WO2007046415A1 - Exposure apparatus and method of exposure - Google Patents

Exposure apparatus and method of exposure Download PDF

Info

Publication number
WO2007046415A1
WO2007046415A1 PCT/JP2006/320738 JP2006320738W WO2007046415A1 WO 2007046415 A1 WO2007046415 A1 WO 2007046415A1 JP 2006320738 W JP2006320738 W JP 2006320738W WO 2007046415 A1 WO2007046415 A1 WO 2007046415A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
exposure apparatus
substrate
gas
exposure
Prior art date
Application number
PCT/JP2006/320738
Other languages
French (fr)
Japanese (ja)
Inventor
Motoi Ueda
Soichi Owa
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Publication of WO2007046415A1 publication Critical patent/WO2007046415A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply

Definitions

  • the present invention relates to an exposure apparatus and an exposure method used in a lithographic process for manufacturing a device such as a semiconductor element, an imaging element (CCD, etc.), a liquid crystal display element, or a thin film magnetic head, for example. is there.
  • step-and-repeat type exposure devices have been widely used as exposure devices, but recently, step-and-scan type exposure devices that perform exposure by scanning the reticle and wafer synchronously are also available. It's getting attention.
  • the resolution of the projection optical system is higher as the exposure wavelength used is shorter and the numerical aperture of the projection optical system is larger.
  • the exposure wavelength used in the exposure apparatus has become shorter year by year, and the numerical aperture of the projection optical system has also increased.
  • the mainstream exposure wavelength is 248 nm for KrF excimer lasers, and 193 nm for ArF excimer lasers with short wavelengths are also in practical use.
  • E is the exposure wavelength
  • is the numerical aperture of the projection optical system
  • k and k are process coefficients.
  • Patent Document 1 JP-A-10-303114
  • An object of the present invention is to provide an exposure apparatus and an exposure method capable of exposing a substrate with desired performance even when an immersion method is applied.
  • an exposure apparatus that exposes a substrate through a liquid, and includes an impurity removal mechanism that removes impurities contained in the liquid.
  • the liquid includes, for example, decahydronaphthalene (C H).
  • the impurities are, for example,
  • the impurity removal mechanism is, for example, an oxygen removal filter.
  • an exposure method for exposing a substrate through a liquid wherein impurities contained in the liquid are removed, and exposure is performed through the liquid from which the impurities have been removed.
  • an exposure method for exposing the substrate by irradiating the substrate with a beam is provided.
  • an exposure apparatus that exposes a substrate through a liquid, wherein a chamber that substantially seals the substrate and a rare gas is introduced into the chamber
  • An exposure apparatus is provided that includes an introduction port and a discharge port for discharging the rare gas in the chamber.
  • the liquid is used in an environment where the oxygen concentration is extremely low. That Therefore, it is possible to suppress a decrease in the transmittance of the liquid and perform desired exposure.
  • the rare gas is, for example, nitrogen gas, helium gas, argon gas, or a mixed gas thereof.
  • an exposure method for exposing a substrate through a liquid the substrate being carried into a chamber that substantially seals the substrate
  • An exposure method is provided in which a rare gas is introduced into the chamber and the rare gas in the chamber is discharged.
  • an exposure apparatus that exposes a substrate through a liquid, the exposure apparatus including a transmittance suppression mechanism that suppresses a decrease in the transmittance of the liquid with respect to an exposure beam.
  • the apparatus further includes a liquid supply mechanism that supplies the liquid, and the transmittance suppression mechanism includes an oxygen removal device that removes oxygen in the liquid supplied from the liquid supply mechanism. It can be configured as follows.
  • the transmittance suppressing mechanism has a predetermined periphery around the liquid on the substrate so that the liquid on the substrate does not come into contact with oxygen.
  • a gas supply mechanism for supplying gas can be included.
  • an exposure apparatus that exposes a substrate by irradiating exposure light through a liquid, the liquid supply unit supplying liquid to the liquid immersion area on the substrate
  • An exposure apparatus is provided that includes a gas supply unit that supplies gas around the liquid on the substrate.
  • an exposure apparatus that exposes a substrate by irradiating exposure light through a liquid, wherein the liquid supply unit supplies the liquid to an immersion area on the substrate. And an exposure apparatus that prevents a decrease in the transmittance of the liquid with respect to the exposure light.
  • an exposure apparatus that exposes a substrate by irradiating exposure light through a liquid, wherein the liquid supply unit supplies the liquid to an immersion region on the substrate.
  • an exposure apparatus comprising: a chamber that houses the substrate; and a gas supply unit that supplies a rare gas into the chamber.
  • the substrate can be exposed in an optimum state even when the liquid immersion method is applied.
  • FIG. 1 is a view showing a schematic configuration of an exposure apparatus used in the first embodiment.
  • FIG. 2 is a view showing a schematic configuration of an exposure apparatus used in the second embodiment. Explanation of symbols
  • R reticle, PL ... projection optical system, W ... Ueno, 1 ... illumination optical system, 5 ... liquid supply device, 6 ... liquid recovery device, 7 ... liquid (decalin), 9 ... 10—XY stage, 14 ... Main control system, 21 ... Supply pipe, 21a ... Discharge nozzle, 23 ... Recovery pipe, 23a ... Inlet nozzle, 55 ... Oxygen removal filter, 101 ... Wafer chamber, 102 ... Noble gas Inlet, 103 ... Noble gas outlet BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a view showing a schematic configuration of a step-and-repeat type exposure apparatus that works on the first embodiment.
  • the XYZ rectangular coordinate system shown in FIG. 1 is set, and the positional relationship of each member will be described with reference to this XYZ rectangular coordinate system.
  • the XYZ Cartesian coordinate system the X axis and Y axis are set to be parallel to the wafer W, and the Z axis is set to a direction orthogonal to the wafer W.
  • the XY plane is set to a plane parallel to the horizontal plane
  • the Z axis is set to the vertical direction.
  • the exposure apparatus includes an ArF excimer laser light source that is an exposure light source, and includes illumination optical optics including an optical integrator (homogenizer), a field stop, a condenser lens, and the like.
  • System 1 is provided.
  • Exposure light (exposure beam) IL made up of ultraviolet pulsed light having a wavelength of 193 nm emitted from a light source passes through illumination optical system 1 and illuminates a pattern provided on reticle (mask) R.
  • the light that has passed through the reticle R passes through the telecentric projection optical system PL on both sides (or one side on the wafer W side) and is projected to a predetermined projection magnification ⁇ (for example, on the exposure region on the wafer (substrate) W coated with the photoresist. , ⁇ is 1 ⁇ 4, 1 ⁇ 5, etc.).
  • the exposure light IL includes, for example, an emission line (g-line, h-line, i-line) emitted from a mercury lamp force, far ultraviolet light (DUV light) such as Kr F excimer laser light (wavelength 248 nm), ArF excimer laser light (Wavelength 193nm) and vacuum ultraviolet light (VUV light) such as F laser light (wavelength 157nm)
  • DUV light far ultraviolet light
  • Kr F excimer laser light wavelength 248 nm
  • ArF excimer laser light Wavelength 193nm
  • VUV light vacuum ultraviolet light
  • the wafer includes a substrate in which a film such as a photosensitive material (photoresist) or a protective film is applied.
  • the reticle includes a device pattern on which a reduced projection is formed on a substrate.
  • a force reflection type using a transmission type as a reticle may be used.
  • the reticle R is held on the reticle stage RST, and a mechanism for finely moving the reticle R in the X direction, the Y direction, and the rotation direction is incorporated in the reticle stage RST.
  • the positions of the reticle stage RST in the X, Y, and rotational directions are measured and controlled in real time by a reticle laser interferometer (not shown).
  • the wafer W is fixed on the Z stage 9 via a wafer holder (not shown).
  • ⁇ Tage 9 moves along a plane that is substantially parallel to the image plane of projection optical system PL ⁇ It is fixed on stage 10 and controls the position of wafer W (position in the Z direction) and tilt angle To do.
  • the positions of the Z stage 9 in the X direction, the Y direction, and the rotation direction are measured and controlled in real time by a wafer laser interferometer 13 using a movable mirror 12 positioned on the Z stage 9.
  • the XY stage 10 is mounted on the base 11 and controls the X direction, Y direction, and rotation direction of the wafer W.
  • the exposure apparatus includes a main control system 14 that adjusts the position of the reticle R in the X direction, the Y direction, and the rotation direction based on the measurement value measured by the reticle laser interferometer. That is, the main control system 14 adjusts the position of the reticle R by sending a control signal to the mechanism incorporated in the reticle stage RST and finely moving the reticle stage RST.
  • the main control system 14 aligns the surface on the wafer W with the image plane of the projection optical system PL by the autofocus method and the autoleveling method, so that the focus position of the wafer W (position in the Z direction) and Adjust the tilt angle. That is, the main control system 14 transmits a control signal to the wafer stage drive system 15 and drives the Z stage 9 by the wafer stage drive system 15 to adjust the focus position and tilt angle of the wafer W. Further, the main control system 14 adjusts the position of the wafer W in the X direction, the Y direction, and the rotation direction based on the measurement values measured by the wafer laser interferometer 13. That is, the main control system 14 The control signal is transmitted to the stage drive system 15 and the wafer stage drive system 15 drives the XY stage 10 to adjust the position of the wafer W in the X direction, Y direction, and rotation direction.
  • the laser interferometer 13 can measure the position of the Z stage 9 in the Z-axis direction and the rotation information in the ⁇ X and ⁇ Y directions. For example, see JP-A-2001-510577. (Corresponding to International Publication No. 1999/28790 pamphlet). Further, instead of fixing the movable mirror 12 to the Z stage 9, for example, a reflecting surface formed by mirror-applying a part of the Z stage 9 (side surface, etc.) can be used.
  • the focus / leveling detection system measures the position information of the wafer W in the Z-axis direction at each of the plurality of measurement points, so that the tilt information (rotation information) of the wafer W in the ⁇ X and ⁇ Y directions is rotated.
  • the multiple measurement points may be set at least partially within the immersion area (or projection area), or all of them may be set outside the immersion area. You can be done.
  • the laser interferometer 13 can measure the position information of the wafer W in the Z-axis, ⁇ X and ⁇ Y directions
  • the position information in the Z-axis direction can be measured during the wafer W exposure operation.
  • the position of the wafer W with respect to the Z-axis, ⁇ X and ⁇ Y directions using the measurement results of the laser interferometer 13 during the exposure operation, at least during the exposure operation. Control may be performed.
  • the projection optical system PL of the present embodiment is a reduction system whose projection magnification is, for example, 1/4, 1/5, 1/8, etc., and a reduced image of the mask pattern is displayed in a projection area conjugate with the illumination area.
  • the projection optical system PL may be any of a reduction system, an equal magnification system, and an enlargement system.
  • the projection optical system PL may be any of a refractive system that does not include a reflective optical element, a reflective system that does not include a refractive optical element, and a catadioptric system that includes a reflective optical element and a refractive optical element.
  • the projection optical system PL may form either an inverted image or an erect image.
  • the main control system 14 transmits a control signal to the wafer stage drive system 15, and drives the XY stage 10 by the wafer stage drive system 15, so that each shot area on the wafer W is changed. Step by step to the exposure position. That is, the operation of exposing the pattern image of the reticle R onto the wafer W by the step-and-repeat method is repeated.
  • the exposure wavelength is substantially shortened and the resolution is improved. Therefore, the immersion method is applied.
  • the immersion method is applied.
  • the transmissive optical element 4 closest to the wafer W is made of synthetic quartz glass, and only the surface of the transmissive optical element 4 is in contact with the liquid 7. As a result, corrosion or the like of the lens barrel 3 which is a metallic force is prevented.
  • the transmission optical element 4 may be formed of a material having a higher refractive index than quartz, Z, or fluorite (eg, 1.6 or more).
  • the optical element of the projection optical system can be formed using sapphire, germanium dioxide, or the like as disclosed in WO 2005/059617.
  • the optical element of the projection optical system can be formed using potassium chloride (refractive index: about 1.75) or the like as disclosed in International Publication No. 2005/059618.
  • the liquid 7 is decahydronaphthalene (C
  • decalin H (hereinafter referred to as decalin) is used.
  • the exposure apparatus includes a liquid supply device 5 that controls the supply of decalin 7 and a liquid recovery device 6 that controls the discharge of decalin 7.
  • the liquid supply device 5 includes a decalin 7 tank (not shown), a pressure pump (not shown), a temperature control device (not shown), an oxygen removal filter 55, and the like. Further, a discharge nozzle 2 la having a thin tip on the wafer W side is connected to the liquid supply apparatus 5 via a supply pipe 21.
  • the liquid supply device 5 adjusts the temperature of the decalin 7 by the temperature control device, and supplies the decalin 7 whose temperature is adjusted from the discharge nozzle 21 a via the supply pipe 21 onto the wafer W.
  • the temperature of the decalin 7 is set by the temperature control device, for example, to the same level as the temperature in the chamber in which the exposure apparatus is accommodated.
  • the liquid recovery device 6 includes a tank (not shown) of decalin 7, a suction pump (not shown), and the like.
  • an inflow nozzle 23a having a wide tip is connected to the liquid recovery apparatus 6 via a recovery pipe 23.
  • the liquid recovery apparatus 6 recovers the decalin 7 from the inflow nozzle 23a via the recovery pipe 23 with the upper force of the wafer W.
  • the oxygen removing filter 55 for removing oxygen contained in the decalin 7 is provided in the liquid supply device 5, it is possible to prevent a decrease in the transmittance of the decalin 7 due to oxygen absorption. it can.
  • the oxygen removing filter is provided in the liquid supply device 5, but it may be provided in the supply pipe 21.
  • FIG. 2 is a front view showing the lower part of the projection optical system PLA, the liquid supply device 5, the liquid recovery device 6 and the like of the step-and-scan type exposure apparatus which is useful for the second embodiment.
  • components that are the same as or equivalent to those in the above-described embodiment are denoted by the same reference numerals, and the description thereof is simplified or omitted.
  • the wafer chamber 101 is provided so as to substantially seal the wafer W, the Z stage 9, the XY stage 10, the supply pipe 21, or the recovery pipe 23.
  • a rare gas inlet 102 for introducing nitrogen gas into the wafer chamber 101 and a rare gas outlet 103 for discharging nitrogen gas are provided.
  • the rare gas inlet 102 is connected to a nitrogen tank (not shown).
  • the rare gas outlet is connected to a filter (not shown).
  • Decalin 7 is filled between wafer W and projection optical system PL in a nitrogen atmosphere, it is possible to prevent a decrease in transmittance due to oxygen absorption of decalin.
  • decalin 7 is filled between wafer W and projection optical system PL under a nitrogen atmosphere in wafer chamber 101.
  • nitrogen may be used as a gas used in a gas seal mechanism for containing liquid (decalin) 7 in a predetermined region.
  • nitrogen is used as a rare gas, but helium gas, argon gas, or a mixed gas thereof may be used.
  • decahydronaphthalene (decalin) is used as the high refractive index liquid.
  • the present invention is not limited to this.
  • 1,1-dicyclohexyl (chemical formula C H), Tetrahydrodicyclohexagen (Chemical Formula CH), Perhydropyrene (Chemical Formula)
  • the liquid or oxygen in the liquid is allowed in a range that does not affect the exposure.
  • a slight amount of oxygen may be contained in the liquid or the liquid as long as the exposure processing or the exposure apparatus does not cause inconvenience.
  • the configuration of the immersion system that fills the optical path space between the optical element 4 and the wafer W with the liquid is not limited to the above-described configuration, and various configurations can be adopted. it can. For example, configurations as disclosed in US Patent Publication No. 2004Z0165159 and International Publication No. 2004/055 803 can be adopted.
  • the form of the immersion system including Nozunore is not limited to the above-described one. Nosole members disclosed in Japanese Patent No. 6,952,253) may also be used.
  • the lower surface of the nozzle member is set to the same height (Z position) as the lower end surface (exit surface) of the projection optical system. It may be set closer to the image plane side (substrate side) than the lower end surface of the projection optical system.
  • a part (lower end) of the nozzle member may be provided so as to be submerged to the lower side of the projection optical system (final optical element) so as not to block the exposure light.
  • a supply port may be provided on the lower surface of the nozzle member, for example, a supply port may be provided on the inner side surface (inclined surface) of the nozzle member facing the side surface of the final optical element of the projection optical system.
  • the force is used to measure the position information of the reticle stage and the wafer stage (Z stage, XY stage) using an interferometer system.
  • You can also use an encoder system that detects the scale (diffraction grating).
  • the hybrid system includes both the interferometer system and the encoder system, and the measurement result of the encoder system is calibrated using the measurement result of the interferometer system.
  • the interferometer system and Yenko It is also possible to control the position of the stage by switching between the driver system and using both.
  • an optical element is attached to the tip of the projection optical system, and the optical characteristics of the projection optical system, for example, aberration (spherical aberration, coma aberration, etc.) are adjusted by this optical element.
  • the optical element attached to the tip of the projection optical system may be an optical plate used for adjusting the optical characteristics of the projection optical system. Alternatively, it may be a plane parallel plate (such as a cover glass) that can transmit exposure light.
  • the space between the projection optical system and the substrate surface is filled with the liquid.
  • the liquid is filled with a cover glass made of a plane-parallel plate attached to the surface of the substrate. It may be a configuration.
  • the substrate (wafer) of each of the above embodiments is not only a semiconductor wafer for manufacturing a semiconductor device, but also a glass substrate for a display device, a ceramic wafer for a thin film magnetic head, or a mask used in an exposure apparatus. Or reticle reticles (synthetic quartz, silicon wafers) are used.
  • an exposure apparatus in addition to a step-and-'scan type scanning exposure apparatus (scanning stepper) that scans and exposes a mask pattern by moving a mask (reticle) and a substrate (wafer) synchronously.
  • the present invention can also be applied to a step-and-repeat projection exposure apparatus (stepper) in which a mask pattern is collectively exposed while the mask and the substrate are stationary, and the substrate is sequentially moved stepwise.
  • the exposure apparatus projects a reduced image of the first pattern with the first pattern and the substrate substantially stationary, for example, a refraction-type projection optical system that does not include a reflective element at a 1/8 reduction magnification.
  • the present invention can also be applied to an exposure apparatus that performs batch exposure on a substrate using a system. In this case, after that, with the second pattern and the substrate being substantially stationary, a reduced image of the second pattern is exposed onto the substrate in a lump by partially overlapping the first pattern using the projection optical system. It can also be applied to a batch type batch exposure apparatus.
  • a stitch type exposure device The method can also be applied to a step-and-stitch type exposure apparatus in which at least two patterns are partially superimposed and transferred on a substrate and the substrate is moved sequentially.
  • the exposure apparatus provided with the projection optical system has been described as an example.
  • the present invention can be applied to an exposure apparatus and an exposure method that do not use the projection optical system. Even when the projection optical system is not used, the exposure light is irradiated onto the substrate via an optical member such as a mask or a lens, and a liquid immersion area is formed in a predetermined space between the optical member and the substrate. It is formed.
  • the present invention is disclosed in, for example, Japanese Patent Laid-Open Nos. 10-163099 and 10-214783 (corresponding US Pat. No. 6,590,634), and Japanese Translation of PCT International Publication No. 2000-505958 (corresponding US Pat. 5, 969, 441), US Pat. No. 6,208,407, etc., and can be applied to a multi-stage type exposure apparatus having a plurality of substrate stages.
  • the above immersion system may be provided on all stages or only on some stages.
  • JP-A-11 135400 corresponding international publication 1999/23692
  • JP-A 2000-164504 corresponding US Pat. No. 6,897,963
  • the present invention can also be applied to an exposure apparatus that includes a substrate stage that holds a substrate, and a measurement stage on which a reference member on which a reference mark is formed and various photoelectric sensors are mounted.
  • a force that employs an exposure apparatus that locally fills a liquid between the projection optical system and the substrate is disclosed in, for example, Japanese Patent Application Laid-Open No. 6-124873, JP-A-10-303114, US Pat. No. 5,825,043, etc. discloses an immersion exposure apparatus that performs exposure while the entire surface of the substrate to be exposed is immersed in a liquid. Is also applicable.
  • the type of exposure apparatus is not limited to an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern on a substrate, but an exposure apparatus for manufacturing a liquid crystal display element or a display, a thin film magnetic head, an imaging element ( It can be widely applied to exposure equipment for manufacturing CCD), micromachines, MEMS, DNA chips, or reticles or masks.
  • a predetermined light shielding pattern (or position) is formed on a light transmissive substrate.
  • Force using a light-transmitting mask formed with a phase pattern (dimming pattern).
  • a phase pattern (dimming pattern).
  • An electronic mask (also called a variable shaping mask) that forms a transmission pattern, reflection pattern, or light emission pattern based on the data.
  • DMD Digital Micro-
  • is a type of non-light-emitting image display device (spatial light modulator). mirror Device) etc.) may be used.
  • an exposure apparatus (lithography system) that exposes a line and space pattern on a substrate by forming interference fringes on the substrate. ) Can also be applied to the present invention.
  • JP-T-2004-519850 corresponding US Pat. No. 6,611,316
  • two mask patterns are combined on a substrate via a projection optical system.
  • the present invention can also be applied to an exposure apparatus that performs double exposure of one shot area on the substrate almost simultaneously by one scan exposure.
  • the exposure apparatus is manufactured by assembling various subsystems including each component so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy.
  • various optical systems are adjusted to achieve optical accuracy
  • various mechanical systems are adjusted to achieve mechanical accuracy
  • the electrical system is adjusted to achieve electrical accuracy.
  • the assembly process from various subsystems to the exposure system includes mechanical connections, electrical circuit wiring connections, and pneumatic circuit piping connections between the various subsystems. It goes without saying that there is an assembly process for each subsystem before the assembly process from these various subsystems to the exposure system. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies for the exposure apparatus as a whole.
  • the step of designing the function and performance of the microdevice the step of manufacturing a mask (reticle) based on this design step, the step of manufacturing the substrate which is the base material of the device, the implementation described above Steps including substrate processing processes such as a process of exposing a mask pattern onto a substrate by an exposure apparatus of a form, a process of developing the exposed substrate, heating (curing) and etching of the developed substrate, device assembly step (dicing process, This includes manufacturing processes such as bonding processes and packaging processes, and inspection steps.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

An exposure apparatus designed so as to effect exposure of a substrate via a liquid, including impurity removing means for removing of impurities contained in the liquid.

Description

明 細 書  Specification
露光装置及び露光方法  Exposure apparatus and exposure method
技術分野  Technical field
[0001] 本発明は、例えば、半導体素子、撮像素子 (CCD等)、液晶表示素子、又は薄膜 磁気ヘッド等のデバイスを製造するためのリソグラフイエ程に用いられる露光装置、 及び露光方法に関するものである。  The present invention relates to an exposure apparatus and an exposure method used in a lithographic process for manufacturing a device such as a semiconductor element, an imaging element (CCD, etc.), a liquid crystal display element, or a thin film magnetic head, for example. is there.
本願は、 2005年 10月 18曰に出願された特願 2005— 303748号に基づき優先権 を主張し、その内容をここに援用する。  This application claims priority based on Japanese Patent Application No. 2005-303748 filed on October 18, 2005, the contents of which are incorporated herein by reference.
背景技術  Background art
[0002] 半導体素子等のマイクロデバイスを製造する際に、マスクとしてのレチクルのパター ンの像を投影光学系を介して、感光性基板としてのレジストが塗布されたウェハ(又 はガラスプレート等)上の各ショット領域に露光する露光装置が使用されている。従来 は露光装置として、ステップ 'アンド'リピート方式の露光装置 (ステツパ)が多用されて いたが、最近ではレチクルとウェハとを同期走査して露光を行うステップ ·アンド 'スキ ヤン方式の露光装置も注目されてレ、る。  [0002] When a microdevice such as a semiconductor element is manufactured, a wafer (or a glass plate or the like) coated with a resist as a photosensitive substrate through a projection optical system for an image of a reticle pattern as a mask An exposure apparatus that exposes each upper shot area is used. Conventionally, step-and-repeat type exposure devices (steppers) have been widely used as exposure devices, but recently, step-and-scan type exposure devices that perform exposure by scanning the reticle and wafer synchronously are also available. It's getting attention.
[0003] 投影光学系の解像度は、使用する露光波長が短いほど、また投影光学系の開口 数が大きいほど高い。集積回路の微細化に伴い露光装置で使用される露光波長は 年々短波長化しており、投影光学系の開口数も増大している。現在主流の露光波長 は、 KrFエキシマレーザの 248nmである力 さらに短波長の ArFエキシマレーザの 1 93nmも実用化されている。  [0003] The resolution of the projection optical system is higher as the exposure wavelength used is shorter and the numerical aperture of the projection optical system is larger. With the miniaturization of integrated circuits, the exposure wavelength used in the exposure apparatus has become shorter year by year, and the numerical aperture of the projection optical system has also increased. Currently, the mainstream exposure wavelength is 248 nm for KrF excimer lasers, and 193 nm for ArF excimer lasers with short wavelengths are also in practical use.
[0004] 露光を行う際には、解像度と同様に焦点深度 (DOF)も重要となる。解像度 R及び 焦点深度 δはそれぞれ以下の式で表される。  [0004] When performing exposure, the depth of focus (DOF) is important as well as the resolution. Resolution R and depth of focus δ are expressed by the following equations.
R=k · λ /ΝΑ  R = kλ / ΝΑ
δ =k - λ /ΝΑ2 · ' · (2) δ = k - λ / ΝΑ 2 · '· (2)
2  2
ここで、 えは露光波長、 ΝΑは投影光学系の開口数、 k、 kはプロセス係数である。 (  Here, E is the exposure wavelength, ΝΑ is the numerical aperture of the projection optical system, and k and k are process coefficients. (
1 2  1 2
1)式、(2)式より、解像度 Rを高めるために、露光波長えを短くして、開口数 NAを大 きくすると、焦点深度 δが狭くなることが分かる。 [0005] そこで、実質的に露光波長を短くして、かつ焦点深度を広くする液浸法を用いた露 光装置が提案されている (例えば、特許文献 1参照)。これは投影光学系の下面とゥ ェハ表面との間を水、または有機溶媒等の液体で満たし、液体中での露光光の波長 力 空気中の l/n (nは液体の屈折率で通常 1. 2〜: 1. 6程度)になることを利用して 解像度を向上すると共に、焦点深度を約 n倍に拡大するものである。 From Eqs. (1) and (2), it can be seen that if the exposure wavelength is shortened and the numerical aperture NA is increased to increase the resolution R, the depth of focus δ becomes narrower. [0005] Therefore, an exposure apparatus using an immersion method that substantially shortens the exposure wavelength and increases the depth of focus has been proposed (for example, see Patent Document 1). This is because the space between the lower surface of the projection optical system and the wafer surface is filled with water or a liquid such as an organic solvent, and the wavelength force of the exposure light in the liquid l / n in air (where n is the refractive index of the liquid (Normally 1.2-2: 1.6) is used to improve the resolution and expand the depth of focus by approximately n times.
特許文献 1 :特開平 10— 303114号公報  Patent Document 1: JP-A-10-303114
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 液浸型の露光装置においては、液体の透過率が低下すると、露光装置が所望の 性能を発揮しないとレ、う問題がある。 [0006] In the immersion type exposure apparatus, there is a problem that if the transmittance of the liquid decreases, the exposure apparatus does not exhibit a desired performance.
この発明の目的は、液浸法を適用した場合にも、所望の性能で基板の露光を行うこ とができる露光装置、及び露光方法を提供することである。  An object of the present invention is to provide an exposure apparatus and an exposure method capable of exposing a substrate with desired performance even when an immersion method is applied.
課題を解決するための手段  Means for solving the problem
[0007] 本発明の第 1の態様に従えば、液体を介して基板を露光する露光装置であって、 前記液体内に含まれる不純物を除去する不純物除去機構を備える露光装置が提供 される。 According to the first aspect of the present invention, there is provided an exposure apparatus that exposes a substrate through a liquid, and includes an impurity removal mechanism that removes impurities contained in the liquid.
[0008] この露光装置によれば、液体に含まれる不純物を除去し、所望の露光を行うことが できる。  [0008] According to this exposure apparatus, it is possible to remove impurities contained in the liquid and perform desired exposure.
[0009] 前記液体は、例えばデカヒドロナフタレン(C H )を含む。前記不純物は、例えば  [0009] The liquid includes, for example, decahydronaphthalene (C H). The impurities are, for example,
10 18  10 18
酸素である。前記不純物除去機構は、例えば酸素除去フィルターである。  It is oxygen. The impurity removal mechanism is, for example, an oxygen removal filter.
[0010] 本発明の第 2の態様に従えば、液体を介して基板を露光する露光方法であって、 前記液体に含まれる不純物を除去し、前記不純物が除去された前記液体を介して 露光ビームを前記基板に照射して前記基板を露光する、露光方法が提供される。 [0010] According to the second aspect of the present invention, there is provided an exposure method for exposing a substrate through a liquid, wherein impurities contained in the liquid are removed, and exposure is performed through the liquid from which the impurities have been removed. There is provided an exposure method for exposing the substrate by irradiating the substrate with a beam.
[0011] 本発明の第 3の態様に従えば、液体を介して基板を露光する露光装置であって、 前記基板を実質的に密閉するチャンバ一と、前記チャンバ一内に希ガスを導入する 導入口と、前記チャンバ一内の希ガスを排出する排出口とを備える露光装置が提供 される。 [0011] According to the third aspect of the present invention, there is provided an exposure apparatus that exposes a substrate through a liquid, wherein a chamber that substantially seals the substrate and a rare gas is introduced into the chamber An exposure apparatus is provided that includes an introduction port and a discharge port for discharging the rare gas in the chamber.
[0012] この露光装置によれば、酸素濃度が極めて低い環境で液体が使用される。そのた め、液体の透過率低下を抑制し、所望の露光を行うことができる。 [0012] According to this exposure apparatus, the liquid is used in an environment where the oxygen concentration is extremely low. That Therefore, it is possible to suppress a decrease in the transmittance of the liquid and perform desired exposure.
[0013] 前記希ガスは、例えば窒素ガス、ヘリウムガス、アルゴンガス又はそれらの混合ガス である。  [0013] The rare gas is, for example, nitrogen gas, helium gas, argon gas, or a mixed gas thereof.
[0014] 本発明の第 4の態様に従えば、液体を介して基板を露光する露光方法であって、 前記基板を実質的に密閉するチャンバ一内に前記基板を搬入し、前記チャンバ一 内に希ガスを導入し、前記チャンバ一内の希ガスを排出する、露光方法が提供され る。  [0014] According to a fourth aspect of the present invention, there is provided an exposure method for exposing a substrate through a liquid, the substrate being carried into a chamber that substantially seals the substrate, An exposure method is provided in which a rare gas is introduced into the chamber and the rare gas in the chamber is discharged.
[0015] 本発明の第 5の態様に従えば、液体を介して基板を露光する露光装置において、 露光ビームに対する前記液体の透過率低下を抑制する透過率抑制機構を備える露 光装置が提供される。  [0015] According to the fifth aspect of the present invention, there is provided an exposure apparatus that exposes a substrate through a liquid, the exposure apparatus including a transmittance suppression mechanism that suppresses a decrease in the transmittance of the liquid with respect to an exposure beam. The
[0016] 第 5の態様において、前記液体を供給する液体供給機構をさらに備え、前記透過 率抑制機構は、前記液体供給機構から供給される前記液体中の酸素を除去する酸 素除去装置を含むように構成できる。  [0016] In a fifth aspect, the apparatus further includes a liquid supply mechanism that supplies the liquid, and the transmittance suppression mechanism includes an oxygen removal device that removes oxygen in the liquid supplied from the liquid supply mechanism. It can be configured as follows.
[0017] また、第 5の態様にぉレ、て、前記透過率抑制機構は、前記基板上の前記液体が酸 素と接触しなレ、ように、前記基板上の液体の周囲に所定のガスを供給するガス供給 機構を含むように構成できる。  [0017] Further, according to the fifth aspect, the transmittance suppressing mechanism has a predetermined periphery around the liquid on the substrate so that the liquid on the substrate does not come into contact with oxygen. A gas supply mechanism for supplying gas can be included.
[0018] 本発明の第 6の態様に従えば、液体を介して露光光を照射して基板を露光する露 光装置であって、前記基板上の液浸領域に液体を供給する液体供給部と、前記基 板上の液体周辺に気体を供給する気体供給部とを備える露光装置が提供される。  [0018] According to a sixth aspect of the present invention, there is provided an exposure apparatus that exposes a substrate by irradiating exposure light through a liquid, the liquid supply unit supplying liquid to the liquid immersion area on the substrate An exposure apparatus is provided that includes a gas supply unit that supplies gas around the liquid on the substrate.
[0019] 本発明の第 7の態様に従えば、液体を介して露光光を照射して基板を露光する露 光装置であって、前記基板上の液浸領域に液体を供給する液体供給部と、前記露 光光に対する液体の透過率低下を防止する透過率低下防止機構とを備える露光装 置が提供される。  [0019] According to the seventh aspect of the present invention, there is provided an exposure apparatus that exposes a substrate by irradiating exposure light through a liquid, wherein the liquid supply unit supplies the liquid to an immersion area on the substrate. And an exposure apparatus that prevents a decrease in the transmittance of the liquid with respect to the exposure light.
[0020] 本発明の第 8の態様に従えば、液体を介して露光光を照射して基板を露光する露 光装置であって、前記基板上の液浸領域に液体を供給する液体供給部と、前記基 板を収納するチャンバ一と、前記チャンバ一内に希ガスを供給するガス供給部とを備 える露光装置が提供される。  [0020] According to the eighth aspect of the present invention, there is provided an exposure apparatus that exposes a substrate by irradiating exposure light through a liquid, wherein the liquid supply unit supplies the liquid to an immersion region on the substrate. And an exposure apparatus comprising: a chamber that houses the substrate; and a gas supply unit that supplies a rare gas into the chamber.
発明の効果 [0021] この発明の露光装置、露光方法によれば、液浸法を適用した場合にも最適な状態 で基板を露光することができる。 The invention's effect According to the exposure apparatus and the exposure method of the present invention, the substrate can be exposed in an optimum state even when the liquid immersion method is applied.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 1]第 1の実施の形態において使用される露光装置の概略構成を示す図である。  FIG. 1 is a view showing a schematic configuration of an exposure apparatus used in the first embodiment.
[図 2]第 2の実施の形態において使用される露光装置の概略構成を示す図である。 符号の説明  FIG. 2 is a view showing a schematic configuration of an exposure apparatus used in the second embodiment. Explanation of symbols
[0023] R…レチクル、 PL…投影光学系、 W…ウエノ、、 1…照明光学系、 5…液体供給装置 、 6…液体回収装置、 7…液体(デカリン)、 9· · ·Ζステージ、 10—XYステージ、 14· · · 主制御系、 21…供給管、 21a…排出ノズル、 23…回収管、 23a…流入ノズル、 55· · · 酸素除去フィルター、 101…ウェハ室、 102…希ガス導入口、 103…希ガス排出口 発明を実施するための最良の形態  [0023] R ... reticle, PL ... projection optical system, W ... Ueno, 1 ... illumination optical system, 5 ... liquid supply device, 6 ... liquid recovery device, 7 ... liquid (decalin), 9 ... 10—XY stage, 14 ... Main control system, 21 ... Supply pipe, 21a ... Discharge nozzle, 23 ... Recovery pipe, 23a ... Inlet nozzle, 55 ... Oxygen removal filter, 101 ... Wafer chamber, 102 ... Noble gas Inlet, 103 ... Noble gas outlet BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 以下、図面を参照して、この発明の実施形態について説明するが、本発明はこれ に限定されない。図 1は、第 1の実施の形態に力かるステップ ·アンド'リピート方式の 露光装置の概略構成を示す図である。以下の説明においては、図 1中に示す XYZ 直交座標系を設定し、この XYZ直交座標系を参照しつつ各部材の位置関係につい て説明する。 XYZ直交座標系において、 X軸及び Y軸がウェハ Wに対して平行とな るよう設定され、 Z軸がウェハ Wに対して直交する方向に設定されている。実際には X Y平面が水平面に平行な面に設定され、 Z軸が鉛直方向に設定される。  Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto. FIG. 1 is a view showing a schematic configuration of a step-and-repeat type exposure apparatus that works on the first embodiment. In the following description, the XYZ rectangular coordinate system shown in FIG. 1 is set, and the positional relationship of each member will be described with reference to this XYZ rectangular coordinate system. In the XYZ Cartesian coordinate system, the X axis and Y axis are set to be parallel to the wafer W, and the Z axis is set to a direction orthogonal to the wafer W. Actually, the XY plane is set to a plane parallel to the horizontal plane, and the Z axis is set to the vertical direction.
[0025] この実施の形態において、露光装置は、図 1に示すように、露光光源である ArFェ キシマレーザ光源を含み、オプティカル 'インテグレータ(ホモジナイザー)、視野絞り 、コンデンサレンズ等から構成される照明光学系 1を備えている。光源から射出され た波長 193nmの紫外パルス光よりなる露光光(露光ビーム) ILは、照明光学系 1を通 過し、レチクル(マスク) Rに設けられたパターンを照明する。レチクル Rを通過した光 は、両側(又はウェハ W側に片側)テレセントリックな投影光学系 PLを介して、フォト レジストが塗布されたウェハ(基板) W上の露光領域に所定の投影倍率 β (例えば、 βは 1Ζ4、 1Ζ5等)で縮小投影される。  In this embodiment, as shown in FIG. 1, the exposure apparatus includes an ArF excimer laser light source that is an exposure light source, and includes illumination optical optics including an optical integrator (homogenizer), a field stop, a condenser lens, and the like. System 1 is provided. Exposure light (exposure beam) IL made up of ultraviolet pulsed light having a wavelength of 193 nm emitted from a light source passes through illumination optical system 1 and illuminates a pattern provided on reticle (mask) R. The light that has passed through the reticle R passes through the telecentric projection optical system PL on both sides (or one side on the wafer W side) and is projected to a predetermined projection magnification β (for example, on the exposure region on the wafer (substrate) W coated with the photoresist. , Β is 1Ζ4, 1Ζ5, etc.).
[0026] 露光光 ILとしては、例えば水銀ランプ力 射出される輝線 (g線、 h線、 i線)及び Kr Fエキシマレーザ光(波長 248nm)等の遠紫外光(DUV光)、 ArFエキシマレーザ光 (波長 193nm)及び Fレーザ光(波長 157nm)等の真空紫外光 (VUV光)などが用 [0026] The exposure light IL includes, for example, an emission line (g-line, h-line, i-line) emitted from a mercury lamp force, far ultraviolet light (DUV light) such as Kr F excimer laser light (wavelength 248 nm), ArF excimer laser light (Wavelength 193nm) and vacuum ultraviolet light (VUV light) such as F laser light (wavelength 157nm)
2  2
いられる。  I can.
[0027] 本実施形態において、ウェハは基材上に感光材 (フォトレジスト)、保護膜などの膜 が塗布されたものを含む。レチクルは基板上に縮小投影されるデバイスパターンが形 成されたものを含む。また、本実施形態においては、レチクルとして透過型を用いる 力 反射型を用いてもよい。  In the present embodiment, the wafer includes a substrate in which a film such as a photosensitive material (photoresist) or a protective film is applied. The reticle includes a device pattern on which a reduced projection is formed on a substrate. In the present embodiment, a force reflection type using a transmission type as a reticle may be used.
[0028] レチクル Rはレチクルステージ RST上に保持され、レチクルステージ RSTには X方 向、 Y方向及び回転方向にレチクル Rを微動させる機構が組み込まれている。レチク ルステージ RSTの X方向、 Y方向及び回転方向の位置は、レチクルレーザ干渉計( 図示せず)によってリアルタイムに計測、且つ制御されている。  The reticle R is held on the reticle stage RST, and a mechanism for finely moving the reticle R in the X direction, the Y direction, and the rotation direction is incorporated in the reticle stage RST. The positions of the reticle stage RST in the X, Y, and rotational directions are measured and controlled in real time by a reticle laser interferometer (not shown).
[0029] ウェハ Wはウェハホルダ(図示せず)を介して Zステージ 9上に固定されてレ、る。 τ テージ 9は、投影光学系 PLの像面と実質的に平行な ΧΥ平面に沿って移動する ΧΥ ステージ 10上に固定されており、ウェハ Wの位置(Z方向の位置)及び傾斜角を制御 する。 Zステージ 9の X方向、 Y方向及び回転方向の位置は、 Zステージ 9上に位置す る移動鏡 12を用いたウェハレーザ干渉計 13によってリアルタイムに計測、且つ制御 されている。また、 XYステージ 10は、ベース 11上に載置されており、ウェハ Wの X方 向、 Y方向及び回転方向を制御する。  The wafer W is fixed on the Z stage 9 via a wafer holder (not shown). τ Tage 9 moves along a plane that is substantially parallel to the image plane of projection optical system PL ΧΥ It is fixed on stage 10 and controls the position of wafer W (position in the Z direction) and tilt angle To do. The positions of the Z stage 9 in the X direction, the Y direction, and the rotation direction are measured and controlled in real time by a wafer laser interferometer 13 using a movable mirror 12 positioned on the Z stage 9. The XY stage 10 is mounted on the base 11 and controls the X direction, Y direction, and rotation direction of the wafer W.
[0030] この露光装置は、レチクルレーザ干渉計により計測された計測値に基づレ、てレチク ノレ Rの X方向、 Y方向及び回転方向の位置の調整を行なう主制御系 14を備える。即 ち、主制御系 14は、レチクルステージ RSTに組み込まれている機構に制御信号を送 信し、レチクルステージ RSTを微動させることによりレチクル Rの位置調整を行なう。  The exposure apparatus includes a main control system 14 that adjusts the position of the reticle R in the X direction, the Y direction, and the rotation direction based on the measurement value measured by the reticle laser interferometer. That is, the main control system 14 adjusts the position of the reticle R by sending a control signal to the mechanism incorporated in the reticle stage RST and finely moving the reticle stage RST.
[0031] また、主制御系 14は、オートフォーカス方式及びオートレべリング方式によりウェハ W上の表面を投影光学系 PLの像面に合わせ込むため、ウェハ Wのフォーカス位置 (Z方向の位置)及び傾斜角の調整を行なう。即ち、主制御系 14は、ウェハステージ 駆動系 15に制御信号を送信し、ウェハステージ駆動系 15により Zステージ 9を駆動さ せることによりウェハ Wのフォーカス位置及び傾斜角の調整を行なう。更に、主制御 系 14は、ウェハレーザ干渉計 13により計測された計測値に基づいてウェハ Wの X方 向、 Y方向及び回転方向の位置の調整を行なう。即ち、主制御系 14は、ウェハステ ージ駆動系 15に制御信号を送信し、ウェハステージ駆動系 15により XYステージ 10 を駆動させることによりウェハ Wの X方向、 Y方向及び回転方向の位置調整を行なう Further, the main control system 14 aligns the surface on the wafer W with the image plane of the projection optical system PL by the autofocus method and the autoleveling method, so that the focus position of the wafer W (position in the Z direction) and Adjust the tilt angle. That is, the main control system 14 transmits a control signal to the wafer stage drive system 15 and drives the Z stage 9 by the wafer stage drive system 15 to adjust the focus position and tilt angle of the wafer W. Further, the main control system 14 adjusts the position of the wafer W in the X direction, the Y direction, and the rotation direction based on the measurement values measured by the wafer laser interferometer 13. That is, the main control system 14 The control signal is transmitted to the stage drive system 15 and the wafer stage drive system 15 drives the XY stage 10 to adjust the position of the wafer W in the X direction, Y direction, and rotation direction.
[0032] なお、レーザ干渉計 13は Zステージ 9の Z軸方向の位置、及び Θ X、 θ Y方向の回 転情報をも計測可能としてよぐその詳細は、例えば特表 2001— 510577号公報( 対応国際公開第 1999/28790号パンフレット)に開示されている。さらに、移動鏡 1 2を Zステージ 9に固設する代わりに、例えば Zステージ 9の一部(側面など)を鏡面加 ェして形成される反射面を用レ、てもよレ、。 [0032] The laser interferometer 13 can measure the position of the Z stage 9 in the Z-axis direction and the rotation information in the ΘX and θY directions. For example, see JP-A-2001-510577. (Corresponding to International Publication No. 1999/28790 pamphlet). Further, instead of fixing the movable mirror 12 to the Z stage 9, for example, a reflecting surface formed by mirror-applying a part of the Z stage 9 (side surface, etc.) can be used.
[0033] また、フォーカス.レべリング検出系はその複数の計測点でそれぞれウェハ Wの Z 軸方向の位置情報を計測することで、ウェハ Wの Θ X及び Θ Y方向の傾斜情報(回 転角)を検出するものであるが、この複数の計測点はその少なくとも一部が液浸領域 (又は投影領域)内に設定されてもよいし、あるいはその全てが液浸領域の外側に設 定されてもよレ、。さらに、例えばレーザ干渉計 13がウェハ Wの Z軸、 θ X及び θ Y方 向の位置情報を計測可能であるときは、ウェハ Wの露光動作中にその Z軸方向の位 置情報が計測可能となるようにフォーカス'レべリング検出系を設けなくてもよぐ少な くとも露光動作中はレーザ干渉計 13の計測結果を用いて Z軸、 θ X及び θ Y方向に 関するウェハ Wの位置制御を行うようにしてもよい。  In addition, the focus / leveling detection system measures the position information of the wafer W in the Z-axis direction at each of the plurality of measurement points, so that the tilt information (rotation information) of the wafer W in the ΘX and ΘY directions is rotated. The multiple measurement points may be set at least partially within the immersion area (or projection area), or all of them may be set outside the immersion area. You can be done. Furthermore, for example, when the laser interferometer 13 can measure the position information of the wafer W in the Z-axis, θ X and θ Y directions, the position information in the Z-axis direction can be measured during the wafer W exposure operation. The position of the wafer W with respect to the Z-axis, θ X and θ Y directions using the measurement results of the laser interferometer 13 during the exposure operation, at least during the exposure operation. Control may be performed.
[0034] 本実施形態の投影光学系 PLは、その投影倍率が例えば 1/4、 1/5、 1/8等の 縮小系であり、照明領域と共役な投影領域にマスクパターンの縮小像を形成する。 なお、投影光学系 PLは縮小系、等倍系及び拡大系のいずれでもよい。また、投影光 学系 PLは、反射光学素子を含まない屈折系、屈折光学素子を含まない反射系、反 射光学素子と屈折光学素子とを含む反射屈折系のいずれであってもよい。また、投 影光学系 PLは、倒立像と正立像とのいずれを形成してもよい。  The projection optical system PL of the present embodiment is a reduction system whose projection magnification is, for example, 1/4, 1/5, 1/8, etc., and a reduced image of the mask pattern is displayed in a projection area conjugate with the illumination area. Form. Note that the projection optical system PL may be any of a reduction system, an equal magnification system, and an enlargement system. Further, the projection optical system PL may be any of a refractive system that does not include a reflective optical element, a reflective system that does not include a refractive optical element, and a catadioptric system that includes a reflective optical element and a refractive optical element. Further, the projection optical system PL may form either an inverted image or an erect image.
[0035] 露光時には、主制御系 14は、ウェハステージ駆動系 15に制御信号を送信し、ゥェ ハステージ駆動系 15により XYステージ 10を駆動させることによりウェハ W上の各ショ ット領域を順次露光位置にステップ移動させる。即ち、ステップ ·アンド'リピート方式 によりレチクル Rのパターン像をウェハ W上に露光する動作を繰り返す。  At the time of exposure, the main control system 14 transmits a control signal to the wafer stage drive system 15, and drives the XY stage 10 by the wafer stage drive system 15, so that each shot area on the wafer W is changed. Step by step to the exposure position. That is, the operation of exposing the pattern image of the reticle R onto the wafer W by the step-and-repeat method is repeated.
[0036] この露光装置においては、露光波長を実質的に短くし、且つ解像度を向上させる ために液浸法が適用されている。ここで、液侵法を適用した露光装置においては、少 なくともレチクル Rのパターン像をウェハ W上に転写している間は、ウェハ Wの表面と 投影光学系 PLのウェハ W側の透過光学素子 4との間に所定の液体 7が満たされて いる。投影光学系 PLは、投影光学系 PLを構成する合成石英ガラス等により形成さ れた複数の光学素子を収納する鏡筒 3を備えている。この投影光学系 PLにおいて は、最もウェハ W側の透過光学素子 4が合成石英ガラスにより形成されており、透過 光学素子 4の表面のみが液体 7と接触するように構成されている。これによつて、金属 力 なる鏡筒 3の腐食等が防止されている。 In this exposure apparatus, the exposure wavelength is substantially shortened and the resolution is improved. Therefore, the immersion method is applied. Here, in the exposure apparatus to which the immersion method is applied, at least while the pattern image of the reticle R is transferred onto the wafer W, the surface of the wafer W and the transmission optics on the wafer W side of the projection optical system PL are transmitted. A predetermined liquid 7 is filled between the elements 4. The projection optical system PL includes a lens barrel 3 that houses a plurality of optical elements formed of synthetic quartz glass or the like that constitutes the projection optical system PL. In this projection optical system PL, the transmissive optical element 4 closest to the wafer W is made of synthetic quartz glass, and only the surface of the transmissive optical element 4 is in contact with the liquid 7. As a result, corrosion or the like of the lens barrel 3 which is a metallic force is prevented.
[0037] 透過光学素子 4は、石英及び Z又は蛍石よりも屈折率が高い(例えば 1. 6以上)材 料で形成してもよい。例えば、国際公開第 2005/059617号パンフレットに開示さ れているような、サファイア、二酸化ゲルマニウム等を用いて投影光学系の光学素子 を形成することができる。あるいは、国際公開第 2005/059618号パンフレットに開 示されているような、塩ィ匕カリウム (屈折率約 1. 75)等を用いて、投影光学系の光学 素子を形成することができる。  The transmission optical element 4 may be formed of a material having a higher refractive index than quartz, Z, or fluorite (eg, 1.6 or more). For example, the optical element of the projection optical system can be formed using sapphire, germanium dioxide, or the like as disclosed in WO 2005/059617. Alternatively, the optical element of the projection optical system can be formed using potassium chloride (refractive index: about 1.75) or the like as disclosed in International Publication No. 2005/059618.
[0038] 本実施形態において、液体 7としては、高屈折率液体であるデカヒドロナフタレン (C  [0038] In the present embodiment, the liquid 7 is decahydronaphthalene (C
H ) (以下、デカリンと言う。)が使用されている。  H) (hereinafter referred to as decalin) is used.
10 18  10 18
[0039] この実施の形態において、露光装置は、デカリン 7の供給を制御する液体供給装 置 5及びデカリン 7の排出を制御する液体回収装置 6を備えている。  In this embodiment, the exposure apparatus includes a liquid supply device 5 that controls the supply of decalin 7 and a liquid recovery device 6 that controls the discharge of decalin 7.
[0040] 液体供給装置 5は、デカリン 7のタンク(図示せず)、加圧ポンプ(図示せず)、温度 制御装置(図示せず)、酸素除去フィルター 55等により構成されている。また、液体 供給装置 5には、供給管 21を介してウェハ W側に細い先端部を有する排出ノズル 2 laが接続されている。液体供給装置 5は、温度制御装置によりデカリン 7の温度を調 整し、排出ノズル 21aより、供給管 21を介して温度調整されたデカリン 7をウェハ W上 に供給する。なお、デカリン 7の温度は、温度制御装置により、例えば、露光装置が 収納されているチャンバ内の温度と同程度に設定される。  [0040] The liquid supply device 5 includes a decalin 7 tank (not shown), a pressure pump (not shown), a temperature control device (not shown), an oxygen removal filter 55, and the like. Further, a discharge nozzle 2 la having a thin tip on the wafer W side is connected to the liquid supply apparatus 5 via a supply pipe 21. The liquid supply device 5 adjusts the temperature of the decalin 7 by the temperature control device, and supplies the decalin 7 whose temperature is adjusted from the discharge nozzle 21 a via the supply pipe 21 onto the wafer W. Note that the temperature of the decalin 7 is set by the temperature control device, for example, to the same level as the temperature in the chamber in which the exposure apparatus is accommodated.
[0041] 液体回収装置 6は、デカリン 7のタンク(図示せず)、吸引ポンプ(図示せず)等によ り構成されている。また、液体回収装置 6には、回収管 23を介して広い先端部を有す る流入ノズノレ 23aが接続されてレ、る。 [0042] 液体回収装置 6は、流入ノズノレ 23aより、回収管 23を介してデカリン 7をウェハ W上 力 回収する。 [0041] The liquid recovery device 6 includes a tank (not shown) of decalin 7, a suction pump (not shown), and the like. In addition, an inflow nozzle 23a having a wide tip is connected to the liquid recovery apparatus 6 via a recovery pipe 23. [0042] The liquid recovery apparatus 6 recovers the decalin 7 from the inflow nozzle 23a via the recovery pipe 23 with the upper force of the wafer W.
[0043] この露光装置によれば、液体供給装置 5内にデカリン 7に含まれる酸素を除去する 酸素除去フィルター 55を設けたので、酸素吸収によるデカリン 7の透過率低下を防 止すること力 Sできる。  [0043] According to this exposure apparatus, since the oxygen removing filter 55 for removing oxygen contained in the decalin 7 is provided in the liquid supply device 5, it is possible to prevent a decrease in the transmittance of the decalin 7 due to oxygen absorption. it can.
[0044] 本実施の形態では、酸素除去フィルターを液体供給装置 5内に設けたが、供給管 2 1に設けてもよい。  In the present embodiment, the oxygen removing filter is provided in the liquid supply device 5, but it may be provided in the supply pipe 21.
[0045] 次に、第 2の実施の形態について説明する。図 2は、第 2の実施の形態に力かるス テツプ'アンド ' ·スキャン方式の露光装置の投影光学系 PLAの下部、液体供給装置 5 及び液体回収装置 6等を示す正面図である。以下の説明において、上述の実施形 態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略若しく は省略する。  [0045] Next, a second embodiment will be described. FIG. 2 is a front view showing the lower part of the projection optical system PLA, the liquid supply device 5, the liquid recovery device 6 and the like of the step-and-scan type exposure apparatus which is useful for the second embodiment. In the following description, components that are the same as or equivalent to those in the above-described embodiment are denoted by the same reference numerals, and the description thereof is simplified or omitted.
[0046] ウェハ室 101は、ウェハ W、 Zステージ 9、 XYステージ 10、供給管 21又は、回収管 23を実質的に密閉するように設けられる。ウェハ室 101に窒素ガスを導入するため の希ガス導入口 102及び、窒素ガスを排出するための希ガス排出口 103が設けられ ている。希ガス導入口 102は不図示の窒素タンクに接続されている。希ガス排出口は 不図示のフィルターに接続されている。  The wafer chamber 101 is provided so as to substantially seal the wafer W, the Z stage 9, the XY stage 10, the supply pipe 21, or the recovery pipe 23. A rare gas inlet 102 for introducing nitrogen gas into the wafer chamber 101 and a rare gas outlet 103 for discharging nitrogen gas are provided. The rare gas inlet 102 is connected to a nitrogen tank (not shown). The rare gas outlet is connected to a filter (not shown).
[0047] この露光装置によれば、窒素雰囲気中でウェハ Wと投影光学系 PLとの間にデカリ ン 7が満たされるので、デカリンの酸素吸収による透過率低下を防止することができる  According to this exposure apparatus, since Decalin 7 is filled between wafer W and projection optical system PL in a nitrogen atmosphere, it is possible to prevent a decrease in transmittance due to oxygen absorption of decalin.
[0048] 本実施形態においては、ウェハ室 101内の窒素雰囲気下で、ウェハ Wと投影光学 系 PLとの間にデカリン 7が満たされる。代わりに、例えば特開 2004— 289126号公 報に開示されているように、液体(デカリン) 7を所定領域に封じ込めるためのガスシ ール機構に用いられるガスとして窒素を用いてもよい。 In the present embodiment, decalin 7 is filled between wafer W and projection optical system PL under a nitrogen atmosphere in wafer chamber 101. Instead, as disclosed in, for example, Japanese Patent Application Laid-Open No. 2004-289126, nitrogen may be used as a gas used in a gas seal mechanism for containing liquid (decalin) 7 in a predetermined region.
[0049] 本実施の形態では、希ガスとして窒素を用いたが、ヘリウムガス、アルゴンガス又は それらの混合ガスを用いてもよい。  In this embodiment, nitrogen is used as a rare gas, but helium gas, argon gas, or a mixed gas thereof may be used.
[0050] 尚、本実施の形態では、高屈折率液体としてデカヒドロナフタレン (デカリン)を用い て説明したが、これに限られることなぐ例えば、 1,1 -ジシクロへキシル (化学式 C H )、テトラヒドロジシクロへキサジェン (ィ匕学式 C H )、パーヒドロピレン(ィ匕学式[0050] In the present embodiment, decahydronaphthalene (decalin) is used as the high refractive index liquid. However, the present invention is not limited to this. For example, 1,1-dicyclohexyl (chemical formula C H), Tetrahydrodicyclohexagen (Chemical Formula CH), Perhydropyrene (Chemical Formula)
22 12 20 22 12 20
C H )であっても良い。  C H).
16 26  16 26
[0051] また、上記各実施の形態において、高屈折率液体としてデカヒドロナフタレン (C H  [0051] In each of the above embodiments, decahydronaphthalene (C H
10 Ten
)を用いた力 cis—デカヒドロナフタレン(C H )、 trans—デカヒドロナフタレン(C) Force using cis-decahydronaphthalene (C H), trans-decahydronaphthalene (C
18 10 18 1018 10 18 10
H )及びそれらの混合物を用いてもよい。 H) and mixtures thereof may be used.
18  18
[0052] なお、上述の各実施形態において、液体または液体中の酸素は、露光に影響がな い範囲で許容される。例えば、露光処理または露光装置に不都合が生じない範囲内 であれば、液体または液体中に酸素がわずかに含まれてもよい。  [0052] In each of the above-described embodiments, the liquid or oxygen in the liquid is allowed in a range that does not affect the exposure. For example, a slight amount of oxygen may be contained in the liquid or the liquid as long as the exposure processing or the exposure apparatus does not cause inconvenience.
[0053] 上述の各実施形態において、光学素子 4とウェハ Wとの間の光路空間を液体で満 たす液浸システムの構成は、上述のものに限られず、各種の構成を採用することがで きる。例えば、米国特許公開第 2004Z0165159号公報、国際公開第 2004/055 803号公報に開示されているような構成を採用することもできる。  In each of the above-described embodiments, the configuration of the immersion system that fills the optical path space between the optical element 4 and the wafer W with the liquid is not limited to the above-described configuration, and various configurations can be adopted. it can. For example, configurations as disclosed in US Patent Publication No. 2004Z0165159 and International Publication No. 2004/055 803 can be adopted.
[0054] ノズノレを含む液浸システムの形態は、上述のものに限られず、例えば国際公開第 2 004/086468号パンフレツ卜(対応米国公開 2005/0280791A1)、特開 2004— 289126号公報(対応米国特許第 6, 952, 253号)などに開示されるノズノレ部材を 用いてもよい。具体的には、上述の各実施形態ではノズル部材の下面が投影光学系 の下端面 (射出面)とほぼ同じ高さ(Z位置)に設定されてレ、るが、例えばノズル部材 の下面を投影光学系の下端面よりも像面側 (基板側)に設定してもよい。この場合、ノ ズル部材の一部(下端部)を、露光光を遮らなレ、ように投影光学系(最終光学素子) の下側まで潜り込ませて設けてもよい。また、ノズル部材の下面に供給口を設けても よぐ例えば投影光学系の最終光学素子の側面と対向するノズル部材の内側面 (傾 斜面)に供給口を設けてもょレ、。  [0054] The form of the immersion system including Nozunore is not limited to the above-described one. Nosole members disclosed in Japanese Patent No. 6,952,253) may also be used. Specifically, in each of the embodiments described above, the lower surface of the nozzle member is set to the same height (Z position) as the lower end surface (exit surface) of the projection optical system. It may be set closer to the image plane side (substrate side) than the lower end surface of the projection optical system. In this case, a part (lower end) of the nozzle member may be provided so as to be submerged to the lower side of the projection optical system (final optical element) so as not to block the exposure light. Further, a supply port may be provided on the lower surface of the nozzle member, for example, a supply port may be provided on the inner side surface (inclined surface) of the nozzle member facing the side surface of the final optical element of the projection optical system.
[0055] 上記各実施形態では干渉計システムを用いてレチクルステージ、及びウェハステ ージ (Zステージ、 XYステージ)の各位置情報を計測するものとした力 これに限らず 、例えば各ステージに設けられるスケール(回折格子)を検出するエンコーダシステム を用いてもよレ、。この場合、干渉計システムとエンコーダシステムの両方を備えるハイ ブリツドシステムとし、干渉計システムの計測結果を用いてエンコーダシステムの計測 結果の較正(キャリブレーション)を行うことが好ましい。また、干渉計システムとェンコ ーダシステムとを切り替えて用いる、あるいはその両方を用いて、ステージの位置制 御を行うようにしてもよい。 In each of the above-described embodiments, the force is used to measure the position information of the reticle stage and the wafer stage (Z stage, XY stage) using an interferometer system. You can also use an encoder system that detects the scale (diffraction grating). In this case, it is preferable that the hybrid system includes both the interferometer system and the encoder system, and the measurement result of the encoder system is calibrated using the measurement result of the interferometer system. Also, the interferometer system and Yenko It is also possible to control the position of the stage by switching between the driver system and using both.
[0056] 上記各実施形態では、投影光学系の先端に光学素子が取り付けられており、この 光学素子により投影光学系の光学特性、例えば収差 (球面収差、コマ収差等)の調 整を行うことができる。なお、投影光学系の先端に取り付ける光学素子としては、投影 光学系の光学特性の調整に用いる光学プレートであってもよい。あるいは露光光を 透過可能な平行平面板 (カバーガラスなど)であってもよい。  In each of the above embodiments, an optical element is attached to the tip of the projection optical system, and the optical characteristics of the projection optical system, for example, aberration (spherical aberration, coma aberration, etc.) are adjusted by this optical element. Can do. The optical element attached to the tip of the projection optical system may be an optical plate used for adjusting the optical characteristics of the projection optical system. Alternatively, it may be a plane parallel plate (such as a cover glass) that can transmit exposure light.
[0057] 液体の流れによって生じる投影光学系の先端の光学素子と基板との間の圧力が大 きい場合には、その光学素子を交換可能とするのではなぐその圧力によって光学 素子が動かなレ、ように堅固に固定してもよレ、。  [0057] When the pressure between the optical element at the tip of the projection optical system and the substrate generated by the flow of the liquid is large, the optical element is not allowed to be exchanged. You can fix it firmly.
[0058] 上記各実施形態では、投影光学系と基板表面との間は液体で満たされている構成 であるが、例えば基板の表面に平行平面板からなるカバーガラスを取り付けた状態 で液体を満たす構成であってもよレ、。  In each of the above embodiments, the space between the projection optical system and the substrate surface is filled with the liquid. For example, the liquid is filled with a cover glass made of a plane-parallel plate attached to the surface of the substrate. It may be a configuration.
[0059] 上記各実施形態の基板(ウェハ)としては、半導体デバイス製造用の半導体ウェハ のみならず、ディスプレイデバイス用のガラス基板、薄膜磁気ヘッド用のセラミックゥェ ハ、あるいは露光装置で用いられるマスクまたはレチクルの原版(合成石英、シリコン ウェハ)等が適用される。  The substrate (wafer) of each of the above embodiments is not only a semiconductor wafer for manufacturing a semiconductor device, but also a glass substrate for a display device, a ceramic wafer for a thin film magnetic head, or a mask used in an exposure apparatus. Or reticle reticles (synthetic quartz, silicon wafers) are used.
[0060] 露光装置としては、マスク(レチクル)と基板(ウェハ)とを同期移動してマスクのパタ ーンを走査露光するステップ ·アンド 'スキャン方式の走査型露光装置 (スキャニング ステツパ)の他に、マスクと基板とを静止した状態でマスクのパターンを一括露光し、 基板を順次ステップ移動させるステップ'アンド'リピート方式の投影露光装置 (ステツ パ)にも適用することができる。  [0060] As an exposure apparatus, in addition to a step-and-'scan type scanning exposure apparatus (scanning stepper) that scans and exposes a mask pattern by moving a mask (reticle) and a substrate (wafer) synchronously. The present invention can also be applied to a step-and-repeat projection exposure apparatus (stepper) in which a mask pattern is collectively exposed while the mask and the substrate are stationary, and the substrate is sequentially moved stepwise.
[0061] また、露光装置としては、第 1パターンと基板とをほぼ静止した状態で第 1パターン の縮小像を投影光学系 (例えば 1/8縮小倍率で反射素子を含まない屈折型投影光 学系)を用いて基板上に一括露光する方式の露光装置にも適用できる。この場合、 更にその後に、第 2パターンと基板とをほぼ静止した状態で第 2パターンの縮小像を その投影光学系を用いて、第 1パターンと部分的に重ねて基板上に一括露光するス ティツチ方式の一括露光装置にも適用できる。また、ステイッチ方式の露光装置として は、基板上で少なくとも 2つのパターンを部分的に重ねて転写し、基板を順次移動さ せるステップ 'アンド'ステイッチ方式の露光装置にも適用できる。 [0061] In addition, the exposure apparatus projects a reduced image of the first pattern with the first pattern and the substrate substantially stationary, for example, a refraction-type projection optical system that does not include a reflective element at a 1/8 reduction magnification. The present invention can also be applied to an exposure apparatus that performs batch exposure on a substrate using a system. In this case, after that, with the second pattern and the substrate being substantially stationary, a reduced image of the second pattern is exposed onto the substrate in a lump by partially overlapping the first pattern using the projection optical system. It can also be applied to a batch type batch exposure apparatus. As a stitch type exposure device The method can also be applied to a step-and-stitch type exposure apparatus in which at least two patterns are partially superimposed and transferred on a substrate and the substrate is moved sequentially.
[0062] また、上記各実施形態では投影光学系を備えた露光装置を例に挙げて説明してき たが、投影光学系を用いない露光装置及び露光方法に本発明を適用することができ る。投影光学系を用いない場合であっても、露光光はマスク又はレンズなどの光学部 材を介して基板に照射され、そのような光学部材と基板との間の所定空間に液浸領 域が形成される。 In the above embodiments, the exposure apparatus provided with the projection optical system has been described as an example. However, the present invention can be applied to an exposure apparatus and an exposure method that do not use the projection optical system. Even when the projection optical system is not used, the exposure light is irradiated onto the substrate via an optical member such as a mask or a lens, and a liquid immersion area is formed in a predetermined space between the optical member and the substrate. It is formed.
[0063] また、本発明は、例えば特開平 10— 163099号公報及び特開平 10— 214783号 公報(対応米国特許第 6, 590, 634号)、特表 2000— 505958号公報(対応米国 特許第 5, 969, 441号)、米国特許第 6, 208, 407号などに開示されているような複 数の基板ステージを備えたマルチステージ型の露光装置にも適用できる。この場合、 上述の液浸システムを、全てのステージに設けてもよいし、一部のステージに設ける だけでもよい。  [0063] Further, the present invention is disclosed in, for example, Japanese Patent Laid-Open Nos. 10-163099 and 10-214783 (corresponding US Pat. No. 6,590,634), and Japanese Translation of PCT International Publication No. 2000-505958 (corresponding US Pat. 5, 969, 441), US Pat. No. 6,208,407, etc., and can be applied to a multi-stage type exposure apparatus having a plurality of substrate stages. In this case, the above immersion system may be provided on all stages or only on some stages.
[0064] 更に、特開平 11 135400号公報(対応国際公開 1999/23692)、及び特開 20 00— 164504号公報 (対応米国特許第 6, 897, 963号)等に開示されているように 、基板を保持する基板ステージと、基準マークが形成された基準部材及び各種の光 電センサを搭載した計測ステージとを備えた露光装置にも本発明を適用することが できる。  [0064] Further, as disclosed in JP-A-11 135400 (corresponding international publication 1999/23692), JP-A 2000-164504 (corresponding US Pat. No. 6,897,963), etc. The present invention can also be applied to an exposure apparatus that includes a substrate stage that holds a substrate, and a measurement stage on which a reference member on which a reference mark is formed and various photoelectric sensors are mounted.
[0065] また、上述の実施形態においては、投影光学系と基板との間に局所的に液体を満 たす露光装置を採用している力 本発明は、例えば特開平 6— 124873号公報、特 開平 10— 303114号公報、米国特許第 5, 825, 043号などに開示されているような 露光対象の基板の表面全体が液体中に浸かっている状態で露光を行う液浸露光装 置にも適用可能である。  Further, in the above-described embodiment, a force that employs an exposure apparatus that locally fills a liquid between the projection optical system and the substrate. The present invention is disclosed in, for example, Japanese Patent Application Laid-Open No. 6-124873, JP-A-10-303114, US Pat. No. 5,825,043, etc. discloses an immersion exposure apparatus that performs exposure while the entire surface of the substrate to be exposed is immersed in a liquid. Is also applicable.
[0066] 露光装置の種類としては、基板に半導体素子パターンを露光する半導体素子製造 用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の露光装 置、薄膜磁気ヘッド、撮像素子(CCD)、マイクロマシン、 MEMS、 DNAチップ、ある いはレチクル又はマスクなどを製造するための露光装置などにも広く適用できる。  [0066] The type of exposure apparatus is not limited to an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern on a substrate, but an exposure apparatus for manufacturing a liquid crystal display element or a display, a thin film magnetic head, an imaging element ( It can be widely applied to exposure equipment for manufacturing CCD), micromachines, MEMS, DNA chips, or reticles or masks.
[0067] 上述の実施形態においては、光透過性の基板上に所定の遮光パターン (又は位 相パターン '減光パターン)を形成した光透過型マスクを用いた力 このマスクに代え て、例えば米国特許第 6, 778, 257号公報に開示されているように、露光すべきパ ターンの電子データに基づいて透過パターン又は反射パターン、あるいは発光パタ ーンを形成する電子マスク(可変成形マスクとも呼ばれ、例えば非発光型画像表示 素子(空間光変調器)の一種である DMD (Digital Micro-mirror Device)などを含む) を用いてもよい。 In the embodiment described above, a predetermined light shielding pattern (or position) is formed on a light transmissive substrate. Force using a light-transmitting mask formed with a phase pattern (dimming pattern). Instead of this mask, for example, as disclosed in US Pat. No. 6,778,257, the electrons of the pattern to be exposed An electronic mask (also called a variable shaping mask) that forms a transmission pattern, reflection pattern, or light emission pattern based on the data. For example, DMD (Digital Micro-) is a type of non-light-emitting image display device (spatial light modulator). mirror Device) etc.) may be used.
[0068] また、例えば国際公開第 2001/035168号パンフレットに開示されているように、 干渉縞を基板上に形成することによって、基板上にライン'アンド 'スペースパターン を露光する露光装置(リソグラフィシステム)にも本発明を適用することができる。  [0068] Further, as disclosed in, for example, International Publication No. 2001/035168, an exposure apparatus (lithography system) that exposes a line and space pattern on a substrate by forming interference fringes on the substrate. ) Can also be applied to the present invention.
[0069] さらに、例えば特表 2004— 519850号公報(対応米国特許第 6, 611, 316号)に 開示されているように、 2つのマスクのパターンを、投影光学系を介して基板上で合 成し、 1回のスキャン露光によって基板上の 1つのショット領域をほぼ同時に二重露光 する露光装置にも本発明を適用することができる。  [0069] Further, as disclosed in, for example, JP-T-2004-519850 (corresponding US Pat. No. 6,611,316), two mask patterns are combined on a substrate via a projection optical system. The present invention can also be applied to an exposure apparatus that performs double exposure of one shot area on the substrate almost simultaneously by one scan exposure.
[0070] なお、法令で許容される限りにおいて、上記各実施形態及び変形例で引用した露 光装置などに関する全ての公開公報及び米国特許の開示を援用して本文の記載の 一部とする。  [0070] It should be noted that as far as permitted by law, the disclosure of all published publications and US patents related to the exposure apparatus and the like cited in the above embodiments and modifications are incorporated herein by reference.
[0071] 以上のように、露光装置は、各構成要素を含む各種サブシステムを、所定の機械 的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これ ら各種精度を確保するために、この組み立ての前後には、各種光学系については光 学的精度を達成するための調整、各種機械系については機械的精度を達成するた めの調整、各種電気系については電気的精度を達成するための調整が行われる。 各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機 械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サ ブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て 工程があることはいうまでもなレ、。各種サブシステムの露光装置への組み立て工程が 終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。な お、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行うこ とが望ましい。 半導体デバイス等のマイクロデバイスは、マイクロデバイスの機能 ·性能設計を行う ステップ、この設計ステップに基づいたマスク(レチクル)を製作するステップ、デバイ スの基材である基板を製造するステップ、前述した実施形態の露光装置によりマスク のパターンを基板に露光する工程、露光した基板を現像する工程、現像した基板の 加熱(キュア)及びエッチング工程などの基板処理プロセスを含むステップ、デバイス 組み立てステップ (ダイシング工程、ボンディング工程、パッケージ工程などの加工プ 口セスを含む)、検查ステップ等を経て製造される。 As described above, the exposure apparatus is manufactured by assembling various subsystems including each component so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. In order to ensure these various accuracies, before and after assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted to achieve mechanical accuracy, The electrical system is adjusted to achieve electrical accuracy. The assembly process from various subsystems to the exposure system includes mechanical connections, electrical circuit wiring connections, and pneumatic circuit piping connections between the various subsystems. It goes without saying that there is an assembly process for each subsystem before the assembly process from these various subsystems to the exposure system. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies for the exposure apparatus as a whole. It is desirable to manufacture the exposure apparatus in a clean room where the temperature and cleanliness are controlled. For microdevices such as semiconductor devices, the step of designing the function and performance of the microdevice, the step of manufacturing a mask (reticle) based on this design step, the step of manufacturing the substrate which is the base material of the device, the implementation described above Steps including substrate processing processes such as a process of exposing a mask pattern onto a substrate by an exposure apparatus of a form, a process of developing the exposed substrate, heating (curing) and etching of the developed substrate, device assembly step (dicing process, This includes manufacturing processes such as bonding processes and packaging processes, and inspection steps.

Claims

請求の範囲 The scope of the claims
[I] 液体を介して基板を露光する露光装置であって、  [I] An exposure apparatus that exposes a substrate through a liquid,
前記液体に含まれる不純物を除去する不純物除去機構を備える露光装置。  An exposure apparatus comprising an impurity removal mechanism for removing impurities contained in the liquid.
[2] 前記液体は、デカヒドロナフタレン (C H )を含む請求項 1に記載の露光装置。  [2] The exposure apparatus according to [1], wherein the liquid contains decahydronaphthalene (C H).
10 18  10 18
[3] 前記不純物は、酸素である請求項 1又は 2に記載の露光装置。  [3] The exposure apparatus according to [1] or [2], wherein the impurity is oxygen.
[4] 前記不純物除去機構は、酸素除去フィルターである請求項 1乃至 3に記載の露光 装置。  4. The exposure apparatus according to claim 1, wherein the impurity removal mechanism is an oxygen removal filter.
[5] 液体を介して基板を露光する露光方法であって、  [5] An exposure method for exposing a substrate through a liquid,
前記液体に含まれる不純物を除去し、  Removing impurities contained in the liquid;
前記不純物が除去された前記液体を介して露光ビームを前記基板に照射して前 記基板を露光する、露光方法。  An exposure method in which the substrate is exposed by irradiating the substrate with an exposure beam through the liquid from which the impurities have been removed.
[6] 前記液体は、デカヒドロナフタレン (C H )を含む請求項 5に記載の露光方法。 6. The exposure method according to claim 5, wherein the liquid contains decahydronaphthalene (C H).
10 18  10 18
[7] 前記不純物は、酸素である請求項 5又は 6に記載の露光方法。  7. The exposure method according to claim 5 or 6, wherein the impurity is oxygen.
[8] 液体を介して基板を露光する露光装置であって、 [8] An exposure apparatus that exposes a substrate through a liquid,
前記基板を実質的に密閉するチャンバ一と、  A chamber for substantially sealing the substrate;
前記チャンバ一内に希ガスを導入する導入口と、  An inlet for introducing a rare gas into the chamber;
前記チャンバ一内の希ガスを排出する排出口と、を備える露光装置。  An exposure apparatus comprising: a discharge port for discharging a rare gas in the chamber.
[9] 前記希ガスは、窒素ガス、ヘリウムガス、アルゴンガス又はそれらの混合ガスである 請求項 8に記載の露光装置。 9. The exposure apparatus according to claim 8, wherein the rare gas is nitrogen gas, helium gas, argon gas, or a mixed gas thereof.
[10] 液体を介して基板を露光する露光方法であって、 [10] An exposure method for exposing a substrate through a liquid,
チャンバ一内に前記基板を搬入し、  Loading the substrate into the chamber,
前記チャンバ一内に希ガスを導入し、  Introducing a rare gas into the chamber,
前記チャンバ一内の希ガスを排出する、露光方法。  An exposure method for discharging a rare gas in the chamber.
[II] 前記希ガスは、窒素ガス、ヘリウムガス、アルゴンガス又はそれらの混合ガスである 請求項 10に記載の露光方法。  [II] The exposure method according to claim 10, wherein the rare gas is nitrogen gas, helium gas, argon gas, or a mixed gas thereof.
[12] 液体を介して基板を露光する露光装置にぉレ、て、  [12] An exposure apparatus that exposes the substrate through the liquid, and
露光ビームに対する前記液体の透過率低下を抑制する透過率抑制機構を備えた 露光装置。 An exposure apparatus comprising a transmittance suppression mechanism that suppresses a decrease in the transmittance of the liquid with respect to an exposure beam.
[13] 前記液体は、デカヒドロナフタレン (C H )を含む請求項 12記載の露光装置。 13. The exposure apparatus according to claim 12, wherein the liquid contains decahydronaphthalene (C H).
10 18  10 18
[14] 前記液体を供給する液体供給機構をさらに備え、  [14] The apparatus further comprises a liquid supply mechanism for supplying the liquid,
前記透過率抑制機構は、前記液体供給機構から供給される前記液体中の酸素を 除去する酸素除去装置を含む請求項 13記載の露光装置。  14. The exposure apparatus according to claim 13, wherein the transmittance suppressing mechanism includes an oxygen removing device that removes oxygen in the liquid supplied from the liquid supply mechanism.
[15] 前記透過率抑制機構は、前記基板上の前記液体が酸素と接触しないように、前記 基板上の前記液体の周囲に所定のガスを供給するガス供給機構を含む請求項 13 又は 14記載の露光装置。 15. The transmittance control mechanism includes a gas supply mechanism that supplies a predetermined gas around the liquid on the substrate so that the liquid on the substrate does not come into contact with oxygen. Exposure equipment.
[16] 液体を介して露光光を照射して基板を露光する露光装置であって、 [16] An exposure apparatus that exposes a substrate by irradiating exposure light through a liquid,
前記基板上の液浸領域に液体を供給する液体供給部と、  A liquid supply section for supplying a liquid to an immersion area on the substrate;
前記基板上の液体周辺に気体を供給する気体供給部とを備える露光装置。  An exposure apparatus comprising: a gas supply unit that supplies a gas around the liquid on the substrate.
[17] 前記気体は、希ガスであることを特徴とする請求項 16に記載の露光装置。 17. The exposure apparatus according to claim 16, wherein the gas is a rare gas.
[18] 前記希ガスは、窒素ガス、ヘリウムガス、アルゴンガス又はそれらの混合ガスである ことを特徴とする請求項 17に記載の露光装置。 18. The exposure apparatus according to claim 17, wherein the rare gas is nitrogen gas, helium gas, argon gas, or a mixed gas thereof.
[19] 前記気体と前記基板とを格納する格納部をさらに備える請求項 16に記載の露光装 置。 19. The exposure apparatus according to claim 16, further comprising a storage unit that stores the gas and the substrate.
[20] 液体を介して露光光を照射して基板を露光する露光装置であって、  [20] An exposure apparatus that exposes a substrate by irradiating exposure light through a liquid,
前記基板上の液浸領域に液体を供給する液体供給部と、  A liquid supply section for supplying a liquid to an immersion area on the substrate;
前記露光光に対する液体の透過率低下を防止する透過率低下防止機構とを備え る露光装置。  An exposure apparatus comprising: a transmittance decrease prevention mechanism that prevents a decrease in the transmittance of the liquid with respect to the exposure light.
[21] 前記透過率低下防止機構は、前記基板上の液体周辺に希ガスを供給する希ガス 供給部であることを特徴する請求項 20に記載の露光装置。  21. The exposure apparatus according to claim 20, wherein the transmittance lowering prevention mechanism is a rare gas supply unit that supplies a rare gas around the liquid on the substrate.
[22] 前記透過率低下防止機構は、前記基板上の液体と前記希ガス供給部から供給さ れる希ガスとを格納する格納部をさらに備える請求項 21に記載の露光装置。 22. The exposure apparatus according to claim 21, wherein the transmittance reduction preventing mechanism further includes a storage unit that stores a liquid on the substrate and a rare gas supplied from the rare gas supply unit.
[23] 前記透過率低下防止機構は、液体に含まれる酸素を除去する酸素除去部材であ ることを特徴とする請求項 20に記載の露光装置。 23. The exposure apparatus according to claim 20, wherein the transmittance reduction preventing mechanism is an oxygen removing member that removes oxygen contained in the liquid.
[24] 前記酸素除去部材は、酸素除去フィルターであることを特徴とする請求項 23に記 載の露光装置。 24. The exposure apparatus according to claim 23, wherein the oxygen removing member is an oxygen removing filter.
[25] 液体を介して露光光を照射して基板を露光する露光装置であって、 前記基板上の液浸領域に液体を供給する液体供給部と、 [25] An exposure apparatus that exposes a substrate by irradiating exposure light through a liquid, A liquid supply section for supplying a liquid to an immersion area on the substrate;
前記基板を収納するチャンバ一と、  A chamber for storing the substrate;
前記チャンバ一内に希ガスを供給するガス供給部とを備える露光装置。  An exposure apparatus comprising a gas supply unit that supplies a rare gas into the chamber.
[26] 前記希ガスは、窒素ガス、ヘリウムガス、アルゴンガス又はそれらの混合ガスである ことを特徴とする請求項 25に記載の露光装置。 26. The exposure apparatus according to claim 25, wherein the rare gas is nitrogen gas, helium gas, argon gas, or a mixed gas thereof.
[27] 前記チャンバ一内から前記希ガスを回収するガス回収部をさらに備える請求項 25 に記載の露光装置。 27. The exposure apparatus according to claim 25, further comprising a gas recovery unit that recovers the rare gas from within the chamber.
PCT/JP2006/320738 2005-10-18 2006-10-18 Exposure apparatus and method of exposure WO2007046415A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005303748A JP2009009954A (en) 2005-10-18 2005-10-18 Aligner and exposure method
JP2005-303748 2005-10-18

Publications (1)

Publication Number Publication Date
WO2007046415A1 true WO2007046415A1 (en) 2007-04-26

Family

ID=37962508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320738 WO2007046415A1 (en) 2005-10-18 2006-10-18 Exposure apparatus and method of exposure

Country Status (3)

Country Link
JP (1) JP2009009954A (en)
TW (1) TW200725190A (en)
WO (1) WO2007046415A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06168866A (en) * 1992-11-27 1994-06-14 Canon Inc Projection aligner immersed in liquid
JP2005238921A (en) * 2004-02-25 2005-09-08 Denso Corp Compound sensor
JP2005252239A (en) * 2004-01-23 2005-09-15 Air Products & Chemicals Inc Immersion lithographic fluid
JP2005286286A (en) * 2004-03-04 2005-10-13 Nikon Corp Exposure method, aligner, device manufacturing method
JP2005286026A (en) * 2004-03-29 2005-10-13 Canon Inc Aligner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06168866A (en) * 1992-11-27 1994-06-14 Canon Inc Projection aligner immersed in liquid
JP2005252239A (en) * 2004-01-23 2005-09-15 Air Products & Chemicals Inc Immersion lithographic fluid
JP2005238921A (en) * 2004-02-25 2005-09-08 Denso Corp Compound sensor
JP2005286286A (en) * 2004-03-04 2005-10-13 Nikon Corp Exposure method, aligner, device manufacturing method
JP2005286026A (en) * 2004-03-29 2005-10-13 Canon Inc Aligner

Also Published As

Publication number Publication date
TW200725190A (en) 2007-07-01
JP2009009954A (en) 2009-01-15

Similar Documents

Publication Publication Date Title
US8179517B2 (en) Exposure apparatus and method, maintenance method for exposure apparatus, and device manufacturing method
JP4232449B2 (en) Exposure method, exposure apparatus, and device manufacturing method
JP5516628B2 (en) Exposure apparatus, exposure method, and device manufacturing method
KR101555707B1 (en) Exposure device exposure method and device manufacturing method
WO2007132862A1 (en) Projection optical system, exposure method, exposure apparatus, and method for manufacturing device
JP2009105414A (en) Exposure method, and device manufacturing method
JP2009158977A (en) Exposure apparatus and device fabrication method
JP4605219B2 (en) Exposure condition determination method, exposure method and exposure apparatus, and device manufacturing method
WO2008032863A1 (en) Immersion exposure apparatus and immersion exposure method, and device manufacturing method
US8638422B2 (en) Exposure method, exposure apparatus, method for producing device, and method for evaluating exposure apparatus
JP2005129898A (en) Aligner and device manufacturing method
JP2007059522A (en) Exposure device and device manufacturing method
US20110317139A1 (en) Exposure apparatus and exposure method, and device manufacturing method
JP2006100363A (en) Aligner, exposure method, and device manufacturing method
JP2008041822A (en) Exposure apparatus, device manufacturing method, and environment control unit
US7803516B2 (en) Exposure method, device manufacturing method using the same, exposure apparatus, and substrate processing method and apparatus
WO2012060410A1 (en) Liquid supply device, liquid supply method, management device, management method, exposure equipment, exposure method, system for producing devices, method for producing devices, program, and recording medium
WO2007046415A1 (en) Exposure apparatus and method of exposure
JP2007027631A (en) Exposure method, exposure apparatus, and device manufacturing method
EP1950612A1 (en) Exposure apparatus and method, and method for manufacturing device
WO2010082475A1 (en) Stage equipment, exposure equipment, exposure method and device manufacturing method
US20070127002A1 (en) Exposure apparatus and method, and device manufacturing method
JP2010016112A (en) Exposure apparatus, exposure method, and device manufacturing method
JP2005079294A (en) Exposure device, exposure system, and method for manufacturing device
JP2010123685A (en) Substrate processing method, device manufacturing system, aligner, and device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06821932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP