JP5047034B2 - Particle separation method and separation apparatus - Google Patents

Particle separation method and separation apparatus Download PDF

Info

Publication number
JP5047034B2
JP5047034B2 JP2008097024A JP2008097024A JP5047034B2 JP 5047034 B2 JP5047034 B2 JP 5047034B2 JP 2008097024 A JP2008097024 A JP 2008097024A JP 2008097024 A JP2008097024 A JP 2008097024A JP 5047034 B2 JP5047034 B2 JP 5047034B2
Authority
JP
Japan
Prior art keywords
particles
electrode
flow path
capturing
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008097024A
Other languages
Japanese (ja)
Other versions
JP2009250706A (en
Inventor
朋代 藤山
和明 高畑
宏治 野里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008097024A priority Critical patent/JP5047034B2/en
Publication of JP2009250706A publication Critical patent/JP2009250706A/en
Application granted granted Critical
Publication of JP5047034B2 publication Critical patent/JP5047034B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、液体中の複数種類の粒子を誘電泳動させ、誘電特性の差を利用して分離する方法及び装置に関するものである。   The present invention relates to a method and apparatus for dielectrophoresis of a plurality of types of particles in a liquid and separating them using a difference in dielectric properties.

従来、液体中に存在する粒子、特に細胞や微生物を分離する方法として、電極を配置した流路中に当該液体を流し、流動作用と誘電泳動を利用して分離する方法がある。誘電泳動とは、粒子を不均一な交流電界内に置くと、粒子内に正と負の分極が起こり、粒子を取り囲む媒質の誘電率が物質よりも大きいと物質は電界の低い方向へ移動し、媒質の誘電率が粒子よりも小さいと粒子は電界の強い方向へと移動する現象である。この誘電泳動を利用した分離方法は、例えば医療業界において、医薬品や体液から細菌、微生物又はウィルス等を除去したり、あるいは透析のように汚濁物質を除去することに利用されている。   Conventionally, as a method for separating particles, particularly cells and microorganisms, present in a liquid, there is a method in which the liquid is caused to flow through a flow path in which electrodes are arranged and separated using a fluid action and dielectrophoresis. In dielectrophoresis, when a particle is placed in a non-uniform alternating electric field, positive and negative polarization occurs in the particle, and if the dielectric constant of the medium surrounding the particle is greater than that of the material, the material moves in the direction of lower electric field. When the dielectric constant of the medium is smaller than that of the particles, the particles move in a direction in which the electric field is strong. This separation method using dielectrophoresis is used, for example, in the medical industry to remove bacteria, microorganisms, viruses, and the like from pharmaceuticals and body fluids, or to remove contaminants such as dialysis.

例えば、特許文献1では、一定速度で流れてくる粒子の誘電泳動力の差を利用し、出口に達する時間差から粒子の分離を行っている。   For example, in Patent Document 1, the difference in the dielectrophoretic force of particles flowing at a constant speed is used to separate particles from the time difference to reach the outlet.

また、特許文献2では、液体中に含まれている粒子が既知の場合、抗体を用いて特定の粒子の誘電特性を変化させ、分離精度を上げる方法が開示されている。溶液に存在する複数種類の粒子を一度電極に捕捉し、特定の粒子に抗体を結合させることで、誘電特性を選択的に変化させる。その後流動作用を加えることにより、抗体と特異的に結合した粒子だけを流動させ分離精度を向上させている。
特表平7−505717号公報(特許第3182151号明細書) 特開2003−223号公報(特許第3869686号明細書)
Patent Document 2 discloses a method of increasing the separation accuracy by changing the dielectric characteristics of specific particles using an antibody when the particles contained in the liquid are known. Dielectric properties are selectively changed by capturing a plurality of types of particles present in a solution once on an electrode and binding antibodies to specific particles. Thereafter, by applying a flow action, only the particles specifically bound to the antibody are flowed to improve the separation accuracy.
JP 7-505717 A (Patent No. 3182151) JP 2003-223 A (Patent No. 3896686)

しかしながら、特許文献1に記載の方法では、電極が配置されている壁面付近の流速は遅くなるため、壁面付近に存在する粒子に対しては流れの効果が弱い。さらに、分離しようとする粒子の材質が似ている場合(例えば細胞と微生物など)、誘電特性に大きな差がないので誘電泳動力の差も小さいと考えられる。したがって、流路内の位置によって、つまり電極が存在する壁面付近に粒子が流れることによって、粒子に対する流れの効果が弱くなってしまうと、粒子の種類毎に異なる誘電泳動力の差を利用した分離が難しく、分離精度が落ちてしまう。   However, in the method described in Patent Document 1, the flow velocity near the wall surface on which the electrodes are arranged is slow, so that the flow effect is weak against particles existing near the wall surface. Furthermore, when the material of the particles to be separated is similar (for example, cells and microorganisms), the difference in the dielectrophoretic force is considered to be small because there is no significant difference in dielectric properties. Therefore, depending on the position in the flow path, that is, when the particles flow near the wall where the electrodes exist, the effect of the flow on the particles becomes weak. Is difficult and the separation accuracy is reduced.

また、特許文献2に記載の方法においては、液体中に含まれる粒子の誘電泳動力の差が小さく、かつ種類が未知の場合、適切な抗体を選択することは困難であり、分離精度を向上させることは難しい。また、抗原抗体反応を利用するため、分離に手間と時間を要する。   Further, in the method described in Patent Document 2, when the difference in the dielectrophoretic force of particles contained in the liquid is small and the type is unknown, it is difficult to select an appropriate antibody, and the separation accuracy is improved. It is difficult to let In addition, since an antigen-antibody reaction is used, it takes time and effort for separation.

以上より、液体中に未知の粒子が含まれている場合でも、目的以外の物質は電極に捕捉せず、精度良く簡便に分離できる方法が望まれていた。本発明は前述の先行技術における問題点に鑑み発明されたものであり、その目的は液体中に含まれる複数種類の粒子を精度良く分離する方法を提供することにある。特に、粒子の材質が似ている場合等のような誘電泳動力の差が小さい場合であっても、液体中に含まれる粒子の種類によらず、簡便な方法で分離精度を向上させる方法を提供することを目的とする。   In view of the above, there has been a demand for a method that can easily and accurately separate substances other than the target without trapping substances other than the target even when unknown particles are contained in the liquid. The present invention was invented in view of the above-mentioned problems in the prior art, and an object of the present invention is to provide a method for accurately separating a plurality of types of particles contained in a liquid. In particular, even when the difference in dielectrophoretic force is small, such as when the particles are similar, a method that improves the separation accuracy with a simple method, regardless of the type of particles contained in the liquid. The purpose is to provide.

そこで、本発明に係る粒子の分離方法は、
流路中を流れる液体に含まれる少なくとも二種類の粒子を、電極で発生させた不均一電界により誘電泳動させ、誘電特性の差を利用して分離する方法であって、
第一の不均一電界を発生させる偏在用電極によって、前記粒子を偏在させてから下流に流す工程と、
前記偏在用電極の下流側であって前記流路を挟んで、前記粒子を偏在させた側の対向側に配置され、かつ第二の不均一電界を発生させる捕捉用電極によって、捕捉対象とする粒子を捕捉する工程と、
を有することを特徴とする粒子の分離方法。
Therefore, the method for separating particles according to the present invention is as follows.
A method in which at least two kinds of particles contained in a liquid flowing in a flow path are dielectrophoresed by a non-uniform electric field generated by an electrode and separated using a difference in dielectric properties,
Flowing the particles downstream from the uneven distribution of the particles by the uneven distribution electrode that generates the first non-uniform electric field;
A trapping target is disposed on the downstream side of the unevenly-distributed electrode, on the opposite side of the particle-distributed side across the flow path, and is configured to generate a second non-uniform electric field. Capturing the particles;
A method for separating particles characterized by comprising:

また、本発明に係る粒子の分離装置は、
液体中に含まれる少なくとも二種類の粒子を誘電泳動させ、誘電特性の差を利用して分離する装置であって、
該装置は、
前記液体を流す流路と、
前記流路中に流動作用を発生させる手段と、
前記流路中に設置され、第一の不均一電界を発生し、前記粒子を偏在させる偏在用電極と、
前記偏在用電極の下流であって前記流路を挟んで前記粒子を偏在させる側の対向側に位置し、第二の不均一電界を発生し、捕捉対象の粒子を捕捉する捕捉用電極と、
を有することを特徴とする。
Moreover, the particle separation apparatus according to the present invention comprises:
An apparatus for dielectrophoretic migration of at least two types of particles contained in a liquid and separating them using a difference in dielectric properties,
The device
A flow path for flowing the liquid;
Means for generating a flow action in the flow path;
An unevenly distributed electrode that is installed in the flow path, generates a first non-uniform electric field, and unevenly distributes the particles;
A capturing electrode that is located downstream of the uneven distribution electrode and on the opposite side of the side where the particles are unevenly distributed across the flow path, generates a second non-uniform electric field, and captures the particles to be captured;
It is characterized by having.

本発明によれば、液体中に含まれる粒子間の誘電泳動力の差が小さい場合であっても、粒子の種類によらず、分離精度を向上させることができる。   According to the present invention, even when the difference in dielectrophoretic force between particles contained in a liquid is small, the separation accuracy can be improved regardless of the type of particles.

誘電泳動とは、粒子の電導率及び誘電率と媒質の電導率及び誘電率と、印加する周波数との相互作用により、不均一な電界内で粒子が移動する現象のことであり、この際に粒子に働く力を誘電泳動力と呼ぶ。また、誘電泳動力は、粒子が電界の強い方へと移動する正の誘電泳動力と電界の弱い方へと移動する負の誘電泳動力の2種類に分けられる。粒子の種類に応じて周波数を選択すると、正の誘電泳動力を作用させて捕捉したり、負の誘電泳動力を作用させて排除することも可能である。以下では、粒子に正の誘電泳動力が働く場合を例にとり説明する。   Dielectrophoresis is a phenomenon in which particles move in a non-uniform electric field due to the interaction between the electric conductivity and dielectric constant of the particles, the electric conductivity and dielectric constant of the medium, and the applied frequency. The force acting on the particles is called dielectrophoretic force. In addition, the dielectrophoretic force is classified into two types, that is, a positive dielectrophoretic force in which particles move toward a stronger electric field and a negative dielectrophoretic force that moves toward a weaker electric field. When the frequency is selected according to the type of particle, it is possible to capture by applying a positive dielectrophoretic force or to eliminate it by applying a negative dielectrophoretic force. Hereinafter, a case where a positive dielectrophoretic force acts on particles will be described as an example.

電界内に置かれた粒子は、電界の下流側に正極性の分極電荷+qが、上流側には負極性の分極電荷−qが夫々誘導され、+qには電界Eにより大きさ+qEの力が働き、この部分を電界の上流側へと引く。分子が中性ならば、+qと−qの絶対値は等しく、仮に電界が場所によらず一定であるならば、両者に働く力は釣り合って分子は動かない。しかし、電界が一様でない場合には、強い電界側へ引く力の方が大きくなり、分子は電界の強い側へと駆動されることとなる。つまり、不均一な電界において誘電的に分極可能な粒子は、そのような粒子が実効電荷を有していない場合でも、そのような粒子の有効分極率が周囲の媒体の分極率と異なっている場合には、誘電泳動力を受ける。その運動は、電気泳動現象のように粒子の電荷ではなく、誘電特性(例えば導電率や誘電率)によって決定される。   The particles placed in the electric field induce a positive polarization charge + q on the downstream side of the electric field and a negative polarization charge -q on the upstream side. Pulls this part upstream of the electric field. If the molecule is neutral, the absolute values of + q and -q are equal, and if the electric field is constant regardless of the location, the forces acting on the two are balanced and the molecule does not move. However, when the electric field is not uniform, the force drawn to the strong electric field side becomes larger, and the molecule is driven to the strong electric field side. That is, particles that are dielectrically polarizable in a non-uniform electric field have an effective polarizability of such particles that is different from the polarizability of the surrounding medium, even if such particles have no net charge. In some cases, it receives a dielectrophoretic force. The movement is determined not by the charge of the particles as in the electrophoresis phenomenon but by the dielectric properties (for example, conductivity and dielectric constant).

なお、電界がいずれの点においても振動性であり、パターンが固定している交番電界においては、電界が周期的に変動する場合には、粒子に作用する誘電泳動力は振動性であり且つ単向性である。粒子は、そのような粒子が懸濁している媒体よりも分極性が高い場合には、電界が強い方向へ移動(正の誘電泳動)する。   Note that the electric field is oscillating at any point, and in an alternating electric field where the pattern is fixed, when the electric field fluctuates periodically, the dielectrophoretic force acting on the particles is oscillating and simple. Is tropic. Particles move in the direction of strong electric fields (positive dielectrophoresis) when the polarizability is higher than the medium in which such particles are suspended.

本発明の粒子の分離方法は、粒子間の誘電泳動力の差を利用して対象とする粒子を分離するものである。つまり、誘電泳動力は粒子の誘電特性に依存することから、粒子の誘電特性の違いにより対象とする粒子を分離、捕捉することができる。粒子の誘電特性の違いをもたらす要素として、粒子の大きさ、誘電率、表面電荷又は表面膜性質等が挙げられるが、これらのうち少なくとも一つの要素の違いに基づいて分離することができる。   The particle separation method of the present invention separates target particles using a difference in dielectrophoretic force between particles. That is, since the dielectrophoretic force depends on the dielectric properties of the particles, the target particles can be separated and captured by the difference in the dielectric properties of the particles. Examples of the element that causes the difference in the dielectric properties of the particles include the size of the particles, the dielectric constant, the surface charge, or the surface film property. The separation can be performed based on the difference in at least one of these elements.

ここで、本発明は、
流路中を流れる液体に含まれる少なくとも二種類の粒子を、電極で発生させた不均一電界により誘電泳動させ、誘電特性の差を利用して分離する方法であって、
第一の不均一電界を発生させる偏在用電極によって、前記粒子を偏在させてから下流に流す工程と、
前記偏在用電極の下流側であって前記流路を挟んで、前記粒子を偏在させた側の対向側に配置され、かつ第二の不均一電界を発生させる捕捉用電極によって、捕捉対象とする粒子を捕捉する工程と、
を有することを特徴とする粒子の分離方法である。
Here, the present invention
A method in which at least two kinds of particles contained in a liquid flowing in a flow path are dielectrophoresed by a non-uniform electric field generated by an electrode and separated using a difference in dielectric properties,
Flowing the particles downstream from the uneven distribution of the particles by the uneven distribution electrode that generates the first non-uniform electric field;
A trapping target is disposed on the downstream side of the unevenly-distributed electrode, on the opposite side of the particle-distributed side across the flow path, and is configured to generate a second non-uniform electric field. Capturing the particles;
It is the separation method of the particle | grains characterized by having.

本発明に係る粒子の分離方法では、まず、捕捉用電極の領域に到達する前に、一旦粒子を偏在用電極により偏在させる。液中に含まれる粒子を偏在させてから捕捉用電極に流すことにより、捕捉対象となる粒子のみを捕捉用電極に引き寄せ捕捉し、捕捉対象となる粒子以外の粒子(以下、その他の粒子と略す)は捕捉せずに下流に流すようにすることができる。液体中の粒子は当然に分散した状態で流路を流れているため、従来の方法では、捕捉対象となる粒子とその他の粒子との間に誘電泳動力の差がある場合でも、その他の粒子が捕捉用電極付近に流れた場合は、該捕捉用電極に捕捉されてしまう。特に粒子間の誘電泳動力の差が小さい場合は、捕捉対象となる粒子とともにその他の粒子も顕著に捕捉されてしまう。一方、本発明では、捕捉用電極の領域に到達する前に、一旦全ての粒子を偏在用電極により捕捉用電極に対して反対側の流路部分に偏在させることで、その他の粒子が捕捉用電極に捕捉されないようにすることができる。したがって、粒子間の誘電泳動力の差が小さい場合にも有効に粒子を分離することができる。   In the method for separating particles according to the present invention, first, the particles are once unevenly distributed by the unevenly-distributing electrode before reaching the region of the capturing electrode. The particles contained in the liquid are unevenly distributed and then flowed to the capturing electrode, so that only the particles to be captured are attracted and captured by the capturing electrode, and particles other than the particles to be captured (hereinafter abbreviated as other particles). ) Can flow downstream without being captured. Since the particles in the liquid naturally flow through the flow path in a dispersed state, even if there is a difference in dielectrophoretic force between the particles to be captured and the other particles, other particles When the gas flows in the vicinity of the capturing electrode, it is captured by the capturing electrode. In particular, when the difference in dielectrophoretic force between the particles is small, other particles are also captured significantly together with the particles to be captured. On the other hand, in the present invention, before reaching the area of the capturing electrode, all particles are once distributed unevenly in the flow channel portion on the opposite side of the capturing electrode by the unevenly distributed electrode, so that other particles are captured. It can be prevented from being trapped by the electrode. Therefore, the particles can be effectively separated even when the difference in the dielectrophoretic force between the particles is small.

(粒子)
本発明において粒子とは、細胞、細胞凝集体、細胞内小器官、細菌、ウイルス若しくは核酸等の生物由来物質、無機質、結晶若しくは合成粒子等の無機物質、又は油中の微細な水滴等の液体や気泡等の気体を広く含む概念として用いられている。生物由来物質としては、例えば、ヌクレオチド鎖、染色体、ペプチド鎖、蛋白質、免疫グロブリン、血清蛋白質、抗体、抗原、脂質、糖鎖又は微生物等が挙げられる。無機物質としては、例えば、シリカ、アルミナ、金、チタン、鉄若しくはニッケル等の金属、アガロース、セルロース若しくは不溶性デキストラン等の多糖類、又はポリスチレン若しくはスチレン‐ブタジエン共重合体等の高分子化合物等が挙げられる。
(particle)
In the present invention, particles are cells, cell aggregates, intracellular organelles, biological substances such as bacteria, viruses or nucleic acids, inorganic substances such as inorganic substances, crystals or synthetic particles, or liquids such as fine water droplets in oil. It is used as a concept that widely includes gases such as bubbles and bubbles. Examples of the biological substance include nucleotide chains, chromosomes, peptide chains, proteins, immunoglobulins, serum proteins, antibodies, antigens, lipids, sugar chains or microorganisms. Examples of the inorganic substance include metals such as silica, alumina, gold, titanium, iron or nickel, polysaccharides such as agarose, cellulose or insoluble dextran, or polymer compounds such as polystyrene or styrene-butadiene copolymer. It is done.

また、本発明に係る分離方法の対象となる液体としては、例えば血清、血漿、髄液、滑液、リンパ液等の体液、又は尿、糞便のような排泄物等の生体由来試料及びその処理物等が挙げられる。また、処理物としては、例えばこれら生体由来試料を水や緩衝液等で適宜希釈等したもの、あるいはこれら生体由来試料に由来する粒子を水や緩衝液等に適宜溶解又は懸濁させ、再構成して得られたもの等が挙げられる。   Examples of the liquid to be subjected to the separation method according to the present invention include biological samples such as body fluids such as serum, plasma, spinal fluid, synovial fluid, and lymph, or excrement such as urine and feces, and processed products thereof. Etc. In addition, as a treated product, for example, a sample obtained by appropriately diluting these biological samples with water or a buffer solution, or particles obtained from these biological samples are appropriately dissolved or suspended in water or a buffer solution to reconstitute. And the like obtained.

また、本明細書において、捕捉対象となる粒子は、一種類に限られるものではなく、二種類以上であってもよい。捕捉対象となる粒子以外の粒子(その他の粒子)も同様である。   Moreover, in this specification, the particle | grains used as the capture | acquisition object are not restricted to one type, Two or more types may be sufficient. The same applies to particles other than the particles to be captured (other particles).

(電極)
本発明において用いる電極には、少なくとも偏在用電極と捕捉用電極の二種類がある。
(electrode)
There are at least two types of electrodes used in the present invention: an unevenly distributed electrode and a capturing electrode.

偏在用電極は、不均一な電界を生じさせて、流路を流れてきた粒子を誘電泳動力により、例えば、正の誘電泳動力により該偏在用電極近傍の偏在部に偏在させるものであり、流路において捕捉用電極の上流に位置する。ここで、偏在部とは、偏在用電極の表面及びその近傍のことを意味する。また、粒子を偏在させるとは、該偏在部に粒子を留める又は引き寄せることを意味する。   The unevenly distributed electrode generates a non-uniform electric field, and causes the particles flowing in the flow path to be unevenly distributed in the unevenly distributed portion near the unevenly distributed electrode by a dielectrophoretic force, for example, by a positive dielectrophoretic force. Located upstream of the capture electrode in the flow path. Here, the unevenly distributed portion means the surface of the unevenly distributed electrode and the vicinity thereof. Further, uneven distribution of particles means that the particles are retained or attracted to the uneven distribution portion.

捕捉用電極は、不均一な電界を生じさせて、流路を流れてきた粒子を誘電泳動力により捕捉部に捕捉するものであり、流路において前記偏在用電極部の下流に位置する。ここで、捕捉部とは、捕捉用電極表面及びその近傍のことを意味する。また、粒子を捕捉するとは、捕捉部に粒子を留めることを意味する。   The capturing electrode generates a non-uniform electric field and captures particles flowing through the flow path to the capturing section by dielectrophoretic force, and is positioned downstream of the unevenly distributed electrode section in the flow path. Here, the capturing part means the surface of the capturing electrode and the vicinity thereof. Moreover, capturing particles means retaining the particles in the capturing part.

また、前記各電極は、それぞれ流路を挟んで対向する対向電極を有していても良い。各電極とその対向電極間の距離は通常流路の幅に依存する。つまり、前記偏在用電極とその対向電極(偏在用電極部という)は流路を挟む形で配置され、かつ前記捕捉用電極とその対向電極(捕捉用電極部という)も流路を挟む形で配置される。そして、前記偏在用電極部と前記捕捉用電極部は流路中に隣接して配置される。なお、前記各電極は、本発明の効果を有する以上流路中にどのように配置されていてもよく、例えば流路の上面と下面に配置されていても良いし、側面に配置されていても良い。   Moreover, each said electrode may have a counter electrode which opposes on both sides of a flow path, respectively. The distance between each electrode and its counter electrode usually depends on the width of the channel. That is, the unevenly-distributed electrode and its counter electrode (referred to as an unevenly-distributed electrode portion) are arranged so as to sandwich the flow path, and the capture electrode and its counter electrode (referred to as a capture electrode section) are also sandwiched between the flow paths. Be placed. And the said electrode part for uneven distribution and the said electrode part for capture | acquisition are arrange | positioned adjacent to a flow path. Note that each of the electrodes may be arranged in the flow path as long as it has the effect of the present invention. For example, the electrodes may be arranged on the upper surface and the lower surface of the flow path, or on the side surface. Also good.

また、前記偏在部と前記捕捉部の位置が流路を挟んで反対側となるように、各電極部は形成される。このように各電極部を配置することで、上述したように、誘電泳動力の差が小さい粒子同士を分離したい場合でも、有効に捕捉対象となる粒子を捕捉することができる。つまり、粒子間の誘電泳動力の差が小さい場合であっても、流路中の粒子を偏在用電極部により一旦偏在部に偏在させてから下流の捕捉用電極部に流すことによって、誘電泳動力の弱い粒子が捕捉部に近づくことを防ぎ、かつ、誘電泳動力の強い粒子(捕捉対象となる粒子)のみを捕捉部に捕捉することができ、分離精度を向上させることができる。なお、本発明に係る分離方法によって分離、回収された粒子を分析等の他の工程に供することができる。   In addition, each electrode part is formed so that the positions of the unevenly distributed part and the capturing part are opposite to each other across the flow path. By disposing each electrode portion in this manner, as described above, even when it is desired to separate particles having a small difference in dielectrophoretic force, particles to be captured can be captured effectively. In other words, even when the difference in the dielectrophoretic force between the particles is small, the particles in the flow path are once unevenly distributed in the unevenly distributed part by the unevenly distributed electrode part and then flowed to the downstream capturing electrode part. It is possible to prevent particles with weak force from approaching the capturing part, and to capture only particles having a strong dielectrophoretic force (particles to be captured) in the capturing part, thereby improving the separation accuracy. The particles separated and recovered by the separation method according to the present invention can be used for other processes such as analysis.

前記偏在用電極部及び捕捉用電極部は、交流電圧により不均一電界を発生させるものである。例えば、前記偏在用電極及び捕捉用電極は、対向電極と各々の面積が異なることが望ましく、幅が異なることが望ましい。つまり、流路の幅及び高さが一定で、流路側壁の両側に電極を設ける構成とする場合、各電極の縦幅を流路の高さに合わせることで、横幅を調整することのみで対向電極との面積比を選択することができる。異なる面積(特に幅のサイズ)の対向電極を配置することによって、電圧を印加した際に著しい不均一電界を生じさせることができ、粒子はより面積が小さい方の電極(電界が強い側の電極)に向かって正の誘電泳動を行う。前記偏在用電極及び捕捉用電極とそれぞれの対向電極の面積比は、捕捉対象となる粒子やその他の粒子の泳動速度を考慮して適宜選択することができる。例えば、粒子が泳動しやすい不均一電界が生じるよう、その面積比は1:4から1:5の比であることが望ましいが、泳動速度などを調整するため前記以外のサイズ比であってもよい。   The unevenly distributed electrode portion and the capturing electrode portion generate a non-uniform electric field by an alternating voltage. For example, it is desirable that the unevenly-distributing electrode and the capturing electrode have different areas and different widths from the counter electrode. That is, when the width and height of the flow path are constant and the electrodes are provided on both sides of the flow path side wall, the horizontal width can be adjusted only by adjusting the vertical width of each electrode to the height of the flow path. The area ratio with the counter electrode can be selected. By disposing counter electrodes with different areas (especially width sizes), it is possible to generate a significantly non-uniform electric field when a voltage is applied, and the particles have a smaller area (the electrode on the side where the electric field is stronger). ) Positive dielectrophoresis towards. The area ratio between the unevenly-distributing electrode and the capturing electrode and the respective counter electrode can be appropriately selected in consideration of the migration speed of particles to be captured and other particles. For example, the area ratio is desirably a ratio of 1: 4 to 1: 5 so that a non-uniform electric field in which particles are likely to migrate is generated, but a size ratio other than the above may be used to adjust the migration speed and the like. Good.

また、前記偏在用電極と前記捕捉用電極とをセットで一組とした場合、流路中に複数組の電極を配置することができる。このように構成することで、さらなる分離精度の向上を図ることができる。   Further, when the unevenly-distributing electrode and the capturing electrode are combined into a set, a plurality of sets of electrodes can be arranged in the flow path. By configuring in this way, it is possible to further improve the separation accuracy.

対向する電極間の距離は、粒子の種類に応じて適宜調整することができる。なお、対向する電極間の距離は、粒子に対してあまり広すぎると充分な電界強度の不均一電界を形成することができず、また、狭すぎると粒子を偏在又は捕捉し難くなる場合がある。特に限定されるものではないが、例えば、粒子が血球細胞や微生物の場合、1μm以上500μm以下とすることが好ましく、10μm以上300μm以下とすることがより好ましく、100μm以上200μm以下とすることが特に好ましい。   The distance between the opposing electrodes can be adjusted as appropriate according to the type of particles. If the distance between the opposing electrodes is too large for the particles, a non-uniform electric field with sufficient electric field strength cannot be formed, and if too small, the particles may be unevenly distributed or trapped. . Although not particularly limited, for example, when the particles are blood cells or microorganisms, it is preferably 1 μm or more and 500 μm or less, more preferably 10 μm or more and 300 μm or less, and particularly preferably 100 μm or more and 200 μm or less. preferable.

前記偏在用電極部と前記捕捉用電極部との距離は、液の流速や液中に含まれる粒子、特に捕捉対象となる粒子等を考慮して、適宜調整することができる。なお、該距離が長すぎると偏在させたことによる効果が小さくなる場合があり、また、該距離が短かすぎると同平面上にある電極間で不均一な電界が発生するため偏在させた側でそのまま粒子が補足される場合がある。特に限定されるものではないが、例えば、粒子が血球細胞や微生物の場合、通常は200μm以上2000μm以下とすることができ、好ましくは500μm以上1000μm以下である。   The distance between the unevenly-distributing electrode part and the capturing electrode part can be appropriately adjusted in consideration of the flow rate of the liquid and the particles contained in the liquid, particularly the particles to be captured. If the distance is too long, the effect of uneven distribution may be reduced, and if the distance is too short, a non-uniform electric field is generated between the electrodes on the same plane, so that the unevenly distributed side In some cases, particles may be supplemented as they are. Although not particularly limited, for example, when the particle is a blood cell or a microorganism, it can be usually 200 μm or more and 2000 μm or less, and preferably 500 μm or more and 1000 μm or less.

電極の材料としては、通常電極として用いられている材料ならば特に限定されることなく用いることができ、例えばステンレス鋼、銅又はアルミニウム等を挙げることができる。   As a material of the electrode, any material that is usually used as an electrode can be used without particular limitation. Examples thereof include stainless steel, copper, and aluminum.

電極は、例えば、ガラス、プラスチック、石英又はシリコン等の材質からなる流路に、公知の微細加工技術を用いて設けることができる。   The electrode can be provided in a flow path made of a material such as glass, plastic, quartz, or silicon using a known fine processing technique.

電極には、有機薄膜等をコーティングしても差し支えない。   The electrode may be coated with an organic thin film or the like.

前記電極に印加される周波数と電圧は、捕捉対象となる粒子やその他の粒子、液体の媒体等を考慮して、分離精度が最適となるように適宜選択することができ、前記偏在用電極部と前記捕捉用電極部とで異なっていてもよい。通常は、事前検討を行い、最適に選択された単一の周波数の交流電圧を電極に付与する。また、捕捉対象が細胞や微生物の場合、周波数は100kHzから6.5MHzが好ましい。なお、粒子が受ける誘導泳動力は液体のpHや導電率や電圧の周波数等の影響を受けるため、これらを考慮して分離条件を選択することが望ましい。また、分離対象とする粒子にかかる誘電泳動力を周波数により正負に分けることができるならば、例えば捕捉対象となる粒子を正、その他の粒子を負とすれば、捕捉対象となる粒子は遅れて流路を通過することになり、より分離精度を向上させることができる。しかし、例えば血球細胞と微生物等、粒子間に誘電泳動力の差がない場合にあっては、ある血球細胞には正の誘電泳動力を作用させ、他の微生物には負の誘電泳動力を作用させるというようなことはできず、各粒子の種類毎に誘電泳動力の正負の振り分けを一般化することができない。したがって、このような場合に、本発明は特に有効である。   The frequency and voltage applied to the electrode can be appropriately selected so that the separation accuracy is optimal in consideration of particles to be captured, other particles, liquid medium, and the like. And the capturing electrode portion may be different. Usually, a preliminary examination is performed, and an AC voltage having a single frequency selected optimally is applied to the electrodes. In addition, when the capture target is a cell or a microorganism, the frequency is preferably 100 kHz to 6.5 MHz. The induced electrophoretic force received by the particles is affected by the pH, conductivity, voltage frequency, etc. of the liquid, and therefore it is desirable to select the separation conditions in consideration of these. If the dielectrophoretic force applied to the particles to be separated can be divided into positive and negative depending on the frequency, for example, if the particles to be captured are positive and the other particles are negative, the particles to be captured are delayed. It will pass through the flow path, and the separation accuracy can be further improved. However, if there is no difference in dielectrophoretic force between particles, such as blood cells and microorganisms, a positive dielectrophoretic force is applied to certain blood cells and a negative dielectrophoretic force is applied to other microorganisms. It cannot be applied, and the positive / negative distribution of the dielectrophoretic force cannot be generalized for each type of particle. Therefore, the present invention is particularly effective in such a case.

また、偏在用電極部は、電源を一定時間ごとに入切することで、偏在させた粒子を流路下流に流すこともできる。偏在用電極部の電源を一定時間毎に切ることで、偏在部に引き寄せられた捕捉対象となる粒子を下流の捕捉用電極部に流すことができ、分離精度を向上させることができる。なお、電源の入切を行うか、また、その時間等の選択は、分離条件が最適となるように適宜行うことができる。   Further, the unevenly-distributed electrode section can also flow the unevenly distributed particles downstream of the flow path by turning the power supply on and off at regular intervals. By turning off the power supply of the unevenly-distributed electrode part at regular intervals, particles to be captured that are attracted to the unevenly distributed part can be flowed to the downstream capture electrode part, and the separation accuracy can be improved. It should be noted that whether the power is turned on or off, and the time and the like can be appropriately selected so that the separation conditions are optimal.

(流路)
前記偏在用電極部と前記捕捉用電極部を用いて形成させた不均一電界内に、分離すべき粒子を含む液体、例えば2種以上の粒子が溶解若しくは懸濁している液体を流路に流して、捕捉対象となる粒子を捕捉して分離する。流路には少なくとも前記偏在用電極と前記捕捉用電極が設けられている。流路幅は、特に限定されるものではないが、上述のように少なくとも前記各電極部が配置されている場所は、対向する電極間の距離に相当することになる。
(Flow path)
A liquid containing particles to be separated, for example, a liquid in which two or more kinds of particles are dissolved or suspended in a non-uniform electric field formed by using the unevenly distributed electrode part and the capturing electrode part is allowed to flow through the flow path. Then, the particles to be captured are captured and separated. At least the unevenly distributed electrode and the capturing electrode are provided in the flow path. The channel width is not particularly limited, but at least the place where each of the electrode portions is arranged as described above corresponds to the distance between the electrodes facing each other.

流路の形状は、粒子を含む液体を流動させられる形状であれば、直線状、円環形などいかなる形状でもよい。流路の材料は、ガラス、石英、プラスチック又はシリコンなどの一般的に流路形成に使われる材料であればいずれを用いてもよく、非導電性の材料が望ましい。流動作用を発生させる手段はシリンジポンプや電気浸透流ポンプなど、一般的に用いられている駆動装置であればいずれを用いても良い。   The shape of the flow path may be any shape such as a linear shape or an annular shape as long as the liquid containing the particles can flow. As the material of the flow path, any material that is generally used for forming the flow path, such as glass, quartz, plastic, or silicon, may be used, and a non-conductive material is desirable. As a means for generating the fluid action, any commonly used drive device such as a syringe pump or an electroosmotic flow pump may be used.

また、流路には、粒子を含む液体を注入又は回収する部分を設けることができる。液体の回収槽は、導入する液体量や粒子の性質に応じて適宜選択でき、一般的に容器として用いられているものであれば、いずれを用いてもよい。   In addition, the flow path can be provided with a portion for injecting or collecting a liquid containing particles. The liquid recovery tank can be appropriately selected according to the amount of liquid to be introduced and the properties of the particles, and any liquid recovery tank may be used as long as it is generally used as a container.

また、上述した本発明に係る粒子の分離方法を好適に実施可能な装置について、以下に説明する。   An apparatus capable of suitably implementing the above-described particle separation method according to the present invention will be described below.

本発明に係る粒子の分離装置は、
液体中に含まれる少なくとも二種類の粒子を誘電泳動させ、誘電特性の差を利用して分離する装置であって、
該装置は、
前記液体を流す流路と、
前記流路中に流動作用を発生させる手段と、
前記流路中に設置され、第一の不均一電界を発生し、前記粒子を偏在させる偏在用電極と、
前記偏在用電極の下流であって前記流路を挟んで前記粒子を偏在させる側の対向側に位置し、第二の不均一電界を発生し、捕捉対象の粒子を捕捉する捕捉用電極と、
を有することを特徴とする。
The particle separation apparatus according to the present invention comprises:
An apparatus for dielectrophoretic migration of at least two types of particles contained in a liquid and separating them using a difference in dielectric properties,
The device
A flow path for flowing the liquid;
Means for generating a flow action in the flow path;
An unevenly distributed electrode that is installed in the flow path, generates a first non-uniform electric field, and unevenly distributes the particles;
A capturing electrode that is located downstream of the uneven distribution electrode and on the opposite side of the side where the particles are unevenly distributed across the flow path, generates a second non-uniform electric field, and captures the particles to be captured;
It is characterized by having.

本発明に係る粒子の分離装置を用いて、液体中に含まれる粒子を有効に分離することができる。特に、粒子間に誘電泳動力の差がない場合でも有効に分離することができる。   Using the particle separation apparatus according to the present invention, particles contained in a liquid can be effectively separated. In particular, even when there is no difference in dielectrophoretic force between particles, separation can be performed effectively.

捕捉対象となる粒子とその他の粒子の組み合わせとしては、特に限定されるものではないが、例えば動物細胞と微生物、特に血球細胞と病原細菌が挙げられる。その際の誘電泳動の条件として、周波数は100kHzから6.5MHz、電圧は10Vpp以上、溶媒の導電率は0から0.13[S/m]で行うことが望ましいが、細胞の種類や菌種に応じて前記以外の条件を用いても良い。   The combination of particles to be captured and other particles is not particularly limited, and examples thereof include animal cells and microorganisms, particularly blood cells and pathogenic bacteria. As conditions for the dielectrophoresis, the frequency is preferably 100 kHz to 6.5 MHz, the voltage is 10 Vpp or more, and the solvent conductivity is preferably 0 to 0.13 [S / m]. Depending on the conditions, conditions other than those described above may be used.

また、本発明に係る粒子の分離装置は、上述のように、前記偏在用電極と前記捕捉用電極のセットを流路中に複数組配置することができる。例として、そのセットを4つとした場合の装置構成を図11に示す。   Moreover, as described above, the particle separation apparatus according to the present invention can arrange a plurality of sets of the unevenly-distributing electrode and the capturing electrode in the flow path. As an example, FIG. 11 shows an apparatus configuration when the number of sets is four.

偏在用電極部用の配線31が各偏在用電極部を構成する電極となり、捕捉用電極部用の配線32が各捕捉用電極部を構成する電極となる。図11に示した例では、各偏在用電極部は同一の電源で管理されることになる。しかし、これに限定されるものではなく、各偏在用電極部は別個に管理することも可能である。しかし、装置の構成上、各偏在用電極部は一つの電源で一括管理されることが好ましい。捕捉用電極部も同様である。   The wiring 31 for the unevenly distributed electrode part becomes an electrode constituting each unevenly distributed electrode part, and the wiring 32 for the capturing electrode part becomes an electrode constituting each capturing electrode part. In the example shown in FIG. 11, the unevenly distributed electrode portions are managed by the same power source. However, the present invention is not limited to this, and each unevenly-distributed electrode portion can be managed separately. However, in terms of the configuration of the apparatus, it is preferable that each unevenly distributed electrode portion is collectively managed by one power source. The same applies to the capturing electrode section.

流路33の幅や高さは、分離対象とする粒子や液体に応じて適当に調整することができる。また、電極が上下壁面に配置されているか、側壁に配置されているかは、装置の設置方法や装置構成の捉え方によって変わるものであり、特に限定されるものではない。34は液体の流れる方向を示す。   The width and height of the flow path 33 can be appropriately adjusted according to the particles and liquid to be separated. In addition, whether the electrodes are arranged on the upper and lower wall surfaces or the side walls varies depending on the method of installing the device and how to grasp the device configuration, and is not particularly limited. Reference numeral 34 denotes the direction in which the liquid flows.

また、本発明に係る分離装置は、上述の材料を用いて、例えばスパッタリング法やフォトリソフラフィ法等の従来技術を用いて作製することができる。   In addition, the separation apparatus according to the present invention can be manufactured using the above-described materials, for example, using a conventional technique such as a sputtering method or a photolithographic method.

以下に本発明の実施形態について例を挙げてより詳細に説明する。しかし、本発明は以下の実施形態に限定されるものではない。   Hereinafter, embodiments of the present invention will be described in more detail with examples. However, the present invention is not limited to the following embodiments.

(実施形態1)
実施形態1における本発明に係る装置の構成の一例を図1に模式的に示す。当該装置は流れを発生させるシリンジポンプ1、粒子の分離を行う流路2、粒子を回収する回収槽3、誘電泳動を行うための周波数と電圧を印加する電源4から構成されている。
(Embodiment 1)
An example of the configuration of the apparatus according to the present invention in Embodiment 1 is schematically shown in FIG. The apparatus includes a syringe pump 1 that generates a flow, a flow path 2 that separates particles, a collection tank 3 that collects particles, and a power source 4 that applies a frequency and voltage for performing dielectrophoresis.

また、流路2の上面から見た内部を図2に模式的に示す。ホウケイ酸ガラス基板にエッチングして作製された流路は液体の流入口5と流出口6を有している。また、流路の側面にサイズの異なる孔をあけ、誘電泳動用の白金電極8、9、10、11がはめ込まれている。そして、上面をガラス基板で、流路の両端は側板12によって塞がれている。なお、前記偏在用電極部は偏在用電極(8)とその対向電極(9)からなり、前記捕捉用電極部は捕捉用電極(10)とその対向電極(11)からなる。図2に示すように、偏在用電極(8)は対向電極(9)よりも電極の面積が小さく、また、同様に、捕捉用電極(10)はその対向電極(11)よりも電極の面積が小さい。なお、粒子を含む液体は流入口5から流出口6へと流れ、流入口5に近い方が上流となる。電源4には、偏在用電極部及び捕捉用電極部に独立に電源供給できる制御系を有しており、例えば、図2に示すように、偏在用電極部への電源供給を行う制御系と、捕捉用電極部への電源供給を行う制御系が独立しており、それぞれ独立した周波数と電圧を印加する電源部15,17を有し、偏在用電極部への電源供給を行う制御系では、所定の間隔で電源の入切を行う制御回路16を有している。   Moreover, the inside seen from the upper surface of the flow path 2 is schematically shown in FIG. The flow path produced by etching the borosilicate glass substrate has a liquid inlet 5 and an outlet 6. In addition, holes of different sizes are formed in the side surfaces of the flow path, and platinum electrodes 8, 9, 10, and 11 for dielectrophoresis are fitted. The upper surface is a glass substrate, and both ends of the flow path are closed by side plates 12. The uneven electrode portion is composed of an uneven electrode (8) and its counter electrode (9), and the capturing electrode portion is composed of a capturing electrode (10) and its counter electrode (11). As shown in FIG. 2, the unevenly-distributed electrode (8) has a smaller electrode area than the counter electrode (9), and similarly, the capture electrode (10) has a smaller electrode area than the counter electrode (11). Is small. Note that the liquid containing particles flows from the inlet 5 to the outlet 6, and the one closer to the inlet 5 is upstream. The power supply 4 has a control system that can supply power to the unevenly distributed electrode part and the capturing electrode part independently. For example, as shown in FIG. 2, a control system that supplies power to the unevenly distributed electrode part; The control system that supplies power to the capturing electrode unit is independent, and has power supply units 15 and 17 that apply independent frequencies and voltages, respectively, and that supplies power to the unevenly distributed electrode unit. And a control circuit 16 for turning on and off the power at predetermined intervals.

上記の構成により、偏在用電極8とその対向電極9では電極面積が異なるため、電圧と周波数を印加すると不均一電界が生じる。したがって、偏在用電極8と対向電極9からなる偏在用電極部に粒子が流れてくると、粒子は偏在用電極8に向かって正の誘電泳動を行う。この粒子の正の誘電泳動と液体の流動により、粒子を偏在部13に偏在させることができる。特に、誘電泳動力が弱い粒子(その他の粒子)を下流に設けられる捕捉用電極10から遠ざけることにより、捕捉用電極10でその他の粒子が捕捉されないようにすることができる。また、この偏在用電極部は電源を一定時間ごとに入切することで、偏在させた粒子を流路下流に流すことができる。   With the above configuration, the unevenly distributed electrode 8 and the counter electrode 9 have different electrode areas, and therefore, when a voltage and a frequency are applied, a non-uniform electric field is generated. Therefore, when particles flow into the unevenly-distributed electrode portion composed of the unevenly-distributed electrode 8 and the counter electrode 9, the particles perform positive dielectrophoresis toward the unevenly-distributed electrode 8. Due to the positive dielectrophoresis of the particles and the flow of the liquid, the particles can be unevenly distributed in the unevenly distributed portion 13. In particular, it is possible to prevent other particles from being captured by the capturing electrode 10 by moving particles (other particles) having a weak dielectrophoretic force away from the capturing electrode 10 provided downstream. In addition, the unevenly distributed electrode portion can flow the unevenly distributed particles downstream of the flow path by turning the power supply on and off at regular intervals.

捕捉用電極10とその対向電極11においても同様に電極面積が異なるため、不均一電界が生じ、粒子は電界が強い捕捉用電極10に向かって正の誘電泳動を行う。粒子を偏在部13に偏在させてから下流の捕捉用電極部に流すことにより、偏在部13とは流路を挟んで反対側に位置する捕捉部14には、誘電泳動力の大きい粒子(捕捉対象となる粒子)から優先的に移動する。そして、誘電泳動力の小さい粒子(その他の粒子)は、捕捉部14に捕捉されずに、あるいは誘電泳動により捕捉部14に引き寄せられても捕捉される前に、流動作用によって下流に流される。すなわち、粒子を偏在させてから捕捉用電極部に流すことにより、粒子の誘電泳動力の差を有効に利用することができ、分離精度を向上させることができる。なお、捕捉用電極部では電圧と周波数を印加しつづける。   Similarly, since the electrode areas of the capturing electrode 10 and the counter electrode 11 are different, a non-uniform electric field is generated, and the particles undergo positive dielectrophoresis toward the capturing electrode 10 having a strong electric field. By causing the particles to be unevenly distributed in the unevenly distributed portion 13 and then flowing to the downstream capturing electrode portion, the capturing portion 14 located on the opposite side of the unevenly distributed portion 13 has a particle having a large dielectrophoretic force (capturing). It moves preferentially from the target particle). Then, particles having low dielectrophoretic force (other particles) are not captured by the capturing unit 14 or are flowed downstream by a fluid action before being captured even if they are attracted to the capturing unit 14 by dielectrophoresis. That is, by causing the particles to be unevenly distributed and then flowing the particles to the capturing electrode portion, the difference in the dielectrophoretic force of the particles can be used effectively, and the separation accuracy can be improved. Note that voltage and frequency are continuously applied to the capturing electrode section.

粒子を含む液体(例えば電解質溶液)は流入口5から供給される。捕捉部14で捕捉されなかった粒子を含む液体は、流出口6から回収槽3へと回収される。回収槽3は、流動させる液体量に応じたサイズの容器を使用する。   A liquid containing particles (for example, an electrolyte solution) is supplied from the inlet 5. The liquid containing the particles not captured by the capturing unit 14 is recovered from the outlet 6 to the recovery tank 3. The collection tank 3 uses a container having a size corresponding to the amount of liquid to be fluidized.

例えば細菌とヒト血球細胞を分離する装置の場合、限定されるものではないが、流路の幅は例えば100μm、高さは例えば100μmとすることができる。また、流路の側面にはめこまれた電極A(8)及びC(10)の距離は500μm程度、高さ(縦幅)は例えば100μm、幅(横幅)は例えば60μmとすることができる。そして、電極B(9)及びD(11)の高さは例えば100μm、幅は例えば280μmとすることができる。以上は例示であり、捕捉対象となる粒子の誘電特性に応じて最も適当な流路幅と電極幅を選択するのが望ましい。電圧は10Vppから50Vpp、周波数は600kHzから6.5MHzまでの範囲を印加できる装置であることが望ましい。また、液体の流速は適宜設定することができ、例えば、0.2〜1μL/sとすることができる。なお、流路の高さは適宜設定することができ、高くすることにより処理できる液体の量を多くすることができる。また、説明するために便宜上、流路の側壁に電極を設けた装置の構成について説明したが、特に限定されるものではなく、例えば電極を上下壁面に設ける構成としてもよい。   For example, in the case of an apparatus for separating bacteria and human blood cells, the width of the flow path can be set to 100 μm and the height can be set to 100 μm, for example. The distance between the electrodes A (8) and C (10) embedded in the side surface of the flow path can be about 500 μm, the height (vertical width) can be set to 100 μm, and the width (horizontal width) can be set to 60 μm, for example. The heights of the electrodes B (9) and D (11) can be set to 100 μm, for example, and the width can be set to 280 μm, for example. The above is an example, and it is desirable to select the most appropriate channel width and electrode width according to the dielectric properties of the particles to be captured. It is desirable that the apparatus can apply a voltage range of 10 Vpp to 50 Vpp and a frequency range of 600 kHz to 6.5 MHz. Moreover, the flow rate of a liquid can be set suitably, for example, can be 0.2-1 microliter / s. Note that the height of the flow path can be set as appropriate, and the amount of liquid that can be processed can be increased by increasing the height. For convenience of explanation, the configuration of the apparatus in which the electrode is provided on the side wall of the flow path has been described. However, the configuration is not particularly limited, and for example, the electrode may be provided on the upper and lower wall surfaces.

(実施形態2)
実施形態2の装置構成は、上記の実施形態1において捕捉用電極部の構成のみが異なっており、図1と図3に模式的に示される。また、流路2を上面から見た内部を図3に模式的に示す。ホウケイ酸ガラス基板にエッチングして作製された流路は液体の流入口5と流出口6を有している。流路の側面にサイズの異なる孔をあけ、誘電泳動用の白金電極8、9、10、11をはめ込んで流路を作製する。流路の上面はガラス基板によって、両端は側板12によって塞がれている。捕捉用電極10は、図3に図示されるように、複数の電極から構成されており、その複数の電極の総面積は対向電極11に比べて小さい。
(Embodiment 2)
The apparatus configuration of the second embodiment is different from the first embodiment only in the configuration of the capturing electrode unit, and is schematically shown in FIGS. 1 and 3. FIG. 3 schematically shows the inside of the flow path 2 as viewed from above. The flow path produced by etching the borosilicate glass substrate has a liquid inlet 5 and an outlet 6. Holes having different sizes are formed on the side surfaces of the flow channel, and platinum electrodes 8, 9, 10, and 11 for dielectrophoresis are inserted to produce the flow channel. The upper surface of the flow path is closed by a glass substrate, and both ends are closed by side plates 12. As shown in FIG. 3, the capturing electrode 10 is composed of a plurality of electrodes, and the total area of the plurality of electrodes is smaller than that of the counter electrode 11.

以上の構成では、複数配置された捕捉用電極10では、それぞれにおいて対向電極11との間に不均一電界を成し、流動している粒子は最も近距離にある捕捉用電極10に向かって正の誘電泳動を行う。この構成においても、捕捉用電極部では電圧と周波数を印加しつづけることで、各捕捉用電極10表面及びその近傍の捕捉部14に粒子を捕捉する。実施形態1と同様、粒子を含む電解質溶液は流入口5から供給され、捕捉部14で保持されなかった粒子を含む液体は、流出口6から回収槽3へと回収される。回収槽は、流動させる液体量に応じたサイズの容器を使用する。   In the above configuration, in the plurality of capture electrodes 10 arranged, a non-uniform electric field is formed between each of the capture electrodes 10 and the counter electrode 11, and the flowing particles are directed toward the capture electrode 10 at the shortest distance. Perform dielectrophoresis. Also in this configuration, particles are captured on the surface of each capturing electrode 10 and the capturing section 14 in the vicinity thereof by continuously applying a voltage and a frequency in the capturing electrode section. As in the first embodiment, the electrolyte solution containing the particles is supplied from the inflow port 5, and the liquid containing the particles not held by the capturing unit 14 is recovered from the outflow port 6 to the recovery tank 3. The collection tank uses a container having a size corresponding to the amount of liquid to be fluidized.

例えば細菌とヒト血球細胞を分離する装置の場合、流路の幅は100μm、高さは100μmとすることができる。例えば、流路の側面にはめこまれた偏在用電極8及び捕捉用電極10の幅は40μmであり、対向電極9の幅は180μm、対向電極11の幅は440μmである。捕捉用電極10は少なくとも2つ(図3では5つ)配置されており、隣り合う捕捉用電極10間の距離は例えば40μmである。偏在用電極8及び対向電極9、捕捉用電極10及び対向電極11とでそれぞれ対向型電極を成す。なお、各電極の縦幅は流路の高さに合わせることが望ましい。以上は例示であり、分離対象となる粒子の誘電特性に応じて最も適当な流路幅や電極幅、流速、周波数、電圧、媒体等を選択するのが望ましい。電圧は少なくとも10Vppから50Vpp、周波数は少なくとも600kHzから6.5MHzまでの範囲を印加できる装置であることが望ましい。   For example, in the case of an apparatus for separating bacteria and human blood cells, the width of the flow path can be 100 μm and the height can be 100 μm. For example, the width of the unevenly distributed electrode 8 and the capturing electrode 10 embedded in the side surface of the flow path is 40 μm, the width of the counter electrode 9 is 180 μm, and the width of the counter electrode 11 is 440 μm. At least two capture electrodes 10 (five in FIG. 3) are arranged, and the distance between adjacent capture electrodes 10 is, for example, 40 μm. The uneven electrode 8 and the counter electrode 9, the capturing electrode 10 and the counter electrode 11 form a counter electrode. The vertical width of each electrode is preferably matched to the height of the flow path. The above is an example, and it is desirable to select the most appropriate channel width, electrode width, flow velocity, frequency, voltage, medium, etc. according to the dielectric properties of the particles to be separated. It is desirable that the apparatus can apply a voltage of at least 10 Vpp to 50 Vpp and a frequency of at least 600 kHz to 6.5 MHz.

(実施形態3)
図4は本発明の実施形態3を説明するための装置構成を模式的に示したものである。当該装置は流れを発生させ、粒子を回収する回収槽付シリンジポンプ18、粒子の分離を行う流路19、誘電泳動を行うための周波数と電圧を印加する電源20から構成されている。
(Embodiment 3)
FIG. 4 schematically shows a device configuration for explaining the third embodiment of the present invention. The apparatus includes a syringe pump 18 with a recovery tank that generates a flow and collects particles, a flow path 19 that separates particles, and a power source 20 that applies a frequency and voltage for performing dielectrophoresis.

また、図5は流路19の上面から見た内部を模式的に示したものである。ホウケイ酸ガラス基板にエッチングして作製された流路は液体の流出入口21を有している。流路の側面にサイズの異なる孔をあけ、誘電泳動用の白金電極8、9、10、11をはめ込み、上面をガラス基板で塞ぐことで流路を作製する。また、各電極の縦幅は流路の高さと同じにしている。   FIG. 5 schematically shows the inside of the flow path 19 as viewed from the upper surface. The flow path produced by etching the borosilicate glass substrate has a liquid outflow port 21. Holes having different sizes are formed on the side surfaces of the flow channel, the platinum electrodes 8, 9, 10, and 11 for dielectrophoresis are fitted, and the upper surface is closed with a glass substrate to produce the flow channel. The vertical width of each electrode is the same as the height of the flow path.

以上の構成により、偏在用電極8と対向電極9からなる偏在用電極部、および捕捉用電極10と対向電極11からなる捕捉用電極部では電極幅が異なるため、各電極間では不均一電界が生じる。まず、粒子は偏在用電極8に向かって正の誘電泳動を行う。正の誘電泳動と液体の流動により、粒子を偏在部13に偏在させ、電解質溶液中の粒子で誘電泳動力が弱い粒子を流路の内壁7a側に引き寄せておく。また、偏在用電極部では電源を一定時間ごとに入切することで、偏在させた粒子を流路下流に流す。補足用電極部においても同様に不均一電界が生じ、粒子は捕捉用電極10に向かって正の誘電泳動を行う。捕捉用電極部では電圧と周波数を印加しつづけることで、捕捉用電極10表面及び近傍の捕捉部14に粒子を捕捉する。また、粒子を含む液体は流出入口21から供給され、流路内を複数回周回する。周回後、捕捉部14で保持されなかった粒子を含む液体は、流出入口21から回収槽付ポンプ18により回収される。回収槽は、流動させる液体量に応じたサイズの容器を使用する。   With the above configuration, since the electrode widths of the unevenly-distributed electrode portion including the unevenly-distributed electrode 8 and the counter electrode 9 and the trapping electrode portion including the trapping electrode 10 and the counter electrode 11 are different, a non-uniform electric field is generated between the electrodes. Arise. First, the particles perform positive dielectrophoresis toward the unevenly distributed electrode 8. The particles are unevenly distributed in the uneven distribution portion 13 by the positive dielectrophoresis and the liquid flow, and the particles having a weak dielectrophoretic force in the electrolyte solution are attracted toward the inner wall 7a side of the flow path. Further, in the unevenly distributed electrode section, the power supply is turned on and off at regular intervals to flow the unevenly distributed particles downstream of the flow path. Similarly, a non-uniform electric field is generated in the supplemental electrode section, and the particles undergo positive dielectrophoresis toward the capturing electrode 10. By continuously applying voltage and frequency at the capturing electrode section, particles are captured on the surface of the capturing electrode 10 and the capturing section 14 in the vicinity. The liquid containing particles is supplied from the outflow inlet 21 and circulates in the flow path a plurality of times. After the lap, the liquid containing the particles that are not held by the capturing unit 14 is collected from the outflow port 21 by the pump 18 with a collection tank. The collection tank uses a container having a size corresponding to the amount of liquid to be fluidized.

例えば細菌とヒト血球細胞を分離する装置の場合、流路の幅は例えば100μm、高さは例えば100μmとすることができる。流路の側面にはめこまれた偏在用電極8及び捕捉用電極10の幅は例えば40μmであり、対向電極9、11の幅は例えば180μmである。分離対象とする粒子の誘電特性に応じて最も適当な流路幅や電極幅等を選択するのが望ましい。電圧は10Vppから50Vpp、周波数は600kHzから6.5MHzまでの範囲を印加できる装置であることが望ましい。   For example, in the case of an apparatus for separating bacteria and human blood cells, the width of the flow path can be set to 100 μm, for example, and the height can be set to 100 μm, for example. The width of the unevenly distributed electrode 8 and the capturing electrode 10 embedded in the side surface of the flow path is, for example, 40 μm, and the width of the counter electrodes 9, 11 is, for example, 180 μm. It is desirable to select the most appropriate channel width, electrode width, etc. according to the dielectric properties of the particles to be separated. It is desirable that the apparatus can apply a voltage range of 10 Vpp to 50 Vpp and a frequency range of 600 kHz to 6.5 MHz.

以下の本発明の実施例について記載する。なお、本発明は実施例に限定されるものではない。   The following examples of the invention are described. In addition, this invention is not limited to an Example.

<実施例1>
実施例1では、上述の実施形態1に記載した分離装置と、ヒト白血球細胞K562と大腸菌Escheria Coli(E.coli)が混在する液体とを用い、血球細胞を電極で捕捉し、大腸菌(細菌)を液体とともに回収した。
<Example 1>
In Example 1, using the separation apparatus described in Embodiment 1 above and a liquid in which human white blood cells K562 and Escherichia coli Eschera coli (E. coli) are mixed, blood cells are captured with an electrode, and Escherichia coli (bacteria) is obtained. Was collected with the liquid.

(実験プロセス)
図6(a),(b)及び図7は、偏在用電極部と捕捉用電極部を1組ずつ流路に配置し、誘電泳動と流動作用によって血球細胞(K562)と大腸菌を偏在、捕捉するプロセスを表している。
(Experimental process)
6 (a), (b), and FIG. 7 show that the ubiquitous electrode part and the capture electrode part are arranged in the flow path one by one, and the blood cells (K562) and E. coli are unevenly distributed and captured by dielectrophoresis and flow action. Represents the process to do.

図6(a)は、流路中の粒子を偏在用電極部で偏在させた状態を表している。偏在用電極部により形成される不均一電界によって、血球細胞(K562)A及び大腸菌Bが偏在部13に集まる。血球細胞(K562)A及び大腸菌Bは誘電泳動によって、捕捉部14とは流路を挟んで反対側にある偏在部13に偏在する。   FIG. 6A shows a state where particles in the flow path are unevenly distributed by the unevenly distributed electrode portion. Blood cells (K562) A and E. coli B gather in the unevenly distributed portion 13 by the non-uniform electric field formed by the unevenly distributed electrode portion. The blood cell (K562) A and E. coli B are unevenly distributed in the unevenly distributed portion 13 on the opposite side of the capture portion 14 across the flow path by dielectrophoresis.

図6(b)は、偏在部13に偏在した粒子が流動方向fへ移動して捕捉用電極部に到達した状態を表している。偏在用電極部の下流側に位置する捕捉用電極10と対向電極11からなる補足用電極部においても不均一電界により粒子の誘電泳動が起こり、誘電泳動力が大きい血球細胞Aは捕捉部14で捕捉される。一方、血球細胞Aより誘電泳動力が小さい大腸菌Bは、捕捉部14で捕捉される前に流動作用によって流され、捕捉されない。また、偏在用電極部は電源を一定時間ごとに入切することで、偏在させた粒子を電極付近から離し、流路下流に流す。一方、捕捉用電極部では電圧と周波数を印加しつづけることで、捕捉部14に粒子を捕捉する。   FIG. 6B shows a state where particles unevenly distributed in the unevenly distributed portion 13 move in the flow direction f and reach the capturing electrode portion. Also in the supplemental electrode part consisting of the capture electrode 10 and the counter electrode 11 located on the downstream side of the unevenly distributed electrode part, the particles undergo dielectrophoresis due to the non-uniform electric field, and blood cells A having a large dielectrophoretic force are captured by the capture part 14. Be captured. On the other hand, Escherichia coli B having a dielectrophoretic force smaller than that of the blood cell A is flowed by a flow action before being captured by the capturing unit 14 and is not captured. Further, the unevenly-distributed electrode portion turns on and off the power supply at regular intervals, thereby separating the unevenly distributed particles from the vicinity of the electrode and allowing the particles to flow downstream. On the other hand, particles are captured by the capturing unit 14 by continuously applying a voltage and a frequency at the capturing electrode unit.

(実験条件)
本実施例で用いた溶媒としては、9.58w/v%スクロース溶液にウシ胎児血清(Fetal Bovine Serum;FBS)を加えて導電率を0.056S/mとしたものを用いた。この溶媒に血球細胞(K562)を106個/ml、大腸菌を108個/mlとなるように添加し、粒子を含む液体を調製した。この液体を流速25μl/minで流路に流し、電圧80Vpp、周波数1MHzの条件で誘電泳動を行ったON:10sec OFF:2sec。
(Experimental conditions)
As the solvent used in this example, a 9.58 w / v% sucrose solution was added with fetal bovine serum (FBS) to make the conductivity 0.056 S / m. To this solvent, blood cells (K562) were added at 10 6 cells / ml and E. coli at 10 8 cells / ml to prepare a liquid containing particles. This liquid was passed through the flow path at a flow rate of 25 μl / min, and dielectrophoresis was performed under conditions of a voltage of 80 Vpp and a frequency of 1 MHz. ON: 10 sec OFF: 2 sec.

以上の条件において分離操作を行った結果、血球細胞Aが捕捉部14に捕捉され、大腸菌Bは液体中に浮遊し、血球細胞Aと大腸菌Bが分離された。流路に導入する前の液体を初期液、流路に導入かつ誘電泳動後の液体を回収液とし、初期液と回収液中に存在する血球細胞数を血球計算盤により、大腸菌数をコロニーカウント法によりそれぞれ計測した。初期液と回収液に存在する血球細胞および大腸菌の数から、血球細胞については電極への捕捉率を、大腸菌については回収液への回収率を求めた。その結果、血球細胞の捕捉率は86%、大腸菌の回収率は91%であった。すなわち、初期液に含まれる血球細胞のうち86%が除去され、大腸菌は91%回収された。   As a result of performing the separation operation under the above conditions, blood cell A was captured by capture unit 14, Escherichia coli B was suspended in the liquid, and blood cell A and E. coli B were separated. The liquid before introduction into the flow path is the initial liquid, the liquid after introduction into the flow path and the liquid after dielectrophoresis is the recovery liquid, and the number of blood cells present in the initial liquid and the recovery liquid is counted using a hemocytometer, and the number of E. coli is counted. Each was measured by the method. From the number of blood cells and E. coli present in the initial solution and the recovery solution, the capture rate to the electrode was determined for blood cells, and the recovery rate to the recovery solution was determined for E. coli. As a result, the blood cell capture rate was 86% and the E. coli recovery rate was 91%. That is, 86% of the blood cells contained in the initial solution was removed, and 91% of E. coli was recovered.

<実施例2>
実施形態1に記載の分離装置におけるポンプ、電源、回収槽と、図8に記載の流路を用いて、図7のプロセスにて血球細胞の捕捉、細菌の回収を行った。
<Example 2>
Using the pump, power source and recovery tank in the separation apparatus described in Embodiment 1, and the flow path described in FIG. 8, blood cells were captured and bacteria were recovered in the process of FIG.

(実験プロセス)
図7は、偏在用電極部と捕捉用電極部を2組配置し、誘電泳動と流動作用によって偏在部13に粒子を偏在させ、捕捉部14で粒子を捕捉するプロセスを表している。
(Experimental process)
FIG. 7 shows a process in which two sets of unevenly distributed electrode portions and capturing electrode portions are arranged, particles are unevenly distributed in the unevenly distributed portion 13 by dielectrophoresis and flow action, and particles are captured by the capturing portion 14.

電極形状に由来する不均一電界により、各電極において、偏在用電極8A及び8B、捕捉用電極10A及び10Bへの正の誘電泳動が起こる。電極8Aと9A及び電極8Bと9Bからなる各偏在用電極部は、実施例1と同様に電源を一定時間ごとに入切することで、偏在させた粒子を電極付近から離し、流路下流に流す。一方、電極10Aと11A及び電極10Bと11Bからなる各捕捉用電極部では電圧と周波数を印加しつづけることで、それぞれの捕捉部14に粒子(血球細胞)を捕捉する。偏在用電極部と捕捉用電極部の配置を繰り返すことにより、液体中の血球細胞Aが捕捉部14に捕捉され、大腸菌Bは溶液中に浮遊し、血球細胞Aと大腸菌Bが分離される。   Due to the non-uniform electric field derived from the electrode shape, positive dielectrophoresis of the unevenly distributed electrodes 8A and 8B and the capturing electrodes 10A and 10B occurs in each electrode. Each of the unevenly-distributed electrode portions composed of the electrodes 8A and 9A and the electrodes 8B and 9B is turned on and off at regular intervals in the same manner as in Example 1 to separate the unevenly-distributed particles from the vicinity of the electrodes and to the downstream of the flow path. Shed. On the other hand, by continuously applying a voltage and a frequency to each capturing electrode portion composed of the electrodes 10A and 11A and the electrodes 10B and 11B, particles (blood cells) are captured by the capturing portions 14 respectively. By repeating the arrangement of the unevenly distributed electrode part and the capturing electrode part, the blood cell A in the liquid is captured by the capturing part 14, E. coli B floats in the solution, and the blood cell A and E. coli B are separated.

(実験条件)
本実施例では実施例1と同様に、ヒト白血球細胞K562と大腸菌E.coliが混在する液体を用いた。溶媒としては9.58w/v%スクロース溶液にFBSを加えて導電率を0.056S/mとしたものを使用した。この溶媒中にK562細胞を106個/ml、微生物を108個/mlとなるように添加した。この粒子を含む液体を流速25μl/minで流路に流し、電圧80Vpp、周波数1MHzの条件で誘電泳動を行ったON:10sec OFF:2sec。
(Experimental conditions)
In this example, as in Example 1, human white blood cells K562 and E. coli E. coli. A liquid in which E. coli was mixed was used. As the solvent, a 9.58 w / v% sucrose solution with FBS added to make the conductivity 0.056 S / m was used. In this solvent, K562 cells were added at 10 6 cells / ml and microorganisms at 10 8 cells / ml. The liquid containing the particles was passed through the flow path at a flow rate of 25 μl / min, and dielectrophoresis was performed under the conditions of a voltage of 80 Vpp and a frequency of 1 MHz. ON: 10 sec OFF: 2 sec.

(実験結果)
以上の条件において、血球細胞(K562)Aが捕捉部14に捕捉され、大腸菌Bは溶液中に浮遊し、血球細胞Aと大腸菌Bが分離された。実施例1と同様の方法で血球細胞については捕捉率を、大腸菌については回収率を求めた結果、血球細胞の捕捉率は98%、大腸菌の回収率は91%であった。すなわち、初期液に含まれる血球細胞のうち98%が除去され、大腸菌は91%回収された。偏在用電極部と捕捉用電極部の配置数を増やすことにより血球細胞の捕捉率が上がるため、1組だけ配置した装置を使用した場合の実施例1よりも精製度が増すことが確認された。
(Experimental result)
Under the above conditions, blood cell (K562) A was captured by capture unit 14, E. coli B was suspended in the solution, and blood cell A and E. coli B were separated. As a result of obtaining the capture rate for blood cells and the recovery rate for E. coli by the same method as in Example 1, the capture rate for blood cells was 98%, and the recovery rate for E. coli was 91%. That is, 98% of the blood cells contained in the initial solution was removed, and 91% of E. coli was recovered. Increasing the number of unevenly arranged electrode portions and capturing electrode portions increases the capture rate of blood cells, so that it was confirmed that the degree of purification was higher than that in Example 1 when only one set of devices was used. .

<実施例3>
実施例1に記載の分離装置におけるポンプ、電源、回収槽と、図10に記載の流路を用いて、図9のプロセスにて細胞の捕捉、細菌の回収を行った。
<Example 3>
Using the pump, power source and recovery tank in the separation apparatus described in Example 1 and the flow path described in FIG. 10, cells were captured and bacteria were recovered in the process of FIG.

(実験プロセス)
図9は、偏在用電極部と捕捉用電極部を3組以上配置し、誘電泳動と流動作用によって偏在部13に粒子を偏在させ、捕捉部14で粒子を捕捉するプロセスを表している。本実施例では、偏在用電極部と捕捉用電極部の配置数は3つとした。
(Experimental process)
FIG. 9 shows a process in which three or more pairs of unevenly distributed electrode portions and capturing electrode portions are arranged, particles are unevenly distributed in the unevenly distributed portion 13 by dielectrophoresis and flow action, and the particles are captured by the capturing portion 14. In the present embodiment, the number of unevenly arranged electrode portions and capturing electrode portions is three.

図10において、電極8Aと電極9A、電極8Bと電極9B、電極8Cと電極9Cは偏在用電極部を、電極10Aと電極11A、電極10Bと電極11B、電極10Cと電極11Cは捕捉用電極部をそれぞれ構成している。   In FIG. 10, the electrodes 8A and 9A, the electrodes 8B and 9B, the electrodes 8C and 9C are unevenly distributed electrode portions, the electrodes 10A and 11A, the electrodes 10B and 11B, and the electrodes 10C and 11C are capturing electrode portions. Each is composed.

電極の形状に由来する不均一電界の誘電泳動によって、血球細胞A及び大腸菌Bが偏在部13に偏在する。流動作用と誘電泳動により、誘電泳動力が強い血球細胞Aは捕捉部14で捕捉され、それよりも誘電泳動力が弱い大腸菌Bは、捕捉部14で捕捉される前に流動作用によって流され、捕捉されない。   Blood cells A and E. coli B are unevenly distributed in the unevenly distributed portion 13 by dielectrophoresis of a non-uniform electric field derived from the shape of the electrode. Due to the fluid action and dielectrophoresis, blood cells A having a strong dielectrophoretic force are captured by the capturing unit 14, and E. coli B having a weaker dielectrophoretic force is caused to flow by the fluid action before being captured by the capturing unit 14. Not captured.

各偏在用電極部は実施例1と同様に電源を一定時間ごとに入切することで、偏在させた粒子を偏在部13から離し、流路下流に流す。一方、捕捉用電極部では電圧と周波数を印加しつづけることで、捕捉部14に粒子を捕捉する。   As in the first embodiment, each unevenly-distributed electrode portion turns on and off the power supply at regular intervals, thereby separating the unevenly distributed particles from the unevenly distributed portion 13 and allowing the particles to flow downstream. On the other hand, particles are captured by the capturing unit 14 by continuously applying a voltage and a frequency at the capturing electrode unit.

偏在用電極部と捕捉用電極部の配置を繰り返すことにより、血球細胞Aが捕捉部14に捕捉され、大腸菌Bは液体中に浮遊し、血球細胞Aと大腸菌Bが分離される。偏在用電極部と捕捉用電極部を複数組配置することにより、実施例1や実施例2よりも精製度が上がると考えられる。   By repeating the arrangement of the unevenly distributed electrode part and the capturing electrode part, the blood cell A is captured by the capturing part 14, E. coli B floats in the liquid, and the blood cell A and E. coli B are separated. By arranging a plurality of unevenly distributed electrode portions and capturing electrode portions, it is considered that the degree of purification is higher than in the first and second embodiments.

(実験条件)
本実施例では実施例1と同様に、ヒト白血球細胞K562と大腸菌E.coliが混在する懸濁液を用いた。溶媒としては9.58w/v%スクロース溶液にFBSを加えて導電率を0.056S/mとしたものを使用した。この溶媒中にK562細胞を106個/ml、大腸菌を108個/mlとなるように添加した。この液体を流速25μl/minで流路に流し、電圧80Vpp、周波数1MHzの条件で誘電泳動を行った。
(Experimental conditions)
In this example, as in Example 1, human white blood cells K562 and E. coli E. coli. A suspension mixed with E. coli was used. As the solvent, a 9.58 w / v% sucrose solution with FBS added to make the conductivity 0.056 S / m was used. In this solvent, K562 cells were added at 10 6 cells / ml and E. coli at 10 8 cells / ml. This liquid was allowed to flow through the flow path at a flow rate of 25 μl / min, and dielectrophoresis was performed under conditions of a voltage of 80 Vpp and a frequency of 1 MHz.

(実験結果)
以上の条件において、血球細胞Aが捕捉部14に捕捉され、大腸菌Bは液体中に浮遊し、血球細胞Aと大腸菌Bが分離された。実施例1と同様の方法で血球細胞ついては捕捉率を、大腸菌については回収率を求めた結果、血球細胞の捕捉率は99%、大腸菌の回収率は91%であった。すなわち、初期液に含まれる血球細胞のうち99%が除去され、大腸菌は91%回収された。配置する電極部を増やすことにより血球細胞の捕捉率が上がるため、偏在用電極部と捕捉用電極部を2組配置した装置を使用した実施例2よりも精製度が増す。実施例1乃至3の結果から、偏在用電極部と捕捉用電極部の配置数に応じて捕捉率が上昇している。したがって、これらの電極部の数が増えるほど精製度が上昇すると言える。
(Experimental result)
Under the above conditions, blood cell A was captured by capture unit 14, E. coli B was suspended in the liquid, and blood cell A and E. coli B were separated. As a result of obtaining the capture rate for blood cells and the recovery rate for E. coli by the same method as in Example 1, the capture rate for blood cells was 99%, and the recovery rate for E. coli was 91%. That is, 99% of the blood cells contained in the initial solution was removed, and 91% of E. coli was recovered. Since the capture rate of blood cells increases by increasing the number of electrode parts to be arranged, the degree of purification is increased as compared with Example 2 using an apparatus in which two sets of unevenly distributed electrode parts and capture electrode parts are arranged. From the results of Examples 1 to 3, the capture rate is increased according to the number of the unevenly distributed electrode portions and the capture electrode portions. Therefore, it can be said that the degree of purification increases as the number of these electrode portions increases.

本発明に係る装置構成の一例を示す概略図である。It is the schematic which shows an example of the apparatus structure which concerns on this invention. 本発明に係る分離装置における第一の実施形態を表す上面概略図である。It is the upper surface schematic diagram showing 1st embodiment in the separation apparatus concerning the present invention. 本発明に係る分離装置における第二の実施形態を表す上面概略図である。It is a top schematic diagram showing a 2nd embodiment in a separation device concerning the present invention. 本発明に係る装置構成の一例を表す概略図である。It is the schematic showing an example of the apparatus structure which concerns on this invention. 本発明に係る分離装置における第三の実施形態を表す上面概略図である。It is a top schematic diagram showing a 3rd embodiment in a separation device concerning the present invention. (a)実施例1で使用する分離装置で、偏在用電極部で粒子を偏在させた状態を示す概念図である。(b)(a)において粒子を偏在させた後、捕捉用電極部で粒子を捕捉した状態を示す概念図である。(A) In the separation apparatus used in Example 1, it is a conceptual diagram which shows the state in which the particle was unevenly distributed by the electrode part for uneven distribution. (B) It is a conceptual diagram which shows the state which caught the particle | grain with the electrode part for a capture | acquisition after unevenly distributing the particle | grains in (a). 流路中に偏在用電極部と捕捉用電極部を二組配置し、流路中の粒子を誘電泳動で偏在後、捕捉するプロセスを示す概念図である。It is a conceptual diagram which shows the process of arrange | positioning two sets of unevenly-distributed electrode parts and capture | acquisition electrode parts in a flow path, and capturing the particle | grains in a flow path after being unevenly distributed by dielectrophoresis. 流路中に偏在用電極部と捕捉用電極部を二組配置した構成の一例を示す流路の上面概略図である。It is the upper surface schematic of a flow path which shows an example of the structure which has arrange | positioned two sets of the electrode part for uneven distribution, and the electrode part for capture | acquisition in a flow path. 流路中に偏在用電極部と捕捉用電極部を少なくとも三組配置し、流路中の粒子を誘電泳動で偏在後、捕捉するプロセスを示す概念図である。It is a conceptual diagram which shows the process which arrange | positions the electrode part for uneven distribution and the electrode part for capture | acquisition in a flow path at least 3 sets, and captures the particle | grains in a flow path after being unevenly distributed by dielectrophoresis. 流路中に偏在用電極部と捕捉用電極部を三組配置した構成の一例を示す流路の上面概略図である。It is the upper surface schematic of a flow path which shows an example of the structure which has arrange | positioned three sets of the electrode part for uneven distribution, and the electrode part for capture | acquisition in a flow path. 本発明に係る分離装置における偏在用電極と捕捉用電極を構成する配線の例を示す概念図である。It is a conceptual diagram which shows the example of the wiring which comprises the electrode for uneven distribution and the electrode for capture | acquisition in the separation apparatus which concerns on this invention.

符号の説明Explanation of symbols

1 ポンプ
2 流路
3 回収槽
4 電源
5 流入口
6 流出口
7 ホウケイ酸ガラス基板
8 偏在用電極
9 対向電極
10 捕捉用電極
11 対向電極
12 側板
13 偏在部
14 捕捉部
15、17 電源部
16 制御装置
18 回収槽付ポンプ
19 流路
20 電源
21 流出入口
A 捕捉対象となる粒子(K562血球細胞)
B その他の粒子(大腸菌)
31 偏在用電極部用の配線
32 捕捉用電極部用の配線
33 流路
34 液体の流れる方向
DESCRIPTION OF SYMBOLS 1 Pump 2 Flow path 3 Recovery tank 4 Power supply 5 Inlet 6 Outlet 7 Borosilicate glass substrate 8 Uneven electrode 9 Counter electrode 10 Capture electrode 11 Counter electrode 12 Side plate 13 Uneven part 14 Capture part 15, 17 Power supply part 16 Control Apparatus 18 Pump with recovery tank 19 Flow path 20 Power supply 21 Outflow inlet A Particles to be captured (K562 blood cell)
B Other particles (E. coli)
31 Wiring for unevenly distributed electrode part 32 Wiring for capturing electrode part 33 Flow path 34 Flow direction of liquid

Claims (9)

流路中を流れる液体に含まれる少なくとも二種類の粒子を、電極で発生させた不均一電界により誘電泳動させ、誘電特性の差を利用して分離する方法であって、
第一の不均一電界を発生させる偏在用電極によって、前記粒子を偏在させてから下流に流す工程と、
前記偏在用電極の下流側であって前記流路を挟んで、前記粒子を偏在させた側の対向側に配置され、かつ第二の不均一電界を発生させる捕捉用電極によって、捕捉対象とする粒子を捕捉する工程と、
を有することを特徴とする粒子の分離方法。
A method in which at least two kinds of particles contained in a liquid flowing in a flow path are dielectrophoresed by a non-uniform electric field generated by an electrode and separated using a difference in dielectric properties,
Flowing the particles downstream from the uneven distribution of the particles by the uneven distribution electrode that generates the first non-uniform electric field;
A trapping target is disposed on the downstream side of the unevenly-distributed electrode, on the opposite side of the particle-distributed side across the flow path, and is configured to generate a second non-uniform electric field. Capturing the particles;
A method for separating particles characterized by comprising:
前記偏在用電極及び前記捕捉用電極は、それぞれ、正の誘電泳動力によって粒子を引き寄せるものであって、前記流路を挟んで対向する対向電極をそれぞれ有していることを特徴とする請求項1に記載の粒子の分離方法。   The uneven distribution electrode and the capturing electrode each attract particles by a positive dielectrophoretic force, and each have an opposing electrode across the channel. 2. The method for separating particles according to 1. 前記偏在用電極へ電源の入切を行うことにより、前記偏在用電極において偏在させた粒子を下流に流すことを特徴とする請求項1又は2に記載の粒子の分離方法。   The particle separation method according to claim 1 or 2, wherein particles unevenly distributed in the uneven distribution electrode are caused to flow downstream by turning on and off power to the uneven distribution electrode. 前記粒子は微生物又は細胞であることを特徴とする請求項1乃至3のいずれかの請求項に記載の粒子の分離方法。   The method for separating particles according to any one of claims 1 to 3, wherein the particles are microorganisms or cells. 液体中に含まれる少なくとも二種類の粒子を誘電泳動させ、誘電特性の差を利用して分離する装置であって、
該装置は、
前記液体を流す流路と、
前記流路中に流動作用を発生させる手段と、
前記流路中に設置され、第一の不均一電界を発生し、前記粒子を偏在させる偏在用電極と、
前記偏在用電極の下流であって前記流路を挟んで前記粒子を偏在させる側の対向側に位置し、第二の不均一電界を発生し、捕捉対象の粒子を捕捉する捕捉用電極と、
を有することを特徴とする粒子の分離装置。
An apparatus for dielectrophoretic migration of at least two types of particles contained in a liquid and separating them using a difference in dielectric properties,
The device
A flow path for flowing the liquid;
Means for generating a flow action in the flow path;
An unevenly distributed electrode that is installed in the flow path, generates a first non-uniform electric field, and unevenly distributes the particles;
A capturing electrode that is located downstream of the uneven distribution electrode and on the opposite side of the side where the particles are unevenly distributed across the flow path, generates a second non-uniform electric field, and captures the particles to be captured;
A device for separating particles, comprising:
前記偏在用電極及び前記捕捉用電極は、それぞれ、正の誘電泳動力によって粒子を引き寄せるものであって、前記流路を挟んで対向する対向電極をそれぞれ有していることを特徴とする請求項5に記載の粒子の分離装置。   The uneven distribution electrode and the capturing electrode each attract particles by a positive dielectrophoretic force, and each have an opposing electrode across the channel. 5. The apparatus for separating particles according to 5. 前記流動作用を発生させる手段が注入手段であり、さらに前記液体を回収する手段を有することを特徴とする請求項5又は6に記載の粒子の分離装置。   7. The particle separation apparatus according to claim 5, wherein the means for generating the fluid action is an injection means, and further has means for recovering the liquid. 前記偏在用電極へ所定の時間間隔で前記第一の不均一電界の印加・停止を行う手段を有することを特徴とする請求項5乃至7のいずれかの請求項に記載の粒子の分離装置。   The particle separation apparatus according to any one of claims 5 to 7, further comprising means for applying and stopping the first nonuniform electric field to the unevenly distributed electrode at predetermined time intervals. 前記偏在用電極と前記捕捉用電極からなる組が前記流路中に少なくとも二組配置されていることを特徴とする請求項5乃至8のいずれかの請求項に記載の粒子の分離装置。   The particle separation apparatus according to any one of claims 5 to 8, wherein at least two sets of the unevenly-distributing electrode and the capturing electrode are arranged in the flow path.
JP2008097024A 2008-04-03 2008-04-03 Particle separation method and separation apparatus Expired - Fee Related JP5047034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008097024A JP5047034B2 (en) 2008-04-03 2008-04-03 Particle separation method and separation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008097024A JP5047034B2 (en) 2008-04-03 2008-04-03 Particle separation method and separation apparatus

Publications (2)

Publication Number Publication Date
JP2009250706A JP2009250706A (en) 2009-10-29
JP5047034B2 true JP5047034B2 (en) 2012-10-10

Family

ID=41311587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008097024A Expired - Fee Related JP5047034B2 (en) 2008-04-03 2008-04-03 Particle separation method and separation apparatus

Country Status (1)

Country Link
JP (1) JP5047034B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101284725B1 (en) 2011-07-22 2013-07-17 한국항공대학교산학협력단 System for high throughput particle separation using dielectrophoresis and the same method
JP5924276B2 (en) * 2012-04-03 2016-05-25 ソニー株式会社 Channel device, particle sorting apparatus, and particle sorting method
JP6232591B2 (en) 2016-04-27 2017-11-22 パナソニックIpマネジメント株式会社 Method for determining whether a capillary filled with an electrophoretic medium is properly used for electrophoresis
WO2018022758A1 (en) * 2016-07-26 2018-02-01 Qorvo Us, Inc. Microfluidic sensors using electrophoresis
CN108587902A (en) * 2018-06-01 2018-09-28 大连海事大学 Cell sorting devices based on dielectrophoresis and its screening technique

Also Published As

Publication number Publication date
JP2009250706A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
US7988841B2 (en) Treatment of biological samples using dielectrophoresis
US7169282B2 (en) Dielectrophoresis apparatus
Cheng et al. An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting
KR100624460B1 (en) A microfluidic device comprising a membrane formed with nano to micro sized pores and method for separating a polarizable material using the same
US7678256B2 (en) Insulator-based DEP with impedance measurements for analyte detection
US8968542B2 (en) Devices and methods for contactless dielectrophoresis for cell or particle manipulation
US7666289B2 (en) Methods and devices for high-throughput dielectrophoretic concentration
Zhao et al. Continuous separation of nanoparticles by type via localized DC-dielectrophoresis using asymmetric nano-orifice in pressure-driven flow
US20150185184A1 (en) Methods and compositions for separating or enriching blood cells
US6730204B2 (en) Three dimensional separation trap based on dielectrophoresis and use thereof
WO2012048230A2 (en) Dielectrophoresis devices and methods therefor
JP5047034B2 (en) Particle separation method and separation apparatus
US20110139620A1 (en) Microfluidic cell
US9873129B1 (en) Multi-planar microelectrode array device and methods of making and using same
Wu et al. Label-free multitarget separation of particles and cells under flow using acoustic, electrophoretic, and hydrodynamic forces
Li et al. On the design, functions, and biomedical applications of high-throughput dielectrophoretic micro-/nanoplatforms: a review
EP3418373B1 (en) Separation device
Vaidyanathan et al. Alternating current electrohydrodynamics in microsystems: Pushing biomolecules and cells around on surfaces
US7744738B1 (en) Method and apparatus for rapid particle manipulation and characterization
JP5527936B2 (en) Method and apparatus for separating particles in suspension
Lewpiriyawong et al. Dielectrophoresis field-flow fractionation for continuous-flow separation of particles and cells in microfluidic devices
Kostner et al. Guided dielectrophoresis: a robust method for continuous particle and cell separation
Shen et al. Flow-field-assisted dielectrophoretic microchips for high-efficiency sheathless particle/cell separation with dual mode
Roy et al. Enhancing the Performance of Surface-Based Biosensors by AC Electrokinetic Effects—A Review
Capuano et al. Design of an electrophoretic module for protein separation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5047034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees