alternating voltage under the phase condition satisfying the relationship described above. , Bx + 2 has the effect of trapping the dielectric material in the center of the space.
[0446] また、この場合、上記制御部は、上記第 1の電極列および第 2の電極列にぉ 、て交 流電圧を印加する対象電極を、 Ax、 Ax+n、 Bx、 Bx+nの 4つの電極の組み合わ せ力もなる 1ユニットの Xが 1ずつ大きくなるように順次移動させるものであることが好ま しい。 [0446] In this case, the control unit intersects the first electrode row and the second electrode row. It is preferable that the target electrode to which the current voltage is applied is moved sequentially so that one unit of X, which also has the combined force of the four electrodes Ax, Ax + n, Bx, and Bx + n, increases by one. .
[0447] このように、上記第 1の電極列および第 2の電極列において交流電圧を印加する対 象電極を、 Ax、 Ax+n、 Bx、 Bx+nの 4つの電極の組み合わせからなる 1ユニットの Xが 1ずつ大きくなるように順次移動させることで、交流電圧が印加されている上記ュ ニットで囲まれた空間の中心部に上記誘電性物質がトラップされた状態で、上記誘 電性物質を搬送することができる。よって、上記の構成によれば、従来の TWDモード に比べて、上記誘電性物質の搬送を効率良く行うことができると 、う効果を奏する。  [0447] Thus, the target electrode to which the AC voltage is applied in the first electrode row and the second electrode row is composed of a combination of four electrodes Ax, Ax + n, Bx, Bx + n 1 By sequentially moving the unit so that X increases by one, the dielectric material is trapped in the center of the space surrounded by the unit to which the AC voltage is applied, and the dielectric is trapped. The substance can be transported. Therefore, according to the above configuration, the dielectric substance can be efficiently transported as compared with the conventional TWD mode.
[0448] また、上記誘電泳動システム力 泳動レーンのレーン方向に各々電極が複数配設 されてなる第 1の電極列および第 2の電極列を備え、前記したように、上記第 1の電極 列および第 2の電極列における各々の電極が上記泳動レーンを介して互いに対向し て設けられている誘電泳動チップ、あるいは、該誘電泳動チップを備えた誘電泳動 装置を備えていることで、上記誘電性物質には、該誘電性物質を挟むように、該誘電 性物質を含む試料 (試料層)の両面、すなわち対向する 2つの面からそれぞれ交流 電圧により形成された電界が印加されるので、上記試料 (試料層)の片面(1面)から のみ上記電界が印加される場合に比べて、上記誘電性物質の誘電泳動の挙動を安 定させることができる。  [0448] Further, the dielectrophoresis system force includes a first electrode row and a second electrode row each having a plurality of electrodes arranged in the lane direction of the electrophoresis lane, and as described above, the first electrode row And a second dielectrophoresis chip provided with the respective electrodes in the second electrode array facing each other through the electrophoretic lane, or a dielectrophoresis device including the dielectrophoresis chip. Since the electric field formed by the AC voltage is applied to both the surfaces of the sample (sample layer) containing the dielectric substance so as to sandwich the dielectric substance, the electric field formed by the AC voltage is applied to the conductive substance. Compared with the case where the electric field is applied only from one side (one side) of the sample (sample layer), the behavior of dielectrophoresis of the dielectric substance can be stabilized.
[0449] また、上記の構成によれば、上記誘電性物質には、上記試料 (試料層)の両面から 上記電界が印加されるので、上記試料 (試料層)の片面力 のみ上記電界が印加さ れる場合と比べて、上記誘電性物質に力かる電界が強くなる。このため、上記の構成 によれば、上記試料 (試料層)の片面からのみ上記電界が印加される場合と比べて、 駆動電圧を上げることなく上記誘電性物質の誘電泳動力を大きくすることができる。  [0449] Further, according to the above configuration, the electric field is applied to the dielectric substance from both sides of the sample (sample layer), so the electric field is applied only to the single-sided force of the sample (sample layer). Compared with the case where the electric field is applied, the electric field exerted on the dielectric substance becomes stronger. For this reason, according to the above configuration, the dielectrophoretic force of the dielectric substance can be increased without increasing the driving voltage, compared to the case where the electric field is applied only from one side of the sample (sample layer). it can.
[0450] よって、上記の構成によれば、従来よりも効率的に誘電性物質の誘電泳動挙動を 制御することができるとともに、安定した誘電泳動挙動を得ることができる誘電泳動シ ステムを提供することができる。  [0450] Therefore, according to the above configuration, there is provided a dielectrophoresis system that can control the dielectrophoretic behavior of a dielectric substance more efficiently than before and can obtain a stable dielectrophoretic behavior. be able to.
[0451] し力も、上記の構成によれば、上記第 1の電極列および第 2の電極列における各々 の電極が、上記泳動レーンを介して各々設けられていることで、例えば、上記第 1の 電極列および第 2の電極列に、位相や振幅等の条件が異なる交流電圧を印加するこ とも可能である。このため、上記試料 (試料層)の片面(1面)からのみ上記電界が印 加される場合、すなわち、一方の電極列しカゝ使用しない場合と比較して、より効率的 な泳動挙動の制御、あるいはより複雑な泳動挙動の制御を行うことも可能である。し たがって、上記の構成によれば、試験条件に対する応用範囲が広ぐ従来よりも観察 環境が改善された誘電泳動システムを提供することができるという効果を奏する。 [0451] According to the above-described configuration, each of the electrodes in the first electrode row and the second electrode row is provided via the migration lane. of It is also possible to apply AC voltages having different conditions such as phase and amplitude to the electrode array and the second electrode array. For this reason, when the electric field is applied only from one side (one side) of the sample (sample layer), that is, compared to the case where one electrode array is not used, the migration behavior is more efficient. It is also possible to control, or to control more complicated migration behavior. Therefore, according to the above configuration, there is an effect that it is possible to provide a dielectrophoresis system in which the observation environment is improved as compared with the conventional case where the application range for the test conditions is wide.
[0452] さらに、上記の構成によれば、上記第 1の電極列および第 2の電極例の何れか一方 の電極列に電圧を印加する場合と、上記両電極列に電圧を印加する場合とを、同一 の実験中に使い分けることができる。これにより、駆動電圧を変えることなく誘電泳動 力を調節することもできる。  [0452] Furthermore, according to the above configuration, a case where a voltage is applied to one of the first electrode row and the second electrode row, and a case where a voltage is applied to both the electrode rows, Can be used properly during the same experiment. As a result, the dielectrophoretic force can be adjusted without changing the driving voltage.
[0453] 上記した各誘電泳動チップおよび誘電泳動装置並びに誘電泳動システムは、例え ば、特定細胞の分離、検出等のバイオ研究用マイクロアレイ等の用途に好適に適用 することができる。  [0453] Each of the dielectrophoresis chip, the dielectrophoresis apparatus, and the dielectrophoresis system described above can be suitably applied to, for example, a bio-research microarray such as separation and detection of specific cells.
[0454] なお、本発明は上述した各実施形態に限定されるものではなぐ請求項に示した範 囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を 適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 産業上の利用可能性  [0454] The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope of the claims, and the technical means disclosed in the different embodiments are appropriately combined. Embodiments obtained in this manner are also included in the technical scope of the present invention. Industrial applicability
[0455] 本発明にカゝかる誘電泳動チップおよび誘電泳動装置並びに誘電泳動システムは、 特定細胞の分離、検出等のバイオ研究用マイクロアレイ等の用途、例えば、生体分 子ゃ榭脂ビーズ等の誘電性物質を誘電泳動力によって搬送する化学分析システム に好適に使用することができる。これら化学分析システムは、医療分野をはじめとして 、食品衛生分野、環境モニタリング等に広く応用が可能であり、血液を分離すること で得られる赤血球、白血球、リンパ球等の血球成分;大腸菌、リステリア菌等の細菌; DNA (テオキシリホ个亥酸: deoxyribonucleic acid; deoxyribose nucleic acid)、タンノヽ ク質等の生体分子;等の幅広い範囲の誘電性物質を対象とし、例えば、 DNA、タン パク質、細胞等の解析 (反応'検出 '分離'搬送);化学合成 (マイクロプラント);等の 用途に好適に使用される。 [0455] The dielectrophoresis chip, dielectrophoresis apparatus, and dielectrophoresis system according to the present invention are used for bio research microarrays such as separation and detection of specific cells, for example, dielectrics such as biomolecules and resin beads. The present invention can be suitably used in a chemical analysis system that conveys a sex substance by dielectrophoretic force. These chemical analysis systems can be widely applied in the medical field, food hygiene field, environmental monitoring, etc., and blood cell components such as red blood cells, white blood cells, and lymphocytes obtained by separating blood; Escherichia coli, Listeria monocytogenes Targeting a wide range of dielectric substances such as DNA (deoxyribonucleic acid; deoxyribose nucleic acid), tannoic acid, etc., for example, DNA, proteins, cells, etc. It is preferably used for applications such as analysis (reaction 'detection' separation 'transport); chemical synthesis (microplant);

Claims

請求の範囲 The scope of the claims
[1] 誘電性物質を含む試料に交流電圧により形成された電界を印加することにより上 記誘電性物質を誘電泳動させる誘電泳動チップであって、  [1] A dielectrophoresis chip that dielectrophores the dielectric substance by applying an electric field formed by an alternating voltage to a sample containing the dielectric substance,
一つの基板上に、上記誘電性物質を誘電泳動させる泳動レーンを複数備えるとと もに、上記泳動レーンと交差する複数の電極力 なり、上記泳動レーンに注入された 試料に電界を印加するために交流電圧を印加することで上記誘電性物質を誘電泳 動させる電極列を備え、  In order to provide a plurality of migration lanes for dielectrophoretic migration of the dielectric substance on a single substrate, and to apply an electric field to the sample injected into the migration lane with a plurality of electrode forces intersecting the migration lane. An electrode array for causing the dielectric substance to dielectrically move by applying an AC voltage to the
上記電極列における各電極は、上記複数の泳動レーンに跨がって設けられている ことを特徴とする誘電泳動チップ。  Each electrode in the electrode array is provided across the plurality of electrophoresis lanes.
[2] 互いに隣り合う泳動レーン同士で、上記電極列の形状、電極幅、および電極間隔 のうち少なくとも一つの条件が異なっていることを特徴とする請求項 1記載の誘電泳 動チップ。  2. The dielectric swimming chip according to claim 1, wherein at least one of the shape, the electrode width, and the electrode interval of the electrode row is different between adjacent lanes.
[3] 上記各泳動レーンは互いに離間して設けられ、上記各泳動レーン内と、各泳動レ ーン同士の間の領域とでは、上記電極列の形状、電極幅、および電極間隔のうち少 なくとも一つの条件が異なっていることを特徴とする請求項 1記載の誘電泳動チップ  [3] The electrophoresis lanes are provided apart from each other, and in the electrophoresis lanes and in the area between the electrophoresis lanes, the electrode row shape, electrode width, and electrode spacing are small. 2. The dielectrophoresis chip according to claim 1, wherein at least one condition is different.
[4] 上記基板上には、上記各泳動レーンを隔てる泳動レーン壁が設けられているととも に、該泳動レーン壁が形成されている領域の少なくとも一部を除く領域に、上記電極 列を覆う保護膜が設けられていることを特徴とする請求項 1記載の誘電泳動チップ。 [4] Electrophoresis lane walls separating the respective electrophoresis lanes are provided on the substrate, and the electrode array is provided in a region excluding at least a part of the region where the electrophoresis lane walls are formed. 2. The dielectrophoresis chip according to claim 1, further comprising a protective film for covering.
[5] 上記各泳動レーンは、上記基板と、上記基板上に設けられ、上記各泳動レーンを 隔てる泳動レーン壁と、上記泳動レーン壁を介して上記基板に対向配置された対向 基板とで形成されており、  [5] Each electrophoresis lane is formed of the substrate, an electrophoresis lane wall that is provided on the substrate and separates the electrophoresis lanes, and a counter substrate that is arranged to face the substrate via the electrophoresis lane wall. Has been
上記泳動レーン壁は、内部に、上記基板と、上記基板に対向配置された対向基板 との間の間隔を保持するスぺーサを含有していることを特徴とする請求項 1記載の誘 電泳動チップ。  The induction lane wall according to claim 1, wherein the electrophoresis lane wall includes a spacer that maintains a space between the substrate and a counter substrate disposed opposite to the substrate. Electrophoresis chip.
[6] 上記電極列における各電極の両端部に、各電極に各電極の両端から同一の電圧 を入力するための入力端子部を有していることを特徴とする請求項 1記載の誘電泳 動チップ。 6. The dielectric swimming device according to claim 1, wherein input terminals for inputting the same voltage from both ends of each electrode are provided at both ends of each electrode in the electrode array. Moving chip.
[7] 上記各泳動レーンは、上記基板と、上記基板上に設けられ、上記各泳動レーンを 隔てる泳動レーン壁と、上記泳動レーン壁を介して上記基板に対向配置された対向 基板とで形成されており、かつ、 [7] Each electrophoresis lane is formed by the substrate, an electrophoresis lane wall that is provided on the substrate and separates the electrophoresis lanes, and a counter substrate that is arranged to face the substrate via the electrophoresis lane wall. And
上記各泳動レーンは、上記基板と、上記基板に対向配置された対向基板との間に 、上記各泳動レーンに上記試料を注入するための注入口を有して ヽることを特徴と する請求項 1記載の誘電泳動チップ。  Each of the electrophoresis lanes has an inlet for injecting the sample into the electrophoresis lane between the substrate and a counter substrate disposed to face the substrate. Item 1. The dielectrophoresis chip according to item 1.
[8] 上記電極列は、上記泳動レーンのレーン方向に各々電極が複数配設されてなる第 1の電極列および第 2の電極列を備え、  [8] The electrode array includes a first electrode array and a second electrode array each including a plurality of electrodes arranged in the lane direction of the electrophoresis lane,
上記第 1の電極列および第 2の電極列は、各々の電極列における電極間に各々交 流電圧による電界を形成することで上記泳動レーンに注入された試料に各々電界を 印加し、上記第 1の電極列および第 2の電極列における各々の電極は、上記泳動レ ーンを介して互いに対向するとともに上記泳動レーンに交差して設けられており、力 つ、上記第 1の電極列および第 2の電極列における各々の電極は、上記複数の泳動 レーンに跨がって設けられていることを特徴とする請求項 1記載の誘電泳動チップ。  The first electrode array and the second electrode array apply an electric field to the sample injected into the migration lane by forming an electric field by an alternating voltage between the electrodes in each electrode array, and The respective electrodes in the first electrode row and the second electrode row face each other through the electrophoresis lane and are provided so as to cross the migration lane. 2. The dielectrophoresis chip according to claim 1, wherein each electrode in the second electrode array is provided across the plurality of electrophoresis lanes.
[9] 上記第 1の電極列と第 2の電極列とは、両電極列と上記泳動レーンとが対向する領 域にお!ヽて同じ形状を有して!/ヽることを特徴とする請求項 8記載の誘電泳動チップ。  [9] The first electrode row and the second electrode row have the same shape in the area where both electrode rows and the electrophoresis lane face each other! 9. The dielectrophoresis chip according to claim 8, wherein:
[10] 上記泳動レーンは、上記泳動レーンと上記第 1の電極列および第 2の電極列とが 対向する領域の少なくとも一部における上記泳動レーンの上記各電極列との対向面 がそれぞれ透明であり、かつ、上記第 1の電極列および第 2の電極列のうち少なくとも 一方の電極列における、上記泳動レーンにおける透明な領域と対向する部分の電 極の少なくとも一部が透明電極で形成されていることを特徴とする請求項 8記載の誘 電泳動チップ。  [10] In the migration lane, at least a part of the region where the migration lane and the first electrode row and the second electrode row face each other, a surface facing the electrode row of the migration lane is transparent. And at least a part of the electrode of the at least one electrode row of the first electrode row and the second electrode row facing the transparent region in the electrophoresis lane is formed of a transparent electrode. 9. The electrophoresis chip according to claim 8, wherein
[11] 上記泳動レーンは、上記泳動レーンと上記第 1の電極列および第 2の電極列とが 対向する領域の少なくとも一部における上記各電極列との対向面の少なくとも一方が 透明であり、かつ、上記第 1の電極列および第 2の電極列のうち上記泳動レーンにお ける透明な領域と対向する電極列は、上記泳動レーンにおける透明な領域と対向す る部分の電極の少なくとも一部が透明電極で形成されていることを特徴とする請求項 8記載の誘電泳動チップ。 [11] In the electrophoresis lane, at least one of the facing surfaces of the electrode lanes in at least a part of a region where the electrophoresis lanes are opposed to the first electrode row and the second electrode row is transparent, In addition, among the first electrode row and the second electrode row, the electrode row facing the transparent region in the migration lane is at least a part of the portion of the electrode facing the transparent region in the migration lane. 9. The dielectrophoresis chip according to claim 8, wherein is formed of a transparent electrode.
[12] 上記泳動レーンは、上記泳動レーンと上記第 1の電極列および第 2の電極列とが 対向する領域の少なくとも一部における上記泳動レーンの上記各電極列との対向面 がそれぞれ透明であり、かつ、上記第 1の電極列および第 2の電極列は、上記泳動レ ーンにおける透明な領域と対向する部分の電極の少なくとも一部が透明電極で形成 されていることを特徴とする請求項 1記載の誘電泳動チップ。 [12] The electrophoresis lane has a transparent surface facing each electrode row of the migration lane in at least a part of a region where the migration lane faces the first electrode row and the second electrode row. And the first electrode row and the second electrode row are characterized in that at least a part of the electrode facing the transparent region in the electrophoresis train is formed of a transparent electrode. The dielectrophoresis chip according to claim 1.
[13] 上記第 1の電極列および第 2の電極列のうち少なくとも一方の電極列は、上記泳動 レーンにおける透明な領域と対向する部分以外の部分に金属電極を備えていること を特徴とする請求項 10〜 12の何れか 1項に記載の誘電泳動チップ。  [13] At least one of the first electrode row and the second electrode row includes a metal electrode in a portion other than a portion facing the transparent region in the electrophoresis lane. The dielectrophoresis chip according to any one of claims 10 to 12.
[14] 上記泳動レーンは、上記泳動レーンと上記第 1の電極列および第 2の電極列とが 対向する領域の少なくとも一部における上記泳動レーンの上記各電極列との対向面 がそれぞれ透明であり、かつ、上記第 1の電極列および第 2の電極列は、上記泳動レ ーンにおける透明な領域と対向する部分に、上記第 1の電極列および第 2の電極列 における上記泳動レーンを介して互いに対向する電極力 両方とも透明電極力 な る部分と、少なくとも一方に金属電極が設けられている部分とを備えていることを特徴 とする請求項 8記載の誘電泳動チップ。  [14] In the electrophoresis lane, at least a part of a region where the electrophoresis lane and the first electrode row and the second electrode row face each other, a surface facing the electrode row of the electrophoresis lane is transparent. And the first electrode row and the second electrode row include the migration lanes in the first electrode row and the second electrode row in a portion facing the transparent region in the migration lane. 9. The dielectrophoresis chip according to claim 8, comprising a portion in which both of the electrode forces facing each other are transparent electrode forces, and a portion in which at least one of the metal electrodes is provided.
[15] 互いに隣り合う泳動レーン同士で、上記第 1の電極列および第 2の電極列の形状、 電極幅、および電極間隔のうち少なくとも一つの条件が異なっていることを特徴とす る請求項 8記載の誘電泳動チップ。  [15] The at least one condition among the shape, the electrode width, and the electrode interval of the first electrode row and the second electrode row differs between electrophoresis lanes adjacent to each other. 8. The dielectrophoresis chip according to 8.
[16] 上記各泳動レーンは互いに離間して設けられ、上記各泳動レーン内と、各泳動レ ーン同士の間の領域とでは、上記第 1の電極列および第 2の電極列の形状、電極幅 、および電極間隔のうち少なくとも一つの条件が異なっていることを特徴とする請求 項 8記載の誘電泳動チップ。  [16] The electrophoresis lanes are provided apart from each other, and in the electrophoresis lanes and in a region between the electrophoresis lanes, the shapes of the first electrode row and the second electrode row, 9. The dielectrophoresis chip according to claim 8, wherein at least one of the electrode width and the electrode interval is different.
[17] 誘電性物質を含む試料に交流電圧により形成された電界を印加することにより上 記誘電性物質を誘電泳動させる誘電泳動チップを備え、  [17] A dielectrophoresis chip that dielectrophores the dielectric substance by applying an electric field formed by an alternating voltage to the sample containing the dielectric substance,
上記誘電泳動チップは、  The dielectrophoresis chip is
一つの基板上に、上記誘電性物質を誘電泳動させる泳動レーンを複数備えるとと もに、上記泳動レーンと交差する複数の電極力 なり、上記泳動レーンに注入された 試料に電界を印加するために交流電圧を印加することで上記誘電性物質を誘電泳 動させる電極列を備え、 In order to provide a plurality of migration lanes for dielectrophoretic migration of the dielectric substance on a single substrate, and to apply an electric field to the sample injected into the migration lane with a plurality of electrode forces intersecting the migration lane. Dielectric swimming of the dielectric material by applying an AC voltage to An electrode array to be moved,
上記電極列における各電極は、上記複数の泳動レーンに跨がって設けられている ことを特徴とする誘電泳動装置。  Each electrode in the electrode array is provided across the plurality of electrophoresis lanes.
[18] 上記電極列は、上記泳動レーンのレーン方向に各々電極が複数配設されてなる第 1の電極列および第 2の電極列を備え、  [18] The electrode array includes a first electrode array and a second electrode array each including a plurality of electrodes arranged in the lane direction of the electrophoresis lane,
上記第 1の電極列および第 2の電極列は、各々の電極列における電極間に各々交 流電圧による電界を形成することで上記泳動レーンに注入された試料に各々電界を 印加し、上記第 1の電極列および第 2の電極列における各々の電極は、上記泳動レ ーンを介して互いに対向するとともに上記泳動レーンに交差して設けられており、上 記第 1の電極列および第 2の電極列における各々の電極は、上記複数の泳動レーン に跨がって設けられており、かつ、  The first electrode array and the second electrode array apply an electric field to the sample injected into the migration lane by forming an electric field by an alternating voltage between the electrodes in each electrode array, and The respective electrodes in the first electrode row and the second electrode row face each other through the electrophoresis lane and are provided so as to intersect the migration lane. Each electrode in the electrode array is provided across the plurality of electrophoresis lanes, and
上記第 1の電極列および第 2の電極列に印加する電圧を制御する制御部を備え、 上記制御部は、上記第 1の電極列内および第 2の電極列内でそれぞれ互いに隣り 合う電極にはそれぞれ異なる位相の交流電圧を印加するとともに、上記泳動レーン を介して互いに対向する電極同士には同じ位相の交流電圧を印加することを特徴と する請求項 17記載の誘電泳動装置。  A control unit configured to control a voltage applied to the first electrode row and the second electrode row, wherein the control unit is provided for electrodes adjacent to each other in the first electrode row and the second electrode row, respectively. 18. The dielectrophoresis device according to claim 17, wherein AC voltages having different phases are applied, and AC voltages having the same phase are applied to electrodes facing each other via the electrophoresis lane.
[19] 上記制御部は、上記第 1の電極列内および第 2の電極列内でそれぞれ互いに隣り 合う電極に対し、順次 πずつ位相がずれるように交流電圧を印加することを特徴とす る請求項 18記載の誘電泳動装置。  [19] The control unit is characterized in that an AC voltage is applied to electrodes adjacent to each other in the first electrode row and the second electrode row so that the phases are sequentially shifted by π. The dielectrophoresis apparatus according to claim 18.
[20] 上記制御部は、上記第 1の電極列内および第 2の電極列内でそれぞれ互いに隣り 合う電極に対し、順次 π Ζ2ずつ位相がずれるように交流電圧を印加することを特徴 とする請求項 18記載の誘電泳動装置。  [20] The control unit applies an AC voltage so that the phase is sequentially shifted by πΖ2 to the electrodes adjacent to each other in the first electrode row and the second electrode row, respectively. The dielectrophoresis apparatus according to claim 18.
