WO2007039130A1 - Licht streuende kunststoffzusammensetzung mit hoher helligkeit und deren verwendung in flachbildschirmen - Google Patents

Licht streuende kunststoffzusammensetzung mit hoher helligkeit und deren verwendung in flachbildschirmen Download PDF

Info

Publication number
WO2007039130A1
WO2007039130A1 PCT/EP2006/009200 EP2006009200W WO2007039130A1 WO 2007039130 A1 WO2007039130 A1 WO 2007039130A1 EP 2006009200 W EP2006009200 W EP 2006009200W WO 2007039130 A1 WO2007039130 A1 WO 2007039130A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
films
plastic
light
transparent
Prior art date
Application number
PCT/EP2006/009200
Other languages
English (en)
French (fr)
Inventor
Heinz Pudleiner
Klaus Meyer
Jörg NICKEL
Claus RÜDIGER
Original Assignee
Bayer Materialscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Materialscience Ag filed Critical Bayer Materialscience Ag
Priority to EP06792209.6A priority Critical patent/EP1934283B1/de
Priority to CN2006800366967A priority patent/CN101278008B/zh
Priority to JP2008533893A priority patent/JP2009510236A/ja
Priority to KR1020087008218A priority patent/KR101360726B1/ko
Publication of WO2007039130A1 publication Critical patent/WO2007039130A1/de
Priority to HK09102912.2A priority patent/HK1124878A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/18Spheres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers

Definitions

  • the present invention relates to a plastic composition of a transparent plastic, especially polycarbonate, and transparent polymeric particles having a different optical density from the matrix material and the use of this plastic composition for films, in particular for diffuser films in flat screens.
  • Light-scattering translucent products of transparent plastics with various light-scattering additives and moldings produced therefrom are already known from the prior art.
  • US 2004/0066645 A1 generally claims light-scattering materials which contain 0.2 to 5% light-scattering particles, and the light transmission is greater than 70% and the haze at least 10%.
  • the litter additive has a mean diameter of 3 to 10 ⁇ m.
  • JP 07-090167 a light scattering plastic is claimed, which consists of 1 to 10% of particles having a refractive index of less than 1.5 and a particle size of 1 to 50 microns, and 90 to 99% of an aromatic polycarbonate, wherein the particles do not substantially dissolve in the aromatic polycarbonate.
  • scattering additives acrylate, polystyrene, glass, titanium dioxide or calcium carbonate particles are used.
  • the morphology of the core / shell acrylates and the light-scattering compounds containing them is not further described and characterized.
  • EXL 5137 is used as a scattering additive in combination with inorganic particles, inter alia in polycarbonate, wherein 0.001 to 0.3% of these particles, for example titanium dioxide, contribute to improved aging resistance and thus color stability. This advantage is particularly important when compounds with high levels of litter (> 2%) are exposed to elevated service temperatures (eg 14O 0 C) for a long time (> 500 hours).
  • JP 2004-053998 describes light-scattering polycarbonate films having a thickness of 30 to 200 ⁇ m, which consist of more than 90% polycarbonate, have a light transmission of more than 90%, at least one side of the film surface has a concavo-convex structure , have a haze of at least 50% and have a retardation of less than 30nm.
  • diffuser films are claimed in back light units.
  • diffuser films with low birefringence (retardation ⁇ 30 nm, better even ⁇ 20 nm) are described and claimed because they cause higher brightnesses in the BLU.
  • inorganic particles e.g. Silicates, calcium carbonate or talc, or organic particles such as crosslinked acrylates or polystyrenes having an average diameter of 1 to 25 .mu.m, preferably used from 2 to 20 microns.
  • JP 08-146207 describes optical diffuser films in which the surface has been patterned on at least one side by a molding process. Furthermore, a film is claimed in which, when using only a transparent scattering additive, this unevenly distributed over the thickness of the film. If two or more scattering additives are used, they can be distributed uniformly over the thickness of the film.
  • the littering additives used may be acrylate, polyethylene, polypropylene, polystyrene, glass, alumina or silica particles having a mean particle diameter of 1 to 25 microns.
  • the films can have a thickness of 100 to 500 ⁇ m.
  • JP 2004-272189 optical diffuser plates are described with a thickness of 0.3 to 3 mm, wherein litter additives having a particle diameter of 1 to 50 microns are used. Furthermore, it is claimed that in a brightness range of 5000 to 6000 Cd / m 2, the differences in brightness are less than 3%.
  • diffuser films are described with a thickness of 20 to 200 microns for use in LCD, containing 0.2 to 10% scattering additive and at least on one side have a gloss of 20 to 70%.
  • Crosslinked silicones, acrylates or talcum are compounded as littering additives having a particle diameter of 5 to 30 ⁇ m.
  • JP 06-123802 describes diffuser films having a thickness of 100 to 500 ⁇ m for LCD, wherein the refractive index difference between the transparent base material and the transparent light-scattering particles is at least 0.05.
  • one side of the film is smooth, while on the other side the litter additives stick out of the surface and form the structured surface.
  • the litter additives have a particle diameter of 10 to 120 microns.
  • a backlight unit (Direct Light System) has the structure described below. It usually consists of a housing in which, depending on the size of the backlight unit, a different number of fluorescent tubes, so-called. CCFL (CoId Cathode Fluorescent Lamp) are arranged. The inside of the housing is equipped with a light reflecting surface. On this illumination system, the diffuser plate has a thickness of 1 to 3 mm, preferably a thickness of 2 mm. On the diffuser plate there is a set of foils, which can have the following functions: light scattering (diffuser foils), circular palmarisators, focusing of the light in the forward direction by sogn. BEF (Brighness Enhancing Film) and Linear Polarizers. The linearly polarizing film lies directly under the LCD display above.
  • CCFL CoId Cathode Fluorescent Lamp
  • Light-diffusing plastic compositions in optical applications conventionally contain inorganic or organic particles having a diameter of 1 to 50 microns, in some cases even up to 120 microns, i. they contain scattering centers that are responsible for both the diffusive and the focusing properties.
  • all acrylates which have a sufficiently high thermal stability of up to at least 300 ° C. can be used as transparent scattering pigments in order not to be decomposed at the processing temperatures of the transparent plastic, preferably polycarbonate.
  • pigments must not have any functionalities that lead to degradation of the polymer chain of the polycarbonate.
  • Paraloid® from Rohm & Haas or Techpolymer® from Sekisui can be used very well for the pigmentation of transparent plastics. From this product line a variety of different types are available. Core shell acrylates from the paraloid series are preferably used.
  • plastic compositions which contain conventional micrometer-sized particles, in particular so-called core-shell acrylates and as few nanoscale particles as possible, are suitable for backlight units due to the brightness properties and at the same time high light scattering. This effect is even more pronounced in connection with the foil set typically used in a backlight unit (BLU).
  • BLU backlight unit
  • plastic compositions with light-scattering additives having average particle sizes below 500 nm have no significant influence on the optical properties of films.
  • the proportion of particles having an average particle diameter of 80 to 200 nm is below 20 particles per 100 ⁇ m 2 surface of the plastic composition, preferably below 10 particles per 100 ⁇ m 2 , more preferably below 5 particles per 100 ⁇ m 2 .
  • the number of particles per surface is determined by examining the surface using Atomic Force Microscopy (AFM). This method is familiar to the person skilled in the art and will be explained in more detail in the exemplary embodiments.
  • AFM Atomic Force Microscopy
  • the plastic composition has at most 500 ppm, preferably less than 300 ppm, particularly preferably less than 100 ppm of these nanoscale particles.
  • ppm is based on the composition.
  • the invention therefore relates to plastics compositions which contain transparent polymeric particles having a different index of refraction from the matrix material and are characterized by a proportion of nanoscale particles having an average particle diameter of from 80 to 200 nm, the proportion of nanoscale particles being below 20 particles per 100 ⁇ m 2 Surface of the plastic composition, preferably below 10 particles per 100 microns 2 , more preferably below 5 particles per 100 microns 2 .
  • a preferred embodiment of the invention is a plastic composition
  • a plastic composition comprising a composition comprising about 90 to 99.95% by weight of a transparent plastic, preferably polycarbonate, and about 0.01 to 10% by weight of polymeric, transparent particles, said polymeric particles having a particle size substantially between 1 and 50 ⁇ m, and up to a maximum of 500 ppm of polymeric, transparent particles having a particle size of 80 to 200 ⁇ m.
  • Another object of this invention is a process for the preparation of the inventive plastic composition.
  • the plastic compositions according to the invention are preferably produced and further processed by thermoplastic processing.
  • the shearing in the thermoplastic processing forms the nanoscale polymeric particles. This formation mechanism is shown by AFM studies on the extruded films. To secure the results, three samples per material were prepared and three sites were examined for their morphology.
  • core / shell acrylates are used because they provide the plastic compositions of the present invention.
  • Another object of this invention is the use of the plastic composition according to the invention for diffuser films of flat panel displays, in particular in the backlighting of LCD displays.
  • the diffuser films produced from the inventive plastic compositions have a high light transmission with simultaneously high light scattering and can be used, for example, in the illumination systems of flat screens (LCD screens).
  • LCD screens flat screens
  • a high light scattering with simultaneous high light transmission and focusing of the light in the direction of the viewer is of crucial importance.
  • the illumination system of such flat screens can be done either with lateral light coupling (edge light system) or larger screen sizes where the lateral light coupling is no longer sufficient, via a backlight unit (BLU), in which the direct illumination behind the diffuser film through This must be distributed as evenly as possible (Direct Light System).
  • BLU backlight unit
  • Suitable plastics for the plastic composition are all transparent thermoplastics: polyacrylates, polymethacrylates (PMMA, Plexiglas® from Röhm), cycloolefin Copolymers (COC; Topas® from Ticona, Zenoex® from Nippon Zeon or Apel® from Japan Synthetic Rubber), polysulfones (Ultrason @ from BASF or Udel® from Solvay), polyester such as PET or PEN, polycarbonate, polycarbonate / polyester blends, eg PC / PET, polycarbonate / polycyclohexylmethanol cyclohexanedicarboxylate (PCCD, Sollx® from GE), polycarbonate / PBT (Xylex®).
  • Suitable polycarbonates for the production of the plastic composition according to the invention are all known polycarbonates. These are homopolycarbonates, copolycarbonates and thermoplastic polyestercarbonates.
  • the suitable polycarbonates preferably have average molecular weights M w of from 18,000 to 40,000, preferably from 26,000 to 36,000 and in particular from 28,000 to 35,000, determined by measuring the relative solution viscosity in dichloromethane or mixtures of equal amounts by weight phenol / o-dichlorobenzene calibrated by light scattering.
  • the polycarbonates are preferably prepared by the phase boundary process or the melt transesterification process and will be described below by way of example by the phase boundary process.
  • Suitable diphenols are e.g. in US Pat. Nos. 2,999,835, 3,148,172, 2,991,273, 3,271,367, 4,982,014 and 2,999,846, in German Offenlegungsschriften 1,570,703, 2,063,050, 2,036,052, 2,111,956 and 3,832,396, French Patent 1,561,518, in the monograph "H. Schnell, Chemistry and Physics of Polycarbonates, Interscience Publishers, New York 1964, p28ff; p.102ff, and in” DG Legrand, J.T. Bendler, Handbook of Polycarbonates Science and Technology, Marcel Dekker New York 2000, pp. 72ff. "
  • transesterification for example, in US-A 34 94 885, 43 86 186, 46 61 580, 46 80 371 and 46 80 372, in EP-A 26 120, 26 121, 26 684, 28 030 , 39 845, 39 845, 91 602, 97 970, 79 075, 14 68 87, 15 61 03, 23 49 13 and 24 03 Ol and described in DE-A 14 95 626 and 22 32 977.
  • copolycarbonates Both homopolycarbonates and copolycarbonates are suitable.
  • copolycarbonates according to the invention it is also possible to use from 1 to 25% by weight, preferably from 2.5 to 25% by weight (based on the total amount of diphenols to be used) of hydroxyl-aryloxy endblocked polydiorganosiloxanes. These are known (see, for example, US Patent 3,419,634) or produced by literature methods.
  • the preparation of poly-diorganosiloxan braver copolycarbonates is z. B. in DE-OS 33 34 782 described.
  • Aromatic dicarboxylic acid dihalides for the preparation of aromatic polyester carbonates are preferably the diacid dichlorides of isophthalic acid, terephthalic acid, diphenyl ether-4,4'-dicarboxylic acid and naphthalene-2,6-dicarboxylic acid.
  • Polydiorganosiloxane-polycarbonate block copolymers are characterized in that they contain in the polymer chain, on the one hand, aromatic carbonate structural units (1) and, on the other hand, aryloxy end group-containing polydiorganosiloxanes (2).
  • Such polydiorganosiloxane polycarbonate block copolymers are e.g. From US-PS 3,189,662, US-PS 3,821,325 and US-PS 3,832,419.
  • Preferred polydiorganosiloxane-polycarbonate block copolymers are prepared by reacting alpha, omega Bishydroxyaryloxyend phenomenon-containing polydiorganosiloxanes together with other diphenols, optionally with the use of branching agents in the usual amounts, for. B. by the two-phase interface method (see H. Schnell, Chemistry and Physics of Polycarbonate Polymer Rev. Vol., DC, page 27 et seq., Interscience Publishers New York 1964), wherein in each case the ratio of the bifunctional phenolic reactants is selected such that from which the inventive content of aromatic carbonate structural units and diorganosiloxy units results.
  • Such alpha, omega Bishydroxyaryloxyend phenomenon-containing polydiorganosiloxanes are z. B. from US 3 419 634 known.
  • the preferred acrylate-based polymeric particles to be used in accordance with the invention having a core-shell morphology are, for example and preferably, those disclosed in EP-A 634445.
  • the polymeric particles preferably have a core of a rubbery vinyl polymer.
  • the rubbery vinyl polymer may be a homo- or copolymer of any of the monomers having at least one ethylenically unsaturated group which are known to those skilled in the art for addition polymerization under the conditions of emulsion polymerization in an aqueous medium. Such monomers are listed in US 4,226,752, column 3, lines 40-62.
  • the polymeric particles contain a core of rubbery alkyl acrylate polymer wherein the alkyl group has from 2 to 8 carbon atoms, optionally copolymerized with from 0 to 5% crosslinker and from 0 to 5% graft crosslinker, based on the total weight of the core.
  • the rubbery alkyl acrylate is preferably copolymerized with up to 50% of one or more copolymerizable vinyl monomers, for example those mentioned above.
  • Suitable crosslinking and graftlinking monomers are well known to those skilled in the art and are preferably those described in EP-A-0269324.
  • the polymeric particles are useful to impart light scattering properties to the transparent plastics, preferably polycarbonate.
  • the refractive index n of the core and the cladding / cladding of the polymeric particles is preferably within +/- 0.25 units, more preferably within +/- 0.18 units, most preferably within +/- 0.12 units of the refractive index of the polycarbonate.
  • the refractive index n of the core and the sheath (s) is preferably not closer than +/- 0.003 units, more preferably not closer than +/- 0.01 units, most preferably not closer than +/- 0.05 units in the Refractive index of the polycarbonate.
  • the refractive index is measured in accordance with ASTM D 542-50 and / or DIN 53 400.
  • the polymeric particles generally have an average particle diameter of at least 0.5 microns, preferably from at least 1 microns to at most 100 microns, more preferably from 2 to 50 microns, most preferably from 2 to 15 microns. Preferably, at least 90%, most preferably at least 95% of the polymeric particles have a diameter greater than 2 microns
  • the polymeric particles are a free-flowing powder, preferably in compacted form, ie pressed into pellets , also for dust reduction.
  • the polymeric particles can be prepared in a known manner. Generally, at least one monomer component of the core polymer is subjected to emulsion polymerization to form emulsion polymer particles.
  • the emulsion polymer particles are swollen with the same or one or more other monomer components of the core polymer, and the monomer (s) are polymerized within the emulsion polymer particles. The steps of swelling and polymerisation can be repeated until the particles have grown to the desired core size.
  • the core polymer particles are suspended in a second aqueous monomer emulsion and a polymer shell of the monomer (s) is polymerized onto the polymer particles in the second emulsion.
  • One or more coats may be polymerized on the core polymer.
  • the preparation of core / shell polymer particles is described in EP-A 0 269 324 and in U.S. Patents 3,793,402 and 3,808,180.
  • the brightness values can be further increased by using a small amount of optical brightener.
  • An embodiment of the invention therefore represents a plastic composition according to the invention which may additionally contain from 0.001 to 0.2% by weight, preferably about 1000 ppm, of an optical brightener of the class bis-benzoxazoles, phenylcoumarins or bis-styrylbiphenyls.
  • a particularly preferred optical brightener is Uvitex OB, from Ciba Specialty Chemicals.
  • plastic compositions according to the invention can be prepared by extrusion.
  • a polycarbonate granulate is fed to the extruder and melted in the plasticizing system of the extruder.
  • the plastic melt is forced through a slot die and thereby deformed, brought to the desired final shape in the nip of a smoothing calender and shaped by means of reciprocal cooling on smoothing rolls and the ambient air.
  • the polycarbonates of high melt viscosity used for extrusion are usually processed at melt temperatures of 260 to 32O 0 C, according to the cylinder temperatures of the plasticizing and die temperatures are set.
  • Both the base layer and the optionally present coextrusion layer (s) of the moldings according to the invention may additionally contain additives such as, for example, UV absorbers and other customary processing aids, in particular mold release agents and flow agents, and the stabilizers customary for polycarbonates, in particular heat stabilizers and also antistatic agents, optical brighteners.
  • additives such as, for example, UV absorbers and other customary processing aids, in particular mold release agents and flow agents, and the stabilizers customary for polycarbonates, in particular heat stabilizers and also antistatic agents, optical brighteners.
  • additives such as, for example, UV absorbers and other customary processing aids, in particular mold release agents and flow agents, and the stabilizers customary for polycarbonates, in particular heat stabilizers and also antistatic agents, optical brighteners.
  • additives such as, for example, UV absorbers and other customary processing aids, in particular mold release agents and flow agents, and the stabilizers customary for polycarbonates, in particular heat stabilizers and also anti
  • the composition of the film additionally contains 0.01 to 0.5% by weight of a UV absorber of the classes benzotriazole derivatives, dimer benzotriazole derivatives, triazine derivatives, dimer triazine derivatives, diaryl cyanoacrylates.
  • a UV absorber of the classes benzotriazole derivatives, dimer benzotriazole derivatives, triazine derivatives, dimer triazine derivatives, diaryl cyanoacrylates.
  • the coextrusion layer may contain antistatics, UV absorbers and mold release agents.
  • Suitable stabilizers are, for example, phosphines, phosphites or Si-containing stabilizers and further compounds described in EP-A 0 500 496.
  • Examples are triphenylphosphites, diphenylalkylphosphites, phenyldialkylphosphites, tris (nonylphenyl) phosphite, tetrakis- (2,4-di-tert-butylphenyl) -4,4'-biphenylene-diphosphonite, bis (2,4-dicumylphenyl ) called petaerythritol diphosphite and triaryl phosphite.
  • Particularly preferred are triphenylphosphine and tris (2,4-di-tert-butylphenyl) phosphite.
  • Suitable mold release agents are, for example, the esters or partial esters of monohydric to hexahydric alcohols, in particular of glycerol, pentaerythritol or guerbet alcohols.
  • Monohydric alcohols are, for example, stearyl alcohol, palmityl alcohol and Guerbet alcohols
  • a dihydric alcohol is, for example, glycol
  • a tetrahydric alcohol is, for example, glycerol
  • tetrahydric alcohols are, for example, pentaerythritol and mesoerythritol
  • fivefold alcohols are, for example, arabitol, ribitol and xylitol
  • hexahydric alcohols are, for example, mannitol, Glucitol (sorbitol) and Dulcite.
  • the esters are preferably the monoesters, diesters, triesters, tetraesters, pentaesters and hexaesters or mixtures thereof, in particular random mixtures, of saturated, aliphatic Qo to C 36 -monocarboxylic acids and optionally hydroxy-monocarboxylic acids, preferably with saturated, aliphatic C H to C 32 Monocarboxylic acids and optionally hydroxy-monocarboxylic acids.
  • the commercially available fatty acid esters in particular of pentaerythritol and of glycerol, may contain ⁇ 60% of different partial esters as a result of the preparation.
  • Saturated, aliphatic monocarboxylic acids having 10 to 36 carbon atoms are, for example, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, hydroxystearic acid, arachidic acid, behenic acid, lignoceric acid, cerotic acid and montanic acids.
  • antistatic agents examples include cationic compounds, for example quaternary ammonium, phosphonium or sulfonium salts, anionic compounds, for example alkyl sulfonates, alkyl sulfates, alkyl phosphates, carboxylates in the form of alkali metal or alkaline earth metal salts, nonionic compounds, for example polyethylene glycol esters, polyethylene glycol ethers, fatty acid esters, ethoxylated fatty amines.
  • Preferred antistatic agents are nonionic compounds.
  • the plastic compositions according to the invention can be processed into polycarbonate films with a thickness of 35 ⁇ m to 1000 ⁇ m. Depending on the application, they can also be thicker.
  • the films may also be multilayer composites of at least two solid shaped articles, for example films, which have been produced by extrusion. In this case, the films of the invention are composed of at least two polymer layers.
  • the polycarbonate granules are fed to the hopper of an extruder and passes through this into the plasticizing system, consisting of screw and cylinder.
  • the plasticizing system conveys and melts the material.
  • the plastic melt is forced through a slot die.
  • a filter device Between plasticizing and slot die a filter device, a melt pump, stationary mixing elements and other components can be arranged.
  • the melt leaving the nozzle reaches a smoothing calender.
  • a rubber roller For unilateral structuring of the film surface, a rubber roller was used.
  • the final shaping takes place in the nip of the smoothing calender.
  • the rubber rolls used for structuring the film surface are disclosed in DE 32 28 002 (or US equivalent 4,368,240) by Nauta Roll Corporation.
  • the shape fixation is done by cooling and that alternately on the smooth rollers and in the ambient air.
  • the other facilities are used for transport, the application of protective film, the winding of the extruded films.
  • a masterbatch with the following composition was prepared:
  • Shell Paraloid EXL 5137 from Rohm & Haas with a particle size of 2 to 15 ⁇ m and an average particle size of 8 ⁇ m with a proportion of 20% by weight.
  • the system used consists of
  • the screw has a degassing zone
  • Roller is pivotable by +/- 45 ° relative to the horizontal;
  • the third roller is a rubber roller to structure the film surface.
  • a rubber roller was used for unilateral structuring of the film surface.
  • the rubber rolls used for structuring the film surface are disclosed in DE 32 28 002 (or US equivalent 4,368,240) by Nauta Roll Corporation.
  • the smoothing calender the final shaping and cooling of the material takes place. Subsequently, the film is transported through a trigger, it is applied on both sides of the protective film, then the winding of the film takes place.
  • a masterbatch with the following composition was prepared:
  • Acrylic scattering particles Techpolymer MBX-5 of the company Sekisui a particle size of 2 to 15 microns and a mean particle size of 5 microns with a share of 20 wt .-%.
  • the compound is used to extrude 300 ⁇ m thick polycarbonate films 1340 mm wide.
  • the system used consists of
  • the screw has a degassing zone
  • the melt reaches the smoothing calender whose rolls have the temperature given in Table 1.
  • the smoothing calender takes the final shape and Cooling of the material.
  • a rubber roller was used for unilateral structuring of the film surface. The rubber rolls used for structuring the film surface are disclosed in DE 32 28 002 (or US equivalent 4,368,240) by Nauta Roll Corporation. Subsequently, the film is transported through a trigger, it is applied on both sides of the protective film, then the winding of the film takes place.
  • the luminance measurements were carried out on a backlight unit (BLU) from DS LCD, (LTA320W2-L02, 32 "LCD TV panel, with the aid of a Luminance Meter LS100 from Minolta, where the standard diffuser film was produced removed and replaced in each case by the films produced in Examples 3 and 5 respectively.
  • BLU backlight unit
  • the content of the scattering pigments and the light-scattering layer are the same and the layer thickness is 300 ⁇ m. Also, the base material used is the same. Above all, it is surprising that the diffuser films from Example 5 have the highest luminance in the BLLJ.
  • Brightness was then examined with and without the slide set used in this backlight unit.
  • the brightness was measured at a total of 9 different points of the backlight unit (with the help of a Minolta Luminance Meter LS100) and the mean value calculated from it.
  • the examples show that the brightness is associated with the number of nanoscale particles. The fewer of these particles are present, the better the brightness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

Die vorliegende Erfindung betrifft eine Kunststoffzusammensetzung aus einem transparenten Kunststoff, insbesondere Polycarbonat, und transparenten polymeren Teilchen mit einer vom Matrixmaterial unterschiedlichen optischen Dichte sowie die Verwendung dieser Kunststoffzusammensetzung für Folien, im Besonderen für Diffuser-Filme in Flachbildschirmen.

Description

Licht streuende Kunststoffzusammensetzung mit hoher Helligkeit und deren Verwendung in Flachbildschirmen
Die vorliegende Erfindung betrifft eine Kunststoffzusammensetzung aus einem transparenten Kunststoff, besonders Polycarbonat, und transparenten polymeren Teilchen mit einer vom Matrixmaterial unterschiedlichen optischen Dichte sowie die Verwendung dieser Kunststoffzusammensetzung für Folien, im Besonderen für Diffuser-Filme in Flachbildschirmen.
Aus dem Stand der Technik sind Licht streuende transluzente Erzeugnisse aus transparenten Kunststoffen mit verschiedenen Licht streuenden Zusatzstoffen und daraus hergestellte Formteile bereits bekannt.
In der US 2004/0066645 Al werden allgemein Licht streuende Materialien beansprucht, die 0,2 bis 5% Licht streuende Teilchen enthalten, und die Lichttransmission größer als 70% und der Haze wenigstens 10% sind.
Das Streu-Additiv hat einen mittleren Durchmesser von 3 bis 10 μm.
In JP 07-090167 wird ein Licht streuender Kunststoff beansprucht, der aus 1 bis 10% Teilchen, die einen Brechungsindex von weniger als 1,5 und eine Teilchengröße von 1 bis 50 μm haben, und 90 bis 99% eines aromatischen Polycarbonats besteht, wobei sich die Teilchen im wesentlichen nicht in dem aromatischen Polycarbonat lösen.
Als Streu-Additive werden Acrylat-, Polystyrol-, Glas-, Titandioxid oder Calciumcarbonat-Partikel eingesetzt.
Als Anwendung werden LCD erwähnt.
In der EP 0 269 324 Bl wird im 1. Anspruch die Streu- Additiv-Zusammensetzung beschrieben, in den Unteransprüchen aber auch Licht streuende thermoplastische Polymerzusammensetzungen mit 0,1 bis 10% Streuadditiv.
In diesem Zusammenhang wird die Morphologie der Kern/Schale-Acrylate und der diese enthal- tenden Licht streuenden Compounds nicht weiter beschrieben und charakterisiert.
In der EP 0634 445 Bl wird Paraloid EXL 5137 als Streu-Additiv in Kombination mit anorganischen Teilchen u.a. in Polycarbonat ein, wobei 0,001 bis 0,3% dieser Teilchen, z.B. Titandioxid, zu einer verbesserten Alterungsbeständigkeit und damit Farbstabilität beitragen. Dieser Vorteil wird besonders dann wichtig, wenn Compounds mit hohen Streumittel-Gehalten (> 2%) über längere Zeit (> 500 Stunden) erhöhten Gebrauchstemperaturen (z.B 14O0C) ausgesetzt sind.
In JP 2004-053998 werden Licht streuende Polycarbonat-Folien mit einer Dicke von 30 bis 200 μm beschrieben, die aus mehr als 90% Polycarbonat bestehen, eine Lichttransmission von mehr als 90% haben, mindestens eine Seite der Folienoberfläche eine konkav-konvexe Struktur aufweisen, einen Haze von mindestens 50% haben und eine Retardation von weniger als 30nm aufweisen. Als Anwendung für diese optischen Folien werden Diffuser-Filme in Back Light Units beansprucht.
In der Anmeldung werden Diffuser-Folien mit niedriger Doppelbrechung (Retardation < 30 nm, besser sogar < 20 nm) beschrieben und beansprucht, da sie in der BLU höhere Helligkeiten bewirken.
Als Streu-Additive werden 1 bis 10% anorganische Teilchen, z.B. Silikate, Calciumcarbonat oder Talkum, oder organische Teilchen wie vernetzte Acrylate oder Polystyrole mit einem mittleren Durchmesser von 1 bis 25 μm, vorzugsweise von 2 bis 20 μm eingesetzt.
In JP 08-146207 werden optische Diffuser-Filme beschrieben, bei denen auf mindestens einer Seite durch einen Abformprozess die Oberfläche strukturiert wurde. Weiterhin wird eine Folie beansprucht, in der beim Einsatz nur eines transparenten Streu-Additivs, dieses über die Dicke der Folie ungleichmäßig verteilt. Werden zwei oder mehrere Streu-Additive eingesetzt, so können sie gleichmäßig über die Dicke der Folie verteilt sein.
Bei der ungleichmäßigen Verteilung des Streu-Additivs findet eine Anreicherung an der Folienoberfläche statt.
Die eingesetzten Streu-Additive können Acrylat-, Polyethylen-, Polypropylen-, Polystyrol-, Glas-, Aluminiumoxid oder Siliciumdioxid-Teilchen mit einem mittleren Teilchendurchmesser von 1 bis 25 μm sein.
Die Folien können eine Dicke von 100 bis 500 μm haben.
In JP 2004-272189 werden optische Diffuser-Platten mit einer Dicke von 0,3 bis 3 mm beschrieben, wobei Streu-Additive mit einem Teilchendurchmesser von 1 bis 50 μm eingesetzt werden. Weiterhin wird beansprucht, dass in einem Helligkeitsbereich von 5000 bis 6000 Cd/m2 die Helligkeitsunterschiede weniger als 3% betragen.
In WO 2004/090587 werden Diffuser-Filme mit einer Dicke von 20 bis 200 μm für den Einsatz in LCD beschrieben, die 0,2 bis 10 % Streu- Additiv enthalten und die wenigstens auf einer Seite einen Glanz von 20 bis 70% aufweisen. Als Streu-Additive, die einen Teilchendurchmesser von 5 bis 30 μm aufweisen, werden vernetzte Silicone, Acrylate oder Talkum eincompoundiert.
In JP 06-123802 werden Diffuser-Filme mit einer Dicke von 100 bis 500 μm für LCD beschrieben, wobei der Brechungsindexunterschied zwischen dem transparenten Basismaterial und den transpa- renten Licht streuenden Teilchen mindestens 0,05 ist. Dabei ist die eine Seite der Folie glatt, während auf der anderen Seite die Streu-Additive aus der Oberfläche herausstehen und die strukturierte Oberfläche ausbilden.
Die Streu-Additive haben einen Partikeldurchmesser von 10 bis 120 μm.
Die aus dem Stand der Technik bekannten Diffuser-Filme und -platten weisen allerdings eine unbefriedigende Helligkeit (Brightness) auf, insbesondere im Zusammenspiel mit dem üblicherweise in einer sogenannten Backlight-Unit verwendeten Foliensatz. Um die Eignung der lichtstreuenden Platten für sogenannte Backlight-Units für LCD-Flachbildschirme zu beurteilen, muss die Helligkeit (Brightness) des Gesamtsystems betrachtet werden.
Grundsätzlich weist eine Backlight-Unit (Direct Light System) den nachfolgend beschriebenen Aufbau auf. Sie besteht in der Regel aus einem Gehäuse, in dem je nach Größe der Backlight-Unit eine unterschiedliche Anzahl an Leuchtstoffröhren, sogen. CCFL (CoId Cathode Fluorescent Lamp) angeordnet sind. Die Gehäuseinnenseite ist mit einer Licht reflektierenden Oberfläche ausgestattet. Auf diesem Beleuchtungssystem liegt die Diffuserplatte auf, die eine Dicke von 1 bis 3 mm aufweist, bevorzugt eine Dicke von 2 mm. Auf der Difϊuserplatte befindet sich ein Satz von Folien, die folgende Funktionen haben können: Lichtstreuung (Diffuserfolien), Circularpalarisa- toren, Fokussierung des Lichtes in Vorwärtsrichtung durch sogn. BEF (Brighness Enhancing Film) und Linearpolarisatoren. Die linear polarisierende Folie liegt direkt unter dem darüber befindlichen LCD-Display.
Lichtstreuende Kunststoffzusammensetzungen in optischen Anwendungen enthalten herkömmlich anorganische oder organische Partikel mit einem Durchmesser von 1 bis 50 Mikrometer, in einigen Fällen sogar bis 120 μm, d.h. sie enthalten Streuzentren, die sowohl für die diffusiven als auch für die fokussierenden Eigenschaften verantwortlich sind.
Als transparent Streupigmente können dabei grundsätzlich alle Acrylate eingesetzt werden, die über eine ausreichend hohe thermische Stabilität bis mindestens 300 °C verfügen, um bei den Ver- arbeitungstemperaturen des transparenten Kunststoff, bevorzugt Polycarbonat, nicht zersetzt zu werden. Darüber hinaus dürfen Pigmente über keine Funktionalitäten verfugen, die zu einem Abbau der Polymerkette des Polycarbonats führen. Dazu gehören Kern-Schale Acrylate der folgenden Klassen:
So können z. B. Paraloid® der Fa. Rohm & Haas oder Techpolymer® der Fa. Sekisui sehr gut zur Pigmentierung von tranparenten Kunststoffen eingesetzt werden. Aus dieser Produktlinie stehen eine Vielzahl verschiedener Typen zur Verfügung. Bevorzugt werden Kernschale-Acrylate aus der Paraloid-Reihe eingesetzt.
Es wurde nun völlig überraschend gefunden, dass Kunststoffzusammensetzungen, die konventionelle Mikrometer große Teilchen, insbesondere so genannte Kern-Schale Acrylate und möglichst wenig nanoskalige Teilchen enthalten, aufgrund der Helligkeitseigenschaften und gleichzeitig hoher Lichtstreuung für Back Light Units geeignet sind. Dieser Effekt zeigt sich noch verstärkt in Zusammenhang mit dem in einer Backlight-Unit (BLU) typischerweise verwendeten Foliensatz.
In keiner der Patentschriften des Standes der Technik wird auf die Ausbildung einer nanoskaligen Phase entsprechend der erfindungsgemäßen Kunststoffzusammensetzung eingegangen. Die Bedeutung dieser Partikel für die optischen Eigenschaften der erfindungsgemäßen Kunststoffzusammensetzung wird daher auch nicht erwähnt.
In der Regel gilt, dass Kunststoffzusammensetzungen mit Licht streuenden Additiven mit mittleren Teilchengrößen unterhalb von 500 nm keinen wesentlichen Einfluss auf die optischen Eigenschaften von Folien haben.
Wie nun überraschenderweise gefunden wurde, werden sehr gute Helligkeiten der Back Light Unit erhalten, wenn der Anteil der Teilchen mit mittlerem Teilchendurchmesser von 80 bis 200 nm unterhalb von 20 Teilchen pro 100 μm2 Oberfläche der Kunststoffzusammensetzung, bevorzugt unterhalb von 10 Teilchen pro 100 μm2, besonders bevorzugt unterhalb von 5 Teilchen pro 100 μm2, liegt. Die Bestimmung der Anzahl der Teilchen pro Oberfläche erfolgt dabei durch eine Untersuchung der Oberfläche mittels Atomic Force Microscopy (AFM). Diese Methode ist dem Fachmann vertraut und wird in den Ausführungsbeispielen näher erläutert. Dies bedeutet, dass die Kunststoffzusammensetzung höchstens 500 ppm, bevorzugt weniger als 300 ppm, besonders bevorzugt weniger als 100 ppm dieser nanoskaligen Teilchen aufweist. Der Ausdruck "ppm" ist hierbei auf die Zusammensetzung bezogen.
Gegenstand dieser Erfindung sind daher Kunststoffzusammensetzungen, die transparente polymere Teilchen mit einem vom Matrixmaterial unterschiedlichen Brechungsindex enthalten und charakterisiert sind durch einen Anteil von nanoskaligen Teilchen mit mittleren Teilchendurchmesser von 80 bis 200 nm, wobei der Anteil der nanoskaligen Teilchen unterhalb von 20 Teilchen pro 100 μm2 Oberfläche der Kunststoffzusammensetzung, bevorzugt unterhalb von 10 Teilchen pro 100 μm2, besonders bevorzugt unterhalb von 5 Teilchen pro 100 μm2 liegt.
Eine bevorzugte Ausfuhrungsform der Erfindung ist eine Kunststoffzusammensetzung aus einer Zusammensetzung enthaltend etwa 90 bis 99,95 Gewichts-% eines transparenten Kunststoffs, bevorzugt Polycarbonat und etwa 0,01 bis 10 Gewichts-% polymerer, transparenter Teilchen, wobei diese polymeren Teilchen eine Teilchengröße im wesentlichen zwischen 1 und 50 μm aufweisen, und bis zu höchstens 500 ppm polymerer, transparenter Teilchen mit einer Teilchengröße von 80 bis 200 rnn.
Ein weiterer Gegenstand dieser Erfindung ist ein Verfahren zur Herstellung der erfindungsge- mäßen Kunststoffzusammensetzung.
Die erfindungsgemäßen Kunststoffzusammensetzungen werden bevorzugt durch thermoplastische Verarbeitung hergestellt und weiterverarbeitet. Durch die Scherung in der thermoplastischen Verarbeitung werden die nanoskaligen polymeren Teilchen gebildet. Dieser Bildungmechanismus wird durch AFM-Untersuchungen an den extrudierten Folien gezeigt. Zur Absicherung der Ergeb- nisse wurden drei Proben pro Material präpariert und jeweils drei Stellen auf ihre Morphologie untersucht. Bevorzugt werden Kern-/Schale-Acrylate eingesetzt, da sie die erfindungsgemäßen Kunststoffzusammensetzungen liefern.
Ein weiterer Gegenstand dieser Erfindung ist die Verwendung der erfindungsgemäßen Kunststoffzusammensetzung für Diffuser-Folien von Flachbildschirmen, insbesondere bei der Hinterleuch- tung von LCD-Displays.
Die Diffuser-Folien, hergestellt aus den erfϊndungsgemäßen Kunststoffzusammensetzungen, weisen eine hohe Lichttransmission bei gleichzeitig hoher Lichtstreuung auf und können beispielsweise in den Beleuchtungssystemen von Flachbildschirmen (LCD-Bildschirmen) zum Einsatz kommen. Hier ist eine hohe Lichtstreuung bei gleichzeitiger hoher Lichttransmission und Fokussierung des Lichtes in Richtung auf den Betrachter von entscheidender Bedeutung. Das Beleuchtungssystem solcher Flachbildschirme kann entweder mit seitlicher Lichteinkopplung erfolgen (Edge light System) oder bei größeren Bildschirmgrößen, bei denen die seitliche Lichteinkopplung nicht mehr ausreichend ist, über eine Backlight-Unit (BLU), bei der die direkte Beleuchtung hinter der Diffuser-Folie durch diese möglichst gleichmäßig verteilt werden muss (Direct Light System).
Als Kunststoffe für die Kunststoffzusammensetzung kommen alle transparenten Thermoplaste in Frage: Polyacrylate, Polymethacrylate (PMMA; Plexiglas® von der Fa. Röhm), Cycloolefin- Copolymere (COC; Topas® von der Fa. Ticona; Zenoex® von der Fa. Nippon Zeon oder Apel® von der Fa. Japan Synthetic Rubber), Polysulfone (Ultrason@ von der BASF oder Udel® von der Fa. Solvay), Polyester, wie z.B. PET oder PEN, Polycarbonat, Polycarbonat/Polyester-Blends, z.B. PC/PET, Polycarbonat/Polycyclohexylmethanolcyclohexandicarboxylat (PCCD; Sollx® von der Fa GE), Polycarbonat/PBT (Xylex®).
Bevorzugt werden Polycarbonate eingesetzt.
Geeignete Polycarbonate für die Herstellung der erfindungsgemäßen Kunststoffzusammensetzung sind alle bekannten Polycarbonate. Dies sind Homopolycarbonate, Copolycarbonate und thermoplastische Polyestercarbonate.
Die geeigneten Polycarbonate haben bevorzugt mittlere Molekulargewichte M w von 18.000 bis 40.000, vorzugsweise von 26.000 bis 36.000 und insbesondere von 28.000 bis 35.000, ermittelt durch Messung der relativen Lösungsviskosität in Dichlormethan oder in Mischungen gleicher Gewichtsmengen Phenol/o-Dichlorbenzol geeicht durch Lichtstreuung.
Die Herstellung der Polycarbonate erfolgt vorzugsweise nach dem Phasengrenzflächenverfahren oder dem Schmelze-Umesterungsverfahren und wird im folgenden beispielhaft an dem Phasengrenzflächenverfahren beschrieben.
Die Herstellung der Polycarbonate erfolgt u.a. nach dem Phasengrenzflächenverfahren. Dieses Verfahren zur Polycarbonatsynthese ist mannigfaltig in der Literatur beschrieben; beispielhaft sei auf H. Schnell, Chemistry and Physics of Polycarbonates, Polymer Reviews, Vol. 9, Interscience Publishers, New York 1964 S. 33 ff., auf Polymer Reviews, Vol. 10, „Condensation Polymers by Interfacial and Solution Methods", Paul W. Morgan, Interscience Publishers, New York 1965, Kap. Vm, S. 325, auf Dres. U. Grigo, K. Kircher und P. R- Müller "Polycarbonate" in Becker/Braun, Kunststoff-Handbuch, Band 3/1, Polycarbonate, Polyacetale, Polyester, Cellulose- ester, Carl Hanser Verlag München, Wien 1992, S. 118-145 sowie auf EP-A 0 517 044 verwiesen.
Geeignete Diphenole sind z.B. in den US-A -PS 2 999 835, 3 148 172, 2 991 273, 3 271 367, 4 982 014 und 2 999 846, in den deutschen Offenlegungsschriften 1 570 703, 2 063 050, 2 036 052, 2 211 956 und 3 832 396, der franzoesischen Patentschrift 1 561 518, in der Monographie "H. Schnell, Chemistry and Physics of Polycarbonates, Interscience Publishers, New York 1964, S. 28ff; S.102ff, und in "D.G. Legrand, J.T. Bendler, Handbook of Polycarbonate Science and Technology, Marcel Dekker New York 2000, S. 72ff." beschrieben
Daneben ist die Herstellung von Polycarbonaten auch aus Diarylcarbonaten und Diphenolen nach dem bekannten Polycarbonatverfahren in der Schmelze, dem so genannten Schmelzumesterungs- verfahren, möglich, das z.B. in WO-A 01/05866 und WO-A 01/05867 beschrieben ist. Daneben werden Umesterungsverfahren (Acetatverfahren und Phenylesterverfahren) beispielsweise in den US-A 34 94 885, 43 86 186, 46 61 580, 46 80 371 und 46 80 372, in den EP-A 26 120, 26 121, 26 684, 28 030, 39 845, 39 845, 91 602, 97 970, 79 075, 14 68 87, 15 61 03, 23 49 13 und 24 03 Ol sowie in den DE-A 14 95 626 und 22 32 977 beschrieben.
Geeignet sind sowohl Homopolycarbonate als auch Copolycarbonate. Zur Herstellung erfindungsgemäßer Copolycarbonate als Komponente A können auch 1 bis 25 Gew.-%, vorzugsweise 2,5 bis 25 Gew.-% (bezogen auf die Gesamtmenge an einzusetzenden Diphenolen), Polydiorganosiloxane mit Hydroxy-aryloxy-Endgruppen eingesetzt werden. Diese sind bekannt (s. beispielsweise aus US-Patent 3 419 634) bzw. nach literaturbekannten Verfahren herstellbar. Die Herstellung PoIy- diorganosiloxanhaltiger Copolycarbonate wird z. B. in DE-OS 33 34 782 beschrieben.
Ferner sind Polyestercarbonate und Block-Copolyestercarbonate geeignet, besonders wie sie in der WO 2000/26275 beschrieben sind. Aromatische Dicarbonsäuredihalogenide zur Herstellung von aromatischen Polyestercarbonate sind vorzugsweise die Disäuredichloride der Isopthalsäure, Terepthalsäure, Diphenylether-4,4'-dicarbonsäure und der Naphthalin-2,6-dicarbonsäure.
Polydiorganosiloxan-Polycarbonat-Blockcopolymere sind dadurch gekennzeichnet, dass sie in der Polymerkette einerseits aromatische Carbonatstruktureinheiten (1) und andererseits Aryloxyend- gruppen-haltige Polydiorganosiloxane (2) enthalten.
Derartige Polydiorganosiloxan-Polycarbonat-Blockcopolymere sind z. B. aus US-PS 3 189 662, US-PS 3 821 325 und US-PS 3 832419 bekannt.
Bevorzugte Polydiorganosiloxan-Polycarbonat-Blockcopolymere werden hergestellt, indem man alpha-, omega-Bishydroxyaryloxyendgruppen-haltige Polydiorganosiloxane zusammen mit anderen Diphenolen, gegebenenfalls unter Mitverwendung von Verzweigern in den üblichen Mengen, z. B. nach dem Zweiphasengrenzflächenverfahren (s. dazu H. Schnell, Chemistry and Physics of Polycarbonates Polymer Rev. Vol. DC, Seite 27 ff, Interscience Publishers New York 1964) umsetzt, wobei jeweils das Verhältnis der bifunktionellen phenolischen Reaktanten so gewählt wird, dass daraus der erfindungsgemässe Gehalt an aromatischen Carbonatstruktureinheiten und Diorganosiloxy-Einheiten resultiert.
Derartige alpha-, omega-Bishydroxyaryloxyendgruppen-haltige Polydiorganosiloxane sind z. B. aus US 3 419 634 bekannt. Bei den bevorzugten erfindungsgemäß einzusetzenden polymeren Teilchen auf Acrylatbasis mit einer Kern-Schale-Morphologie handelt es sich beispielsweise und bevorzugt um solche, wie sie in EP-A 634445 offenbart werden.
Die polymeren Teilchen haben bevorzugt einen Kern aus einem kautschukartigen Vinylpolymeren. Das kautschukartige Vinylpolymere kann ein Homo- oder Copolymeres von einem beliebigen der Monomeren sein, die wenigstens eine ethylenartig ungesättigte Gruppe besitzen und die dem Fachmann auf dem Gebiet bekanntermaßen Additionspolymerisation unter den Bedingungen der Emulsionspolymerisation in einem wässrigen Medium eingehen. Solche Monomere sind in US 4226752, Spalte 3, Zeilen 40 - 62, aufgelistet.
Am meisten bevorzugt enthalten die polymeren Teilchen einen Kern aus kautschukartigem Alkylacrylatpolymeren, wobei die Alkylgruppe von 2 bis 8 Kohlenstoffatome aufweist, wahlweise copolymerisiert mit von 0 bis 5 % Vernetzer und von 0 bis 5 % Pfropfvernetzer, bezogen auf das Gesamtgewicht des Kerns. Das kautschukartige Alkylacrylat ist bevorzugt mit bis zu 50 % von einem oder mehreren copolymerisierbaren Vinylmonomeren copolymerisiert, beispielsweise den zuvor genannten. Geeignete vernetzende und pfropfVernetzende Monomere sind dem Fachmann auf dem Gebiet wohlbekannt, und es sind bevorzugt solche, wie sie in EP-A 0 269 324 beschrieben sind.
Die polymeren Teilchen sind nützlich, um den transparenten Kunststoffen, bevorzugt PoIy- carbonat, Lichtstreueigenschaften zu erteilen. Der Brechungsindex n von Kern und des Mantels/der Mäntel der polymeren Teilchen liegt bevorzugt innerhalb von +/-0,25 Einheiten, mehr bevorzugt innerhalb +/-0,18 Einheiten, am meisten bevorzugt innerhalb +/-0,12 Einheiten des Brechungsindexes des Polycarbonats. Der Brechungsindex n des Kerns und des Mantels/der Mäntel liegt bevorzugt nicht näher als +/-0,003 Einheiten, mehr bevorzugt nicht näher als +/-0,01 Einheiten, am meisten bevorzugt nicht näher als +/-0,05 Einheiten bei dem Brechungsindex des Polycarbonats. Der Brechungsindex wird entsprechend der Norm ASTM D 542-50 und/oder DIN 53 400 gemessen.
Die polymeren Teilchen haben im Allgemeinen einen Durchschnittsteilchendurchmesser von wenigstens 0,5 Mikrometer, bevorzugt von wenigstens 1 Mikrometer bis höchstens 100 μm, mehr bevorzugt von 2 bis 50 Mikrometer, am meisten bevorzugt von 2 bis 15 Mikrometer. Unter „Durchschnittsteilchendurchmesser" ist der Zahlendurchschnitt zu verstehen. Bevorzugt haben wenigstens 90 %, am meisten bevorzugt wenigstens 95 % der polymeren Teilchen einen Durchmesser von mehr als 2 Mikrometer. Die polymeren Teilchen sind ein freifließendes Pulver, bevorzugt in kompaktierter Form, d.h. zu Pellets gepresst, auch zur Staubverminderung. Die polymeren Teilchen können in bekannter Weise hergestellt werden. Im Allgemeinen wird wenigstens eine Monomerenkomponente des Kernpolymeren der Emulsionspolymerisation unter Bildung von Emulsionspolymerteilchen unterworfen. Die Emulsionspolymerteilchen werden mit derselben oder einer oder mehreren anderen Monomerenkomponenten des Kernpolymeren gequollen, und das/die Monomere werden innerhalb der Emulsionspolymerteilchen polymerisiert. Die Stufen des Quellens und Polymerisierens können wiederholt werden, bis die Teilchen auf die gewünschte Kerngröße angewachsen sind. Die Kernpolymerteilchen werden in einer zweiten wässrigen Monomerenemulsion suspendiert, und es wird ein Polymermantel aus dem/den Monomeren auf die Polymerteilchen in der zweiten Emulsion polymerisiert. Ein Mantel oder mehrere Mäntel können auf dem Kernpolymeren polymerisiert werden. Die Herstellung von Kern/Mantelpolymerteilchen ist in EP-A 0 269 324 und in den US-Patenten 3,793,402 und 3,808,180 beschrieben.
Ferner zeigt sich überraschenderweise, dass durch die Verwendung einer kleinen Menge optischer Aufheller die Brightnesswerte weiter erhöht werden können.
Eine Ausführungsform der Erfindung stellt daher eine erfindungsgemäße Kunststoffzusammensetzung dar, die zusätzlich 0,001 bis 0,2 Gewichts-%, bevorzugt etwa 1000 ppm eines optischen Aufhellers der Klasse Bis-Benzoxazole, Phenylcoumarine oder Bis-Styrylbiphenyle enthalten kann.
Ein besonders bevorzugter optischer Aufheller ist Uvitex OB, der Fa. Ciba Spezialitätenchemie.
Die erfindungsgemäßen Kunststoffzusammensetzungen können durch Extrusion hergestellt werden.
Zur Extrusion wird ein Polycarbonat-Granulat dem Extruder zugeführt und im Plastifizierungs- system des Extruders aufgeschmolzen. Die Kunststoffschmelze wird durch eine Breitschlitzdüse gedrückt und dabei verformt, im Walzenspalt eines Glättkalanders in die gewünschte endgültige Form gebracht und durch wechselseitige Kühlung auf Glättwalzen und der Umgebungsluft form- fϊxiert. Die zur Extrusion verwendeten Polycarbonate mit hoher Schmelzeviskosität werden üblicherweise bei Schmelzetemperaturen von 260 bis 32O0C verarbeitet, entsprechend werden die Zylindertemperaturen des Plastifizierzylinders sowie Düsentemperaturen eingestellt.
Die für die Strukturierung der Folienoberfläche verwendeten Gummi-Walzen werden in der DE 32 28 002 (oder dem US-Äquivalent 4 368 240) der Fa. Nauta Roll Corporation offenbart. Durch Einsatz von einem oder mehrerer Seitenextruder und geeigneten Schmelzeadaptern vor der Breitschlitzdüse lassen sich Polycarbonatschmelzen verschiedener Zusammensetzung übereinander legen und somit Folien coextrudieren (siehe beispielsweise EP-A 0 110 221 und EP-A 0 110238).
Sowohl die Basisschicht als auch die gegebenenfalls vorhandene(n) Coextrusionsschicht(en) der erfindungsgemäßen Formkörper können zusätzlich Additive wie beispielsweise, UV-Absorber sowie andere übliche Verarbeitungshilfsmittel insbesondere Entformungsmittel und Fließmittel sowie die für Polycarbonate üblichen Stabilisatoren insbesondere Thermostabilisatoren sowie Antistatika, optische Aufheller enthalten. In jeder Schicht können dabei unterschiedliche Additive bzw. Konzentrationen von Additiven vorhanden sein.
In einer bevorzugten Ausftihrungsform enthält die Zusammensetzung der Folie zusätzlich 0,01 bis 0,5 Gewichts-% eines UV-Absorbers der Klassen Benzotriazol-Derivate, Dimere Benzotriazol- Derivate, Triazin-Derivate, Dimere Triazin-Derivate, Diarylcyanoacrylate.
Insbesondere kann die Coextrusionsschicht Anstistatika, UV-Absorber und Entformungsmittel enthalten.
Geeignete Stabilisatoren sind beispielsweise Phosphine, Phosphite oder Si enthaltende Stabilisatoren und weitere in EP-A 0 500 496 beschriebene Verbindungen. Beispielhaft seien Triphe- nylphosphite, Diphenylalkylphosphite, Phenyldialkylphosphite, Tris-(nonylphenyl)phosphit, Tetra- kis-(2,4-di-tert.-butylphenyl)-4,4'-biphenylen-diphosphonit, Bis(2,4-dicumylphenyl)petaerythritol- diphosphit und Triarylphosphit genannt. Besonders bevorzugt sind Triphenylphosphin und Tris- (2,4-di-tert.-butylphenyl)phosphit.
Geeignete Entformungsmittel sind beispielsweise die Ester oder Teilester von ein- bis sechswer- tigen Alkoholen, insbesondere des Glycerins, des Pentaerythrits oder von Guerbetalkoholen.
Einwertige Alkohole sind beispielsweise Stearylalkohol, Palmitylalkohol und Guerbetalkohole, ein zweiwertiger Alkohol ist beispielsweise Glycol, ein dreiwertiger Alkohol ist beispielsweise Gylce- rin, vierwertige Alkohole sind beispielsweise Pentaerythrit und Mesoerythrit, funfwertige Alkohole sind beispielsweise Arabit, Ribit und Xylit, sechswertige Alkohole sind beispielsweise Mannit, Glucit (Sorbit) und Dulcit.
Die Ester sind bevorzugt die Monoester, Diester, Triester, Tetraester, Pentaester und Hexaester oder deren Mischungen, insbesondere statistische Mischungen, aus gesättigten, aliphatischen Qo bis C36-Monocarbonsäuren und gegebenenfalls Hydroxy-Monocarbonsäuren, vorzugsweise mit gesättigten, aliphatischen CH bis C32-Monocarbonsäuren und gegebenenfalls Hydroxy-Monocarbonsäuren. Die kommerziell erhältlichen Fettsäureester, insbesondere des Pentaerythrits und des Glycerins, können herstellungsbedingt < 60% unterschiedlicher Teilester enthalten.
Gesättigte, aliphatische Monocarbonsäuren mit 10 bis 36 C- Atomen sind beispielsweise Caprin- säure, Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, Hydroxystearinsäure, Arachin- säure, Behensäure, Lignocerinsäure, Cerotinsäure und Montansäuren.
Beispiele für geeignete Antistatika sind kationaktive Verbindungen, beispielsweise quartäre Ammonium-, Phosphonium- oder Sulfoniumsalze, anionaktive Verbindungen, beispielsweise Alkylsulfonate, Alkylsulfate, Alkylphosphate, Carboxylate in Form von Alkali- oder Erdalkalimetallsalzen, nichtionogene Verbindungen, beispielsweise Polyethylenglykolester, Polyethylengly- kolether, Fettsäureester, ethoxylierte Fettamine. Bevorzugte Antistatika sind nichtionogene Verbindungen.
Die erfindungsgemäßen Kunststoffzusammensetzungen können zu Polycarbonat-Folien mit einer Dicke von 35 μm bis 1000 μm verarbeitet werden. Je nach Anwendungsgebiet können sie auch dicker sein. Bei den Folien kann es sich auch um Mehrschichtverbunde aus mindestens zwei massiven Formkörpern, beispielsweise Folien, handeln, die durch Extrusion hergestellt wurden. In diesem Fall sind die erfindungsgemäßen Folien aus mindestens zwei Polymerschichten aufgebaut.
Zur Herstellung von Folien durch Extrusion wird das Polycarbonatgranulat dem Fülltrichter eines Extruders zugeführt und gelangt über diesen in das Plastifiziersystem, bestehend aus Schnecke und Zylinder.
Im Plastifiziersystem erfolgt das Fördern und Aufschmelzen des Materials. Die Kunststoffschmelze wird durch eine Breitschlitzdüse gedrückt. Zwischen Plastifiziersystem und Breitschlitzdüse können eine Filtereinrichtung, eine Schmelzpumpe, stationäre Mischelemente und weitere Bauteile angeordnet sein. Die die Düse verlassende Schmelze gelangt auf einen Glättkalander. Zur einseitigen Strukturierung der Folienoberfläche wurde eine Gummi-Walze eingesetzt. Im Walzen- spalt des Glättkalanders erfolgt die endgültige Formgebung. Die für die Strukturierung der Folienoberfläche verwendeten Gummi-Walzen werden in der DE 32 28 002 (oder dem US-Äquivalent 4 368 240) der Fa. Nauta Roll Corporation offenbart. Die Formfixierung erfolgt letztendlich durch Abkühlung und zwar wechselseitig auf den Glattwalzen und an der Umgebungsluft. Die weiteren Einrichtungen dienen dem Transport, dem Aufbringen von Schutzfolie, dem Aufwickeln der extrudierten Folien.
Die folgenden Beispiele sollen die Erfindung verdeutlichen, ohne sie jedoch zu beschränken. Beispiele
Beispiel 1
Compoundierung:
Herstellung des Licht streuenden Compounds mit herkömmlichen Zweischnecken Compoun- dierextrudern (z.B. ZSK 32) bei für Polycarbonat üblichen Verarbeitungstemperaturen von 250 bis 3300C.
Es wurde ein Master-Batch mit folgender Zusammensetzung hergestellt:
• Polycarbonat Makrolon 3108 550115 der Fa. Bayer MaterialScience AG mit einem Anteil von 80 Gew.-% und
• Kern-Schale-Teilchen mit einem Butadien/Styrol-Kern und einer Methylmethacrylat-
Schale Paraloid EXL 5137 der Fa. Rohm & Haas mit einer Teilchengröße von 2 bis 15 μm und einer mittleren Teilchengröße von 8 μm mit einem Anteil von 20 Gew.-%.
Folienextrusion:
Die verwendete Anlage besteht aus
- einem Extruder mit einer Schnecke von 75 mm Durchmesser (D) und einer Länge von
33xD. Die Schnecke weist eine Entgasungszone auf;
- einer Schmelzepumpe;
- einem Umlenkkopf;
- einer Breitschlitzdüse mit 450 mm Breite; - einem Dreiwalzen-Glättkalander mit horizontaler Walzenanordnung, wobei die dritte
Walze um +/- 45° gegenüber der Horizontalen schwenkbar ist;
- einer Rollenbahn;
- Dickenmessung
- einer Einrichtung zum beidseitigen Aufbringen von Schutzfolie; - einer Abzugseinrichtung;
Aufwickelstation. Von der Düse gelangt die Schmelze auf den Glättkalander, dessen Walzen die in der Tabelle 1 genannte Temperatur aufweisen. Die dritte Walze ist eine Gummi- Walze, um die Folien-Oberfläche zu strukturieren. Zur einseitigen Strukturierung der Folienoberfläche wurde eine Gummi- Walze eingesetzt. Die für die Strukturierung der Folienoberfläche verwendeten Gummi-Walzen werden in der DE 32 28 002 (oder dem US-Äquivalent 4 368 240) der Fa. Nauta Roll Corporation offenbart. Auf dem Glättkalander erfolgt die endgültige Formgebung und Abkühlung des Materials. Anschließend wird die Folie durch einen Abzug transportiert, es wird die Schutzfolie beidseitig aufgebracht, danach erfolgt die Aufwicklung der Folie.
Tabelle 1
Figure imgf000014_0001
Figure imgf000015_0001
Beispiel 2
Es wurde ein Compound folgender Zusammensetzung abgemischt:
• Polycarbonat Makrolon 3108 550115 der Fa. Bayer MaterialScience AG mit einem Anteil von 96 Gew.-% und
• Masterbatch gemäß Beispiel 1 mit Kern-Schale-Teilchen mit einem Butadien/Styrol-Kern und einer Methylmethacrylat-Schale Paraloid EXL 5137 der Fa. Rohm & Haas mit einer Teilchengröße von 2 bis 15 μm und einer mittleren Teilchengröße von 8 μm mit einem Anteil von 4 Gew.-%.
Hieraus wurde eine einseitig strukturierte 300 μm Folie mit 0,8 Gew.-% Streu- Additiv extrudiert.
Beispiel 3
Es wurde ein Compound folgender Zusammensetzung abgemischt:
• Polycarbonat Makrolon 3108 550115 der Fa. Bayer MaterialScience AG mit einem Anteil von 94 Gew.-% und
• Masterbatch gemäß Beispiel 1 mit Kern-Schale-Teilchen mit einem Butadien/Styrol-Kern und einer Methylmethacrylat-Schale Paraloid EXL 5137 der Fa. Rohm & Haas mit einer Teilchengröße von 2 bis 15 μm und einer mittleren Teilchengröße von 8 μm mit einem Anteil von 6 Gew.-%.
Hieraus wurde eine einseitig strukturierte 300 μm Folie mit 1,2 Gew.-% Streu-Additiv extrudiert. Beispiel 4
Compoundierung:
Herstellung des Licht streuenden Masterbatch mit herkömmlichen Zweischnecken Compoun- dierextrudern (z.B. ZSK 32) bei für Polycarbonat üblichen Verarbeitungstemperaturen von 250 bis 33O °C.
Es wurde ein Master-Batch mit folgender Zusammensetzung hergestellt:
• Polycarbonat Makrolon 3108 550115 der Fa. Bayer MaterialScience AG mit einem Anteil von 80 Gew.-% und
• Acrylat Streu-Teilchen Techpolymer MBX-5 der Fa. Sekisui einer Teilchengröße von 2 bis 15 μm und einer mittleren Teilchengröße von 5 μm mit einem Anteil von 20 Gew.-%.
Folienextrusion
Zur Extrusion von 300 μm dicken Polycarbonat-Folien einer Breite von 1340 mm wird das Compound eingesetzt.
Die verwendete Anlage besteht aus
- einem Extruder mit einer Schnecke von 105 mm Durchmesser (D) und einer Länge von
4IxD. Die Schnecke weist eine Entgasungszone auf;
- einem Umlenkkopf;
- einer Breitschlitzdüse mit 1500 mm Breite;
- einem Dreiwalzen-Glättkalander mit horizontaler Walzenanordnung, wobei die dritte Walze um +/- 45° gegenüber der Horizontalen schwenkbar ist;
- einer Rollenbahn;
- einer Einrichtung zum beidseitigen Aufbringen von Schutzfolie;
- einer Abzugseinrichtung;
- Aufwickelstation.
Von der Düse gelangt die Schmelze auf den Glättkalander, dessen Walzen die in der Tabelle 1 genannte Temperatur aufweisen. Auf dem Glättkalander erfolgt die endgültige Formgebung und Abkühlung des Materials. Zur einseitigen Strukturierung der Folienoberfläche wurde eine Gummi- Walze eingesetzt. Die für die Strukturierung der Folienoberfläche verwendeten Gummi-Walzen werden in der DE 32 28 002 (oder dem US-Äquivalent 4 368 240) der Fa. Nauta Roll Corporation offenbart. Anschließend wird die Folie durch einen Abzug transportiert, es wird die Schutzfolie beidseitig aufgebracht, danach erfolgt die Aufwicklung der Folie.
Tabelle 2
Figure imgf000017_0001
Figure imgf000018_0001
Beispiel 5
Es wurde ein Compound folgender Zusammensetzung abgemischt:
• Polycarbonat Makrolon 3108 550115 der Fa. Bayer MaterialScience AG mit einem Anteil von 95 Gew.-% und
• Masterbatch gemäß Beispiel 4 mit Techpolymer MBX-5 der Fa. Sekisui mit einer Teilchengröße von 2 bis 15 μm und einer mittleren Teilchengröße von 5 μm mit einem Anteil von 5 Gew.-%.
Hieraus wurde eine einseitig strukturierte 300 μm Folie mit 1,2 Gew.-% Streu-Additiv extrudiert.
Beispiel 6
Es wurde ein Compound folgender Zusammensetzung abgemischt:
• Polycarbonat Makrolon 3108 550115 der Fa. Bayer MaterialScience AG mit einem Anteil von 50 Gew.-% und
• Masterbatch gemäß Beispiel 4 mit Techpolymer MBX-5 der Fa. Sekisui mit einer Teilchengröße von 2 bis 15 μm und einer mittleren Teilchengröße von 5 μm mit einem
Anteil von 50 Gew.-%.
Hieraus wurde eine einseitig strukturierte 300 μm Folie mit 10,0 Gew.-% Streu- Additiv extrudiert.
Beispiel 7 AFM-Untersuchungen
Extrusionsfolien mit Paraloid 5137 EXL und Techpolymer MBX-5
An den Extras ions-Folien der Beispiele 2 und 3 sowie 5 und 6 wurden AFM-Untersuchungen durchgeführt. An drei Präparaten wurden an drei Stellen wurden die Anzahl und Größe der nanoskaligen Partikel bestimmt und der Mittel gebildet. Die Ergebnisse sind in der folgenden Tabelle zusammengefasst.
Tabelle 3
Figure imgf000019_0001
Optische Messungen
Die in den Beispielen 3 und 5 aufgeführten Folien wurden auf ihre optischen Eigenschaften nach folgenden Normen und mit folgenden Messgeräten untersucht:
Zur Bestimmung der Lichttransmission (Ty (C2°)) wurde ein Ultra Scan XE der Fa. Hunter Associates Laboratory, Inc. verwendet. Für die Lichtreflexion (Ry (C2°)) wurde ein Lambda 900 der Fa. Perkin Eimer Optoelectronics verwendet. Für die Haze-Bestimmung (nach ASTM D 1003) wurde ein Hazegard Plus der Fa. Byk-Gardner verwendet. Der Halbwertswinkel HW als Maß für die Stärke der Licht streuenden Wirkung wurde mit einem Goniophotometer nach DIN 58161 bestimmt. Die Leuchtdichtemessungen (Brightness-Messungen) wurden an einer Backlight-Unit (BLU) der Fa. DS LCD, (LTA320W2-L02, 32" LCD TV Panel, mit Hilfe eines Luminance Meter LS100 der Fa. Minolta durchgeführt. Hierbei wurde die serienmäßige Diffuserfolie entfernt und jeweils durch die in den Beispielen 3 bzw. 5 hergestellten Folien ersetzt.
Optische Messergebnisse Tabelle 4
Figure imgf000019_0002
Figure imgf000020_0001
Bei den beiden in der Tabelle 4 aufgelisteten Beispielen 3 und 5 ist der Gehalt an Streupigmenten und die Licht streuende Schicht gleich und die Schichtdicke beträgt 300 μm. Auch das verwendete Basismaterial ist das gleiche. Überraschend ist vor allem, dass die Diffuserfolien aus Beispiel 5 die höchste Leuchtdichte in der BLLJ aufweisen.
Zur Messung der Brightness wurde wie folgt vorgegangen: Aus den Folien der Beispiele 3 und 5 wurden passende Stücke ausgeschnitten und in eine Backlight-Unit (BLU) der Fa. DS LCD, (LTA320W2-L02, 32" LCD TV Panel) eingebaut. Dazu wurde die Folie, die direkt auf der Diffuser-Platte der Backlight-Unit aufliegt, gegen die Folien aus den Beispielen ausgetauscht. Die Folien aus den Beispielen wurden so angeordnet, dass die glatte Seite auf die Diffuser-Platte gelegt wurde. Die beiden anderen Folien (Dual Brightness Enhancement Film [DBEF] and Brightness Enhancement Film [BEF]), die sich in der Backlight-Unit auf der ausgetauschten Folie befanden, wurden nach dem Austausch wieder in der Original-Reihenfolge und Anordnung auf die Folien aus den Beispielen aufgelegt. Die Reihenfolge war demnach folgende:
BEF DBEF
Beispielfolie Diffuser-Platte
Die Brightness wurde anschließend mit und ohne den in dieser Backlight-Unit verwendeten Foliensatz untersucht. Dabei wurde die Brightness and insgesamt 9 verschiedenen Stellen der Backlight-Unit gemessen (mit Hilfe eines Minolta Luminance Meter LSlOO) und der Mittelwert daraus berechnet.
Bei den Beispielen lässt sich erkennen, dass die Brightness mit der Anzahl der nanoskaligen Teilchen einhergeht. Je weniger dieser Teilchen vorhanden sind, desto besser ist die Brightness.

Claims

Patentansprüche
1. Kunststoffzusammensetzung enthaltend etwa 90 bis 99,95 Gewichts-% eines transparenten Kunststoffs, etwa 0,01 bis 10 Gewichts-% transparenter, polymerer Teilchen mit einem mittleren Teilchendurchmesser im wesentlichen zwischen 1 und 100 μm und mit einer vom transparenten Kunststoff unterschiedlichen optischen Dichte, dadurch gekennzeichnet, dass die Kunststoffzusammensetzung höchstens 500 ppm an polymeren, transparenten Teilchen mit einem mittleren Teilchendurchmesser von 80 bis 200 nm aufweist.
2. Kunststoffzusammensetzung gemäß Anspruch 1, wobei es sich bei dem transparenten Kunststoff um Polycarbonat handelt.
3. Folien enthaltend eine Kunststoffzusammensetzung gemäß den Ansprüchen 1 oder 2.
4. Folien gemäß Anspruch 3, die mindestens eine Coextrusionsschicht aufweisen.
5. Folien gemäß Anspruch 3 oder 4, wobei die polymeren, transparenten Teilchen mit einem mittleren Teilchendurchmesser von im Wesentlichen zwischen 1 bis 100 μm und mit einer vom transparenten Kunststoff unterschiedlichen optischen Dichte Teilchen auf Acrylat- basis mit einer Kern-Schale-Morphologie sind.
6. Folien gemäß den Ansprüchen 3 bis 5 mit Dicken von 0,035 bis 1 mm.
7. Verwendung der Kunststoffzusammensetzung nach den Ansprüchen 1 bis 2 für die Herstellung von Folien in den Dicken 0,035 bis 1 mm.
8. Verwendung der Folie gemäß einem der Ansprüche 3 bis 6 als Diffusorfolie in Flachbild- schirmen.
9. Backlight-Unit aufweisend eine Folie gemäß Anspruch 3.
10. LCD-Flachbildschirm aufweisend eine Folie gemäß Anspruch 3 oder eine Backlight-Unit gemäß Anspruch 9.
11. Licht streuende Kunststoffzusammensetzung mit hoher Helligkeit und deren Verwendung in Flachbildschirmen
PCT/EP2006/009200 2005-10-05 2006-09-22 Licht streuende kunststoffzusammensetzung mit hoher helligkeit und deren verwendung in flachbildschirmen WO2007039130A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP06792209.6A EP1934283B1 (de) 2005-10-05 2006-09-22 Licht streuende kunststoffzusammensetzung mit hoher helligkeit und deren verwendung in flachbildschirmen
CN2006800366967A CN101278008B (zh) 2005-10-05 2006-09-22 具有高亮度的光散射塑料组合物
JP2008533893A JP2009510236A (ja) 2005-10-05 2006-09-22 高い輝度を有する光散乱プラスチック組成物およびそのフラットスクリーンにおける使用
KR1020087008218A KR101360726B1 (ko) 2005-10-05 2006-09-22 높은 명도의 광 확산 플라스틱 조성물 및 평면 스크린에서이들의 용도
HK09102912.2A HK1124878A1 (en) 2005-10-05 2009-03-26 Light-scattering plastics composition having high brightness

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005047614A DE102005047614A1 (de) 2005-10-05 2005-10-05 Licht streuende Kunststoffzusammensetzung mit hoher Helligkeit und deren Verwendung in Flachbildschirmen
DE102005047614.7 2005-10-05

Publications (1)

Publication Number Publication Date
WO2007039130A1 true WO2007039130A1 (de) 2007-04-12

Family

ID=37533450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/009200 WO2007039130A1 (de) 2005-10-05 2006-09-22 Licht streuende kunststoffzusammensetzung mit hoher helligkeit und deren verwendung in flachbildschirmen

Country Status (10)

Country Link
US (1) US20070078220A1 (de)
EP (1) EP1934283B1 (de)
JP (1) JP2009510236A (de)
KR (1) KR101360726B1 (de)
CN (1) CN101278008B (de)
DE (1) DE102005047614A1 (de)
HK (1) HK1124878A1 (de)
RU (1) RU2429258C2 (de)
TW (2) TWI437042B (de)
WO (1) WO2007039130A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038382A2 (en) * 2007-09-21 2009-03-26 Lg Chem, Ltd. Optical film and method of manufacturing the same
EP2133203A1 (de) 2008-06-11 2009-12-16 Bayer MaterialScience AG Mehrschichtige optische Folienaufbauten mit verbesserten Eigenschaften und deren Verwendung
EP2293140A1 (de) 2009-08-01 2011-03-09 Bayer MaterialScience AG Mehrschichtige Beleuchtungseinheit mit verbesserten Eigenschaften und deren Verwendung
WO2013045549A1 (de) 2011-09-28 2013-04-04 Bayer Materialscience Gmbh Verwendung einer lichtstreuenden polycarbonat-platte als leuchtenabdeckung
EP2592209A1 (de) 2011-11-11 2013-05-15 Bayer MaterialScience AG Vakuumisolierplatte
WO2013167542A1 (de) 2012-05-08 2013-11-14 Bayer Materialscience Gmbh Lichtführungspiatte
WO2016025965A1 (en) * 2014-08-11 2016-02-18 Henkel IP & Holding GmbH Optically clear hot melt adhesives and uses thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005047615A1 (de) * 2005-10-05 2007-04-12 Bayer Materialscience Ag Lichtstreuende Kunststoffzusammensetzung mit hoher Helligkeit und deren Verwendung in Flachbildschirmen
DE102006014118A1 (de) * 2006-03-24 2007-09-27 Bayer Materialscience Ag Formkörper mit hoher Lichtstreuung und hoher Lichttransmission zur Verwendung als Diffuser-Sheet in Flachbildschirmen
US8859091B2 (en) * 2008-11-20 2014-10-14 Sabic Global Technologies B.V. Colored diffusion sheets, methods of manufacture thereof and articles comprising the same
TWI373671B (en) 2009-02-26 2012-10-01 Au Optronics Corp Alighment material composition and alignment layer
CN101890818A (zh) * 2010-08-09 2010-11-24 深圳市超盛新材料科技股份有限公司 一种液晶显示屏的背光源装置中反射片的生产方法
US8691915B2 (en) 2012-04-23 2014-04-08 Sabic Innovative Plastics Ip B.V. Copolymers and polymer blends having improved refractive indices
AR095055A1 (es) * 2013-03-25 2015-09-16 Rohm & Haas Película anti-reflejo para matrices fotovoltaicas
TWI668112B (zh) * 2014-02-11 2019-08-11 美商陶氏全球科技有限責任公司 用於增強聚烯烴薄膜之無光澤外觀的丙烯酸系珠粒
US20170298212A1 (en) * 2014-06-19 2017-10-19 Dow Global Technologies Llc Acrylic beads for enhancing thermicity of greenhouse films
CN104164095A (zh) * 2014-06-27 2014-11-26 张雨生 一种塑料组合物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0342283A1 (de) * 1988-05-18 1989-11-23 Rohm And Haas Company Thermoplastische und wärmehärtbare Zusammensetzungen
JPH03143950A (ja) * 1989-10-30 1991-06-19 Nippon G Ii Plast Kk 光拡散性ポリカーボネート樹脂
EP0634445A1 (de) * 1993-07-14 1995-01-18 The Dow Chemical Company Lichtstreuende Polymerzusammensetzung
DE10001412A1 (de) * 2000-01-14 2001-08-09 Siemens Ag Beleuchtungseinheit

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1337104C (en) * 1986-11-18 1995-09-26 William James Work Light-scattering thermoplastic polymers
US5237004A (en) * 1986-11-18 1993-08-17 Rohm And Haas Company Thermoplastic and thermoset polymer compositions
JPH04249237A (ja) * 1991-01-18 1992-09-04 Rohm & Haas Co 背面投射スクリーン面上のスクラッチ又は欠陥を隠ぺいする方法
US5307205A (en) * 1992-03-20 1994-04-26 Rohm And Haas Company Bilayer rear projection screens
JPH0790167A (ja) * 1993-09-22 1995-04-04 Teijin Ltd 光拡散性樹脂組成物
US6346311B1 (en) * 1997-09-10 2002-02-12 Nashua Corporation Projection screen material and methods of manufacture
US6348960B1 (en) * 1998-11-06 2002-02-19 Kimotot Co., Ltd. Front scattering film
US6804053B2 (en) * 1999-12-22 2004-10-12 Kimoto Co., Ltd. See-through light transmitting type screen
US20040022814A1 (en) * 2000-06-15 2004-02-05 O'hagan Derek Microparticles with adsorbent surfaces, methods of making same, and uses thereof
KR100765304B1 (ko) * 2001-02-21 2007-10-09 삼성전자주식회사 백라이트 어셈블리 및 이를 갖는 액정 표시 장치
DE10119416A1 (de) * 2001-04-20 2002-10-24 Bayer Ag Mehrschichtsysteme enthaltend antistatische Formmassen
US6529313B1 (en) * 2002-01-16 2003-03-04 Xerox Corporation Electrophoretic displays, display fluids for use therein, and methods of displaying images
US6773787B2 (en) * 2002-05-01 2004-08-10 General Electric Company Light diffusing articles and methods to manufacture thereof
TW542883B (en) * 2002-08-16 2003-07-21 Au Optronics Corp Backlight unit for flat panel liquid crystal display
US6908202B2 (en) 2002-10-03 2005-06-21 General Electric Company Bulk diffuser for flat panel display
US6798572B2 (en) * 2002-10-09 2004-09-28 Teijin Chemicals, Ltd. Transmission screen sheet and transmission screen comprising the same
JP4574942B2 (ja) * 2002-10-28 2010-11-04 株式会社 日立ディスプレイズ 液晶表示装置
DE10251778A1 (de) * 2002-11-05 2004-05-19 Röhm GmbH & Co. KG Rückprojektionsschirm sowie Verfahren zu dessen Herstellung
US20040191550A1 (en) * 2003-03-27 2004-09-30 Sumitomo Chemical Company, Limited Resin plate
CN1809766B (zh) * 2003-06-17 2010-05-26 帝人化成株式会社 正下型背光式液晶显示装置及光漫射板
KR100936364B1 (ko) * 2003-06-18 2010-01-12 엘지디스플레이 주식회사 액정표시모듈
US20050106333A1 (en) * 2003-11-18 2005-05-19 Lehmann Maria J. Anti-reflective optical film for display devices
US6846606B1 (en) * 2003-11-21 2005-01-25 Eastman Kodak Company Phosphor screen and imaging assembly with poly(lactic acid) support
JP2005247999A (ja) * 2004-03-04 2005-09-15 Mitsubishi Engineering Plastics Corp 光拡散性樹脂組成物
DE102005040315A1 (de) * 2005-08-24 2007-03-01 Bayer Materialscience Ag Lichtstreuende antistatische Kunststoffzusammensetzung mit hoher Helligkeit und deren Verwendung in Flachbildschirmen
DE102005047615A1 (de) * 2005-10-05 2007-04-12 Bayer Materialscience Ag Lichtstreuende Kunststoffzusammensetzung mit hoher Helligkeit und deren Verwendung in Flachbildschirmen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0342283A1 (de) * 1988-05-18 1989-11-23 Rohm And Haas Company Thermoplastische und wärmehärtbare Zusammensetzungen
JPH03143950A (ja) * 1989-10-30 1991-06-19 Nippon G Ii Plast Kk 光拡散性ポリカーボネート樹脂
EP0634445A1 (de) * 1993-07-14 1995-01-18 The Dow Chemical Company Lichtstreuende Polymerzusammensetzung
DE10001412A1 (de) * 2000-01-14 2001-08-09 Siemens Ag Beleuchtungseinheit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 199131, Derwent World Patents Index; AN 1991-225864, XP002415194 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038382A2 (en) * 2007-09-21 2009-03-26 Lg Chem, Ltd. Optical film and method of manufacturing the same
WO2009038382A3 (en) * 2007-09-21 2009-05-07 Lg Chemical Ltd Optical film and method of manufacturing the same
CN101802061B (zh) * 2007-09-21 2012-10-10 Lg化学株式会社 光学膜及制备该光学膜的方法
EP2133203A1 (de) 2008-06-11 2009-12-16 Bayer MaterialScience AG Mehrschichtige optische Folienaufbauten mit verbesserten Eigenschaften und deren Verwendung
EP2293140A1 (de) 2009-08-01 2011-03-09 Bayer MaterialScience AG Mehrschichtige Beleuchtungseinheit mit verbesserten Eigenschaften und deren Verwendung
EP2293139A1 (de) 2009-08-01 2011-03-09 Bayer MaterialScience AG Mehrschichtige Beleuchtungseinheit mit verbesserten Eigenschaften und deren Verwendung
WO2013045549A1 (de) 2011-09-28 2013-04-04 Bayer Materialscience Gmbh Verwendung einer lichtstreuenden polycarbonat-platte als leuchtenabdeckung
EP2592209A1 (de) 2011-11-11 2013-05-15 Bayer MaterialScience AG Vakuumisolierplatte
WO2013167542A1 (de) 2012-05-08 2013-11-14 Bayer Materialscience Gmbh Lichtführungspiatte
WO2016025965A1 (en) * 2014-08-11 2016-02-18 Henkel IP & Holding GmbH Optically clear hot melt adhesives and uses thereof
US10266733B2 (en) 2014-08-11 2019-04-23 Henkel IP & Holding GmbH Optically clear hot melt adhesives and uses thereof

Also Published As

Publication number Publication date
TWI437042B (zh) 2014-05-11
RU2008117302A (ru) 2009-11-10
KR101360726B1 (ko) 2014-02-07
RU2429258C2 (ru) 2011-09-20
KR20080059179A (ko) 2008-06-26
CN101278008A (zh) 2008-10-01
EP1934283A1 (de) 2008-06-25
HK1124878A1 (en) 2009-07-24
US20070078220A1 (en) 2007-04-05
CN101278008B (zh) 2013-04-03
DE102005047614A1 (de) 2007-04-12
EP1934283B1 (de) 2020-12-30
JP2009510236A (ja) 2009-03-12
TW200732418A (en) 2007-09-01
TW201350537A (zh) 2013-12-16

Similar Documents

Publication Publication Date Title
EP1934283B1 (de) Licht streuende kunststoffzusammensetzung mit hoher helligkeit und deren verwendung in flachbildschirmen
EP2757132B1 (de) Lichtstreuende Folien sowie deren Verwendung in Flachbildschirmen
WO2007022905A1 (de) Licht streuende antistatische kunststoffzusammensetzung mit hoher helligkeit und deren verwendung in flachbildschirmen
EP1934284A1 (de) Lichtstreuende kunststoffzusammensetzung mit hoher helligkeit und deren verwendung in flachbildschirmen
DE102005009653A1 (de) Lichtstreuende Formkörper mit hoher Lichttransmission und deren Verwendung in Flachbildschirmen
WO2007022863A1 (de) Lichtstreuende formkörper mit hoher lichttransmission
DE102005040313A1 (de) Lichtstreuende Formkörper mit hoher Lichttransmission und verbesserter Antistatik
DE102006059129A1 (de) Strahlungsemittierendes Bauelement
WO2007110150A2 (de) Formkörper mit hoher lichtstreuung und hoher lichttransmission zur verwendung als diffuser-sheet in flachbildschirmen
WO2014108395A1 (de) Rückprojektionsfolie mit &#34;tag/nacht&#34;-effekt
EP2133203B1 (de) Mehrschichtige optische Folienaufbauten mit verbesserten Eigenschaften und deren Verwendung
DE102004036249A1 (de) Formkörper mit hoher Lichtstreuung und hoher Lichttransmission
WO2010130348A1 (de) Langzeit uv-stabile kälte schlagzähe coextrusionsfolien

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680036696.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006792209

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087008218

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2008533893

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008117302

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006792209

Country of ref document: EP