WO2007046344A1 - Process for producing isobutylene block copolymer - Google Patents

Process for producing isobutylene block copolymer Download PDF

Info

Publication number
WO2007046344A1
WO2007046344A1 PCT/JP2006/320600 JP2006320600W WO2007046344A1 WO 2007046344 A1 WO2007046344 A1 WO 2007046344A1 JP 2006320600 W JP2006320600 W JP 2006320600W WO 2007046344 A1 WO2007046344 A1 WO 2007046344A1
Authority
WO
WIPO (PCT)
Prior art keywords
isobutylene
monomer
polymerization
production method
polymer block
Prior art date
Application number
PCT/JP2006/320600
Other languages
French (fr)
Japanese (ja)
Inventor
Ryuji Fukuda
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2007540964A priority Critical patent/JPWO2007046344A1/en
Publication of WO2007046344A1 publication Critical patent/WO2007046344A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a method for producing an isobutylene block copolymer. More specifically, the present invention relates to a process for producing an isobutylene block copolymer comprising a polymer block having isobutylene as a main component of monomer and excellent polymer characteristics and a polymer block having no isoprene as a main component of monomer.
  • Patent Document 1 discloses a method for producing an isobutylene block copolymer in a mixed solvent in which methyl chloride and methylcyclohexane are combined.
  • Patent Document 2 also discloses a method for producing a block copolymer of isoprene and styrene force in a mixed solvent composed of methylene chloride and hexane.
  • Polymer block mainly composed of isobutylene When a triblock copolymer formed from a polymer block composed mainly of an aromatic butyl monomer is produced, the raw material handling method and polymerization during the production Depending on the polymerization operation, the mechanical properties represented by the tensile strength of the obtained triblock copolymer are not constant and may be significantly reduced, or the melt viscosity that affects the molding processing characteristics may be reduced. It was.
  • Patent Document 1 US Patent No. 4946899 Specification
  • Patent Document 2 Japanese Patent Publication No. 7-59601
  • an object of the present invention is to stably provide excellent mechanical properties.
  • the isobutylene block copolymer consisting of a polymer block containing isobutylene as the main monomer component and a polymer block not containing isobutylene as the main monomer component and having stable fluidity when melted It is intended to provide a method.
  • the present invention is a method in which the water content relative to the total weight of the reaction solvent and the monomer component is maintained at 75 ppm or less in the presence of a polymerization initiator represented by the following general formula (1).
  • a polymer comprising isobutylene as a main monomer component comprising reacting a monomer component (a) containing sobutylene as a main component with a monomer component (b) not containing isobutylene as a main component.
  • the present invention relates to a method for producing an isobutylene-based block copolymer having a polymer block power that does not contain block and isobutylene as monomer main components.
  • R 1 s are the same or different and each represents a hydrogen atom or a monovalent hydrocarbon group having carbon number:! To 6; R 2 represents a monovalent or polyvalent aromatic carbonization.
  • R 2 represents a monovalent or polyvalent aromatic carbonization.
  • X represents a halogen atom, an alkoxyl group having from 6 to 6 carbon atoms, or an alkoxyl group having from 1 to 6 carbon atoms
  • n is And represents an integer of 1 to 6.
  • a plurality of Xs are present, they may be the same or different.
  • the present invention relates to the above production method, wherein the polymerization reaction is carried out in the presence of a Lewis acid.
  • a further preferred embodiment relates to the above-described production method using titanium tetrachloride as norelic acid.
  • the polymerization initiator represented by the general formula (1) is bis (1-chloro-1-1-methylethyl) benzene [CH (C (CH) C1)] or (1-chloro-one).
  • 1-methylethyl) benzene [CHC (CH 3) C1] is at least one selected from the group.
  • the monomer component (b) not containing isobutylene as a main component relates to the production method described above, which is a monomer component containing an aromatic vinyl monomer as a main component.
  • the aromatic bur monomer is related to the above production method, which is at least one selected from the group consisting of styrene, p-methylol styrene, monomethyl styrene and indene.
  • the isobutylene block copolymer is a polymer block mainly composed of an aromatic butyl monomer.
  • a polymer block mainly composed of an isobutylene is an aromatic butyl monomer.
  • a monohalogenated hydrocarbon solvent comprising a primary monohalogenated hydrocarbon having 3 to 8 carbon atoms and Z or a secondary monohalogenated hydrocarbon having 3 to 8 carbon atoms
  • the present invention relates to the above production method, wherein the polymerization is carried out in a mixed solvent with a non-halogen hydrocarbon solvent comprising an aliphatic hydrocarbon and / or an aromatic hydrocarbon.
  • the monohalogenated hydrocarbon solvent is at least one selected from the group consisting of 1_chloropropane and 1_chlorobutane. About.
  • the non-halogenated hydrocarbon solvent is at least one selected from the group consisting of hexane, cyclohexane, methylcyclohexane, and ethylcyclohexane. About.
  • a polymer block comprising isobutylene as a main component of monomer and isobutylene as a monomer, which stably exhibits excellent mechanical properties and has a stable fluidity upon melting.
  • An isobutylene block copolymer composed of a polymer block which is not a main component is obtained. For this reason, a molded product can be obtained in which the processing characteristics without any significant change in the properties of the polymer each time the polymerization is performed and the properties after molding are not varied.
  • the present invention mainly comprises isobutylene in the presence of a polymerization initiator represented by the following general formula (1) in a state where the water content relative to the total weight of the reaction solvent and the monomer component is maintained at 75 ppm or less.
  • the present invention relates to a method for producing an isobutylene block copolymer comprising a polymer block containing no main component of ethylene.
  • R 1 s are the same or different and each represents a hydrogen atom or a monovalent hydrocarbon group having from 6 to 6 carbon atoms.
  • R 2 represents a monovalent or polyvalent aromatic hydrocarbon group or Monovalent or polyvalent fat Represents a group hydrocarbon group.
  • X represents a halogen atom, an alkoxyl group having from 6 to 6 carbon atoms, or a alkoxyl group having from 1 to 6 carbon atoms.
  • n represents an integer of 1 to 6. When there are a plurality of X, they may be the same or different.
  • the above-mentioned monomer component (b) containing isobutylene as a main component is preferably a monomer component having an isoprene content of 30% by weight or less, preferably 10% by weight or less. More preferably, it is more preferably 3% by weight or less. This is because when the content of isoprene is 30% or more, excellent mechanical strength is not exhibited.
  • the monomer other than isobutylene in the monomer component (b) not containing isobutylene as the main component of the present invention is not particularly limited as long as it is a monomer capable of cationic polymerization, but aliphatic olefins. And monomers such as aromatic burs, gens, bur ethers, silanes, burcarbazonoles, ⁇ -pinene, and acenaphthylene. These can be used alone or in combination of two or more.
  • the aliphatic olefin-based monomer is not particularly limited.
  • the aromatic bur monomer is not particularly limited.
  • the gen-based monomer is not particularly limited, and examples thereof include butadiene, isoprene, cyclopentagen, cyclohexagen, dicyclopentagen, dibutenebenzene, and ethylidene norbornene.
  • the butyl ether monomer is not particularly limited, and examples thereof include methyl butyl ether, ethyl vinyl ether, ( n- , iso) propyl butyl ether, ( n- , sec-, tert-, iso) butino. Revinino reetenore, methino lepropenole ethenore, ethino lepropenole eleter and the like.
  • the silanic compound is not particularly limited, and examples thereof include butyltrichlorosilane, butylmethyrene resin chlorosilane, vinyldimethylchlorosilane, butyldimethylmethoxysilane, vinyltrimethylsilane, dibutydichlorosilane, dibutydimethoxysilane, and dibutymethylenosilane. 1,3-Divininole 1,1,3,3-Tetramethylenoresisiloxane, Trivininoremethinoresilane, ⁇ -methacryloyloxyprovir trimethoxysilane, ⁇ -methacryloyloxypropylmethyldimethoxysilane, etc. .
  • the monomer component (b) not containing isobutylene as a main component of the present invention may be a monomer component containing an aromatic vinyl monomer as a main component from the balance of physical properties and polymerization characteristics. I like it.
  • the monomer component mainly composed of the aromatic bulle monomer of the present invention is a monomer component having an aromatic bule monomer content of 60% by weight or more, preferably 80% by weight or more. Show.
  • the monomer component (a) containing isobutylene as a main component may or may not contain a monomer other than isobutylene as a monomer component.
  • the monomer component contains 60% by weight or more, preferably 80% by weight or more of isobutylene.
  • the above isobutyle There are no particular restrictions on the monomers other than styrene, as long as they are cationically polymerizable monomers. For example, aliphatic olefins, aromatic vinyls, gens, vinyl ethers, silanes, vinyl carbazole, ⁇ - Examples thereof include monomers such as binene and acenaphthylene. These may be used alone or in combination of two or more.
  • the ratio of the polymer block mainly composed of isobutylene and the polymer block composed of a monomer component mainly composed of aromatic butyl is not particularly limited, but from the viewpoint of various physical properties, isobutylene is mainly used. It is preferable that the polymer block comprising 40 to 95% by weight of the polymer block and the polymer block comprising the monomer component mainly composed of aromatic bur are 5 to 60% by weight. It is particularly preferable that the polymer block is 50 to 85% by weight and the polymer block composed of a monomer component mainly composed of aromatic bur is 15 to 50% by weight.
  • the number average molecular weight of the isobutylene block copolymer is not particularly limited, but the surface strength such as fluid life, Kaloe life, and life time is 30,000 to 500,000.
  • the power that is between 50000 and 400000 S, especially preferred. If the number average molecular weight of the isobutylene block copolymer is lower than the above range, mechanical properties tend not to be sufficiently expressed. On the other hand, if the number exceeds the above range, the flowability and processability are poor. It is disadvantageous.
  • the above-mentioned number average molecular weight is obtained by Waters Gel Permeation Chromatography (GPC) system (column: Showa Denko Shodex K-804, K 802.5 (polystyrene gel), mobile phase: black mouth form). It is the value measured using.
  • GPC Waters Gel Permeation Chromatography
  • the preferred block copolymer of the isobutylene block copolymer (a) is a polymer block isobutylene containing an aromatic vinyl monomer as a main component from the viewpoint of physical balance.
  • These can be used alone or in combination of two or more in order to obtain the desired physical properties and moldability.
  • the triblock structure is particularly preferred from the viewpoint of processability and cost.
  • a styrene isobutylene styrene block copolymer and a styrene isobutylene block copolymer having a diblock structure are preferred.
  • the compound represented by the general formula (1) serves as an initiator and serves as a starting point for cationic polymerization.
  • a plurality of R 1 s are the same or different and represent a hydrogen atom or a monovalent hydrocarbon group having 6 to 6 carbon atoms.
  • R 2 represents a monovalent or polyvalent aromatic hydrocarbon group or a monovalent or polyvalent aliphatic hydrocarbon group.
  • X represents a halogen atom, an alkoxy group having 1 to 6 carbon atoms, or a alkoxyl group having 1 to 6 carbon atoms.
  • n represents an integer of 1 to 6. When a plurality of X are present, they may be the same or different.
  • Examples of the compound of the general formula (1) used in the present invention include the following compounds.
  • N- (1-chloro-1-methylethyl) benzene is also referred to as (cyclochloroisopropyl) benzene, (2-chloro-2-propyl) benzene or tammyl chloride, and bis (1-chloro-1-methylenoethyl) benzene is bis Also known as (one black mouth isopropylene) benzene, bis (2-chloro mouth _ 2_propyl) benzene or dicmilk mouth ride, tris (1 chloro one 1-methinore ethinore) benzene is tris (one head mouth isopropylene). Nore) benzene, tris (2-chloropropyl
  • a Lewis acid catalyst may be allowed to coexist.
  • Such Lewis acid may be any one that can be used for cationic polymerization.
  • Metal halides such as FeCl, ZnBr, A1C1, and AlBr;
  • Organometallic halides such as EtA1C1 and EtAlCl can be preferably used (Et represents an ethyl group).
  • TiCl, BC1, and SnCl are preferred when considering the ability as a catalyst and industrial availability.
  • the amount of norelic acid used is not particularly limited, but can be set in view of the polymerization characteristics or polymerization concentration of the monomer used. Usually, 0.1 to 100 molar equivalents can be used with respect to the compound represented by the general formula (1), preferably in the range of 1 to 50 molar equivalents.
  • an electron donor component may be further present if necessary.
  • This electron donor component is believed to have the effect of stabilizing the growing carbon cation during cationic polymerization, and the addition of an electron donor produces a polymer with a controlled molecular weight distribution structure.
  • the electron donor component that can be used is not particularly limited, and examples thereof include pyridines, amines, amides, sulfoxides, esters, and metal compounds having an oxygen atom bonded to a metal atom. it can.
  • Examples of the electron donor component include those having 15 to 60 donors defined as one parameter representing the strength of various compounds as electron donors (electron donors). 2,6-di-t-butylpyridine, 2-t-butylpyridine, 2,4,6-trimethylpyridine, 2,6-dimethylviridine, 2-methinolepyridine, pyridine, jetylamine, trimethylamine, triethylamine , Tributylamine, N, N-dimethylaniline, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-jetylacetamide, dimethyl sulfoxide, jetyl ether, methyl acetate, acetic acid Ethyl, trimethyl phosphate, hexamethyl phosphate triamide, titanium (III) methoxide, titanium (IV) methoxide, titanium (IV) isopropoxide, Titanium (IV) butoxide and other titanium alkoxides; aluminum triethoxide and aluminum tribut
  • Preferred examples include 2,6-di_t_butylpyridine, 2,6_dimethylpyridine, 2-Methylenopyridine, pyridine, cetylamine, trimethinoleamine, triethylamine, N, N-dimethylolenolemamide, N, N-dimethylacetamide, dimethyl sulfoxide, titanium (IV) isopropoxide, titanium (IV) Examples include butoxide. To the number of donors of the above various substances About "Donor and Acceptor", by Dardman, Otsuki, Okada translation, Academic Publishing Center
  • the electron donor component is used in an amount of 0.01 to 10 moles relative to the polymerization initiator. Of these, it is preferably used in the range of 0.2 to 4 moles.
  • the polymerization can be carried out in a solvent, if necessary.
  • a solvent any conventionally known solvent can be used as long as it does not essentially inhibit cationic polymerization.
  • methyl chloride, dichloromethane, n-propyl chloride, n-butinorechloride can be used.
  • Halogenated hydrocarbons such as benzene, toluene, xylene, ethylbenzene, alkylbenzenes such as propylbenzene, butylbenzene; ethane, propane, butane, pentane, hexane, heptane, octane, nonane, decane, etc.
  • Linear aliphatic hydrocarbons such as 2-methylpropane, 2-methylbutane, 2,3,3-trimethylpentane, 2,2,5-trimethylhexane; cyclohexane, Cycloaliphatic hydrocarbons such as methylcyclohexane and ethylcyclohexane; paraforms obtained by hydrogenation of petroleum fractions Mention may be made of the fin oil, and the like.
  • These homogeneous IJs are used alone or in combination of two or more in consideration of the balance of the polymerization characteristics of the monomers constituting the block copolymer and the solubility of the resulting polymer. .
  • monohalogenated hydrocarbon solvents composed of primary monohalogenated hydrocarbons having 3 to 8 carbon atoms and / or secondary monohalogenated hydrocarbons having 3 to 8 carbon atoms, aliphatic hydrocarbons and / or
  • polymerization in a mixed solvent with a non-halogen hydrocarbon solvent composed of an aromatic hydrocarbon improves workability in the water washing step after polymerization, and facilitates wastewater treatment after water washing. Preferred from.
  • the primary monohalogenated hydrocarbon having 3 to 8 carbon atoms and the secondary monohalogenated hydrocarbon having 3 to 8 carbon atoms are not particularly limited.
  • a monohalogenated solvent having 3 carbon atoms for example, a monohalogenated solvent having 3 carbon atoms, a monohalogenated solvent having 4 carbon atoms, a combination of a monohalogenated solvent having 3 carbon atoms and a monohalogenated solvent having 4 carbon atoms, monohalogenated with 4 to 8 carbon atoms It may be a combination of at least one of the solvents.
  • a monohalogenated solvent having 3 carbon atoms a monohalogenated solvent having 4 carbon atoms
  • a combination of a monohalogenated solvent having 3 carbon atoms and a monohalogenated solvent having 4 carbon atoms monohalogenated with 4 to 8 carbon atoms It may be a combination of at least one of the solvents.
  • 1_black propane and Z or 1_chlorobutane for example, a monohalogenated solvent having 3 carbon atoms, a combination of a monohalogenated solvent having 3 carbon atoms and a monohalogenated solvent having 4 carbon
  • the aliphatic hydrocarbon and the aromatic hydrocarbon as the non-halogen solvent are not particularly limited.
  • These can be used alone or in combination of two or more. From the balance of solubility, cost, dielectric constant, etc.
  • At least one selected from the group consisting of hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, toluene and xylene is preferred. Particularly preferred is at least i selected from the group consisting of methylcyclohexane and ethylcyclohexane.
  • the polymerization solvent in the present invention is a monohalogenated hydrocarbon comprising the primary monohalogenated hydrocarbon having 3 to 8 carbon atoms and / or the secondary monohalogenated hydrocarbon having 3 to 8 carbon atoms. And a non-halogenated hydrocarbon solvent composed of an aliphatic hydrocarbon and / or an aromatic hydrocarbon.
  • the content of the monohalogenated hydrocarbon solvent in the mixed solvent is not particularly limited, and may be set so as to obtain a desired dielectric constant or solubility of the block copolymer. 98% by weight, preferably 20 to 95% by weight.
  • the amount of the solvent used is determined in consideration of the viscosity of the resulting polymer solution and the ease of heat removal. Usually, the concentration of the polymer is adjusted to 1 to 50 wt%, preferably 5 Set to ⁇ 35wt%.
  • the method for producing the isobutylene block copolymer of the present invention is not particularly limited except that the amount of water during the reaction is adjusted using a polymerization initiator.
  • a polymerization initiator for example, the above general formula is used in the above solvent.
  • Add the compound represented by (1) and, if necessary, an electron donor component, a monomer component mainly composed of an aromatic butyl monomer or a monomer component mainly composed of isobutylene, and further add Lewis Polymerization is started by adding an acid, and after the polymerization of the added monomer component is substantially completed, another monomer component may be added and polymerized. Furthermore, if necessary, another monomer component may be added after the polymerization is substantially completed, and the polymerization may be continued.
  • the water content is a value measured by a Karl Fischer moisture meter.
  • This value is liquid at normal temperature and normal pressure among the water content of the reaction solvent used for polymerization and the monomer components added to the polymerization system before the start of polymerization (before the addition of Lewis acid catalyst).
  • the amount of water present in the reaction system can be calculated from the total amount of water of the monomer components, the reaction solvent weight, and the monomer weight.
  • the monomer component is a component that is added to the polymerization system before the start of polymerization, including the initiator and electron donor component, which are composed of only the monomer component constituting the polymer. Shall be included.
  • the reaction is carried out in a state where the water content relative to the total weight of the reaction solvent and the monomer component is kept at 75 ppm or less.
  • the water content is preferably 50 ppm or less, more preferably 2 Oppm or less.
  • the moisture content is higher than 75 PP m, the tensile strength of the polymer obtained under the same reaction conditions except for the moisture content is 75 ppm or less.
  • the isobutylene block copolymer of the present invention has a reinforcing agent, a filler, an antioxidant, an ultraviolet absorber, a light stabilizer, and the like within a range that does not impair the physical properties according to the required characteristics according to each application.
  • Pigments, surfactants, reaction retarders, flame retardants, fillers, reinforcing agents, etc. can be added as appropriate.
  • antioxidants include, but are not limited to, hindered phenols and hindered amines.
  • the isobutylene block copolymer and the composition containing the same can be molded using a molding method and a molding apparatus generally employed for thermoplastic resins, such as extrusion molding, injection molding, and press molding. It can be melt molded by blow molding or the like.
  • the isobutylene block copolymer produced by the method according to the present invention and the composition containing the same can be used for various applications similar to those of the conventional isobutylene block copolymer.
  • elastomer materials for example, elastomer materials, resin, rubber, asphalt modifiers, adhesive base polymers, resin modifiers, packing materials, sealing materials, gaskets, sealing materials such as plugs, and CD dampers Dampers, dampers for buildings, damping materials for automobiles, vehicles, household appliances, etc., anti-vibration materials, automotive interior materials, cushioning materials, daily necessities, electrical components, electronic components, sports materials, grips or cushioning materials, wire coating materials It can be suitably used as packaging materials, various containers, and stationery parts.
  • a 2mm thick press sheet is punched into No. 3 with a dumbbell and tested.
  • a piece was prepared and used to measure the tensile strength at break.
  • the tensile speed was 500 mm / min.
  • a 2 mm thick press sheet was cut into about 3 mm square and used.
  • measurement was performed at 230 ° C and 2.16 kg load with Menoleto Indexer F—F01 (manufactured by Toyo Seiki Seisakusho).
  • the obtained block copolymer was melt kneaded at 180 ° C with a Laboplast mill (manufactured by Toyo Seiki Seisakusho), and the obtained kneaded product was 170 at a compression molding machine (manufactured by Shinto Metal Industries).
  • a 2 mm thick sheet was obtained by press molding at ° C.
  • a test piece was prepared according to the above method, and the tensile strength was measured.
  • Table 1 shows the amount of moisture in the reaction system measured by the above method and the measurement results of tensile strength.
  • Example 1 Polymerization was carried out in the same manner as in Example 1 by adding water to the solvent so that the moisture described in Table 1 was obtained.
  • Table 1 shows the moisture content in the reaction system measured by the above method and the measurement results of tensile strength.
  • Example 1 Polymerization was carried out in the same manner as in Example 1 except that a solvent that was not dried with a molecular sieve was used. Table 1 shows the moisture content in the reaction system measured by the above method and the measurement results of tensile strength.
  • Example 1 Polymerization was carried out in the same manner as in Example 1 by adding water to the solvent so that the moisture described in Table 1 was obtained.
  • Table 1 shows the moisture content in the reaction system measured by the above method and the measurement results of tensile strength.
  • the isoprene monomer was fed into the inside by nitrogen pressure. 0.289 g (1.25 mmol) of p-dic milk mouthride and 0.222 g (2.5 mmol) of N, N′-dimethylacetamide were added. Next, 5.92 mL (54 mmol) of titanium tetrachloride was further added to initiate polymerization. After stirring for 90 minutes from the start of polymerization, about 1 mL of the polymerization solution was extracted from the polymerization solution for sampling. Subsequently, 40.81 g (391.9 mmol) of styrene monomer was added into the polymerization vessel.
  • the reaction was terminated by adding a large amount of water. Thereafter, the reaction solution was washed twice with water, the solvent was evaporated, and the obtained polymer was vacuum-dried at 60 ° C. for 24 hours to obtain the target block copolymer.
  • a press sheet was produced from the obtained block copolymer in the same manner as in Example 1, and the tensile strength was measured.
  • Table 2 shows the moisture content in the reaction system measured by the above method and the measurement results of tensile strength.
  • a press sheet was produced from the obtained block copolymer in the same manner as in Example 1, and the tensile strength was measured.
  • Table 3 shows the measurement results of water content, tensile strength, and melt flow rate in the reaction system measured by the above method.
  • a press sheet was produced from the obtained block copolymer in the same manner as in Example 1, and the tensile strength was measured.
  • Table 4 shows the moisture content in the reaction system measured by the above method and the measurement results of tensile strength.
  • the isobutylene block copolymer produced by the production method of the present invention has a tensile strength higher than that of a block copolymer produced under the same polymerization conditions and a water content of 75 ppm or more. Shows a stable high value and low fluidity during melting. It was found to show a fixed value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)
  • Polymerization Catalysts (AREA)

Abstract

A process for producing an isobutylene block copolymer comprising a polymer block formed from one or more monomers comprising isobutylene as the main ingredient and a polymer block formed from one or more monomers in which isobutylene is not the main ingredient. The block copolymer stably has excellent mechanical properties and is stably flowable in a molten state. A monomer ingredient (a) comprising isobutylene as the main component is reacted with a monomer ingredient (b) in which isobutylene is not the main component, in the presence of a polymerization initiator having a given structure while keeping the amount of water at up to 75 weight ppm of the total amount of the reaction solvent and the monomer ingredients.

Description

明 細 書  Specification
イソブチレン系ブロック共重合体の製造方法  Method for producing isobutylene block copolymer
技術分野  Technical field
[0001] 本発明はイソブチレン系ブロック共重合体の製造方法に関する。更に詳細には、機 械的特性に優れたイソブチレンを単量体主成分とする重合体ブロックとイソプチレン を単量体主成分としない重合体ブロックからなるイソブチレン系ブロック共重合体の 製造方法に関する。  The present invention relates to a method for producing an isobutylene block copolymer. More specifically, the present invention relates to a process for producing an isobutylene block copolymer comprising a polymer block having isobutylene as a main component of monomer and excellent polymer characteristics and a polymer block having no isoprene as a main component of monomer.
背景技術  Background art
[0002] イソプチレンとスチレン等の芳香族ビニル系単量体をカチオン重合することにより、 イソプチレンからなる重合体ブロック及び芳香族ビニル系単量体からなる重合体プロ ックからなるイソブチレン系ブロック共重合体を製造できることが知られている。例え ば、特許文献 1には、塩化メチルとメチルシクロへキサンを組み合わせた混合溶媒中 でのイソブチレン系ブロック共重合体の製造方法が開示されている。また、特許文献 2にも、塩化メチレンとへキサンからなる混合溶媒中におけるイソプチレンとスチレン 力 のブロック共重合体の製造方法が示されている。  [0002] By isotopylene and aromatic vinyl monomers such as styrene by cationic polymerization, a polymer block composed of isoprene and an isobutylene block copolymer composed of a polymer block composed of an aromatic vinyl monomer It is known that coalescence can be produced. For example, Patent Document 1 discloses a method for producing an isobutylene block copolymer in a mixed solvent in which methyl chloride and methylcyclohexane are combined. Patent Document 2 also discloses a method for producing a block copolymer of isoprene and styrene force in a mixed solvent composed of methylene chloride and hexane.
[0003] これら特許文献に記載の方法でイソプチレンからなる重合体ブロック及び芳香族ビ 二ル系単量体からなる重合体ブロックからなる芳香族ビニル系単量体を主成分とす る重合体ブロック—イソブチレンを主成分とする重合体ブロック—芳香族ビュル系単 量体を主成分とする重合体ブロックから形成されるトリブロック共重合体を製造した場 合、製造時の原料の取り扱い方法や重合時の重合操作によって、得られたトリブロッ ク共重合体の、引張強度に代表される機械的特性が一定せず、著しく低下したり、成 形加工特性を左右する溶融粘度が低下する場合があった。  [0003] A polymer block composed mainly of an aromatic vinyl monomer composed of a polymer block composed of isoprene and a polymer block composed of an aromatic vinyl monomer by the methods described in these patent documents. —Polymer block mainly composed of isobutylene—When a triblock copolymer formed from a polymer block composed mainly of an aromatic butyl monomer is produced, the raw material handling method and polymerization during the production Depending on the polymerization operation, the mechanical properties represented by the tensile strength of the obtained triblock copolymer are not constant and may be significantly reduced, or the melt viscosity that affects the molding processing characteristics may be reduced. It was.
特許文献 1:米国特許第 4946899号明細書  Patent Document 1: US Patent No. 4946899 Specification
特許文献 2:特公平 7 - 59601号公報  Patent Document 2: Japanese Patent Publication No. 7-59601
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 本発明の目的は、上記従来技術の問題点に鑑みて、優れた機械的特性を安定的 に示し、溶融時の流動性が安定した、イソブチレンを単量体主成分とする重合体プロ ックとイソブチレンを単量体主成分としない重合体ブロックからなるイソブチレン系ブ ロック共重合体の製造方法を提供することを目的とするものである。 [0004] In view of the above-mentioned problems of the prior art, an object of the present invention is to stably provide excellent mechanical properties. The isobutylene block copolymer consisting of a polymer block containing isobutylene as the main monomer component and a polymer block not containing isobutylene as the main monomer component and having stable fluidity when melted It is intended to provide a method.
課題を解決するための手段  Means for solving the problem
[0005] 本発明者は、鋭意研究を重ねた結果、イソブチレン系ブロック共重合体の重合反 応を反応溶媒と単量体成分の合計重量に対し水分量が 75pmm以下に保持した条 件で行うことにより前記課題を解決できることを見出し、本発明に至ったものである。  [0005] As a result of extensive research, the present inventor performs the polymerization reaction of the isobutylene block copolymer under the condition that the water content is maintained at 75 pmm or less with respect to the total weight of the reaction solvent and the monomer component. As a result, the inventors have found that the above problems can be solved, and have reached the present invention.
[0006] すなわち、本発明は、反応溶媒と単量体成分の合計重量に対する水分量を 75pp m以下に保持した状態で、下記一般式(1)で表わされる重合開始剤の存在下に、ィ ソブチレンを主成分とする単量体成分(a)と、イソブチレンを主成分としない単量体成 分 (b)とを反応させることを特徴とする、イソブチレンを単量体主成分とする重合体ブ ロックとイソブチレンを単量体主成分としない重合体ブロック力 なるイソブチレン系 ブロック共重合体の製造方法に関する。  [0006] That is, the present invention is a method in which the water content relative to the total weight of the reaction solvent and the monomer component is maintained at 75 ppm or less in the presence of a polymerization initiator represented by the following general formula (1). A polymer comprising isobutylene as a main monomer component, comprising reacting a monomer component (a) containing sobutylene as a main component with a monomer component (b) not containing isobutylene as a main component. The present invention relates to a method for producing an isobutylene-based block copolymer having a polymer block power that does not contain block and isobutylene as monomer main components.
[0007] [化 2]  [0007] [Chemical 2]
Figure imgf000003_0001
Figure imgf000003_0001
[0008] (式中、複数の R1は、同一又は異なって、水素原子又は炭素数:!〜 6の 1価の炭化水 素基を表す。 R2は、 1価若しくは多価芳香族炭化水素基又は 1価若しくは多価脂肪 族炭化水素基を表す。 Xは、ハロゲン原子、炭素数:!〜 6のアルコキシル基、又は、 炭素数 1〜6のァシ口キシル基を表す。 nは、 1〜6の整数を表す。 Xが複数存在する とき、それらは、同一であっても異なっていてもよい。 ) (In the formula, a plurality of R 1 s are the same or different and each represents a hydrogen atom or a monovalent hydrocarbon group having carbon number:! To 6; R 2 represents a monovalent or polyvalent aromatic carbonization. Represents a hydrogen group or a monovalent or polyvalent aliphatic hydrocarbon group, X represents a halogen atom, an alkoxyl group having from 6 to 6 carbon atoms, or an alkoxyl group having from 1 to 6 carbon atoms, n is And represents an integer of 1 to 6. When a plurality of Xs are present, they may be the same or different.
反応溶媒と単量体成分の合計重量に対する水分量を 50ppm以下に保持するのが 好ましぐ 20ppm以下に保持するのが更に好ましい。 [0009] 好ましい実施様態としては、重合反応を、ルイス酸を更に共存させて行うものである 前記の製造方法に関する。 It is preferable to keep the water content with respect to the total weight of the reaction solvent and the monomer component at 50 ppm or less, more preferably 20 ppm or less. [0009] In a preferred embodiment, the present invention relates to the above production method, wherein the polymerization reaction is carried out in the presence of a Lewis acid.
[0010] さらに好ましい実施様態としては、ノレイス酸として、四塩化チタンを用いる前記の製 造方法に関する。 [0010] A further preferred embodiment relates to the above-described production method using titanium tetrachloride as norelic acid.
[0011] 好ましい実施様態としては、一般式(1)で表わされる重合開始剤は、ビス(1—クロ ル一 1—メチルェチル)ベンゼン [C H (C (CH ) C1) ]または(1—クロル一 1—メチ ルェチル)ベンゼン [C H C (CH ) C1]から選択される少なくとも 1種である前記の製 造方法に関する。  In a preferred embodiment, the polymerization initiator represented by the general formula (1) is bis (1-chloro-1-1-methylethyl) benzene [CH (C (CH) C1)] or (1-chloro-one). 1-methylethyl) benzene [CHC (CH 3) C1] The above production method is at least one selected from the group.
[0012] 好ましい実施様態としては、イソブチレンを主成分としない単量体成分 (b)は、芳香 族ビニル系単量体を主成分とする単量体成分である前記の製造方法に関する。  [0012] As a preferred embodiment, the monomer component (b) not containing isobutylene as a main component relates to the production method described above, which is a monomer component containing an aromatic vinyl monomer as a main component.
[0013] さらに好ましい実施様態としては、芳香族ビュル系単量体は、スチレン、 p—メチノレ スチレン、 ひ一メチルスチレン及びインデンからなる群より選択される少なくとも 1種で ある前記の製造方法に関する。  [0013] In a more preferred embodiment, the aromatic bur monomer is related to the above production method, which is at least one selected from the group consisting of styrene, p-methylol styrene, monomethyl styrene and indene.
[0014] 好ましい実施様態としては、イソブチレン系ブロック共重合体は、芳香族ビュル系単 量体を主成分とする重合体ブロック イソブチレンを主成分とする重合体ブロック 芳香族ビュル系単量体を主成分とする重合体ブロックから形成されるトリブロック共重 合体、イソブチレンを主成分とする重合体ブロック一芳香族ビュル系単量体を主成分 とする重合体ブロック イソブチレンを主成分とする重合体ブロックから形成されるトリ ブロック共重合体、及び、芳香族ビュル系単量体を主成分とする重合体ブロックーィ ソブチレンを主成分とする重合体ブロックから形成されるジブロック共重合体からなる 群より選択される少なくとも 1種である前記の製造方法に関する。  [0014] As a preferred embodiment, the isobutylene block copolymer is a polymer block mainly composed of an aromatic butyl monomer. A polymer block mainly composed of an isobutylene is an aromatic butyl monomer. A triblock copolymer formed from a polymer block as a component, a polymer block mainly composed of isobutylene, a polymer block mainly composed of an aromatic butyl monomer, and a polymer block mainly composed of isobutylene Selected from the group consisting of a triblock copolymer formed from a diblock copolymer formed from a polymer block mainly composed of an aromatic butyl monomer and a polymer block composed mainly of a sobutylene It is related with the said manufacturing method which is at least 1 sort.
[0015] 好ましい実施様態としては、炭素数 3〜8の 1級のモノハロゲン化炭化水素及び Z 又は炭素数 3〜8の 2級のモノハロゲン化炭化水素からなるモノハロゲン化炭化水素 系溶媒と、脂肪族系炭化水素及び/又は芳香族系炭化水素からなる非ハロゲンィ匕 炭化水素系溶媒との混合溶媒中で重合を行うことを特徴とする前記の製造方法に関 する。  As a preferred embodiment, a monohalogenated hydrocarbon solvent comprising a primary monohalogenated hydrocarbon having 3 to 8 carbon atoms and Z or a secondary monohalogenated hydrocarbon having 3 to 8 carbon atoms, and In addition, the present invention relates to the above production method, wherein the polymerization is carried out in a mixed solvent with a non-halogen hydrocarbon solvent comprising an aliphatic hydrocarbon and / or an aromatic hydrocarbon.
[0016] 好ましい実施様態としては、モノハロゲン化炭化水素系溶媒は、 1 _クロ口プロパン 及び 1 _クロロブタンからなる群より選択される少なくとも 1種である前記の製造方法 に関する。 In a preferred embodiment, the monohalogenated hydrocarbon solvent is at least one selected from the group consisting of 1_chloropropane and 1_chlorobutane. About.
[0017] 好ましい実施様態としては、非ハロゲン化炭化水素系溶媒は、へキサン、シクロへ キサン、メチルシクロへキサン及びェチルシクロへキサンからなる群より選択される少 なくとも 1種である前記の製造方法に関する。  [0017] In a preferred embodiment, the non-halogenated hydrocarbon solvent is at least one selected from the group consisting of hexane, cyclohexane, methylcyclohexane, and ethylcyclohexane. About.
発明の効果  The invention's effect
[0018] 本発明の製造方法によれば、優れた機械的特性を安定的に示し、溶融時の流動 性が安定した、イソブチレンを単量体主成分とする重合体ブロックとイソブチレンを単 量体主成分としない重合体ブロックからなるイソブチレン系ブロック共重合体が得ら れる。このため、重合のたびに重合体の特性が大きく変化するがことなぐ加工特性 が安定し、成形カ卩ェ後の特性にばらつきがない成形品を得ることができる。  [0018] According to the production method of the present invention, a polymer block comprising isobutylene as a main component of monomer and isobutylene as a monomer, which stably exhibits excellent mechanical properties and has a stable fluidity upon melting. An isobutylene block copolymer composed of a polymer block which is not a main component is obtained. For this reason, a molded product can be obtained in which the processing characteristics without any significant change in the properties of the polymer each time the polymerization is performed and the properties after molding are not varied.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 以下、本発明について詳細に説明する。  Hereinafter, the present invention will be described in detail.
[0020] 本発明は、反応溶媒と単量体成分の合計重量に対する水分量を 75ppm以下に保 持した状態で、下記一般式(1)で表わされる重合開始剤の存在下に、イソブチレンを 主成分とする単量体成分(a)と、イソブチレンを主成分としない単量体成分 (b)とを反 応させることを特徴とする、イソブチレンを単量体主成分とする重合体ブロックとイソブ チレンを単量体主成分としない重合体ブロックからなるイソブチレン系ブロック共重合 体の製造方法に関する。  [0020] The present invention mainly comprises isobutylene in the presence of a polymerization initiator represented by the following general formula (1) in a state where the water content relative to the total weight of the reaction solvent and the monomer component is maintained at 75 ppm or less. A polymer block containing isobutylene as a main component of a monomer and an isobutylene, characterized by reacting the monomer component (a) as a main component with a monomer component (b) containing no isobutylene as a main component. The present invention relates to a method for producing an isobutylene block copolymer comprising a polymer block containing no main component of ethylene.
[0021] [化 3] [0021] [Chemical 3]
Figure imgf000005_0001
Figure imgf000005_0001
(式中、複数の R1は、同一又は異なって、水素原子又は炭素数:!〜 6の 1価の炭化水 素基を表す。 R2は、 1価若しくは多価芳香族炭化水素基又は 1価若しくは多価脂肪 族炭化水素基を表す。 Xは、ハロゲン原子、炭素数:!〜 6のアルコキシル基、又は、 炭素数 1〜6のァシ口キシル基を表す。 nは、 1〜6の整数を表す。 Xが複数存在する とき、それらは、同一であっても異なっていてもよい。 (In the formula, a plurality of R 1 s are the same or different and each represents a hydrogen atom or a monovalent hydrocarbon group having from 6 to 6 carbon atoms. R 2 represents a monovalent or polyvalent aromatic hydrocarbon group or Monovalent or polyvalent fat Represents a group hydrocarbon group. X represents a halogen atom, an alkoxyl group having from 6 to 6 carbon atoms, or a alkoxyl group having from 1 to 6 carbon atoms. n represents an integer of 1 to 6. When there are a plurality of X, they may be the same or different.
[0023] 上記、イソブチレンを主成分としなレ、単量体成分 (b)は、イソプチレンの含有量が 3 0重量%以下である単量体成分であるのが好ましぐ 10重量%以下であることがより 好ましぐ 3重量%以下であることがさらに好ましい。これは、イソプチレンの含有量が 30%以上になると、優れた機械強度が発現されなくなるためである。  [0023] The above-mentioned monomer component (b) containing isobutylene as a main component is preferably a monomer component having an isoprene content of 30% by weight or less, preferably 10% by weight or less. More preferably, it is more preferably 3% by weight or less. This is because when the content of isoprene is 30% or more, excellent mechanical strength is not exhibited.
[0024] 本発明のイソブチレンを主成分としない単量体成分(b)中の、イソブチレン以外の 単量体は、カチオン重合可能な単量体であれば特に限定されないが、脂肪族ォレフ イン類、芳香族ビュル類、ジェン類、ビュルエーテル類、シラン類、ビュルカルバゾー ノレ、 β—ピネン、ァセナフチレン等の単量体が例示できる。これらは単独で又は 2種 以上組み合わせて使用することができる。  [0024] The monomer other than isobutylene in the monomer component (b) not containing isobutylene as the main component of the present invention is not particularly limited as long as it is a monomer capable of cationic polymerization, but aliphatic olefins. And monomers such as aromatic burs, gens, bur ethers, silanes, burcarbazonoles, β-pinene, and acenaphthylene. These can be used alone or in combination of two or more.
[0025] 脂肪族ォレフイン系単量体としては特に限定されず、例えば、エチレン、プロピレン 、 1—ブテン、 2—メチル 1—ブテン、 3—メチル 1—ブテン、ペンテン、へキセン、 シクロへキセン、 4ーメチルー 1 ペンテン、ビニルシクロへキセン、オタテン、ノルボ ルネン等が挙げられる。  [0025] The aliphatic olefin-based monomer is not particularly limited. For example, ethylene, propylene, 1-butene, 2-methyl 1-butene, 3-methyl 1-butene, pentene, hexene, cyclohexene, 4-methyl-1-pentene, vinylcyclohexene, otaten, norbornene and the like.
[0026] 芳香族ビュル系単量体としては特に限定されず、例えば、スチレン、 ο—、 m—又は p—メチルスチレン、 α—メチルスチレン、 βーメチルスチレン、 2, 6 ジメチルスチレ ン、 2, 4 ジメチルスチレン、 α—メチルー ο メチルスチレン、 α—メチルー m メ チルスチレン、 α—メチルー p メチルスチレン、 ーメチルー ο メチルスチレン、 βーメチルー m—メチルスチレン、 βーメチルー ρ—メチルスチレン、 2, 4, 6 トリメ チルスチレン、 ひ一メチノレ一2, 6 _ジメチルスチレン、 ひ 一メチル _ 2, 4—ジメチル スチレン、 β—メチル一2, 6 _ジメチルスチレン、 β—メチル _ 2, 4 _ジメチルスチ レン、 o _、 m—又は ρ—クロロスチレン、 2, 6—ジクロロスチレン、 2, 4—ジクロロスチ レン、 ひ一クロ口 _o _クロロスチレン、 ひ一クロ口 _m—クロロスチレン、 ひ 一クロ口一 p—クロロスチレン、 一クロ口 _o_クロロスチレン、 /3 _クロ口 _m—クロロスチレン 、 —クロ口 _ρ—クロロスチレン、 2, 4, 6 _トリクロロスチレン、 ひ一クロ口 _ 2, 6 - ジクロロスチレン、 ひ一クロ口一2, 4—ジクロロスチレン、 ;3—クロ口一2, 6—ジクロ口 スチレン、 β クロロー 2, 4—ジクロロスチレン、 ο—、 m—又は p— t ブチノレスチレ ン、 o—、 m—又は p—メトキシスチレン、 o—、 m 又は p クロロメチルスチレン、 o— 、 m—又は p ブロモメチルスチレン、シリル基で置換されたスチレン誘導体、インデ ン、ビュルナフタレン等が挙げられる。 [0026] The aromatic bur monomer is not particularly limited. For example, styrene, ο-, m- or p-methylstyrene, α-methylstyrene, β-methylstyrene, 2, 6 dimethylstyrene, 2, 4 Dimethylstyrene, α-methyl-ο-methylstyrene, α-methyl-m-methylstyrene, α-methyl-p-methylstyrene, -methyl-ο-methylstyrene, β-methyl-m-methylstyrene, β-methyl-ρ-methylstyrene, 2, 4, 6 trimethylstyrene , 1 methylolene 2, 6 _ dimethyl styrene, 1 methyl _ 2, 4-dimethyl styrene, β-methyl 1, 2, 6 dimethyl styrene, β-methyl _ 2, 4 _ dimethyl styrene, o _, m Or ρ-Chlorostyrene, 2,6-Dichlorostyrene, 2,4-Dichlorostyrene, Single _o _Chlorostyrene, Single _m Rollostyrene, one black mouth p-chlorostyrene, one black mouth _o_chlorostyrene, / 3 _ black mouth _m-chlorostyrene, —black mouth _ρ-chlorostyrene, 2, 4, 6 _trichlorostyrene, one black Mouth _ 2, 6-Dichlorostyrene, Hokukuro 1, 2, 4-Dichlorostyrene,; 3-Chloro 1, 2, 6-Dichloro Mouth Styrene, β-chloro-2,4-dichlorostyrene, ο—, m—or p-t butinoresylene, o—, m—or p-methoxystyrene, o—, m or p chloromethylstyrene, o—, m—or p Bromomethylstyrene, styrene derivatives substituted with a silyl group, indene, urnaphthalene and the like.
[0027] ジェン系単量体としては特に限定されず、例えば、ブタジエン、イソプレン、シクロ ペンタジェン、シクロへキサジェン、ジシクロペンタジェン、ジビュルベンゼン、ェチリ デンノルボルネン等が挙げられる。  [0027] The gen-based monomer is not particularly limited, and examples thereof include butadiene, isoprene, cyclopentagen, cyclohexagen, dicyclopentagen, dibutenebenzene, and ethylidene norbornene.
[0028] ビュルエーテル系単量体としては特に限定されず、例えば、メチルビュルエーテル 、ェチルビニルエーテル、 (n―、イソ)プロピルビュルエーテル、 (n―、 sec—、 tert ―、イソ)ブチノレビニノレエーテノレ、メチノレプロぺニノレエーテノレ、ェチノレプロぺニノレエ 一テル等が挙げられる。 [0028] The butyl ether monomer is not particularly limited, and examples thereof include methyl butyl ether, ethyl vinyl ether, ( n- , iso) propyl butyl ether, ( n- , sec-, tert-, iso) butino. Revinino reetenore, methino lepropenole ethenore, ethino lepropenole eleter and the like.
[0029] シランィ匕合物としては特に限定されず、例えば、ビュルトリクロロシラン、ビュルメチ ノレジクロロシラン、ビニルジメチルクロロシラン、ビュルジメチルメトキシシラン、ビニル トリメチルシラン、ジビュルジクロロシラン、ジビュルジメトキシシラン、ジビュルジメチ ノレシラン、 1 , 3—ジビニノレー 1 , 1 , 3, 3—テトラメチノレジシロキサン、トリビニノレメチノレ シラン、 γ—メタクリロイルォキシプロビルトリメトキシシラン、 γ—メタクリロイルォキシ プロピルメチルジメトキシシラン等が挙げられる。  [0029] The silanic compound is not particularly limited, and examples thereof include butyltrichlorosilane, butylmethyrene resin chlorosilane, vinyldimethylchlorosilane, butyldimethylmethoxysilane, vinyltrimethylsilane, dibutydichlorosilane, dibutydimethoxysilane, and dibutymethylenosilane. 1,3-Divininole 1,1,3,3-Tetramethylenoresisiloxane, Trivininoremethinoresilane, γ-methacryloyloxyprovir trimethoxysilane, γ-methacryloyloxypropylmethyldimethoxysilane, etc. .
[0030] 本発明のイソブチレンを主成分としない単量体成分 (b)は、物性及び重合特性等 のバランスから、芳香族ビニル系単量体を主成分とする単量体成分であることが好ま しい。本発明の芳香族ビュル系単量体を主成分とする単量体成分は、芳香族ビュル 系単量体の含有量が 60重量%以上、好ましくは 80重量%以上である単量体成分を 示す。ここで芳香族ビュル系単量体としては、スチレン、 ひ一メチルスチレン、 p—メ チルスチレン及びインデンからなる群より選択された 1種以上の単量体を使用するこ と力好ましく、コストの面力もスチレン、 ひ一メチルスチレン、 p—メチルスチレンあるい はこれらの混合物を用いることが特に好ましレ、。  [0030] The monomer component (b) not containing isobutylene as a main component of the present invention may be a monomer component containing an aromatic vinyl monomer as a main component from the balance of physical properties and polymerization characteristics. I like it. The monomer component mainly composed of the aromatic bulle monomer of the present invention is a monomer component having an aromatic bule monomer content of 60% by weight or more, preferably 80% by weight or more. Show. Here, it is preferable to use at least one monomer selected from the group consisting of styrene, monomethylstyrene, p-methylstyrene, and indene as the aromatic bule monomer, and in terms of cost. It is particularly preferable to use styrene, monomethylstyrene, p-methylstyrene or a mixture of these.
[0031] 上記、イソブチレンを主成分とする単量体成分(a)は、単量体成分としてイソブチレ ン以外の単量体を含んでいても、含んでいなくてもよレ、が、通常、イソブチレンを 60 重量%以上、好ましくは 80重量%以上含有する単量体成分である。上記イソブチレ ン以外の単量体としてはカチオン重合可能な単量体であれば特に限定されず、例え ば、脂肪族ォレフイン類、芳香族ビニル類、ジェン類、ビニルエーテル類、シラン類、 ビニルカルバゾール、 β—ビネン、ァセナフチレン等の単量体が挙げられる。これら は単独で用いてもよぐ 2種以上を併用してもよい。 [0031] The monomer component (a) containing isobutylene as a main component may or may not contain a monomer other than isobutylene as a monomer component. The monomer component contains 60% by weight or more, preferably 80% by weight or more of isobutylene. The above isobutyle There are no particular restrictions on the monomers other than styrene, as long as they are cationically polymerizable monomers. For example, aliphatic olefins, aromatic vinyls, gens, vinyl ethers, silanes, vinyl carbazole, β- Examples thereof include monomers such as binene and acenaphthylene. These may be used alone or in combination of two or more.
[0032] イソブチレンを主成分とする重合体ブロックと芳香族ビュルを主成分とする単量体 成分からなる重合体ブロックの割合に関しては、特に制限はないが、各種物性の面 から、イソブチレンを主成分とする重合体ブロックが 40〜95重量%、芳香族ビュルを 主成分とする単量体成分からなる重合体ブロックが 5〜60重量%であることが好まし ぐイソブチレンを主成分とする重合体ブロックが 50〜85重量%、芳香族ビュルを主 成分とする単量体成分からなる重合体ブロックが 15〜50重量%であることが特に好 ましい。 [0032] The ratio of the polymer block mainly composed of isobutylene and the polymer block composed of a monomer component mainly composed of aromatic butyl is not particularly limited, but from the viewpoint of various physical properties, isobutylene is mainly used. It is preferable that the polymer block comprising 40 to 95% by weight of the polymer block and the polymer block comprising the monomer component mainly composed of aromatic bur are 5 to 60% by weight. It is particularly preferable that the polymer block is 50 to 85% by weight and the polymer block composed of a monomer component mainly composed of aromatic bur is 15 to 50% by weight.
[0033] また、イソブチレン系ブロック共重合体の数平均分子量にも特に制限はないが、流 動十生、カロェ十生、物十生等の面力ら、 30000〜500000であること力 S好ましく、 50000〜 400000であること力 S特に好ましレ、。イソブチレン系ブロック共重合体の数平均分子 量が上記範囲より低い場合には機械的な物性が十分に発現されない傾向にあり、一 方、上記範囲を超える場合には流動性、加工性の面で不利である。上記数平均分子 量は、 Waters社製ゲルパーミエーシヨンクロマトグラフィー(GPC)システム(カラム: 昭和電工株式会社製 Shodex K— 804、 K 802. 5 (ポリスチレンゲル)、移動相: クロ口ホルム)を用いて測定した値である。  [0033] In addition, the number average molecular weight of the isobutylene block copolymer is not particularly limited, but the surface strength such as fluid life, Kaloe life, and life time is 30,000 to 500,000. The power that is between 50000 and 400000 S, especially preferred. If the number average molecular weight of the isobutylene block copolymer is lower than the above range, mechanical properties tend not to be sufficiently expressed. On the other hand, if the number exceeds the above range, the flowability and processability are poor. It is disadvantageous. The above-mentioned number average molecular weight is obtained by Waters Gel Permeation Chromatography (GPC) system (column: Showa Denko Shodex K-804, K 802.5 (polystyrene gel), mobile phase: black mouth form). It is the value measured using.
[0034] また、イソブチレン系ブロック共重合体(a)の好ましレ、ブロック共重合体としては、物 性バランスの点から、芳香族ビニル系単量体を主成分とする重合体ブロック イソブ チレンを主成分とする重合体ブロック一芳香族ビニル系単量体を主成分とする重合 体ブロックからなるトリブロック共重合体、芳香族ビニル系単量体を主成分とする重合 体ブロック一イソブチレンを主成分とする重合体ブロック力 なるジブロック共重合体 [0034] The preferred block copolymer of the isobutylene block copolymer (a) is a polymer block isobutylene containing an aromatic vinyl monomer as a main component from the viewpoint of physical balance. A polymer block having an aromatic vinyl monomer as a main component, a triblock copolymer having a polymer block having an aromatic vinyl monomer as a main component, and a polymer block having an aromatic vinyl monomer as a main component. Polymer block strength as the main component
、及び芳香族ビュル系単量体を主成分とする重合体ブロックとイソブチレンを主成分 とする重合体ブロックからなるアームを 3つ以上有する星型ブロック共重合体等が挙 げられる。これらは所望の物性'成形加工性を得る為に 1種又は 2種以上を組み合わ せて使用可能である。これらの中で、加工性、コストの観点から特に、トリブロック構造 を有する、スチレン イソブチレン スチレンブロック共重合体、ジブロック構造を有 するスチレン イソブチレンブロック共重合体が好ましい。 And a star block copolymer having three or more arms each composed of a polymer block mainly composed of an aromatic bur monomer and a polymer block mainly composed of isobutylene. These can be used alone or in combination of two or more in order to obtain the desired physical properties and moldability. Among these, the triblock structure is particularly preferred from the viewpoint of processability and cost. A styrene isobutylene styrene block copolymer and a styrene isobutylene block copolymer having a diblock structure are preferred.
[0035] 上記一般式(1)で表わされる化合物は開始剤となるもので、カチオン重合の開始 点になる。式中、複数の R1は、同一又は異なって、水素原子又は炭素数:!〜 6の 1価 の炭化水素基を表す。 R2は、 1価若しくは多価芳香族炭化水素基又は 1価若しくは 多価脂肪族炭化水素基を表す。 Xは、ハロゲン原子、炭素数 1〜6のアルコキシノレ基 、又は、炭素数 1〜6のァシ口キシル基を表す。 nは、 1〜6の整数を表す。 Xが複数 存在するとき、それらは、同一であっても異なっていてもよい。 [0035] The compound represented by the general formula (1) serves as an initiator and serves as a starting point for cationic polymerization. In the formula, a plurality of R 1 s are the same or different and represent a hydrogen atom or a monovalent hydrocarbon group having 6 to 6 carbon atoms. R 2 represents a monovalent or polyvalent aromatic hydrocarbon group or a monovalent or polyvalent aliphatic hydrocarbon group. X represents a halogen atom, an alkoxy group having 1 to 6 carbon atoms, or a alkoxyl group having 1 to 6 carbon atoms. n represents an integer of 1 to 6. When a plurality of X are present, they may be the same or different.
[0036] 本発明で用いられる一般式(1)の化合物の例としては、次のような化合物等が挙げ られる。  [0036] Examples of the compound of the general formula (1) used in the present invention include the following compounds.
(1—クロル一 1—メチルェチル)ベンゼン [C H C(CH ) Cl]、 1, 4_ビス(1—クロ ノレ _1—メチルェチル)ベンゼン [1, 4-CKCH ) CC H C(CH ) CI], 1, 3_ビス (1-chloro- 1-methylethyl) benzene [CHC (CH) Cl], 1,4_bis (1-chloroethyl_1-methylethyl) benzene [1, 4-CKCH) CC HC (CH) CI], 1, 3_ screw
(1—クロル一 1—メチルェチル)ベンゼン [1, 3-Cl(CH ) CC H C(CH ) Cl]、 1(1-chloro-1- 1-methylethyl) benzene [1, 3-Cl (CH) CC H C (CH) Cl], 1
, 3, 5—トリス(1—クロル— 1—メチルェチル)ベンゼン [1, 3, 5— (CIC(CH ) ) C, 3, 5—Tris (1—chloro—1-methylethyl) benzene [1, 3, 5— (CIC (CH)) C
H ]、 1, 3—ビス(1 クロルー1 メチルェチル)一5—(tert ブチル)ベンゼン [1,H], 1,3-bis (1 chloro 1 methylethyl) 1-5- (tert butyl) benzene [1,
3—(C(CH ) C1) 5—(C(CH) )CH ] 3— (C (CH) C1) 5— (C (CH)) CH]
[0037] これらの中でも特に好ましいのは(1 クロル 1ーメチルェチル)ベンゼン [C H C  [0037] Among these, (1 chloro 1-methylethyl) benzene [C H C] is particularly preferable.
(CH ) Cl]、ビス(1—クロル一 1—メチルェチル)ベンゼン [C H (C(CH ) CI) ]、ト リス(1—クロル一 1—メチルェチル)ベンゼン [(C1C(CH ) ) 〇^1 ]でぁる。なぉ(1 クロル 1ーメチルェチル)ベンゼンは(ひ クロ口イソプロピル)ベンゼン、 (2—ク ロロ一 2—プロピル)ベンゼンあるいはタミルクロライドとも呼ばれ、ビス(1—クロル一 1 —メチノレエチノレ)ベンゼンは、ビス(ひ一クロ口イソプロピノレ)ベンゼン、ビス(2—クロ口 _ 2_プロピル)ベンゼンあるいはジクミルク口ライドとも呼ばれ、トリス(1—クロル一 1 —メチノレエチノレ)ベンゼンは、トリス(ひ一クロ口イソプロピノレ)ベンゼン、トリス(2—クロ 口一 2 _プロピル)ベンゼンあるいはトリタミルクロライドとも呼ばれる。  (CH) Cl], bis (1-chloro-1- 1-methylethyl) benzene [CH (C (CH) CI)], tris (1-chloro-1-methylethyl) benzene [(C1C (CH)) 〇 ^ 1 ] N- (1-chloro-1-methylethyl) benzene is also referred to as (cyclochloroisopropyl) benzene, (2-chloro-2-propyl) benzene or tammyl chloride, and bis (1-chloro-1-methylenoethyl) benzene is bis Also known as (one black mouth isopropylene) benzene, bis (2-chloro mouth _ 2_propyl) benzene or dicmilk mouth ride, tris (1 chloro one 1-methinore ethinore) benzene is tris (one head mouth isopropylene). Nore) benzene, tris (2-chloropropyl) benzene or tritamilk chloride.
[0038] イソブチレン系ブロック共重合体を製造する際は、さらにルイス酸触媒を共存させる こともできる。このようなルイス酸としてはカチオン重合に使用できるものであれば良く 、 TiCl、 TiBr、 BC1、 BF、: BF -OEt、 SnCl、 SbCl、 SbF、 WC1、 TaCl、 VC1 、 FeCl、 ZnBr、 A1C1、 AlBr等の金属ハロゲン化物; Et A1C1、 EtAlCl等の有機 金属ハロゲンィ匕物を好適に使用することができる(Etはェチル基を表す)。中でも触 媒としての能力、工業的な入手の容易さを考えた場合、 TiCl、 BC1、 SnClが好まし レ、。ノレイス酸の使用量は、特に限定されないが、使用する単量体の重合特性あるい は重合濃度等を鑑みて設定することができる。通常は一般式(1)で表される化合物 に対して 0. 1〜: 100モル当量使用することができ、好ましくは 1〜50モル当量の範囲 である。 [0038] When the isobutylene block copolymer is produced, a Lewis acid catalyst may be allowed to coexist. Such Lewis acid may be any one that can be used for cationic polymerization. TiCl, TiBr, BC1, BF, BF-OEt, SnCl, SbCl, SbF, WC1, TaCl, VC1 Metal halides such as FeCl, ZnBr, A1C1, and AlBr; Organometallic halides such as EtA1C1 and EtAlCl can be preferably used (Et represents an ethyl group). Of these, TiCl, BC1, and SnCl are preferred when considering the ability as a catalyst and industrial availability. The amount of norelic acid used is not particularly limited, but can be set in view of the polymerization characteristics or polymerization concentration of the monomer used. Usually, 0.1 to 100 molar equivalents can be used with respect to the compound represented by the general formula (1), preferably in the range of 1 to 50 molar equivalents.
[0039] イソブチレン系ブロック共重合体を製造する際は、さらに必要に応じて電子供与体 成分を共存させることもできる。この電子供与体成分は、カチオン重合に際して、成 長炭素カチオンを安定化させる効果があるものと考えられており、電子供与体の添加 によって分子量分布の狭い構造が制御された重合体を生成することができる。使用 可能な電子供与体成分としては特に限定されないが、例えば、ピリジン類、アミン類、 アミド類、スルホキシド類、エステル類、または金属原子に結合した酸素原子を有す る金属化合物等を挙げることができる。  [0039] When the isobutylene block copolymer is produced, an electron donor component may be further present if necessary. This electron donor component is believed to have the effect of stabilizing the growing carbon cation during cationic polymerization, and the addition of an electron donor produces a polymer with a controlled molecular weight distribution structure. Can do. The electron donor component that can be used is not particularly limited, and examples thereof include pyridines, amines, amides, sulfoxides, esters, and metal compounds having an oxygen atom bonded to a metal atom. it can.
[0040] 上記電子供与体成分としては、種々の化合物の電子供与体 (エレクトロンドナー)と しての強さを表すパラメータ一として定義されるドナー数が 15〜60のものが挙げられ 、具体的には、 2, 6—ジー t—ブチルピリジン、 2— t—ブチルピリジン、 2, 4, 6—トリ メチルピリジン、 2, 6—ジメチルビリジン、 2—メチノレピリジン、ピリジン、ジェチルァミン 、トリメチルァミン、トリェチルァミン、トリブチルァミン、 N, N—ジメチルァニリン、 N, N ージメチルホルムアミド、 N, N—ジメチルァセトアミド、 N, N—ジェチルァセトアミド、 ジメチルスルホキシド、ジェチルエーテル、酢酸メチル、酢酸ェチル、リン酸トリメチル 、へキサメチルリン酸トリアミド、チタン (III)メトキシド、チタン (IV)メトキシド、チタン (IV )イソプロポキシド、チタン(IV)ブトキシド等のチタンアルコキシド;アルミニウムトリエト キシド、アルミニウムトリブトキシド等のアルミニウムアルコキシド等が使用できる力 好 ましいものとして、 2, 6—ジ _t_ブチルピリジン、 2, 6 _ジメチルビリジン、 2—メチノレ ピリジン、ピリジン、ジェチルァミン、トリメチノレアミン、トリェチルァミン、 N, N—ジメチ ノレホノレムアミド、 N, N—ジメチルァセトアミド、ジメチルスルホキシド、チタン(IV)イソ プロポキシド、チタン (IV)ブトキシド等が挙げられる。上記種々の物質のドナー数に ついては、「ドナーとァクセプター」、ダードマン著、大瀧、岡田訳、学会出版センター[0040] Examples of the electron donor component include those having 15 to 60 donors defined as one parameter representing the strength of various compounds as electron donors (electron donors). 2,6-di-t-butylpyridine, 2-t-butylpyridine, 2,4,6-trimethylpyridine, 2,6-dimethylviridine, 2-methinolepyridine, pyridine, jetylamine, trimethylamine, triethylamine , Tributylamine, N, N-dimethylaniline, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-jetylacetamide, dimethyl sulfoxide, jetyl ether, methyl acetate, acetic acid Ethyl, trimethyl phosphate, hexamethyl phosphate triamide, titanium (III) methoxide, titanium (IV) methoxide, titanium (IV) isopropoxide, Titanium (IV) butoxide and other titanium alkoxides; aluminum triethoxide and aluminum tributoxide and other aluminum alkoxides can be used. Preferred examples include 2,6-di_t_butylpyridine, 2,6_dimethylpyridine, 2-Methylenopyridine, pyridine, cetylamine, trimethinoleamine, triethylamine, N, N-dimethylolenolemamide, N, N-dimethylacetamide, dimethyl sulfoxide, titanium (IV) isopropoxide, titanium (IV) Examples include butoxide. To the number of donors of the above various substances About "Donor and Acceptor", by Dardman, Otsuki, Okada translation, Academic Publishing Center
(1983)に示されている。これらの中でも、添加効果が顕著である 2—メチルピリジン 、 N, N—ジメチルァセトアミド、反応系が均一となるチタン(IV)イソプロポキシドが特 に好ましい。 (1983). Among these, 2-methylpyridine, N, N-dimethylacetamide, which has a remarkable effect of addition, and titanium (IV) isopropoxide that makes the reaction system uniform are particularly preferable.
[0041] 電子供与体成分は、重合開始剤に対して 0. 01〜: 10倍モル用いる。このうち、 0. 2 〜4倍モルの範囲で用いられるのが好ましい。  [0041] The electron donor component is used in an amount of 0.01 to 10 moles relative to the polymerization initiator. Of these, it is preferably used in the range of 0.2 to 4 moles.
[0042] 上記重合は、必要に応じて溶媒中で行うことができる。溶媒としては、カチオン重合 を本質的に阻害しない溶媒であれば、従来公知のもの全てを使用することができ、具 体的には、塩化メチル、ジクロロメタン、 n—プロピルクロライド、 n—ブチノレクロライド、 クロ口ベンゼン等のハロゲン化炭化水素;ベンゼン、トルエン、キシレン、ェチルベン ゼン、プロピルベンゼン、ブチルベンゼン等のアルキルベンゼン類;ェタン、プロパン 、ブタン、ペンタン、へキサン、ヘプタン、オクタン、ノナン、デカン等の直鎖式脂肪族 炭化水素類; 2—メチルプロパン、 2—メチルブタン、 2, 3, 3—トリメチルペンタン、 2, 2, 5—トリメチルへキサン等の分岐式脂肪族炭化水素類;シクロへキサン、メチルシク 口へキサン、ェチルシクロへキサン等の環式脂肪族炭化水素類;石油留分を水添精 製したパラフィン油等を挙げることができる。これらの溶斉 IJは、ブロック共重合体を構 成する単量体の重合特性及び生成する重合体の溶解性等のバランスを考慮して、 単独で又は 2種以上を併用して使用される。中でも炭素数 3〜8の 1級のモノハロゲン 化炭化水素及び/又は炭素数 3〜8の 2級のモノハロゲン化炭化水素からなるモノハ ロゲン化炭化水素系溶媒と、脂肪族系炭化水素及び/又は芳香族系炭化水素から なる非ハロゲンィ匕炭化水素系溶媒との混合溶媒中で重合を行うことが、重合した後 の水洗工程における作業性が向上し、水洗後の排水処理の容易性の点から好まし レ、。  [0042] The polymerization can be carried out in a solvent, if necessary. As the solvent, any conventionally known solvent can be used as long as it does not essentially inhibit cationic polymerization. Specifically, methyl chloride, dichloromethane, n-propyl chloride, n-butinorechloride can be used. Halogenated hydrocarbons such as benzene, toluene, xylene, ethylbenzene, alkylbenzenes such as propylbenzene, butylbenzene; ethane, propane, butane, pentane, hexane, heptane, octane, nonane, decane, etc. Linear aliphatic hydrocarbons; branched aliphatic hydrocarbons such as 2-methylpropane, 2-methylbutane, 2,3,3-trimethylpentane, 2,2,5-trimethylhexane; cyclohexane, Cycloaliphatic hydrocarbons such as methylcyclohexane and ethylcyclohexane; paraforms obtained by hydrogenation of petroleum fractions Mention may be made of the fin oil, and the like. These homogeneous IJs are used alone or in combination of two or more in consideration of the balance of the polymerization characteristics of the monomers constituting the block copolymer and the solubility of the resulting polymer. . Among them, monohalogenated hydrocarbon solvents composed of primary monohalogenated hydrocarbons having 3 to 8 carbon atoms and / or secondary monohalogenated hydrocarbons having 3 to 8 carbon atoms, aliphatic hydrocarbons and / or Alternatively, polymerization in a mixed solvent with a non-halogen hydrocarbon solvent composed of an aromatic hydrocarbon improves workability in the water washing step after polymerization, and facilitates wastewater treatment after water washing. Preferred from.
[0043] 炭素数 3〜8の 1級のモノハロゲン化炭化水素及び炭素数 3〜8の 2級のモノハロゲ ン化炭化水素としては特に限定されず、例えば、 1 _クロロプロノ ン、 1 _クロ口 _ 2_ メチルプロパン、 1 _クロロブタン、 1 _クロ口一 2_メチルブタン、 1 _クロ口 _ 3—メチ ノレブタン、 1 _クロロ_ 2, 2—ジメチルブタン、 1 _クロロ_ 3, 3—ジメチルブタン、 1 —クロ口 _ 2, 3—ジメチルブタン、 1 _クロ口ペンタン、 1 _クロ口 _ 2—メチルペンタン 、 1 クロロー 3—メチノレペンタン、 1 クロロー 4ーメチノレペンタン、 1 クロ口へキサ ン、 1—クロ口一 2—メチノレへキサン、 1—クロ口一 3—メチノレへキサン、 1—クロ口一 4 —メチノレへキサン、 1—クロ口一 5—メチノレへキサン、 1—クロ口ヘプタン、 1—クロロォ クタン、 2_クロ口プロノヽ。ン、 2_クロロブタン、 2_クロ口ペンタン、 2_クロ口へキサン、 2—クロ口ヘプタン、 2—クロ口オクタン、クロ口ベンゼン等を挙げることができる。これら はそれぞれ単独で又は 2種以上を組み合わせて使用できる。 [0043] The primary monohalogenated hydrocarbon having 3 to 8 carbon atoms and the secondary monohalogenated hydrocarbon having 3 to 8 carbon atoms are not particularly limited. For example, 1_chloropronone, 1_black port _ 2_ methyl propane, 1 _ chlorobutane, 1 _ black mouth 1 _ methyl butane, 1 _ black mouth _ 3-metheno levane, 1 _ chloro _ 2, 2- dimethyl butane, 1 _ chloro _ 3, 3-dimethyl butane, 1 —Black mouth _ 2, 3—Dimethylbutane, 1 _Black mouth pentane, 1 _Black mouth _ 2—Methyl pentane 1 Chloro-3-methinorepentane, 1 Chloro-4-methenorepentane, 1-Hexane Hexane, 1-Chlorochi-one 2-Methinorehexane, 1-Chloro-one 3-Metinorehexane, 1-Chloro-One 4 —Methinorehexane, 1—Black mouth 5—Methinorehexane, 1—Black mouth heptane, 1—Chlorooctane, 2 — Black mouth prono ヽ. , 2-chlorobutane, 2-chloropentane, 2-hexane hexane, 2-chloroheptane, 2-chlorooctane, chlorobenzene, and the like. These can be used alone or in combination of two or more.
例えば、炭素数 3のモノハロゲン化溶媒、炭素数 4のモノハロゲン化溶媒、炭素数 3 のモノハロゲン化溶媒と炭素数 4のモノハロゲンィ匕溶媒の組み合わせ、炭素数 4〜8 のモノハロゲン化溶媒のうちの少なくとも 1種の組み合わせ等であってよレ、。このうち、 イソブチレン系ブロック共重合体の溶解度、分解による無害化の容易さ、コスト等の バランス等の観点を重視するなら、 1 _クロ口プロパン及び Z又は 1 _クロロブタンを 用いればよぐ特に 1 _クロロブタンが好ましい。  For example, a monohalogenated solvent having 3 carbon atoms, a monohalogenated solvent having 4 carbon atoms, a combination of a monohalogenated solvent having 3 carbon atoms and a monohalogenated solvent having 4 carbon atoms, monohalogenated with 4 to 8 carbon atoms It may be a combination of at least one of the solvents. Of these, if importance is attached to the balance of the solubility of the isobutylene block copolymer, the ease of detoxification by decomposition, the balance of costs, etc., it is particularly preferable to use 1_black propane and Z or 1_chlorobutane. _Chlorobutane is preferred.
[0044] 非ハロゲン溶媒としての脂肪族系炭化水素及び芳香族系炭化水素としては特に限 定されず、例えば、ブタン、ペンタン、ネオペンタン、へキサン、ヘプタン、オクタン、シ クロへキサン、メチルシクロへキサン、ェチルシクロへキサン、ベンゼン、トルエン、キ シレン、ェチルベンゼン等を挙げることができる。これらは 1種又は 2種以上を組み合 わせて使用可能である。ブロック共重合体の溶解度、コスト、誘電率等のバランスから 、へキサン、シクロへキサン、メチルシクロへキサン、ェチルシクロへキサン、トルエン 及びキシレンからなる群より選択される少なくとも 1種が好ましぐへキサン、メチルシク 口へキサン及びェチルシクロへキサンからなる群より選択される少なくとも i種が特に 好ましい。 [0044] The aliphatic hydrocarbon and the aromatic hydrocarbon as the non-halogen solvent are not particularly limited. For example, butane, pentane, neopentane, hexane, heptane, octane, cyclohexane, methylcyclohexane , Ethylcyclohexane, benzene, toluene, xylene, ethylbenzene and the like. These can be used alone or in combination of two or more. From the balance of solubility, cost, dielectric constant, etc. of the block copolymer, at least one selected from the group consisting of hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, toluene and xylene is preferred. Particularly preferred is at least i selected from the group consisting of methylcyclohexane and ethylcyclohexane.
[0045] 本発明における重合溶媒は、上記炭素数 3〜8の 1級のモノハロゲン化炭化水素及 び/又は炭素数 3〜8の 2級のモノハロゲン化炭化水素からなるモノハロゲン化炭化 水素系溶媒と、脂肪族系炭化水素及び/又は芳香族系炭化水素からなる非ハロゲ ン化炭化水素系溶媒とを組み合わせた混合溶媒である。混合溶媒中のモノハロゲン 化炭化水素系溶媒の含有量としては特に限定されず、所望の誘電率あるいはブロッ ク共重合体の溶解度が得られるように設定すれば良いが、一般的には 10〜98重量 %であり、好ましくは 20〜95重量%である。 [0046] 溶剤の使用量は、得られる重合体溶液の粘度や除熱の容易さを考慮して決定され るが、通常、重合体の濃度が l〜50wt%となるようにし、好ましくは 5〜35wt%となる ようにする。 [0045] The polymerization solvent in the present invention is a monohalogenated hydrocarbon comprising the primary monohalogenated hydrocarbon having 3 to 8 carbon atoms and / or the secondary monohalogenated hydrocarbon having 3 to 8 carbon atoms. And a non-halogenated hydrocarbon solvent composed of an aliphatic hydrocarbon and / or an aromatic hydrocarbon. The content of the monohalogenated hydrocarbon solvent in the mixed solvent is not particularly limited, and may be set so as to obtain a desired dielectric constant or solubility of the block copolymer. 98% by weight, preferably 20 to 95% by weight. [0046] The amount of the solvent used is determined in consideration of the viscosity of the resulting polymer solution and the ease of heat removal. Usually, the concentration of the polymer is adjusted to 1 to 50 wt%, preferably 5 Set to ~ 35wt%.
[0047] 本発明のイソブチレン系ブロック共重合体の製造方法としては、重合開始剤を用い 、反応の際の水分量を調整する以外においては特に制限はなぐ例えば、上記溶媒 中に、上記一般式(1)で表わされる化合物と必要に応じ電子供与体成分と、芳香族 ビュル系単量体を主成分とする単量体成分か又はイソブチレンを主成分とする単量 体成分を加え、さらにルイス酸を添加して重合を開始し、加えた単量体成分の重合 が実質的に終了した後に、もう 1成分の単量体成分を添加し重合すればよい。更に、 必要に応じ、他の単量体成分を重合が実質的に終了した後に添加し、重合を継続し ても良い。  [0047] The method for producing the isobutylene block copolymer of the present invention is not particularly limited except that the amount of water during the reaction is adjusted using a polymerization initiator. For example, the above general formula is used in the above solvent. Add the compound represented by (1) and, if necessary, an electron donor component, a monomer component mainly composed of an aromatic butyl monomer or a monomer component mainly composed of isobutylene, and further add Lewis Polymerization is started by adding an acid, and after the polymerization of the added monomer component is substantially completed, another monomer component may be added and polymerized. Furthermore, if necessary, another monomer component may be added after the polymerization is substantially completed, and the polymerization may be continued.
[0048] 本願において、水分量は、カールフィッシャー水分計により測定した値を用いてい る。  [0048] In the present application, the water content is a value measured by a Karl Fischer moisture meter.
この値は、重合に用いる反応溶媒の水分量、および、重合を開始する前 (ルイス酸触 媒添加前)に重合系に添加する単量体成分のうち、常温、常圧にて液体である単量 体成分の水分量の合計水分量と、反応溶媒重量および単量体重量から、反応系中 に存在する水分量を計算することができる。なお、水分量の測定においては、単量体 成分には、重合体を構成する単量体成分だけでなぐ開始剤や電子供与体成分とい つた重合を開始する前に重合系に添加される成分をすベて含むものとする。  This value is liquid at normal temperature and normal pressure among the water content of the reaction solvent used for polymerization and the monomer components added to the polymerization system before the start of polymerization (before the addition of Lewis acid catalyst). The amount of water present in the reaction system can be calculated from the total amount of water of the monomer components, the reaction solvent weight, and the monomer weight. In the measurement of the amount of water, the monomer component is a component that is added to the polymerization system before the start of polymerization, including the initiator and electron donor component, which are composed of only the monomer component constituting the polymer. Shall be included.
[0049] 本発明では、反応溶媒と単量体成分の合計重量に対する水分量を 75ppm以下に 保持した状態で反応を行う。好ましい水分量は 50ppm以下であり、更に好ましくは 2 Oppm以下である。水分量が 75PPmより高くなると、水分量以外、同じ反応条件水分 量が 75ppm以下で得られた重合体の引張強度と比較して、著しく低くなり、メノレトフ口 一レートに代表される溶融時の流動特性が高くなる。水分量が 75ppmより高くなれ ば高くなるほど、引張強度は低くなり、メルトフローレートは高くなる。このため、 75pp mより高い水分量で重合反応を行った場合、重合時の水分量により、機械特性や加 熱溶融時の流動特性が異なるイソブチレン系ブロック共重合体が得られることになり 、成形加工品として使用する場合、極めて使いにくいものとなる。 [0050] 上記重合を行うにあたっては、上述した各成分を冷却下、例えば 100°C以上 0°C 未満の温度で混合することが好ましレ、。エネルギーコストと重合の安定性を釣り合わ せるために特に好ましレ、温度範囲は、 80°C 30°Cである。 [0049] In the present invention, the reaction is carried out in a state where the water content relative to the total weight of the reaction solvent and the monomer component is kept at 75 ppm or less. The water content is preferably 50 ppm or less, more preferably 2 Oppm or less. When the moisture content is higher than 75 PP m, the tensile strength of the polymer obtained under the same reaction conditions except for the moisture content is 75 ppm or less. The flow characteristics of the The higher the water content, the lower the tensile strength and the higher the melt flow rate. For this reason, when a polymerization reaction is carried out with a water content higher than 75 ppm, an isobutylene block copolymer having different mechanical properties and flow properties during heating and melting depending on the water content during polymerization can be obtained. When used as a processed product, it becomes extremely difficult to use. [0050] In carrying out the above polymerization, it is preferable to mix the above-mentioned components under cooling, for example, at a temperature of 100 ° C or higher and lower than 0 ° C. Especially preferred to balance energy cost and polymerization stability, the temperature range is 80 ° C 30 ° C.
[0051] また、本発明のイソブチレン系ブロック共重合体は各用途に合わせた要求特性に 応じて、物性を損なわない範囲で、補強剤、充填剤、酸化防止剤や紫外線吸収剤、 光安定剤、顔料、界面活性剤、反応遅延剤、難燃剤、充填剤、補強剤等を適宜配合 すること力 Sできる。  [0051] In addition, the isobutylene block copolymer of the present invention has a reinforcing agent, a filler, an antioxidant, an ultraviolet absorber, a light stabilizer, and the like within a range that does not impair the physical properties according to the required characteristics according to each application. , Pigments, surfactants, reaction retarders, flame retardants, fillers, reinforcing agents, etc. can be added as appropriate.
[0052] 酸化防止剤としては特に限定はなレ、が、ヒンダードフヱノール系ゃヒンダードァミン 系等が例示できる。  [0052] Examples of the antioxidant include, but are not limited to, hindered phenols and hindered amines.
[0053] イソブチレン系ブロック共重合体およびこれを含有する組成物は、熱可塑性樹脂に 対して一般に採用される成型方法及び成形装置を用いて成形でき、例えば、押出成 形、射出成形、プレス成形、ブロー成形などによって溶融成形できる。  [0053] The isobutylene block copolymer and the composition containing the same can be molded using a molding method and a molding apparatus generally employed for thermoplastic resins, such as extrusion molding, injection molding, and press molding. It can be melt molded by blow molding or the like.
[0054] 本発明にかかる方法で製造されるイソブチレン系ブロック共重合体およびこれを含 有する組成物は、従来のイソブチレン系ブロック共重合体と同様の各種用途に使用 され得る。  [0054] The isobutylene block copolymer produced by the method according to the present invention and the composition containing the same can be used for various applications similar to those of the conventional isobutylene block copolymer.
例えば、エラストマ一材料、樹脂、ゴム、アスファルト等の改質剤、粘着剤のベースポ リマー、樹脂改質剤、パッキング材、シール材、ガスケット、栓体などの密封用材、 C Dダンパー等の弱電機器用ダンパー、建築用ダンパー、 自動車、車両、家電製品向 け等の制振材、防振材、 自動車内装材、クッション材、 日用品、電気部品、電子部品 、スポーツ部材、グリップまたは緩衝材、電線被覆材、包装材、各種容器、文具部品 として好適に使用することができる。  For example, elastomer materials, resin, rubber, asphalt modifiers, adhesive base polymers, resin modifiers, packing materials, sealing materials, gaskets, sealing materials such as plugs, and CD dampers Dampers, dampers for buildings, damping materials for automobiles, vehicles, household appliances, etc., anti-vibration materials, automotive interior materials, cushioning materials, daily necessities, electrical components, electronic components, sports materials, grips or cushioning materials, wire coating materials It can be suitably used as packaging materials, various containers, and stationery parts.
実施例  Example
[0055] 以下に実施例を掲げて本発明を更に具体的に説明する。尚、本発明はこれらの実 施例によって何ら限定されるものではなぐその要旨を変更しない範囲において適宜 変更実施可能である。  [0055] The present invention will be described more specifically with reference to the following examples. It should be noted that the present invention is not limited in any way by these examples, and can be appropriately modified without departing from the scope of the present invention.
[0056] 尚、実施例に先立ち各種測定法、評価法、実施例について説明する。  Prior to the examples, various measurement methods, evaluation methods, and examples will be described.
[0057] (引張破断強度)  [0057] (Tensile breaking strength)
JIS K 6251に準拠し、 2mm厚プレスシートを、ダンベルで 3号型に打抜いて試験 片を作製し、これを使用して引張破断強度を測定した。引張速度は 500mm/分とし た。 In accordance with JIS K 6251, a 2mm thick press sheet is punched into No. 3 with a dumbbell and tested. A piece was prepared and used to measure the tensile strength at break. The tensile speed was 500 mm / min.
[0058] (メルトフローレート)  [0058] (Melt flow rate)
試験サンプルは 2mm厚プレスシートを約 3mm角に切り出し用いた。 JIS K7201 A法に準拠し、メノレトインデクサ F— F01 (東洋精機製作所製)にて 230°C 2. 16k g荷重で測定した。  As a test sample, a 2 mm thick press sheet was cut into about 3 mm square and used. In accordance with JIS K7201 A method, measurement was performed at 230 ° C and 2.16 kg load with Menoleto Indexer F—F01 (manufactured by Toyo Seiki Seisakusho).
[0059] (実施例 1)  [Example 1]
2Lのセパラブルフラスコの重合容器内を窒素置換した後、注射器を用いて、 n キサン(モレキュラーシーブスで乾燥したもの) 387mL及び塩化ブチル(モレキュラー シーブスで乾燥したもの) 547mLをカロえ、混合溶媒中の水分をカールフィッシャー水 分計にて測定した。重合容器を _ 70°Cのドライアイス/メタノールバス中につけて冷 却した後、イソブチレンモノマー 150mL ( 1600mmol)が入ってレ、る三方コック付耐 圧ガラス製液化採取管にテフロン (登録商標)製の送液チューブを接続し、重合容器 内にイソブチレンモノマーを窒素圧により送液した。 p—ジクミルク口ライド 0. 456g (l . 97mmol)及び N N'—ジメチルァセトアミド 0· 345g (3. 96mmol)を加えた。次 にさらに四塩ィ匕チタン 6. lmL (55. 2mmol)を加えて重合を開始した。重合開始か ら 120分撹拌を行った後、重合溶液からサンプリング用として重合溶液約 ImLを抜き 取った。続いて、スチレンモノマー 38· 5g (369. 7mmol)を重合容器内に添加した 。混合溶液を添加してから 75分後に、大量の水に加えて反応を終了させた。その後 、反応溶液を 2回水洗し、溶媒を蒸発させ、得られた重合体を 60°Cで 24時間真空乾 燥することにより目的のブロック共重合体を得た。  After replacing the inside of the polymerization vessel of the 2 L separable flask with nitrogen, use a syringe to add 387 mL of n-xane (dried with molecular sieves) and 547 mL of butyl chloride (dried with molecular sieves) in a mixed solvent. The water content of was measured with a Karl Fischer water meter. Place the polymerization vessel in a _70 ° C dry ice / methanol bath and cool it, and then add 150 mL (1600 mmol) of isobutylene monomer to the pressure-resistant glass liquefied collection tube with a three-way cock made of Teflon (registered trademark) The liquid feeding tube was connected, and isobutylene monomer was fed into the polymerization vessel by nitrogen pressure. 0.456 g (l. 97 mmol) of p-dic milk mouthride and 0 · 345 g (3.96 mmol) of N N′-dimethylacetamide were added. Then, 6. lmL (55.2 mmol) of tetrasalt-titanium was further added to initiate polymerization. After stirring for 120 minutes from the start of polymerization, about ImL of the polymerization solution was extracted from the polymerization solution for sampling. Subsequently, 38.5 g (369. 7 mmol) of styrene monomer was added into the polymerization vessel. 75 minutes after adding the mixed solution, the reaction was terminated by adding a large amount of water. Thereafter, the reaction solution was washed twice with water, the solvent was evaporated, and the obtained polymer was vacuum-dried at 60 ° C. for 24 hours to obtain the desired block copolymer.
[0060] 得られたブロック共重合体は、ラボプラストミル (東洋精機製作所製)にて 180°Cで 溶融混練し、得られた混練物を圧縮成型機 (神藤金属工業所製)にて 170°Cでプレ ス成形し、 2mm厚のシートを得た。得られたシートを用い、上記方法に従って試験片 を作製し、引張強度を測定した。上記方法により測定した反応系中の水分量と、引張 強度の測定結果を表 1に示す。  [0060] The obtained block copolymer was melt kneaded at 180 ° C with a Laboplast mill (manufactured by Toyo Seiki Seisakusho), and the obtained kneaded product was 170 at a compression molding machine (manufactured by Shinto Metal Industries). A 2 mm thick sheet was obtained by press molding at ° C. Using the obtained sheet, a test piece was prepared according to the above method, and the tensile strength was measured. Table 1 shows the amount of moisture in the reaction system measured by the above method and the measurement results of tensile strength.
[0061] (実施例 2)  [Example 2]
実施例 1と同様にして、水分量が異なる重合溶媒を用いて重合を実施した。上記方 法により測定した反応系中の水分量と、引張強度の測定結果を表 1に示す。 In the same manner as in Example 1, polymerization was carried out using polymerization solvents having different water contents. Above Table 1 shows the water content in the reaction system measured by the method and the measurement results of tensile strength.
[0062] (実施例 3) [Example 3]
表 1に記載の水分となるよう、溶媒に水を加えて、重合を実施例 1と同様にして実施 した。上記方法により測定した反応系中の水分量と、引張強度の測定結果を表 1に 示す。  Polymerization was carried out in the same manner as in Example 1 by adding water to the solvent so that the moisture described in Table 1 was obtained. Table 1 shows the moisture content in the reaction system measured by the above method and the measurement results of tensile strength.
[0063] (比較例 1) [0063] (Comparative Example 1)
セパラブルフラスコを窒素置換しないで用いた以外は、実施例 1と同様にして、重 合を実施した。上記方法により測定した反応系中の水分量と、引張強度の測定結果 を表 1に示す。  Superposition | polymerization was implemented like Example 1 except having used the separable flask without nitrogen substitution. Table 1 shows the moisture content in the reaction system measured by the above method and the measurement results of tensile strength.
[0064] (比較例 2) [0064] (Comparative Example 2)
溶媒をあら力、じめモレキュラーシーブで乾燥しないものを用いた以外は、実施例 1と 同様にして、重合を実施した。上記方法により測定した反応系中の水分量と、引張強 度の測定結果を表 1に示す。  Polymerization was carried out in the same manner as in Example 1 except that a solvent that was not dried with a molecular sieve was used. Table 1 shows the moisture content in the reaction system measured by the above method and the measurement results of tensile strength.
[0065] (比較例 3) [0065] (Comparative Example 3)
表 1に記載の水分となるよう、溶媒に水を加えて、重合を実施例 1と同様にして実施 した。上記方法により測定した反応系中の水分量と、引張強度の測定結果を表 1に 示す。  Polymerization was carried out in the same manner as in Example 1 by adding water to the solvent so that the moisture described in Table 1 was obtained. Table 1 shows the moisture content in the reaction system measured by the above method and the measurement results of tensile strength.
[0066] [表 1]
Figure imgf000016_0001
[0066] [Table 1]
Figure imgf000016_0001
(実施例 4)  (Example 4)
2Lのセパラブルフラスコの重合容器内を窒素置換した後、注射器を用いて、 n—へ キサン(モレキュラーシーブスで乾燥したもの) 290mL及び塩化ブチル(モレキュラー シーブスで乾燥したもの) 418mLを加え、混合溶媒中の水分をカールフィッシャー水 分計にて測定した。重合容器を一 70°Cのドライアイス/メタノールバス中につけて冷 却した後、イソブチレンモノマー 142mL (1504mmol)が入っている三方コック付耐 圧ガラス製液化採取管にテフロン (登録商標)製の送液チューブを接続し、重合容器 内にイソプチレンモノマーを窒素圧により送液した。 p— ジクミルク口ライド 0. 289g ( 1. 25mmol)及び N、 N ' —ジメチルァセトアミド 0· 22g (2. 5mmol)を加えた。次に さらに四塩化チタン 5. 92mL (54mmol)をカ卩えて重合を開始した。重合開始から 90 分撹拌を行った後、重合溶液からサンプリング用として重合溶液約 lmLを抜き取つ た。続いて、スチレンモノマー 40. 81g (391. 9mmol)を重合容器内に添加した。混 合溶液を添加してから 60分後に、大量の水に加えて反応を終了させた。その後、反 応溶液を 2回水洗し、溶媒を蒸発させ、得られた重合体を 60°Cで 24時間真空乾燥 することにより目的のブロック共重合体を得た。 After replacing the inside of the polymerization vessel of the 2 L separable flask with nitrogen, add 290 mL of n-hexane (dried with molecular sieves) and 418 mL of butyl chloride (dried with molecular sieves) using a syringe. The water content was measured with a Karl Fischer water meter. After the polymerization vessel is cooled by placing it in a dry ice / methanol bath at 70 ° C, a Teflon (registered trademark) feed is sent to a pressure-resistant glass liquefied collection tube with a three-way cock containing 142 mL (1504 mmol) of isobutylene monomer. Connect the liquid tube to the polymerization vessel The isoprene monomer was fed into the inside by nitrogen pressure. 0.289 g (1.25 mmol) of p-dic milk mouthride and 0.222 g (2.5 mmol) of N, N′-dimethylacetamide were added. Next, 5.92 mL (54 mmol) of titanium tetrachloride was further added to initiate polymerization. After stirring for 90 minutes from the start of polymerization, about 1 mL of the polymerization solution was extracted from the polymerization solution for sampling. Subsequently, 40.81 g (391.9 mmol) of styrene monomer was added into the polymerization vessel. Sixty minutes after adding the mixed solution, the reaction was terminated by adding a large amount of water. Thereafter, the reaction solution was washed twice with water, the solvent was evaporated, and the obtained polymer was vacuum-dried at 60 ° C. for 24 hours to obtain the target block copolymer.
[0068] 得られたブロック共重合体から実施例 1と同様にプレスシートを作製し、引張強度の 測定を行った。上記方法により測定した反応系中の水分量と、引張強度の測定結果 を表 2に示す。  [0068] A press sheet was produced from the obtained block copolymer in the same manner as in Example 1, and the tensile strength was measured. Table 2 shows the moisture content in the reaction system measured by the above method and the measurement results of tensile strength.
[0069] (実施例 5)  [0069] (Example 5)
表 2に記載の水分となるよう、溶媒に水を加えて、重合を実施例 4と同様にして実施 した。上記方法により測定した反応系中の水分量と、引張強度の測定結果を表 2に 示す。  Polymerization was carried out in the same manner as in Example 4 by adding water to the solvent so that the moisture described in Table 2 was obtained. Table 2 shows the moisture content in the reaction system measured by the above method and the measurement results of tensile strength.
[0070] (比較例 4)  [0070] (Comparative Example 4)
表 2に記載の水分となるよう、溶媒に水を加えて、重合を実施例 4と同様にして実施 した。上記方法により測定した反応系中の水分量と、引張強度の測定結果を表 2に 示す。  Polymerization was carried out in the same manner as in Example 4 by adding water to the solvent so that the moisture described in Table 2 was obtained. Table 2 shows the moisture content in the reaction system measured by the above method and the measurement results of tensile strength.
[0071] [表 2]
Figure imgf000017_0001
[0071] [Table 2]
Figure imgf000017_0001
(実施例 6)  (Example 6)
2Lのセパラブルフラスコの重合容器内を窒素置換した後、注射器を用いて、 n—へ キサン(モレキュラーシーブスで乾燥したもの) 68mL及び塩化ブチル(モレキュラー シーブスで乾燥したもの) 613mLを加え、混合溶媒中の水分をカールフィッシャー水 分計にて測定した。重合容器を一 70°Cのドライアイス/メタノールバス中につけて冷 却した後、イソブチレンモノマー 178· 4mL (1889mmol)が入っている三方コック付 耐圧ガラス製液化採取管にテフロン (登録商標)製の送液チューブを接続し、重合容 器内にイソプチレンモノマーを窒素圧により送液した。 p—ジクミルク口ライド 0. 636g (2. 75mmol)及び α -ピコリン 0· 46g (4. 95mmol)を加えた。次にさらに四塩化チ タン 1. 96mL (17. 88mmol)を加えて重合を開始した。重合開始から 75分撹拌を 行った後、重合溶液からサンプリング用として重合溶液約 ImLを抜き取った。続いて 、スチレンモノマー 45. 36g (535. 6mmol)を重合容器内に添加した。混合溶液を 添加してから 60分後に、大量の水に加えて反応を終了させた。その後、反応溶液を 2回水洗し、溶媒を蒸発させ、得られた重合体を 60°Cで 24時間真空乾燥することに より目的のブロック共重合体を得た。 After substituting the inside of the polymerization vessel of the 2 L separable flask with nitrogen, add 68 mL of n-hexane (dried with molecular sieves) and 613 mL of butyl chloride (dried with molecular sieves) using a syringe. The water content was measured with a Karl Fischer water meter. After cooling the polymerization vessel in a dry ice / methanol bath at 70 ° C, with a three-way cock containing isobutylene monomer (178, 4 mL, 1889 mmol) A Teflon (registered trademark) feeding tube was connected to a pressure-resistant glass liquefaction collection tube, and isoprene monomer was fed into the polymerization vessel by nitrogen pressure. 0.636 g (2.75 mmol) of p-dic milk mouthride and 0.46 g (4.95 mmol) of α-picoline were added. Next, 1.96 mL (17. 88 mmol) of titanium tetrachloride was further added to initiate polymerization. After stirring for 75 minutes from the start of polymerization, about ImL of the polymerization solution was extracted from the polymerization solution for sampling. Subsequently, 45.36 g (535.6 mmol) of styrene monomer was added into the polymerization vessel. Sixty minutes after adding the mixed solution, the reaction was terminated by adding a large amount of water. Thereafter, the reaction solution was washed twice with water, the solvent was evaporated, and the resulting polymer was vacuum-dried at 60 ° C. for 24 hours to obtain the desired block copolymer.
[0073] 得られたブロック共重合体から実施例 1と同様にプレスシートを作製し、引張強度の 測定を行った。上記方法により測定した反応系中の水分量、引張強度、およびメルト フローレートの測定結果を表 3に示す。  [0073] A press sheet was produced from the obtained block copolymer in the same manner as in Example 1, and the tensile strength was measured. Table 3 shows the measurement results of water content, tensile strength, and melt flow rate in the reaction system measured by the above method.
[0074] (実施例 7)  [Example 7]
表 3に記載の水分となるよう、溶媒に水を加えて、重合を実施例 6と同様にして実施 した。上記方法により測定した反応系中の水分量、引張強度、およびメルトフローレ ートの測定結果を表 3に示す。  Polymerization was carried out in the same manner as in Example 6 by adding water to the solvent so that the moisture described in Table 3 was obtained. Table 3 shows the measurement results of water content, tensile strength, and melt flow rate in the reaction system measured by the above method.
[0075] (比較例 5)  [0075] (Comparative Example 5)
表 3に記載の水分となるよう、溶媒に水を加えて、重合を実施例 6と同様にして実施 した。上記方法により測定した反応系中の水分量、引張強度、およびメルトフローレ ートの測定結果を表 3に示す。  Polymerization was carried out in the same manner as in Example 6 by adding water to the solvent so that the moisture described in Table 3 was obtained. Table 3 shows the measurement results of water content, tensile strength, and melt flow rate in the reaction system measured by the above method.
[0076] [表 3]  [0076] [Table 3]
Figure imgf000018_0001
Figure imgf000018_0001
(実施例 8)  (Example 8)
2Lのセパラブルフラスコの重合容器内を窒素置換した後、注射器を用いて、 n キサン(モレキュラーシーブスで乾燥したもの) 23mL及び塩化ブチル(モレキュラー シーブスで乾燥したもの) 209mLを力 Qえ、混合溶媒中の水分をカールフィッシャー水 分計にて測定した。重合容器を一 70°Cのドライアイス/メタノールバス中につけて冷 却した後、イソブチレンモノマー 50· 5mL (534mmol)が入っている三方コック付耐 圧ガラス製液化採取管にテフロン (登録商標)製の送液チューブを接続し、重合容器 内にイソブチレンモノマーを窒素圧により送液した。 p_ ジクミルク口ライド 0. 103g ( 0. 44mmol)及びひ-ピコリン 0. l lg (l . 18mmol)を加えた。次にさらに四塩化チ タン 0. 68mL (6. 22mmol)を加えて重合を開始した。重合開始から 60分撹拌を行 つた後、重合溶液からサンプリング用として重合溶液約 lmLを抜き取った。 After substituting the inside of the polymerization vessel of the 2L separable flask with nitrogen, use a syringe to add 23 mL of n-xan (dried with molecular sieves) and 209 mL of butyl chloride (dried with molecular sieves). Karl Fischer water in the water Measured with a minute meter. After placing the polymerization vessel in a dry ice / methanol bath at 70 ° C and cooling, a Teflon (registered trademark) made in a pressure-resistant glass liquefied collection tube with a three-way cock containing 55.5 mL (534 mmol) of isobutylene monomer The liquid feeding tube was connected, and isobutylene monomer was fed into the polymerization vessel by nitrogen pressure. 0.13 g (0.44 mmol) of p_dicumulose mouthride and 0.1 l lg (l. 18 mmol) of hi-picoline were added. Next, 0.68 mL (6.22 mmol) of titanium tetrachloride was further added to initiate polymerization. After stirring for 60 minutes from the start of polymerization, about 1 mL of the polymerization solution was extracted from the polymerization solution for sampling.
続いて、スチレンモノマー 14. 48g (139mmol)を重合容器内に添カ卩した。混合溶液 を添加してから 135分後に、大量の水に加えて反応を終了させた。その後、反応溶 液を 2回水洗し、溶媒を蒸発させ、得られた重合体を 60°Cで 24時間真空乾燥するこ とにより目的のブロック共重合体を得た。  Subsequently, 14.48 g (139 mmol) of styrene monomer was charged into the polymerization vessel. 135 minutes after adding the mixed solution, the reaction was terminated by adding a large amount of water. Thereafter, the reaction solution was washed twice with water, the solvent was evaporated, and the obtained polymer was vacuum-dried at 60 ° C. for 24 hours to obtain the target block copolymer.
[0078] 得られたブロック共重合体から実施例 1と同様にプレスシートを作製し、引張強度の 測定を行った。上記方法により測定した反応系中の水分量と、引張強度の測定結果 を表 4に示す。  [0078] A press sheet was produced from the obtained block copolymer in the same manner as in Example 1, and the tensile strength was measured. Table 4 shows the moisture content in the reaction system measured by the above method and the measurement results of tensile strength.
[0079] (実施例 9)  [0079] (Example 9)
表 4に記載の水分となるよう、溶媒に水を加えて、重合を実施例 8と同様にして実施 した。上記方法により測定した反応系中の水分量と、引張強度の測定結果を表 4に 示す。  Polymerization was carried out in the same manner as in Example 8 by adding water to the solvent so that the moisture described in Table 4 was obtained. Table 4 shows the moisture content in the reaction system measured by the above method and the measurement results of tensile strength.
[0080] (比較例 6)  [0080] (Comparative Example 6)
表 4に記載の水分となるよう、溶媒に水を加えて、重合を実施例 8と同様にして実施 した。上記方法により測定した反応系中の水分量と、引張強度の測定結果を表 4に 示す。  Polymerization was carried out in the same manner as in Example 8 by adding water to the solvent so that the moisture described in Table 4 was obtained. Table 4 shows the moisture content in the reaction system measured by the above method and the measurement results of tensile strength.
[0081] [表 4]
Figure imgf000019_0001
[0081] [Table 4]
Figure imgf000019_0001
これらの実施例から示されるように、本発明の製造方法によるイソブチレン系ブロッ ク共重合体は、同じ重合条件で水分量が 75ppm以上の条件で製造したブロック共 重合体と比較して、引張強度が安定的に高い値を示し、また、溶融時の流動性も安 定した値を示すことがわかった。 As shown in these examples, the isobutylene block copolymer produced by the production method of the present invention has a tensile strength higher than that of a block copolymer produced under the same polymerization conditions and a water content of 75 ppm or more. Shows a stable high value and low fluidity during melting. It was found to show a fixed value.

Claims

請求の範囲 The scope of the claims
反応溶媒と単量体成分の合計重量に対する水分量を 75Ppm以下に保持した状態 で、下記一般式(1)で表わされる重合開始剤の存在下に、イソブチレンを主成分とす る単量体成分(a)と、イソブチレンを主成分としない単量体成分 (b)とを反応させるこ とを特徴とする、イソブチレンを単量体主成分とする重合体ブロックとイソブチレンを 単量体主成分としない重合体ブロックからなるイソブチレン系ブロック共重合体の製 造方法。 A single amount mainly composed of isobutylene in the presence of a polymerization initiator represented by the following general formula (1) in a state where the water content relative to the total weight of the reaction solvent and the monomer component is maintained at 75 P pm or less. A polymer block containing isobutylene as a main component of monomer and an isobutylene as a main monomer, characterized by reacting a body component (a) with a monomer component (b) containing no isobutylene as a main component. A process for producing an isobutylene block copolymer comprising a polymer block which is not used as a component.
Figure imgf000021_0001
Figure imgf000021_0001
(式中、複数の R1は、同一又は異なって、水素原子又は炭素数:!〜 6の 1価の炭化水 素基を表す。 R2は、 1価若しくは多価芳香族炭化水素基又は 1価若しくは多価脂肪 族炭化水素基を表す。 Xは、ハロゲン原子、炭素数:!〜 6のアルコキシル基、又は、 炭素数 1〜6のァシ口キシル基を表す。 nは、 1〜6の整数を表す。 Xが複数存在する とき、それらは、同一であっても異なっていてもよレ、。 ) (In the formula, a plurality of R 1 s are the same or different and each represents a hydrogen atom or a monovalent hydrocarbon group having from 6 to 6 carbon atoms. R 2 represents a monovalent or polyvalent aromatic hydrocarbon group or Represents a monovalent or polyvalent aliphatic hydrocarbon group, X represents a halogen atom, an alkoxyl group having from 6 to 6 carbon atoms, or an alkoxyl group having from 1 to 6 carbon atoms, and n is from 1 to Represents an integer of 6. When there are multiple Xs, they may be the same or different.
[2] 反応溶媒と単量体成分の合計重量に対する水分量を 50ppm以下に保持すること を特徴とする請求項 1に記載のイソブチレン系ブロック共重合体の製造方法。  [2] The process for producing an isobutylene block copolymer according to [1], wherein the water content relative to the total weight of the reaction solvent and the monomer component is maintained at 50 ppm or less.
[3] 反応溶媒と単量体成分の合計重量に対する水分量を 20ppm以下に保持すること を特徴とする請求項 1に記載のイソブチレン系ブロック共重合体の製造方法。  [3] The process for producing an isobutylene block copolymer according to [1], wherein the water content relative to the total weight of the reaction solvent and the monomer component is maintained at 20 ppm or less.
[4] 反応は、ルイス酸を更に共存させて行うものである請求項 1〜3のいずれかに記載 の製造方法。  [4] The production method according to any one of claims 1 to 3, wherein the reaction is carried out in the presence of a Lewis acid.
[5] ノレイス酸として、四塩化チタンを用いる請求項 4記載の製造方法。  [5] The production method according to claim 4, wherein titanium tetrachloride is used as the norelic acid.
[6] 一般式(1)で表わされる重合開始剤は、ビス(1 クロル 1ーメチルェチル)ベン ゼン [C H (C (CH ) CI) ]または(1—クロル一 1—メチルェチル)ベンゼン [C H C ([6] The polymerization initiator represented by the general formula (1) is bis (1 chloro 1-methylethyl) benzene. Zen [CH (C (CH) CI)] or (1-chloro- 1-methylethyl) benzene [CHC (
6 4 3 2 2 6 56 4 3 2 2 6 5
CH ) CI]から選ばれる少なくとも 1種である請求項 1〜3のいずれかに記載の製造方The production method according to claim 1, which is at least one selected from CH 3) CI].
3 2 3 2
法。  Law.
[7] イソブチレンを主成分としない単量体成分 (b)は、芳香族ビニル系単量体を主成分 とする単量体成分である請求項 1〜6のいずれかに記載の製造方法。  7. The production method according to any one of claims 1 to 6, wherein the monomer component (b) not containing isobutylene as a main component is a monomer component containing an aromatic vinyl monomer as a main component.
[8] 芳香族ビュル系単量体は、スチレン、 ρ—メチルスチレン、 ひ一メチルスチレン及び インデンからなる群より選択される少なくとも 1種である請求項 7記載の製造方法。  [8] The production method according to claim 7, wherein the aromatic bur monomer is at least one selected from the group consisting of styrene, ρ-methylstyrene, monomethylstyrene, and indene.
[9] イソブチレン系ブロック共重合体が、芳香族ビニル系単量体を主成分とする重合体 ブロック一イソブチレンを主成分とする重合体ブロック一芳香族ビュル系単量体を主 成分とする重合体ブロックから形成されるトリブロック共重合体、イソブチレンを主成 分とする重合体ブロック一芳香族ビニル系単量体を主成分とする重合体ブロックーィ ソブチレンを主成分とする重合体ブロックから形成されるトリブロック共重合体、及び、 芳香族ビュル系単量体を主成分とする重合体ブロック イソブチレンを主成分とする 重合体ブロックから形成されるジブロック共重合体からなる群より選択される少なくとも [9] The isobutylene-based block copolymer is a polymer mainly composed of an aromatic vinyl monomer, and a block polymer composed mainly of an aromatic vinyl monomer. A triblock copolymer formed from a combined block, a polymer block composed mainly of isobutylene, a polymer block composed mainly of an aromatic vinyl monomer, and a polymer block composed mainly of an aromatic vinyl monomer. At least selected from the group consisting of a diblock copolymer formed from a polymer block composed mainly of an isobutylene polymer block
1種である請求項 7又は 8記載の製造方法。 The production method according to claim 7 or 8, which is one kind.
[10] 炭素数 3〜8の 1級のモノハロゲン化炭化水素及び/又は炭素数 3〜8の 2級のモ ノハロゲン化炭化水素からなるモノハロゲン化炭化水素系溶媒と、脂肪族系炭化水 素及び/又は芳香族系炭化水素からなる非ハロゲン化炭化水素系溶媒との混合溶 媒中で重合を行うことを特徴とする請求項 1〜9のいずれかに記載の製造方法。 [10] A monohalogenated hydrocarbon solvent composed of a primary monohalogenated hydrocarbon having 3 to 8 carbon atoms and / or a secondary monohalogenated hydrocarbon having 3 to 8 carbon atoms, and an aliphatic hydrocarbon 10. The production method according to claim 1, wherein the polymerization is carried out in a mixed solvent with a non-halogenated hydrocarbon solvent comprising elemental and / or aromatic hydrocarbon.
[11] モノハロゲン化炭化水素系溶媒は、 1 クロ口プロパン及び 1 クロロブタンからなる 群より選択される少なくとも 1種である請求項 10記載の製造方法。 11. The production method according to claim 10, wherein the monohalogenated hydrocarbon solvent is at least one selected from the group consisting of 1-chloropropane and 1-chlorobutane.
[12] 非ハロゲン化炭化水素系溶媒は、へキサン、シクロへキサン、メチルシクロへキサン 及びェチルシクロへキサンからなる群より選択される少なくとも 1種である請求項 10又 は 11記載の製造方法。 12. The production method according to claim 10 or 11, wherein the non-halogenated hydrocarbon solvent is at least one selected from the group consisting of hexane, cyclohexane, methylcyclohexane, and ethylcyclohexane.
PCT/JP2006/320600 2005-10-17 2006-10-16 Process for producing isobutylene block copolymer WO2007046344A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007540964A JPWO2007046344A1 (en) 2005-10-17 2006-10-16 Method for producing isobutylene block copolymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-301761 2005-10-17
JP2005301761 2005-10-17

Publications (1)

Publication Number Publication Date
WO2007046344A1 true WO2007046344A1 (en) 2007-04-26

Family

ID=37962437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320600 WO2007046344A1 (en) 2005-10-17 2006-10-16 Process for producing isobutylene block copolymer

Country Status (2)

Country Link
JP (1) JPWO2007046344A1 (en)
WO (1) WO2007046344A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012517A (en) * 2010-07-01 2012-01-19 Kuraray Co Ltd METHOD OF MANUFACTURING β-PINENE BASED POLYMER
JP2012036280A (en) * 2010-08-05 2012-02-23 Kuraray Co Ltd METHOD FOR PRODUCING β-PINENE-BASED POLYMER

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08301955A (en) * 1995-03-08 1996-11-19 Kuraray Co Ltd Block copolymer and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08301955A (en) * 1995-03-08 1996-11-19 Kuraray Co Ltd Block copolymer and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012517A (en) * 2010-07-01 2012-01-19 Kuraray Co Ltd METHOD OF MANUFACTURING β-PINENE BASED POLYMER
JP2012036280A (en) * 2010-08-05 2012-02-23 Kuraray Co Ltd METHOD FOR PRODUCING β-PINENE-BASED POLYMER

Also Published As

Publication number Publication date
JPWO2007046344A1 (en) 2009-04-23

Similar Documents

Publication Publication Date Title
Chrissopoulou et al. Controlling the miscibility of polyethylene/layered silicate nanocomposites by altering the polymer/surface interactions
CN107406640B (en) Modified heterophasic polyolefin composition
TWI826366B (en) Method for making heterophasic polymer compositions
BRPI0821018B1 (en) HYPERPHASIC POLYPROPYLENE RESIN, ITS PRODUCTION PROCESS, USE OF THE SAME, COMPOSITION AND ARTICLE
WO2000008079A1 (en) Linear block copolymer and resin composition containing the same
JP2001514290A (en) In situ flow modification of polyolefin
KR100462426B1 (en) Propylene block copolymers and molded articles obtained therefrom
KR102124239B1 (en) Thermoplastic polymer composition
Zygo et al. New type of montmorillonite compatibilizers and their influence on viscoelastic properties of ethylene propylene diene and methyl vinyl silicone rubbers blends
BRPI0720868A2 (en) CARBOXYLATE END POLYMERS AND ITS USE IN IMPACT MODIFIED PLASTICS.
Hui et al. Effect of silica‐based nanofillers on the properties of a low‐density polyethylene/ethylene vinyl acetate copolymer based thermoplastic elastomer
US6656995B2 (en) Process for producing olefin polymer composites having improved melt strength
CN106459538B (en) Ethylene polymer composition and its purposes in polyolefin composition
Masa et al. Morphological evolution and mechanical property enhancement of natural rubber/polypropylene blend through compatibilization by nanoclay
WO2007046344A1 (en) Process for producing isobutylene block copolymer
EP0921157B1 (en) Alkenyl-containing isobutylene group block copolymer and process for producing it
CN113195623B (en) Composition and method for producing the same
WO2007094258A1 (en) Method for producing isobutylene block copolymer
JP2003192867A (en) Thermoplastic elastomer resin composition
JP2000119479A (en) Thermoplastic resin composition
JP2018519385A (en) Diene rubber / polypropylene thermoplastic elastomer copolymer, composition containing the same, and method of preparation
JP7028669B2 (en) Olefin resin, its production method and propylene resin composition
JP4589541B2 (en) Thermoplastic elastomer composition
BR112018012629B1 (en) Process for forming a long-chain branched polyolefin
WO2008072789A1 (en) Ethylene-propylene copolymer, and polypropylene resin composition comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007540964

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06811855

Country of ref document: EP

Kind code of ref document: A1