[21] 上記電極列は、上記泳動レーンのレーン方向に各々電極が複数配設されてなる第 1の電極列および第 2の電極列を備え、  [21] The electrode array includes a first electrode array and a second electrode array in which a plurality of electrodes are arranged in the lane direction of the migration lane,
上記第 1の電極列および第 2の電極列は、各々の電極列における電極間に各々交 流電圧による電界を形成することで上記泳動レーンに注入された試料に各々電界を 印加し、上記第 1の電極列および第 2の電極列における各々の電極は、上記泳動レ ーンを介して互いに対向するとともに上記泳動レーンに交差して設けられており、上 記第 1の電極列および第 2の電極列における各々の電極は、上記複数の泳動レーン に跨がって設けられており、かつ、 The first electrode array and the second electrode array apply an electric field to the sample injected into the migration lane by forming an electric field by an alternating voltage between the electrodes in each electrode array, and The respective electrodes in the first electrode row and the second electrode row face each other through the electrophoresis lane and are provided so as to cross the migration lane. Each electrode in the first electrode row and the second electrode row is provided across the plurality of electrophoresis lanes, and
上記第 1の電極列および第 2の電極列に印加する電圧を制御する制御部を備え、 上記制御部は、上記第 1の電極列内および第 2の電極列内でそれぞれ互いに隣り 合う電極にそれぞれ異なる位相の交流電圧を印加するとともに、上記泳動レーンを 介して互いに対向する電極同士にそれぞれ異なる位相の交流電圧を印加することを 特徴とする請求項 17記載の誘電泳動装置。  A control unit configured to control a voltage applied to the first electrode row and the second electrode row, wherein the control unit is provided for electrodes adjacent to each other in the first electrode row and the second electrode row, respectively. 18. The dielectrophoresis apparatus according to claim 17, wherein AC voltages having different phases are applied, and AC voltages having different phases are applied to electrodes facing each other via the electrophoresis lane.
[22] 上記制御部は、上記第 1の電極列内の X番目の電極を Ax、 x+n番目の電極を Ax [22] The control unit sets the Xth electrode in the first electrode row to Ax, and the x + nth electrode to Ax.
+n (xおよび nは 1以上の整数)とし、上記泳動レーンを介して上記各電極 Ax、 Ax+ nに対向する位置に配置された上記第 2の電極列内の各電極をそれぞれ Bx、 Bx+ nとし、上記 Axの表面と Bxの表面との間の距離を Vとし、 Axの中心と Ax+nの中心 との間の距離を Hとすると、上記 nが HZV≤5を満足するとともに、上記 Axに対する Ax+nの位相差および Bxの位相差がともに πとなり、上記 Axに対する Βχ+ηの位 相差が 0となるように交流電圧を印加することを特徴とする請求項 21記載の誘電泳 動装置。  + n (x and n are integers of 1 or more), and the electrodes in the second electrode array arranged at positions facing the electrodes Ax and Ax + n through the electrophoresis lane are respectively Bx and Bx + n, and the distance between the surface of Ax and the surface of Bx is V, and the distance between the center of Ax and the center of Ax + n is H, the above n satisfies HZV≤5, The dielectric voltage according to claim 21, wherein an AC voltage is applied so that a phase difference of Ax + n with respect to Ax and a phase difference of Bx are both π, and a phase difference of Βχ + η with respect to Ax is zero. Swimming device.
[23] 上記制御部は、上記第 1の電極列内の X番目の電極を Αχ、 x+n番目の電極を Ax  [23] The control unit sets the Xth electrode in the first electrode row to Αχ and the x + nth electrode to Ax
+n (xおよび nは 1以上の整数)とし、上記泳動レーンを介して上記各電極 Ax、 Ax+ nに対向する位置に配置された上記第 2の電極列内の各電極をそれぞれ Bx、 Bx+ nとし、上記 Axの表面と Bxの表面との間の距離を Vとし、 Axの中心と Ax+nの中心 との間の距離を Hとすると、上記 nが HZV≤5を満足するとともに、上記 Axに対する 上記 Ax+nおよび Bxの何れか一方の電極の位相差が π Ζ2、他方の電極の位相 差が 3 π Ζ2であり、上記 Axに対する Βχ + ηの位相差が πとなるように交流電圧を印 加することを特徴とする請求項 21記載の誘電泳動装置。  + n (x and n are integers of 1 or more), and the electrodes in the second electrode array arranged at positions facing the electrodes Ax and Ax + n through the electrophoresis lane are respectively Bx and Bx + n, and the distance between the surface of Ax and the surface of Bx is V, and the distance between the center of Ax and the center of Ax + n is H, the above n satisfies HZV≤5, The phase difference of either Ax + n or Bx with respect to Ax is π Ζ2, the phase difference of the other electrode is 3 π Ζ2, and the phase difference of Βχ + η with respect to Ax is π The dielectrophoresis apparatus according to claim 21, wherein an alternating voltage is applied.
[24] 上記制御部は、上記第 1の電極列および第 2の電極列において交流電圧を印加す る対象電極を、 Ax、 Ax+n, Bx、 Bx+nの 4つの電極の組み合わせからなる 1ュ-ッ トの Xが 1ずつ大きくなるように順次移動させることを特徴とする請求項 22または 23記 載の誘電泳動装置。  [24] The control unit includes a combination of four electrodes Ax, Ax + n, Bx, and Bx + n as target electrodes to which an AC voltage is applied in the first electrode row and the second electrode row. 24. The dielectrophoresis device according to claim 22 or 23, wherein the electrophoretic device is sequentially moved so that X of each unit increases by one.
[25] 誘電性物質を含む試料に交流電圧により形成された電界を印加することにより上 記誘電性物質を誘電泳動させる誘電泳動チップを備え、 [25] By applying an electric field formed by an alternating voltage to a sample containing a dielectric substance, A dielectrophoresis chip for dielectrophoresis of a dielectric material is provided.
上記誘電泳動チップは、  The dielectrophoresis chip is
一つの基板上に、上記誘電性物質を誘電泳動させる泳動レーンを複数備えるとと もに、上記泳動レーンと交差する複数の電極力 なり、上記泳動レーンに注入された 試料に電界を印加するために交流電圧を印加することで上記誘電性物質を誘電泳 動させる電極列を備え、  In order to provide a plurality of migration lanes for dielectrophoretic migration of the dielectric substance on a single substrate, and to apply an electric field to the sample injected into the migration lane with a plurality of electrode forces intersecting the migration lane. An electrode array for causing the dielectric substance to dielectrically move by applying an AC voltage to the
上記電極列における各電極は、上記複数の泳動レーンに跨がって設けられている ことを特徴とする誘電泳動システム。  Each electrode in the electrode array is provided across the plurality of electrophoresis lanes.
上記電極列は、上記泳動レーンのレーン方向に各々電極が複数配設されてなる第 The electrode array includes a plurality of electrodes arranged in the lane direction of the electrophoresis lane.
1の電極列および第 2の電極列を備え、 Comprising one electrode row and a second electrode row,
上記第 1の電極列および第 2の電極列は、各々の電極列における電極間に各々交 流電圧による電界を形成することで上記泳動レーンに注入された試料に各々電界を 印加し、上記第 1の電極列および第 2の電極列における各々の電極は、上記泳動レ ーンを介して互いに対向するとともに上記泳動レーンに交差して設けられており、力 つ、上記第 1の電極列および第 2の電極列における各々の電極は、上記複数の泳動 レーンに跨がって設けられていることを特徴とする請求項 25記載の誘電泳動システ ム„  The first electrode array and the second electrode array apply an electric field to the sample injected into the migration lane by forming an electric field by an alternating voltage between the electrodes in each electrode array, and The respective electrodes in the first electrode row and the second electrode row face each other through the electrophoresis lane and are provided so as to cross the migration lane. 26. The dielectrophoresis system according to claim 25, wherein each electrode in the second electrode array is provided across the plurality of electrophoresis lanes.
PCT/JP2006/320878 2005-10-19 2006-10-19 Electrophoretic chip, electrophoretic device, and electrophoretic system WO2007046484A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-305047 2005-10-19
JP2005305047 2005-10-19

Publications (2)

Publication Number Publication Date
WO2007046484A1 true WO2007046484A1 (en) 2007-04-26
WO2007046484A8 WO2007046484A8 (en) 2007-07-05

Family

ID=37962577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320878 WO2007046484A1 (en) 2005-10-19 2006-10-19 Electrophoretic chip, electrophoretic device, and electrophoretic system

Country Status (1)

Country Link
WO (1) WO2007046484A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008284626A (en) * 2007-05-16 2008-11-27 Miraial Kk Micro-flow channel device
WO2009044902A1 (en) * 2007-10-05 2009-04-09 Kyushu Institute Of Technology Dielectrophoresis device and method
JP2017070281A (en) * 2015-10-07 2017-04-13 株式会社Afiテクノロジー Examination apparatus, examination system, and examination method
JP2019537732A (en) * 2016-10-18 2019-12-26 メナリーニ・シリコン・バイオシステムズ・ソシエタ・ペル・アチオニ Electronic drive circuit for driving electrodes of microfluidic devices for particle manipulation and corresponding analytical instruments
WO2023277088A1 (en) * 2021-06-30 2023-01-05 株式会社Screenホールディングス Fluidic chip and dielectrophoresis device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001500252A (en) * 1996-07-26 2001-01-09 ビーティージー・インターナショナル・リミテッド Apparatus and method for testing particles using dielectrophoresis
JP3182151B2 (en) * 1992-04-16 2001-07-03 ビーティージー・インターナショナル・リミテッド Equipment for separating mixtures
JP2002543972A (en) * 1999-05-18 2002-12-24 シリコン・バイオシステムズ・ソシエタ・ア・レスポンサビリタ・リミタータ Method and apparatus for manipulating particles by dielectrophoresis
JP2003504196A (en) * 1999-07-20 2003-02-04 ユニバーシティ・オブ・ウェールズ・バンゴア Traveling wave dielectrophoresis apparatus and method
JP3447055B2 (en) * 1992-04-23 2003-09-16 マサチューセッツ・インスティチュート・オブ・テクノロジー Electrical method and apparatus for molecule detection
JP3453136B2 (en) * 1991-08-19 2003-10-06 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ. Method for continuous separation of a mixture of fine dielectric particles and apparatus for carrying out the method
JP2004522452A (en) * 2001-03-22 2004-07-29 キャピタル バイオチップ カンパニー リミテッド Cell isolation method and use thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3453136B2 (en) * 1991-08-19 2003-10-06 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ. Method for continuous separation of a mixture of fine dielectric particles and apparatus for carrying out the method
JP3182151B2 (en) * 1992-04-16 2001-07-03 ビーティージー・インターナショナル・リミテッド Equipment for separating mixtures
JP3447055B2 (en) * 1992-04-23 2003-09-16 マサチューセッツ・インスティチュート・オブ・テクノロジー Electrical method and apparatus for molecule detection
JP2001500252A (en) * 1996-07-26 2001-01-09 ビーティージー・インターナショナル・リミテッド Apparatus and method for testing particles using dielectrophoresis
JP2002543972A (en) * 1999-05-18 2002-12-24 シリコン・バイオシステムズ・ソシエタ・ア・レスポンサビリタ・リミタータ Method and apparatus for manipulating particles by dielectrophoresis
JP2003504196A (en) * 1999-07-20 2003-02-04 ユニバーシティ・オブ・ウェールズ・バンゴア Traveling wave dielectrophoresis apparatus and method
JP2004522452A (en) * 2001-03-22 2004-07-29 キャピタル バイオチップ カンパニー リミテッド Cell isolation method and use thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PETHIG R. ET AL.: "Enhancing Traveling-Wave Dielectrophoresis with Signal Superposition", IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, November 2003 (2003-11-01) - December 2003 (2003-12-01), pages 43 - 50, XP002354156 *
SUEHIRO J. ET AL.: "The dielectrophoretic movement and positioning of a biological cell using a three-dimensional grid electrode system", J. PHYS. D: APPL. PHYS., vol. 31, no. 22, 1998, pages 3298 - 3305, XP003012035 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008284626A (en) * 2007-05-16 2008-11-27 Miraial Kk Micro-flow channel device
WO2009044902A1 (en) * 2007-10-05 2009-04-09 Kyushu Institute Of Technology Dielectrophoresis device and method
US8864972B2 (en) 2007-10-05 2014-10-21 Kyushu Institute Of Technology Dielectrophoresis apparatus and method
JP2017070281A (en) * 2015-10-07 2017-04-13 株式会社Afiテクノロジー Examination apparatus, examination system, and examination method
WO2017061496A1 (en) * 2015-10-07 2017-04-13 株式会社Afiテクノロジー Inspection apparatus, inspection system, and inspection method
JP2017156347A (en) * 2015-10-07 2017-09-07 株式会社Afiテクノロジー Inspection device, and inspection system
US10495580B2 (en) 2015-10-07 2019-12-03 Afi Corporation Inspection device, inspection system, and inspection method
US10876974B2 (en) 2015-10-07 2020-12-29 Afi Corporation Inspection device, inspection system, and inspection method
JP2019537732A (en) * 2016-10-18 2019-12-26 メナリーニ・シリコン・バイオシステムズ・ソシエタ・ペル・アチオニ Electronic drive circuit for driving electrodes of microfluidic devices for particle manipulation and corresponding analytical instruments
WO2023277088A1 (en) * 2021-06-30 2023-01-05 株式会社Screenホールディングス Fluidic chip and dielectrophoresis device

Also Published As

Publication number Publication date
WO2007046484A8 (en) 2007-07-05

Similar Documents

Publication Publication Date Title
WO2007046485A1 (en) Electrophoretic chip, electrophoretic device, and electrophoretic system
Zhang et al. DEP-on-a-chip: Dielectrophoresis applied to microfluidic platforms
Yao et al. Microfluidic device embedding electrodes for dielectrophoretic manipulation of cells‐A review
US8137523B2 (en) Apparatus for and method of separating polarizable analyte using dielectrophoresis
Cheng et al. An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting
Lewpiriyawong et al. Microfluidic characterization and continuous separation of cells and particles using conducting poly (dimethyl siloxane) electrode induced alternating current-dielectrophoresis
CN101250483B (en) Combined splint microelectrode type micro-fluidic dielectrophoresis cell separation and enrichment chip
US10024819B2 (en) Microfluidics with wirelessly powered electronic circuits
Fan et al. Droplet-on-a-wristband: Chip-to-chip digital microfluidic interfaces between replaceable and flexible electrowetting modules
ES2724534T3 (en) Procedure for manufacturing a sensor device to detect chemical or biological species and procedure for manufacturing a microfluidic device with such a sensor device
US20100163414A1 (en) Microelectronic device with field electrodes
TW200911375A (en) A microfluidic chip for and a method of handling fluidic droplets
Wu et al. Label-free multitarget separation of particles and cells under flow using acoustic, electrophoretic, and hydrodynamic forces
Burgarella et al. A modular micro-fluidic platform for cells handling by dielectrophoresis
WO2007046484A1 (en) Electrophoretic chip, electrophoretic device, and electrophoretic system
Lin et al. Enhancing dielectrophoresis effect through novel electrode geometry
CN113181980A (en) Micro plastic particle separation device and method based on direct current bias alternating current electric field
Sano et al. Simultaneous electrokinetic flow and dielectrophoretic trapping using perpendicular static and dynamic electric fields
WO2018093779A2 (en) Digital microfluidic devices
Wu et al. Three‐dimensional lab‐on‐a‐foil device for dielectrophoretic separation of cancer cells
Lian et al. Particle line assembly/patterning by microfluidic AC electroosmosis
Kim et al. Microfluidic device to separate micro-beads with various fluorescence intensities
JP5047034B2 (en) Particle separation method and separation apparatus
CN101078708B (en) Microcurrent detector and its production method
CN116367921A (en) Digital microfluidic chip, driving method thereof and digital microfluidic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06812055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP