WO2007043662A1 - Isobutylene polymer and method for producing same - Google Patents

Isobutylene polymer and method for producing same Download PDF

Info

Publication number
WO2007043662A1
WO2007043662A1 PCT/JP2006/320489 JP2006320489W WO2007043662A1 WO 2007043662 A1 WO2007043662 A1 WO 2007043662A1 JP 2006320489 W JP2006320489 W JP 2006320489W WO 2007043662 A1 WO2007043662 A1 WO 2007043662A1
Authority
WO
WIPO (PCT)
Prior art keywords
isobutylene
polymer
monomer
polymerization
lewis acid
Prior art date
Application number
PCT/JP2006/320489
Other languages
French (fr)
Japanese (ja)
Inventor
Ryuji Fukuda
Takanori Hatano
Tomoyuki Yoshimi
Keizo Hayashi
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005298696A external-priority patent/JP2009007383A/en
Priority claimed from JP2005347480A external-priority patent/JP2009007385A/en
Priority claimed from JP2006040817A external-priority patent/JP2009007386A/en
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Publication of WO2007043662A1 publication Critical patent/WO2007043662A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer

Definitions

  • the present invention relates to an isobutylene polymer and a method for producing the same.
  • An isobutylene polymer can be usually obtained by cationic polymerization of an isobutylene monomer together with other monomers as desired.
  • Non-patent Document 1 a polymer block mainly composed of isobutylene and a polymer block composed mainly of an aromatic vinyl monomer and having an isobutylene block copolymer which is composed mainly of an isobutylene homopolymer are also produced.
  • Patent Document 1 US Patent No. 4946899 Specification
  • Patent Document 2 Japanese Patent Publication No. 7-59601
  • Non-Patent Document 1 J. P. Kennedy and B. Ivan, Designed Polymers by Carbo reactive Molecular Engineering: Theory and Practice, Carl Hanser Verlag, Kunststoff, 1992
  • An object of the present invention is to provide an isobutylene-based polymer that is less colored and has a stable color tone, and a method that can produce such an isobutylene-based polymer in view of the above-described problems of the prior art. It is what. Means for solving the problem
  • the first present invention is an isobutylene polymer obtained by polymerizing a monomer component containing isoprene in the presence of a polymerization initiator and a Lewis acid catalyst,
  • the isobutylene polymer is characterized in that the amount of metal residue derived from the Lewis acid catalyst in the isopylene polymer is 90 ppm or less.
  • a preferred embodiment relates to the isobutylene polymer in which the polymerization initiator has a structure represented by the following general formula (1).
  • X represents a halogen atom, an alkoxy group having 1 to 6 carbon atoms or an acyloxy group.
  • R 1 and R 2 are the same or different, and are a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms.
  • R 3 represents a monovalent or polyvalent aromatic hydrocarbon group or a monovalent or polyvalent aliphatic or alicyclic hydrocarbon group, n represents a natural number of 1 to 6.
  • the polymerization initiator represented by the general formula (1) is represented by the formula C
  • the above-mentioned isobutylene polymer is at least one selected from the group consisting of
  • the present invention relates to the above-mentioned isobutylene polymer in which the Lewis acid catalyst is tetrachloride-titanium.
  • a preferred embodiment includes a polymer block (a) having the isobutylene-based polymer strength isobutylene monomer as a main component and a polymer block (b) having a monomer other than isopylene as a main component. It is related with the said isobutylene type polymer which is a block copolymer to do.
  • a preferred embodiment relates to the isobutylene polymer which is a monomeric aromatic vinyl monomer other than the above isoprene.
  • the aromatic vinyl monomer is styrene, p-methyl.
  • the present invention relates to the above isobutylene polymer, which is at least one selected from the group consisting of rustyrene, monomethylstyrene, and indene force.
  • the isobutylene polymer is
  • the present invention relates to the above-mentioned isobutylene polymer, which is at least one block copolymer selected from the group consisting of:
  • the second invention is a step (I) of polymerizing a monomer component containing isobutylene in the presence of a Lewis acid catalyst;
  • the obtained polymer-containing solution is washed with a basic aqueous solution having a pHIO or higher (III);
  • the polymer-containing solution obtained after the step (III) is further used.
  • the present invention relates to the above production method comprising the step (IV) of filtering with a filter capable of collecting 99% or more of particles having a diameter of 5 / zm or more when the differential pressure before and after the filter is 0.2 MPa.
  • Another aspect of the second aspect of the present invention is a step (I) of polymerizing a monomer component containing isobutylene in the presence of a Lewis acid catalyst;
  • the obtained polymer-containing solution was subjected to a pressure difference of 0.2 MPa before and after the filter.
  • Filter with a filter capable of collecting 99% or more of particles with a diameter of 5 ⁇ m or more (IV);
  • the present invention relates to the above-mentioned production method, wherein the above-mentioned isobutylene polymer strength is mainly composed of isobutylene.
  • the isobutylene polymer is composed of a polymer block (a) containing an isobutylene monomer as a main component and a polymer block containing an aromatic butyl monomer as a main component ( b) It relates to the above production method which is a polymer which also has strength.
  • the polymerization reaction is carried out with at least one selected from the group consisting of primary and secondary monohalogenated hydrocarbons having 3 to 8 carbon atoms, aliphatic, alicyclic and aromatic. And at least one selected from the group consisting of group hydrocarbons.
  • a preferred embodiment relates to the above production method, wherein the Lewis acid catalyst is a halogenated metal.
  • a preferred embodiment relates to the above production method, wherein the halogenated metal is tetrasalt titanium.
  • a preferred embodiment relates to the above production method, wherein the basic aqueous solution is a sodium hydroxide aqueous solution.
  • the isobutylene polymer of the present invention is obtained by polymerizing a monomer component containing isobutylene in the presence of a polymerization initiator and a Lewis acid catalyst.
  • the polymer is characterized in that the amount of metal residue derived from the Lewis acid catalyst is 90 ppm or less.
  • the isobutylene-based polymer may be a homopolymer composed only of isoprene, or may be a copolymer obtained by polymerizing isopylene and other monomers. Especially, what has isobutylene as a main component is preferable.
  • the “main component” means a monomer component that occupies 60% by weight or more of all monomers constituting the polymer (or polymer block). Of all monomers constituting the polymer, isobutylene More preferred is a polymer containing 80% by weight or more of ethylene.
  • the isobutylene-based polymer also includes a polymer block ( a ) containing an isobutylene monomer as a main component and a polymer block (b) containing a monomer other than isobutylene as a main component.
  • An isobutylene block copolymer is preferred.
  • the monomer other than isobutylene as the main component in the block (b) is not particularly limited as long as it is a monomer capable of cationic polymerization, but an aliphatic or alicyclic olefin-based monomer.
  • the aliphatic or alicyclic olefin-based monomer is not particularly limited, and examples thereof include ethylene, propylene, 1-butene, 2-methyl 1-butene, 3-methyl 1-butene, and pentene. Hexene, cyclohexene, 4-methyl-1-pentene, vinylcyclohexene, otaten, norbornene and the like.
  • the aromatic bulle monomer is not particularly limited.
  • the above-mentioned gen-based monomer is not particularly limited, and examples thereof include butadiene, isoprene, cyclopentane, cyclohexagen, dicyclopentagen, divininolebenzene, and ethylidene norbornene.
  • the butyl ether monomer is not particularly limited.
  • the silanic compound is not particularly limited, and examples thereof include vinyltrichlorosilane, vinylmethyldichlorosilane, vinyldimethylchlorosilane, vinyldimethylmethoxysilane, vinyltrimethylsilane, dibutydichlorosilane, dibutydimethoxysilane, Examples include dibutyldimethylsilane, 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, trivinylmethylsilane, ⁇ -methacryloyloxypropyltrimethoxysilane, and ⁇ -methacryloyloxypropylmethyldimethoxysilane.
  • monomers other than the above-mentioned isobutylene, which is the main component of the polymer block (b), are preferably aromatic vinyl monomers from the balance of physical properties and polymerization characteristics. That is, a block copolymer in which the content of the aromatic vinyl monomer in the polymer block (b) is 60% by weight or more is preferred, and a block copolymer having 80% by weight or more is more preferred. Yes.
  • At least one monomer selected from the group consisting of styrene, ⁇ -methylstyrene, p-methylstyrene, and indene is preferable to use as the aromatic bur monomer. From the viewpoint of cost, it is particularly preferable to use styrene, hymethylstyrene, ⁇ -methylstyrene or a mixture thereof.
  • the polymer block (a) containing isobutylene as a main component may or may not contain a monomer other than isobutylene as a monomer component. However, among all the monomers constituting the polymer block (a), 60% by weight or more, preferably 80% by weight or more is isobutylene.
  • a monomer other than isoprene included in the polymer block (a) cationic polymerization is possible.
  • the monomer is not particularly limited as long as it is a simple monomer, such as aliphatic or cycloaliphatic olefins, aromatic burins, gens, butyl ethers, silanes, burcarbazole, ⁇ -vinene, and acenaphthylene. A monomer is mentioned. These may be used alone or in combination of two or more.
  • the ratio of the polymer block (a) mainly composed of isobutylene and the polymer block (b) mainly composed of an aromatic vinyl monomer in the entire isobutylene polymer is not particularly limited. However, from the viewpoint of various physical properties, the ratio of the polymer block ( a ) based on the isobutylene monomer out of all the monomers in the isobutylene polymer S 40 to 95% by weight, aromatic vinyl type It is preferable that the ratio of the polymer block (b) based on the monomer is 5 to 60% by weight.
  • the ratio of the polymer block (a) based on the isobutylene monomer is preferably from 50 to 50% by weight. It is particularly preferred that the proportion of the polymer block (b) containing 85% by weight of the aromatic bulbure monomer as a main component is 15 to 50% by weight.
  • the number average molecular weight of the isobutylene-based polymer is not particularly limited, but the surface strength such as fluidity, processing 'property, physical properties', etc. is a power of 30000-500000 S, preferably 50000-400000 It is especially preferred. If the number average molecular weight of the isobutylene polymer is lower than 30000, the mechanical properties tend not to be fully expressed, whereas if it exceeds 500,000, it is disadvantageous in terms of fluidity and workability. .
  • the above number average molecular weight is measured using a gel permeation chromatography (GPC) system manufactured by Waters (columns: Shodex K 804, K 802.5 (polystyrene gel) manufactured by Showa Denko KK, mobile phase: black mouth form). This is the measured value.
  • GPC gel permeation chromatography
  • the block copolymer is particularly preferred as a block copolymer (polymer block mainly composed of an aromatic vinyl monomer) from the viewpoint of balance of physical properties.
  • Polymer block mainly composed of a monomer) Polymer block composed mainly of an aromatic vinyl monomer
  • Triblock copolymer (a polymer block composed mainly of an isobutylene monomer) (Polymer block containing aromatic vinyl monomer as the main component) (Polymer block containing isobutylene monomer as the main component) Powerful triblock copolymer (Mainly aromatic vinyl monomer) Polymer block as component) (Polymer block mainly composed of isobutylene monomer) Powerful diblock copolymer, and (Aromatic bulle system)
  • the isobutylene polymer of the present invention is obtained by superposing predetermined monomer components in the presence of a polymerization initiator.
  • the polymerization initiator is not particularly limited, but the general formula (1)
  • X represents a halogen atom, an alkoxy group having 1 to 6 carbon atoms or an acyloxy group.
  • R 1 and R 2 are the same or different, and are a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms.
  • R 3 represents a monovalent or polyvalent aromatic hydrocarbon group or a monovalent or polyvalent aliphatic or alicyclic hydrocarbon group, and n represents a natural number of 1 to 6. It is preferable to use the compound as an initiator.
  • Polymerization initiator is the starting point for cationic polymerization
  • Examples of the compound of the general formula (1) used in the present invention include the following compounds.
  • Tris (1-Chlorone 1-methinoreethinore) benzene is Tris (cyclomouth isopropyl) Also called benzene, tris (2-chloro-2-benzene) benzene or tritamilk chloride.
  • the isobutylene polymer of the present invention is obtained by polymerizing a monomer component containing isobutylene in the presence of a Lewis acid catalyst.
  • the Lewis acid is not particularly limited as long as it can be used for cation polymerization.
  • Metal halides such as A1C1 and AlBr; Organometallic halides such as Et A1C1 and EtAlCl
  • a halogenated metal such as a compound can be preferably used (Et represents an ethyl group).
  • Et represents an ethyl group.
  • TiCl titanium tetrachloride
  • A1C1 and Et A1C1 being particularly preferred.
  • the amount is not particularly limited, but can be set in consideration of the polymerization characteristics or polymerization concentration of the monomer used. Usually, 0.1 to L00 molar equivalent can be used with respect to the polymerization initiator, and preferably in the range of 1 to 50 molar equivalent.
  • an electron donor component can be further present if necessary.
  • This electron donor component is considered to have an effect of stabilizing the growing carbon cation during cationic polymerization, and a polymer having a structure with a narrow molecular weight distribution controlled by the addition of the electron donor. Can be generated.
  • the electron donor component that can be used is not particularly limited, and examples thereof include pyridines, amines, amides, sulfoxides, esters, and metal compounds having an oxygen atom bonded to a metal atom.
  • the number of donors defined as one parameter representing the strength as an electron donor (electron donor) of various compounds is 15-60, t-butylpyridine, 2-t-butylpyridine, 2, 4, 6 trimethylpyridine, 2,6 dimethylpyridine, 2-methylpyridine, pyridine, jetylamine, trimethylamine, triethylamine, tributylamine, N, N-dimethyla -Phosphorus, N, N-dimethylformamide, N, N dimethylacetamide, N, N jetylacetamide, dimethylsulfoxide, diethyl ether, methyl acetate, ethyl acetate, trimethyl phosphate, hexamethyl phosphate triamide, titanium (III) Titanium alkoxides such as methoxide, titanium (IV) methoxide, titanium (IV) isopropoxide, titan (IV) butoxide; power capable of using aluminum alkoxide such as aluminum triethoxide and
  • 2,6 g t-butylpyridine 2 , 6 Dimethyl pyridine, 2 Methyl pyridine, Pyridine, Diethylamine, Trimethylamine, Triethylamine, N, N Dimethylformamide, N, N-Dimethylacetamide, Dimethyl sulfoxide, Titanium (IV) isopropoxide, Titanium ( IV) Butoxide and the like.
  • the number of donors for the various substances mentioned above is shown in “Donor and Acceptor”, by Dardman, Otsuki, Okada, and Academic Publishing Center (1983).
  • 2-methylpyridine, N, N-dimethylacetamide which has a remarkable effect of addition, and titanium (IV) isopropoxide that makes the reaction system uniform are particularly preferable.
  • the electron donor component is used in a molar amount of 0.01 to LO times with respect to the polymerization initiator. Of these, it is preferably used in the range of 0.2 to 4 moles.
  • the polymerization of the isobutylene polymer can be carried out in a solvent, if necessary. Any conventionally known solvent can be used as long as it does not essentially inhibit cationic polymerization. Specifically, methyl chloride, dichloromethane, n-propyl chloride, n-butyl chloride, chloride can be used.
  • Halogenated hydrocarbons such as benzene; alkylbenzenes such as benzene, toluene, xylene, ethylbenzene, propylbenzene, and butylbenzene; linear chains such as ethane, propane, butane, pentane, hexane, heptane, octane, nonane, and decane Aliphatic hydrocarbons; branched aliphatic hydrocarbons such as 2-methylpropane, 2-methylbutane, 2, 3, 3 trimethylpentane, 2, 2, 5 trimethylhexane; cyclohexane, methylcyclohexane, Alicyclic hydrocarbons such as ethylcyclohexane; paraffin oil obtained by hydrorefining petroleum fractions, etc. It can be mentioned.
  • These solvents are used for the polymerization characteristics and formation of the monomers constituting the isobutylene polymer. Considering the balance of the solubility of the polymer, it can be used alone or in combination of two or more. Among them, at least one selected from the group consisting of primary and secondary monohalogenated hydrocarbons having 3 to 8 carbon atoms, and group power consisting of aliphatic, alicyclic and aromatic hydrocarbons are selected. Polymerization in a mixed solvent containing at least one kind is preferable from the viewpoint of improving workability in the water washing step after polymerization and ease of waste water treatment after water washing.
  • the primary monohalogenated hydrocarbons having 3 to 8 carbon atoms and the secondary monohalogenated hydrocarbons having 3 to 8 carbon atoms are not particularly limited, and examples thereof include 1-chloropropane, 1-chloro-2- Methylpropane, 1-chlorobutane, 1-black mouth 2-methylbutane, 1-black mouth one 3-methyl butane, 1-black mouth 2,2 dimethylbutane, 1-black mouth 3,3 dimethylbutane, 1 — 1,3 Dimethylbutane, 1-Black mouthpentane, 1-Black mouthpiece 2-Methylpentane, 1-Black mouthpiece 3-Methinorepentane, 1-Black mouthpiece 4-Methinorepentane, 1-Black mouth hexane 1 chloro-2-methino hexane, 1 chloro 3-methino hexane, 1 chloro 4-methino hexane, 1 chloro 5-methino hexane, 1-heptane, 1 chlorooctane
  • a monohalogenated solvent having 3 carbon atoms a monohalogenated solvent having 4 carbon atoms, a combination of a monohalogenated solvent having 3 carbon atoms and a monohalogenated solvent having 4 carbon atoms, or a monohalogen having 4 to 8 carbon atoms. It may be a combination of at least one of the solvating solvents.
  • a monohalogenated solvent having 3 carbon atoms a monohalogenated solvent having 4 carbon atoms
  • a combination of a monohalogenated solvent having 3 carbon atoms and a monohalogenated solvent having 4 carbon atoms a monohalogen having 4 to 8 carbon atoms.
  • It may be a combination of at least one of the solvating solvents.
  • 1-chloropropane and Z or 1-chlorobutane especially 1-chlorobutane. preferable.
  • the aliphatic or alicyclic hydrocarbon and the aromatic hydrocarbon as the non-halogen solvent are not particularly limited.
  • butane, pentane, neopentane, hexane, heptane, octane, cyclohexane examples include methylcyclohexane, ethylcyclohexane, benzene, toluene, xylene, ethylbenzene and the like. These can be used alone or in combination of two or more.
  • Solubility of isobutylene polymer From the balance of cost, dielectric constant, etc., at least one selected from the group consisting of hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, toluene and xylene is preferred hexane, methylcyclohexane and ethylcyclo Particularly preferred is at least one selected from the group having hexane power.
  • the content of the monohalogen hydrocarbon solvent in the mixed solvent is not particularly limited, and may be set so as to obtain a desired dielectric constant or solubility of the isobutylene polymer. However, it is generally 10 to 98% by weight, preferably 20 to 95% by weight. This is because when the content of the monohalogen hydrocarbon solvent is less than 10%, the reaction rate may become extremely slow, or the polymer may precipitate during the polymerization, and a preferred isobutylene polymer can be obtained. This is because there is not. On the other hand, if it exceeds 98% by weight, it may be difficult to control the reaction with a high polymerization rate.
  • the amount of the solvent used is determined in consideration of the viscosity of the resulting polymer solution and the ease of heat removal. It is preferable that the concentration of the polymer be 1 to 50% by weight. More preferably, the content is 5 to 35% by weight.
  • the isobutylene polymer in the present invention is characterized in that the amount of metal residue derived from the Lewis acid catalyst is 90 ppm or less.
  • the above metal residue is preferably 80 ppm or less, more preferably 60 ppm or less, and even more preferably 40 ppm or less.
  • the amount of metal residue exceeds 90 ppm, the coloring of the polymer, particularly yellowing, becomes remarkable.
  • the yellowness Y. I.
  • the amount of metal residue is a value measured by a calibration curve method using an ICP emission spectrophotometer (Seiko Instruments Inc., SPS-1700R type).
  • the method for producing the isobutylene polymer of the present invention is not particularly limited except that the polymerization of the monomer component containing isobutylene in the presence of a polymerization initiator and a Lewis acid catalyst is performed.
  • a polymerization initiator and a Lewis acid catalyst for example, the above-mentioned solvent, the compound represented by the general formula (1), and, if necessary, an electron donor component are charged into a reaction vessel, and then isobutylene is the main component.
  • a method of polymerizing by adding a Lewis acid and further adding a Lewis acid are charged into a reaction vessel, and then isobutylene is the main component.
  • a method of polymerizing by adding a Lewis acid and further adding a Lewis acid for example, the block copolymer, after the polymerization of the monomer component added to the reaction vessel is substantially completed, the block copolymer may be added by adding another monomer component. it can . Furthermore, if necessary, after the polymerization is substantially completed, another mono
  • the reaction solution is added to a large amount of water to deactivate the Lewis acid catalyst. After removal, the resulting mixture is also subjected to a post-treatment such as removing water, followed by a washing operation.
  • a post-treatment such as removing water, followed by a washing operation.
  • the method for reducing the amount of metal residue derived from the Lewis acid catalyst of the isobutylene polymer there is a method of increasing the number of water washing operations. Also, use a basic aqueous solution with a high pH value when washed with water.
  • the Lewis acid catalyst may be easily removed by lowering the solution concentration during purification. Specifically, the solution concentration at the time of polymerization may be lowered, or a diluting solvent may be added to lower the polymer concentration of the polymerization solution after the polymerization is completed.
  • a method of reducing the amount of metal residue by adding an additive such as a surfactant or an antifoaming agent may be employed.
  • a method of adding a metal alkoxide to a polymerization solution, filtering the precipitated polymerization catalyst residue and fractionating, as described in JP-A-2001-131222, can be mentioned. These methods may be performed alone, or a plurality of methods may be combined.
  • a particularly preferred temperature range is from -80 ° C to 1-30 ° C.
  • the isobutylene polymer of the present invention has a reinforcing agent, a filler, an antioxidant, an ultraviolet absorber, a light stabilizer, a pigment and the like within a range not impairing the physical properties according to the required characteristics according to each application.
  • Surfactants, reaction retarders, flame retardants, fillers, reinforcing agents and the like may be appropriately blended.
  • the antioxidant is not particularly limited, and examples thereof include hindered phenols and hindered amines.
  • the isobutylene-based polymer obtained by the above method is generally adopted for thermoplastic resin.
  • it can be melt-molded by extrusion molding, injection molding, press molding, blow molding or the like.
  • the second aspect of the present invention relates to a method for producing an isobutylene polymer. Specifically, a step (I) of polymerizing a monomer component containing isobutylene in the presence of a Lewis acid catalyst; water is brought into contact with the isobutylene polymer-containing solution obtained in the step (I); The step of deactivating the Lewis acid catalyst ( ⁇ );
  • the obtained polymer-containing solution is washed with a basic aqueous solution having a pHIO or higher (III);
  • the obtained polymer-containing solution is filtered with a filter that can collect 99% or more of particles having a diameter of 5 ⁇ m or more when the differential pressure before and after the filter is 0.2 MPa.
  • Degree (IV) the obtained polymer-containing solution is filtered with a filter that can collect 99% or more of particles having a diameter of 5 ⁇ m or more when the differential pressure before and after the filter is 0.2 MPa.
  • the present invention relates to a process for producing an isobutylene polymer characterized by containing (hereinafter, this process is referred to as Process [B]).
  • the production method [A] is a production method including the above steps (iii) to (III). Details will be described below.
  • Step (I) is a step of polymerizing a monomer component containing isobutylene in the presence of a Lewis acid catalyst.
  • the polymerization method is not particularly limited as long as it is carried out in the presence of a Lewis acid catalyst.
  • a Lewis acid catalyst for example, the above-mentioned solvent, the compound represented by the following general formula (1), and, if necessary, an electron donor component are charged into a reaction vessel, and then a monomer component mainly composed of isobutylene is added. And a method in which a Lewis acid is added to perform polymerization.
  • block copolymers For example, after the polymerization of the monomer component added to the reaction vessel is substantially completed, block copolymerization can be performed by adding another monomer component. Furthermore, if necessary, after the polymerization is substantially completed, another monomer component may be added to continue the polymerization.
  • the monomer component is not particularly limited as long as it contains isobutylene, but those having isobutylene as a main component are preferred.
  • the monomer other than isoprene included in the monomer component is not particularly limited as long as it is a monomer that can be cationically polymerized.
  • aliphatic or alicyclic olefins aromatic bulls.
  • monomers such as gens, butyl ethers, silanes, burcarbazole, ⁇ -vinene, and acenaphthylene. These may be used alone or in combination of two or more.
  • the isobutylene polymer obtained in the present invention contains a polymer block (a) containing isobutylene as a main component and a polymer block (b) containing a monomer other than isobutylene as a main component.
  • An isobutylene block copolymer is included.
  • the monomer other than isobutylene which is the main component of the block (b) is not particularly limited as long as it is a monomer capable of cationic polymerization, but aliphatic or alicyclic olefin-based monomers, Examples thereof include monomers such as aromatic vinyl monomers, gen monomers, butyl ether monomers, silane compounds, burcarbazole, 13 vinylene, and acenaphthylene. These can be used alone or in combination of two or more.
  • the monomer other than the above isobutylene, which is the main component of the polymer block (b), is preferably an aromatic vinyl monomer from the balance of physical properties and polymerization characteristics.
  • the Lewis acid catalyst used in the present invention is not particularly limited as long as it can be used for cationic polymerization, and examples thereof include metal halides such as TiCl, BC1, BF, A1C1, and SnCl.
  • TiCl tetrasalt ⁇ titanium
  • the polymerization solvent used in the step (I) is not particularly limited, and a solvent having a halogenated hydrocarbon power, a non-halogen solvent, or a mixture thereof can be used.
  • a solvent having a halogenated hydrocarbon power, a non-halogen solvent, or a mixture thereof can be used.
  • the group power of primary and secondary monohalogenated hydrocarbons with 3 to 8 carbon atoms is also selected.
  • the surface area of solubility of isobutylene polymers are also preferred.
  • the primary and Z or secondary monohalogenated hydrocarbons having 3 to 8 carbon atoms are not particularly limited, and examples thereof include 1-chlorobutane and black benzene. Among these, 1 chlorobutane is preferred because of the solubility of the isobutylene block copolymer, the ease of detoxification by decomposition, and the balance force such as cost.
  • the aliphatic and Z or aromatic hydrocarbons are not particularly limited.
  • One or more selected from the group consisting of methylcyclohexane, ethylcyclohexane and toluene power are particularly preferred.
  • step (I) although it is not essential, it is preferable to carry out the polymerization in the presence of a polymerization initiator.
  • the polymerization initiator is not particularly limited, but a compound represented by the general formula (1) is preferable.
  • X represents a halogen atom, an alkoxy group having 1 to 6 carbon atoms or an acyloxy group.
  • R 1 and R 2 are the same or different, and are a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms.
  • R 3 represents a monovalent or polyvalent aromatic hydrocarbon group or a monovalent or polyvalent aliphatic or alicyclic hydrocarbon group, n represents a natural number of 1 to 6.
  • Specific examples of the compound of the general formula (1) include (1 chloro 1-methylethyl) benzen [CHC (CH) Cl], 1, 4 bis (1-chloro-1-methylethyl) benzene [1, Four-
  • Tinoleetinole 5 (tert Butinole) benzene [1, 3— (C (CH) C1) — 5— (C (CH)
  • Isopropyl) benzene, bis (2-chloro-2-propynole) benzene! / ⁇ is also called dicumino chloride, and tris (1-chloro-1-1-methylethyl) benzene is tris (cyclochloroisopropyl) benzene, tris ( 2—Black 1 2-Propyl) Benzene! / ⁇ ⁇ is also known as Tricuminolecide Ride].
  • an electron donor component can be further present if necessary.
  • examples of such compounds include pyridines, amines, amides, sulfoxides, esters, or metal compounds having an oxygen atom bonded to a metal atom.
  • the respective components are mixed under cooling, for example, at a temperature of 100 ° C or higher and lower than 0 ° C.
  • a particularly preferred temperature range is -80 ° C to -30 ° C to balance energy costs and polymerization stability.
  • the number average molecular weight of the resulting isobutylene block copolymer is not particularly limited! /, Force From the viewpoint of fluidity, processability, physical properties, etc., the power is preferably 30,000 to 500,000 S, preferably 500 00 Especially preferred power to be ⁇ 400000!
  • step (ii) will be described in detail.
  • the isobutylene polymer-containing solution (also referred to as “polymer solution” or “polymer-containing solution” in this specification) is mainly composed of isobutylene using a Lewis acid catalyst. This is a solution obtained after polymerization of monomer components.
  • the Lewis acid catalyst is deactivated by bringing water into contact with such a polymer-containing solution.
  • a container equipped with a stirrer is preferably used as the apparatus used for deactivation of the Lewis acid catalyst.
  • Arbitrary blades such as screw blades, propeller blades, anchor blades, blade blades, pitched paddle blades, turbine blades, large-size blades, and the like, are not particularly limited in the shape of the stirring blades of the stirrer.
  • the vessel used for deactivation should be a reaction vessel equipped with a generally used stirrer and jacket, which is not particularly limited in shape and shape as long as it has a function of controlling the internal temperature. Can do.
  • a baffle or similar effect can be used to increase the efficiency of stirring. There is no problem even if the thermometer with protective tube is in the container.
  • the temperature at which the catalyst is deactivated is not particularly limited, but a range of 4 to 100 ° C is preferable from the viewpoint of production cost and safety which is preferable in operation. ° C is particularly preferred.
  • step (III) will be described.
  • step (III) after the above step (II), the obtained polymer-containing solution is washed by adding a basic aqueous solution of pHIO or more, thereby sufficiently inactivating the Lewis acid and further removing it. Do. Usually, after the Lewis acid catalyst is deactivated, the polymer solution is sufficiently washed with water, and then a basic aqueous solution is added to the polymer solution.
  • the temperature at the time of washing is not particularly limited, but the range of 4 to 100 ° C is preferably 20 to 80 ° C from the viewpoint of manufacturing cost and safety which is preferable in operation. Particularly preferred.
  • the amount of the aqueous solution used for cleaning is not particularly limited, but the ratio of (aqueous solution: polymer solution) is in the range of 1Z5 to LOZl (volZvol) from the viewpoint of production cost. It is particularly preferable that the production power of the manufacturing cost is in the range of 1Z5 to 5Z1 (volZvol).
  • the pH value of the basic aqueous solution used should be 10 or more in order to remove the catalyst sufficiently. In terms of productivity and safety, the pH value is particularly preferably 10 to 13.
  • the basic aqueous solution to be used is not particularly limited, but it is preferable to use sodium hydroxide (caustic soda) in terms of cost and ease of handling.
  • the primary and secondary carbons having 3 to 8 carbon atoms similar to the polymerization solvent may be used.
  • Mixed solvent or halogenation containing at least one selected from the group consisting of monohalogenated hydrocarbons and at least one selected from the group consisting of aliphatic, alicyclic and aromatic hydrocarbons A single solvent of hydrocarbon, aliphatic hydrocarbon or aromatic hydrocarbon can also be added to the polymer-containing solution after completion of polymerization.
  • the amount of the solvent to be added is not particularly limited, but it is preferable that the ratio of (water: polymer solution) is in the range of 1Z10 to 10Z1 (volZvol) from the viewpoint of production cost. A range of ⁇ 2Z1 (volZvol) is particularly preferred.
  • the catalyst is deactivated with water, and then the polymer solution is dissolved.
  • a basic aqueous solution of pHIO or higher to the solution, the catalyst residue can be enlarged, and the catalyst residue can be sufficiently removed by filtration or the like.
  • the step (IV) described below may be further performed after the step (III). This can further enhance the effect of removing the catalyst residue.
  • Production method [B] is a production method comprising the steps (1), (ii) and (IV). Of these, steps (I) and (ii) are as already described in the section of production method [A].
  • step (IV) water is brought into contact with the polymer solution in step (II) to deactivate the Lewis acid catalyst, and the resulting polymer solution is subjected to a pressure difference of 0.2 before and after the filter.
  • a filter capable of collecting 99% or more of particles having a diameter of 1 m or more is used.
  • the material of the filter is not particularly limited as long as it is a material that does not dissolve in the polymer-containing solution under normal use, such as polypropylene, nylon, and cotton.
  • the filter 1 may be used in multiple stages in order to sufficiently remove the catalyst even with one stage.
  • the group of primary and secondary monohalogenated hydrocarbons having 3 to 8 carbon atoms which is the same as the polymerization solvent, if necessary.
  • Mixed solvent containing at least one selected from the group consisting of aliphatic, alicyclic and aromatic hydrocarbons, or halogenated hydrocarbon, aliphatic hydrocarbon or A single aromatic hydrocarbon solvent may be added to the polymer solution.
  • the amount of the solvent to be added is not particularly limited, but the ratio of (water: polymer solution) is not limited.
  • the range of 1Z10 to 2Zl (vol / vol) is particularly preferable from the viewpoint of production cost, which is preferably in the range of the force SlZlO to 10Zl (volZvol).
  • the isobutylene-based polymer with few metal residues derived from the catalyst of the present invention has little coloration and a stable color tone. Therefore, it can be suitably used for applications requiring transparency and hygiene, and molded products colored with dyes and pigments, particularly molded products colored with light colors. Further, according to the production method of the present invention, an isobutylene polymer with little coloring can be produced.
  • the molecular weight of the isobutylene polymer shown in this example was measured by the following method. Waters GPC system (column: Shodex K-804 (polystyrene gel), Showa Denko KK, mobile phase: black mouth form). The number average molecular weight is expressed in terms of polystyrene.
  • the test piece was a 2 mm thick press sheet, and the yellowness (Y. L) of this test piece was measured using a spectroscopic color difference meter (Spectroo Color Meter SE2000 manufactured by Nippon Denshoku Industries Co., Ltd.). It was.
  • the appearance of the isobutylene polymer was visually observed to determine whether yellowness was observed. A colorless one was marked with ⁇ , a slightly yellow colored one was marked with ⁇ , and a yellow colored one was marked with X.
  • the obtained polymer solution was a highly transparent solution.
  • the solvent was distilled off from the obtained polymer solution, and further dried for 24 hours in a vacuum dryer at 80 ° C. to obtain an isobutylene block copolymer solid.
  • the number average molecular weight was 78,000 and the molecular weight distribution was 1.43.
  • the obtained isobutylene block copolymer was melt-kneaded at 180 ° C by a Laboplast mill (manufactured by Toyo Seiki Seisakusho).
  • the obtained kneaded material was press-molded at 170 ° C. using a compression molding machine (manufactured by Shinfuji Metal Industry Co., Ltd.) to obtain a 2 mm thick sheet.
  • appearance observation and yellowness measurement were performed.
  • the amount of residual Ti was measured by a calibration curve method using an ICP emission spectroscopic analyzer (manufactured by Seiko Instruments Inc., SPS-1700R type). The results are shown in Table 1.
  • Isobutylene type block copolymer was obtained in the same manner as in Example 2 except that 2.46 mL of tetrachloride-titanium was used. As a result of measuring the molecular weight of the obtained isobutylene block copolymer, the number average molecular weight was 74,000 and the molecular weight distribution was 1.45. The obtained polymer was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 1 By comparing Example 1 and Comparative Example 1, it is possible to reduce the amount of metal residue by mixing and stirring the polymer solution after completion of polymerization with pure water supplemented with an emulsifier. As a result, it can be seen that coloring can be reduced. In addition, it can be seen that the amount of metal residue can be reduced by performing polymerization at a low concentration of the resin or by diluting the resin with a solvent after polymerization (Examples 3 and 4). Comparison of Comparative Examples 2-4).
  • the isobutylene block copolymer having a metal residue derived from the Lewis acid catalyst of the present invention of 90 ppm or less is stable in color, particularly in color with low yellowness. is doing.
  • the molecular weight distribution was 5,000 and the molecular weight distribution was 1.24.
  • 1 L of distilled water was charged into a 3 L separable flask equipped with a stirring blade, a condenser and a baffle, and the pH was adjusted to 10 by adding NaOH and heated to 60 ° C. Thereafter, 1 L of the polymer solution after the catalyst deactivation obtained by the method of Production Example 1 was added and maintained at 60 ° C. with stirring (first washing with water). After 1 hour from the start of stirring, stirring was stopped and the polymer solution phase and the aqueous phase were separated. After discharging the aqueous phase, the same operation was further performed with distilled water (second washing with water) to obtain a polymer solution. Further, the obtained polymer solution was vacuum dried at 60 ° C. for 24 hours to obtain a polymer.
  • the obtained polymer was heated to 180 ° C for 10 minutes with a press machine to form a sheet having a thickness of 2 mm, and the YI value was measured with a color difference meter.
  • the YI value was 15.1. (Table 2).
  • a polymer was obtained in the same manner as in Example 4 except that the aqueous NaOH solution used for the first washing was replaced with one having a pH of 12.
  • the Y.I. value of the obtained polymer was measured, the Y.I. value was 14.6 (Table 2).
  • Example 2 After the first washing, distilled water was used without adjusting the pH (without adding NaOH). The procedure was the same as in Example 4, followed by washing with water to obtain a polymer. The YI value of the obtained polymer was measured and found to be 21.7 (Table 2).
  • the polymer solution after catalyst deactivation obtained in Production Example 1 was formed into a sheet without being washed with water.
  • the Y.I. value of the obtained polymer was measured, the Y.I. value was 21.7 (Table 2).
  • the polymers obtained in Examples 4 and 5 are coagulants having excellent transparency with very little coloration. According to the method of the present invention, the coloration of the coagulants is improved. I found that it was possible.
  • the obtained polymer solution was poured into a large amount of water to deactivate the catalyst, thereby stopping the reaction. Thereafter, the polymer solution phase and the aqueous phase were separated with a separatory funnel to obtain a polymer solution after deactivation of the catalyst.
  • a 3 L separable flask equipped with a stirring blade, a condenser and a baffle was charged with 1 L of distilled water and heated to 60 ° C. Then, 1 L of the polymer solution after deactivation of the catalyst was added, and the mixture was not stirred. Force S was maintained at 60 ° C (first washing with water). Stirring was stopped 1 hour after the start of stirring, and the polymer solution phase and the aqueous phase were separated. After draining the aqueous phase, the remaining polymer solution phase is placed in distilled water. Further, the same water washing operation was carried out (2nd water washing) to obtain a water washing polymer solution.
  • the total amount of the washing polymer solution obtained in Production Example 1 was DC- ⁇ ⁇ ⁇ ⁇ ⁇ -001-500 manufactured by Central Filter Industry Co., Ltd. (99% or more of particles having a diameter larger than that when the differential pressure before and after the filter was 0.2 MPa) It filtered using the filter which can be collected.
  • the amount of Ti in the polymer solution after filtration (the amount of metal residue derived from the Lewis acid catalyst) was analyzed, it was 38 ppm based on the solid content of the polymer.
  • the obtained water-washed polymer solution was vacuum-dried at 60 ° C for 24 hours to obtain a polymer.
  • a sheet having a thickness of 2 mm was produced from the obtained polymer with a press.
  • the sheet was produced as follows.
  • the polymer of about 10g placed Fellow plate, 7 minutes preheating at 180 ° C, 10kg / cm 2 - 1 minute at G, yet 50KgZcm 2 - after pressurizing 2 minutes at G, 50kgZcm 2 - 3 minutes cooling at G did.
  • the YI value was 14.0 as shown in Table 3.
  • NXA0.5-5-20 a filter that can collect 99% or more of particles with a diameter of 0.5 ⁇ m or more when the differential pressure before and after the filter is 0.2 MPa
  • a filter that can collect 99% or more of particles with a diameter of 0.5 ⁇ m or more when the differential pressure before and after the filter is 0.2 MPa
  • the amount of Ti in the polymer solution after filtration was analyzed, it was 19 ppm with respect to the solid content of the polymer.
  • Filtration was carried out in the same manner as in Example 8 except that a filter capable of collecting 99% or more of particles having a diameter of 5 ⁇ m or more when the differential pressure before and after the filter was 0.2 MPa.
  • the amount of Ti in the polymer solution after filtration (the amount of metal residue derived from the Lewis acid catalyst) was analyzed, it was 80 ppm based on the solid content of the polymer.
  • the YI value of the obtained polymer was measured in the same manner as in Example 8. The value was 21.9 (Table 3).
  • the amount of Ti contained (the amount of metal residue derived from the Lewis acid catalyst) was analyzed and found to be 240 ppm based on the solid content of the polymer.
  • Filtration was carried out in the same manner as in Example 8 except that a filter capable of collecting 99% or more of particles having a diameter of 10 ⁇ m or more when the differential pressure before and after the filter was 0.2 MPa.
  • the amount of Ti in the polymer solution after filtration (the amount of metal residue derived from the Lewis acid catalyst) was analyzed, it was 120 ppm based on the solid content of the polymer.
  • the isobutylene-based polymer obtained by the above method is generally employed for thermoplastic resin.
  • it can be melt-molded by extrusion molding, injection molding, press molding, blow molding or the like.
  • the isobutylene polymer of the present invention can be used in various applications similar to conventional isobutylene polymers.
  • elastomer materials modifiers such as resin, rubber, asphalt, adhesive base polymer, resin modifiers, knocking materials, sealing materials, sealing materials such as gaskets and plugs, CD dampers, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

Disclosed is an isobutylene block copolymer which is hardly colored and has a stable color tone. Specifically disclosed is an isobutylene polymer obtained by polymerizing a monomer component containing isobutylene in the presence of a polymerization initiator and a Lewis acid catalyst. This isobutylene polymer is characterized in that the residual amount of metal derived from the Lewis acid catalyst in the isobutylene polymer is not more than 90 ppm. Also disclosed is a method for producing such an isobutylene polymer.

Description

明 細 書  Specification
イソブチレン系重合体およびその製造方法  Isobutylene polymer and method for producing the same
技術分野  Technical field
[0001] 本発明はイソブチレン系重合体、およびその製造方法に関する。  The present invention relates to an isobutylene polymer and a method for producing the same.
背景技術  Background art
[0002] イソブチレン系重合体は、通常、イソブチレンモノマーを、所望により他の単量体と共 にカチオン重合することにより得ることができる。  [0002] An isobutylene polymer can be usually obtained by cationic polymerization of an isobutylene monomer together with other monomers as desired.
[0003] 従来、カチオン重合は、反応中の連鎖移動が大きぐ分子量の制御が困難であること 、官能基導入が難しいこと等の理由から、重合体の構造制御が難しいと考えられてき た。しかしながら、近年、反応溶媒やルイス酸触媒存在下で反応を行うことにより、ィ ソブチレン系重合体の数平均分子量を任意にコントロールできることが Kennedyら によって報告されている(非特許文献 1)。この方法によれば、イソプチレンの単独重 合体だけでなぐイソブチレンを主成分とする重合体ブロックと芳香族ビニル系単量 体を主成分とする重合体ブロック力 なるイソブチレン系ブロック共重合体も製造する ことができる (特許文献 1、 2)。  Conventionally, cationic polymerization has been thought to be difficult to control the structure of a polymer due to the fact that chain transfer during the reaction is large and it is difficult to control the molecular weight and that it is difficult to introduce functional groups. However, it has recently been reported by Kennedy et al. That the number average molecular weight of the isobutylene polymer can be arbitrarily controlled by carrying out the reaction in the presence of a reaction solvent or a Lewis acid catalyst (Non-patent Document 1). According to this method, a polymer block mainly composed of isobutylene and a polymer block composed mainly of an aromatic vinyl monomer and having an isobutylene block copolymer which is composed mainly of an isobutylene homopolymer are also produced. (Patent Documents 1 and 2).
[0004] 特許文献 1:米国特許第 4946899号明細書  [0004] Patent Document 1: US Patent No. 4946899 Specification
特許文献 2:特公平 7 - 59601号公報  Patent Document 2: Japanese Patent Publication No. 7-59601
非特許文献 1: J. P. Kennedy and B. Ivan、 DesignedPolymers by Carbo cationic Molecular Engineering: Theory and Practice, Carl Hanser Verlag, Munich, 1992年  Non-Patent Document 1: J. P. Kennedy and B. Ivan, Designed Polymers by Carbo reactive Molecular Engineering: Theory and Practice, Carl Hanser Verlag, Munich, 1992
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 特許文献 1や 2に記載の方法でイソブチレン系重合体の製造を行った場合、製造条 件により、榭脂に着色が生ずるという不具合が見られていた。 [0005] When the isobutylene polymer was produced by the method described in Patent Documents 1 and 2, there was a problem that coloring of the coconut resin occurred depending on the production conditions.
[0006] 本発明の目的は、上記従来技術の問題点に鑑みて、着色が少なく色調が安定したィ ソブチレン系重合体、およびそのようなイソブチレン系重合体を製造できる方法を提 供することを目的とするものである。 課題を解決するための手段 An object of the present invention is to provide an isobutylene-based polymer that is less colored and has a stable color tone, and a method that can produce such an isobutylene-based polymer in view of the above-described problems of the prior art. It is what. Means for solving the problem
[0007] 本発明者らは、鋭意研究を重ねた結果、ルイス酸触媒に由来する金属残渣の影響 により、イソブチレン系重合体に着色が見られるようになることを見出し、本発明に至 つたものである。  [0007] As a result of extensive research, the present inventors have found that the isobutylene polymer is colored due to the influence of the metal residue derived from the Lewis acid catalyst, and have led to the present invention. It is.
[0008] すなわち、第一の本発明は、重合開始剤、及び、ルイス酸触媒の存在下に、イソプチ レンを含有する単量体成分を重合させることにより得られるイソブチレン系重合体で あって、  That is, the first present invention is an isobutylene polymer obtained by polymerizing a monomer component containing isoprene in the presence of a polymerization initiator and a Lewis acid catalyst,
該イソプチレン系重合体中の、ルイス酸触媒に由来する金属残渣量が 90ppm以下 であることを特徴とするイソブチレン系重合体に関する。  The isobutylene polymer is characterized in that the amount of metal residue derived from the Lewis acid catalyst in the isopylene polymer is 90 ppm or less.
[0009] 好ましい実施形態としては、上記重合開始剤が下記一般式(1)で表わされる構造を 有する上記イソブチレン系重合体に関する。 [0009] A preferred embodiment relates to the isobutylene polymer in which the polymerization initiator has a structure represented by the following general formula (1).
(CR'^X) R3 (1) (CR '^ X) R 3 (1)
(式中、 Xは、ハロゲン原子又は炭素数 1〜6のアルコキシ基若しくはァシロキシ基を 表す。 R1及び R2は、同一又は異なって、水素原子又は炭素数 1〜6の 1価炭化水素 基を表す。 R3は 1価若しくは多価芳香族炭化水素基又は 1価若しくは多価の脂肪族 若しくは脂環式炭化水素基を表す。 nは、 1〜6の自然数を示す。 ) (In the formula, X represents a halogen atom, an alkoxy group having 1 to 6 carbon atoms or an acyloxy group. R 1 and R 2 are the same or different, and are a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms. R 3 represents a monovalent or polyvalent aromatic hydrocarbon group or a monovalent or polyvalent aliphatic or alicyclic hydrocarbon group, n represents a natural number of 1 to 6.
[0010] さらに好ましい実施形態としては、一般式(1)で表わされる上記重合開始剤が、式 C [0010] In a more preferred embodiment, the polymerization initiator represented by the general formula (1) is represented by the formula C
6 6
H (C (CH ) C1) で表されるビス(1 クロル 1ーメチルェチル)ベンゼンおよび式Bis (1 chloro 1-methylethyl) benzene represented by H (C (CH) C1) and the formula
4 3 2 2 4 3 2 2
C H C (CH ) C1で表される(1 クロル 1ーメチルェチル)ベンゼンからなる群か Is it a group consisting of (1 chloro 1-methylethyl) benzene represented by C H C (CH) C1?
6 5 3 2 6 5 3 2
ら選ばれる少なくとも 1種である上記イソブチレン系重合体に関する。  The above-mentioned isobutylene polymer is at least one selected from the group consisting of
[0011] 好ましい実施形態としては、上記ルイス酸触媒が四塩ィ匕チタンである上記イソブチレ ン系重合体に関する。 [0011] As a preferred embodiment, the present invention relates to the above-mentioned isobutylene polymer in which the Lewis acid catalyst is tetrachloride-titanium.
[0012] 好ましい実施形態としては、上記イソブチレン系重合体力 イソブチレン単量体を主 成分とする重合体ブロック(a)と、イソプチレン以外の単量体を主成分とする重合体 ブロック (b)を含有するブロック共重合体である上記イソブチレン系重合体に関する。  [0012] A preferred embodiment includes a polymer block (a) having the isobutylene-based polymer strength isobutylene monomer as a main component and a polymer block (b) having a monomer other than isopylene as a main component. It is related with the said isobutylene type polymer which is a block copolymer to do.
[0013] 好ましい実施形態としては、上記イソプチレン以外の単量体力 芳香族ビニル系単 量体である上記イソブチレン系重合体に関する。  [0013] A preferred embodiment relates to the isobutylene polymer which is a monomeric aromatic vinyl monomer other than the above isoprene.
[0014] さらに好ましい実施形態としては、上記芳香族ビニル系単量体が、スチレン、 p—メチ ルスチレン、 ひ一メチルスチレン及びインデン力 なる群より選択される少なくとも 1種 である上記イソブチレン系重合体に関する。 [0014] In a more preferred embodiment, the aromatic vinyl monomer is styrene, p-methyl. The present invention relates to the above isobutylene polymer, which is at least one selected from the group consisting of rustyrene, monomethylstyrene, and indene force.
[0015] 好ましい実施形態としては、上記イソブチレン系重合体が、  As a preferred embodiment, the isobutylene polymer is
• (芳香族ビニル系単量体を主成分とする重合体ブロック) (イソブチレン単量体を 主成分とする重合体ブロック) (芳香族ビニル系単量体を主成分とする重合体プロ ック)力 形成されるトリブロック共重合体、  • (Polymer block based on aromatic vinyl monomer) (Polymer block based on isobutylene monomer) (Polymer block based on aromatic vinyl monomer) ) Force formed triblock copolymer,
• (イソブチレン単量体を主成分とする重合体ブロック) (芳香族ビニル系単量体を 主成分とする重合体ブロック) (イソブチレン単量体を主成分とする重合体ブロック) から形成されるトリブロック共重合体、及び、  • (Polymer block based on isobutylene monomer) (Polymer block based on aromatic vinyl monomer) (Polymer block based on isobutylene monomer) A triblock copolymer, and
• (芳香族ビニル系単量体を主成分とする重合体ブロック) (イソブチレン単量体を 主成分とする重合体ブロック)から形成されるジブロック共重合体  • Diblock copolymer formed from (polymer block based on aromatic vinyl monomer) (polymer block based on isobutylene monomer)
力 なる群より選択される少なくとも 1種のブロック共重合体である上記イソブチレン系 重合体に関する。  The present invention relates to the above-mentioned isobutylene polymer, which is at least one block copolymer selected from the group consisting of:
[0016] 第二の本発明は、ルイス酸触媒存在下でイソブチレンを含有する単量体成分を重合 する工程 (I) ;  [0016] The second invention is a step (I) of polymerizing a monomer component containing isobutylene in the presence of a Lewis acid catalyst;
上記工程 (I)において得られたイソブチレン系重合体含有溶液に、水を接触させて 上記ルイス酸触媒を失活させる工程 (Π);  A step of deactivating the Lewis acid catalyst by bringing water into contact with the isobutylene polymer-containing solution obtained in the step (I) (ii);
さらに上記工程 (Π)の後、得られた重合体含有溶液を、 pHIO以上の塩基性水溶液 で洗浄する工程 (III) ;  Further, after the step (ii), the obtained polymer-containing solution is washed with a basic aqueous solution having a pHIO or higher (III);
を含むことを特徴とするイソブチレン系重合体の製造方法に関する。  It is related with the manufacturing method of the isobutylene type polymer characterized by including.
[0017] 好ま ヽ実施形態としては、さらに、上記工程 (III)の後、得られた重合体含有溶液を[0017] Preferably, as an embodiment, the polymer-containing solution obtained after the step (III) is further used.
、フィルター前後の差圧を 0. 2MPaとしたときに直径が 5 /z m以上の粒子を 99%以 上捕集できるフィルターでろ過する工程 (IV)を含む上記製造方法に関する。 In addition, the present invention relates to the above production method comprising the step (IV) of filtering with a filter capable of collecting 99% or more of particles having a diameter of 5 / zm or more when the differential pressure before and after the filter is 0.2 MPa.
[0018] また第二の本発明の別の態様としては、ルイス酸触媒存在下でイソブチレンを含有 する単量体成分を重合する工程 (I); [0018] Another aspect of the second aspect of the present invention is a step (I) of polymerizing a monomer component containing isobutylene in the presence of a Lewis acid catalyst;
上記工程 (I)において得られたイソブチレン系重合体含有溶液に、水を接触させて 上記ルイス酸触媒を失活させる工程 (Π);  A step of deactivating the Lewis acid catalyst by bringing water into contact with the isobutylene polymer-containing solution obtained in the step (I) (ii);
上記工程 (II)の後、得られた重合体含有溶液を、フィルター前後の差圧を 0. 2MPa としたときに直径が 5 μ m以上の粒子を 99%以上捕集できるフィルターでろ過するェ 程 (IV) ; After the above step (II), the obtained polymer-containing solution was subjected to a pressure difference of 0.2 MPa before and after the filter. Filter with a filter capable of collecting 99% or more of particles with a diameter of 5 μm or more (IV);
を含むことを特徴とするイソブチレン系重合体の製造方法に関する。  It is related with the manufacturing method of the isobutylene type polymer characterized by including.
[0019] 好ましい実施形態としては、上記イソブチレン系重合体力 イソブチレンを主成分と するものである上記製造方法に関する。 [0019] As a preferred embodiment, the present invention relates to the above-mentioned production method, wherein the above-mentioned isobutylene polymer strength is mainly composed of isobutylene.
[0020] 好ましい実施形態としては、上記上記イソブチレン系重合体が、イソブチレン単量体 を主成分とする重合体ブロック(a)と芳香族ビュル系単量体を主成分とする重合体ブ ロック (b)力もなる重合体である上記製造方法に関する。 [0020] In a preferred embodiment, the isobutylene polymer is composed of a polymer block (a) containing an isobutylene monomer as a main component and a polymer block containing an aromatic butyl monomer as a main component ( b) It relates to the above production method which is a polymer which also has strength.
[0021] 好ましい実施形態としては、重合反応を、炭素数 3〜8の 1級及び 2級のモノハロゲン 化炭化水素からなる群から選択される少なくとも 1種と、脂肪族、脂環式及び芳香族 炭化水素からなる群から選択される少なくとも 1種と、を含有する混合溶媒中で行うこ とを特徴とする上記製造方法に関する。 [0021] In a preferred embodiment, the polymerization reaction is carried out with at least one selected from the group consisting of primary and secondary monohalogenated hydrocarbons having 3 to 8 carbon atoms, aliphatic, alicyclic and aromatic. And at least one selected from the group consisting of group hydrocarbons.
[0022] 好ましい実施形態としては、上記ルイス酸触媒が、ハロゲンィ匕金属である上記製造方 法に関する。  [0022] A preferred embodiment relates to the above production method, wherein the Lewis acid catalyst is a halogenated metal.
[0023] 好ましい実施形態としては、上記ハロゲンィ匕金属が、四塩ィ匕チタンである上記製造 方法に関する。  [0023] A preferred embodiment relates to the above production method, wherein the halogenated metal is tetrasalt titanium.
[0024] 好ましい実施形態としては、上記塩基性水溶液が、水酸ィ匕ナトリウム水溶液である上 記製造方法に関する。  [0024] A preferred embodiment relates to the above production method, wherein the basic aqueous solution is a sodium hydroxide aqueous solution.
[0025] 以下、本発明について詳細に説明する。  Hereinafter, the present invention will be described in detail.
[0026] <イソプチレン系重合体を構成する単量体成分について >  [0026] <Monomer components constituting isoprene-based polymer>
本発明のイソブチレン系重合体は、重合開始剤、及び、ルイス酸触媒の存在下に、ィ ソブチレンを含有する単量体成分を重合させることにより得られるものであって、イソ ブチレン系重合体のルイス酸触媒に由来する金属残渣量が 90ppm以下であること を特徴とする重合体である。上記イソブチレン系重合体は、イソプチレンのみからなる 単独重合体でもよぐまたイソプチレンと、他の単量体を重合して得られる共重合体 でもよい。なかでも、イソブチレンを主成分とするものが好ましい。本願明細書におい て、「主成分」とは、重合体 (または重合体ブロック)を構成する全単量体のうち、 60重 量%以上を占める単量体成分をいう。重合体を構成する全単量体のうち、イソブチレ ンを 80重量%以上含む重合体がより好ま 、。 The isobutylene polymer of the present invention is obtained by polymerizing a monomer component containing isobutylene in the presence of a polymerization initiator and a Lewis acid catalyst. The polymer is characterized in that the amount of metal residue derived from the Lewis acid catalyst is 90 ppm or less. The isobutylene-based polymer may be a homopolymer composed only of isoprene, or may be a copolymer obtained by polymerizing isopylene and other monomers. Especially, what has isobutylene as a main component is preferable. In the present specification, the “main component” means a monomer component that occupies 60% by weight or more of all monomers constituting the polymer (or polymer block). Of all monomers constituting the polymer, isobutylene More preferred is a polymer containing 80% by weight or more of ethylene.
[0027] また上記イソブチレン系重合体のなかでも、イソブチレン単量体を主成分とする重合 体ブロック(a)と、イソブチレン以外の単量体を主成分とする重合体ブロック (b)を含 有するイソブチレン系ブロック共重合体が好まし 、。 [0027] The isobutylene-based polymer also includes a polymer block ( a ) containing an isobutylene monomer as a main component and a polymer block (b) containing a monomer other than isobutylene as a main component. An isobutylene block copolymer is preferred.
[0028] 上記ブロック (b)中の主成分である、イソブチレン以外の単量体としては、カチオン重 合可能な単量体であれば特に限定されないが、脂肪族または脂環式ォレフイン系単 量体類、芳香族ビニル系単量体類、ジェン系単量体類、ビュルエーテル系単量体 類、シラン化合物類、ビュルカルバゾール、 13 ビネン、ァセナフチレン等の単量体 が例示できる。これらはそれぞれ単独で又は 2種以上組み合わせて使用することが できる。  [0028] The monomer other than isobutylene as the main component in the block (b) is not particularly limited as long as it is a monomer capable of cationic polymerization, but an aliphatic or alicyclic olefin-based monomer. Monomers, aromatic vinyl monomers, gen monomers, butyl ether monomers, silane compounds, burcarbazole, 13 vinylene, and acenaphthylene. These can be used alone or in combination of two or more.
[0029] 上記脂肪族又は脂環式ォレフイン系単量体としては特に限定されず、例えば、ェチ レン、プロピレン、 1—ブテン、 2—メチル 1—ブテン、 3—メチル 1—ブテン、ペン テン、へキセン、シクロへキセン、 4ーメチルー 1 ペンテン、ビニルシクロへキセン、 オタテン、ノルボルネン等が挙げられる。  [0029] The aliphatic or alicyclic olefin-based monomer is not particularly limited, and examples thereof include ethylene, propylene, 1-butene, 2-methyl 1-butene, 3-methyl 1-butene, and pentene. Hexene, cyclohexene, 4-methyl-1-pentene, vinylcyclohexene, otaten, norbornene and the like.
[0030] 上記芳香族ビュル系単量体としては特に限定されず、例えば、スチレン、 o—、 m— 又は p—メチルスチレン、 α—メチルスチレン、 13ーメチルスチレン、 2, 6 ジメチル スチレン、 2, 4 ジメチルスチレン、 α—メチルー ο—メチルスチレン、 α—メチルー m—メチルスチレン、 exーメチルー p—メチルスチレン、 j8—メチルー o—メチルスチ レン、 13ーメチルー m—メチルスチレン、 13ーメチルー p—メチルスチレン、 2, 4, 6— トリメチルスチレン、 α—メチルー 2, 6 ジメチルスチレン、 α—メチルー 2, 4 ジメ チルスチレン、 13ーメチルー 2, 6 ジメチルスチレン、 13ーメチルー 2, 4 ジメチル スチレン、 o—、 m—又は ρ クロロスチレン、 2, 6 ジクロロスチレン、 2, 4 ジクロロ スチレン、 ひ一クロロー o クロロスチレン、 ひ一クロロー m—クロロスチレン、 α—クロ ロー ρ—クロロスチレン、 j8—クロロー ο クロロスチレン、 j8—クロロー m—クロロスチ レン、 /3 クロロー p—クロロスチレン、 2, 4, 6 トリクロロスチレン、 α クロロー 2, 6 ージクロロスチレン、 α—クロロー 2, 4—ジクロロスチレン、 j8—クロロー 2, 6—ジクロ ロスチレン、 /3—クロ口一 2, 4 ジクロロスチレン、 o—、 m—又は p— t—ブチノレスチ レン、 o—、 m—又は p—メトキシスチレン、 o—、 m—又は p—クロロメチノレスチレン、 o 一、 m—又は p—ブロモメチルスチレン、シリル基で置換されたスチレン誘導体、イン デン、ビュルナフタレン等が挙げられる。 [0030] The aromatic bulle monomer is not particularly limited. For example, styrene, o-, m- or p-methylstyrene, α-methylstyrene, 13-methylstyrene, 2, 6 dimethyl styrene, 2, 4 Dimethylstyrene, α-methyl-ο-methylstyrene, α-methyl-m-methylstyrene, ex-methyl-p-methylstyrene, j8-methyl-o-methylstyrene, 13-methyl-m-methylstyrene, 13-methyl-p-methylstyrene, 2, 4, 6-trimethylstyrene, α-methyl-2,6 dimethylstyrene, α-methyl-2,4 dimethylstyrene, 13-methyl-2,6 dimethylstyrene, 13-methyl-2,4 dimethylstyrene, o-, m- or ρ chlorostyrene , 2, 6-dichloro-styrene, 2, 4-dichloro styrene, shed one chloro o-chlorostyrene, shed one chloro m - Rollostyrene, α-chloro ρ-chlorostyrene, j8-chloro-ο chlorostyrene, j8-chloro-m-chlorostyrene, / 3 chloro-p-chlorostyrene, 2, 4, 6 trichlorostyrene, α-chloro-2,6-dichlorostyrene , Α-Chloro-2,4-dichlorostyrene, j8-Chloro-2,6-dichlorostyrene, / 3-Chromatic 1,4 Dichlorostyrene, o-, m- or p-t-Butinorestylene, o-, m —Or p-methoxystyrene, o—, m—or p-chloromethylenostyrene, o 1, m- or p-bromomethylstyrene, styrene derivatives substituted with a silyl group, indene, urnaphthalene and the like.
[0031] 上記ジェン系単量体としては特に限定されず、例えば、ブタジエン、イソプレン、シク 口ペンタジェン、シクロへキサジェン、ジシクロペンタジェン、ジビニノレベンゼン、ェチ リデンノルボルネン等が挙げられる。  [0031] The above-mentioned gen-based monomer is not particularly limited, and examples thereof include butadiene, isoprene, cyclopentane, cyclohexagen, dicyclopentagen, divininolebenzene, and ethylidene norbornene.
[0032] 上記ビュルエーテル系単量体としては特に限定されず、例えば、メチルビ-ルエー テル、ェチルビ-ルエーテル、 (n—、イソ)プロピルビュルエーテル、 (n—、 sec—、 t ert—、イソ)ブチノレビニノレエーテノレ、メチノレプロぺニノレエーテノレ、ェチノレプロぺニノレ エーテル等が挙げられる。 [0032] The butyl ether monomer is not particularly limited. For example, methyl butyl ether, ethyl butyl ether, ( n— , iso) propyl butyl ether, ( n— , sec-, t ert-, iso ) Butinorevininoreethenore, methinorepropenenoreethenore, ethinorepropenore ether and the like.
[0033] 上記シランィ匕合物としては特に限定されず、例えば、ビニルトリクロロシラン、ビニルメ チルジクロロシラン、ビニルジメチルクロロシラン、ビニルジメチルメトキシシラン、ビニ ルトリメチルシラン、ジビュルジクロロシラン、ジビュルジメトキシシラン、ジビュルジメ チルシラン、 1 , 3—ジビニルー 1, 1, 3, 3—テトラメチルジシロキサン、トリビニルメチ ルシラン、 γ—メタクリロイルォキシプロピルトリメトキシシラン、 γ—メタクリロイルォキ シプロピルメチルジメトキシシラン等が挙げられる。  [0033] The silanic compound is not particularly limited, and examples thereof include vinyltrichlorosilane, vinylmethyldichlorosilane, vinyldimethylchlorosilane, vinyldimethylmethoxysilane, vinyltrimethylsilane, dibutydichlorosilane, dibutydimethoxysilane, Examples include dibutyldimethylsilane, 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, trivinylmethylsilane, γ-methacryloyloxypropyltrimethoxysilane, and γ-methacryloyloxypropylmethyldimethoxysilane.
[0034] なかでも、重合体ブロック(b)の主成分である上記イソブチレン以外の単量体は、物 性及び重合特性等のバランスから、芳香族ビニル系単量体であることが好ましい。す なわち重合体ブロック (b)中の芳香族ビニル系単量体の含有量が 60重量%以上で あるブロック共重合体が好ましぐ 80重量%以上であるブロック共重合体がより好まし い。  Of these, monomers other than the above-mentioned isobutylene, which is the main component of the polymer block (b), are preferably aromatic vinyl monomers from the balance of physical properties and polymerization characteristics. That is, a block copolymer in which the content of the aromatic vinyl monomer in the polymer block (b) is 60% by weight or more is preferred, and a block copolymer having 80% by weight or more is more preferred. Yes.
[0035] 上記芳香族ビュル系単量体としては、スチレン、 α—メチルスチレン、 p—メチルスチ レン及びインデンからなる群より選択された 1種以上の単量体を使用することが好まし く、コストの面からスチレン、 ひーメチルスチレン、 ρ—メチルスチレンあるいはこれらの 混合物を用いることが特に好まし 、。  [0035] It is preferable to use at least one monomer selected from the group consisting of styrene, α-methylstyrene, p-methylstyrene, and indene as the aromatic bur monomer. From the viewpoint of cost, it is particularly preferable to use styrene, hymethylstyrene, ρ-methylstyrene or a mixture thereof.
[0036] イソブチレンを主成分とする重合体ブロック(a)は、単量体成分としてイソブチレン以 外の単量体を含んで 、ても、含んで 、なくてもよ 、。但し重合体ブロック(a)を構成す る全単量体のうち、 60重量%以上、好ましくは 80重量%以上がイソブチレンである。  [0036] The polymer block (a) containing isobutylene as a main component may or may not contain a monomer other than isobutylene as a monomer component. However, among all the monomers constituting the polymer block (a), 60% by weight or more, preferably 80% by weight or more is isobutylene.
[0037] 重合体ブロック (a)に含まれるイソプチレン以外の単量体としてはカチオン重合可能 な単量体であれば特に限定されず、例えば、脂肪族若しくは脂環式ォレフイン類、芳 香族ビュル類、ジェン類、ビュルエーテル類、シラン類、ビュルカルバゾール、 β - ビネン、ァセナフチレン等の単量体が挙げられる。これらは単独で用いてもよぐ 2種 以上を併用してもよい。 [0037] As a monomer other than isoprene included in the polymer block (a), cationic polymerization is possible. The monomer is not particularly limited as long as it is a simple monomer, such as aliphatic or cycloaliphatic olefins, aromatic burins, gens, butyl ethers, silanes, burcarbazole, β-vinene, and acenaphthylene. A monomer is mentioned. These may be used alone or in combination of two or more.
[0038] イソブチレン系重合体全体における、イソブチレンを主成分とする重合体ブロック(a) と芳香族ビニル系単量体を主成分とする重合体ブロック (b)の割合に関しては、特に 制限はないが、各種物性の面から、イソブチレン系重合体中の全単量体のうち、イソ ブチレン単量体を主成分とする重合体ブロック(a)の比率力 S40から 95重量%、芳香 族ビニル系単量体を主成分とする重合体ブロック(b)の比率が 5から 60重量%であ ることが好ましぐイソブチレン単量体を主成分とする重合体ブロック (a)の比率が 50 から 85重量%、芳香族ビュルビュル系単量体を主成分とする重合体ブロック (b)の 比率が 15から 50重量%であることが特に好ましい。 [0038] The ratio of the polymer block (a) mainly composed of isobutylene and the polymer block (b) mainly composed of an aromatic vinyl monomer in the entire isobutylene polymer is not particularly limited. However, from the viewpoint of various physical properties, the ratio of the polymer block ( a ) based on the isobutylene monomer out of all the monomers in the isobutylene polymer S 40 to 95% by weight, aromatic vinyl type It is preferable that the ratio of the polymer block (b) based on the monomer is 5 to 60% by weight. The ratio of the polymer block (a) based on the isobutylene monomer is preferably from 50 to 50% by weight. It is particularly preferred that the proportion of the polymer block (b) containing 85% by weight of the aromatic bulbure monomer as a main component is 15 to 50% by weight.
[0039] イソブチレン系重合体の数平均分子量については特に制限はないが、流動性、加工 '性、物'性等の面力ら、 30000〜500000であること力 S好ましく、 50000〜400000で あることが特に好まし 、。イソブチレン系重合体の数平均分子量が 30000より低 、場 合には機械的な物性が十分に発現されない傾向にあり、一方、 500000を超える場 合には流動性、加工性の面で不利である。上記数平均分子量は、 Waters社製ゲル パーミエーシヨンクロマトグラフィー(GPC)システム (カラム:昭和電工株式会社製 Sh odex K 804、 K 802. 5 (ポリスチレンゲル)、移動相:クロ口ホルム)を用いて測 定した値である。  [0039] The number average molecular weight of the isobutylene-based polymer is not particularly limited, but the surface strength such as fluidity, processing 'property, physical properties', etc. is a power of 30000-500000 S, preferably 50000-400000 It is especially preferred. If the number average molecular weight of the isobutylene polymer is lower than 30000, the mechanical properties tend not to be fully expressed, whereas if it exceeds 500,000, it is disadvantageous in terms of fluidity and workability. . The above number average molecular weight is measured using a gel permeation chromatography (GPC) system manufactured by Waters (columns: Shodex K 804, K 802.5 (polystyrene gel) manufactured by Showa Denko KK, mobile phase: black mouth form). This is the measured value.
[0040] イソブチレン系ブロック共重合体のなかでも特に好まし 、ブロック共重合体としては、 物性バランスの点から、(芳香族ビニル系単量体を主成分とする重合体ブロック)一 ( イソブチレン単量体を主成分とする重合体ブロック) (芳香族ビニル系単量体を主 成分とする重合体ブロック)力 なるトリブロック共重合体、(イソブチレン単量体を主 成分とする重合体ブロック) (芳香族ビニル系単量体を主成分とする重合体ブロッ ク) (イソブチレン単量体を主成分とする重合体ブロック)力 なるトリブロック共重合 体、(芳香族ビニル系単量体を主成分とする重合体ブロック) (イソブチレン単量体 を主成分とする重合体ブロック)力 なるジブロック共重合体、及び (芳香族ビュル系 単量体を主成分とする重合体ブロック)と (イソブチレン単量体を主成分とする重合体 ブロック)力 なるアームを 3つ以上有する星型ブロック共重合体等が挙げられる。こ れらは所望の物性 ·成形加工性を得る為に 1種又は 2種以上を組み合わせて使用可 能である。これらの中で、加工性、コストの観点から特に、トリブロック構造を有する、 ( スチレン) - (イソブチレン) - (スチレン)ブロック共重合体、ジブロック構造を有する( スチレン) - (イソブチレン)ブロック共重合体が好ましい。 [0040] Among the isobutylene block copolymers, the block copolymer is particularly preferred as a block copolymer (polymer block mainly composed of an aromatic vinyl monomer) from the viewpoint of balance of physical properties. Polymer block mainly composed of a monomer) (Polymer block composed mainly of an aromatic vinyl monomer) Triblock copolymer (a polymer block composed mainly of an isobutylene monomer) (Polymer block containing aromatic vinyl monomer as the main component) (Polymer block containing isobutylene monomer as the main component) Powerful triblock copolymer (Mainly aromatic vinyl monomer) Polymer block as component) (Polymer block mainly composed of isobutylene monomer) Powerful diblock copolymer, and (Aromatic bulle system) A polymer block having a monomer as a main component) and a polymer block having an isobutylene monomer as a main component) and a star block copolymer having three or more powerful arms. These can be used alone or in combination of two or more in order to obtain the desired physical properties and moldability. Among these, in view of processability and cost, (tristyrene)-(isobutylene)-(styrene) block copolymer, diblock structure (styrene)-(isobutylene) block co Polymers are preferred.
[0041] <重合開始剤について > [0041] <About polymerization initiator>
本発明のイソブチレン系重合体は、重合開始剤の存在下で所定の単量体成分を重 合すること〖こより得られるものである。重合開始剤としては、特に限定されないが、一 般式 (1)  The isobutylene polymer of the present invention is obtained by superposing predetermined monomer components in the presence of a polymerization initiator. The polymerization initiator is not particularly limited, but the general formula (1)
(CR'^X) R3 (1) (CR '^ X) R 3 (1)
(式中、 Xは、ハロゲン原子又は炭素数 1〜6のアルコキシ基若しくはァシロキシ基を 表す。 R1及び R2は、同一又は異なって、水素原子又は炭素数 1〜6の 1価炭化水素 基を表す。 R3は 1価若しくは多価芳香族炭化水素基又は 1価若しくは多価の脂肪族 若しくは脂環式炭化水素基を表す。 nは、 1〜6の自然数を示す。)で表わされる化合 物を開始剤として用いるのが好まし 、。重合開始剤はカチオン重合の開始点になる (In the formula, X represents a halogen atom, an alkoxy group having 1 to 6 carbon atoms or an acyloxy group. R 1 and R 2 are the same or different, and are a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms. R 3 represents a monovalent or polyvalent aromatic hydrocarbon group or a monovalent or polyvalent aliphatic or alicyclic hydrocarbon group, and n represents a natural number of 1 to 6. It is preferable to use the compound as an initiator. Polymerization initiator is the starting point for cationic polymerization
[0042] 本発明で用いられる一般式(1)の化合物の例としては、次のような化合物等が挙げら れる。 [0042] Examples of the compound of the general formula (1) used in the present invention include the following compounds.
(1—クロル— 1—メチルェチル)ベンゼン [C H C (CH ) Cl]、 1, 4 ビス(1—クロ  (1-Chloro- 1-methylethyl) benzene [C H C (CH) Cl], 1, 4 Bis (1-chloro
6 5 3 2  6 5 3 2
ル— 1—メチルェチル)ベンゼン [1, 4-Cl (CH ) CC H C (CH ) Cl]、 1, 3 ビ  Ru- 1-methylethyl) benzene [1, 4-Cl (CH) CC H C (CH) Cl], 1, 3 Bi
3 2 6 4 3 2  3 2 6 4 3 2
ス(1—クロル— 1—メチルェチル)ベンゼン [1, 3-Cl(CH ) CC H C (CH ) CI]  (1-Chloro-1-methylethyl) benzene [1, 3-Cl (CH) CC H C (CH) CI]
3 2 6 4 3 2 3 2 6 4 3 2
、 1, 3, 5 トリス(1—クロル— 1—メチルェチル)ベンゼン [1, 3, 5— (C1C (CH ) ) 1, 3, 5 Tris (1-chloro-1-methylethyl) benzene [1, 3, 5— (C1C (CH))
3 2 3 2
C H ]、 1, 3 ビス(1—クロル— 1—メチルェチル)—5— (tert—ブチル)ベンゼンC H], 1, 3 Bis (1-chloro-1-methylethyl) -5- (tert-butyl) benzene
3 6 3 3 6 3
[1, 3— (C (CH ) C1) 5— (C (CH ) ) C H ]  [1, 3— (C (CH) C1) 5— (C (CH)) C H]
3 2 2 3 3 6 3  3 2 2 3 3 6 3
[0043] これらの中でも特に好ましいのは(1 クロル 1ーメチルェチル)ベンゼン [C H C (  [0043] Among these, (1 chloro 1-methylethyl) benzene [C H C (
6 5 6 5
CH ) Cl]、ビス(1 クロル 1ーメチルェチル)ベンゼン [C H (C (CH ) CI) ]、トCH) Cl], bis (1 chloro 1-methylethyl) benzene [C H (C (CH) CI)],
3 2 6 4 3 2 2 リス(1—クロル— 1—メチルェチル)ベンゼン [ (C1C (CH ) ) C H ]である。なお(1 —クロノレ一 1—メチノレエチノレ)ベンゼンは(ひ一クロ口イソプロピル)ベンゼン、 (2—ク ロロ 2—プロピル)ベンゼンあるいはタミルクロライドとも呼ばれ、ビス(1 クロル 1 —メチノレエチノレ)ベンゼンは、ビス(ひ クロ口イソプロピノレ)ベンゼン、ビス(2—クロ口 - 2-プロピル)ベンゼンある!/、はジクミルク口ライドとも呼ばれ、トリス( 1—クロル一 1 —メチノレエチノレ)ベンゼンは、トリス(ひ クロ口イソプロピル)ベンゼン、トリス(2—クロ 口 2—プロピル)ベンゼンあるいはトリタミルクロライドとも呼ばれる。 3 2 6 4 3 2 2 Lith (1-chloro-1-methylethyl) benzene [(C1C (CH)) CH]. (1 —Chronole 1-methinoreethinole) benzene is also called (one-clonal isopropyl) benzene, (2-chloro 2-propyl) benzene or tamilolide, and bis (1 chloro 1-methinoreethinore) benzene is bis (chloro). Mouth isopropinole) benzene, bis (2-chloro-2-2-propyl) benzene! / Is also called Dicumulium mouthride, Tris (1-Chlorone 1-methinoreethinore) benzene is Tris (cyclomouth isopropyl) Also called benzene, tris (2-chloro-2-benzene) benzene or tritamilk chloride.
[0044] <ルイス酸触媒について > <About Lewis Acid Catalyst>
本発明のイソブチレン系重合体は、ルイス酸触媒の存在下に、イソブチレンを含有す る単量体成分を重合させることにより得られるものである。上記ルイス酸としてはカチ オン重合に使用できるものであれば特に限定されないが、例えば TiCl、 TiBr、 BCl  The isobutylene polymer of the present invention is obtained by polymerizing a monomer component containing isobutylene in the presence of a Lewis acid catalyst. The Lewis acid is not particularly limited as long as it can be used for cation polymerization. For example, TiCl, TiBr, BCl
4 4 4 4
、 BF、 BF -OEt、 SnCl、 SbCl、 SbF、 WC1、 TaCl、 VC1、 FeCl、 ZnBr、, BF, BF -OEt, SnCl, SbCl, SbF, WC1, TaCl, VC1, FeCl, ZnBr,
3 3 3 2 4 5 5 6 5 5 3 23 3 3 2 4 5 5 6 5 5 3 2
A1C1、 AlBr等の金属ハロゲン化物; Et A1C1、 EtAlCl等の有機金属ハロゲンィ匕Metal halides such as A1C1 and AlBr; Organometallic halides such as Et A1C1 and EtAlCl
3 3 2 2 3 3 2 2
物などのハロゲンィ匕金属を好適に使用することができる(Etはェチル基を表す)。中 でも触媒としての能力、工業的な入手の容易さを考えた場合、 TiCl、 BCl、 SnCl、  A halogenated metal such as a compound can be preferably used (Et represents an ethyl group). Of these, TiCl, BCl, SnCl,
4 3 4 4 3 4
A1C1、 Et A1C1が好ましぐ TiCl (四塩化チタン)が特に好ましい。ルイス酸の使用TiCl (titanium tetrachloride) is particularly preferred, with A1C1 and Et A1C1 being preferred. Use of Lewis acid
3 2 4 3 2 4
量は、特に限定されないが、使用する単量体の重合特性あるいは重合濃度等を鑑 みて設定することができる。通常は上記重合開始剤に対して 0. 1〜: L00モル当量使 用することができ、好ましくは 1〜50モル当量の範囲である。  The amount is not particularly limited, but can be set in consideration of the polymerization characteristics or polymerization concentration of the monomer used. Usually, 0.1 to L00 molar equivalent can be used with respect to the polymerization initiator, and preferably in the range of 1 to 50 molar equivalent.
[0045] <その他の成分について >  [0045] <Other components>
イソブチレン系重合体の重合を行う際には、さらに必要に応じて電子供与体成分を 共存させることもできる。この電子供与体成分は、カチオン重合に際して、成長炭素 カチオンを安定ィ匕させる効果があるものと考えられており、電子供与体の添加によつ て分子量分布の狭い構造が制御された重合体を生成することができる。使用可能な 電子供与体成分としては特に限定されないが、例えば、ピリジン類、アミン類、アミド 類、スルホキシド類、エステル類、または金属原子に結合した酸素原子を有する金属 化合物等を挙げることができる。  When the isobutylene polymer is polymerized, an electron donor component can be further present if necessary. This electron donor component is considered to have an effect of stabilizing the growing carbon cation during cationic polymerization, and a polymer having a structure with a narrow molecular weight distribution controlled by the addition of the electron donor. Can be generated. The electron donor component that can be used is not particularly limited, and examples thereof include pyridines, amines, amides, sulfoxides, esters, and metal compounds having an oxygen atom bonded to a metal atom.
[0046] 上記電子供与体成分としては、種々の化合物の電子供与体 (エレクトロンドナー)とし ての強さを表すパラメータ一として定義されるドナー数が 15〜60である、 2, 6 ジ一 t ブチルピリジン、 2— t—ブチルピリジン、 2, 4, 6 トリメチルピリジン、 2, 6 ジメ チルピリジン、 2—メチルピリジン、ピリジン、ジェチルァミン、トリメチルァミン、トリェチ ルァミン、トリブチルァミン、 N, N—ジメチルァ-リン、 N, N—ジメチルホルムアミド、 N, N ジメチルァセトアミド、 N, N ジェチルァセトアミド、ジメチルスルホキシド、ジ ェチルエーテル、酢酸メチル、酢酸ェチル、リン酸トリメチル、へキサメチルリン酸トリ アミド、チタン(III)メトキシド、チタン(IV)メトキシド、チタン (IV)イソプロポキシド、チ タン(IV)ブトキシド等のチタンアルコキシド;アルミニウムトリエトキシド、アルミニウムト リブトキシド等のアルミニウムアルコキシド等が使用できる力 好ましいものとして、 2, 6 ジー t ブチルピリジン、 2, 6 ジメチルビリジン、 2 メチルピリジン、ピリジン、ジ ェチルァミン、トリメチルァミン、トリエチルァミン、 N, N ジメチルホルムアミド、 N, N ージメチルァセトアミド、ジメチルスルホキシド、チタン(IV)イソプロポキシド、チタン(I V)ブトキシド等が挙げられる。上記種々の物質のドナー数については、「ドナーとァ クセプター」、ダードマン著、大瀧、岡田訳、学会出版センター(1983)に示されてい る。これらの中でも、添加効果が顕著である 2—メチルピリジン、 N, N—ジメチルァセ トアミド、反応系が均一となるチタン (IV)イソプロボキシドが特に好ましい。 [0046] As the electron donor component, the number of donors defined as one parameter representing the strength as an electron donor (electron donor) of various compounds is 15-60, t-butylpyridine, 2-t-butylpyridine, 2, 4, 6 trimethylpyridine, 2,6 dimethylpyridine, 2-methylpyridine, pyridine, jetylamine, trimethylamine, triethylamine, tributylamine, N, N-dimethyla -Phosphorus, N, N-dimethylformamide, N, N dimethylacetamide, N, N jetylacetamide, dimethylsulfoxide, diethyl ether, methyl acetate, ethyl acetate, trimethyl phosphate, hexamethyl phosphate triamide, titanium (III) Titanium alkoxides such as methoxide, titanium (IV) methoxide, titanium (IV) isopropoxide, titan (IV) butoxide; power capable of using aluminum alkoxide such as aluminum triethoxide and aluminum triboxide, etc. 2,6 g t-butylpyridine, 2 , 6 Dimethyl pyridine, 2 Methyl pyridine, Pyridine, Diethylamine, Trimethylamine, Triethylamine, N, N Dimethylformamide, N, N-Dimethylacetamide, Dimethyl sulfoxide, Titanium (IV) isopropoxide, Titanium ( IV) Butoxide and the like. The number of donors for the various substances mentioned above is shown in “Donor and Acceptor”, by Dardman, Otsuki, Okada, and Academic Publishing Center (1983). Among these, 2-methylpyridine, N, N-dimethylacetamide, which has a remarkable effect of addition, and titanium (IV) isopropoxide that makes the reaction system uniform are particularly preferable.
[0047] 上記電子供与体成分は、重合開始剤に対して 0. 01〜: LO倍モル用いる。このうち、 0 . 2〜4倍モルの範囲で用いられるのが好ましい。  [0047] The electron donor component is used in a molar amount of 0.01 to LO times with respect to the polymerization initiator. Of these, it is preferably used in the range of 0.2 to 4 moles.
[0048] イソブチレン系重合体の重合は、必要に応じて溶媒中で行うことができる。溶媒として は、カチオン重合を本質的に阻害しない溶媒であれば、従来公知のもの全てを使用 することができ、具体的には、塩化メチル、ジクロロメタン、 n—プロピルクロライド、 n— ブチルクロライド、クロ口ベンゼン等のハロゲン化炭化水素;ベンゼン、トルエン、キシ レン、ェチルベンゼン、プロピルベンゼン、ブチルベンゼン等のアルキルベンゼン類; ェタン、プロパン、ブタン、ペンタン、へキサン、ヘプタン、オクタン、ノナン、デカン等 の直鎖式脂肪族炭化水素類; 2—メチルプロパン、 2—メチルブタン、 2, 3, 3 トリメ チルペンタン、 2, 2, 5 トリメチルへキサン等の分岐式脂肪族炭化水素類;シクロへ キサン、メチルシクロへキサン、ェチルシクロへキサン等の脂環式炭化水素類;石油 留分を水添精製したパラフィン油等を挙げることができる。  [0048] The polymerization of the isobutylene polymer can be carried out in a solvent, if necessary. Any conventionally known solvent can be used as long as it does not essentially inhibit cationic polymerization. Specifically, methyl chloride, dichloromethane, n-propyl chloride, n-butyl chloride, chloride can be used. Halogenated hydrocarbons such as benzene; alkylbenzenes such as benzene, toluene, xylene, ethylbenzene, propylbenzene, and butylbenzene; linear chains such as ethane, propane, butane, pentane, hexane, heptane, octane, nonane, and decane Aliphatic hydrocarbons; branched aliphatic hydrocarbons such as 2-methylpropane, 2-methylbutane, 2, 3, 3 trimethylpentane, 2, 2, 5 trimethylhexane; cyclohexane, methylcyclohexane, Alicyclic hydrocarbons such as ethylcyclohexane; paraffin oil obtained by hydrorefining petroleum fractions, etc. It can be mentioned.
[0049] これらの溶剤は、イソブチレン系重合体を構成する単量体の重合特性及び生成する 重合体の溶解性等のバランスを考慮して、単独で又は 2種以上を組み合わせて使用 することができる。中でも炭素数 3〜8の 1級及び 2級のモノハロゲンィ匕炭化水素から なる群から選択される少なくとも 1種と、脂肪族、脂環式及び芳香族炭化水素からな る群力 選択される少なくとも 1種とを含有する混合溶媒中で重合を行うことが、重合 した後の水洗工程における作業性の向上および水洗後の排水処理の容易性の点か ら好ましい。 [0049] These solvents are used for the polymerization characteristics and formation of the monomers constituting the isobutylene polymer. Considering the balance of the solubility of the polymer, it can be used alone or in combination of two or more. Among them, at least one selected from the group consisting of primary and secondary monohalogenated hydrocarbons having 3 to 8 carbon atoms, and group power consisting of aliphatic, alicyclic and aromatic hydrocarbons are selected. Polymerization in a mixed solvent containing at least one kind is preferable from the viewpoint of improving workability in the water washing step after polymerization and ease of waste water treatment after water washing.
[0050] 炭素数 3〜8の 1級のモノハロゲン化炭化水素及び炭素数 3〜8の 2級のモノハロゲン 化炭化水素としては特に限定されず、例えば、 1 クロ口プロパン、 1 クロロー 2—メ チルプロパン、 1—クロロブタン、 1—クロ口一 2—メチルブタン、 1—クロ口一 3—メチ ルブタン、 1—クロ口一 2, 2 ジメチルブタン、 1—クロ口一 3, 3 ジメチルブタン、 1 —クロ口一 2, 3 ジメチルブタン、 1—クロ口ペンタン、 1—クロ口一 2—メチルペンタン 、 1—クロ口一 3—メチノレペンタン、 1—クロ口一 4—メチノレペンタン、 1—クロ口へキサ ン、 1 クロロー 2—メチノレへキサン、 1 クロロー 3—メチノレへキサン、 1 クロロー 4 ーメチノレへキサン、 1 クロロー 5—メチノレへキサン、 1 クロ口ヘプタン、 1 クロロォ クタン、 2—クロ口プロノ ン、 2—クロロブタン、 2—クロ口ペンタン、 2—クロ口へキサン、 2—クロ口ヘプタン、 2—クロ口オクタン、クロ口ベンゼン等を挙げることができる。これら は単独で又は 2種以上を組み合わせて使用できる。例えば、炭素数 3のモノハロゲン 化溶媒、炭素数 4のモノハロゲンィ匕溶媒、炭素数 3のモノハロゲンィ匕溶媒と炭素数 4 のモノハロゲン化溶媒の組み合わせ、炭素数 4〜8のモノハロゲン化溶媒のうちの少 なくとも 1種の組み合わせ等であってよい。このうち、イソブチレン系重合体の溶解度 、分解による無害化の容易さ、コスト等のバランス等の観点を重視する場合、 1 クロ 口プロパン及び Z又は 1 クロロブタンを用いるのが好ましぐ特に 1 クロロブタンが 好ましい。  [0050] The primary monohalogenated hydrocarbons having 3 to 8 carbon atoms and the secondary monohalogenated hydrocarbons having 3 to 8 carbon atoms are not particularly limited, and examples thereof include 1-chloropropane, 1-chloro-2- Methylpropane, 1-chlorobutane, 1-black mouth 2-methylbutane, 1-black mouth one 3-methyl butane, 1-black mouth 2,2 dimethylbutane, 1-black mouth 3,3 dimethylbutane, 1 — 1,3 Dimethylbutane, 1-Black mouthpentane, 1-Black mouthpiece 2-Methylpentane, 1-Black mouthpiece 3-Methinorepentane, 1-Black mouthpiece 4-Methinorepentane, 1-Black mouth hexane 1 chloro-2-methino hexane, 1 chloro 3-methino hexane, 1 chloro 4-methino hexane, 1 chloro 5-methino hexane, 1-heptane, 1 chlorooctane, 2-chloro-prone, 2- Chloro Tan, 2 black port pentane, hexane 2 black port, 2-black port heptane, 2-black port octane, can be exemplified black port benzene. These can be used alone or in combination of two or more. For example, a monohalogenated solvent having 3 carbon atoms, a monohalogenated solvent having 4 carbon atoms, a combination of a monohalogenated solvent having 3 carbon atoms and a monohalogenated solvent having 4 carbon atoms, or a monohalogen having 4 to 8 carbon atoms. It may be a combination of at least one of the solvating solvents. Of these, if importance is attached to the solubility of isobutylene polymer, ease of detoxification by decomposition, balance of cost, etc., it is preferable to use 1-chloropropane and Z or 1-chlorobutane, especially 1-chlorobutane. preferable.
[0051] 非ハロゲン溶媒としての脂肪族系若しくは脂環式炭化水素及び芳香族系炭化水素 としては特に限定されず、例えば、ブタン、ペンタン、ネオペンタン、へキサン、ヘプタ ン、オクタン、シクロへキサン、メチルシクロへキサン、ェチルシクロへキサン、ベンゼ ン、トルエン、キシレン、ェチルベンゼン等を挙げることができる。これらはそれぞれ単 独で又は 2種以上を組み合わせて使用可能である。イソブチレン系重合体の溶解度 、コスト、誘電率等のバランスから、へキサン、シクロへキサン、メチルシクロへキサン、 ェチルシクロへキサン、トルエン及びキシレン力 なる群より選択される少なくとも 1種 が好ましぐへキサン、メチルシクロへキサン及びェチルシクロへキサン力もなる群より 選択される少なくとも 1種が特に好ましい。 [0051] The aliphatic or alicyclic hydrocarbon and the aromatic hydrocarbon as the non-halogen solvent are not particularly limited. For example, butane, pentane, neopentane, hexane, heptane, octane, cyclohexane, Examples include methylcyclohexane, ethylcyclohexane, benzene, toluene, xylene, ethylbenzene and the like. These can be used alone or in combination of two or more. Solubility of isobutylene polymer From the balance of cost, dielectric constant, etc., at least one selected from the group consisting of hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, toluene and xylene is preferred hexane, methylcyclohexane and ethylcyclo Particularly preferred is at least one selected from the group having hexane power.
[0052] 混合溶媒中のモノハロゲンィ匕炭化水素系溶媒の含有量は特に限定されず、所望の 誘電率あるいはイソブチレン系重合体の溶解度が得られるように設定すれば良!、。し 力しながら、一般的には 10〜98重量%であり、好ましくは 20〜95重量%である。こ れは、モノハロゲンィ匕炭化水素溶媒の含有量が 10%未満の場合、反応速度が極め て遅くなつたり、重合中に重合体が析出する場合があり、好ましいイソブチレン系重 合体が得られないためである。また、 98重量%を超えると、重合速度が速ぐ反応の 制御が難しくなる場合がある。  [0052] The content of the monohalogen hydrocarbon solvent in the mixed solvent is not particularly limited, and may be set so as to obtain a desired dielectric constant or solubility of the isobutylene polymer. However, it is generally 10 to 98% by weight, preferably 20 to 95% by weight. This is because when the content of the monohalogen hydrocarbon solvent is less than 10%, the reaction rate may become extremely slow, or the polymer may precipitate during the polymerization, and a preferred isobutylene polymer can be obtained. This is because there is not. On the other hand, if it exceeds 98% by weight, it may be difficult to control the reaction with a high polymerization rate.
[0053] 溶剤の使用量は、得られる重合体溶液の粘度や除熱の容易さを考慮して決定される 力 重合体の濃度が 1〜50重量%となるようにするのが好ましぐさらに好ましくは 5 〜35重量%となるようにする。  [0053] The amount of the solvent used is determined in consideration of the viscosity of the resulting polymer solution and the ease of heat removal. It is preferable that the concentration of the polymer be 1 to 50% by weight. More preferably, the content is 5 to 35% by weight.
[0054] 本発明におけるイソブチレン系重合体は、ルイス酸触媒に由来する金属残渣量が 90 ppm以下であることが特徴である。なかでも上記金属残渣量が 80ppm以下であるも のが好ましぐ 60ppm以下であるのがより好ましぐ 40ppm以下であるのがさらに好 ましい。金属残渣量が 90ppmより多くなると、重合体の着色、特に黄色化が顕著とな る。例えば、イソブチレン系重合体を 2mm厚のシートに成形した場合、その黄色度( Y. I. )が 25を上回る値となる。黄色度が 25以上となると、 目視でも黄色に着色して いることがわかり、着色が顕著と感じる状態になる。なお、金属残渣量は、 ICP発光分 光分析装置 (セイコーインスツルメンッ製、 SPS— 1700R型)を用い、検量線法にて 測定した値である。  [0054] The isobutylene polymer in the present invention is characterized in that the amount of metal residue derived from the Lewis acid catalyst is 90 ppm or less. Among them, the above metal residue is preferably 80 ppm or less, more preferably 60 ppm or less, and even more preferably 40 ppm or less. When the amount of metal residue exceeds 90 ppm, the coloring of the polymer, particularly yellowing, becomes remarkable. For example, when an isobutylene polymer is molded into a sheet having a thickness of 2 mm, the yellowness (Y. I.) is a value exceeding 25. When the yellowness is 25 or more, it can be seen visually that the color is yellow, and the coloration feels remarkable. The amount of metal residue is a value measured by a calibration curve method using an ICP emission spectrophotometer (Seiko Instruments Inc., SPS-1700R type).
[0055] <製造方法について >  [0055] <About manufacturing method>
本発明のイソブチレン系重合体を製造する方法としては、重合開始剤および、ルイス 酸触媒存在下にイソブチレンを含有する単量体成分の重合を行う以外においては特 に制限はない。例えば、反応容器中に、上記溶媒、上記一般式(1)で表わされる化 合物、および必要に応じ電子供与体成分を仕込んだ後、イソブチレンを主成分とす る単量体成分を加え、さらにルイス酸を添加して重合を行う方法が挙げられる。ブロッ ク共重合体を得る場合には、反応容器中に加えた単量体成分の重合が実質的に終 了した後に、別の単量体成分を添加することによりブロック共重合を行うことができる 。更に、必要に応じ、重合が実質的に終了した後に、他の単量体成分を添加し、重 合を継続しても良い。 The method for producing the isobutylene polymer of the present invention is not particularly limited except that the polymerization of the monomer component containing isobutylene in the presence of a polymerization initiator and a Lewis acid catalyst is performed. For example, the above-mentioned solvent, the compound represented by the general formula (1), and, if necessary, an electron donor component are charged into a reaction vessel, and then isobutylene is the main component. And a method of polymerizing by adding a Lewis acid and further adding a Lewis acid. When obtaining a block copolymer, after the polymerization of the monomer component added to the reaction vessel is substantially completed, the block copolymer may be added by adding another monomer component. it can . Furthermore, if necessary, after the polymerization is substantially completed, another monomer component may be added to continue the polymerization.
[0056] 重合終了後は、特に限定されないが、例えば、特開平 11— 349648号公報に記載 されているように、重合終了後に、大量の水に反応溶液を加えてルイス酸触媒を失 活、除去し、得られる混合物力も水を除去し、その後に水洗操作を行う、といった後 処理がなされる。イソブチレン系重合体のルイス酸触媒に由来する金属残渣量を低 減する方法には特に制限はない。例えば、上記特開平 11 349648号公報に記載 されているように、水洗操作の回数を増やす方法が挙げられる。また、水洗時に pH 値の高 、塩基性水溶液を用いてもょ 、。  [0056] After completion of the polymerization, although not particularly limited, for example, as described in JP-A-11-349648, after completion of the polymerization, the reaction solution is added to a large amount of water to deactivate the Lewis acid catalyst. After removal, the resulting mixture is also subjected to a post-treatment such as removing water, followed by a washing operation. There is no particular limitation on the method for reducing the amount of metal residue derived from the Lewis acid catalyst of the isobutylene polymer. For example, as described in JP-A-11 349648, there is a method of increasing the number of water washing operations. Also, use a basic aqueous solution with a high pH value when washed with water.
[0057] また別の方法としては、精製時における溶液濃度を低くしてルイス酸触媒の除去を容 易に行えるようにしてもよい。具体的には、重合時の溶液濃度を低くしてもよぐまた 重合が終了した後に、重合溶液の重合体濃度を下げるために、希釈溶剤を加えても よい。また、界面活性剤、消泡剤等の添加剤を加えて、金属残渣量を低減する方法 を採用してもよい。さらに、特開 2001— 131222号公報に記載された、重合溶液に 金属アルコキシドを添加し、沈殿した重合触媒残渣をろ過し、分別する方法等も挙げ られる。これらの方法は単独で行ってもよいが、複数の方法を組み合わせてもよい。  As another method, the Lewis acid catalyst may be easily removed by lowering the solution concentration during purification. Specifically, the solution concentration at the time of polymerization may be lowered, or a diluting solvent may be added to lower the polymer concentration of the polymerization solution after the polymerization is completed. In addition, a method of reducing the amount of metal residue by adding an additive such as a surfactant or an antifoaming agent may be employed. Furthermore, a method of adding a metal alkoxide to a polymerization solution, filtering the precipitated polymerization catalyst residue and fractionating, as described in JP-A-2001-131222, can be mentioned. These methods may be performed alone, or a plurality of methods may be combined.
[0058] 重合を行うにあたっては、上述した各成分を冷却下、例えば 100°C以上 0°C未満 の温度で混合することが好ま 、。エネルギーコストと重合の安定性を釣り合わせる ために、特に好ましい温度範囲は、—80°C〜一 30°Cである。  [0058] In carrying out the polymerization, it is preferable to mix the above-described components under cooling, for example, at a temperature of 100 ° C or higher and lower than 0 ° C. In order to balance energy cost and polymerization stability, a particularly preferred temperature range is from -80 ° C to 1-30 ° C.
[0059] なお、本発明のイソブチレン系重合体は各用途に合わせた要求特性に応じて、物性 を損なわない範囲で補強剤、充填剤、酸化防止剤や紫外線吸収剤、光安定剤、顔 料、界面活性剤、反応遅延剤、難燃剤、充填剤、補強剤等を適宜配合したものであ つてよい。酸化防止剤としては特に限定はないが、ヒンダードフエノール系やヒンダ一 ドアミン系等が例示できる。  [0059] It should be noted that the isobutylene polymer of the present invention has a reinforcing agent, a filler, an antioxidant, an ultraviolet absorber, a light stabilizer, a pigment and the like within a range not impairing the physical properties according to the required characteristics according to each application. , Surfactants, reaction retarders, flame retardants, fillers, reinforcing agents and the like may be appropriately blended. The antioxidant is not particularly limited, and examples thereof include hindered phenols and hindered amines.
[0060] 上記方法で得られるイソブチレン系重合体は、熱可塑性榭脂に対して一般に採用さ れる成型方法及び成形装置を用いて成形でき、例えば、押出成形、射出成形、プレ ス成形、ブロー成形などによって溶融成形できる。 [0060] The isobutylene-based polymer obtained by the above method is generally adopted for thermoplastic resin. For example, it can be melt-molded by extrusion molding, injection molding, press molding, blow molding or the like.
[0061] く第二の本発明に係る製造方法について >  [0061] Regarding the production method according to the second invention>
第二の本発明は、イソブチレン系重合体の製造方法に関する。具体的には、ルイス 酸触媒存在下でイソブチレンを含有する単量体成分を重合する工程 (I); 上記工程 (I)において得られたイソブチレン系重合体含有溶液に、水を接触させて 上記ルイス酸触媒を失活させる工程 (Π);  The second aspect of the present invention relates to a method for producing an isobutylene polymer. Specifically, a step (I) of polymerizing a monomer component containing isobutylene in the presence of a Lewis acid catalyst; water is brought into contact with the isobutylene polymer-containing solution obtained in the step (I); The step of deactivating the Lewis acid catalyst (Π);
さらに上記工程 (Π)の後、得られた重合体含有溶液を、 pHIO以上の塩基性水溶液 で洗浄する工程 (III) ;  Further, after the step (ii), the obtained polymer-containing solution is washed with a basic aqueous solution having a pHIO or higher (III);
を含むことを特徴とするイソブチレン系重合体の製造方法に関する(以降、本方法を 製法 [A]と称する)。  (Hereinafter, this method will be referred to as Production Method [A]).
[0062] また別の態様としては、 [0062] As another aspect,
ルイス酸触媒存在下でイソブチレンを含有する単量体成分を重合する工程 (I); 上記工程 (I)において得られたイソブチレン系重合体含有溶液に、水を接触させて 上記ルイス酸触媒を失活させる工程 (Π);  A step of polymerizing a monomer component containing isobutylene in the presence of a Lewis acid catalyst (I); a solution containing the isobutylene polymer obtained in the step (I) is contacted with water to lose the Lewis acid catalyst. Process to make it live (Π);
上記工程 (II)の後、得られた重合体含有溶液を、フィルター前後の差圧を 0. 2MPa としたときに直径が 5 μ m以上の粒子を 99%以上捕集できるフィルターでろ過するェ 程 (IV) ;  After the above step (II), the obtained polymer-containing solution is filtered with a filter that can collect 99% or more of particles having a diameter of 5 μm or more when the differential pressure before and after the filter is 0.2 MPa. Degree (IV);
を含むことを特徴とするイソブチレン系重合体の製造方法に関する(以降、本方法を 製法 [B]と称する)。  The present invention relates to a process for producing an isobutylene polymer characterized by containing (hereinafter, this process is referred to as Process [B]).
[0063] <製法 [A]について >  [0063] <About manufacturing method [A]>
製法 [A]は上記工程ひ)〜 (III)を含む製造方法である。以下、詳細に説明する。  The production method [A] is a production method including the above steps (iii) to (III). Details will be described below.
[0064] ·工程(I)について  [0064] · About process (I)
工程 (I)は、ルイス酸触媒存在下でイソブチレンを含有する単量体成分を重合するェ 程である。重合方法としてはルイス酸触媒存在下で行う限り特に制限はない。例えば 、反応容器中に、上記溶媒、下記一般式(1)で表わされる化合物、および必要に応 じ電子供与体成分を仕込んだ後、イソブチレンを主成分とする単量体成分を加え、さ らにルイス酸を添加して重合を行う方法が挙げられる。ブロック共重合体を得る場合 には、反応容器中に加えた単量体成分の重合が実質的に終了した後に、別の単量 体成分を添加することによりブロック共重合を行うことができる。更に、必要に応じ、重 合が実質的に終了した後に、他の単量体成分を添加し、重合を継続しても良い。 Step (I) is a step of polymerizing a monomer component containing isobutylene in the presence of a Lewis acid catalyst. The polymerization method is not particularly limited as long as it is carried out in the presence of a Lewis acid catalyst. For example, the above-mentioned solvent, the compound represented by the following general formula (1), and, if necessary, an electron donor component are charged into a reaction vessel, and then a monomer component mainly composed of isobutylene is added. And a method in which a Lewis acid is added to perform polymerization. When obtaining block copolymers For example, after the polymerization of the monomer component added to the reaction vessel is substantially completed, block copolymerization can be performed by adding another monomer component. Furthermore, if necessary, after the polymerization is substantially completed, another monomer component may be added to continue the polymerization.
[0065] 単量体成分としては、イソブチレンを含有する限り特に限定はないが、イソブチレンを 主成分とするものが好ま 、。  [0065] The monomer component is not particularly limited as long as it contains isobutylene, but those having isobutylene as a main component are preferred.
[0066] また上記単量体成分含まれるイソプチレン以外の単量体としてはカチオン重合可能 な単量体であれば特に限定されず、例えば、脂肪族若しくは脂環式ォレフイン類、芳 香族ビュル類、ジェン類、ビュルエーテル類、シラン類、ビュルカルバゾール、 β - ビネン、ァセナフチレン等の単量体が挙げられる。これらは単独で用いてもよぐ 2種 以上を併用してもよい。  [0066] The monomer other than isoprene included in the monomer component is not particularly limited as long as it is a monomer that can be cationically polymerized. For example, aliphatic or alicyclic olefins, aromatic bulls. And monomers such as gens, butyl ethers, silanes, burcarbazole, β-vinene, and acenaphthylene. These may be used alone or in combination of two or more.
[0067] また、本発明において得られるイソブチレン系重合体には、イソブチレンを主成分と する重合体ブロック(a)と、イソブチレン以外の単量体を主成分とする重合体ブロック (b)を含有するイソブチレン系ブロック共重合体含まれる。  [0067] Further, the isobutylene polymer obtained in the present invention contains a polymer block (a) containing isobutylene as a main component and a polymer block (b) containing a monomer other than isobutylene as a main component. An isobutylene block copolymer is included.
[0068] 上記ブロック (b)の主成分であるイソブチレン以外の単量体としては、カチオン重合 可能な単量体であれば特に限定されないが、脂肪族若しくは脂環式ォレフイン系単 量体類、芳香族ビニル系単量体類、ジェン系単量体類、ビュルエーテル系単量体 類、シラン化合物類、ビュルカルバゾール、 13 ビネン、ァセナフチレン等の単量体 が例示できる。これらはそれぞれ単独で又は 2種以上組み合わせて使用することが できる。  [0068] The monomer other than isobutylene which is the main component of the block (b) is not particularly limited as long as it is a monomer capable of cationic polymerization, but aliphatic or alicyclic olefin-based monomers, Examples thereof include monomers such as aromatic vinyl monomers, gen monomers, butyl ether monomers, silane compounds, burcarbazole, 13 vinylene, and acenaphthylene. These can be used alone or in combination of two or more.
[0069] なかでも重合体ブロック (b)の主成分である上記イソブチレン以外の単量体は、物性 及び重合特性等のバランスから、芳香族ビニル系単量体であることが好まし 、。  [0069] In particular, the monomer other than the above isobutylene, which is the main component of the polymer block (b), is preferably an aromatic vinyl monomer from the balance of physical properties and polymerization characteristics.
[0070] 本発明において使用されるルイス酸触媒は、カチオン重合に使用できるものであれ ば特に限定されず、 TiCl、 BC1、 BF、 A1C1、 SnCl等のハロゲン化金属を挙げる  [0070] The Lewis acid catalyst used in the present invention is not particularly limited as long as it can be used for cationic polymerization, and examples thereof include metal halides such as TiCl, BC1, BF, A1C1, and SnCl.
4 3 3 3 4  4 3 3 3 4
ことができる。なかでも四塩ィ匕チタン (TiCl )がイソブチレン系重合体の反応性、その  be able to. Among them, tetrasalt 匕 titanium (TiCl) is the reactivity of isobutylene polymer, its
4  Four
触媒回収の容易さ、および回収触媒の安全性の観点力 好ましい。  From the viewpoint of ease of catalyst recovery and safety of recovered catalyst, it is preferable.
[0071] 工程 (I)において用いられる重合溶媒としては特に限定されず、ハロゲン化炭化水素 力もなる溶媒、非ハロゲン系の溶媒又はこれらの混合物を用いることができる。このう ち、炭素数 3〜8の 1級及び 2級のモノハロゲンィ匕炭化水素力もなる群力も選択される 少なくとも 1種と、脂肪族、脂環式及び芳香族炭化水素力 なる群力 選択される少 なくとも 1種と、を含有する混合溶媒力 sイソブチレン系重合体の溶解性の面力も好まし い。 [0071] The polymerization solvent used in the step (I) is not particularly limited, and a solvent having a halogenated hydrocarbon power, a non-halogen solvent, or a mixture thereof can be used. Of these, the group power of primary and secondary monohalogenated hydrocarbons with 3 to 8 carbon atoms is also selected. Mixed solvent power containing at least one kind and group power consisting of aliphatic, cycloaliphatic and aromatic hydrocarbon powers s Also preferred is the surface area of solubility of isobutylene polymers .
[0072] 上記炭素数 3〜8の 1級及び Z又は 2級のモノハロゲンィ匕炭化水素としては特に限定 されず、 1—クロロブタン、クロ口ベンゼンなどを挙げることができる。この中でも、イソ ブチレン系ブロック共重合体の溶解度、分解による無害化の容易さ、コスト等のバラ ンス力ら、 1 クロロブタンが好適である。  [0072] The primary and Z or secondary monohalogenated hydrocarbons having 3 to 8 carbon atoms are not particularly limited, and examples thereof include 1-chlorobutane and black benzene. Among these, 1 chlorobutane is preferred because of the solubility of the isobutylene block copolymer, the ease of detoxification by decomposition, and the balance force such as cost.
[0073] また、上記脂肪族及び Z又は芳香族系炭化水素としては特に限定されず、例えば、 ペンタン、へキサン、ヘプタン、オクタン、シクロへキサン、メチルシクロへキサン、ェチ ルシクロへキサン、トルエン等が挙げられる。メチルシクロへキサン、ェチルシクロへキ サン及びトルエン力もなる群より選ばれる 1種以上が特に好ましい。  [0073] The aliphatic and Z or aromatic hydrocarbons are not particularly limited. For example, pentane, hexane, heptane, octane, cyclohexane, methylcyclohexane, ethylcyclohexane, toluene and the like. Is mentioned. One or more selected from the group consisting of methylcyclohexane, ethylcyclohexane and toluene power are particularly preferred.
[0074] 工程 (I)にお 、ては、必須ではな 、が、重合開始剤の存在下で重合を行うのが好ま しい。重合開始剤としては、特に限定されないが、一般式(1)で表わされる化合物が 好ましい。 [0074] In step (I), although it is not essential, it is preferable to carry out the polymerization in the presence of a polymerization initiator. The polymerization initiator is not particularly limited, but a compound represented by the general formula (1) is preferable.
(CR'^X) R3 (1) (CR '^ X) R 3 (1)
(式中、 Xは、ハロゲン原子又は炭素数 1〜6のアルコキシ基若しくはァシロキシ基を 表す。 R1及び R2は、同一又は異なって、水素原子又は炭素数 1〜6の 1価炭化水素 基を表す。 R3は 1価若しくは多価芳香族炭化水素基又は 1価若しくは多価の脂肪族 若しくは脂環式炭化水素基を表す。 nは、 1〜6の自然数を示す。 ) (In the formula, X represents a halogen atom, an alkoxy group having 1 to 6 carbon atoms or an acyloxy group. R 1 and R 2 are the same or different, and are a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms. R 3 represents a monovalent or polyvalent aromatic hydrocarbon group or a monovalent or polyvalent aliphatic or alicyclic hydrocarbon group, n represents a natural number of 1 to 6.
[0075] 上記一般式(1)の化合物の具体例としては、(1 クロル 1ーメチルェチル)ベンゼ ン [C H C (CH ) Cl]、 1, 4 ビス(1—クロル— 1—メチルェチル)ベンゼン [1, 4— [0075] Specific examples of the compound of the general formula (1) include (1 chloro 1-methylethyl) benzen [CHC (CH) Cl], 1, 4 bis (1-chloro-1-methylethyl) benzene [1, Four-
6 5 3 2  6 5 3 2
C1(CH ) CC H C (CH ) CI] , 1, 3 ビス(1—クロル— 1—メチルェチル)ベンゼ C1 (CH) CC H C (CH) CI], 1, 3 Bis (1-chloro-1-methylethyl) benze
3 2 6 4 3 2 3 2 6 4 3 2
ン [1, 3-Cl (CH ) CC H C (CH ) Cl]、 1, 3, 5 トリス(1—クロル— 1—メチル  [1, 3-Cl (CH) CC H C (CH) Cl], 1, 3, 5 Tris (1-chloro- 1-methyl
3 2 6 4 3 2  3 2 6 4 3 2
ェチル)ベンゼン [1, 3, 5- (ClC (CH ) ) C H ]、 1, 3 ビス(1 クロル 1ーメ  Ethyl) benzene [1, 3, 5- (ClC (CH)) C H], 1, 3 bis (1 chloro 1-me
3 2 3 6 3  3 2 3 6 3
チノレエチノレ) 5 (tert ブチノレ)ベンゼン [ 1 , 3—(C (CH ) C1) — 5—(C (CH  Tinoleetinole) 5 (tert Butinole) benzene [1, 3— (C (CH) C1) — 5— (C (CH
3 2 2 3 3 2 2 3
) ) C H ]などが挙げられる。 )) C H] and the like.
3 6 3  3 6 3
[0076] これらの中でも特に好ましいのはビス(1 クロルー1ーメチルェチル)ベンゼン [C H  [0076] Among these, bis (1 chloro 1-methylethyl) benzene [C H
6 6
(C (CH ) C1) ]、トリス(1—クロル— 1—メチルヱチル)ベンゼン [ (C1C (CH ) ) C H ]である。 [なおビス(1—クロル一 1—メチルェチル)ベンゼンは、ビス(α クロ口(C (CH) C1)], tris (1-chloro-1-methyl ヱ til) benzene [(C1C (CH)) C H]. [In addition, bis (1-chloro-1 1-methylethyl) benzene is bis (α
6 3 6 3
イソプロピル)ベンゼン、ビス(2—クロ口 2—プロピノレ)ベンゼンある!/ヽはジクミノレクロ ライドとも呼ばれ、トリス(1—クロル一 1—メチルェチル)ベンゼンは、トリス(ひ クロ口 イソプロピル)ベンゼン、トリス(2—クロ口一 2—プロピル)ベンゼンある!/ヽはトリクミノレク 口ライドとも呼ばれる]。  Isopropyl) benzene, bis (2-chloro-2-propynole) benzene! / ヽ is also called dicumino chloride, and tris (1-chloro-1-1-methylethyl) benzene is tris (cyclochloroisopropyl) benzene, tris ( 2—Black 1 2-Propyl) Benzene! / ト リ is also known as Tricuminolecide Ride].
[0077] 工程 (I)の重合に際しては、更に必要に応じて電子供与体成分を共存させることもで きる。このような化合物として、例えば、ピリジン類、アミン類、アミド類、スルホキシド類 、エステル類、又は、金属原子に結合した酸素原子を有する金属化合物等を挙げる ことができる。  [0077] In the polymerization in the step (I), an electron donor component can be further present if necessary. Examples of such compounds include pyridines, amines, amides, sulfoxides, esters, or metal compounds having an oxygen atom bonded to a metal atom.
[0078] 実際の重合を行うに当たっては、各成分を冷却下、例えば 100°C以上 0°C未満の 温度で混合する。エネルギーコストと重合の安定性を釣り合わせるために、特に好ま し 、温度範囲は― 80°C〜― 30°Cである。  [0078] In carrying out the actual polymerization, the respective components are mixed under cooling, for example, at a temperature of 100 ° C or higher and lower than 0 ° C. A particularly preferred temperature range is -80 ° C to -30 ° C to balance energy costs and polymerization stability.
[0079] また得られるイソブチレン系ブロック共重合体の数平均分子量にも特に制限はな!/、 力 流動性、加工性、物性等の面から、 30000〜500000であること力 S好ましく、 500 00〜400000であること力特に好まし!/、。  [0079] Further, the number average molecular weight of the resulting isobutylene block copolymer is not particularly limited! /, Force From the viewpoint of fluidity, processability, physical properties, etc., the power is preferably 30,000 to 500,000 S, preferably 500 00 Especially preferred power to be ~ 400000!
[0080] 次に、工程 (Π)について詳細に説明する。  [0080] Next, step (ii) will be described in detail.
工程 (II)において、イソブチレン系重合体含有溶液 (本明細書中、「重合体溶液」、 または「重合体含有溶液」とも 、う)とは、ルイス酸触媒を用いてイソブチレンを主成分 とする単量体成分の重合を行った後に得られる溶液である。工程 (Π)では、このよう な重合体含有溶液に対して水を接触させることによって、ルイス酸触媒を失活させる ことを特徴とする。  In the step (II), the isobutylene polymer-containing solution (also referred to as “polymer solution” or “polymer-containing solution” in this specification) is mainly composed of isobutylene using a Lewis acid catalyst. This is a solution obtained after polymerization of monomer components. In the step (ii), the Lewis acid catalyst is deactivated by bringing water into contact with such a polymer-containing solution.
[0081] 工程 (Π)において、ルイス酸触媒の失活の際に用いられる装置としては、攪拌機を 備えた容器が好適に用いられる。攪拌機の攪拌翼の形状には特に制約はなぐスク リュー翼、プロペラ翼、アンカー翼、ノ ドル翼、ピッチドパドル翼、タービン翼、大型格 子翼等の任意の翼を使用することができる。  [0081] In the step (ii), a container equipped with a stirrer is preferably used as the apparatus used for deactivation of the Lewis acid catalyst. Arbitrary blades such as screw blades, propeller blades, anchor blades, blade blades, pitched paddle blades, turbine blades, large-size blades, and the like, are not particularly limited in the shape of the stirring blades of the stirrer.
[0082] また、失活に用いる容器は、内温を制御する機能を持つことができれば特に形状そ の他に制約はなぐ一般に使用される撹拌機とジャケットを備えた反応容器を使用す ることができる。この他、攪拌の効率を高めるためにバッフル、あるいは同様の効果を 持つ保護管入り温度計等が容器中にあっても何等差し支えな 、。 [0082] In addition, the vessel used for deactivation should be a reaction vessel equipped with a generally used stirrer and jacket, which is not particularly limited in shape and shape as long as it has a function of controlling the internal temperature. Can do. In addition, a baffle or similar effect can be used to increase the efficiency of stirring. There is no problem even if the thermometer with protective tube is in the container.
[0083] 工程 (Π)において、触媒を失活させる際の温度は特に限定するものではないが、 4〜 100°Cの範囲が操作上好ましぐ製造コストと安全性の観点から 20〜80°Cが特に好 ましい。  [0083] In the step (ii), the temperature at which the catalyst is deactivated is not particularly limited, but a range of 4 to 100 ° C is preferable from the viewpoint of production cost and safety which is preferable in operation. ° C is particularly preferred.
[0084] 次に、工程 (III)について説明する。  Next, step (III) will be described.
工程 (III)においては、上記工程 (II)の後、得られた重合体含有溶液を、 pHIO以上 の塩基性水溶液を加えて洗浄することで、ルイス酸を十分に失活させ、さらに除去を 行う。なお、通常、ルイス酸触媒を失活させた後に重合体溶液を水で十分洗浄し、そ の後この重合体溶液に塩基性水溶液を加える。  In step (III), after the above step (II), the obtained polymer-containing solution is washed by adding a basic aqueous solution of pHIO or more, thereby sufficiently inactivating the Lewis acid and further removing it. Do. Usually, after the Lewis acid catalyst is deactivated, the polymer solution is sufficiently washed with water, and then a basic aqueous solution is added to the polymer solution.
[0085] 工程 (ΠΙ)において、洗浄の際の温度は特に限定するものではないが、 4〜100°Cの 範囲が操作上好ましぐ製造コストと安全性の観点から 20〜80°Cが特に好ましい。  [0085] In the step (ii), the temperature at the time of washing is not particularly limited, but the range of 4 to 100 ° C is preferably 20 to 80 ° C from the viewpoint of manufacturing cost and safety which is preferable in operation. Particularly preferred.
[0086] また、洗浄に使用する水溶液の量は、特に限定されるものではないが、製造コストの 観点から (水溶液:重合体溶液)の比がそれぞれ 1Z5〜: LOZl (volZvol)の範囲で あるが好ましぐ製造コストの観点力もそれぞれ 1Z5〜5Z1 (volZvol)の範囲であ るのが特に好ましい。また、使用する塩基性水溶液の pH値は、触媒を十分に除去す るために、 10以上とする。生産性、安全性の観点力も pH値は 10〜13であるのが特 に好ましい。さらに、使用する塩基性水溶液は、特に限定するものではないが、水酸 化ナトリウム(苛性ソーダ)を使用するのがコスト面、取り扱 、の容易性力も好ま 、。  [0086] The amount of the aqueous solution used for cleaning is not particularly limited, but the ratio of (aqueous solution: polymer solution) is in the range of 1Z5 to LOZl (volZvol) from the viewpoint of production cost. It is particularly preferable that the production power of the manufacturing cost is in the range of 1Z5 to 5Z1 (volZvol). In addition, the pH value of the basic aqueous solution used should be 10 or more in order to remove the catalyst sufficiently. In terms of productivity and safety, the pH value is particularly preferably 10 to 13. Furthermore, the basic aqueous solution to be used is not particularly limited, but it is preferable to use sodium hydroxide (caustic soda) in terms of cost and ease of handling.
[0087] なお、重合体含有溶液の液粘度を低下させて触媒残渣の分離性を向上させるため に、必要に応じて、重合溶媒と同じような炭素数 3〜8の 1級及び 2級のモノハロゲン 化炭化水素からなる群から選択される少なくとも 1種と、脂肪族、脂環式及び芳香族 炭化水素からなる群から選択される少なくとも 1種とを含有する混合溶媒、又は、ハロ ゲン化炭化水素、脂肪族炭化水素若しくは芳香族炭化水素の単独溶媒を重合終了 後の重合体含有溶液に添加することもできる。このときの添加する溶媒の量は、特に 限定されるものではないが、(水:重合体溶液)の比が 1Z10〜10Z1 (volZvol)の 範囲であるのが好ましぐ製造コストの観点から 1Z10〜2Z1 (volZvol)の範囲が 特に好ましい。  [0087] In order to reduce the liquid viscosity of the polymer-containing solution and improve the separation of the catalyst residue, if necessary, the primary and secondary carbons having 3 to 8 carbon atoms similar to the polymerization solvent may be used. Mixed solvent or halogenation containing at least one selected from the group consisting of monohalogenated hydrocarbons and at least one selected from the group consisting of aliphatic, alicyclic and aromatic hydrocarbons A single solvent of hydrocarbon, aliphatic hydrocarbon or aromatic hydrocarbon can also be added to the polymer-containing solution after completion of polymerization. The amount of the solvent to be added is not particularly limited, but it is preferable that the ratio of (water: polymer solution) is in the range of 1Z10 to 10Z1 (volZvol) from the viewpoint of production cost. A range of ˜2Z1 (volZvol) is particularly preferred.
[0088] 以上のように、工程 (II)および (III)にお 、て、触媒を水で失活させた後、重合体溶 液に pHIO以上の塩基性水溶液を添加することにより、触媒残渣を肥大化することが 可能になり、ろ過等により触媒残渣を十分に除去することが可能となる。その結果、 重合体の白濁や着色を防ぐことができ、透明性の高い重合体を提供することが可能 になる。なお、以下に記載の工程 (IV)を工程 (III)のあとに更に行ってもよい。これに より、更に触媒残渣の除去効果を高めることができる。 [0088] As described above, in steps (II) and (III), the catalyst is deactivated with water, and then the polymer solution is dissolved. By adding a basic aqueous solution of pHIO or higher to the solution, the catalyst residue can be enlarged, and the catalyst residue can be sufficiently removed by filtration or the like. As a result, the polymer can be prevented from being clouded or colored, and a highly transparent polymer can be provided. The step (IV) described below may be further performed after the step (III). This can further enhance the effect of removing the catalyst residue.
[0089] く製法 [B]について >  [0089] About the manufacturing method [B]>
次に製法 [B]について説明する。製法 [B]は上記工程 (1)、(Π)および (IV)を含む 製造方法である。このうち、工程 (I)及び (Π)については既に製法 [A]の項にて説明 した通りである。  Next, production method [B] will be described. Production method [B] is a production method comprising the steps (1), (ii) and (IV). Of these, steps (I) and (ii) are as already described in the section of production method [A].
[0090] ·工程(IV)について  [0090] · About process (IV)
工程 (IV)においては、上記工程 (II)において重合体溶液に対して水を接触させて ルイス酸触媒を失活させた後、得られる重合体溶液を、フィルター前後の差圧を 0. 2 MPaとしたときに直径が 5 μ m以上の粒子を 99%以上捕集できるフィルターを用い てろ過する。好ましくは直径が 1 m以上の粒子を 99%以上捕集できるフィルターを 用いる。このようにしてろ過を行うことにより、触媒を十分に除去することができ、得ら れる重合体の着色を少なくすることが可能になる。なお、フィルターの目の形状は特 に問うものではない。また、ろ過にあたっては、ルイス酸触媒に由来する金属を重合 体力も十分除去するために、触媒を失活させた後フィルターでのろ過前に、重合体 溶液力も水を分離しておくのが好ましい。  In step (IV), water is brought into contact with the polymer solution in step (II) to deactivate the Lewis acid catalyst, and the resulting polymer solution is subjected to a pressure difference of 0.2 before and after the filter. Filter with a filter capable of collecting 99% or more of particles with a diameter of 5 μm or more when the pressure is set to MPa. Preferably, a filter capable of collecting 99% or more of particles having a diameter of 1 m or more is used. By performing filtration in this manner, the catalyst can be sufficiently removed, and coloring of the resulting polymer can be reduced. The shape of the filter eyes is not particularly questioned. Further, in order to sufficiently remove the polymer force of the metal derived from the Lewis acid catalyst during filtration, it is preferable to separate the water from the polymer solution force before the filtration through the filter after the catalyst is deactivated. .
[0091] フィルターの材質は、ポリプロピレン、ナイロン、コットンなど通常の使用で重合体含 有溶液に溶解しな 、材質であれば、特に制限するものではな 、。  [0091] The material of the filter is not particularly limited as long as it is a material that does not dissolve in the polymer-containing solution under normal use, such as polypropylene, nylon, and cotton.
[0092] フィルタ一は 1段でもよぐ触媒除去を十分に行うために、多段用いても良い。  The filter 1 may be used in multiple stages in order to sufficiently remove the catalyst even with one stage.
[0093] また、液粘度を低下させて分離性を向上させるために、必要に応じて、重合溶媒と同 じょうな炭素数 3〜8の 1級及び 2級のモノハロゲン化炭化水素力もなる群力も選択さ れる少なくとも 1種と、脂肪族、脂環式及び芳香族炭化水素からなる群から選択され る少なくとも 1種とを含有する混合溶媒、又は、ハロゲン化炭化水素、脂肪族炭化水 素若しくは芳香族炭化水素の単独溶媒を重合体溶液に添加することもできる。このと きの添加する溶媒の量は、特に限定されるものではないが、(水:重合体溶液)の比 力 SlZlO〜10Zl (volZvol)の範囲であるのが好ましぐ製造コストの観点から 1Z 10〜2Zl (vol/vol)の範囲が特に好ましい。 [0093] In addition, in order to reduce the liquid viscosity and improve the separability, the group of primary and secondary monohalogenated hydrocarbons having 3 to 8 carbon atoms, which is the same as the polymerization solvent, if necessary. Mixed solvent containing at least one selected from the group consisting of aliphatic, alicyclic and aromatic hydrocarbons, or halogenated hydrocarbon, aliphatic hydrocarbon or A single aromatic hydrocarbon solvent may be added to the polymer solution. The amount of the solvent to be added is not particularly limited, but the ratio of (water: polymer solution) is not limited. The range of 1Z10 to 2Zl (vol / vol) is particularly preferable from the viewpoint of production cost, which is preferably in the range of the force SlZlO to 10Zl (volZvol).
発明の効果  The invention's effect
[0094] 本発明の触媒に由来する金属残渣が少ないイソブチレン系重合体は、着色が少なく 色調が安定している。従って、透明感、衛生性が求められる用途や、染料や顔料等 で着色を行う成形品、特に淡色系の着色を行う成形品に好適に使用することができ る。また本発明にかかる製造方法によれば、着色の少ないイソブチレン系重合体を 製造することができる。  [0094] The isobutylene-based polymer with few metal residues derived from the catalyst of the present invention has little coloration and a stable color tone. Therefore, it can be suitably used for applications requiring transparency and hygiene, and molded products colored with dyes and pigments, particularly molded products colored with light colors. Further, according to the production method of the present invention, an isobutylene polymer with little coloring can be produced.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0095] 以下に実施例を掲げて本発明を更に具体的に説明する。なお、本発明はこれらの実 施例によって何ら限定されるものではなぐその要旨を変更しない範囲において適宜 変更可能である。 [0095] The present invention will be described more specifically with reference to the following examples. It should be noted that the present invention is not limited in any way by these examples, and can be appropriately changed without departing from the scope of the present invention.
[0096] 実施例に先立ち、測定法および評価法について説明する。  Prior to the examples, measurement methods and evaluation methods will be described.
[0097] (分子量) [0097] (Molecular weight)
本実施例に示すイソブチレン系重合体の分子量は以下に示す方法で測定した。 Waters社製 GPCシステム(カラム:昭和電工 (株)製 Shodex K— 804 (ポリスチレ ンゲル)、移動相:クロ口ホルム)。数平均分子量はポリスチレン換算で表記した。  The molecular weight of the isobutylene polymer shown in this example was measured by the following method. Waters GPC system (column: Shodex K-804 (polystyrene gel), Showa Denko KK, mobile phase: black mouth form). The number average molecular weight is expressed in terms of polystyrene.
[0098] (着色性) [0098] (Colorability)
試験片は 2mm厚プレスシートを用い、分光式色差計(日本電色工業 (株)製 Spect oro Color Meter SE2000)を用いてこの試験片の黄色度(Y. L )を測定するこ とにより行った。  The test piece was a 2 mm thick press sheet, and the yellowness (Y. L) of this test piece was measured using a spectroscopic color difference meter (Spectroo Color Meter SE2000 manufactured by Nippon Denshoku Industries Co., Ltd.). It was.
[0099] (外観) [0099] (Appearance)
イソブチレン系重合体の外観を目視にて観察し、黄色みが観察されるかどうかを調べ た。無色のものを〇、若干黄色い着色があるものを△、黄色い着色が顕著なものを X とした。  The appearance of the isobutylene polymer was visually observed to determine whether yellowness was observed. A colorless one was marked with ◯, a slightly yellow colored one was marked with Δ, and a yellow colored one was marked with X.
[0100] (実施例 1) [0100] (Example 1)
撹拌機付き 500mLの反応容器に n—へキサン (モレキュラーシーブスで乾燥したも の) 15mL、塩化ブチル(モレキュラーシーブスで乾燥したもの) 128mLを加え、当該 反応容器を一 70°Cのドライアイス Zメタノールバス中で冷却した後、イソブチレン 41 . 3mLが入って 、る三方コック付耐圧ガラス製液ィ匕採取管にテフロン (登録商標)製 の送液チューブを接続し、重合容器内にイソプチレンモノマーを窒素圧により送液し た。 p—ジクミルク口ライド 0. 088g、ジメチルァセトアミド 0. 08gを加えた。次に、さら に四塩化チタン 0. 55mLをカ卩えて重合を開始し、— 70°Cで 1. 5時間攪拌した。次 いで反応溶液にスチレン 13. 5gを添加し、更に 1時間反応させ重合体溶液を得た。 次に、撹拌機付き 2Lの別の反応容器に純水 125g、 Newcol— 561H (日本乳化剤( 株)製) 0. 038gを加えた。得られた上記重合体溶液をその反応容器に投入し、 55 °Cに加熱し、 1時間撹拌した。撹拌終了後、 30分間静置し、水相を除去した。更に、 得られた重合体溶液に純水 75gを添加し、 30分間攪拌した。撹拌を止め、 30分静 置後、水相を除去した。上記純水を用いた洗浄操作を更に 2回繰り返した。得られた 重合体溶液は極めて透明度の高 ヽ溶液であった。得られた重合体溶液から溶媒を 留去し、更に、 80°Cの真空乾燥機で 24時間乾燥することにより、イソブチレン系ブロ ック共重合体固形物を得た。得られたイソブチレン系ブロック共重合体の分子量を測 定した結果、数平均分子量は 78, 000、分子量分布は 1. 43であった。 To a 500 mL reaction vessel with a stirrer, add 15 mL of n-hexane (dried with molecular sieves) and 128 mL of butyl chloride (dried with molecular sieves). After cooling the reaction vessel in a dry ice Z methanol bath at 70 ° C, 41.3 mL of isobutylene is contained, and a Teflon (registered trademark) feeding tube is placed in a pressure-resistant glass liquid collecting tube with a three-way cock. Was connected, and isoprene monomer was fed into the polymerization vessel by nitrogen pressure. 0.088 g of p-dic milk mouthride and 0.08 g of dimethylacetamide were added. Next, 0.55 mL of titanium tetrachloride was further added to initiate polymerization, and the mixture was stirred at −70 ° C. for 1.5 hours. Next, 13.5 g of styrene was added to the reaction solution, and further reacted for 1 hour to obtain a polymer solution. Next, 125 g of pure water and 0.038 g of Newcol-561H (manufactured by Nippon Emulsifier Co., Ltd.) were added to another 2 L reaction vessel equipped with a stirrer. The obtained polymer solution was put into the reaction vessel, heated to 55 ° C., and stirred for 1 hour. After stirring, the mixture was allowed to stand for 30 minutes to remove the aqueous phase. Further, 75 g of pure water was added to the obtained polymer solution and stirred for 30 minutes. Stirring was stopped and the mixture was allowed to stand for 30 minutes, and then the aqueous phase was removed. The above washing operation using pure water was further repeated twice. The obtained polymer solution was a highly transparent solution. The solvent was distilled off from the obtained polymer solution, and further dried for 24 hours in a vacuum dryer at 80 ° C. to obtain an isobutylene block copolymer solid. As a result of measuring the molecular weight of the obtained isobutylene block copolymer, the number average molecular weight was 78,000 and the molecular weight distribution was 1.43.
[0101] 得られたイソブチレン系ブロック共重合体を、ラボプラストミル (東洋精機製作所製)に より 180°Cで溶融混練した。得られた混練物を圧縮成型機 (神藤金属工業所製)を用 いて 170°Cでプレス成形し、 2mm厚のシートを得た。得られたシートを用い、外観観 察および黄色度の測定を行った。また、残存 Ti量を ICP発光分光分析装置 (セィコ 一インスツルメンッ製、 SPS— 1700R型)を用い、検量線法にて測定した。結果を表 1に示す。  [0101] The obtained isobutylene block copolymer was melt-kneaded at 180 ° C by a Laboplast mill (manufactured by Toyo Seiki Seisakusho). The obtained kneaded material was press-molded at 170 ° C. using a compression molding machine (manufactured by Shinfuji Metal Industry Co., Ltd.) to obtain a 2 mm thick sheet. Using the obtained sheet, appearance observation and yellowness measurement were performed. In addition, the amount of residual Ti was measured by a calibration curve method using an ICP emission spectroscopic analyzer (manufactured by Seiko Instruments Inc., SPS-1700R type). The results are shown in Table 1.
[0102] (比較例 1)  [0102] (Comparative Example 1)
Newcol- 561H (日本乳化剤 (株)製)を用いな!/、以外は実施例 1と同様にして、重 合を実施した。結果を表 1に示す。  Polymerization was carried out in the same manner as in Example 1 except that Newcol-561H (manufactured by Nippon Emulsifier Co., Ltd.) was not used! /. The results are shown in Table 1.
[0103] (実施例 2) [0103] (Example 2)
重合容器(2Lのセパラブルフラスコ)内を窒素置換した後、注射器を用いて、 n—へ キサン(モレキュラーシーブスで乾燥したもの) 68mL及び塩化ブチル(モレキュラー シーブスで乾燥したもの) 613mLをカ卩えた。重合容器を— 70°Cのドライアイス Zメタ ノールバス中で冷却した。その後、イソブチレンモノマー 139. 7mLが入っている三 方コック付耐圧ガラス製液ィ匕採取管にテフロン (登録商標)製の送液チューブを接続 し、重合容器内にイソプチレンモノマーを窒素圧により送液した。 p—ジクミルク口ライ ド 0. 35g及び α—ピコリン 0. 35gを重合容器内に加えた。次に四塩化チタン 2. 20 mLを加えて重合を開始させた。重合開始から 90分撹拌を行った後、重合溶液約 1 mLをサンプリングした。続いて、スチレンモノマー 46. 7gを重合容器内に添カ卩した。 反応液中のポリマー濃度は約 20重量%となった。混合溶液を添加してから 90分後 に、重合容器の中身を大量の水中にあけて反応を終了させた。実施例 1と同様の方 法により精製 ·乾燥を行い、イソブチレン系ブロック共重合体固形物を得た。得られた イソブチレン系ブロック共重合体の分子量を測定した結果、数平均分子量は 72, 00 0、分子量分布は 1. 38であった。得られた重合体は実施例 1と同様に評価を行った 。結果を表 1に示す。 After the inside of the polymerization vessel (2 L separable flask) was purged with nitrogen, 68 mL of n-hexane (dried with molecular sieves) and 613 mL of butyl chloride (dried with molecular sieves) were collected using a syringe. . Polymerization vessel—70 ° C dry ice Z-Metal Cooled in a Nord bath. After that, connect a Teflon (registered trademark) liquid feeding tube to a pressure-resistant glass liquid tube with a three-way cock containing 139.7 mL of isobutylene monomer, and place the isoprene monomer with nitrogen pressure in the polymerization vessel. Liquid was sent. 0.35 g of p-dic milk mouthlid and 0.35 g of α-picoline were added to the polymerization vessel. Next, 2.20 mL of titanium tetrachloride was added to initiate the polymerization. After stirring for 90 minutes from the start of polymerization, about 1 mL of the polymerization solution was sampled. Subsequently, 46.7 g of styrene monomer was charged into the polymerization vessel. The polymer concentration in the reaction solution was about 20% by weight. Ninety minutes after adding the mixed solution, the polymerization vessel was poured into a large amount of water to terminate the reaction. Purification and drying were carried out in the same manner as in Example 1 to obtain an isobutylene block copolymer solid. As a result of measuring the molecular weight of the resulting isobutylene-based block copolymer, the number average molecular weight was 72,000 and the molecular weight distribution was 1.38. The obtained polymer was evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0104] (比較例 2) [0104] (Comparative Example 2)
四塩ィ匕チタン 2. 46mLを用いた以外は実施例 2と同様にしてイソブチレン系ブロック 共重合体を得た。得られたイソブチレン系ブロック共重合体の分子量を測定した結果 、数平均分子量は 74, 000、分子量分布は 1. 45であった。得られた重合体は実施 例 1と同様に評価を行った。結果を表 1に示す。  Isobutylene type block copolymer was obtained in the same manner as in Example 2 except that 2.46 mL of tetrachloride-titanium was used. As a result of measuring the molecular weight of the obtained isobutylene block copolymer, the number average molecular weight was 74,000 and the molecular weight distribution was 1.45. The obtained polymer was evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0105] (比較例 3) [0105] (Comparative Example 3)
2Lのセパラブルフラスコの重合容器内を窒素置換した後、注射器を用いて、 n—へ キサン(モレキュラーシーブスで乾燥したもの) 68mL及び塩化ブチル(モレキュラー シーブスで乾燥したもの) 613mLをカ卩え、重合容器を一 70°Cのドライアイス Zメタノ ールバス中につけて冷却した後、イソブチレンモノマー 185. 9mLが入っている三方 コック付耐圧ガラス製液ィ匕採取管にテフロン (登録商標)製の送液チューブを接続し 、重合容器内にイソプチレンモノマーを窒素圧により送液した。 p—ジクミルク口ライド 0. 46g及び α—ピコリン 0. 41gを加えた。次にさらに四塩化チタン 2. 84mLをカロえ て重合を開始した。重合開始力も 75分撹拌を行った後、重合溶液力もサンプリング 用として重合溶液約 lmLを抜き取った。続いて、スチレンモノマー 62. 2gを重合容 器内に添加した。反応液中のポリマー濃度は約 22重量%となった。混合溶液を添加 してから 90分後に、大量の水に加えて反応を終了させた。実施例 1と同様の方法に より精製 ·乾燥を行い、イソブチレン系ブロック共重合体固形物を得た。得られたイソ ブチレン系ブロック共重合体の分子量を測定した結果、数平均分子量は 71, 000、 分子量分布は 1. 40であった。得られた重合体は実施例 1と同様に評価を行った。結 果を表 1に示す。 After replacing the inside of the polymerization vessel of the 2 L separable flask with nitrogen, using a syringe, add 68 mL of n-hexane (dried with molecular sieves) and 613 mL of butyl chloride (dried with molecular sieves), Place the polymerization vessel in a dry ice Z methanol bath at 70 ° C, cool it, and then supply Teflon (registered trademark) into a pressure-resistant glass liquid collecting tube with a three-way cock containing 185.9 mL of isobutylene monomer. A tube was connected, and isoprene monomer was fed into the polymerization vessel by nitrogen pressure. 0.46 g of p-dic milk mouthride and 0.41 g of α-picoline were added. Next, 2.84 mL of titanium tetrachloride was further added to initiate polymerization. After stirring the polymerization initiation force for 75 minutes, about 1 mL of the polymerization solution was withdrawn for the polymerization solution force for sampling. Subsequently, 62.2 g of styrene monomer was added into the polymerization vessel. The polymer concentration in the reaction solution was about 22% by weight. Add mixed solution Ninety minutes after that, the reaction was terminated by adding a large amount of water. Purification and drying were carried out in the same manner as in Example 1 to obtain an isobutylene block copolymer solid. As a result of measuring the molecular weight of the resulting isobutylene block copolymer, the number average molecular weight was 71,000 and the molecular weight distribution was 1.40. The obtained polymer was evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0106] (実施例 3) [Example 3]
2Lのセパラブルフラスコの重合容器内を窒素置換した後、注射器を用いて、 n—へ キサン(モレキュラーシーブスで乾燥したもの) 68mL及び塩化ブチル(モレキュラー シーブスで乾燥したもの) 613mLをカ卩え、重合容器を一 70°Cのドライアイス Zメタノ ールバス中につけて冷却した後、イソブチレンモノマー 185. 9mLが入っている三方 コック付耐圧ガラス製液ィ匕採取管にテフロン (登録商標)製の送液チューブを接続し 、重合容器内にイソプチレンモノマーを窒素圧により送液した。 p—ジクミルク口ライド 0. 46g及びジメチルァセトアミド 0. 36gを加えた。次にさらに四塩化チタン 2. 84mL を加えて重合を開始した。重合開始から 75分撹拌を行った後、重合溶液からサンプ リング用として重合溶液約 lmLを抜き取った。続いて、スチレンモノマー 62. 2gを重 合容器内に添加した。この混合溶液を添加してから 90分後に、重合容器の中身を大 量の水にあけて反応を終了させた。 n—へキサン 22mlと塩化ブチル 202mlをカ卩えた 後、この溶液を水洗した。得られた重合体は実施例 1と同様に評価を行った。結果を 表 1に示す。  After replacing the inside of the polymerization vessel of the 2 L separable flask with nitrogen, using a syringe, add 68 mL of n-hexane (dried with molecular sieves) and 613 mL of butyl chloride (dried with molecular sieves), Place the polymerization vessel in a dry ice Z methanol bath at 70 ° C and cool it. Then, transfer the liquid made of Teflon (registered trademark) into the pressure-resistant glass liquid collecting tube with a three-way cock containing 185.9 mL of isobutylene monomer. A tube was connected, and isoprene monomer was fed into the polymerization vessel by nitrogen pressure. 0.46 g of p-dic milk mouthride and 0.36 g of dimethylacetamide were added. Next, 2.84 mL of titanium tetrachloride was further added to initiate polymerization. After stirring for 75 minutes from the start of polymerization, about 1 mL of the polymerization solution was withdrawn from the polymerization solution for sampling. Subsequently, 62.2 g of styrene monomer was added into the polymerization vessel. Ninety minutes after the addition of this mixed solution, the contents of the polymerization vessel were poured into a large amount of water to complete the reaction. After adding 22 ml of n-hexane and 202 ml of butyl chloride, the solution was washed with water. The obtained polymer was evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0107] (比較例 4) [0107] (Comparative Example 4)
重合容器(2Lのセパラブルフラスコ)内を窒素置換した後、注射器を用いて、 n—へ キサン(モレキュラーシーブスで乾燥したもの) 68mL及び塩化ブチル(モレキュラー シーブスで乾燥したもの) 613mLをカ卩えた。重合容器を— 70°Cのドライアイス Zメタ ノールバス中で冷却した。その後、イソブチレンモノマー 185. 9mLが入っている三 方コック付耐圧ガラス製液ィ匕採取管にテフロン (登録商標)製の送液チューブを接続 し、重合容器内にイソプチレンモノマーを窒素圧により送液した。 p—ジクミルク口ライ ド 0. 46g及びジメチルァセトアミド 0. 36gを重合容器内に加えた。次に四塩化チタン 2. 84mLを加えて重合を開始させた。重合開始から 75分撹拌を行った後、重合溶 液約 lmLをサンプリングした。続いて、スチレンモノマー 62. 2gを重合容器内に添カロ した。混合溶液を添加してから 90分後に、重合容器の中身を大量の水にあけて反応 を終了させた。実施例 1と同様の方法により精製 ·乾燥を行い、イソブチレン系ブロッ ク共重合体固形物を得た。得られた重合体は実施例 1と同様に評価を行った。結果 を表 1に示す。 After the inside of the polymerization vessel (2 L separable flask) was purged with nitrogen, 68 mL of n-hexane (dried with molecular sieves) and 613 mL of butyl chloride (dried with molecular sieves) were collected using a syringe. . The polymerization vessel was cooled in a dry ice Z methanol bath at 70 ° C. Then, connect a Teflon (registered trademark) liquid feeding tube to a pressure-resistant glass liquid tube with a three-way cock containing 185.9 mL of isobutylene monomer, and put the isoprene monomer in the polymerization vessel under nitrogen pressure. Liquid was sent. p-Dicmilk mouthlid 0.46 g and dimethylacetamide 0.36 g were added to the polymerization vessel. Next, 2.84 mL of titanium tetrachloride was added to initiate the polymerization. After stirring for 75 minutes from the start of polymerization, About 1 mL of the liquid was sampled. Subsequently, 62.2 g of styrene monomer was added to the polymerization vessel. Ninety minutes after adding the mixed solution, the polymerization vessel was poured into a large amount of water to terminate the reaction. Purification and drying were carried out in the same manner as in Example 1 to obtain an isobutylene block copolymer solid. The obtained polymer was evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0108] [表 1] [0108] [Table 1]
Figure imgf000025_0001
Figure imgf000025_0001
[0109] 実施例 1と比較例 1を比較することにより、重合終了後の重合体溶液を、乳化剤を添 カロした純水と混合攪拌することで、金属残渣量を減少させることが可能であり、その 結果、着色を低減させることが可能であることがわかる。また、低い榭脂濃度設定で 重合を行ったり、重合後に榭脂を溶媒で希釈するといつた方法によっても、金属残渣 量を減少させることが可能であることがわかる(実施例 3, 4と、比較例 2〜4の比較)。  [0109] By comparing Example 1 and Comparative Example 1, it is possible to reduce the amount of metal residue by mixing and stirring the polymer solution after completion of polymerization with pure water supplemented with an emulsifier. As a result, it can be seen that coloring can be reduced. In addition, it can be seen that the amount of metal residue can be reduced by performing polymerization at a low concentration of the resin or by diluting the resin with a solvent after polymerization (Examples 3 and 4). Comparison of Comparative Examples 2-4).
[0110] これらの実施例からわ力るように、本発明のルイス酸触媒に由来する金属残渣が 90p pm以下であるイソブチレン系ブロック共重合体は、着色、特に黄色度が低ぐ色調が 安定している。  [0110] As can be seen from these examples, the isobutylene block copolymer having a metal residue derived from the Lewis acid catalyst of the present invention of 90 ppm or less is stable in color, particularly in color with low yellowness. is doing.
[0111] 以上のことから、金属残渣量を 90ppm以下とすることにより、重合体の着色を抑える ことが可能であって、透明感、衛生性が求められる用途や、染料や顔料等で着色を 行う成形品、特に淡色系の着色を行う成形品に好適に用いることができることがわか る。  [0111] From the above, by setting the amount of metal residue to 90 ppm or less, it is possible to suppress the coloration of the polymer, and it is possible to color with applications that require transparency and hygiene, and with dyes and pigments. It can be seen that it can be suitably used for molded products to be performed, particularly molded products to be colored in light colors.
[0112] なお、以上においては TiCl触媒を用いた例について記載したが、他の金属触媒を  [0112] Although an example using a TiCl catalyst has been described above, other metal catalysts were used.
4  Four
用いた場合も、金属残渣量を 90ppm以下とすることにより同様に着色を抑えることが 可能であることは 、うまでもな 、。  Needless to say, even when used, it is possible to suppress coloring similarly by setting the amount of metal residue to 90 ppm or less.
[0113] (製造例 1) [0113] (Production Example 1)
攪拌機付き 3L反応容器に、 1—クロロブタン (モレキュラーシーブスで水分除去した もの) 1196g、へキサン 105g、 p ジクミルク口ライド 1. 44gを加えた。反応容器を一 70°Cに冷却した後、 N, N ジメチルァセトアミド 1. 04g、イソブチレン 240gを添加し た。さらに四塩ィ匕チタン 7. 6gを加えて重合を開始し、 70°Cで溶液を攪拌しながら 2時間反応させた。次いで反応溶液にスチレン 102gを添加し、さらに 30分間反応を 続けた。得られた重合体溶液を大量の水中へあけて、ルイス酸触媒を失活させること により反応を停止させた。その後分液ロートで重合体溶液相と水相を分離して、重合 体溶液を得た。 In a 3L reaction vessel equipped with a stirrer, water was removed with 1-chlorobutane (molecular sieves). Things) 1196g, 105g hexane, p Dicc milk mouth ride 1. 44g. After cooling the reaction vessel to 70 ° C, 1.04 g of N, N dimethylacetamide and 240 g of isobutylene were added. Further, 7.6 g of tetrachloride-titanium was added to initiate polymerization, and the reaction was carried out for 2 hours while stirring the solution at 70 ° C. Next, 102 g of styrene was added to the reaction solution, and the reaction was continued for another 30 minutes. The obtained polymer solution was poured into a large amount of water and the reaction was stopped by deactivating the Lewis acid catalyst. Thereafter, the polymer solution phase and the aqueous phase were separated by a separating funnel to obtain a polymer solution.
[0114] (製造例 2) [0114] (Production Example 2)
製造例 1と同様の方法で反応を停止させた後、重合体溶液相の水洗を 2回行った。 水相が中性になって!/、るのを確認して力も重合体溶液相を 60°Cで 24時間真空乾燥 することによりイソブチレン系ブロック共重合体を得た。  After stopping the reaction in the same manner as in Production Example 1, the polymer solution phase was washed twice with water. After confirming that the aqueous phase became neutral! /, The polymer solution phase was vacuum dried at 60 ° C. for 24 hours to obtain an isobutylene block copolymer.
[0115] このイソブチレン系ブロック共重合体の GPC分析を行ったところ、数平均分子量は 6[0115] A GPC analysis of this isobutylene block copolymer revealed that the number average molecular weight was 6
5, 000、分子量分布は 1. 24であった。 The molecular weight distribution was 5,000 and the molecular weight distribution was 1.24.
[0116] (実施例 4) [0116] (Example 4)
攪拌翼、コンデンサー及びバッフルを備えた 3Lセパラブルフラスコに、蒸留水 1Lを 仕込み、 NaOHを加えて pHを 10に調整し 60°Cに加温した。その後、製造例 1の方 法で得られた触媒失活後の重合体溶液を 1L加え、撹拌しながら 60°Cに維持した( 水洗 1回目)。撹拌開始から 1時間経過後、撹拌を停止し、重合体溶液相と水相を分 離した。水相排出後さらに同様の操作を蒸留水で行い (水洗 2回目)、重合体溶液を 得た。さらに、得られた重合体溶液を 60°Cで 24時間真空乾燥して、重合体を得た。  1 L of distilled water was charged into a 3 L separable flask equipped with a stirring blade, a condenser and a baffle, and the pH was adjusted to 10 by adding NaOH and heated to 60 ° C. Thereafter, 1 L of the polymer solution after the catalyst deactivation obtained by the method of Production Example 1 was added and maintained at 60 ° C. with stirring (first washing with water). After 1 hour from the start of stirring, stirring was stopped and the polymer solution phase and the aqueous phase were separated. After discharging the aqueous phase, the same operation was further performed with distilled water (second washing with water) to obtain a polymer solution. Further, the obtained polymer solution was vacuum dried at 60 ° C. for 24 hours to obtain a polymer.
[0117] 得られた重合体をプレス機にて 180°C X 10分間加熱することで厚さ 2mmのシートに して、色差計で Y. I.値を測定したところ、 Y. I.値は 15. 1であった (表 2)。  [0117] The obtained polymer was heated to 180 ° C for 10 minutes with a press machine to form a sheet having a thickness of 2 mm, and the YI value was measured with a color difference meter. The YI value was 15.1. (Table 2).
[0118] (実施例 5)  [0118] (Example 5)
1回目の水洗に用 、る NaOH水溶液を pH 12のものに代えた以外は、実施例 4と同 様にして、水洗処理を行い、重合体を得た。得られた重合体の Y. I.値を測定したと ころ、 Y. I.値は 14. 6であった(表 2)。  A polymer was obtained in the same manner as in Example 4 except that the aqueous NaOH solution used for the first washing was replaced with one having a pH of 12. When the Y.I. value of the obtained polymer was measured, the Y.I. value was 14.6 (Table 2).
[0119] (実施例 6) [0119] (Example 6)
1回目の水洗にぉ 、て、蒸留水を pH調整せずに (NaOHを添加せずに)用いた以 外は実施例 4と同様にして、水洗処理を行い、重合体を得た。得られた重合体の Y. I .値を測定したところ、 Y. I.値は 21. 7であった (表 2)。 After the first washing, distilled water was used without adjusting the pH (without adding NaOH). The procedure was the same as in Example 4, followed by washing with water to obtain a polymer. The YI value of the obtained polymer was measured and found to be 21.7 (Table 2).
[0120] (実施例 7) [0120] (Example 7)
製造例 1で得られた触媒失活後の重合体溶液を水洗せずにシート化した。得られた 重合体の Y. I.値を測定したところ、 Y. I.値は 21. 7であった (表 2)。  The polymer solution after catalyst deactivation obtained in Production Example 1 was formed into a sheet without being washed with water. When the Y.I. value of the obtained polymer was measured, the Y.I. value was 21.7 (Table 2).
[0121] [表 2] [0121] [Table 2]
Figure imgf000027_0001
Figure imgf000027_0001
[0122] 以上のように、実施例 4および 5で得られた重合体は着色の極めて少ない良好な透 明性を持つ榭脂であり、本願発明の方法によれば、榭脂の着色を改善することが可 能であることがわかった。  [0122] As described above, the polymers obtained in Examples 4 and 5 are coagulants having excellent transparency with very little coloration. According to the method of the present invention, the coloration of the coagulants is improved. I found that it was possible.
[0123] (製造例 3)  [0123] (Production Example 3)
攪拌機付き 3L反応容器に、 1—クロロブタン (モレキュラーシーブスで水分除去した もの) 1196g、へキサン 105g、 p—ジクミルク口ライド 1. 44gを加えた。反応容器を— 70。Cに冷却した後、ひ一ピコリン 1. 04g、イソブチレン 240gを添カロした。さらに四塩 化チタン 7. 6gを加えて重合を開始し、—70°Cで溶液を攪拌しながら 2時間反応させ た。次いで反応溶液にスチレン 102gを添加し、さらに 30分間反応を続けた。得られ た重合体溶液を大量の水中へあけて触媒を失活させることにより反応を停止させた。 その後、分液ロートで重合体溶液相と水相を分離して触媒失活後の重合体溶液を得 た。  To a 3L reaction vessel equipped with a stirrer was added 1196 g of 1-chlorobutane (water removed by molecular sieves), 105 g of hexane, and 1.44 g of p-dic milk mouthride. 70 to the reaction vessel. After cooling to C, 1.04 g of Hiichipicoline and 240 g of isobutylene were added. Further, 7.6 g of titanium tetrachloride was added to initiate polymerization, and the reaction was allowed to proceed for 2 hours while stirring the solution at -70 ° C. Next, 102 g of styrene was added to the reaction solution, and the reaction was continued for another 30 minutes. The obtained polymer solution was poured into a large amount of water to deactivate the catalyst, thereby stopping the reaction. Thereafter, the polymer solution phase and the aqueous phase were separated with a separatory funnel to obtain a polymer solution after deactivation of the catalyst.
[0124] 攪拌翼、コンデンサー及びバッフルを備えた 3Lセパラブルフラスコに、蒸留水 1Lを 仕込み、 60°Cに加温した後、触媒失活後の上記重合体溶液を 1L追加し、撹拌しな 力 Sら 60°Cに維持した (水洗 1回目)。撹拌開始から 1時間後に撹拌を停止し、重合体 溶液相と水相を分離した。水相排出後、残った重合体溶液相に対し、蒸留水中でさ らに同様の水洗操作を行 、 (水洗 2回目)、水洗重合体溶液を得た。 [0124] A 3 L separable flask equipped with a stirring blade, a condenser and a baffle was charged with 1 L of distilled water and heated to 60 ° C. Then, 1 L of the polymer solution after deactivation of the catalyst was added, and the mixture was not stirred. Force S was maintained at 60 ° C (first washing with water). Stirring was stopped 1 hour after the start of stirring, and the polymer solution phase and the aqueous phase were separated. After draining the aqueous phase, the remaining polymer solution phase is placed in distilled water. Further, the same water washing operation was carried out (2nd water washing) to obtain a water washing polymer solution.
[0125] 得られた水洗重合体溶液に含まれるイソブチレン系ブロック共重合体の GPC分析を 行ったところ、数平均分子量が 65, 000、分子量分布が 1. 24であった。 [0125] The GPC analysis of the isobutylene block copolymer contained in the obtained water-washed polymer solution revealed that the number average molecular weight was 65,000 and the molecular weight distribution was 1.24.
[0126] (実施例 8) [0126] (Example 8)
製造例 1で得られた水洗重合体溶液全量をセントラルフィルター工業株式会社製 D C— Π— 001— 500 (フィルター前後の差圧を 0. 2MPaとしたときに直径が 以 上の粒子を 99%以上捕集できるフィルター)を用いてろ過した。ろ過後の重合体溶 液中の Ti量 (ルイス酸触媒に由来する金属残渣量)を分析したところ重合体固形分 に対して 38ppmであった。  The total amount of the washing polymer solution obtained in Production Example 1 was DC- セ ン ト ラ ル -001-500 manufactured by Central Filter Industry Co., Ltd. (99% or more of particles having a diameter larger than that when the differential pressure before and after the filter was 0.2 MPa) It filtered using the filter which can be collected. When the amount of Ti in the polymer solution after filtration (the amount of metal residue derived from the Lewis acid catalyst) was analyzed, it was 38 ppm based on the solid content of the polymer.
[0127] さらに、得られた水洗重合体溶液を 60°Cで 24時間真空乾燥して重合体を得た。 [0127] Further, the obtained water-washed polymer solution was vacuum-dried at 60 ° C for 24 hours to obtain a polymer.
[0128] 得られた重合体をプレス機で厚さ 2mmのシートを作製した。シートは次のようにして 作製した。重合体約 10gをフェロー板に乗せ、 180°Cで 7分間予熱、 10kg/cm2- Gで 1分間、さらに 50kgZcm2— Gで 2分間加圧した後、 50kgZcm2— Gで 3分間冷 却した。得られたシートを色差計で測定したところ Y. I.値は表 3に示すように 14. 0 であった。 [0128] A sheet having a thickness of 2 mm was produced from the obtained polymer with a press. The sheet was produced as follows. The polymer of about 10g placed Fellow plate, 7 minutes preheating at 180 ° C, 10kg / cm 2 - 1 minute at G, yet 50KgZcm 2 - after pressurizing 2 minutes at G, 50kgZcm 2 - 3 minutes cooling at G did. When the obtained sheet was measured with a color difference meter, the YI value was 14.0 as shown in Table 3.
[0129] (実施例 9) [Example 9]
フィルタ一として日本ポール株式会社製 NXA0. 5- 20 (フィルター前後の差圧を 0. 2MPaとしたときに直径が 0. 5 μ m以上の粒子を 99%以上捕集できるフィルター)を 用いた以外は、実施例 8と同様にしてろ過を実施した。ろ過後の重合体溶液中の Ti 量 (ルイス酸触媒に由来する金属残渣量)を分析したところ、重合体固形分に対して 19ppmであった。  Other than using NXA0.5-5-20 (a filter that can collect 99% or more of particles with a diameter of 0.5 μm or more when the differential pressure before and after the filter is 0.2 MPa) as a filter. Was filtered in the same manner as in Example 8. When the amount of Ti in the polymer solution after filtration (the amount of metal residue derived from the Lewis acid catalyst) was analyzed, it was 19 ppm with respect to the solid content of the polymer.
[0130] 得られた重合体の Y. I.値を実施例 8と同様にして測定したところ、その値は 10. 4で あった (表 3)。  [0130] The Y. I. value of the obtained polymer was measured in the same manner as in Example 8. As a result, the value was 10.4 (Table 3).
[0131] (実施例 10) [0131] (Example 10)
フィルター前後の差圧を 0. 2MPaとしたときに直径が 5 μ m以上の粒子を 99%以上 捕集できるフィルターを用いた以外は、実施例 8と同様にしてろ過を実施した。ろ過 後の重合体溶液中の Ti量 (ルイス酸触媒に由来する金属残渣量)を分析したところ、 重合体固形分に対して 80ppmであった。 [0132] 得られた重合体の Y. I.値を実施例 8と同様にして測定したところ、その値は 21. 9で あった (表 3)。 Filtration was carried out in the same manner as in Example 8 except that a filter capable of collecting 99% or more of particles having a diameter of 5 μm or more when the differential pressure before and after the filter was 0.2 MPa. When the amount of Ti in the polymer solution after filtration (the amount of metal residue derived from the Lewis acid catalyst) was analyzed, it was 80 ppm based on the solid content of the polymer. [0132] The YI value of the obtained polymer was measured in the same manner as in Example 8. The value was 21.9 (Table 3).
[0133] (比較例 5) [0133] (Comparative Example 5)
製造例 1で得られた重合体溶液 (ろ過処理せず)につ!、て含有 Ti量 (ルイス酸触媒に 由来する金属残渣量)を分析したところ、重合体固形分に対して 240ppmであった。  For the polymer solution obtained in Production Example 1 (without filtration)! The amount of Ti contained (the amount of metal residue derived from the Lewis acid catalyst) was analyzed and found to be 240 ppm based on the solid content of the polymer.
[0134] 得られた重合体の Y. I.値を実施例 8と同様にして測定したところ、 52. 8であった( 表 3)。  [0134] The Y. I. value of the obtained polymer was measured in the same manner as in Example 8. As a result, it was 52.8 (Table 3).
[0135] (比較例 6)  [0135] (Comparative Example 6)
フィルター前後の差圧を 0. 2MPaとしたときに直径が 10 μ m以上の粒子を 99%以 上捕集できるフィルターを用いた以外は、実施例 8と同様にしてろ過を実施した。ろ 過後の重合体溶液中の Ti量 (ルイス酸触媒に由来する金属残渣量)を分析したとこ ろ、重合体固形分に対して 120ppmであった。  Filtration was carried out in the same manner as in Example 8 except that a filter capable of collecting 99% or more of particles having a diameter of 10 μm or more when the differential pressure before and after the filter was 0.2 MPa. When the amount of Ti in the polymer solution after filtration (the amount of metal residue derived from the Lewis acid catalyst) was analyzed, it was 120 ppm based on the solid content of the polymer.
[0136] 得られた重合体の Y. I.値を実施例 8と同様にして測定したところ、その値は 29. 5で あった (表 3)。  [0136] The Y. I. value of the obtained polymer was measured in the same manner as in Example 8. As a result, the value was 29.5 (Table 3).
[0137] [表 3]  [0137] [Table 3]
Figure imgf000029_0001
Figure imgf000029_0001
[0138] 以上のように、実施例 8から 10で得られた重合体は着色の極めて少ない良好な透明 性を持つ榭脂となり、本発明の方法によれば、榭脂の着色を改良することが可能であ ることがわかった。  [0138] As described above, the polymers obtained in Examples 8 to 10 became a resin having good transparency with very little coloring, and according to the method of the present invention, the coloring of resin can be improved. It was found that this is possible.
産業上の利用可能性  Industrial applicability
[0139] 上記方法で得られるイソブチレン系重合体は、熱可塑性榭脂に対して一般に採用さ れる成型方法及び成形装置を用いて成形でき、例えば、押出成形、射出成形、プレ ス成形、ブロー成形などによって溶融成形できる。 [0139] The isobutylene-based polymer obtained by the above method is generally employed for thermoplastic resin. For example, it can be melt-molded by extrusion molding, injection molding, press molding, blow molding or the like.
本発明のイソブチレン系重合体は、従来のイソブチレン系重合体と同様の各種用途 に使用され得る。例えば、エラストマ一材料、榭脂、ゴム、アスファルト等の改質剤、粘 着剤のベースポリマー、榭脂改質剤、ノ ッキング材、シール材、ガスケット、栓体など の密封用材、 CDダンパー等の弱電機器用ダンパー、建築用ダンパー、自動車、車 両、家電製品向け等の制振材、防振材、自動車内装材、クッション材、 日用品、電気 部品、電子部品、スポーツ部材、グリップまたは緩衝材、電線被覆材、包装材、各種 容器、文具部品に好適に使用することができる。 The isobutylene polymer of the present invention can be used in various applications similar to conventional isobutylene polymers. For example, elastomer materials, modifiers such as resin, rubber, asphalt, adhesive base polymer, resin modifiers, knocking materials, sealing materials, sealing materials such as gaskets and plugs, CD dampers, etc. Dampers for weak electrical appliances, dampers for construction, automobiles, vehicles, household appliances, etc. It can be suitably used for wire covering materials, packaging materials, various containers, and stationery parts.

Claims

請求の範囲 The scope of the claims
[1] 重合開始剤、及び、ルイス酸触媒の存在下に、イソブチレンを含有する単量体成分 を重合させることにより得られるイソブチレン系重合体であって、  [1] An isobutylene polymer obtained by polymerizing a monomer component containing isobutylene in the presence of a polymerization initiator and a Lewis acid catalyst,
該イソプチレン系重合体中の、ルイス酸触媒に由来する金属残渣量が 90ppm以下 であることを特徴とするイソブチレン系重合体。  An isobutylene polymer, wherein the amount of metal residue derived from the Lewis acid catalyst in the isopylene polymer is 90 ppm or less.
[2] 前記重合開始剤が下記一般式(1)で表わされる構造を有する請求項 1記載のイソブ チレン系重合体。 [2] The isobutylene polymer according to [1], wherein the polymerization initiator has a structure represented by the following general formula (1).
(CR'^X) R3 (1) (CR '^ X) R 3 (1)
(式中、 Xは、ハロゲン原子又は炭素数 1〜6のアルコキシ基若しくはァシロキシ基を 表す。 R1及び R2は、同一又は異なって、水素原子又は炭素数 1〜6の 1価炭化水素 基を表す。 R3は 1価若しくは多価芳香族炭化水素基又は 1価若しくは多価の脂肪族 若しくは脂環式炭化水素基を表す。 nは、 1〜6の自然数を示す。 ) (In the formula, X represents a halogen atom, an alkoxy group having 1 to 6 carbon atoms or an acyloxy group. R 1 and R 2 are the same or different, and are a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms. R 3 represents a monovalent or polyvalent aromatic hydrocarbon group or a monovalent or polyvalent aliphatic or alicyclic hydrocarbon group, n represents a natural number of 1 to 6.
[3] 一般式(1)で表わされる前記重合開始剤は、式 C H (C (CH ) C1) で表されるビス [3] The polymerization initiator represented by the general formula (1) is a bis represented by the formula C H (C (CH) C1).
6 4 3 2 2  6 4 3 2 2
(1 クロル 1ーメチルェチル)ベンゼンおよび式 C H C (CH ) C1で表される(1  (1 Chlor 1-methylethyl) benzene and the formula C H C (CH) C1 (1
6 5 3 2  6 5 3 2
クロル一 1—メチルェチル)ベンゼン力 なる群力 選ばれる少なくとも 1種である請求 項 2記載のイソブチレン系重合体。  The isobutylene-based polymer according to claim 2, which is at least one selected from a group force of (chloro 1-methylethyl) benzene force.
[4] 前記ルイス酸触媒が四塩ィ匕チタンである請求項 1〜3のいずれかに記載のイソブチ レン系重合体。 [4] The isobutylene polymer according to any one of [1] to [3], wherein the Lewis acid catalyst is tetrachloride-titanium.
[5] 前記イソブチレン系重合体力 イソブチレンを主成分とする重合体ブロック(a)と、イソ ブチレン以外の単量体を主成分とする重合体ブロック (b)を含有するブロック共重合 体である請求項 1記載のイソブチレン系重合体。  [5] The isobutylene-based polymer force is a block copolymer containing a polymer block (a) mainly composed of isobutylene and a polymer block (b) mainly composed of a monomer other than isobutylene. Item 2. The isobutylene polymer according to Item 1.
[6] 前記イソブチレン以外の単量体力 芳香族ビニル系単量体である請求項 1〜5のい ずれかに記載のイソブチレン系重合体。 6. The isobutylene polymer according to any one of claims 1 to 5, which is an aromatic vinyl monomer other than the isobutylene monomer.
[7] 前記芳香族ビュル系単量体は、スチレン、 p—メチルスチレン、 α—メチルスチレン及 びインデン力 なる群より選択される少なくとも 1種である請求項 6記載のイソプチレン 系重合体。 7. The isoprene-based polymer according to claim 6, wherein the aromatic bur monomer is at least one selected from the group consisting of styrene, p-methylstyrene, α-methylstyrene, and indene force.
[8] 前記イソブチレン系重合体は、 [8] The isobutylene polymer is
• (芳香族ビニル系単量体を主成分とする重合体ブロック) (イソブチレン単量体を 主成分とする重合体ブロック) (芳香族ビニル系単量体を主成分とする重合体プロ ック)力 形成されるトリブロック共重合体、 • (Polymer block composed mainly of aromatic vinyl monomers) (Isobutylene monomer) Polymer block with main component) (Polymer block with aromatic vinyl monomer as main component) Force formed triblock copolymer,
• (イソブチレン単量体を主成分とする重合体ブロック) (芳香族ビニル系単量体を 主成分とする重合体ブロック) (イソブチレン単量体を主成分とする重合体ブロック) から形成されるトリブロック共重合体、及び、  • (Polymer block based on isobutylene monomer) (Polymer block based on aromatic vinyl monomer) (Polymer block based on isobutylene monomer) A triblock copolymer, and
• (芳香族ビニル系単量体を主成分とする重合体ブロック) (イソブチレン単量体を 主成分とする重合体ブロック)から形成されるジブロック共重合体  • Diblock copolymer formed from (polymer block based on aromatic vinyl monomer) (polymer block based on isobutylene monomer)
力 なる群より選択される少なくとも 1種のブロック共重合体である請求項 6又は 7記 載のイソブチレン系重合体。  The isobutylene polymer according to claim 6 or 7, which is at least one block copolymer selected from the group consisting of
[9] ルイス酸触媒存在下でイソブチレンを含有する単量体成分を重合する工程 (I); 前記工程 (I)において得られたイソブチレン系重合体含有溶液に、水を接触させて 前記ルイス酸触媒を失活させる工程 (Π); [9] A step of polymerizing a monomer component containing isobutylene in the presence of a Lewis acid catalyst (I); water is brought into contact with the isobutylene polymer-containing solution obtained in the step (I); Step of deactivating the catalyst (Π);
さらに前記工程 (Π)の後、得られた重合体含有溶液を、 pHIO以上の塩基性水溶液 で洗浄する工程 (III) ;  Further, after the step (ii), the obtained polymer-containing solution is washed with a basic aqueous solution of pHIO or higher (III);
を含むことを特徴とするイソブチレン系重合体の製造方法。  A process for producing an isobutylene polymer, comprising:
[10] ルイス酸触媒存在下でイソブチレンを含有する単量体成分を重合する工程 (I); 前記工程 (I)において得られたイソブチレン系重合体含有溶液に、水を接触させて 前記ルイス酸触媒を失活させる工程 (Π); [10] A step of polymerizing a monomer component containing isobutylene in the presence of a Lewis acid catalyst (I); water is brought into contact with the isobutylene polymer-containing solution obtained in the step (I); Step of deactivating the catalyst (Π);
前記工程 (II)の後、得られた重合体含有溶液を、フィルター前後の差圧を 0. 2MPa としたときに直径が 5 μ m以上の粒子を 99%以上捕集できるフィルターでろ過するェ 程 (IV) ;  After the step (II), the obtained polymer-containing solution is filtered with a filter capable of collecting 99% or more of particles having a diameter of 5 μm or more when the differential pressure before and after the filter is 0.2 MPa. Degree (IV);
を含むことを特徴とするイソブチレン系重合体の製造方法。  A process for producing an isobutylene polymer, comprising:
[11] さらに、前記工程 (III)の後、得られた重合体含有溶液を、フィルター前後の差圧を 0[11] Further, after the step (III), the obtained polymer-containing solution is subjected to a pressure difference between before and after the filter.
. 2MPaとしたときに直径が 5 μ m以上の粒子を 99%以上捕集できるフィルターでろ 過する工程 (IV)を含む請求項 9記載の製造方法。 10. The production method according to claim 9, comprising a step (IV) of filtering with a filter capable of collecting 99% or more of particles having a diameter of 5 μm or more at 2 MPa.
[12] 前記イソブチレン系重合体力 イソブチレン単量体を主成分とするものである請求項[12] The isobutylene-based polymer strength, which is mainly composed of an isobutylene monomer.
9から 11のいずれかに記載の製造方法。 The production method according to any one of 9 to 11.
[13] イソブチレン系重合体が、イソブチレン単量体を主成分とする重合体ブロック (a)と芳 香族ビニル系単量体を主成分とする重合体ブロック (b)力 なる重合体である請求項[13] An isobutylene-based polymer has a polymer block (a) containing an isobutylene monomer as a main component. A polymer block mainly comprising an aromatic vinyl monomer (b)
9から 11の 、ずれかに製造方法。 9 to 11 is a manufacturing method.
[14] 前記工程 (I)における重合を、炭素数 3〜8の 1級及び 2級のモノハロゲンィ匕炭化水 素からなる群から選択される少なくとも 1種と、脂肪族、脂環式及び芳香族炭化水素 カゝらなる群カゝら選択される少なくとも 1種と、を含有する混合溶媒中で行うことを特徴と する請求項 9から 13の 、ずれかに記載の製造方法。 [14] The polymerization in the step (I) is carried out at least one selected from the group consisting of primary and secondary monohalogenated hydrocarbons having 3 to 8 carbon atoms, aliphatic, alicyclic and 14. The production method according to claim 9, wherein the production is carried out in a mixed solvent containing at least one selected from the group consisting of aromatic hydrocarbons.
[15] 前記ルイス酸触媒力 ハロゲンィ匕金属である請求項 9から 14のいずれかに記載の製 造方法。 15. The production method according to any one of claims 9 to 14, wherein the Lewis acid catalytic power is a halogenated metal.
[16] 前記ハロゲンィ匕金属が、四塩ィ匕チタンである請求項 15記載の製造方法。  16. The method according to claim 15, wherein the halogenated metal is tetrasalt titanium.
[17] 前記塩基性水溶液が、水酸ィ匕ナトリウム水溶液である請求項 9、 11から 16のいずれ かに記載の製造方法。 17. The production method according to claim 9, wherein the basic aqueous solution is a sodium hydroxide aqueous solution.
PCT/JP2006/320489 2005-10-13 2006-10-13 Isobutylene polymer and method for producing same WO2007043662A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005298696A JP2009007383A (en) 2005-10-13 2005-10-13 Isobutylenic block copolymer
JP2005-298696 2005-10-13
JP2005347480A JP2009007385A (en) 2005-12-01 2005-12-01 Manufacturing method for isobutylene based polymer
JP2005-347480 2005-12-01
JP2006040817A JP2009007386A (en) 2006-02-17 2006-02-17 Production method of isobutylene polymer
JP2006-040817 2006-02-17

Publications (1)

Publication Number Publication Date
WO2007043662A1 true WO2007043662A1 (en) 2007-04-19

Family

ID=37942884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320489 WO2007043662A1 (en) 2005-10-13 2006-10-13 Isobutylene polymer and method for producing same

Country Status (1)

Country Link
WO (1) WO2007043662A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322583A (en) * 1976-08-12 1978-03-02 Nippon Petrochemicals Co Ltd Purification of buten polymer
JPH06287256A (en) * 1993-03-30 1994-10-11 Nippon Zeon Co Ltd Production of block copolymer
JP2001131222A (en) * 1999-11-05 2001-05-15 Kanegafuchi Chem Ind Co Ltd Method for production of isobutylene block copolymer
JP2002179728A (en) * 2000-12-15 2002-06-26 Kanegafuchi Chem Ind Co Ltd Method for producing isobutylene-based block copolymer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322583A (en) * 1976-08-12 1978-03-02 Nippon Petrochemicals Co Ltd Purification of buten polymer
JPH06287256A (en) * 1993-03-30 1994-10-11 Nippon Zeon Co Ltd Production of block copolymer
JP2001131222A (en) * 1999-11-05 2001-05-15 Kanegafuchi Chem Ind Co Ltd Method for production of isobutylene block copolymer
JP2002179728A (en) * 2000-12-15 2002-06-26 Kanegafuchi Chem Ind Co Ltd Method for producing isobutylene-based block copolymer

Similar Documents

Publication Publication Date Title
US20070282074A1 (en) Process For Producing Isobutylene Block Copolymer
TW200829617A (en) β-pinene polymer and process for production thereof
NO161862B (en) POLYPROPYLENE MATERIAL AND PROCEDURES IN THE PREPARATION OF THIS.
TWI425013B (en) A copolymer obtained from an olefin and an aromatic vinyl compound, a process for producing the same, a resin composition containing the copolymer, and an extension molded product of the copolymer
TWI485170B (en) Hydrogenated block copolymer fouling and method for producing the same
WO2013039152A1 (en) Polyolefin having terminal double bond, and method for producing same
JP6815996B2 (en) Method for Producing Halogenated Isoolefin Polymer
CN111918896B (en) Method for preparing block copolymer composition
NO148222B (en) SHOCK RESISTANT CHEMICAL MIXED POLYMER MIXTURE
JPWO2007013541A1 (en) Block copolymer and method for producing the same, resin-modifying composition, and modified resin composition and method for producing the same
Fuchs et al. The effect of THF and the chelating modifier DTHFP on the copolymerisation of β-myrcene and styrene: kinetics, microstructures, morphologies, and mechanical properties
Zhang et al. Polymethylene‐Based Copolymers by Polyhomologation or by Its Combination with Controlled/Living and Living Polymerizations
Abbasian et al. Nitroxide mediated and atom transfer radical graft polymerization of atactic polymers onto syndiotactic polystyrene
KR101995192B1 (en) Block copolymer composition, molding material, resin composition, and molded article
WO2015125707A1 (en) Thermoplastic resin composition, and molded article and method for producing same
WO2007043662A1 (en) Isobutylene polymer and method for producing same
WO2005105860A1 (en) Process for producing isobutylene block copolymer
WO2007094258A1 (en) Method for producing isobutylene block copolymer
JPS6043848B2 (en) Soft resin and its manufacturing method
JP6123415B2 (en) Method for recovering hydrogenated block copolymer and resin composition
JP2009007385A (en) Manufacturing method for isobutylene based polymer
JP7028669B2 (en) Olefin resin, its production method and propylene resin composition
JP2009007386A (en) Production method of isobutylene polymer
JP2009007383A (en) Isobutylenic block copolymer
WO2007046344A1 (en) Process for producing isobutylene block copolymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06811767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP