WO2007043131A1 - プラズマディスプレイパネル - Google Patents

プラズマディスプレイパネル Download PDF

Info

Publication number
WO2007043131A1
WO2007043131A1 PCT/JP2005/018298 JP2005018298W WO2007043131A1 WO 2007043131 A1 WO2007043131 A1 WO 2007043131A1 JP 2005018298 W JP2005018298 W JP 2005018298W WO 2007043131 A1 WO2007043131 A1 WO 2007043131A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma display
cell
display panel
row
dielectric layer
Prior art date
Application number
PCT/JP2005/018298
Other languages
English (en)
French (fr)
Other versions
WO2007043131A9 (ja
Inventor
Nobuhiro Iwase
Takashi Sasaki
Original Assignee
Fujitsu Hitachi Plasma Display Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Hitachi Plasma Display Limited filed Critical Fujitsu Hitachi Plasma Display Limited
Priority to PCT/JP2005/018298 priority Critical patent/WO2007043131A1/ja
Publication of WO2007043131A1 publication Critical patent/WO2007043131A1/ja
Publication of WO2007043131A9 publication Critical patent/WO2007043131A9/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/38Dielectric or insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/22Electrodes, e.g. special shape, material or configuration
    • H01J11/32Disposition of the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/22Electrodes
    • H01J2211/24Sustain electrodes or scan electrodes
    • H01J2211/245Shape, e.g. cross section or pattern
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/22Electrodes
    • H01J2211/32Disposition of the electrodes
    • H01J2211/323Mutual disposition of electrodes

Definitions

  • the present invention relates to a surface discharge type plasma display panel, and more particularly to a cell structure of a plasma display panel having a high definition screen.
  • a surface discharge AC plasma display panel is used to display color images!
  • the first electrode and the second electrode for generating display discharge are arranged in parallel on the front substrate or the rear substrate, and the third electrode so as to intersect the first electrode and the second electrode.
  • electrodes are arranged.
  • a display discharge is a discharge that determines the amount of light emitted from a cell, which is a display element.
  • the first electrode and the second electrode are row electrodes that define a matrix display row
  • the third electrode is a column electrode that defines a column.
  • a partition for separating discharge between cells arranged in the row direction is indispensable.
  • the barrier ribs divide the internal space filled with the discharge gas according to the cell arrangement, and also serve as a spacer that defines the dimensions of the internal space in the panel thickness direction.
  • FIG. 1 is an exploded perspective view showing a configuration of a typical surface discharge AC plasma display panel.
  • the drawing power corresponding to the six cells in the plasma display panel 9 is drawn.
  • the first row electrode 11 and the second row electrode 12 are arranged on the inner surface of the front substrate 10!
  • the row electrode 11 and the row electrode 12 are covered with an insulating layer 13.
  • the insulator layer 13 is a laminate of a dielectric layer 14 and a thin protective film 15.
  • the column electrodes 21 are arranged on the inner surface of the back substrate 20, and a plurality of partition walls 23 that partition cells are formed on a dielectric layer 22 that covers the column electrodes 21. Between the adjacent barrier ribs 23, a red (R) phosphor 24, a green (G) phosphor 25, and a blue (B) phosphor 26 are coated. In the figure, the separated force is actually in contact with the protective film 14 and the partition wall 23.
  • Discharge gas is sealed in the internal space defined by the barrier ribs 23.
  • Various improvements have been proposed for such a surface discharge type plasma display panel.
  • Japanese Patent Application Laid-Open No. 2000-223032 describes that the electric field acting on xenon in the discharge gas is strengthened by setting the thickness of the dielectric layer to 10 to 25 m, thereby increasing the excitation efficiency of the phosphor.
  • Japanese Patent No. 3352821 discloses that the row electrode is patterned into a shape having a strip-like portion straddling a plurality of cells and a plurality of projecting portions protruding in each cell, thereby suppressing the discharge current. It is described.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-223032
  • Patent Document 2 Japanese Patent No. 3352821
  • each cell is a long and narrow rectangle with a horizontal dimension of approximately 1Z3 with a vertical dimension. In other words, as the resolution increases, the horizontal dimension of the cell becomes significantly smaller than the vertical dimension.
  • barrier ribs which are discharge barriers between cells
  • the lower limit of barrier rib pattern width is about 50 m. Even if the cell size is reduced, the pattern width of the partition walls cannot be made lower than the lower limit.
  • the resolution corresponds to the number of pixels.
  • 3 XI cells correspond to one pixel, so the number of cells in the horizontal direction is three times the number of pixels.
  • the number of cells on an HD screen with a resolution of 1920 x 1080 is 5760 X 108 0.
  • the drive circuit In the plasma display panel, as the discharge gas space of each cell becomes smaller, the voltage to be applied to cause the discharge becomes higher. In order to apply a high voltage, the drive circuit must be composed of circuit components with appropriate withstand voltage performance. This leads to an increase in the price of the drive circuit. Therefore, it is desirable to configure a drive circuit by sharing circuit components having substantially the same withstand voltage regardless of differences in panel screen size and resolution.
  • An object of the present invention is to provide a difference in driving voltage (maintenance voltage) between panel products having the same resolution and different screen sizes, or between panel products having the same screen size and different resolutions.
  • the idea is to provide a design philosophy that minimizes as much as possible.
  • the present invention is a cell that can drive a plasma display panel that satisfies the HD standard by avoiding an increase in driving voltage, regardless of a decrease in cell size accompanying high definition, with a voltage comparable to that of current panels. Provide structure.
  • the present invention provides a cell size in the display row direction between panel products having the same resolution and different screen sizes, or between panel products having the same screen size and different resolutions.
  • the idea is to reduce the thickness of the dielectric layer that covers the display electrodes that define the display rows as the size decreases.
  • the plasma display panel of the present invention has a plurality of cell force screens arranged in rows and columns, a pair of row electrodes for generating each cell force surface discharge, and the row.
  • a plasma display panel including a dielectric layer covering an electrode and a discharge gas space, and a barrier rib disposed between the discharge gas spaces of cells arranged in a row direction as a discharge barrier between the cells.
  • the cell is characterized in that a dimension in a row direction of the discharge gas space in the cell is 240 m or less and a thickness of the dielectric layer is 20 m or less.
  • a plasma display panel that realizes a finer screen has a feature that the dimension in the row direction of the discharge gas space is 200 m or less and the thickness of the dielectric layer is 10 ⁇ m or less.
  • a dielectric layer with a thickness of 10 ⁇ m or less is a plasma layer that uses a gas phase reaction of NO and SiH.
  • Silicon dioxide (SiO 2) deposited by the VD method is preferred.
  • Thinning the dielectric layer is thin in the vicinity of the partition wall in the discharge gas space in addition to the effect that the electric field in the discharge gas space is strengthened as the distance from the electrode casing to the discharge gas space is shortened. This produces an effect of narrowing the invalid area.
  • the ineffective region is a region where the electric field due to the applied voltage does not substantially contribute to the discharge. The ineffective region is generated because the relative permittivity of the barrier ribs is much larger than that of the discharge gas. While the relative permittivity of the discharge gas is about 1, the relative permittivity of a general barrier rib having a low melting point glass force is 8 to 13.
  • the effective region where an electric field contributing to discharge is generated is expanded in accordance with the narrowing of the ineffective region.
  • the cell size is reduced, if the dielectric layer is made thinner, the same size as before the reduction or a larger effective area can be obtained.
  • the dielectric layer thickness is 20 m, the effective area row dimension is It is almost 200 m.
  • FIG. 1 is an exploded perspective view showing a configuration of a typical surface discharge AC plasma display panel.
  • FIG. 2 is a plan view showing a typical screen color arrangement.
  • FIG. 3 is a schematic cross-sectional view of the main part of the plasma display panel 1 according to the present invention.
  • FIG. 4 is a plan view showing the positions of the effective area and the invalid area in one cell.
  • FIG. 5 is a graph showing the relationship between the row direction dimension of the discharge gas space and the row direction dimension of the effective region.
  • FIG. 6 is a graph showing the relationship between the dimension of the effective region in the row direction and the minimum sustaining voltage.
  • FIG. 7 is a plan view showing a first modification of the planar shape of the row electrodes.
  • FIG. 8 is a plan view showing a second modification of the planar shape of the row electrodes.
  • the plasma display panel according to the embodiment of the present invention basically has the same configuration as that of the conventional example shown in FIGS.
  • the diagrams used in the following description make it easy to understand Therefore, the same reference numerals as those in FIGS. 1 and 2 are attached to the components of the plasma display panel.
  • FIG. 3 is a schematic cross-sectional view of the main part of the plasma display panel 1 according to the present invention, and shows a structure corresponding to a part of the cross section taken along the line aa in FIG.
  • FIG. 4 is a plan view showing the positions of the effective area and the invalid area in one cell.
  • cells 51, 52, and 53 of plasma display panel 1 are part of a group of cells arranged in rows and columns that form a screen with a color array as shown in FIG. Since the cell structure is the same except for the materials of the phosphors 24, 25, and 26, the characteristics will be described below by focusing on one cell 52.
  • the cell 52 includes a pair of row electrodes 11 and 12 (see FIG. 4) for generating a surface discharge, a dielectric layer 14 covering the row electrodes 11 and 12, and a discharge gas space 31.
  • a partition wall 23 serving as a discharge barrier exists between the discharge gas space 31 of the cell 52 and the discharge gas spaces 31 of the cells 51 and 53 on both sides in the row direction.
  • the row electrode 11 has a thick band shape!
  • a transparent conductive film 111 having a thickness of about 0.5 m patterned in a band shape and a thickness 2 to 3 patterned in a thin band shape: ⁇ ⁇ It is a laminate with a metal film 112 of a degree.
  • the row electrode 12 is also a laminate of a transparent conductive film 121 and a metal film 122. These row electrodes 11 and 12 extend in the horizontal direction of the screen. In this specification, the row direction is the horizontal direction on the screen.
  • the barrier ribs 23 are in contact with a protective film 15 such as magnesia deposited on the surface of the dielectric layer 14 and define the dimensions of the discharge gas space 31 in the panel thickness direction.
  • the row direction of the effective region is selected so that the dimension E is large enough to drive with a practical level of voltage.
  • the electric lines of force 62 pass through the barrier ribs 23 as shown in FIG. 3, so that there is almost no electric field contributing to the discharge.
  • the invalid areas 33 and 34 exist on both sides of the cell 52 in the row direction with the valid area 32 interposed therebetween.
  • the dimension F in the row direction of each invalid region 33, 34 substantially matches the thickness T of the dielectric layer 14. Strictly speaking, it almost matches the value including the thickness of the protective film 15, but the thickness of the protective film 15 Therefore, the dimension F in the row direction of the ineffective regions 33 and 34 is substantially determined by the thickness T of the dielectric layer 14.
  • the coincidence between the dimension F in the row direction and the thickness ⁇ was clarified by comparing the thickness and the discharge current as follows.
  • the dielectric layer 14 of Sample 1 is obtained by firing a low-melting glass base containing lead oxide and has a relative dielectric constant ⁇ of 12 and a thickness of 30 m.
  • the dielectric layer 14 of Sample 2 is a low-melting glass paste that does not contain acid lead, and has a relative dielectric constant ⁇ of 8 and a thickness of 20 m.
  • the dielectric layer 14 of Sample 3 is made of silicon dioxide laminated by plasma CVD, and has a relative dielectric constant ⁇ of 4 and a thickness 10 of 10 m.
  • the partition wall 23 was formed by a technique in which a low melting point glass paste (dielectric constant 12) containing lead oxide was put by sandblasting and then fired.
  • the width of the partition wall pattern after firing (the width of the top called the rib top) d was 60 / ⁇ ⁇ , the height h was 135 / ⁇ ⁇ , and the width of the bottom called the bottom was 130 m.
  • the film thickness of the dielectric layer 22 of the rear substrate 20 was 10 m, and the relative dielectric constant ⁇ was 12. 4% Xe-Ne gas was filled as the discharge gas.
  • the gas pressure was 67 kPa.
  • a rectangular pulse voltage of 30 kHz was applied to the row electrode pair.
  • the current Io was measured before the discharge began in the pulse leading edge period when the voltage increased from 0 volts to 180 volts.
  • the voltage was further increased to start discharging, and then the current Is when the voltage stabilized at 180 volts was measured.
  • the theoretical relative discharge capacity Qa and the measured relative discharge capacity Qb are calculated based on the difference between the current Is and the current Io (Is—Io) as the discharge current. Asked for F.
  • Table 1 As shown in Table 1, the dimension F in the row direction is approximately equal to the thickness T of the dielectric layer.
  • Figure 5 shows the relationship between the row dimension D of the discharge gas space and the dimension E of the effective region.
  • Fig. 6 is a graph showing the relationship between the row dimension E of the effective region and the minimum discharge sustaining voltage.
  • the minimum discharge sustaining voltage is the lowest voltage at which wall discharge can be repeatedly generated.
  • Table 2 shows the results of the calculation of the effective area in the row direction E and the partition wall pattern width d of 50 ⁇ m on various sizes of screens with horizontal resolution of 1920 x vertical 1080 (the number of senor: 5760 x 1080). Show.
  • the cell pitch B in the vertical direction is a value obtained by dividing the horizontal value in the screen size in Table 2 by 1080
  • the cell pitch C in the horizontal direction is a value obtained by dividing the vertical value in Table 2 by 5760.
  • the row direction dimension E of the effective region is 150 m.
  • the plasma display panel can be driven by a voltage of 150 volts or more.
  • the thickness T of the dielectric layer is 30 ⁇ m and the row dimension D is 170 m
  • the effective region has a row dimension E of 110 m and a minimum sustain voltage of 162 m. It is a bolt. This means that the driving voltage increases as the cell size is reduced.
  • the thickness T of the dielectric layer when the thickness T of the dielectric layer is reduced to 20 ⁇ m from 30 ⁇ m force to the above 62-52 type high-resolution plasma display panel, 57-67 At the same voltage as the mold Can be driven.
  • the dielectric layer thickness T when driving a small 57-47 type plasma display panel, if the dielectric layer thickness T is reduced from 30 ⁇ m force to 10 ⁇ m, it can be driven with the same voltage as 57-67 type. .
  • the thickness T of the dielectric layer in order to drive a high-definition plasma display panel smaller than the 62-type without significantly increasing the driving voltage compared to the conventional type, the thickness T of the dielectric layer should be 20 ⁇ m or less, preferably 10 ⁇ m or less. It turns out that it is necessary to do.
  • FIG. 7 shows a first modification of the planar shape of the row electrode.
  • the transparent conductive film 113 constituting the row electrode l ib includes a strip portion 113A extending over a plurality of cells arranged in the row direction, and the row electrode 113 from the strip portion 113A in each cell. It consists of a protruding part 113B protruding toward the row electrode 12b paired with ib.
  • the metal film 112 overlaps the strip 113A.
  • the transparent conductive film 123 constituting the row electrode 12b includes a strip portion 123A extending over a plurality of cells arranged in the row direction, and a row electrode 1 lb paired with the row electrode 12b from the strip portion 123A in each cell. And a projecting portion 123B projecting toward the surface.
  • the metal film 122 overlaps with the strip portion 123A.
  • the protrusion 113B of the row electrode l ib and the protrusion 123B of the row electrode 12b form a surface discharge gap.
  • the protrusions 113B and 123B are arranged in the effective region 32, and the row direction dimension E2 thereof is smaller than the row direction dimension E of the effective region. As a result, the generation of lines of electric force that do not contribute to discharge is suppressed, and power loss is reduced. As a result of making prototypes of 55-inch and 42-inch plasma display panels, it was confirmed that the reactive power was reduced by 15 to 25% compared to the case where the electrode width W was constant as shown in Fig. 4.
  • FIG. 8 shows a second modification of the planar shape of the row electrode.
  • the transparent conductive film 114 constituting the row electrode 11c includes a strip 114A extending over a plurality of cells arranged in the row direction, and the row electrode 114 from the strip 114A in each cell. It consists of a T-shaped protrusion 114B protruding toward the pair of row electrodes 12c.
  • the transparent conductive film 124 constituting the row electrode 12c is paired with the row electrode 12c from the belt-like portion 124A and the belt-like portion 124A extending across a plurality of cells arranged in the row direction.
  • protrusion 124B protruding toward the row electrode 11c.
  • the protrusion 114B of the row electrode 11c and the protrusion 124B of the row electrode 12c form a surface discharge gap.
  • Protrusions 114B and 124B are arranged in the effective area 32, and their row dimension E2 is effective It is smaller than the dimension E in the row direction of the area.
  • the electrode area is small, it has the effect of increasing the luminous efficiency by limiting the discharge current.
  • the electrode configuration in which a pair of row electrodes are arranged for each row has been described as an example.
  • the present invention is also applied to an electrode configuration in which adjacent rows share one row electrode.
  • the partition pattern is not limited to the illustrated stripe pattern that partitions cells arranged in the row direction (horizontal direction), and a vertical wall that partitions cells aligned in the row direction and a horizontal wall that partitions cells aligned in the column direction (vertical direction). It may be a mesh pattern to form.
  • the present invention is useful for increasing the resolution and definition of a plasma display panel. Contributes to the realization of high-definition plasma display panels with a screen size of 30-50 inches.

Abstract

 プラズマディスプレイパネルは、行および列に配置された複数のセルからなる画面(50)を有する。各セル(52)は、面放電を生じさせるための一対の行電極(11,12)と、行電極を被覆する誘電体層(14)と、放電ガス空間(31)とを含み、行方向に並ぶセルのそれぞれの放電ガス空間の間にセル間の放電障壁として隔壁(23)が配置される。セル(52)における放電ガス空間(31)の行方向寸法(D)が240μm以下であり且つ誘電体層の厚さ(T)が20μm以下である。高い電圧の印加を必要としない高精細の画面が実現される。                                                                                 

Description

明 細 書
プラズマディスプレイパネノレ
技術分野
[0001] 本発明は面放電型のプラズマディスプレイパネルに関し、特に高精細の画面をもつ プラズマディスプレイパネルのセル構造に関する。
背景技術
[0002] カラー映像の表示に面放電型の ACプラズマディスプレイパネルが用いられて!/、る 。ここでいう面放電型は、前面基板または背面基板の上に表示放電を生じさせるため の第 1電極および第 2電極を平行に配列し、第 1電極および第 2電極と交差するよう に第 3電極を配列する形式である。表示放電は表示素子であるセルの発光量を決め る放電である。一般に、第 1電極および第 2電極はマトリクス表示の行 (row)を画定す る行電極であり、第 3電極は列(column)を画定する列電極である。
[0003] 面放電型のプラズマディスプレイパネルでは平行に延びる行電極で放電を生じさ せるので、行方向に並ぶセルの間で放電を分離する隔壁が不可欠である。隔壁は、 放電ガスが充填される内部空間をセル配列に合わせて区画するとともに、内部空間 のパネル厚さ方向の寸法を規定するスぺーサの役割を担う。
[0004] 図 1は典型的な面放電型 ACプラズマディスプレイパネルの構成を示す分解斜視 図である。図 1ではプラズマディスプレイパネル 9における 6個のセル(図 2に示される 画面 50におけるセノレ 51, 52, 53, 54, 55, 56)に対応した咅分力 ^描力れている。
[0005] 図 1において、第 1の行電極 11および第 2の行電極 12は前面基板 10の内面に配 列されて!、る。行電極 11および行電極 12は絶縁体層 13によって被覆されて 、る。 絶縁体層 13は誘電体層 14と薄い保護膜 15との積層体である。列電極 21は背面基 板 20の内面に配列され、列電極 21を被覆する誘電体層 22の上にセルを区画する 複数の隔壁 23が形成されている。隣接する隔壁 23の間には、赤 (R)の蛍光体 24、 緑 (G)の蛍光体 25、および青(B)の蛍光体 26が塗布されている。図では離れている 力 実際には保護膜 14と隔壁 23とが当接する。隔壁 23で区画された内部空間には 放電ガスが封入されて 、る。 [0006] このような面放電型プラズマディスプレイパネルに関して種々の改良が提案されて ヽる。特開 2000— 223032号公報には、誘電体層の厚さを 10〜25 mとして放電 ガス中のキセノンに作用する電界を強め、それによつて蛍光体の励起効率を高める ことが記載されている。また、特許第 3352821号公報には、行電極を複数のセルに 跨る帯状部と各セルにおいて帯状部力 突き出た複数の突出部とを有する形状にパ ターニングし、それによつて放電電流を抑制することが記載されて 、る。
特許文献 1:特開 2000 - 223032号公報
特許文献 2 :特許第 3352821号公報
発明の開示
[0007] プラズマディスプレイパネルの画面の大型化が進む中、対角 40インチ程度の比較 的に小さなサイズを含む各種サイズの画面につ ヽて高解像度化が進められて ヽる。 画面サイズをそのままにして画面の解像度を増やすと、必然的にその画面は高精細 になる。すなわち、セルサイズが減少する。例えば既に商品化されたプラズマデイス プレイパネルで実現されて 、る水平 1024 X垂直 1024の解像度を、ハイビジョン(H D)映像に適合する水平 1920 X垂直 1080へ増大させる場合では、垂直方向につ いてはセルサイズの減少率は 5%程度である力 水平方向については減少率が 47 %にもなる。また、一般に画面のカラー配列は図 2のように R, G, Bの 3色が水平方 向に繰り返し並ぶものであり、隣接する R, G, Bの 3個のセルが画像の 1画素(ドットま たはピクセルとも呼ばれる)に対応する。好ましい画素形状は正方形またはそれに近 い四角形であるので、各セルは水平方向の寸法が垂直方向の寸法のほぼ 1Z3の細 長い四角形となる。つまり、高解像度化にともなってセルの水平方向寸法は垂直方 向寸法と比べて大幅に小さくなる。さらに、セル間の放電障壁である隔壁の微細化に は限界があり、隔壁のパターン幅の下限値は 50 m程度である。セルサイズを小さく しても、隔壁のパターン幅を下限値以下とすることはできない。したがって、セルサイ ズを小さくするほどセルの中で隔壁の占める割合が大きくなり、隔壁に起因する電力 損失が深刻な問題になる。なお、解像度は画素の数に相当する。図 2の画面構成に おいて、 1画素には 3 X I個のセルが対応するので、水平方向のセル数は画素数の 3 倍であり、例えば解像度が 1920 X 1080の HD画面におけるセル数は 5760 X 108 0である。
[0008] プラズマディスプレイパネルでは、各セルの放電ガス空間が小さくなるにつれて、放 電を起こすために印加すべき電圧が高くなる。高い電圧を印加するには、相応の耐 電圧性能をもつ回路部品によって駆動回路を構成しなければならない。このことは駆 動回路の価格上昇を招く。したがって、パネルの画面サイズや解像度の違いに関わ らずほぼ同じ耐圧の回路部品を共通化して駆動回路を構成することが望まれる。
[0009] 本発明の目的は、同じ解像度をもった異なる画面サイズのパネル製品相互間、或 いは同じ画面サイズで異なる解像度をもったパネル製品相互間での駆動電圧 (維持 電圧)の差をできるだけ少なくする設計思想を提供するにある。また、本発明は、高 精細化に伴うセルサイズの減少に関わらず、駆動電圧の上昇を回避して HD規格を 満たすプラズマディスプレイパネルを現行のパネルと同程度の電圧で駆動することが できるセル構造を提供するものである。
[0010] 上記目的を達成するため、要するに本発明は、同じ解像度で画面サイズの異なる パネル製品相互間、或 、は同じ画面サイズで解像度の異なるパネル製品相互間で、 表示行方向のセルサイズが小さくなるほど表示行を定める表示電極を被覆する誘電 体層の厚みを薄くする考え方を骨子とするものである。さらに具体的に述べると、本 発明のプラズマディスプレイパネルは、行および列に配置された複数のセル力 なる 画面を有し、各セル力 面放電を生じさせるための一対の行電極と、前記行電極を 被覆する誘電体層と、放電ガス空間とを含み、行方向に並ぶセルのそれぞれの放電 ガス空間の間にセル間の放電障壁として隔壁が配置されたプラズマディスプレイパネ ルであって、各セルにおける前記放電ガス空間の行方向寸法が 240 m以下であり 且つ前記誘電体層の厚さが 20 m以下であるという特徴を備える。より精細な画面 を実現するプラズマディスプレイパネルは、放電ガス空間の行方向寸法が 200 m 以下であり且つ誘電体層の厚さが 10 μ m以下であると ヽぅ特徴を備える。厚さ 10 μ m以下の誘電体層は、本発明に従うと N Oと SiHの気相反応を利用するプラズマ C
2 4
VD法で成膜した二酸化珪素(SiO )が好まし ヽ。
2
[0011] 誘電体層を薄くすることは、電極カゝら放電ガス空間までの距離が短くなつて放電ガ ス空間における電界が強まるという効果に加えて、放電ガス空間内の隔壁近傍であ る無効領域を狭めるという効果を生む。無効領域は、印加電圧による電界が実質的 に放電に寄与しない領域である。無効領域が生じるのは、隔壁の比誘電率が放電ガ スのそれよりも格段に大きいからである。放電ガスの比誘電率が約 1であるのに対し て、低融点ガラス力もなる一般的な隔壁の比誘電率は 8〜 13である。
[0012] セルにおける行方向の両側に生じる各無効領域の行方向寸法が誘電体層の厚さ とほぼ一致することが実験によって判明した。本発明はこの事実に着目することによ つてなされたものである。
[0013] 誘電体層を薄くすれば、無効領域の狭まりに応じて、放電に寄与する電界の生じる 有効領域が拡がる。言い換えれば、セルサイズの縮小に際して、誘電体層を薄くす れば、縮小前と同じ寸法またはより大きい有効領域が得られる。セルの行方向寸法か ら隔壁パターン幅を差し引いた放電ガス空間の行方向寸法が 240 mであるセルに おいて、誘電体層の厚さが 20 mであれば、有効領域の行方向寸法はほぼ 200 mである。
図面の簡単な説明
[0014] [図 1]典型的な面放電型 ACプラズマディスプレイパネルの構成を示す分解斜視図で ある。
[図 2]典型的な画面の色配列を示す平面図である。
[図 3]本発明に係るプラズマディスプレイパネル 1の要部断面の模式図である。
[図 4]図 4は 1つのセルにおける有効領域および無効領域の位置を示す平面図であ る。
[図 5]放電ガス空間の行方向寸法と有効領域の行方向寸法との関係を示すグラフで ある。
[図 6]有効領域の行方向寸法と最小放電維持電圧との関係を示すグラフである。
[図 7]行電極の平面形状の第 1変形例を示す平面図である。
[図 8]行電極の平面形状の第 2変形例を示す平面図である。
発明を実施するための最良の形態
[0015] 本発明の実施に係るプラズマディスプレイパネルは、基本的には図 1および図 2で 示される従来例と同様の構成をもつ。以下の説明に用いる図では理解を容易にする ため、プラズマディスプレイパネルの構成要素に図 1および図 2と共通の符合を付し てある。
[0016] 図 3は本発明に係るプラズマディスプレイパネル 1の要部断面の模式図であり、図 1 の a— a矢視断面の一部に対応する構造を示す。図 4は 1つのセルにおける有効領域 および無効領域の位置を示す平面図である。
[0017] 図 3において、プラズマディスプレイパネル 1のセル 51, 52, 53は図 2のようなカラ 一配列の画面を構成する行および列に配置されたセル群の一部である。セルの構 造は蛍光体 24, 25, 26の材質を除いて共通であるので、以下では 1つのセル 52に 着目して特徴を説明する。
[0018] セル 52は、面放電を生じさせるための一対の行電極 11, 12 (図 4参照)、行電極 1 1, 12を被覆する誘電体層 14、および放電ガス空間 31を含む。セル 52の放電ガス 空間 31と行方向の両側のセル 51 , 53のそれぞれの放電ガス空間 31との間には放 電障壁である隔壁 23が存在する。行電極 11は図 4のように太 ヽ帯状太!ヽ帯状にパ ターニングされた厚さ 0. 5 m程度の透明導電膜 111と細い帯状にパターユングさ れた厚さ 2〜3 ;ζ ΐη程度の金属膜 112との積層体である。同様に行電極 12も透明導 電膜 121と金属膜 122との積層体である。これら行電極 11, 12は画面の水平方向に 延びる。本明細書における行方向とは画面における水平方向である。隔壁 23は誘電 体層 14の表面に被着するマグネシアカゝらなる保護膜 15と当接し、放電ガス空間 31 のパネル厚さ方向の寸法を規定する。
[0019] プラズマディスプレイパネル 1では、水平解像度が 1920以上で垂直解像度が 108 0以上の画面を実現するため、放電ガス空間 31の行方向寸法 Dが 240 m以下で あっても有効領域の行方向寸法 Eが実用レベルの電圧で駆動できる十分に大きい値 となるよう無効領域の行方向寸法 Fが選定されている。無効領域では行電極 11, 12 に電圧を印加しても図 3のように電気力線 62が隔壁 23を通ってしまい、そのために 放電に寄与する電界がほとんどない。図 4のように、無効領域 33, 34は有効領域 32 を挟む形でセル 52の行方向の両側に存在する。
[0020] ここで、各無効領域 33, 34の行方向寸法 Fは誘電体層 14の厚さ Tとほぼ一致する 。厳密には保護膜 15の厚さを含めた値とほぼ一致するのであるが、保護膜 15の厚さ は 5000 A程度であるので、実質的には誘電体層 14の厚さ Tで無効領域 33, 34の 行方向寸法 Fが決まる。行方向寸法 Fと厚さ Τとが一致することは、次のように厚さ丁と 放電電流を比較することによって明らかになった。
[0021] 図 3の構造をもつ 3種類のプラズマディスプレイパネル (試料 1 , 2, 3)を作製した。
その際、前面基板 10の誘電体層 14の材質 (比誘電率)と厚さ Τのみを異ならせ、そ れ以外の条件を同じとした。試料 1の誘電体層 14は酸ィ匕鉛を含む低融点ガラスべ一 ストを焼成したものであり、比誘電率 εは 12、厚さ Τは 30 mである。試料 2の誘電 体層 14は酸ィ匕鉛を含まな 、低融点ガラスペーストを焼成したものであり、比誘電率 εは 8、厚さ Τは 20 mである。試料 3の誘電体層 14はプラズマ CVDによって積層 された二酸化珪素からなり、比誘電率 εは 4、厚さ Τは 10 mである。隔壁 23は酸ィ匕 鉛を含む低融点ガラスペースト (比誘電率 12)をサンドブラストでパターユングし た後に焼成する手法で形成した。焼成後の隔壁パターン幅 (リブトップと呼称される 頂部の幅) dを 60 /ζ πι、高さ hを 135 /ζ πι、ボトムと呼称される底部の幅を 130 mとし た。背面基板 20の誘電体層 22の膜厚を 10 m、比誘電率 εを 12とした。放電ガス として 4%Xe— Neガスを充填した。ガス圧を 67kPaとした。
[0022] 行電極対に 30kHzの矩形パルス電圧を印加した。電圧が 0ボルトから 180ボルトへ 増加するパルス前縁期間における放電が開始する以前の電流 Ioを測定した。次に、 さらに電圧を上げて放電を開始させ、その後に 180ボルトに安定した時点の電流 Isを 測定した。電流 Isと電流 Ioとの差 (Is— Io)を放電電流として、理論相対放電容量 Qa と実測相対放電容量 Qbを算出し、それに基づいて有効領域の行方向寸法 Eおよび 無効領域の行方向寸法 Fを求めた。その結果を表 1に示す。表 1のとおり、行方向寸 法 Fは誘電体層の厚さ Tとほぼ等 、。
[0023] [表 1]
Figure imgf000008_0001
図 5は放電ガス空間の行方向寸法 Dと有効領域の行方向寸法 Eとの関係を示すグ ラフ、図 6は有効領域の行方向寸法 Eと最小放電維持電圧との関係を示すグラフで ある。最小放電維持電圧は、壁電荷を利用して放電を繰り返し起こすことのできる最 も低い電圧である。また、表 2は、解像度が水平 1920 X垂直 1080の各種サイズの 画面(セノレ数: 5760 X 1080)における有効領域の行方向寸法 Eを、隔壁パターン幅 dを 50 μ mとしての計算した結果を示す。なお、垂直方向のセルピッチ Bは表 2中の 画面サイズにおける水平の値を 1080で除した値であり、水平方向のセルピチ Cは表 2中の垂直の値を 5760で除した値である。
[0025] [表 2]
Figure imgf000009_0001
[0026] 図 5において、例えば誘電体層の厚さ Τが 30 mで行方向寸法 Dが 210 mであ れば、有効領域の行方向寸法 Eは 150 mである。この場合、図 6のとおり最小維持 電圧が 150ボルトより若干低い値であるので、 150ボルト以上の電圧によってプラズ マディスプレイパネルを駆動することができる。これに対して、誘電体層の厚さ Tが同 じく 30 μ mで行方向寸法 Dが 170 mであれば、有効領域の行方向寸法 Eは 110 mであって、最小維持電圧は 162ボルトである。このことは、セルサイズを縮小すると 駆動電圧が高くなることを意味する。
[0027] 表 2を参照すると、 62〜52型の上記高解像度のプラズマディスプレイパネルにお V、て、誘電体層の厚さ Tを 30 μ m力ら 20 μ mへ薄くすると、 57〜67型と同じ電圧で の駆動が可能となる。さらに小型の 57〜47型プラズマディスプレイパネルを駆動す る場合、誘電体層の厚さ Tを 30 μ m力ら 10 μ mへ薄くすると、 57〜67型と同じ電圧 での駆動が可能となる。つまり、 62型よりも小型の高精細プラズマディスプレイパネル を従来よりも駆動電圧を大幅に上げることなく駆動するには、誘電体層の厚さ Tを 20 μ m以下、好ましくは 10 μ m以下にすることが必要であることがわかる。
[0028] 図 7は行電極の平面形状の第 1変形例を示す。図 7のプラズマディスプレイパネル 1 bにおいて、行電極 l ibを構成する透明導電膜 113は、行方向に並ぶ複数のセルに 跨って延びる帯状部 113Aと、各セルにおいて帯状部 113Aから当該行電極 l ibと 対をなす行電極 12bに向力つて突き出た突出部 113Bとからなる。金属膜 112は帯 状部 113Aと重なる。同様に、行電極 12bを構成する透明導電膜 123は、行方向に 並ぶ複数のセルに跨って延びる帯状部 123Aと、各セルにおいて帯状部 123Aから 当該行電極 12bと対をなす行電極 1 lbに向力つて突き出た突出部 123Bとからなる。 金属膜 122は帯状部 123Aと重なる。各セルにおいて、行電極 l ibの突出部 113B と行電極 12bの突出部 123Bとが面放電ギャップを形成する。
[0029] 突出部 113B, 123Bは有効領域 32の中に配置され、その行方向寸法 E2は有効 領域の行方向寸法 Eよりも小さい。これにより、放電に寄与しない電気力線の発生が 抑制され、電力損失が低減される。 55型および 42型のプラズマディスプレイパネル を試作して実験した結果、図 4のように電極幅 Wが一定の場合と比較して、無効電力 が 15〜25%減少することが確認できた。
[0030] 図 8は行電極の平面形状の第 2変形例を示す。図 8のプラズマディスプレイパネル 1 cにおいて、行電極 11cを構成する透明導電膜 114は、行方向に並ぶ複数のセルに 跨って延びる帯状部 114Aと、各セルにおいて帯状部 114Aから当該行電極 11cと 対をなす行電極 12cに向かって突き出た T字状の突出部 114Bとからなる。同様に、 行電極 12cを構成する透明導電膜 124は、行方向に並ぶ複数のセルに跨って延び る帯状部 124Aと、各セルにぉ 、て帯状部 124Aから当該行電極 12cと対をなす行 電極 11cに向力つて突き出た T字状の突出部 124Bとからなる。各セルにおいて、行 電極 11 cの突出部 114Bと行電極 12cの突出部 124Bとが面放電ギャップを形成す る。突出部 114B, 124Bは有効領域 32の中に配置され、その行方向寸法 E2は有効 領域の行方向寸法 Eよりも小さい。
[0031] 本例においても、図 7の例と同様に隔壁 23で費やす電力が少ない。カロえて、電極 面積が小さいので、放電電流を制限して発光効率を高める効果をもつ。
[0032] 以上の実施形態では、行ごとに一対の行電極を配列する電極構成を例に挙げたが 、隣接する行が 1本の行電極を共用する電極構成にも本発明を適用することができる 。隔壁パターンは行方向(水平方向)に並ぶセルを区画する図示のストライプパター ンに限らず、行方向に並ぶセルを区画する垂直壁と列方向(垂直方向)に並ぶセル を区画する水平壁とを形成するメッシュパターンでもよい。
産業上の利用可能性
[0033] 本発明は、プラズマディスプレイパネルの高解像度化および高精細化に有用であ る。画面サイズが 30〜50インチでハイビジョン対応の高解像度プラズマディスプレイ パネルの実現に貢献する。

Claims

請求の範囲
[1] 行および列に配置された複数のセル力 なる画面を有し、各セル力 面放電を生じ させるための一対の行電極と、前記行電極を被覆する誘電体層と、放電ガス空間と を含み、行方向に並ぶセルのそれぞれの放電ガス空間の間に隔壁が配置されたプ ラズマディスプレイパネルであって、
各セルにおける前記放電ガス空間の行方向寸法が 240 m以下であり、かつ 前記誘電体層の厚さが 20 μ m以下である
ことを特徴とするプラズマディスプレイパネル。
[2] 各セルにおける前記放電ガス空間の行方向寸法が 200 μ m以下であり、かつ 前記誘電体層の厚さが 10 m以下である
請求項 1に記載のプラズマディスプレイパネル。
[3] 前記誘電体層が厚さ 1 μ m以下の保護層で被覆されている
請求項 1または請求項 2に記載のプラズマディスプレイパネル。
[4] 前記誘電体層は二酸化珪素からなる
請求項 3に記載のプラズマディスプレイパネル。
[5] 前記画面における行方向の解像度が 1920以上である
請求項 1または請求項 2に記載のプラズマディスプレイパネル。
[6] 前記画面における行方向の解像度が 1920以上であり、各行のセル数が行方向の 解像度の 3倍である
請求項 1または請求項 2に記載のプラズマディスプレイパネル。
[7] 前記行電極は第 1の基板上に配列され、
前記行電極のそれぞれは、行方向に並ぶ複数のセルに跨って延びる帯状部と、各 セルにおいて前記帯状部から当該行電極と対をなす行電極に向かって突き出た突 出部とからなり、
前記隔壁は、前記第 1の基板と対向する第 2の基板によって支持され、 各セルにおいて、前記隔壁における前記誘電体層に対向する面と前記突出部との 平面視距離が前記誘電体層の厚さよりも大きい
請求項 1または請求項 2に記載のプラズマディスプレイパネル。
[8] 各セルにおいて、前記突出部は前記行電極対への電圧印加による電界が放電に 寄与する有効領域の中に配置されて 、る
請求項 7に記載のプラズマディスプレイパネル。
[9] 行および列に配置された複数のセル力 なる画面を有し、各セル力 面放電を生じ させるための一対の表示電極と、前記表示電極を被覆する誘電体層と、放電ガス空 間とを含み、行方向に並ぶセルのそれぞれの放電ガス空間の間に隔壁が配置され たプラズマディスプレイパネルから構成されるプラズマディスプレイパネル製品シリー ズであって、
同じ解像度で画面サイズの異なるパネル製品相互間にお 、て、行方向の各セルの 放電ガス空間の寸法が小さくなるほど前記表示電極を被覆する誘電体層の厚さを薄 く構成した
ことを特徴とするプラズマディスプレイパネル製品シリーズ。
[10] 行および列に配置された複数のセル力 なる画面を有し、各セル力 面放電を生じ させるための一対の表示電極と、前記表示電極を被覆する誘電体層と、放電ガス空 間とを含み、行方向に並ぶセルのそれぞれの放電ガス空間の間に隔壁が配置され たプラズマディスプレイパネルから構成されるプラズマディスプレイパネル製品シリー ズであって、
同じ画面サイズで解像度の異なるパネル製品相互間にお 、て、行方向の各セルの 放電ガス空間の寸法が小さくなるほど前記表示電極を被覆する誘電体層の厚さを薄 く構成した
ことを特徴とするプラズマディスプレイパネル製品シリーズ。
PCT/JP2005/018298 2005-10-03 2005-10-03 プラズマディスプレイパネル WO2007043131A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/018298 WO2007043131A1 (ja) 2005-10-03 2005-10-03 プラズマディスプレイパネル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/018298 WO2007043131A1 (ja) 2005-10-03 2005-10-03 プラズマディスプレイパネル

Publications (2)

Publication Number Publication Date
WO2007043131A1 true WO2007043131A1 (ja) 2007-04-19
WO2007043131A9 WO2007043131A9 (ja) 2007-05-31

Family

ID=37942401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018298 WO2007043131A1 (ja) 2005-10-03 2005-10-03 プラズマディスプレイパネル

Country Status (1)

Country Link
WO (1) WO2007043131A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155647A (ja) * 1999-11-30 2001-06-08 Akt Kk ガス放電表示デバイス及びその製造方法
JP2002298742A (ja) * 2001-04-03 2002-10-11 Nec Corp プラズマディスプレイパネル、その製造方法及びプラズマ表示装置
JP2005142161A (ja) * 2003-11-07 2005-06-02 Thomson Plasma 細長いコプレーナ放電を伴う小さいギャップのプラズマ表示パネル
JP2005222722A (ja) * 2004-02-03 2005-08-18 Matsushita Electric Ind Co Ltd プラズマディスプレイパネル

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155647A (ja) * 1999-11-30 2001-06-08 Akt Kk ガス放電表示デバイス及びその製造方法
JP2002298742A (ja) * 2001-04-03 2002-10-11 Nec Corp プラズマディスプレイパネル、その製造方法及びプラズマ表示装置
JP2005142161A (ja) * 2003-11-07 2005-06-02 Thomson Plasma 細長いコプレーナ放電を伴う小さいギャップのプラズマ表示パネル
JP2005222722A (ja) * 2004-02-03 2005-08-18 Matsushita Electric Ind Co Ltd プラズマディスプレイパネル

Also Published As

Publication number Publication date
WO2007043131A9 (ja) 2007-05-31

Similar Documents

Publication Publication Date Title
US6333599B1 (en) Plasma display system
US7394197B2 (en) Plasma display panel
JP2000082407A (ja) プラズマディスプレイパネル
EP1670022B1 (en) Plasma display panel
US7498744B2 (en) Plasma display panel and method of fabricating the same
JPH1196919A (ja) ガス放電表示パネル
JP2002373593A (ja) プラズマディスプレイパネル及びその製造方法
JP2004273265A (ja) プラズマディスプレイパネル
JP2004524667A (ja) 傾いた放電電極を有するプラズマ・スクリーン
US20090184639A1 (en) Plasma display panel
WO2007043131A1 (ja) プラズマディスプレイパネル
US7486023B2 (en) Single layer discharge electrode configuration for a plasma display panel
KR100755309B1 (ko) 플라즈마 디스플레이 패널
JP4287424B2 (ja) プラズマディスプレイパネル
US8288948B2 (en) Plasma display panel having barrier walls with base portions and protruding portions
JP2000285808A (ja) 放電型表示装置の背面側基板の隔壁構造
JP3984559B2 (ja) ガス放電パネル
JP3984558B2 (ja) ガス放電パネル
JP2002324489A (ja) プラズマスクリーン
KR100625984B1 (ko) 배기 기능이 개선된 플라즈마 디스플레이 패널
KR100658325B1 (ko) 플라즈마 디스플레이 패널
KR100692058B1 (ko) 플라즈마 디스플레이 패널
KR100703093B1 (ko) 격벽 내부에 전극을 구비하는 플라즈마 디스플레이 패널 및그 격벽 제조 방법
JP4382759B2 (ja) プラズマディスプレイパネル
US20090160336A1 (en) Plasma display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05788076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP