WO2007037311A1 - Spherical bearing - Google Patents

Spherical bearing Download PDF

Info

Publication number
WO2007037311A1
WO2007037311A1 PCT/JP2006/319274 JP2006319274W WO2007037311A1 WO 2007037311 A1 WO2007037311 A1 WO 2007037311A1 JP 2006319274 W JP2006319274 W JP 2006319274W WO 2007037311 A1 WO2007037311 A1 WO 2007037311A1
Authority
WO
WIPO (PCT)
Prior art keywords
spherical bearing
small
sphere
rod
spherical
Prior art date
Application number
PCT/JP2006/319274
Other languages
French (fr)
Japanese (ja)
Inventor
Kyouju Ohkawara
Original Assignee
Hephaist Seiko Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005282066A external-priority patent/JP2007092855A/en
Priority claimed from JP2005282071A external-priority patent/JP5188675B2/en
Priority claimed from JP2006128622A external-priority patent/JP4972339B2/en
Application filed by Hephaist Seiko Co., Ltd. filed Critical Hephaist Seiko Co., Ltd.
Publication of WO2007037311A1 publication Critical patent/WO2007037311A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • F16C11/06Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints
    • F16C11/0614Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints the female part of the joint being open on two sides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • F16C11/06Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints
    • F16C11/0619Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints the female part comprising a blind socket receiving the male part
    • F16C11/0623Construction or details of the socket member
    • F16C11/0628Construction or details of the socket member with linings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • F16C11/06Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints
    • F16C11/0666Sealing means between the socket and the inner member shaft
    • F16C11/0676Sealing means between the socket and the inner member shaft allowing operational relative movement of joint parts due to sliding between parts of the sealing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load

Definitions

  • the present invention relates to a spherical bearing that is advantageously used as a part of a three-dimensional positioning device or an industrial robot.
  • Spherical bearings are connected between a stage of a three-dimensional positioning device or an arm of an industrial robot and its driving device, and are known to be used to move the stage and arm with multiple degrees of freedom. Yes.
  • a conventional spherical bearing is a housing having a spherical housing portion having an opening, a sphere slidably fitted in the housing, and connected to the sphere, and passes through the opening to the outside of the housing.
  • the rod force extending up to is also configured.
  • Such spherical bearings have a problem that the accuracy of movement and rotation of the rod is lowered when the clearance between the housing and the sphere is wide, and that smooth movement and rotation of the rod is difficult when the clearance is narrowed. ing. For this reason, the conventional spherical bearing has not been sufficiently satisfactory, for example, as a component for constituting a highly accurate three-dimensional positioning device.
  • Patent Document 1 surrounds and supports a large sphere of a rod having a large sphere at the tip by a cage in which a large number of rolling elements (for example, small spheres) are incorporated.
  • a spherical bearing configured by supporting the cage in an outer peripheral member (housing) has been proposed.
  • the large sphere is fitted into the housing through a number of rolling elements constrained by a cage, so that the rod can be moved and rotated smoothly and with high precision. It is said that the bearing is suitable for use in.
  • Patent Document 1 JP-A-8-338422
  • An object of the present invention is to provide a spherical bearing having a simple structure in which a rod can be smoothly and accurately moved and rotated.
  • the present invention has a large sphere having a rod on a spherical surface, a spherical recess having a larger diameter than the large sphere and having an opening surface formed through an expansion region.
  • a housing a group of small spheres arranged in a pressurized state along the surface of the large sphere in the concave portion, and a circumference of the base of the rod of the large sphere, and small in the engaged state with the rod base.
  • the spherical bearing also has an annular pressing force that can press the ball group.
  • this spherical bearing is referred to as a spherical bearing having a first configuration.
  • a preferable aspect of the spherical bearing of the first configuration is as follows.
  • An oscillating annular pressing tool that is capable of oscillating an annular pressing tool and that engages with a rod base by tilting the rod.
  • the oscillating annular pressing tool includes an annular elastic body on the inner periphery thereof.
  • the annular pressing tool is a fixed annular pressing tool that is fixed in advance around the base of the rod and is in an engaged state.
  • a fixed annular pressing tool is fixed around the base of the rod via an annular elastic body provided on the inner periphery thereof.
  • a groove or notch extending in the circumferential direction of the pressing tool is formed on the surface of the annular pressing tool facing the small sphere.
  • a plurality of grooves each extending in the radial direction of the pressing tool are formed on the surface of the annular pressing tool facing the small sphere.
  • a constriction region is formed between the expansion region and the opening surface.
  • the present invention also provides a large sphere having rods above and below the spherical surface, a large diameter larger than the large sphere, and an opening surface formed on each of the upper and lower sides through an expansion region.
  • Contain the ball A housing having a spherical recess, a group of small spheres disposed under pressure along the surface of the large sphere in the recess, and a rod base disposed around the base of each rod of the large sphere.
  • this spherical bearing is referred to as a spherical bearing having a second configuration.
  • a preferable aspect of the spherical bearing of the second configuration is as follows.
  • a swinging annular pressing tool that can swing at least one of the annular pressing tools and engages the rod base by tilting the rod.
  • At least one annular pressing tool is a fixed annular pressing tool that is fixed in advance around the base of the rod and is in an engaged state.
  • a constriction region is formed between each expansion region and the opening surface.
  • the present invention also provides a large sphere having a through-hole having openings in the upper and lower sides in the center, a diameter larger than the large sphere, and an opening surface formed in each of the upper and lower sides via an expansion region.
  • a housing having a spherical recess accommodating a large sphere, a group of small spheres arranged under pressure along the surface of the large sphere in the recess, and the periphery of each opening of the large sphere
  • a spherical bearing which is an annular pressing tool force which is attached to and can press the small ball group by the rotation of a large ball.
  • this spherical bearing is referred to as a spherical bearing having a third configuration.
  • a preferable aspect of the spherical bearing of the third configuration is as follows.
  • a groove or notch extending in the circumferential direction of the separator is formed on the surface of the oscillating annular separator facing the small ball.
  • a plurality of grooves extending in the radial direction of the separator are formed on the surface of the oscillating annular separator facing the small sphere.
  • the present invention also provides a large sphere having a rod on a spherical surface, a spherical recess having a larger diameter than the large sphere and having an opening surface formed through a constricted region.
  • a housing having a small sphere arranged in a pressurized state along the surface of the large sphere in the recess, and at least one separating the small sphere group vertically along the surface of the large sphere.
  • a spherical bearing that also has two oscillating annular separator forces.
  • this spherical bearing is referred to as a fourth-structure spherical bearing.
  • a preferred aspect of the spherical bearing of the fourth configuration is as follows.
  • a groove or notch extending in the circumferential direction of the separator is formed on the surface of the oscillating annular separator facing the small ball.
  • a plurality of grooves each extending in the radial direction of the separator are formed on the surface of the oscillating annular separator facing the small sphere.
  • the spherical bearing of the present invention is fitted in a state where the large sphere provided with the rod (or attached to the rod) is closely contacted and supported via the small sphere group in the spherical concave portion of the housing.
  • the rod can be moved and rotated smoothly and with high accuracy.
  • the spherical bearing of the present invention does not need to be provided with a small ball cage, its configuration is simple and its manufacture is easy. Further, the spherical bearing of the present invention can increase its load resistance by increasing the number of small balls accommodated in the housing.
  • FIG. 1 is a view showing an example of a spherical bearing having a first configuration according to the present invention
  • FIG. 2 is a view showing a state in which the rod 11 of the spherical bearing 10 in FIG. 1 is inclined.
  • a spherical bearing 10 shown in FIGS. 1 and 2 has a large sphere 12 having a rod 11 on a spherical surface, a diameter larger than that of the large sphere 12, and an opening surface 14 formed through an expansion region 13.
  • a housing 16 having a spherical recess 15 containing a sphere 12; a small ball group 17 disposed under pressure along the surface of the large sphere 12 inside the recess 15; and a rod 11 of the large sphere 12
  • the annular pressing tool 21 is arranged around the base portion and can press the small ball group 17 in an engaged state with the rod base portion.
  • the annular pressing tool 21 of the spherical bearing 10 is a swinging annular pressing tool that can swing and engages with the rod base by tilting the rod 11.
  • the rod 11 of the spherical bearing 10 when the rod 11 is tilted, the large sphere 12 rotates, and the small sphere group 17 disposed along the surface of the large sphere 12 rolls as the large sphere 12 rotates.
  • the rod 11 of the spherical bearing 10 can be smoothly inclined and moved without generating a large frictional resistance with respect to the housing 16.
  • the distance between the spherical recess 15 of the housing 16 and the spherical surface of the large ball 12 is the diameter of the small ball. Is set to a slightly smaller distance (force that depends on the size of the small sphere, for example, a distance that is 1 to 5 / zm smaller than the diameter of the small sphere). Arranged in a pressurized state.
  • the spherical bearing 10 is the same as the spherical bearing of Patent Document 1.
  • the rod 11 can be moved and rotated with high precision and is suitable for use in precision positioning devices.
  • the spherical ball disclosed in Patent Document 1 is around the large ball. A larger number of small spheres can be placed in comparison. By supporting the large sphere 12 including the rod 11 with a larger number of small spheres, the load resistance of the spherical bearing 10 can be increased.
  • each of the plurality of small spheres between the spherical recess 15 and the large sphere 12 is opposite to the large sphere, that is, the plurality of the plurality of small spheres. All of the spheres roll while rotating in the same direction. Since the spherical bearing 10 is not provided with a cage, for example, it is difficult to roll one small ball of the small ball group 17 that rolls when the rod 11 tilts and moves. When one or two or more small spheres come into strong contact with this small sphere, the force of these multiple small spheres is large because the surface of each small sphere rubs against each other while moving in the opposite direction.
  • the spherical bearing 10 includes a small sphere (for example, on the side of the opening surface) between the spherical concave portion 15 and the opening surface 14 of the housing 16.
  • the expansion region 13 that allows sufficient movement of the small spheres 17a) is formed in an annular shape.
  • the distance between the inner surface of the housing 16 and the spherical surface of the large sphere 12 is a small sphere.
  • the distance is set slightly larger than the diameter (for example, a distance about 10 to 20 m larger than the diameter of the small sphere).
  • the occurrence of strong contact between a plurality of small spheres may not be sufficiently suppressed only by forming the expansion region 13 in the housing 16. This is because if a plurality of small spheres reach the expansion region 13 one after another due to the tilting movement of the rod 11, it becomes difficult for the small spheres to move inside the expansion region, which makes it difficult to reach the expansion region. Since the plurality of small spheres are in strong contact with each other in the same manner as in the above case, the rolling of the small spheres is easy to stop.
  • the spherical bearing 10 is provided with an annular pressing tool 21 that further suppresses the occurrence of strong contact between a plurality of small spheres that roll due to the inclined movement of the rod 11.
  • the annular pressing tool 21 has a plurality of small spheres (for example, small spheres 17a) that roll downward. The upper surface is pressed by) and the tilt movement starts.
  • the annular pressing tool 21 engages with the base of the rod 11, and specifically, the driving force is applied by the base of the rod contacting the inner edge of the annular pressing tool. Then, the tilting movement is continued while pressing the small ball group 17, and finally the tilting movement is performed to the state shown in FIG.
  • the annular pressing tool 21 tilts together with the rod 11, so that the small sphere (for example, the small sphere 17a) on the housing opening surface 14 side of the small sphere group 17 reaches the expansion region 13.
  • the other small spheres roll along the upper surface of the annular pressing tool in the direction indicated by the arrow marked with a broken line in FIG. For this reason, it is possible to effectively suppress the occurrence of strong contact between the plurality of small spheres rolling by the tilting movement of the rod 11 without the plurality of small spheres reaching the expansion region one after another. Even when the rolling of several small spheres stops, the annular pressing tool 21 engages with the base of the rod 11 to press the small sphere group 17, and the stopped small spheres roll again. Move It can be done.
  • the small ball group 17 smoothly rotates in the housing when the rod 11 is inclined and moved by the expansion region 13 and the annular pressing tool 21 formed in the housing 16. Since the rod 11 can move, the rod 11 can move smoothly and tilt.
  • the spherical bearing 10 is manufactured as follows, for example. First, the main body 16a of the housing 16 is arranged so that the opening faces upward (the vertical direction is reversed from the case of FIG. 1). Next, the small ball group 17 is placed inside the main body 16a, and the large ball 12 is pushed in while swinging the rod 11. As a result, the small ball group 17 is arranged along the surface of the large sphere 12 and in a state of being pressurized by the main body 16 a and the large sphere 12. Next, the rod 11 is passed through the inside, the annular pressing tool 21 is disposed on the small ball group 17, and the lid 16b is fixed to the main body 16a of the housing 16 using, for example, a bolt (not shown). .
  • the spherical bearing 10 is manufactured by disposing the main body 16a of the housing 16 with the opening facing downward, and swinging the rod 11 to disperse the small ball groups 17 in the spherical recesses 15. be able to.
  • the annular pressing tool 21 has a diameter larger than the diameter of the opening surface 14 of the louver 16 so that it does not come out of the housing.
  • the housing main body 16a and the lid 16b are integrally formed, and a small sphere group is put in the housing to form a large sphere.
  • the spherical bearing can be manufactured by connecting the annular pressing tools, which are divided into small pieces in advance, to each other in the nosing.
  • the number of small spheres to be inserted into the housing 16 is not particularly limited as long as it can be accommodated in the space formed by the housing 16, the large sphere 12, and the annular pressing tool 21. More preferably, it is within the range of 65 to 95% by number of the maximum number of small spheres that can be accommodated in the space. This is because if the number of small balls placed in the housing is too large, the small balls are likely to come into strong contact with each other, and if the number of small balls is too small, the load bearing capacity of the spherical bearing becomes small.
  • a metal material such as steel, copper alloy, or stainless steel is usually used.
  • a ceramic material when the spherical bearing is used in water or in a high temperature environment, it is preferable to use a ceramic material.
  • a resin material can also be used to reduce the weight of the spherical bearing.
  • the resin material in order to increase the rigidity of the spherical bearing, it is preferable to use a crystalline resin represented by polyphenylene sulfide.
  • the annular pressing tool is made of oil-impregnated plastic or oil-impregnated metal in order to suppress stopping of the rolling of the small sphere due to contact with the pressing tool.
  • the housing 16 is preferably formed with an expansion region 19 different from the above.
  • the distance between the inner surface of the housing 16 and the spherical surface of the large sphere 12 is set to be slightly larger than the diameter of the small sphere (for example, an interval about 1 ⁇ m larger than the diameter of the small sphere).
  • the load applied to the rod 11 of the spherical bearing 10 is large when the spherical bearing 10 is used with its vertical orientation reversed from that in Fig. 1.
  • a constriction region 18 is formed between the expansion region 13 and the opening surface 14 of the housing 16 of the spherical bearing 10.
  • the distance between the inner surface of the housing 16 and the spherical surface of the large sphere 12 is set to be smaller than the diameter of the small sphere (for example, an interval of about 20 to 50 / zm smaller than the diameter of the small sphere). ing.
  • the constriction area 18 the small spheres on the side of the opening surface 14 of the housing 16 (for example, the small spheres 17a shown in FIG. 2) are stably placed inside the expansion area 13 when the rod is tilted.
  • the small ball group 17 can stably roll inside the housing 16 because it is arranged (they do not move further to the opening surface side than the expansion region). If the constriction area 18 is not formed, the annular pressing tool 21 may fall out of the small sphere (for example, the small sphere 17a shown in FIG. 2) that has reached the expansion area 13 to the outside of the 1S housing 16. To prevent.
  • FIG. 3 is a diagram showing another example of the spherical bearing having the first configuration according to the present invention.
  • the configuration of the spherical bearing 30 in FIG. 3 is the same as that of FIG. 1 except that a groove 31 extending in the circumferential direction of the pressing tool 21 is formed on the surface of the annular pressing tool (oscillating annular pressing tool) 21 facing the small sphere. Same as spherical bearing 10 It is. If the groove 31 is formed in the annular pressing tool 21, a small ball (for example, the small balls 17a and 17d) is fitted in the groove 31, and the lateral movement of the pressing tool 21 is restricted by the small ball. The contact between the pressing tool 21 and the inner surface of the housing 16 is prevented.
  • a small ball for example, the small balls 17a and 17d
  • the spherical bearing 30 also has a constricted region 18 formed between the expansion region 13 and the opening surface 14 of the housing 16.
  • FIG. 4 is a view showing still another example of the spherical bearing having the first configuration according to the present invention.
  • the configuration of the spherical bearing 40 in FIG. 4 is that an annular pressing tool (oscillating annular pressing tool) 21 is formed with a groove 32 having a V-shaped cross section, and no constriction area is provided.
  • 3 is the same as the spherical bearing 30 of FIG. 3 except that the pressing tool 21 prevents the small ball reaching the outside of the housing 16 from dropping off.
  • the cross-sectional shape of the groove is V-shaped, the contact area between the annular pressing tool 21 and the small ball is smaller than that of the spherical bearing 30 in FIG. Can be stopped.
  • FIG. 5 is a view showing still another example of the spherical bearing having the first configuration according to the present invention.
  • the configuration of the spherical bearing 50 in FIG. 5 is the same as that shown in FIG. 5 except that a notch 33 extending in the circumferential direction of the pressing tool 21 is formed on the surface of the annular pressing tool (oscillating annular pressing tool) 21 facing the small ball.
  • This is the same as the spherical bearing 30 of FIG.
  • the notch 33 having such a curved surface corresponding to the surface of the small sphere, the lateral movement of the pressing tool 21 by the small sphere is the same as in the case of the spherical bearing 30 in FIG. Therefore, the pressing tool 21 can be inclined and moved smoothly, and the occurrence of scratches on the inner surface of the housing is suppressed.
  • FIG. 6 is a diagram showing still another example of the spherical bearing having the first configuration according to the present invention.
  • the configuration of the spherical bearing 60 in FIG. 6 is the same as that of the spherical bearing 50 in FIG. 5 except that the shape of the notch 34 of the annular pressing tool (oscillating annular pressing tool) 21 is different.
  • the annular pressing tool 21 including the notch 34 having such a slope is easy to manufacture.
  • FIG. 7 is a view showing still another example of the spherical bearing having the first configuration according to the present invention.
  • FIG. 8 is a plan view showing an arrangement of the annular pressing tool 21 of the spherical bearing 70 of FIG. 7 and small spheres arranged in contact with the upper surface of the pressing tool 21.
  • the spherical bearing 70 shown in FIG. 7 has a configuration in which the annular pressing tool (oscillating annular pressing tool) 21 is formed on a surface of the annular pressing tool 21 facing the small spheres.
  • 1 is the same as the spherical bearing 10 in FIG. 1 except that several grooves 35 are formed.
  • the small balls for example, the small balls 17a
  • the small balls 17a arranged in contact with the pressing tool 21 are stably disposed at the position where the grooves 35 are formed. It becomes easy and it can suppress that the several small ball arrange
  • a groove or notch extending in the circumferential direction of the pressing tool and a groove extending in the radial direction of the pressing tool may be formed on the surface of the annular pressing tool facing the small sphere. Moreover, it can replace with such a groove
  • FIG. 9 is a view showing still another example of the spherical bearing of the first configuration of the present invention
  • FIG. 10 is a view showing a state in which the rod 11 of the spherical bearing 90 in FIG. 9 is inclined. is there.
  • the configuration of the spherical bearing 90 in FIG. 9 is the same as that of the spherical bearing 10 in FIG. 1 except that the annular pressing tool (swinging annular pressing tool) 22 has a cylindrical shape.
  • the annular pressing tool 22 By forming the annular pressing tool 22 into a cylindrical shape, the pressing tool 22 is engaged with the rod base even when the inclination angle of the rod 11 is small compared to the spherical bearing 10 in FIG. Can be pressed. That is, even when the rolling of several small spheres stops as the rod 11 tilts, the annular pressing tool 22 presses the small sphere group 17 early, and the stopped small spheres roll again. Can be moved.
  • FIG. 11 is a view showing still another example of the spherical bearing of the first configuration of the present invention
  • FIGS. 12 and 13 are cutting lines I-I and II-II entered in FIG.
  • FIG. 14 is a cross-sectional view of the spherical bearing 110 cut along each of the lines
  • FIG. 14 is a view showing a state in which the rod 11 of the spherical bearing 110 of FIG. 11 is inclined.
  • a plurality of small spheres 27 are held in an annular pressing tool (oscillating annular pressing tool) 23 along the circumferential direction of the pressing tool 23 at intervals. Except this, it is the same as the spherical bearing 90 of FIG.
  • FIG. 15 is a diagram showing still another example of the spherical bearing having the first configuration according to the present invention.
  • the spherical bearing 150 in FIG. 15 is configured such that a plurality of small spheres 27a and a plurality of small spheres 27b are spaced apart from each other along the circumferential direction of the pressing tool 24. It is the same as the spherical bearing 110 of FIG. 11 except that it is held open. If the number of small balls to be held by the annular pressing tool is large, it takes time to produce the spherical bearing. For this reason, it is preferable that the annular pressing tool holds a group of a plurality of small balls arranged along the circumferential direction of the pressing tool in a range of 1 to 5 sets in the upward and downward direction of the pressing tool.
  • FIG. 16 is a view showing still another example of the spherical bearing of the first configuration of the present invention
  • FIG. 17 is a view showing a state in which the rod 11 of the spherical bearing 160 in FIG. 16 is inclined. is there.
  • the configuration of the spherical bearing 160 in FIG. 16 is the same as that of the spherical bearing 90 in FIG. 9 except that the annular pressing tool 25 is a fixed annular pressing tool that is fixed in advance around the base of the rod 11 and is in an engaged state. is there .
  • the annular pressing tool 25 is fixed around the base portion of the rod 11 as described above, the pressing tool 25 can smoothly tilt and move without contacting the inner surface of the housing 16.
  • fixing the annular pressing tool around the base of the rod includes placing the annular pressing tool around the rod base and fixing it to the rod base side of the large spherical surface.
  • FIG. 18 is a view showing still another example of the spherical bearing having the first configuration according to the present invention.
  • the configuration of the spherical bearing 180 in FIG. 18 is the same as that of the spherical bearing 160 shown in FIG. 16 except that the annular pressing tool (fixed annular pressing tool) 26 is formed in a cylindrical shape.
  • the annular pressing tool 26 shown in FIG. 18 is easy to manufacture because of its simple shape.
  • FIG. 19 is a view showing still another example of the spherical bearing of the first configuration of the present invention
  • FIG. 20 is a view showing a state in which the rod 11 of the spherical bearing 230 in FIG. 19 is inclined. is there.
  • the spherical bearing 230 shown in FIGS. 19 and 20 has the same configuration as that of the spherical bearing 90 shown in FIG. 9 except that the annular pressing tool (oscillating annular pressing tool) 22 includes an annular elastic body 36 on the inner periphery. It is the same.
  • Such an annular elastic body 36 is obtained by replacing the small sphere (for example, the small sphere 17a) that stops rolling in the spherical recess 15 of the housing 16 as described above with the annular pressing tool 22 as shown in FIG. Is pressed against the base of the rod 11 and compressed when engaged with the base of the rod 11 and pressed. For this reason, the small balls that have stopped rolling are gradually given a large force by the annular pressing tool 22. The roller starts rolling when it is pressed and a force necessary to start rolling is applied. That is, the annular elastic body 36 has a function of preventing the annular pressing tool 22 from applying an unnecessarily large force to the small spheres that have stopped rolling.
  • the annular elastic body 36 is also formed with a known high-elasticity polymer force such as elastomer or rubber.
  • the annular elastic body 36 is particularly preferably made of rubber.
  • the annular pressing tool is fixed to the base of the rod via the annular elastic body (
  • a spherical bearing (with a fixed annular pressing tool) can also be constructed.
  • the rolling was stopped in the spherical recess of the housing. Since a larger force than necessary is not applied to the small sphere, it is possible to suppress the occurrence of scratches on the surface of the spherical concave portion, large sphere, or small sphere of the housing.
  • FIG. 21 is a diagram showing still another example of the spherical bearing having the first configuration according to the present invention.
  • the spherical bearing 250 shown in FIG. 21 has the same structure as that shown in FIG. 16 except that an annular pressing tool (fixed annular pressing tool) 25 is fixed around the base of the rod 11 via four plate springs 37 in total. Similar to spherical bearing 160.
  • the four leaf springs 37 included in the spherical bearing 250 in FIG. 21 are arranged symmetrically around the base of the rod 11.
  • the annular pressing tool 22 swinging motion of the spherical bearing 230 shown in FIGS. 19 and 20 is used.
  • FIG. 22 is a diagram showing still another example of the spherical bearing having the first configuration according to the present invention.
  • FIG. 22 is a view of the spherical bearing 260 as seen from the tip end side of the rod 11.
  • the configuration of the spherical bearing in FIG. 22 is such that an annular pressing tool (fixed annular pressing tool) 25 is connected to the rod 11 via a spiral spring 38. It is the same as the spherical bearing 250 in FIG. 21 except that it is fixed around the base. Thus, a spiral spring 38 can be used in place of the leaf spring (FIG. 21: 37).
  • FIG. 23 is a view showing an example of the spherical bearing of the second configuration of the present invention
  • FIG. 24 is a view showing a state where the rods 1 la and 1 lb of the spherical bearing 190 of FIG. 23 are inclined.
  • Spherical bearings 190 shown in FIGS. 23 and 24 have large spheres 12 having upper and lower spherical rods l la and l ib, larger diameters than large spheres 12, and expand in the upper and lower directions. Opening surfaces 14a and 14b are formed through the regions 13a and 13b, the housing 16 having a spherical recess 15 containing the large sphere 12, and the surface of the large sphere 12 inside the recess 15 described above.
  • Annular press that is arranged around the base of each rod of the small sphere group 17 and the large sphere 12 arranged in a pressurized state and can press the small sphere group 17 in an engaged state with the rod base. It consists of ingredients 21a and 21b.
  • Each of the annular pressing members 21a and 21b of the spherical bearing 190 is a swinging annular pressing member that can swing and engages with the rod base portion by the inclination movement of the rods lla and lib.
  • the configuration of the spherical bearing 190 of FIG. 23 is that a large sphere is provided with a pair of rods l la and l ib, and annular pressing tools 21a and 21b are disposed around the bases of these rods, respectively. Except for this, it is the same as the spherical bearing 10 of FIG.
  • the spherical bearing 190 has a rod l la, as in the case of the spherical bearing 10 in FIG. 1, by swollen with the expansion regions 13a and 13b and the annular pressing members 21a and 21b formed on the respective opening surfaces of the housing 16.
  • the small ball group 17 can roll smoothly in the housing, so that each rod can tilt smoothly. Since the spherical bearing 190 does not need to be provided with a small spherical cage, the configuration is simple and the manufacture thereof is easy.
  • FIG. 25 is a diagram showing another example of the spherical bearing having the second configuration according to the present invention.
  • the configuration of the spherical bearing 210 in FIG. 25 is such that each of the annular pressing members 22a and 22b disposed around the base of each of the rods l la and l ib is an annular pressing member (swinger) of the spherical bearing 90 in FIG. 23 is the same as the spherical bearing 190 in FIG. 23 except that the dynamic annular pressing tool 22 is used.
  • the spherical bearing 210 has a small spherical group 17 by engaging the pressing tools 22a and 22b with the rod base even when the inclination angle of the rods l la and l ib is small compared to the spherical bearing 190 of FIG. Can be pressed wear. That is, even when several small spheres stop rolling as the rods l la and l ib tilt, each annular pressing tool presses the small sphere group 17 at an early stage and stops. The ball can be rolled again.
  • FIG. 26 is a diagram showing still another example of the spherical bearing having the second configuration according to the present invention.
  • the configuration of the spherical bearing 220 in FIG. 26 is such that each of the annular pressing tools 25a and 25b arranged around the base of each of the rods l la and l ib is an annular pressing tool (fixed annular) of the spherical bearing 160 in FIG. 23 is the same as the spherical bearing 190 of FIG. 23 except that the pressing tool 25 is used.
  • each pressing member slides smoothly without contacting the inner surface of the housing 16. Can be tilted.
  • FIG. 27 is a view showing an example of the spherical bearing of the third configuration of the present invention
  • FIG. 28 is a view showing a state where the large sphere 112 of the spherical bearing 270 of FIG. 27 is tilted.
  • FIG. 29 is a diagram showing how the spherical bearing 270 shown in FIG. 27 is used
  • FIG. 30 is a diagram showing a state in which the rod 111 attached to the spherical bearing 270 shown in FIG. 29 is inclined. is there.
  • a spherical bearing 270 shown in FIGS. 27 to 30 has a large sphere 112 having a through hole 119 in the center and openings 119a and 119b on the upper and lower sides, and has a diameter larger than that of the large sphere 112, and Opening surfaces 114a and 114b are formed through the expansion regions 113a and 113b, respectively, to accommodate the large sphere 112, the housing 116 having a spherical recess 115, and the large sphere 112 inside the recess 115.
  • a group of small spheres 117 arranged in a pressurized state along the surface of the It is composed of annular pressing tools 121a and 121b attached around each opening and capable of pressing the small ball group 117 by the rotation of the large ball 112.
  • a rod 111 having a screw 125 formed on each end is inserted into the through hole 119 of the large ball 112 of the spherical bearing 270.
  • the rod 111 is fixed to the large ball 112 by tightening the upper and lower sides of the large ball 112 with a pair of nuts 127 and 127 via washers 126, respectively.
  • a rotating shaft of a driving device is connected to one end of the rod 111.
  • the small sphere group 117 includes a space in which the space between the spherical recess 115 of the housing 116 and the spherical surface of the large sphere 112 is slightly smaller than the diameter of the small sphere (force depending on the size of the small sphere, for example, Therefore, it is disposed between the housing 116 and the large ball 112 in a pressurized state. In this way, since the large sphere 112 is fitted in the spherical recess 115 of the housing 116 while being in close contact with and supported via the small sphere group 117, the rod attached to the large sphere 112 of the spherical bearing 270. 111 can move and rotate smoothly and with high accuracy.
  • the rod 111 attached to the large sphere 112 has its length direction changed. It can be freely rotated as an axis, and can be tilted freely as shown in FIG. Therefore, by using the spherical bearing 270, for example, a long and easy-to-squeeze shaft connected to the rod 111 can be supported in a state where it can be accurately rotated with respect to its center.
  • the small ball group 117 is disposed along the surface of the large ball 112 without using a cage, so that a larger number of small balls are arranged around the large ball. can do.
  • the load bearing capacity of the spherical bearing 270 can be increased.
  • the small ball that rolls toward the opening surface by the tilting movement of the rod is the spherical shape of the housing 116. It only moves to a portion near the end of the recess 115 and does not move to the outside of the recess 115. Even when the rod 111 repeatedly tilts back and forth, right and left, the small ball group 117 simply rolls up and down in the spherical recess 115 of the housing 116 so that the rod is in a vertical state.
  • the small ball group 117 returns to the arrangement shown in FIG. In other words, in the spherical bearing 270, when the small sphere group 117 completely follows the large sphere 112 rotated by the tilting movement of the rod 111 and makes an ideal roll, the small sphere moves to the outside of the housing 116. And will not fall off.
  • the small ball group 117 does not necessarily roll ideally as described above due to the accuracy of the size of the spherical recess 115 of the housing 116 or the spherical surface of the large ball 112 or the influence of gravity. is not.
  • the small sphere 117a arranged at the lowermost position inside the housing 116 is formed into a spherical recess gradually as the small sphere group 117 is affected by gravity when the rod 111 repeatedly tilts and moves. Since rolling is repeated up and down below 115, it is easy to drop out of the opening surface 114b of the housing 116 to the outside.
  • each of the plurality of small spheres between the spherical recess 115 and the large sphere 112 is opposite to the large sphere. That is, all of the plurality of small balls roll while rotating in the same direction.
  • one small sphere in the small sphere group 117 that rolls when the rod 111 attached to the spherical bearing 270 is tilted and moved is difficult to rotate.
  • the plurality of small spheres rub against each other while the surface of each small sphere moves in the opposite direction. Small ball rolling may stop. In this way, if the rod 111 stops moving while some of the small balls stop rolling during the tilting movement, the amount of torque required for the tilting movement of the rod fluctuates rapidly, causing the rod to move. It may not be possible to smoothly tilt and move.
  • each side of the opening surfaces 114a and 114b in the spherical recess 115 of the housing 116 It is desirable to prevent the small spheres from falling out of the housing without hindering the smooth rotational movement of the small spheres, for example, the small spheres 117a shown in FIG.
  • the interval is set larger than the diameter of the sphere. Therefore, for example, as shown in FIG. 30, when the small ball 117a on the opening surface 114b side of the housing 116 rolls and reaches the expansion region 113b, the small ball 117a is released from the pressurizing force and is annularly pressed.
  • the housing 116 is prevented from falling out by contacting the tool 121b. As a result, it is possible to prevent the spheres from dropping out without hindering the smooth rotational movement of the spheres rolling on the opening surface side in the spherical recess 115 as described above.
  • the small sphere 117b which repeats rolling up and down below the spherical recess 115, and the small sphere 117c come into strong contact with each other one after another, making it easier for rolling of the small sphere to stop, making the rod 111 smooth. This is because it may not be possible to move at an angle.
  • the small sphere on the side of the opening surface 114b (or the opening surface 114a) is expanded into the expansion region 113b.
  • this small ball is brought into contact with the annular pressure member 121b (or the pressure member 121a) to bring the small ball to the outside of the nosing.
  • the rod 111 returns to the vertical state while preventing the drop of the rod, the small ball that has reached the expansion region 113b (or the expansion region 113a) is pressed by the annular pressing device 121b (or the pressing device 121a).
  • the spherical bearing 270 is manufactured as follows, for example. First, the annular pressing tool 121b The large sphere 112 is press-fitted into a recess formed around the opening 119b. In this way, the large sphere 112 having the annular pressing member 121b attached around the opening 119b is accommodated in the housing 116. Then, the side force of the opening surface 114a is also pushed between the housing 116 and the large ball 112, and finally the small ball group 117 is pushed.
  • the spherical bearing 270 can be manufactured by press-fitting the pressing tool 121a. Thus, since the spherical bearing 270 is not provided with a small spherical cage, the configuration is simple and the manufacture thereof is easy.
  • Examples of the material of the housing, the large sphere, the small sphere, and the annular pressing tool of the spherical bearing of the third configuration are the same as those of the spherical bearing of the first configuration.
  • the number of small spheres to be inserted into the housing 116 is not particularly limited as long as it can be accommodated in the space formed by the housing 116, the large sphere 112, and the annular pressing members 121a and 121b. However, it is more preferable that it is in the range of 65 to 95% by number of the maximum number of small spheres that can be accommodated in this space. This is because if the number of small balls entering the housing is too large, the small balls are likely to come into strong contact with each other, and if the number of small balls is too small, the load bearing capacity of the spherical bearing is reduced.
  • FIG. 31 is a diagram showing another example of the spherical bearing of the third configuration according to the present invention.
  • the configuration of the spherical bearing 310 in FIG. 31 is the same as that of the spherical bearing 270 in FIG. 27 except that a swinging annular separator 141 is provided along the surface of the large sphere 112 to separate the small sphere group 117 up and down. It is.
  • a plurality of small balls arranged in the rolling direction for example, the small ball 117b and the small ball 117c are separated vertically. Therefore, it is difficult for these small spheres to stop rolling.
  • the oscillating annular spacer 141 is pushed by the small ball group 117 that repeats rolling up and down inside the housing 116 by repeating the tilt movement of the rod 111 and moves the small ball group 117 up and down while swinging. Isolate.
  • the spherical bearing 310 is manufactured as follows, for example. First, similarly to the case of manufacturing the spherical bearing 270 of FIG. 27, the annular pressing tool 121b is attached around the lower opening of the large ball 112. The large sphere 112 including the annular pressing member 121b is accommodated in the main body 116a of the housing 116. Next, from the swinging annular separator 141 between the main body 116a and the large ball 112 Also push a plurality of small spheres placed below, and place the separator 141 on top of it.
  • a lid 116b is fixed to the main body 116a using, for example, a bolt (not shown), and a plurality of small spheres are also applied between the lid 116b and the large sphere 112 with a side force of the opening surface 114a.
  • the spherical bearing 310 can be manufactured by pushing and finally attaching the pressing tool 121a around the upper opening of the large ball 112.
  • a material of the oscillating annular separator 141 a metal material such as steel, copper alloy, or stainless steel is usually used.
  • a ceramic material when the spherical bearing is used in water or in a high temperature environment, it is also preferable to use a ceramic material.
  • a resin material can be used to reduce the weight of the spherical bearing.
  • the oscillating annular separator is made of oil-impregnated plastic or oil-impregnated metal in order to suppress the stoppage of the rolling of the small balls due to contact with the separator.
  • FIG. 32 is a view showing still another example of the spherical bearing of the third configuration according to the present invention.
  • the configuration of the spherical bearing 320 in FIG. 32 is the same as that of the spherical bearing 310 in FIG. 31 except that two swinging annular separators for separating the small ball group 117 up and down are provided.
  • the small sphere group 117 When the small sphere group 117 is vertically separated by these two oscillating ring-shaped separators 141a and 141b, a plurality of small spheres arranged in the rolling direction, for example, the small sphere 117a, the small sphere 117b, and the small sphere 117b, Since the small balls 117c are separated from each other and do not come into strong contact with each other, the rolling of these small balls is difficult to stop.
  • the spherical bearing 320 is manufactured, for example, as follows. First, similarly to the case of manufacturing the spherical bearing 310 of FIG. 31, the large sphere 112 provided with the pressing tool 121b is accommodated inside the main body 116a of the housing 116, and between the main body 116a and the large sphere 112. Push a plurality of small balls located below the swinging annular separator 14 lb and place the separator 141b on top of it. Next, after inserting a plurality of small spheres between the main body 116a and the large sphere 112, a lid 116b containing the swinging annular separator 141a is placed on the main body 116a and fixed to the main body 116a.
  • a swing ring arranged inside the housing
  • the number of the shape separators is preferably 1 to 5 (particularly 1 to 3) in practice. This is because if there are too many separators, it takes time to manufacture spherical bearings.
  • the shape of the separator is not limited to a planar shape as shown in FIG.
  • the shape of the separator may be a funnel-like shape whose surface is inclined so that the width direction of the separator is directed toward the center of the large sphere.
  • FIG. 33 is a view showing still another example of the spherical bearing of the third configuration according to the present invention.
  • the configuration of the spherical bearing 330 in FIG. 33 is the same as that in FIG. 32 except that each of the annular pressing members 121a and 121b is fixed by press-fitting to convex portions formed around the upper and lower openings of the large sphere. Similar to bearing 320. There are no particular restrictions on the fixing method of the large sphere and the annular pressing tool, and they may be fixed to each other by screwing, welding, or adhesive.
  • FIG. 34 is a view showing still another example of the spherical bearing of the third configuration according to the present invention.
  • the spherical bearing 340 shown in FIG. 34 has the same configuration as the spherical bearing 310 shown in FIG. 31 except that a groove 151 extending in the circumferential direction of the separator 141 is formed on the surface of the oscillating annular separator 141 facing the small ball. Is the same. When the small sphere is fitted in the groove 151, the lateral movement of the oscillating annular separator 141 is restricted, and the separator 141 is less likely to contact the inner surface of the housing 116.
  • the oscillating annular separator 141 can move smoothly together with the small ball group 117 that rolls by the tilting movement of the rod 111, and the above contact causes scratches on the inner surface of the housing 116. It is suppressed.
  • the small ball fits into this notch. As a result, the lateral movement of the separator can be restricted.
  • FIG. 35 is a plan view showing another configuration example of the swinging annular separator.
  • a plurality of small spheres arranged in contact with the separation tool 141 are entered by a two-dot chain line.
  • a plurality of grooves 152 extending in the radial direction of the separator 144 are formed on the surface of the oscillating annular separator 141 facing the small sphere. ,.
  • a plurality of small spheres for example, the small sphere 117a
  • these small spheres can be prevented from coming into strong contact with each other.
  • a groove or notch extending in the circumferential direction of the separator and a groove extending in the radial direction of the separator are formed on the surface of the swinging annular separator facing the small sphere. Also good. Further, in place of such grooves and notches, depressions can be formed on the surface of the oscillating annular separator facing the small balls at intervals from each other along the circumferential direction of the separator.
  • FIG. 36 is a view showing still another example of the spherical bearing of the third configuration of the present invention
  • FIG. 37 shows a state in which the large sphere 112 of the spherical bearing 360 of FIG. FIG.
  • the configuration of the spherical bearing 360 shown in FIGS. 36 and 37 is such that the spherical recess 115 formed with the opening surface 114a and 114b force S is formed on the upper and lower sides of the housing 116 force through the expansion regions 123a and 123b and further through the narrowed regions 118a and 118b.
  • the spherical bearing 270 of FIG. 27 is the same as that of FIG.
  • the distance between the inner surface of the housing 116 and the spherical surface of the large sphere 112 is smaller than the diameter of the small sphere.
  • the interval (for example, an interval that is about 20 to 50 m smaller than the diameter of the small sphere) is set.
  • the spherical bearing 360 is released from the caloric pressure state when the small sphere on the opening surface 114a (or the opening surface 114b) side of the spherical recess 115 of the housing 116 reaches the expansion region 123a (or the expansion region 123b).
  • the small ball is brought into contact with the inner surface of the housing 116 in the narrowed area 118a (or narrowed area 118b) to prevent the small ball from dropping out of the nosing, and the rod 111 is further vertically
  • the small sphere that has reached the expansion region 123a (or the expansion region 123b) is pressed by the annular pressing tool 131a (or the pressing tool 131b) and moved to the spherical recess 115. Even without using a small ball cage, the strength and contact of a plurality of small balls are suppressed, and the rod 111 can be smoothly inclined and moved.
  • the spherical bearing 360 is manufactured, for example, as follows. First, as in the case of manufacturing the spherical bearing 310 of FIG. 31, the large sphere 112 provided with the pressing tool 131b is placed inside the lid 116b of the housing 116, and the main body 116a is fixed to the lid 116b of the housing. Next, the small ball group 117 is pushed between the main body 116a and the large sphere 112, and a pressing tool 131a is provided around the opening 119a of the large sphere 112, and finally the lid 116c is fixed to the main body 116a.
  • a bearing 360 can be manufactured.
  • FIG. 38 shows the present invention.
  • FIG. 39 is a view showing an example of a spherical bearing of the four configurations
  • FIG. 39 is a cross-sectional view of the spherical bearing 380 cut along the cutting line III I II entered in FIG. 38
  • FIG. FIG. 6 is a view showing a state in which a rod 211 of a spherical bearing 380 is inclined.
  • the spherical bearing 380 of FIG. 38 has a large sphere 212 having a rod 211 on a spherical surface, a large sphere having a diameter larger than that of the large sphere 212 and having an opening surface 214 formed through a constricted region 218.
  • a housing 216 having a spherical recess 215 containing 212, a group of small spheres 217 arranged under pressure along the surface of the large sphere 212 inside the recess 215, and along the surface of the large sphere 212
  • it is composed of three oscillating annular separators 221a, 221b and 221c which isolate the small ball group 217 vertically.
  • the rod 211 of the spherical bearing 380 when the rod 211 tilts, the large sphere 212 rotates, and the small sphere group 217 disposed along the surface of the large sphere 212 rolls as the large sphere 212 rotates.
  • the rod 211 of the spherical bearing 380 can be smoothly inclined and moved without generating a large frictional resistance with respect to the housing 216.
  • the distance between the inner surface of the housing 216 and the spherical surface of the large sphere 212 is smaller than the diameter of the small sphere (for example, 20 smaller than the diameter of the small sphere). It is set to a small interval of about 50 / ⁇ ⁇ ).
  • the constriction region 218 prevents a small ball that rolls toward the opening surface 214 side by the tilt movement of the rod 211, for example, a small ball 217a shown in FIG. 40, from dropping out of the housing 216. .
  • the small ball group 217 includes a space in which the space between the spherical recess 215 of the housing 216 and the spherical surface of the large ball 212 is slightly smaller than the diameter of the small ball (a force that depends on the size of the small ball, for example, Therefore, it is disposed between the housing 216 and the large sphere 212 in a pressurized state.
  • the spherical recess 215 of the housing 216 is fitted in a state in which the large sphere 212 is closely contacted and supported via the small sphere group 217. Therefore, the spherical bearing 380 is a spherical bearing of Patent Document 1.
  • the rod 211 can move and rotate with high precision and is suitable for use in precision positioning devices and the like.
  • the small ball group 217 is arranged along the surface of the large ball 212 without using a cage. More compared The number of small spheres can be arranged. The load capacity of the spherical bearing 380 can be increased by supporting the large ball 212 including the rod 211 with a larger number of small balls.
  • each of the plurality of small spheres between the spherical recess 215 and the large sphere 212 is opposite to the large sphere, that is, the plurality of the plurality of small spheres. All of the small spheres roll while rotating in the same direction.
  • the spherical bearing 380 is not provided with the swinging annular separators 221a, 221b, and 221c, for example, one small piece of the small ball group 217 that rolls when the rod 211 tilts and moves. Rotating movement of the sphere becomes difficult, and when one or more small spheres come into strong contact with this small sphere, the surface of each small sphere is reversed at the contact area. Some spheres may stop rolling due to large friction caused by friction while moving to each other. In this way, when the rod 211 is tilted! /, When some of the small balls stop rolling during the process, the magnitude of the torque required for the tilting movement of the rod suddenly fluctuates, so the rod is smooth. Can not be tilted.
  • Each of the oscillating annular spacers 221a, 221b, and 221c is small while oscillating by being pressed by a small ball group 217 that repeatedly rolls up and down inside the housing 216 as the rod 211 repeatedly tilts and moves. Separate ball group 217 vertically Release. Note that the oscillating annular separator separates the small ball group 217 vertically, but does not isolate it in the circumferential direction of the large sphere.
  • the spherical bearing 380 is manufactured as follows, for example. First, a plurality of small balls arranged below the separator 221c are placed inside the main body 216a of the housing 216, the separator 221c is arranged on these small balls, and further on the separator 221c. Place several spheres. Next, the large sphere 212 is pushed into the main body 216a and the rod 211 is swung to arrange the plurality of small spheres accommodated in the main body 216a as described above. Pull out from inside. Subsequently, after placing the separating tool 221b on the plurality of small balls arranged on the separating tool 221c, the large ball 212 is pushed again into the main body 216a.
  • the spherical bearing 380 can be manufactured by fixing the lid 216b to the main body 216a using, for example, a bolt (not shown).
  • the spherical bearing 380 is simple in configuration because it is not necessary to include a small spherical cage, and its manufacture is easy.
  • Examples of the material of the housing, rod, large sphere, small sphere, and oscillating annular separator of the spherical bearing of the fourth configuration are the same as those of the spherical bearing of the third configuration.
  • the number of swinging annular separators arranged inside the housing 216 is preferably 1 to 5 (particularly 1 to 3) in practice. This is because if there are too many separators, it takes time to manufacture spherical bearings.
  • the shape of the separator is not limited to a planar shape as shown in FIG.
  • the shape of the separator may be a funnel shape whose surface is inclined so that the width direction of the separator is directed toward the center of the large sphere.
  • the number of small spheres to be placed inside the housing 216 is not particularly limited as long as it can be accommodated together with the isolator in the space inside the narrowed area 218 of the housing 216. It is preferably in the range of 65 to 95% by number of the maximum number of small spheres that can be accommodated, and more preferably in the range of 70 to 80% by number. This is because if the number of small balls placed in the housing is too large, the small balls are likely to come into strong contact with each other, and if the number of small balls is too small, the load bearing capacity of the spherical bearing becomes small.
  • an expansion region 213 is formed between the spherical recess 215.
  • the distance between the inner surface of the housing 216 and the spherical surface of the large sphere 212 is slightly larger than the diameter of the small sphere (for example, a distance about 10 to 20 m larger than the diameter of the small sphere). Is set. For this reason, when the small sphere rolls to reach the expansion region 213 as the rod 211 is inclined, the small sphere is released from the pressurized state.
  • a second expansion region an expansion region different from the above at the bottom of the spherical recess 215 of the housing 216 (the side opposite to the opening surface 214).
  • a second expansion region By forming such a second expansion region, the load applied to the rod 211 of the spherical bearing 380 can be applied to the bottom of the large ball 212, that is, the small ball released from the pressurized state force in the second expansion region.
  • it is distributed and applied to a large number of small spheres in the spherical recess 215 excluding the second expansion region. For this reason, the load resistance of the spherical bearing 380 can be increased.
  • FIG. 41 is a diagram showing another example of the spherical bearing of the fourth configuration according to the present invention.
  • the configuration of the spherical surface bearing 410 in FIG. 41 is that a groove 231 or a notch 232 extending in the circumferential direction of the separator is formed on the surface of the swinging annular separator 221a, 221b, 221c facing the small ball. Is the same as the spherical bearing 380 in FIG. Since the movement of the separators in the lateral direction is restricted by the small balls fitted in the grooves 231 and the notches 232, the separators are difficult to contact the inner surface of the housing 216. . For this reason, each separator can move smoothly together with the small ball that rolls by the tilting movement of the rod, and the occurrence of scratches on the inner surface of the housing 216 due to the contact is suppressed.
  • FIG. 42 is a plan view showing another configuration example of the swinging annular separator used for the spherical bearing of the fourth configuration according to the present invention.
  • a plurality of small spheres arranged in contact with the separator 221 are indicated by two-dot chain lines.
  • the surface of the oscillating annular separator 221 facing the small spheres has a separator 2 respectively.
  • 21 radial grooves 233 are formed.
  • a plurality of small spheres (for example, small spheres 217a) arranged in contact with the separator 221 by forming a plurality of grooves 233 in the oscillating annular separator 221 are formed with the grooves 233. It becomes easy to be stably arranged at a position, and it is possible to suppress these small spheres from coming into strong contact with each other.
  • a groove or notch extending in the circumferential direction of the separator and a groove extending in the radial direction of the separator are formed on the surface of the swinging annular separator facing the small ball. Also good. Further, in place of such grooves and notches, depressions can be formed on the surface of the oscillating annular separator facing the small balls at intervals from each other along the circumferential direction of the separator.
  • FIG. 1 is a view showing an example of a spherical bearing having a first configuration according to the present invention.
  • FIG. 2 is a view showing a state in which the rod 11 of the spherical bearing 10 in FIG. 1 is inclined.
  • FIG. 3 is a view showing another example of the spherical bearing having the first configuration according to the present invention.
  • FIG. 4 is a view showing still another example of the spherical bearing having the first configuration according to the present invention.
  • FIG. 5 is a view showing still another example of the spherical bearing having the first configuration according to the present invention.
  • FIG. 6 is a view showing still another example of the spherical bearing having the first configuration according to the present invention.
  • FIG. 7 is a view showing still another example of the spherical bearing having the first configuration according to the present invention.
  • FIG. 8 is a plan view showing an arrangement of the annular pressing tool 21 of the spherical bearing 70 of FIG. 7 and small spheres arranged in contact with the upper surface of the pressing tool 21.
  • FIG. 8 is a plan view showing an arrangement of the annular pressing tool 21 of the spherical bearing 70 of FIG. 7 and small spheres arranged in contact with the upper surface of the pressing tool 21.
  • FIG. 9 is a view showing still another example of the spherical bearing of the first configuration according to the present invention.
  • FIG. 10 is a view showing a state in which the rod 11 of the spherical bearing 90 in FIG. 9 is inclined.
  • FIG. 11 is a view showing still another example of the spherical bearing having the first configuration according to the present invention.
  • FIG. 12 is a cross-sectional view of the spherical bearing 110 cut along the cutting line II along the line entered in FIG.
  • FIG. 13 is a cross-sectional view of the spherical bearing 110 cut along the cutting line II—II line entered in FIG. 11.
  • FIG. 14 is a view showing a state in which the rod 11 of the spherical bearing 110 in FIG. 11 is inclined.
  • FIG. 15 is a view showing still another example of the spherical bearing having the first configuration according to the present invention.
  • FIG. 16 is a view showing still another example of the spherical bearing having the first configuration according to the present invention.
  • FIG. 17 is a view showing a state in which the rod 11 of the spherical bearing 160 in FIG. 16 is inclined.
  • FIG. 18 is a view showing still another example of the spherical bearing having the first configuration according to the present invention.
  • FIG. 19 is a view showing still another example of the spherical bearing having the first configuration according to the present invention.
  • FIG. 20 is a view showing a state in which the rod of the spherical bearing 230 in FIG. 19 is tilted.
  • FIG. 21 is a view showing still another example of the spherical bearing having the first configuration according to the present invention.
  • FIG. 22 is a view showing still another example of the spherical bearing having the first configuration according to the present invention.
  • Figure 2
  • FIG 2 is a view of the spherical bearing 260 as seen from the tip end side of the rod.
  • FIG. 23 is a view showing an example of a spherical bearing having a second configuration according to the present invention.
  • FIG. 24 is a view showing a state where the rods l la and l ib of the spherical bearing 190 of FIG. 23 are inclined.
  • FIG. 25 is a view showing another example of the spherical bearing of the second configuration of the present invention.
  • FIG. 26 is a view showing still another example of the spherical bearing having the second configuration according to the present invention.
  • FIG. 27 is a view showing an example of a spherical bearing having a third configuration according to the present invention.
  • FIG. 28 is a view showing a state where the large sphere 112 of the spherical bearing 270 of FIG. 27 is tilted.
  • FIG. 29 is a view showing a mode of use of the spherical bearing 270 of FIG. 27.
  • FIG. 30 is a view showing a state in which a rod 111 attached to the spherical bearing 270 shown in FIG. 29 is inclined.
  • FIG. 31 is a view showing another example of the spherical bearing of the third configuration according to the present invention.
  • FIG. 32 is a view showing still another example of the spherical bearing of the third configuration according to the present invention.
  • FIG. 33 A view showing still another example of the spherical bearing of the third configuration according to the present invention.
  • FIG. 34 is a view showing still another example of the spherical bearing of the third configuration according to the present invention.
  • FIG. 35 is a plan view showing another configuration example of the oscillating annular separator used in the spherical bearing of the third configuration of the present invention.
  • FIG. 36 is a view showing still another example of the spherical bearing of the third configuration according to the present invention.
  • FIG. 37 is a view showing a state where the large sphere 112 of the spherical bearing 360 of FIG. 36 is tilted.
  • FIG. 38 is a view showing an example of a spherical bearing of a fourth configuration of the present invention.
  • FIG. 39 is a cross-sectional view of spherical bearing 380 taken along line III-III in FIG. 38.
  • FIG. 40 is a view showing a state in which the rod 211 of the spherical bearing 380 in FIG. 38 is inclined.
  • FIG. 41 is a view showing another example of the spherical bearing of the fourth configuration according to the present invention.
  • FIG. 42 is a plan view showing another configuration example of the oscillating annular separator used in the spherical bearing of the fourth configuration of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

A spherical bearing (10) comprising a large sphere (12) having a rod (11) on its spherical surface; a housing (16) having a spherical recessed part (15), which has a diameter larger than that of the large sphere (12) and has an opening face (14) formed through an expansion area (13), and storing the large sphere (12); a small ball group (17) disposed, in a pressurized state, in the recessed part along the surface of the large sphere (12); and an annular pressing part (21) disposed around the base part of the rod (11) of the large sphere (12) and capable of pressing the small ball group (17) in an engaged state with the base part of the rod. The rod (11) can be smoothly and accurately moved and rotated and its structure can be simplified.

Description

球面軸受  Spherical bearing
技術分野  Technical field
[0001] 本発明は、三次元位置決め装置あるいは産業用ロボットの部品として有利に用いら れる球面軸受に関する。  The present invention relates to a spherical bearing that is advantageously used as a part of a three-dimensional positioning device or an industrial robot.
背景技術  Background art
[0002] 球面軸受は、三次元位置決め装置のステージ、あるいは産業用ロボットのアームと 、その駆動装置との間に接続され、ステージやアームを多自由度で移動するために 用いることは知られている。  [0002] Spherical bearings are connected between a stage of a three-dimensional positioning device or an arm of an industrial robot and its driving device, and are known to be used to move the stage and arm with multiple degrees of freedom. Yes.
[0003] 従来の球面軸受は、開口部を持つ球形の収容部を有するハウジング、この収容部 に摺動可能に嵌め合わされている球体、そして球体に接続され、開口部を通ってハ ウジングの外部まで伸びるロッド力も構成されている。このような球面軸受は、ハウジ ングと球体との隙間が広いとロッドの移動や回転の精度が低くなり、また上記の隙間 を狭くするとロッドの円滑な移動や回転が難しくなるという問題を有している。このため 従来の球面軸受は、例えば、高精度の三次元位置決め装置を構成するための部品 としては十分に満足のできるものではな力つた。  [0003] A conventional spherical bearing is a housing having a spherical housing portion having an opening, a sphere slidably fitted in the housing, and connected to the sphere, and passes through the opening to the outside of the housing. The rod force extending up to is also configured. Such spherical bearings have a problem that the accuracy of movement and rotation of the rod is lowered when the clearance between the housing and the sphere is wide, and that smooth movement and rotation of the rod is difficult when the clearance is narrowed. ing. For this reason, the conventional spherical bearing has not been sufficiently satisfactory, for example, as a component for constituting a highly accurate three-dimensional positioning device.
[0004] 上記の事情を考慮して、特許文献 1では、先端に大球を有するロッドの大球を、多 数の転動体 (例えば、小球)が組み込まれた保持器により包囲支持すると共に、この 保持器を外周部材 (ハウジング)内で支持して構成される球面軸受が提案されて!ヽる 。この球面軸受は、大球が保持器に拘束された多数の転動体を介してハウジングに 隙間無く嵌め合わされているためにロッドの円滑かつ高精度の移動や回転が可能で あり、精密位置決め装置等への利用に適した軸受であるとされている。  [0004] In consideration of the above circumstances, Patent Document 1 surrounds and supports a large sphere of a rod having a large sphere at the tip by a cage in which a large number of rolling elements (for example, small spheres) are incorporated. A spherical bearing configured by supporting the cage in an outer peripheral member (housing) has been proposed. In this spherical bearing, the large sphere is fitted into the housing through a number of rolling elements constrained by a cage, so that the rod can be moved and rotated smoothly and with high precision. It is said that the bearing is suitable for use in.
特許文献 1:特開平 8— 338422号公報  Patent Document 1: JP-A-8-338422
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 特許文献 1の球面軸受は、ロッドの大球が保持器に拘束された多数の転動体を介 してハウジングに隙間無く嵌め合わされているためにロッドの円滑かつ高精度の移動 や回転が可能であり、精密位置決め装置等への利用に適した軸受である。しかしな がら、このような球面軸受は保持器を備えた複雑な構成を有しており、その製造には 保持器に多数の穴あけカ卩ェをして、これらの多数の穴のそれぞれに転動体を組み込 む手間のかかる作業が必要である。 [0005] In the spherical bearing of Patent Document 1, since the large ball of the rod is fitted into the housing without a gap through a large number of rolling elements constrained by a cage, the rod moves smoothly and with high accuracy. The bearing is suitable for use in precision positioning devices and the like. However, such spherical bearings have a complicated structure with cages, and the cage is manufactured by making a number of drilling holes in the cage and rolling into each of these many holes. It takes time-consuming work to incorporate moving objects.
[0006] 本発明の課題は、ロッドの円滑かつ高精度の移動や回転が可能で、そして簡単な 構成の球面軸受を提供することにある。  [0006] An object of the present invention is to provide a spherical bearing having a simple structure in which a rod can be smoothly and accurately moved and rotated.
課題を解決するための手段  Means for solving the problem
[0007] 本発明は、球面上にロッドを備えた大球、この大球より大きな直径を持ち且つ膨張 域を介して開口面が形成されてなる、大球を収容している球状凹部を有するハウジン グ、上記の凹部内で大球の表面に沿って加圧状態で配設された小球群、そして大球 のロッドの基部の周囲に配置され、ロッド基部との係合状態にて小球群を押圧するこ とのできる環状押圧具力もなる球面軸受にある。以下、この球面軸受を、第一の構成 の球面軸受という。  [0007] The present invention has a large sphere having a rod on a spherical surface, a spherical recess having a larger diameter than the large sphere and having an opening surface formed through an expansion region. A housing, a group of small spheres arranged in a pressurized state along the surface of the large sphere in the concave portion, and a circumference of the base of the rod of the large sphere, and small in the engaged state with the rod base. The spherical bearing also has an annular pressing force that can press the ball group. Hereinafter, this spherical bearing is referred to as a spherical bearing having a first configuration.
[0008] 第一の構成の球面軸受の好ましい態様は、次の通りである。  [0008] A preferable aspect of the spherical bearing of the first configuration is as follows.
(1)環状押圧具が揺動可能で、ロッドの傾斜移動によりロッド基部と係合する揺動 環状押圧具である。  (1) An oscillating annular pressing tool that is capable of oscillating an annular pressing tool and that engages with a rod base by tilting the rod.
(2)揺動環状押圧具がその内側周縁に環状の弾性体を備える。  (2) The oscillating annular pressing tool includes an annular elastic body on the inner periphery thereof.
(3)環状押圧具が、予めロッドの基部の周囲に固定されて係合状態にある固定環 状押圧具である。  (3) The annular pressing tool is a fixed annular pressing tool that is fixed in advance around the base of the rod and is in an engaged state.
(4)固定環状押圧具がその内側周縁に備えられた環状の弾性体を介してロッドの 基部の周囲に固定されている。  (4) A fixed annular pressing tool is fixed around the base of the rod via an annular elastic body provided on the inner periphery thereof.
(5)環状押圧具の小球と対向する面に、押圧具の周方向に伸びる溝もしくは切り欠 きが形成されている。  (5) A groove or notch extending in the circumferential direction of the pressing tool is formed on the surface of the annular pressing tool facing the small sphere.
(6)環状押圧具の小球と対向する面に、各々押圧具の径方向に伸びる複数本の 溝が形成されている。  (6) A plurality of grooves each extending in the radial direction of the pressing tool are formed on the surface of the annular pressing tool facing the small sphere.
(7)膨張域と開口面との間に狭窄域が形成されて!、る。  (7) A constriction region is formed between the expansion region and the opening surface.
[0009] 本発明はまた、球面の上下の各々にロッドを備えた大球、この大球よりも大きな直 径を持ち且つ上下の各々に膨張域を介して開口面が形成されてなる、大球を収容し ている球状凹部を有するハウジング、上記の凹部内で大球の表面に沿って加圧状態 で配設された小球群、そして大球の各々のロッドの基部の周囲に配置され、ロッド基 部との係合状態にて小球群を押圧することのできる環状押圧具力 なる球面軸受に もある。以下、この球面軸受を、第二の構成の球面軸受という。 [0009] The present invention also provides a large sphere having rods above and below the spherical surface, a large diameter larger than the large sphere, and an opening surface formed on each of the upper and lower sides through an expansion region. Contain the ball A housing having a spherical recess, a group of small spheres disposed under pressure along the surface of the large sphere in the recess, and a rod base disposed around the base of each rod of the large sphere. There is also a spherical bearing with an annular pressing force that can press the small ball group in the engaged state. Hereinafter, this spherical bearing is referred to as a spherical bearing having a second configuration.
[0010] 第二の構成の球面軸受の好ましい態様は、次の通りである。  [0010] A preferable aspect of the spherical bearing of the second configuration is as follows.
(1)少なくとも一方の環状押圧具が揺動可能で、ロッドの傾斜移動によりロッド基部 と係合する揺動環状押圧具である。  (1) A swinging annular pressing tool that can swing at least one of the annular pressing tools and engages the rod base by tilting the rod.
(2)少なくとも一方の環状押圧具が、予めロッドの基部の周囲に固定されて係合状 態にある固定環状押圧具である。  (2) At least one annular pressing tool is a fixed annular pressing tool that is fixed in advance around the base of the rod and is in an engaged state.
(3)各々の膨張域と開口面との間に狭窄域が形成されて!ヽる。  (3) A constriction region is formed between each expansion region and the opening surface.
[0011] 本発明はまた、上下の各々に開口を有する透孔を中央に備えた大球、この大球よ りも大きな直径を持ち且つ上下のそれぞれに膨張域を介して開口面が形成されてな る、大球を収容している球状凹部を有するハウジング、上記の凹部内で大球の表面 に沿って加圧状態で配設された小球群、そして大球の各々の開口の周囲に付設さ れ、大球の回転により上記小球群を押圧することのできる環状押圧具力 なる球面軸 受にもある。以下、この球面軸受を、第三の構成の球面軸受という。  [0011] The present invention also provides a large sphere having a through-hole having openings in the upper and lower sides in the center, a diameter larger than the large sphere, and an opening surface formed in each of the upper and lower sides via an expansion region. A housing having a spherical recess accommodating a large sphere, a group of small spheres arranged under pressure along the surface of the large sphere in the recess, and the periphery of each opening of the large sphere There is also a spherical bearing which is an annular pressing tool force which is attached to and can press the small ball group by the rotation of a large ball. Hereinafter, this spherical bearing is referred to as a spherical bearing having a third configuration.
[0012] 第三の構成の球面軸受の好ましい態様は、次の通りである。  A preferable aspect of the spherical bearing of the third configuration is as follows.
(1)大球の表面に沿って小球群を上下に隔離する揺動環状隔離具を備える。 (1) Provided with a swinging annular separator that vertically separates the small ball group along the surface of the large sphere.
(2)揺動環状隔離具の小球と対向する面に、隔離具の周方向に伸びる溝もしくは 切り欠きが形成されている。 (2) A groove or notch extending in the circumferential direction of the separator is formed on the surface of the oscillating annular separator facing the small ball.
(3)揺動環状隔離具の小球と対向する面に、各々隔離具の径方向に伸びる複数 本の溝が形成されている。  (3) A plurality of grooves extending in the radial direction of the separator are formed on the surface of the oscillating annular separator facing the small sphere.
[0013] 本発明はまた、球面上にロッドを備えた大球、この大球より大きな直径を持ち且つ 狭窄域を介して開口面が形成されてなる、大球を収容している球状凹部を有するハ ウジング、上記の凹部内で大球の表面に沿って加圧状態で配設された小球群、そし て上記大球の表面に沿って小球群を上下に隔離している少なくとも一つの揺動環状 隔離具力もなる球面軸受にもある。以下、この球面軸受を、第四の構成の球面軸受と いう。 [0014] 第四の構成の球面軸受の好ましい態様は、次の通りである。 [0013] The present invention also provides a large sphere having a rod on a spherical surface, a spherical recess having a larger diameter than the large sphere and having an opening surface formed through a constricted region. A housing having a small sphere arranged in a pressurized state along the surface of the large sphere in the recess, and at least one separating the small sphere group vertically along the surface of the large sphere. There is also a spherical bearing that also has two oscillating annular separator forces. Hereinafter, this spherical bearing is referred to as a fourth-structure spherical bearing. [0014] A preferred aspect of the spherical bearing of the fourth configuration is as follows.
(1)揺動環状隔離具の小球と対向する面に、隔離具の周方向に伸びる溝もしくは 切り欠きが形成されている。  (1) A groove or notch extending in the circumferential direction of the separator is formed on the surface of the oscillating annular separator facing the small ball.
(2)揺動環状隔離具の小球と対向する面に、各々隔離具の径方向に伸びる複数 本の溝が形成されている。  (2) A plurality of grooves each extending in the radial direction of the separator are formed on the surface of the oscillating annular separator facing the small sphere.
発明の効果  The invention's effect
[0015] 本発明の球面軸受は、ハウジングの球状の凹部に、ロッドを備える (もしくはロッドが 取り付けられる)大球が小球群を介して緊密に接触支持された状態で嵌め合わされ ているため、ロッドは円滑かつ高精度に移動や回転が可能である。そして本発明の 球面軸受は、小球の保持器を備える必要がないために構成が簡単で、その製造が 容易である。また、本発明の球面軸受は、ハウジング内に収容する小球の数を増加 させることにより、その耐荷重を大きくすることができる。  [0015] Since the spherical bearing of the present invention is fitted in a state where the large sphere provided with the rod (or attached to the rod) is closely contacted and supported via the small sphere group in the spherical concave portion of the housing. The rod can be moved and rotated smoothly and with high accuracy. Since the spherical bearing of the present invention does not need to be provided with a small ball cage, its configuration is simple and its manufacture is easy. Further, the spherical bearing of the present invention can increase its load resistance by increasing the number of small balls accommodated in the housing.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] まず、本発明の第一の構成の球面軸受を添付の図面を用いて説明する。図 1は、 本発明の第一の構成の球面軸受の一例を示す図であり、そして図 2は、図 1の球面 軸受 10のロッド 11が傾斜した状態を示す図である。図 1及び図 2に示す球面軸受 10 は、球面上にロッド 11を備えた大球 12、大球 12より大きな直径を持ち且つ膨張域 1 3を介して開口面 14が形成されてなる、大球 12を収容している球状凹部 15を有する ハウジング 16、この凹部 15の内部で大球 12の表面に沿って加圧状態で配設された 小球群 17、そして大球 12のロッド 11の基部の周囲に配置され、このロッド基部との 係合状態にて小球群 17を押圧することのできる環状押圧具 21から構成されている。  First, a spherical bearing having a first configuration of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a view showing an example of a spherical bearing having a first configuration according to the present invention, and FIG. 2 is a view showing a state in which the rod 11 of the spherical bearing 10 in FIG. 1 is inclined. A spherical bearing 10 shown in FIGS. 1 and 2 has a large sphere 12 having a rod 11 on a spherical surface, a diameter larger than that of the large sphere 12, and an opening surface 14 formed through an expansion region 13. A housing 16 having a spherical recess 15 containing a sphere 12; a small ball group 17 disposed under pressure along the surface of the large sphere 12 inside the recess 15; and a rod 11 of the large sphere 12 The annular pressing tool 21 is arranged around the base portion and can press the small ball group 17 in an engaged state with the rod base portion.
[0017] この球面軸受 10の環状押圧具 21は揺動可能で、ロッド 11の傾斜移動によりロッド 基部と係合する揺動環状押圧具である。  [0017] The annular pressing tool 21 of the spherical bearing 10 is a swinging annular pressing tool that can swing and engages with the rod base by tilting the rod 11.
[0018] 球面軸受 10では、ロッド 11が傾斜移動すると大球 12が回転し、この大球 12の回転 に伴い大球 12の表面に沿って配設された小球群 17が転動する。この小球群 17の 転動によって、球面軸受 10のロッド 11は、ハウジング 16に対して大きな摩擦抵抗を 生じることなく滑らかに傾斜移動することが可能とされている。  In the spherical bearing 10, when the rod 11 is tilted, the large sphere 12 rotates, and the small sphere group 17 disposed along the surface of the large sphere 12 rolls as the large sphere 12 rotates. By the rolling of the small ball group 17, the rod 11 of the spherical bearing 10 can be smoothly inclined and moved without generating a large frictional resistance with respect to the housing 16.
[0019] 小球群 17は、ハウジング 16の球状凹部 15と大球 12の球面との間隔が小球の直径 よりも僅かに小さな間隔 (小球のサイズにも依存する力 例えば、小球の直径よりも 1 〜5 /z m程度小さな間隔)に設定されているため、ハウジング 16と大球 12との間に加 圧状態で配設されている。このように、ハウジング 16の球状凹部 15には、大球 12が 小球群 17を介して緊密に支持された状態で嵌め合わされて ヽるため、球面軸受 10 は、特許文献 1の球面軸受の場合と同様にロッド 11の円滑かつ高精度の移動や回 転が可能であり、精密位置決め装置等への利用に適したものである。 [0019] In the small ball group 17, the distance between the spherical recess 15 of the housing 16 and the spherical surface of the large ball 12 is the diameter of the small ball. Is set to a slightly smaller distance (force that depends on the size of the small sphere, for example, a distance that is 1 to 5 / zm smaller than the diameter of the small sphere). Arranged in a pressurized state. Thus, since the large sphere 12 is fitted in the spherical recess 15 of the housing 16 in a state of being tightly supported via the small sphere group 17, the spherical bearing 10 is the same as the spherical bearing of Patent Document 1. As in the case, the rod 11 can be moved and rotated with high precision and is suitable for use in precision positioning devices.
[0020] また、球面軸受 10では、大球 12の表面に沿って小球群 17が保持器を用いずに配 設されるため、大球の周囲には特許文献 1の球面軸受の場合と比較してより多くの数 の小球を配置することができる。ロッド 11を備える大球 12を、より多くの数の小球によ つて支持することにより、球面軸受 10の耐荷重を大きくすることができる。  [0020] Further, in the spherical bearing 10, since the small ball group 17 is arranged along the surface of the large ball 12 without using a cage, the spherical ball disclosed in Patent Document 1 is around the large ball. A larger number of small spheres can be placed in comparison. By supporting the large sphere 12 including the rod 11 with a larger number of small spheres, the load resistance of the spherical bearing 10 can be increased.
[0021] 一方、球面軸受 10のロッド 11が傾斜移動すると、これにより球状凹部 15と大球 12 との間にある複数個の小球の各々は大球とは逆向きに、すなわち前記複数個の小球 の全ては同じ向きに回転しながら転動する。そして、球面軸受 10には保持器が備え られていないので、ロッド 11が傾斜移動することで転動する小球群 17のうちの、例え ば、一個の小球の転動が困難になり、この小球に別の一個もしくは二個以上の小球 が強く接触すると、これらの複数個の小球力 その接触部において各々の小球の表 面が逆向きに移動しながら擦れ合うために大きな摩擦を生じて、幾つかの小球の転 動が停止する場合がある。このようにロッド 11が傾斜移動して!/、る最中に幾つかの小 球の転動が停止すると、ロッドの傾斜移動に必要なトルクの大きさが急激に変動する ためにロッドが滑らかに傾斜移動することができなくなる。  On the other hand, when the rod 11 of the spherical bearing 10 is tilted, each of the plurality of small spheres between the spherical recess 15 and the large sphere 12 is opposite to the large sphere, that is, the plurality of the plurality of small spheres. All of the spheres roll while rotating in the same direction. Since the spherical bearing 10 is not provided with a cage, for example, it is difficult to roll one small ball of the small ball group 17 that rolls when the rod 11 tilts and moves. When one or two or more small spheres come into strong contact with this small sphere, the force of these multiple small spheres is large because the surface of each small sphere rubs against each other while moving in the opposite direction. May cause some small spheres to stop rolling. In this way, if the rolling motion of several spheres stops while the rod 11 tilts and moves, the magnitude of the torque required for the tilting movement of the rod suddenly fluctuates and the rod becomes smooth. Can not be tilted.
[0022] 特に、ハウジング 16の開口面 14の側にある小球、例えば、図 2に示す小球 17aが 十分に移動できる領域をノ、ウジング内に確保しないと、小球 17aの転動が困難となり 、この小球 17aに小球 17bが強く接触し、さらに小球 17bに小球 17cが強く接触する t 、うように、連鎖的に小球が強く接触して 、くために小球の転動が停止し易くなる。  [0022] In particular, if the small ball on the side of the opening surface 14 of the housing 16, for example, the small ball 17a shown in FIG. It becomes difficult, and the small sphere 17b comes into strong contact with the small sphere 17a, and further, the small sphere 17c comes into strong contact with the small sphere 17b. It becomes easy to stop rolling.
[0023] このような小球の転動の停止を抑制するために、球面軸受 10には、ハウジング 16 の球状凹部 15と開口面 14との間に、開口面の側にある小球 (例えば、小球 17a)の 十分な移動を可能とする膨張域 13が環状に形成されている。  [0023] In order to suppress such stop of the rolling of the small sphere, the spherical bearing 10 includes a small sphere (for example, on the side of the opening surface) between the spherical concave portion 15 and the opening surface 14 of the housing 16. The expansion region 13 that allows sufficient movement of the small spheres 17a) is formed in an annular shape.
[0024] 膨張域 13においては、ハウジング 16の内側面と大球 12の球面との間隔が小球の 直径よりも僅かに大きな間隔 (例えば、小球の直径よりも 10〜20 m程度大きな間 隔)に設定されている。このため、ロッド 11の傾斜移動によってハウジング 16の開口 面 14の側にある小球が転動して膨張域 13に到達すると、小球は加圧状態力も解放 されて膨張域 13の内部を自由に移動することができるようになる。従って、ロッド 11の 傾斜移動によって転動する複数個の小球は互いに強くは接触し難くなり、上記のよう な小球の転動の停止が抑制される。このため、球面軸受 10においては、小球群が保 持器に保持されて 、な 、もののロッド 11は滑ら力に傾斜移動することができる。 [0024] In the expansion region 13, the distance between the inner surface of the housing 16 and the spherical surface of the large sphere 12 is a small sphere. The distance is set slightly larger than the diameter (for example, a distance about 10 to 20 m larger than the diameter of the small sphere). For this reason, when the small ball on the opening surface 14 side of the housing 16 rolls and reaches the expansion region 13 due to the tilting movement of the rod 11, the small ball is released from the pressurized state force and freely moves inside the expansion region 13. Will be able to move on. Accordingly, the plurality of small spheres rolling by the tilting movement of the rod 11 are difficult to come into strong contact with each other, and the stop of the rolling of the small spheres as described above is suppressed. For this reason, in the spherical bearing 10, the small ball group 11 is held by the cage, but the rod 11 can be inclined and moved with a sliding force.
[0025] しかしながら、ハウジング 16に膨張域 13が形成されているのみでは、複数個の小 球の強い接触の発生を十分には抑制できない場合がある。これは、ロッド 11の傾斜 移動によって複数個の小球が次々に膨張域 13に到達すると、膨張域の内部にて小 球の移動が困難になり、これにより膨張域に到達し難くなつた別の複数個の小球が、 上記の場合と同様に連鎖的に強く接触していくために小球の転動が停止し易くなる 力 である。 [0025] However, the occurrence of strong contact between a plurality of small spheres may not be sufficiently suppressed only by forming the expansion region 13 in the housing 16. This is because if a plurality of small spheres reach the expansion region 13 one after another due to the tilting movement of the rod 11, it becomes difficult for the small spheres to move inside the expansion region, which makes it difficult to reach the expansion region. Since the plurality of small spheres are in strong contact with each other in the same manner as in the above case, the rolling of the small spheres is easy to stop.
[0026] このため、球面軸受 10には、ロッド 11の傾斜移動よつて転動する複数個の小球の 強い接触の発生を更に抑制する環状押圧具 21が備えられている。この環状押圧具 21は、ロッド 11が図 1に記入した矢印が示す方向に傾斜移動を始めると、この傾斜 移動に伴い下方に向力つて転動する複数個の小球 (例えば、小球 17a)により上面が 押圧されて傾斜移動を始める。そしてロッド 11が更に傾斜移動すると、環状押圧具 2 1は、ロッド 11の基部と係合して、具体的にはロッドの基部が環状押圧具の内縁に接 触することで駆動力が付与され、小球群 17を押圧しながら傾斜移動を続け、そして 最終的には図 2に記入した状態にまで傾斜移動する。  For this reason, the spherical bearing 10 is provided with an annular pressing tool 21 that further suppresses the occurrence of strong contact between a plurality of small spheres that roll due to the inclined movement of the rod 11. When the rod 11 starts to tilt and move in the direction indicated by the arrow in FIG. 1, the annular pressing tool 21 has a plurality of small spheres (for example, small spheres 17a) that roll downward. The upper surface is pressed by) and the tilt movement starts. When the rod 11 further tilts, the annular pressing tool 21 engages with the base of the rod 11, and specifically, the driving force is applied by the base of the rod contacting the inner edge of the annular pressing tool. Then, the tilting movement is continued while pressing the small ball group 17, and finally the tilting movement is performed to the state shown in FIG.
[0027] このようにロッド 11と共に環状押圧具 21が傾斜移動することで、小球群 17のうちの ハウジング開口面 14の側にある小球 (例えば、小球 17a)は膨張域 13に到達し、そ の他の小球は環状押圧具の上面に沿って図 2に破線で記入した矢印が示す方向に 転動する。このため複数個の小球が次々に膨張域に到達することはなぐロッド 11の 傾斜移動によって転動する複数個の小球の強い接触の発生を効果的に抑制するこ とができる。また、幾つかの小球の転動が停止した場合であっても、環状押圧具 21が ロッド 11の基部と係合して小球群 17を押圧して、この停止した小球を再び転動させ ることがでさる。 [0027] In this way, the annular pressing tool 21 tilts together with the rod 11, so that the small sphere (for example, the small sphere 17a) on the housing opening surface 14 side of the small sphere group 17 reaches the expansion region 13. The other small spheres roll along the upper surface of the annular pressing tool in the direction indicated by the arrow marked with a broken line in FIG. For this reason, it is possible to effectively suppress the occurrence of strong contact between the plurality of small spheres rolling by the tilting movement of the rod 11 without the plurality of small spheres reaching the expansion region one after another. Even when the rolling of several small spheres stops, the annular pressing tool 21 engages with the base of the rod 11 to press the small sphere group 17, and the stopped small spheres roll again. Move It can be done.
[0028] このように球面軸受 10においては、ハウジング 16に形成された膨張域 13と環状押 圧具 21とによって、ロッド 11が傾斜移動する際にハウジング内にて小球群 17が円滑 に転動することができるようになるため、ロッド 11は滑らかに傾斜移動することができ る。  In this way, in the spherical bearing 10, the small ball group 17 smoothly rotates in the housing when the rod 11 is inclined and moved by the expansion region 13 and the annular pressing tool 21 formed in the housing 16. Since the rod 11 can move, the rod 11 can move smoothly and tilt.
[0029] 球面軸受 10は、例えば、次のようにして製造される。先ず、ハウジング 16の本体 16 aを開口が上方を向くようにして(図 1の場合とは上下の向きが逆になるようにして)配 置する。次に、本体 16aの内部に小球群 17を入れ、さらに大球 12をロッド 11を揺動 させながら押し込む。これにより小球群 17が大球 12の表面に沿って、且つ本体 16a と大球 12とにより加圧された状態にて配設される。次いで、ロッド 11を内側に通して 環状押圧具 21を小球群 17の上に配置し、さらにハウジング 16の本体 16aに、例え ば、ボルト(図示は略する)を用いて蓋 16bを固定する。そして、ハウジング 16の本体 16aを開口が下方を向くようにして配置して、ロッド 11を揺動させて小球群 17を球状 凹部 15の内部に分散配置させることにより、球面軸受 10を製造することができる。こ のように、球面軸受 10は、小球の保持器を備える必要がないために構成が簡単で、 その製造が容易である。なお、環状押圧具 21は、ノ、ウジング 16の開口面 14の径より も大きな直径を有して 、るためにハウジングの外部に抜け出ることはな 、。  [0029] The spherical bearing 10 is manufactured as follows, for example. First, the main body 16a of the housing 16 is arranged so that the opening faces upward (the vertical direction is reversed from the case of FIG. 1). Next, the small ball group 17 is placed inside the main body 16a, and the large ball 12 is pushed in while swinging the rod 11. As a result, the small ball group 17 is arranged along the surface of the large sphere 12 and in a state of being pressurized by the main body 16 a and the large sphere 12. Next, the rod 11 is passed through the inside, the annular pressing tool 21 is disposed on the small ball group 17, and the lid 16b is fixed to the main body 16a of the housing 16 using, for example, a bolt (not shown). . Then, the spherical bearing 10 is manufactured by disposing the main body 16a of the housing 16 with the opening facing downward, and swinging the rod 11 to disperse the small ball groups 17 in the spherical recesses 15. be able to. Thus, since the spherical bearing 10 does not need to be provided with a small spherical cage, the configuration is simple and the manufacture thereof is easy. The annular pressing tool 21 has a diameter larger than the diameter of the opening surface 14 of the louver 16 so that it does not come out of the housing.
[0030] なお、ハウジング 16に後に説明する狭窄域 18を形成しない場合には、上記のハウ ジングの本体 16aと蓋 16bとを一体に形成して、ハウジング内に小球群を入れて大球 を押し込んだのちに、予め小片に分割された環状押圧具をノヽウジング内にて相互に 接続して一体ィ匕することによつても球面軸受を製造することができる。  [0030] When the constricted region 18 described later is not formed in the housing 16, the housing main body 16a and the lid 16b are integrally formed, and a small sphere group is put in the housing to form a large sphere. After pushing in, the spherical bearing can be manufactured by connecting the annular pressing tools, which are divided into small pieces in advance, to each other in the nosing.
[0031] また、ハウジング 16の内部に入れる小球の数は、ハウジング 16、大球 12、そして環 状押圧具 21から形成される空間の内部に収容可能である限り特に制限はないが、こ の空間に収容できる小球の最大数の 65〜95個数%の範囲内にあることが好ましぐ 70〜80個数%の範囲内にあることが更に好ましい。ハウジングに入れる小球の数が 多すぎると小球同士が強く接触し易くなり、そして小球の数が少なすぎると球面軸受 の耐荷重が小さくなるからである。  [0031] The number of small spheres to be inserted into the housing 16 is not particularly limited as long as it can be accommodated in the space formed by the housing 16, the large sphere 12, and the annular pressing tool 21. More preferably, it is within the range of 65 to 95% by number of the maximum number of small spheres that can be accommodated in the space. This is because if the number of small balls placed in the housing is too large, the small balls are likely to come into strong contact with each other, and if the number of small balls is too small, the load bearing capacity of the spherical bearing becomes small.
[0032] 第一の構成 (および後に説明する第二の構成)の球面軸受のハウジング、ロッド、 大球、小球、そして環状押圧具の材料としては、通常、鋼、銅合金、あるいはステンレ ススチールなどの金属材料が用いられる。また、例えば、球面軸受が水中あるいは高 温の環境下で使用される場合には、セラミック材料を用いることが好ましい。また、球 面軸受を軽量ィ匕するために榭脂材料を用いることもできる。榭脂材料としては、球面 軸受の剛性を高くするために、ポリフエ-レンスルフイドに代表される結晶性榭脂を用 いることが好ましい。また、環状押圧具は、押圧具との接触による小球の転動の停止 を抑制するために、含油プラスチックや含油金属から形成することも好まし ヽ。 [0032] A spherical bearing housing, a rod having a first configuration (and a second configuration described later), As the material for the large sphere, the small sphere, and the annular pressing tool, a metal material such as steel, copper alloy, or stainless steel is usually used. For example, when the spherical bearing is used in water or in a high temperature environment, it is preferable to use a ceramic material. A resin material can also be used to reduce the weight of the spherical bearing. As the resin material, in order to increase the rigidity of the spherical bearing, it is preferable to use a crystalline resin represented by polyphenylene sulfide. It is also preferable that the annular pressing tool is made of oil-impregnated plastic or oil-impregnated metal in order to suppress stopping of the rolling of the small sphere due to contact with the pressing tool.
[0033] また、図 1及び図 2に示すように、ハウジング 16には上記とは別の膨張域 19が形成 されていることが好ましい。膨張域 19においても、ハウジング 16の内側面と大球 12 の球面との間隔が、小球の直径よりも僅かに大きな間隔 (例えば、小球の直径よりも 1 μ m程度大きな間隔)に設定されている。膨張域 19を形成することで、球面軸受 10 を図 1の場合とは上下の向きが逆になるようにして配置して使用した場合に、球面軸 受 10のロッド 11に加わる荷重は、大球 12の底部、すなわち膨張域 19にある加圧状 態力も解放された小球には付与されずに、球状凹部 15にある多数の小球に分散し て付与されるため、球面軸受 10の耐荷重を増大させることができる。  Further, as shown in FIGS. 1 and 2, the housing 16 is preferably formed with an expansion region 19 different from the above. Also in the expansion zone 19, the distance between the inner surface of the housing 16 and the spherical surface of the large sphere 12 is set to be slightly larger than the diameter of the small sphere (for example, an interval about 1 μm larger than the diameter of the small sphere). Has been. By forming the expansion region 19, the load applied to the rod 11 of the spherical bearing 10 is large when the spherical bearing 10 is used with its vertical orientation reversed from that in Fig. 1. Since the pressurized state force in the bottom of the sphere 12, that is, in the expansion region 19 is not applied to the released small sphere, it is distributed and applied to a large number of small spheres in the spherical recess 15, so that the spherical bearing 10 The load capacity can be increased.
[0034] さらにまた、球面軸受 10のハウジング 16の膨張域 13と開口面 14との間には、狭窄 域 18が形成されていることが好ましい。狭窄域 18においては、ハウジング 16の内側 面と大球 12の球面との間隔が小球の直径よりも小さな間隔 (例えば、小球の直径より も 20〜50 /z m程度小さな間隔)に設定されている。狭窄域 18を形成することにより、 ハウジング 16の開口面 14の側にある小球(例えば、図 2に示す小球 17a)は、ロッド を傾斜移動させた際に膨張域 13の内部に安定に配置される (膨張域よりも更に開口 面の側に移動することがなくなる)ため、ハウジング 16の内部にて小球群 17が安定 に転動することができるようになるからである。なお、狭窄域 18が形成されていない場 合には、環状押圧具 21は、膨張域 13に到達した小球 (例えば、図 2に示す小球 17a ) 1S ハウジング 16の外部へと脱落することを防止する。  Furthermore, it is preferable that a constriction region 18 is formed between the expansion region 13 and the opening surface 14 of the housing 16 of the spherical bearing 10. In the constricted area 18, the distance between the inner surface of the housing 16 and the spherical surface of the large sphere 12 is set to be smaller than the diameter of the small sphere (for example, an interval of about 20 to 50 / zm smaller than the diameter of the small sphere). ing. By forming the constriction area 18, the small spheres on the side of the opening surface 14 of the housing 16 (for example, the small spheres 17a shown in FIG. 2) are stably placed inside the expansion area 13 when the rod is tilted. This is because the small ball group 17 can stably roll inside the housing 16 because it is arranged (they do not move further to the opening surface side than the expansion region). If the constriction area 18 is not formed, the annular pressing tool 21 may fall out of the small sphere (for example, the small sphere 17a shown in FIG. 2) that has reached the expansion area 13 to the outside of the 1S housing 16. To prevent.
[0035] 図 3は、本発明の第一の構成の球面軸受の別の一例を示す図である。図 3の球面 軸受 30の構成は、環状押圧具 (揺動環状押圧具) 21の小球と対向する面に、押圧 具 21の周方向に伸びる溝 31が形成されていること以外は図 1の球面軸受 10と同様 である。環状押圧具 21に溝 31が形成されていると、この溝 31に小球 (例えば、小球 17a, 17d)が嵌り、この小球によって押圧具 21の横方向への移動が規制されるため 、押圧具 21とハウジング 16の内側面との接触が防止される。このため、環状押圧具 2 1が円滑に傾斜移動できるようになり、また上記接触によるハウジング内側面での傷 の発生が抑制される。この球面軸受 30にもまた、ハウジング 16の膨張域 13と開口面 14との間に狭窄域 18が形成されている。 FIG. 3 is a diagram showing another example of the spherical bearing having the first configuration according to the present invention. The configuration of the spherical bearing 30 in FIG. 3 is the same as that of FIG. 1 except that a groove 31 extending in the circumferential direction of the pressing tool 21 is formed on the surface of the annular pressing tool (oscillating annular pressing tool) 21 facing the small sphere. Same as spherical bearing 10 It is. If the groove 31 is formed in the annular pressing tool 21, a small ball (for example, the small balls 17a and 17d) is fitted in the groove 31, and the lateral movement of the pressing tool 21 is restricted by the small ball. The contact between the pressing tool 21 and the inner surface of the housing 16 is prevented. For this reason, the annular pressing member 21 can be smoothly inclined and the occurrence of scratches on the inner surface of the housing due to the contact is suppressed. The spherical bearing 30 also has a constricted region 18 formed between the expansion region 13 and the opening surface 14 of the housing 16.
[0036] 図 4は、本発明の第一の構成の球面軸受の更に別の一例を示す図である。図 4の 球面軸受 40の構成は、環状押圧具 (揺動環状押圧具) 21に断面形状が V字状の溝 32が形成されていること、そして狭窄域が設けられておらず、膨張域 13に到達した 小球のハウジング 16の外部への脱落を押圧具 21で防止していること以外は図 3の 球面軸受 30と同様である。溝の断面形状を V字状にすると、環状押圧具 21と小球と の接触面積が図 3の球面軸受 30の場合よりも小さくなるために、押圧具 21との接触 による小球の転動の停止を抑制することができる。  FIG. 4 is a view showing still another example of the spherical bearing having the first configuration according to the present invention. The configuration of the spherical bearing 40 in FIG. 4 is that an annular pressing tool (oscillating annular pressing tool) 21 is formed with a groove 32 having a V-shaped cross section, and no constriction area is provided. 3 is the same as the spherical bearing 30 of FIG. 3 except that the pressing tool 21 prevents the small ball reaching the outside of the housing 16 from dropping off. When the cross-sectional shape of the groove is V-shaped, the contact area between the annular pressing tool 21 and the small ball is smaller than that of the spherical bearing 30 in FIG. Can be stopped.
[0037] 図 5は、本発明の第一の構成の球面軸受の更に別の一例を示す図である。図 5の 球面軸受 50の構成は、環状押圧具 (揺動環状押圧具) 21の小球と対向する面に、 押圧具 21の周方向に伸びる切り欠き 33が形成されていること以外は図 3の球面軸受 30と同様である。このような小球表面と対応する湾曲した表面を持つ切り欠き 33を形 成することによつても、図 3の球面軸受 30の場合と同様に小球により押圧具 21の横 方向への移動が規制されるため、押圧具 21が円滑に傾斜移動できるようになり、そし てハウジング内側面での傷の発生が抑制される。  FIG. 5 is a view showing still another example of the spherical bearing having the first configuration according to the present invention. The configuration of the spherical bearing 50 in FIG. 5 is the same as that shown in FIG. 5 except that a notch 33 extending in the circumferential direction of the pressing tool 21 is formed on the surface of the annular pressing tool (oscillating annular pressing tool) 21 facing the small ball. This is the same as the spherical bearing 30 of FIG. By forming the notch 33 having such a curved surface corresponding to the surface of the small sphere, the lateral movement of the pressing tool 21 by the small sphere is the same as in the case of the spherical bearing 30 in FIG. Therefore, the pressing tool 21 can be inclined and moved smoothly, and the occurrence of scratches on the inner surface of the housing is suppressed.
[0038] 図 6は、本発明の第一の構成の球面軸受の更に別の一例を示す図である。図 6の 球面軸受 60の構成は、環状押圧具 (揺動環状押圧具) 21の切り欠き 34の形状が異 なること以外は図 5の球面軸受 50と同様である。このような斜面を持つ切り欠き 34を 備える環状押圧具 21は、その作製が容易である。  FIG. 6 is a diagram showing still another example of the spherical bearing having the first configuration according to the present invention. The configuration of the spherical bearing 60 in FIG. 6 is the same as that of the spherical bearing 50 in FIG. 5 except that the shape of the notch 34 of the annular pressing tool (oscillating annular pressing tool) 21 is different. The annular pressing tool 21 including the notch 34 having such a slope is easy to manufacture.
[0039] 図 7は、本発明の第一の構成の球面軸受の更に別の一例を示す図である。そして 図 8は、図 7の球面軸受 70の環状押圧具 21と、押圧具 21の上面に接して配置され ている小球との配置を示す平面図である。図 7の球面軸受 70の構成は、環状押圧具 (揺動環状押圧具) 21の小球と対向する面に、各々押圧具 21の径方向に伸びる複 数本の溝 35が形成されていること以外は図 1の球面軸受 10と同様である。環状押圧 具 21に複数本の溝 35を形成することにより、押圧具 21に接して配置して 、る小球( 例えば、小球 17a)は、溝 35が形成された位置に安定に配置され易くなり、押圧具 2 1の上面に接して配置されている複数個の小球が互いに強く接触することを抑制する ことができる。 FIG. 7 is a view showing still another example of the spherical bearing having the first configuration according to the present invention. FIG. 8 is a plan view showing an arrangement of the annular pressing tool 21 of the spherical bearing 70 of FIG. 7 and small spheres arranged in contact with the upper surface of the pressing tool 21. The spherical bearing 70 shown in FIG. 7 has a configuration in which the annular pressing tool (oscillating annular pressing tool) 21 is formed on a surface of the annular pressing tool 21 facing the small spheres. 1 is the same as the spherical bearing 10 in FIG. 1 except that several grooves 35 are formed. By forming the plurality of grooves 35 in the annular pressing tool 21, the small balls (for example, the small balls 17a) arranged in contact with the pressing tool 21 are stably disposed at the position where the grooves 35 are formed. It becomes easy and it can suppress that the several small ball arrange | positioned in contact with the upper surface of the pressing tool 21 mutually contacts strongly.
[0040] なお、環状押圧具の小球と対向する面には、押圧具の周方向に伸びる溝もしくは 切り欠きと、押圧具の径方向に伸びる溝との両者を形成しても良い。また、このような 溝や切り欠きに代えて、環状押圧具の小球と対向する面に、押圧具の周方向に沿つ て互いに間隔をあけて窪みを形成することもできる。  [0040] Note that a groove or notch extending in the circumferential direction of the pressing tool and a groove extending in the radial direction of the pressing tool may be formed on the surface of the annular pressing tool facing the small sphere. Moreover, it can replace with such a groove | channel and a notch, and can also form a dent in the surface facing the small ball of an annular pressing tool at intervals along the circumferential direction of a pressing tool.
[0041] 図 9は、本発明の第一の構成の球面軸受の更に別の一例を示す図であり、そして 図 10は、図 9の球面軸受 90のロッド 11が傾斜した状態を示す図である。図 9の球面 軸受 90の構成は、環状押圧具 (揺動環状押圧具) 22が筒状の形状にされていること 以外は図 1の球面軸受 10と同様である。環状押圧具 22を筒状の形状にすることで、 図 1の球面軸受 10と比較して、ロッド 11の傾斜角が小さい場合にも押圧具 22をロッド 基部と係合させて小球群 17を押圧することができるようになる。すなわち、ロッド 11の 傾斜移動に伴い幾つかの小球の転動が停止した場合であっても、環状押圧具 22が 小球群 17を早期に押圧して、この停止した小球を再び転動させることができる。  FIG. 9 is a view showing still another example of the spherical bearing of the first configuration of the present invention, and FIG. 10 is a view showing a state in which the rod 11 of the spherical bearing 90 in FIG. 9 is inclined. is there. The configuration of the spherical bearing 90 in FIG. 9 is the same as that of the spherical bearing 10 in FIG. 1 except that the annular pressing tool (swinging annular pressing tool) 22 has a cylindrical shape. By forming the annular pressing tool 22 into a cylindrical shape, the pressing tool 22 is engaged with the rod base even when the inclination angle of the rod 11 is small compared to the spherical bearing 10 in FIG. Can be pressed. That is, even when the rolling of several small spheres stops as the rod 11 tilts, the annular pressing tool 22 presses the small sphere group 17 early, and the stopped small spheres roll again. Can be moved.
[0042] 図 11は、本発明の第一の構成の球面軸受の更に別の一例を示す図であり、図 12 及び図 13は、図 11に記入した切断線 I—I線及び Π— II線の各々に沿って切断した球 面軸受 110の断面図であり、そして図 14は、図 11の球面軸受 110のロッド 11が傾斜 した状態を示す図である。図 11の球面軸受 110の構成は、環状押圧具 (揺動環状押 圧具) 23に、押圧具 23の周方向に沿って小球 27の複数個が互いに間隔をあけて保 持されていること以外は図 9の球面軸受 90と同様である。これらの小球 27により、環 状押圧具 23の横方向への移動が規制されるため、押圧具 23とハウジング 16の内側 面との接触が防止される。このため、環状押圧具 23が円滑に傾斜移動できるようにな り、また上記接触によるハウジング内側面での傷の発生が抑制される。なお、環状押 圧具 23の小球 27は、ロッドが図 14に示す状態よりも更に傾斜移動するとハウジング の外部に配置されるため、球面軸受 110のハウジング 16には狭窄域は形成されて!ヽ ない。 FIG. 11 is a view showing still another example of the spherical bearing of the first configuration of the present invention, and FIGS. 12 and 13 are cutting lines I-I and II-II entered in FIG. FIG. 14 is a cross-sectional view of the spherical bearing 110 cut along each of the lines, and FIG. 14 is a view showing a state in which the rod 11 of the spherical bearing 110 of FIG. 11 is inclined. In the configuration of the spherical bearing 110 in FIG. 11, a plurality of small spheres 27 are held in an annular pressing tool (oscillating annular pressing tool) 23 along the circumferential direction of the pressing tool 23 at intervals. Except this, it is the same as the spherical bearing 90 of FIG. Since these small spheres 27 restrict the lateral movement of the annular pressing tool 23, contact between the pressing tool 23 and the inner surface of the housing 16 is prevented. For this reason, the annular pressing tool 23 can be smoothly inclined and the occurrence of scratches on the inner surface of the housing due to the contact is suppressed. Note that the small ball 27 of the annular pressing member 23 is arranged outside the housing when the rod is further tilted and moved from the state shown in FIG. 14, so that a narrowed area is formed in the housing 16 of the spherical bearing 110!ヽ Absent.
[0043] 図 15は、本発明の第一の構成の球面軸受の更に別の一例を示す図である。図 15 の球面軸受 150の構成は、環状押圧具 (揺動環状押圧具) 24に、小球 27aの複数 個と小球 27bの複数個とが各々押圧具 24の周方向に沿って互いに間隔をあけて保 持されていること以外は図 11の球面軸受 110と同様である。なお、環状押圧具に保 持させる小球の数が多いと球面軸受の作製に手間がかかる。このため、環状押圧具 には、押圧具の周方向に沿って配置させる複数個の小球の組を、押圧具の上下方 向に 1〜5組の範囲で保持させることが好まし 、。  FIG. 15 is a diagram showing still another example of the spherical bearing having the first configuration according to the present invention. The spherical bearing 150 in FIG. 15 is configured such that a plurality of small spheres 27a and a plurality of small spheres 27b are spaced apart from each other along the circumferential direction of the pressing tool 24. It is the same as the spherical bearing 110 of FIG. 11 except that it is held open. If the number of small balls to be held by the annular pressing tool is large, it takes time to produce the spherical bearing. For this reason, it is preferable that the annular pressing tool holds a group of a plurality of small balls arranged along the circumferential direction of the pressing tool in a range of 1 to 5 sets in the upward and downward direction of the pressing tool.
[0044] 図 16は、本発明の第一の構成の球面軸受の更に別の一例を示す図であり、そして 図 17は、図 16の球面軸受 160のロッド 11が傾斜した状態を示す図である。図 16の 球面軸受 160の構成は、環状押圧具 25が、予めロッド 11の基部の周囲に固定され て係合状態にある固定環状押圧具であること以外は図 9の球面軸受 90と同様である 。このように環状押圧具 25がロッド 11の基部の周囲に固定されていると、押圧具 25 はハウジング 16の内側面に接触することなく円滑に傾斜移動することができる。なお 、環状押圧具をロッドの基部の周囲に固定することには、環状押圧具をロッド基部の 周囲に配置して、大球表面のロッド基部の側に固定することも含まれる。  FIG. 16 is a view showing still another example of the spherical bearing of the first configuration of the present invention, and FIG. 17 is a view showing a state in which the rod 11 of the spherical bearing 160 in FIG. 16 is inclined. is there. The configuration of the spherical bearing 160 in FIG. 16 is the same as that of the spherical bearing 90 in FIG. 9 except that the annular pressing tool 25 is a fixed annular pressing tool that is fixed in advance around the base of the rod 11 and is in an engaged state. is there . When the annular pressing tool 25 is fixed around the base portion of the rod 11 as described above, the pressing tool 25 can smoothly tilt and move without contacting the inner surface of the housing 16. Note that fixing the annular pressing tool around the base of the rod includes placing the annular pressing tool around the rod base and fixing it to the rod base side of the large spherical surface.
[0045] 図 18は、本発明の第一の構成の球面軸受の更に別の一例を示す図である。図 18 の球面軸受 180の構成は、環状押圧具(固定環状押圧具) 26が円筒状の形状にさ れていること以外は図 16に示す球面軸受 160と同様である。図 18に示す環状押圧 具 26は、その形状が簡単であるために製造が容易である。  FIG. 18 is a view showing still another example of the spherical bearing having the first configuration according to the present invention. The configuration of the spherical bearing 180 in FIG. 18 is the same as that of the spherical bearing 160 shown in FIG. 16 except that the annular pressing tool (fixed annular pressing tool) 26 is formed in a cylindrical shape. The annular pressing tool 26 shown in FIG. 18 is easy to manufacture because of its simple shape.
[0046] 図 19は、本発明の第一の構成の球面軸受の更に別の一例を示す図であり、そして 図 20は、図 19の球面軸受 230のロッド 11が傾斜した状態を示す図である。図 19及 び図 20に示す球面軸受 230の構成は、環状押圧具 (揺動環状押圧具) 22がその内 側周縁に環状の弾性体 36を備えていること以外は図 9の球面軸受 90と同様である。  FIG. 19 is a view showing still another example of the spherical bearing of the first configuration of the present invention, and FIG. 20 is a view showing a state in which the rod 11 of the spherical bearing 230 in FIG. 19 is inclined. is there. The spherical bearing 230 shown in FIGS. 19 and 20 has the same configuration as that of the spherical bearing 90 shown in FIG. 9 except that the annular pressing tool (oscillating annular pressing tool) 22 includes an annular elastic body 36 on the inner periphery. It is the same.
[0047] このような環状の弾性体 36は、上記のようにハウジング 16の球状凹部 15において 転動を停止した小球 (例えば、小球 17a)を、図 20に示すように環状押圧具 22がロッ ド 11の基部と係合して押圧する際に、ロッド 11の基部に押し付けられて圧縮される。 このため、転動を停止した小球は、環状押圧具 22により次第に大きな力を付与され ながら押圧され、転動の開始に必要な大きさの力が付与されたときに転動を開始す る。すなわち、環状の弾性体 36は、環状押圧具 22が、転動を停止した小球に必要 以上に大きな力を付与しな 、ようにする機能を有して 、る。転動を停止した小球に必 要以上に大きな力が付与させると、小球がハウジング 16と大球 12とによって加圧さ れた状態にて大球表面に沿って滑動するため、ハウジングの球状凹部、大球、ある いは小球の表面に傷を発生させるなどの問題を生じ易いからである。 [0047] Such an annular elastic body 36 is obtained by replacing the small sphere (for example, the small sphere 17a) that stops rolling in the spherical recess 15 of the housing 16 as described above with the annular pressing tool 22 as shown in FIG. Is pressed against the base of the rod 11 and compressed when engaged with the base of the rod 11 and pressed. For this reason, the small balls that have stopped rolling are gradually given a large force by the annular pressing tool 22. The roller starts rolling when it is pressed and a force necessary to start rolling is applied. That is, the annular elastic body 36 has a function of preventing the annular pressing tool 22 from applying an unnecessarily large force to the small spheres that have stopped rolling. If an excessively large force is applied to the small ball that has stopped rolling, the small ball slides along the surface of the large ball while being pressurized by the housing 16 and the large ball 12, so that the housing This is because problems such as generation of scratches on the surface of the spherical recess, large sphere, or small sphere are likely to occur.
[0048] 環状の弾性体 36は、エラストマ一やゴムなどの公知の高弾性ポリマー力も形成され る。環状の弾性体 36は、ゴム製であることが特に好ましい。  [0048] The annular elastic body 36 is also formed with a known high-elasticity polymer force such as elastomer or rubber. The annular elastic body 36 is particularly preferably made of rubber.
[0049] なお、環状の弾性体の内径を小さく設定して、その内側周縁をロッドの基部に固定 することにより、環状押圧具が環状の弾性体を介してロッドの基部に固定されている( 固定環状押圧具を持つ)球面軸受を構成することもできる。このような固定環状押圧 具を用いることにより、図 19及び図 20に示す球面軸受 230の環状押圧具 22 (揺動 環状押圧具)の場合と同様に、ハウジングの球状凹部において転動を停止した小球 に必要以上に大きな力が付与されなくなるため、ハウジングの球状凹部、大球、ある いは小球の表面での傷の発生を抑制することができる。  [0049] Note that, by setting the inner diameter of the annular elastic body to be small and fixing the inner peripheral edge thereof to the base of the rod, the annular pressing tool is fixed to the base of the rod via the annular elastic body ( A spherical bearing (with a fixed annular pressing tool) can also be constructed. By using such a fixed annular pressing tool, as in the case of the annular pressing tool 22 (swinging annular pressing tool) of the spherical bearing 230 shown in FIGS. 19 and 20, the rolling was stopped in the spherical recess of the housing. Since a larger force than necessary is not applied to the small sphere, it is possible to suppress the occurrence of scratches on the surface of the spherical concave portion, large sphere, or small sphere of the housing.
[0050] 図 21は、本発明の第一の構成の球面軸受の更に別の一例を示す図である。図 21 の球面軸受 250の構成は、環状押圧具(固定環状押圧具) 25が合計で四個の板ば ね 37を介してロッド 11の基部の周囲に固定されていること以外は図 16の球面軸受 1 60と同様である。図 21の球面軸受 250が備える四個の板ばね 37は、ロッド 11の基 部の周囲に対称に配置されている。このように、ロッドの基部にばねを介して固定さ れて 、る環状押圧具(固定環状押圧具)を用いることにより、図 19及び図 20に示す 球面軸受 230の環状押圧具 22 (揺動環状押圧具)の場合と同様に、ハウジングの球 状凹部において転動を停止した小球に必要以上に大きな力が付与されなくなるため 、ハウジングの球状凹部、大球、あるいは小球の表面での傷の発生を抑制することが できる。  FIG. 21 is a diagram showing still another example of the spherical bearing having the first configuration according to the present invention. The spherical bearing 250 shown in FIG. 21 has the same structure as that shown in FIG. 16 except that an annular pressing tool (fixed annular pressing tool) 25 is fixed around the base of the rod 11 via four plate springs 37 in total. Similar to spherical bearing 160. The four leaf springs 37 included in the spherical bearing 250 in FIG. 21 are arranged symmetrically around the base of the rod 11. Thus, by using the annular pressing tool (fixed annular pressing tool) fixed to the base of the rod via the spring, the annular pressing tool 22 (swinging motion) of the spherical bearing 230 shown in FIGS. 19 and 20 is used. As in the case of the annular pressing tool), since a force larger than necessary is not applied to the small sphere that stops rolling in the spherical concave portion of the housing, the spherical concave portion, large sphere, or small spherical surface of the housing The occurrence of scratches can be suppressed.
[0051] 図 22は、本発明の第一の構成の球面軸受の更に別の一例を示す図である。但し、 図 22は、球面軸受 260をそのロッド 11の先端の側から見た図である。図 22の球面軸 受の構成は、環状押圧具(固定環状押圧具) 25が渦巻ばね 38を介してロッド 11の 基部の周囲に固定されていること以外は図 21の球面軸受 250と同様である。このよう に、上記の板ばね(図 21 : 37)に代えて渦巻ばね 38を用いることもできる。 FIG. 22 is a diagram showing still another example of the spherical bearing having the first configuration according to the present invention. However, FIG. 22 is a view of the spherical bearing 260 as seen from the tip end side of the rod 11. The configuration of the spherical bearing in FIG. 22 is such that an annular pressing tool (fixed annular pressing tool) 25 is connected to the rod 11 via a spiral spring 38. It is the same as the spherical bearing 250 in FIG. 21 except that it is fixed around the base. Thus, a spiral spring 38 can be used in place of the leaf spring (FIG. 21: 37).
[0052] 次に、本発明の第二の構成の球面軸受について説明する。図 23は、本発明の第 二の構成の球面軸受の一例を示す図であり、そして図 24は、図 23の球面軸受 190 のロッド 1 la、 1 lbが傾斜した状態を示す図である。  Next, a spherical bearing having a second configuration of the present invention will be described. FIG. 23 is a view showing an example of the spherical bearing of the second configuration of the present invention, and FIG. 24 is a view showing a state where the rods 1 la and 1 lb of the spherical bearing 190 of FIG. 23 are inclined.
[0053] 図 23及び図 24に示す球面軸受 190は、球面の上下の各々〖こロッド l la、 l ibを備 えた大球 12、大球 12よりも大きな直径を持ち且つ上下の各々に膨張域 13a、 13bを 介して開口面 14a、 14bが形成されてなる、大球 12を収容している球状凹部 15を有 するハウジング 16、上記の凹部 15の内部で大球 12の表面に沿って加圧状態で配 設された小球群 17、そして大球 12の各々のロッドの基部の周囲に配置され、ロッド 基部との係合状態にて小球群 17を押圧することのできる環状押圧具 21a、 21bから 構成されている。  [0053] Spherical bearings 190 shown in FIGS. 23 and 24 have large spheres 12 having upper and lower spherical rods l la and l ib, larger diameters than large spheres 12, and expand in the upper and lower directions. Opening surfaces 14a and 14b are formed through the regions 13a and 13b, the housing 16 having a spherical recess 15 containing the large sphere 12, and the surface of the large sphere 12 inside the recess 15 described above. Annular press that is arranged around the base of each rod of the small sphere group 17 and the large sphere 12 arranged in a pressurized state and can press the small sphere group 17 in an engaged state with the rod base. It consists of ingredients 21a and 21b.
[0054] この球面軸受 190の環状押圧具 21a、 21bの各々は揺動可能で、ロッド l la、 l ib の傾斜移動によりロッド基部と係合する揺動環状押圧具である。  [0054] Each of the annular pressing members 21a and 21b of the spherical bearing 190 is a swinging annular pressing member that can swing and engages with the rod base portion by the inclination movement of the rods lla and lib.
[0055] 図 23の球面軸受 190の構成は、大球に一対のロッド l la、 l ibが備えられ、これら のロッドの各々の基部の周囲に、それぞれ環状押圧具 21a、 21bが配置されているこ と以外は図 1の球面軸受 10と同様である。球面軸受 190は、ハウジング 16の各々の 開口面の側に形成された膨張域 13a、 13bと環状押圧具 21a、 21bと〖こよって、図 1 の球面軸受 10の場合と同様にロッド l la、 l ibが傾斜移動する際にハウジング内に て小球群 17が円滑に転動することができるようになるため、各々のロッドは滑らかに 傾斜移動することができる。そして、球面軸受 190は、小球の保持器を備える必要が ないために構成が簡単で、その製造が容易である。  The configuration of the spherical bearing 190 of FIG. 23 is that a large sphere is provided with a pair of rods l la and l ib, and annular pressing tools 21a and 21b are disposed around the bases of these rods, respectively. Except for this, it is the same as the spherical bearing 10 of FIG. The spherical bearing 190 has a rod l la, as in the case of the spherical bearing 10 in FIG. 1, by swollen with the expansion regions 13a and 13b and the annular pressing members 21a and 21b formed on the respective opening surfaces of the housing 16. When the ib tilts, the small ball group 17 can roll smoothly in the housing, so that each rod can tilt smoothly. Since the spherical bearing 190 does not need to be provided with a small spherical cage, the configuration is simple and the manufacture thereof is easy.
[0056] 図 25は、本発明の第二の構成の球面軸受の別の一例を示す図である。図 25の球 面軸受 210の構成は、ロッド l la、 l ibの各々の基部の周囲に配置される環状押圧 具 22a、 22bの各々として、それぞれ図 9の球面軸受 90の環状押圧具 (揺動環状押 圧具) 22が用いられていること以外は図 23の球面軸受 190と同様である。このため 球面軸受 210は、図 23の球面軸受 190と比較して、ロッド l la、 l ibの傾斜角が小さ い場合にも押圧具 22a、 22bをロッド基部と係合させて小球群 17を押圧することがで きる。すなわち、ロッド l la、 l ibの傾斜移動に伴い幾つかの小球の転動が停止した 場合であっても、各々の環状押圧具が小球群 17を早期に押圧して、この停止した小 球を再び転動させることができる。 FIG. 25 is a diagram showing another example of the spherical bearing having the second configuration according to the present invention. The configuration of the spherical bearing 210 in FIG. 25 is such that each of the annular pressing members 22a and 22b disposed around the base of each of the rods l la and l ib is an annular pressing member (swinger) of the spherical bearing 90 in FIG. 23 is the same as the spherical bearing 190 in FIG. 23 except that the dynamic annular pressing tool 22 is used. For this reason, the spherical bearing 210 has a small spherical group 17 by engaging the pressing tools 22a and 22b with the rod base even when the inclination angle of the rods l la and l ib is small compared to the spherical bearing 190 of FIG. Can be pressed wear. That is, even when several small spheres stop rolling as the rods l la and l ib tilt, each annular pressing tool presses the small sphere group 17 at an early stage and stops. The ball can be rolled again.
[0057] 図 26は、本発明の第二の構成の球面軸受の更に別の一例を示す図である。図 26 の球面軸受 220の構成は、ロッド l la、 l ibの各々の基部の周囲に配置される環状 押圧具 25a、 25bの各々として、それぞれ図 16の球面軸受 160の環状押圧具(固定 環状押圧具) 25が用いられていること以外は図 23の球面軸受 190と同様である。こ のように、ロッド l la、 l ibの各々の基部の周囲に環状押圧具 25a、 25bのそれぞれ が固定されていると、各々の押圧具はハウジング 16の内側面に接触することなく円 滑に傾斜移動することができる。  FIG. 26 is a diagram showing still another example of the spherical bearing having the second configuration according to the present invention. The configuration of the spherical bearing 220 in FIG. 26 is such that each of the annular pressing tools 25a and 25b arranged around the base of each of the rods l la and l ib is an annular pressing tool (fixed annular) of the spherical bearing 160 in FIG. 23 is the same as the spherical bearing 190 of FIG. 23 except that the pressing tool 25 is used. Thus, when each of the annular pressing members 25a and 25b is fixed around the base of each of the rods l la and l ib, each pressing member slides smoothly without contacting the inner surface of the housing 16. Can be tilted.
[0058] なお、本発明の第二の構成の球面軸受においては、各々の環状押圧具として互い に同一の構成のものを用いる必要はなぐ一方に揺動環状押圧具を用い、そして他 方に固定環状押圧具を用いることもできる。また、本発明の第二の構成の球面軸受 の揺動環状押圧具に環状の弾性体を、そして固定環状押圧具に環状の弾性体やば ね (例、板ばね、渦巻ばね)を用いることにより、図 19〜図 22を用いて説明した第一 の構成の球面軸受の場合と同様に、ハウジングの球状凹部において転動を停止した 小球に必要以上に大きな力が付与されなくなり、ハウジングの球状凹部、大球、ある いは小球の表面での傷の発生を抑制することができる。  [0058] In the spherical bearing of the second configuration of the present invention, it is not necessary to use the same configuration as each of the annular pressing tools, while the oscillating annular pressing tool is used on the other side, and the other A fixed annular pressing tool can also be used. In addition, an annular elastic body is used for the oscillating annular pressing tool of the spherical bearing of the second configuration of the present invention, and an annular elastic body or spring (eg, leaf spring, spiral spring) is used for the fixed annular pressing tool. Thus, as in the case of the spherical bearing having the first configuration described with reference to FIGS. 19 to 22, an unnecessarily large force is not applied to the small sphere that stops rolling in the spherical recess of the housing. It is possible to suppress the occurrence of scratches on the surface of the spherical recess, large sphere, or small sphere.
[0059] 次に、本発明の第三の構成の球面軸受について説明する。図 27は、本発明の第 三の構成の球面軸受の一例を示す図であり、そして図 28は、図 27の球面軸受 270 の大球 112が傾斜移動した状態を示す図である。また図 29は、図 27の球面軸受 27 0の使用の態様を示す図であり、そして図 30は、図 29に示す球面軸受 270に取り付 けられたロッド 111が傾斜した状態を示す図である。  Next, a spherical bearing having a third configuration of the present invention will be described. FIG. 27 is a view showing an example of the spherical bearing of the third configuration of the present invention, and FIG. 28 is a view showing a state where the large sphere 112 of the spherical bearing 270 of FIG. 27 is tilted. FIG. 29 is a diagram showing how the spherical bearing 270 shown in FIG. 27 is used, and FIG. 30 is a diagram showing a state in which the rod 111 attached to the spherical bearing 270 shown in FIG. 29 is inclined. is there.
[0060] 図 27から図 30に示す球面軸受 270は、上下の各々に開口 119a、 119bを有する 透孔 119を中央に備えた大球 112、大球 112よりも大きな直径を持ち且つ上下のそ れぞれに膨張域 113a、 113bを介して開口面 114a、 114bが形成されてなる、大球 112を収容して 、る球状凹部 115を有するハウジング 116、上記の凹部 115の内部 で大球 112の表面に沿って加圧状態で配設された小球群 117、そして大球 112の 各々の開口の周囲に付設され、大球 112の回転により上記小球群 117を押圧するこ とのできる環状押圧具 121a、 121bから構成されている。 [0060] A spherical bearing 270 shown in FIGS. 27 to 30 has a large sphere 112 having a through hole 119 in the center and openings 119a and 119b on the upper and lower sides, and has a diameter larger than that of the large sphere 112, and Opening surfaces 114a and 114b are formed through the expansion regions 113a and 113b, respectively, to accommodate the large sphere 112, the housing 116 having a spherical recess 115, and the large sphere 112 inside the recess 115. A group of small spheres 117 arranged in a pressurized state along the surface of the It is composed of annular pressing tools 121a and 121b attached around each opening and capable of pressing the small ball group 117 by the rotation of the large ball 112.
[0061] 球面軸受 270の大球 112の透孔 119には、例えば、図 29に示すように各々の端部 の側にネジ 125が形成されたロッド 111が挿入される。このロッド 111は、大球 112の 上下を各々座金 126を介して一対のナット 127、 127により締め付けることで大球 11 2に固定されている。そして、ロッド 111の一方の端には、例えば、駆動装置の回転 軸が連結される。 For example, as shown in FIG. 29, a rod 111 having a screw 125 formed on each end is inserted into the through hole 119 of the large ball 112 of the spherical bearing 270. The rod 111 is fixed to the large ball 112 by tightening the upper and lower sides of the large ball 112 with a pair of nuts 127 and 127 via washers 126, respectively. Then, for example, a rotating shaft of a driving device is connected to one end of the rod 111.
[0062] そして、上記の小球群 117は、ハウジング 116の球状凹部 115と大球 112の球面と の間隔が小球の直径よりも僅かに小さな間隔 (小球のサイズにも依存する力 例えば 、小球の直径よりも 1〜5 m程度小さな間隔)に設定されているため、ハウジング 11 6と大球 112との間に加圧状態で配設されている。このように、ハウジング 116の球状 凹部 115には、大球 112が小球群 117を介して緊密に接触支持された状態で嵌め 合わされているため、球面軸受 270の大球 112に取り付けられたロッド 111は、円滑 かつ高精度に移動や回転をすることができる。  [0062] The small sphere group 117 includes a space in which the space between the spherical recess 115 of the housing 116 and the spherical surface of the large sphere 112 is slightly smaller than the diameter of the small sphere (force depending on the size of the small sphere, for example, Therefore, it is disposed between the housing 116 and the large ball 112 in a pressurized state. In this way, since the large sphere 112 is fitted in the spherical recess 115 of the housing 116 while being in close contact with and supported via the small sphere group 117, the rod attached to the large sphere 112 of the spherical bearing 270. 111 can move and rotate smoothly and with high accuracy.
[0063] また、球面軸受 270の大球 112は、小球群 117が転動することで自由に回転するこ とができるため、大球 112に取り付けられたロッド 111は、その長さ方向を軸として自 由に回転することができ、また図 30に示すように自由に傾斜移動することもできる。従 つて、球面軸受 270を用いることにより、例えば、ロッド 111に連結された長さが長くて 橈み易い軸を、その中心に対して正確に回転可能な状態で支持することができる。  [0063] Further, since the large sphere 112 of the spherical bearing 270 can freely rotate by rolling the small sphere group 117, the rod 111 attached to the large sphere 112 has its length direction changed. It can be freely rotated as an axis, and can be tilted freely as shown in FIG. Therefore, by using the spherical bearing 270, for example, a long and easy-to-squeeze shaft connected to the rod 111 can be supported in a state where it can be accurately rotated with respect to its center.
[0064] また、球面軸受 270では、大球 112の表面に沿って小球群 117が保持器を用いず に配設されるため、大球の周囲にはより多くの数の小球を配置することができる。ロッ ド 111を備える大球 112を、より多くの数の小球によって支持することにより、球面軸 受 270の耐荷重を大きくすることができる。  [0064] Further, in the spherical bearing 270, the small ball group 117 is disposed along the surface of the large ball 112 without using a cage, so that a larger number of small balls are arranged around the large ball. can do. By supporting the large sphere 112 including the rod 111 by a larger number of small spheres, the load bearing capacity of the spherical bearing 270 can be increased.
[0065] 次に、球面軸受 270に備えられているハウジング 116の膨張域 113a、 113bと、環 状押圧具 121a、 121bとについて説明する。  [0065] Next, the expansion regions 113a and 113b of the housing 116 provided in the spherical bearing 270 and the annular pressing members 121a and 121b will be described.
[0066] 球面軸受 270では、図 30に示すようにロッド 111が最大の角度まで傾斜移動した 場合であっても、このロッドの傾斜移動により開口面の側に向力つて転動する小球、 例えば、開口面 114bの側に向かって転動する小球 117aは、ハウジング 116の球状 凹部 115の端部近傍の部位にまで移動するだけで凹部 115の外側にまで移動する ことはない。また、ロッド 111が前後左右に繰り返して傾斜移動した場合であっても、 小球群 117はハウジング 116の球状凹部 115にお 、て上下方向に転動を繰り返す だけで、ロッドが垂直の状態に配置されれば小球群 117は図 29に示す配置に復帰 する。すなわち、球面軸受 270においては、ロッド 111の傾斜移動により回転する大 球 112に小球群 117が完全に追従して理想的な転動をする場合には、小球がハウ ジング 116の外部へと脱落することはな 、。 [0066] In the spherical bearing 270, as shown in FIG. 30, even when the rod 111 is tilted and moved to the maximum angle, a small ball that rolls toward the opening surface by the tilting movement of the rod, For example, the small sphere 117a that rolls toward the opening surface 114b is the spherical shape of the housing 116. It only moves to a portion near the end of the recess 115 and does not move to the outside of the recess 115. Even when the rod 111 repeatedly tilts back and forth, right and left, the small ball group 117 simply rolls up and down in the spherical recess 115 of the housing 116 so that the rod is in a vertical state. If arranged, the small ball group 117 returns to the arrangement shown in FIG. In other words, in the spherical bearing 270, when the small sphere group 117 completely follows the large sphere 112 rotated by the tilting movement of the rod 111 and makes an ideal roll, the small sphere moves to the outside of the housing 116. And will not fall off.
[0067] ところが、小球群 117は、ハウジング 116の球状凹部 115あるいは大球 112の球面 の寸法の精度あるいは重力の影響を受けるなどして、必ずしも上記のような理想的な 転動をするわけではない。例えば、図 30に示すように、ハウジング 116の内部で最も 下側に配置されている小球 117aは、ロッド 111が繰り返して傾斜移動すると、小球群 117が重力の影響を受けて次第に球状凹部 115の下方において上下に転動を繰り 返すようになるため、ハウジング 116の開口面 114bから外部へと脱落し易くなる。  [0067] However, the small ball group 117 does not necessarily roll ideally as described above due to the accuracy of the size of the spherical recess 115 of the housing 116 or the spherical surface of the large ball 112 or the influence of gravity. is not. For example, as shown in FIG. 30, the small sphere 117a arranged at the lowermost position inside the housing 116 is formed into a spherical recess gradually as the small sphere group 117 is affected by gravity when the rod 111 repeatedly tilts and moves. Since rolling is repeated up and down below 115, it is easy to drop out of the opening surface 114b of the housing 116 to the outside.
[0068] 一方で、球面軸受 270に取り付けられたロッド 111が傾斜移動すると、これにより球 状凹部 115と大球 112との間にある複数個の小球の各々は大球とは逆向きに、すな わち前記複数個の小球の全ては同じ向きに回転しながら転動する。そして、球面軸 受 270に取り付けられたロッド 111が傾斜移動することで転動する小球群 117のうち の、例えば、一個の小球の回転移動が困難になり、この小球に別の一個もしくは二個 以上の小球が強く接触すると、これらの複数個の小球が、その接触部において各々 の小球の表面が逆向きに移動しながら擦れ合うために大きな摩擦を生じて、幾つか の小球の転動が停止する場合がある。このようにロッド 111が傾斜移動して!/、る最中 に幾つかの小球の転動が停止すると、ロッドの傾斜移動に必要なトルクの大きさが急 激に変動するためにロッドが滑らかに傾斜移動できなくなる場合がある。  [0068] On the other hand, when the rod 111 attached to the spherical bearing 270 is tilted, each of the plurality of small spheres between the spherical recess 115 and the large sphere 112 is opposite to the large sphere. That is, all of the plurality of small balls roll while rotating in the same direction. In addition, for example, one small sphere in the small sphere group 117 that rolls when the rod 111 attached to the spherical bearing 270 is tilted and moved is difficult to rotate. Alternatively, when two or more small spheres come into strong contact with each other, the plurality of small spheres rub against each other while the surface of each small sphere moves in the opposite direction. Small ball rolling may stop. In this way, if the rod 111 stops moving while some of the small balls stop rolling during the tilting movement, the amount of torque required for the tilting movement of the rod fluctuates rapidly, causing the rod to move. It may not be possible to smoothly tilt and move.
[0069] 特に、ハウジング 116の開口面 114bの側にある小球、例えば、図 30に示す小球 1 17aの回転移動が困難になると、この小球 117aに小球 117bが強く接触し、さらに小 球 117bに小球 117cが強く接触すると 、うように、連鎖的に小球が強く接触して!/、く ために小球の転動が停止し易くなる。  [0069] In particular, when it becomes difficult to rotationally move a small sphere on the opening surface 114b side of the housing 116, for example, the small sphere 117a shown in Fig. 30, the small sphere 117b comes into strong contact with the small sphere 117a. When the small ball 117c comes into strong contact with the small ball 117b, the small balls come into strong contact with each other!
[0070] 従って、ハウジング 116の球状凹部 115において開口面 114a、 114bの各々の側 にある小球、例えば、図 30に示す小球 117aの円滑な回転移動を妨げることなぐハ ウジングの外部への小球の脱落を防止ことが望ましい。 [0070] Accordingly, each side of the opening surfaces 114a and 114b in the spherical recess 115 of the housing 116 It is desirable to prevent the small spheres from falling out of the housing without hindering the smooth rotational movement of the small spheres, for example, the small spheres 117a shown in FIG.
[0071] 図 27〜図 30に示す本発明の球面軸受 270のハウジング 116に形成された膨張域 113a, 113bの各々においては、ハウジング 116の内側面と大球 112の球面との間 隔が小球の直径よりも大きな間隔に設定されている。このため、例えば、図 30に示す ようにハウジング 116の開口面 114bの側にある小球 117aが転動して膨張域 113b に到達すると、小球 117aは加圧状態力 解放され、そして環状押圧具 121bに接触 してハウジング 116の外部への脱落が防止される。これにより、上記のように球状凹 部 115において開口面の側を転動する小球の円滑な回転移動を妨げることなぐ小 球の脱落を防止することができる。  In each of the expansion regions 113a and 113b formed in the housing 116 of the spherical bearing 270 of the present invention shown in FIGS. 27 to 30, the distance between the inner surface of the housing 116 and the spherical surface of the large sphere 112 is small. The interval is set larger than the diameter of the sphere. Therefore, for example, as shown in FIG. 30, when the small ball 117a on the opening surface 114b side of the housing 116 rolls and reaches the expansion region 113b, the small ball 117a is released from the pressurizing force and is annularly pressed. The housing 116 is prevented from falling out by contacting the tool 121b. As a result, it is possible to prevent the spheres from dropping out without hindering the smooth rotational movement of the spheres rolling on the opening surface side in the spherical recess 115 as described above.
[0072] 一方で、環状押圧具 121bは、ロッド 111が図 29に示すように垂直に配置された状 態に復帰する際には、上記のように膨張域 113bに到達した小球 117aを押圧して球 状凹部 115へと移動させる。これは、上記のように膨張域 113bに到達した小球 117a を球状凹部 115へと移動させないと、この膨張域 113bに残された小球 117aに、ロッ ド 111が傾斜移動を繰り返すことで次第に球状凹部 115の下方にて上下に転動を繰 り返すようになった小球 117b、そして小球 117cが次々に強く接触して小球の転動が 停止し易くなり、ロッド 111が滑らかに傾斜移動することができなくなる場合があるから である。  [0072] On the other hand, when the rod 111 returns to the vertically arranged state as shown in FIG. 29, the annular pressing member 121b presses the small ball 117a that has reached the expansion region 113b as described above. To move to the spherical recess 115. This is because, as described above, if the small sphere 117a that has reached the expansion region 113b is not moved to the spherical recess 115, the rod 111 is gradually inclined and moved to the small sphere 117a remaining in the expansion region 113b. The small sphere 117b, which repeats rolling up and down below the spherical recess 115, and the small sphere 117c come into strong contact with each other one after another, making it easier for rolling of the small sphere to stop, making the rod 111 smooth. This is because it may not be possible to move at an angle.
[0073] すなわち、本発明の第三の構成の球面軸受 270は、ハウジング 116の球状凹部 11 5にお!/ヽて開口面 114b (あるいは開口面 114a)の側にある小球が膨張域 113b (あ るいは膨張域 113a)に到達して加圧状態から解放された状態で、この小球を環状押 圧具 121b (あるいは押圧具 121a)に接触させることでノヽウジングの外部への小球の 脱落を防止して、更にロッド 111が垂直な状態へと復帰する際には、膨張域 113b ( あるいは膨張域 113a)に到達した小球を、環状押圧具 121b (あるいは押圧具 121a )で押圧して球状凹部 115へと移動させることによって、小球の保持器を用いなくとも 複数個の小球の強!、接触の発生が抑制され、ロッド 111が滑らかに傾斜移動するこ とができるように構成されて!、る。  That is, in the spherical bearing 270 of the third configuration according to the present invention, the small sphere on the side of the opening surface 114b (or the opening surface 114a) is expanded into the expansion region 113b. In the state where it has reached the (or expansion region 113a) and released from the pressurized state, this small ball is brought into contact with the annular pressure member 121b (or the pressure member 121a) to bring the small ball to the outside of the nosing. When the rod 111 returns to the vertical state while preventing the drop of the rod, the small ball that has reached the expansion region 113b (or the expansion region 113a) is pressed by the annular pressing device 121b (or the pressing device 121a). By moving to the spherical recess 115, it is possible to suppress the occurrence of strong and contact of a plurality of small spheres without using a small sphere holder, and the rod 111 can be smoothly inclined and moved. Consists of! RU
[0074] 球面軸受 270は、例えば、次のようにして製造される。先ず、環状押圧具 121bを、 大球 112の開口 119bの周囲に形成された凹部に圧入する。このようにして開口 119 bの周囲に環状押圧具 121bが付設された大球 112を、ハウジング 116の内部に収 容する。そして、ハウジング 116と大球 112との間に開口面 114aの側力も小球群 11 7を押し込み、最後に環状押圧具 121bと同様にして大球 112の開口 119aの周囲に 形成された凹部に押圧具 121aを圧入することにより球面軸受 270を製造することが できる。このように、球面軸受 270は、小球の保持器を備えていないために構成が簡 単で、その製造が容易である。 [0074] The spherical bearing 270 is manufactured as follows, for example. First, the annular pressing tool 121b The large sphere 112 is press-fitted into a recess formed around the opening 119b. In this way, the large sphere 112 having the annular pressing member 121b attached around the opening 119b is accommodated in the housing 116. Then, the side force of the opening surface 114a is also pushed between the housing 116 and the large ball 112, and finally the small ball group 117 is pushed. The spherical bearing 270 can be manufactured by press-fitting the pressing tool 121a. Thus, since the spherical bearing 270 is not provided with a small spherical cage, the configuration is simple and the manufacture thereof is easy.
[0075] 第三の構成の球面軸受のハウジング、大球、小球、そして環状押圧具の材料の例 は、上記の第一の構成の球面軸受の場合と同様である。  [0075] Examples of the material of the housing, the large sphere, the small sphere, and the annular pressing tool of the spherical bearing of the third configuration are the same as those of the spherical bearing of the first configuration.
[0076] また、ハウジング 116の内部に入れる小球の数は、ハウジング 116、大球 112、そし て環状押圧具 121a、 121bから形成される空間の内部に収容可能である限り特に制 限はないが、この空間に収容できる小球の最大数の 65〜95個数%の範囲内にある ことが好ましぐ 70〜80個数%の範囲内にあることが更に好ましい。ハウジングに入 れる小球の数が多すぎると小球同士が強く接触し易くなり、そして小球の数が少なす ぎると球面軸受の耐荷重が小さくなるからである。  [0076] The number of small spheres to be inserted into the housing 116 is not particularly limited as long as it can be accommodated in the space formed by the housing 116, the large sphere 112, and the annular pressing members 121a and 121b. However, it is more preferable that it is in the range of 65 to 95% by number of the maximum number of small spheres that can be accommodated in this space. This is because if the number of small balls entering the housing is too large, the small balls are likely to come into strong contact with each other, and if the number of small balls is too small, the load bearing capacity of the spherical bearing is reduced.
[0077] 図 31は、本発明の第三の構成の球面軸受の別の一例を示す図である。図 31の球 面軸受 310の構成は、大球 112の表面に沿って小球群 117を上下に隔離する揺動 環状隔離具 141が備えられていること以外は図 27の球面軸受 270と同様である。図 31に示すように、揺動環状隔離具 141により小球群 117を上下に隔離すると、転動 方向に並ぶ複数個の小球、例えば、小球 117bと小球 117cとが上下に隔離されて互 いに強く接触することがなくなるため、これらの小球の転動が停止し難くなる。なお、 揺動環状離隔具 141は、ロッド 111が傾斜移動を繰り返すことによりハウジング 116 の内部にて上下に転動を繰り返す小球群 117に押圧されて揺動しながら小球群 117 を上下に隔離する。  FIG. 31 is a diagram showing another example of the spherical bearing of the third configuration according to the present invention. The configuration of the spherical bearing 310 in FIG. 31 is the same as that of the spherical bearing 270 in FIG. 27 except that a swinging annular separator 141 is provided along the surface of the large sphere 112 to separate the small sphere group 117 up and down. It is. As shown in FIG. 31, when the small ball group 117 is separated up and down by the swinging annular separator 141, a plurality of small balls arranged in the rolling direction, for example, the small ball 117b and the small ball 117c are separated vertically. Therefore, it is difficult for these small spheres to stop rolling. The oscillating annular spacer 141 is pushed by the small ball group 117 that repeats rolling up and down inside the housing 116 by repeating the tilt movement of the rod 111 and moves the small ball group 117 up and down while swinging. Isolate.
[0078] 球面軸受 310は、例えば、次のようにして製造される。先ず、図 27の球面軸受 270 を製造する場合と同様にして、大球 112の下側の開口の周囲に環状押圧具 121bを 付設する。この環状押圧具 121bを備える大球 112を、ハウジング 116の本体 116a の内部に収容する。次いで、本体 116aと大球 112との間に揺動環状隔離具 141より も下方に配置される複数個の小球を押し込み、その上に隔離具 141を置く。そして本 体 116aに、例えば、ボルト(図示は略する)を用いて蓋 116bを固定して、この蓋 116 bと大球 112との間に開口面 114aの側力も複数個の小球をさらに押し込み、最後に 大球 112の上側の開口の周囲に押圧具 121aを付設することにより球面軸受 310を 製造することができる。 The spherical bearing 310 is manufactured as follows, for example. First, similarly to the case of manufacturing the spherical bearing 270 of FIG. 27, the annular pressing tool 121b is attached around the lower opening of the large ball 112. The large sphere 112 including the annular pressing member 121b is accommodated in the main body 116a of the housing 116. Next, from the swinging annular separator 141 between the main body 116a and the large ball 112 Also push a plurality of small spheres placed below, and place the separator 141 on top of it. Then, a lid 116b is fixed to the main body 116a using, for example, a bolt (not shown), and a plurality of small spheres are also applied between the lid 116b and the large sphere 112 with a side force of the opening surface 114a. The spherical bearing 310 can be manufactured by pushing and finally attaching the pressing tool 121a around the upper opening of the large ball 112.
[0079] 揺動環状隔離具 141の材料としては、通常、鋼、銅合金、あるいはステンレススチ ールなどの金属材料が用いられる。また、例えば、球面軸受が水中あるいは高温の 環境下で使用される場合には、セラミック材料を用いることも好ましい。また、球面軸 受を軽量ィ匕するために榭脂材料を用いることもできる。また、揺動環状隔離具は、隔 離具との接触による小球の転動の停止を抑制するために、含油プラスチックや含油 金属から形成することも好まし ヽ。  [0079] As a material of the oscillating annular separator 141, a metal material such as steel, copper alloy, or stainless steel is usually used. For example, when the spherical bearing is used in water or in a high temperature environment, it is also preferable to use a ceramic material. Also, a resin material can be used to reduce the weight of the spherical bearing. In addition, it is preferable that the oscillating annular separator is made of oil-impregnated plastic or oil-impregnated metal in order to suppress the stoppage of the rolling of the small balls due to contact with the separator.
[0080] 図 32は、本発明の第三の構成の球面軸受の更に別の一例を示す図である。図 32 の球面軸受 320の構成は、小球群 117を上下に隔離する揺動環状隔離具が二つ備 えられていること以外は図 31の球面軸受 310と同様である。これらの二つの揺動環 状隔離具 141a、 141bにより小球群 117を上下に隔離すると、転動方向に並ぶ複数 個の小球、例えば、小球 117aと小球 117b、そして小球 117bと小球 117cはそれぞ れ上下に隔離されて互いに強く接触することがなくなるため、これらの小球の転動が 停止し難くなる。  FIG. 32 is a view showing still another example of the spherical bearing of the third configuration according to the present invention. The configuration of the spherical bearing 320 in FIG. 32 is the same as that of the spherical bearing 310 in FIG. 31 except that two swinging annular separators for separating the small ball group 117 up and down are provided. When the small sphere group 117 is vertically separated by these two oscillating ring-shaped separators 141a and 141b, a plurality of small spheres arranged in the rolling direction, for example, the small sphere 117a, the small sphere 117b, and the small sphere 117b, Since the small balls 117c are separated from each other and do not come into strong contact with each other, the rolling of these small balls is difficult to stop.
[0081] 球面軸受 320は、例えば、次のようにして製造される。先ず、図 31の球面軸受 310 を製造する場合と同様にして、ハウジング 116の本体 116aの内部に、押圧具 121b が付設された大球 112を収容し、本体 116aと大球 112との間に揺動環状隔離具 14 lbの下方に配置される複数個の小球を押し込み、その上に隔離具 141bを置く。次 いで、本体 116aと大球 112との間に更に複数個の小球を押し込んだのち、本体 116 aの上に、揺動環状隔離具 141aが収容された蓋 116bを置いて本体 116aに固定す る。そして、蓋 116bと大球 112との間に開口面 114aの側力も複数個の小球を押し込 み、最後に大球 112の上側の開口の周囲に押圧具 121aを付設することにより球面 軸受 320を製造することができる。  [0081] The spherical bearing 320 is manufactured, for example, as follows. First, similarly to the case of manufacturing the spherical bearing 310 of FIG. 31, the large sphere 112 provided with the pressing tool 121b is accommodated inside the main body 116a of the housing 116, and between the main body 116a and the large sphere 112. Push a plurality of small balls located below the swinging annular separator 14 lb and place the separator 141b on top of it. Next, after inserting a plurality of small spheres between the main body 116a and the large sphere 112, a lid 116b containing the swinging annular separator 141a is placed on the main body 116a and fixed to the main body 116a. The Further, the side force of the opening surface 114a is also pushed between the lid 116b and the large ball 112, and finally a plurality of small balls are pushed in. Finally, a pressing tool 121a is attached around the upper opening of the large ball 112, thereby providing a spherical bearing. 320 can be manufactured.
[0082] 本発明の第三の構成の球面軸受において、ハウジングの内部に配置する揺動環 状隔離具の数は、実用的には 1〜5個(特に 1〜3個)であることが好ましい。隔離具 の数が多すぎると、球面軸受の製造に手間が力かるからである。また、隔離具の形状 は、図 32に示すように平面形状であることに限定されない。例えば、隔離具の形状は 、隔離具の幅方向が大球の中心に向力うように表面が傾斜した漏斗状の形状であつ てもよい。 [0082] In the spherical bearing of the third configuration of the present invention, a swing ring arranged inside the housing The number of the shape separators is preferably 1 to 5 (particularly 1 to 3) in practice. This is because if there are too many separators, it takes time to manufacture spherical bearings. Further, the shape of the separator is not limited to a planar shape as shown in FIG. For example, the shape of the separator may be a funnel-like shape whose surface is inclined so that the width direction of the separator is directed toward the center of the large sphere.
[0083] 図 33は、本発明の第三の構成の球面軸受の更に別の一例を示す図である。図 33 の球面軸受 330の構成は、大球の上下の開口の各々の周囲に形成された凸部に、 環状押圧具 121a、 121bのそれぞれが圧入により固定されていること以外は図 32の 球面軸受 320と同様である。大球と環状押圧具との固定方法に特に制限はなぐこ れらは互いにネジ止め、溶接、あるいは接着剤により固定されていてもよい。  FIG. 33 is a view showing still another example of the spherical bearing of the third configuration according to the present invention. The configuration of the spherical bearing 330 in FIG. 33 is the same as that in FIG. 32 except that each of the annular pressing members 121a and 121b is fixed by press-fitting to convex portions formed around the upper and lower openings of the large sphere. Similar to bearing 320. There are no particular restrictions on the fixing method of the large sphere and the annular pressing tool, and they may be fixed to each other by screwing, welding, or adhesive.
[0084] 図 34は、本発明の第三の構成の球面軸受の更に別の一例を示す図である。図 34 の球面軸受 340の構成は、揺動環状隔離具 141の小球と対向する面に、隔離具 14 1の周方向に伸びる溝 151が形成されていること以外は図 31の球面軸受 310と同様 である。このような溝 151に小球が嵌まることにより揺動環状隔離具 141の横方向へ の移動が規制され、隔離具 141は、ハウジング 116の内側面に接触し難くなる。この ため揺動環状隔離具 141は、ロッド 111の傾斜移動により転動する小球群 117と共 に円滑に移動できるようになり、また上記の接触によるハウジング 116の内側面での 傷の発生が抑制される。なお、揺動環状隔離具の小球と対向する面に、上記の溝 15 1に代えて隔離具の周方向に伸びる切り欠きを形成することによつても、この切り欠き に小球が嵌まることで隔離具の横方向への移動を規制することができる。  FIG. 34 is a view showing still another example of the spherical bearing of the third configuration according to the present invention. The spherical bearing 340 shown in FIG. 34 has the same configuration as the spherical bearing 310 shown in FIG. 31 except that a groove 151 extending in the circumferential direction of the separator 141 is formed on the surface of the oscillating annular separator 141 facing the small ball. Is the same. When the small sphere is fitted in the groove 151, the lateral movement of the oscillating annular separator 141 is restricted, and the separator 141 is less likely to contact the inner surface of the housing 116. For this reason, the oscillating annular separator 141 can move smoothly together with the small ball group 117 that rolls by the tilting movement of the rod 111, and the above contact causes scratches on the inner surface of the housing 116. It is suppressed. In addition, by forming a notch extending in the circumferential direction of the separator in place of the groove 151 on the surface facing the small ball of the oscillating annular separator, the small ball fits into this notch. As a result, the lateral movement of the separator can be restricted.
[0085] 図 35は、揺動環状隔離具の別の構成例を示す平面図である。図 35の揺動環状隔 離具 141には、隔離具 141の上に接触して配置される複数個の小球を二点鎖線で d入した。  FIG. 35 is a plan view showing another configuration example of the swinging annular separator. In the oscillating annular separation tool 141 of FIG. 35, a plurality of small spheres arranged in contact with the separation tool 141 are entered by a two-dot chain line.
[0086] 図 35に示すように、揺動環状隔離具 141の小球と対向する面には、各々隔離具 1 41の径方向に伸びる複数本の溝 152が形成されて 、ることが好ま 、。揺動環状隔 離具 141に複数本の溝 152を形成することにより、隔離具 141に接して配置している 複数個の小球 (例えば、小球 117a)は、溝 152が形成された位置に安定に配置され 易くなり、これらの小球が互いに強く接触することを抑制することができる。 [0087] なお、揺動環状隔離具の小球と対向する面には、隔離具の周方向に伸びる溝もし くは切り欠きと、隔離具の径方向に伸びる溝との両者を形成してもよい。また、このよう な溝や切り欠きに代えて、揺動環状隔離具の小球と対向する面に、隔離具の周方向 に沿って互いに間隔をあけて窪みを形成することもできる。 [0086] As shown in FIG. 35, it is preferable that a plurality of grooves 152 extending in the radial direction of the separator 144 are formed on the surface of the oscillating annular separator 141 facing the small sphere. ,. By forming a plurality of grooves 152 in the oscillating annular separator 141, a plurality of small spheres (for example, the small sphere 117a) arranged in contact with the separator 141 are positioned at positions where the grooves 152 are formed. Therefore, these small spheres can be prevented from coming into strong contact with each other. [0087] It should be noted that a groove or notch extending in the circumferential direction of the separator and a groove extending in the radial direction of the separator are formed on the surface of the swinging annular separator facing the small sphere. Also good. Further, in place of such grooves and notches, depressions can be formed on the surface of the oscillating annular separator facing the small balls at intervals from each other along the circumferential direction of the separator.
[0088] 図 36は、本発明の第三の構成の球面軸受の更に別の一例を示す図であり、そして 図 37は、図 36の球面軸受 360の大球 112が傾斜移動した状態を示す図である。図 36及び図 37に示す球面軸受 360の構成は、ハウジング 116力 上下のそれぞれに 膨張域 123a、 123b,更に狭窄域 118a、 118bを介して開口面 114a、 114b力 S形成 された球状凹部 115を有していること以外は図 27の球面軸受 270と同様である。  FIG. 36 is a view showing still another example of the spherical bearing of the third configuration of the present invention, and FIG. 37 shows a state in which the large sphere 112 of the spherical bearing 360 of FIG. FIG. The configuration of the spherical bearing 360 shown in FIGS. 36 and 37 is such that the spherical recess 115 formed with the opening surface 114a and 114b force S is formed on the upper and lower sides of the housing 116 force through the expansion regions 123a and 123b and further through the narrowed regions 118a and 118b. The spherical bearing 270 of FIG. 27 is the same as that of FIG.
[0089] 図 36の球面軸受 360のハウジング 116の狭窄域 118a、 118bの各々にお!/、ては、 ハウジング 116の内側面と大球 112の球面との間隔が小球の直径よりも小さな間隔( 例えば、小球の直径よりも 20〜50 m程度小さな間隔)に設定されている。  [0089] In each of the constricted regions 118a and 118b of the housing 116 of the spherical bearing 360 in FIG. 36, the distance between the inner surface of the housing 116 and the spherical surface of the large sphere 112 is smaller than the diameter of the small sphere. The interval (for example, an interval that is about 20 to 50 m smaller than the diameter of the small sphere) is set.
[0090] 球面軸受 360は、ハウジング 116の球状凹部 115において開口面 114a (あるいは 開口面 114b)の側にある小球が膨張域 123a (あるいは膨張域 123b)に到達してカロ 圧状態から解放された状態で、この小球を狭窄域 118a (あるいは狭窄域 118b)にて ハウジング 116の内側面に接触させることでノヽウジングの外部への小球の脱落を防 止して、更にロッド 111が垂直な状態へと復帰する際には、膨張域 123a (あるいは膨 張域 123b)に到達した小球を、環状押圧具 131a (あるいは押圧具 131b)で押圧し て球状凹部 115へと移動させることによって、小球の保持器を用いなくとも複数個の 小球の強 、接触の発生が抑制され、ロッド 111が滑らかに傾斜移動することができる ように構成されている。  [0090] The spherical bearing 360 is released from the caloric pressure state when the small sphere on the opening surface 114a (or the opening surface 114b) side of the spherical recess 115 of the housing 116 reaches the expansion region 123a (or the expansion region 123b). In this state, the small ball is brought into contact with the inner surface of the housing 116 in the narrowed area 118a (or narrowed area 118b) to prevent the small ball from dropping out of the nosing, and the rod 111 is further vertically When returning to the normal state, the small sphere that has reached the expansion region 123a (or the expansion region 123b) is pressed by the annular pressing tool 131a (or the pressing tool 131b) and moved to the spherical recess 115. Even without using a small ball cage, the strength and contact of a plurality of small balls are suppressed, and the rod 111 can be smoothly inclined and moved.
[0091] 球面軸受 360は、例えば、次のようにして製造される。先ず、図 31の球面軸受 310 を製造する場合と同様にして、ハウジング 116の蓋 116bの内側に、押圧具 131bが 付設された大球 112を置き、ハウジングの蓋 116bに本体 116aを固定する。次いで、 本体 116aと大球 112との間に小球群 117を押し込み、そして大球 112の開口 119a の周囲に押圧具 131aを付設して、最後に本体 116aに蓋 116cを固定することにより 球面軸受 360を製造することができる。  [0091] The spherical bearing 360 is manufactured, for example, as follows. First, as in the case of manufacturing the spherical bearing 310 of FIG. 31, the large sphere 112 provided with the pressing tool 131b is placed inside the lid 116b of the housing 116, and the main body 116a is fixed to the lid 116b of the housing. Next, the small ball group 117 is pushed between the main body 116a and the large sphere 112, and a pressing tool 131a is provided around the opening 119a of the large sphere 112, and finally the lid 116c is fixed to the main body 116a. A bearing 360 can be manufactured.
[0092] 次に、本発明の第四の構成の球面軸受について説明する。図 38は、本発明の第 四の構成の球面軸受の一例を示す図であり、図 39は、図 38に記入した切断線 III I II線に沿って切断した球面軸受 380の断面図であり、そして図 40は、図 38の球面軸 受 380のロッド 211が傾斜した状態を示す図である。 Next, a spherical bearing having a fourth configuration of the present invention will be described. FIG. 38 shows the present invention. FIG. 39 is a view showing an example of a spherical bearing of the four configurations, FIG. 39 is a cross-sectional view of the spherical bearing 380 cut along the cutting line III I II entered in FIG. 38, and FIG. FIG. 6 is a view showing a state in which a rod 211 of a spherical bearing 380 is inclined.
[0093] 図 38の球面軸受 380は、球面上にロッド 211を備えた大球 212、大球 212より大き な直径を持ち且つ狭窄域 218を介して開口面 214が形成されてなる、大球 212を収 容している球状凹部 215を有するハウジング 216、凹部 215の内部で大球 212の表 面に沿って加圧状態で配設された小球群 217、そして大球 212の表面に沿って小球 群 217を上下に隔離している三個の揺動環状隔離具 221a、 221b, 221cから構成 されている。 [0093] The spherical bearing 380 of FIG. 38 has a large sphere 212 having a rod 211 on a spherical surface, a large sphere having a diameter larger than that of the large sphere 212 and having an opening surface 214 formed through a constricted region 218. A housing 216 having a spherical recess 215 containing 212, a group of small spheres 217 arranged under pressure along the surface of the large sphere 212 inside the recess 215, and along the surface of the large sphere 212 Thus, it is composed of three oscillating annular separators 221a, 221b and 221c which isolate the small ball group 217 vertically.
[0094] 球面軸受 380では、ロッド 211が傾斜移動すると大球 212が回転し、この大球 212 の回転に伴い大球 212の表面に沿って配設された小球群 217が転動する。この小 球群 217の転動によって、球面軸受 380のロッド 211は、ハウジング 216に対して大 きな摩擦抵抗を生じることなく滑らかに傾斜移動することが可能とされている。  In the spherical bearing 380, when the rod 211 tilts, the large sphere 212 rotates, and the small sphere group 217 disposed along the surface of the large sphere 212 rolls as the large sphere 212 rotates. By the rolling of the small ball group 217, the rod 211 of the spherical bearing 380 can be smoothly inclined and moved without generating a large frictional resistance with respect to the housing 216.
[0095] 球面軸受 380のハウジング 216の狭窄域 218においては、ハウジング 216の内側 面と大球 212の球面との間隔が小球の直径よりも小さな間隔 (例えば、小球の直径よ りも 20〜50 /ζ πι程度小さな間隔)に設定されている。狭窄域 218は、ロッド 211の傾 斜移動によって開口面 214の側に向力つて転動する小球、例えば、図 40に示す小 球 217aが、ハウジング 216の外部へと脱落することを防止する。  [0095] In the constricted region 218 of the housing 216 of the spherical bearing 380, the distance between the inner surface of the housing 216 and the spherical surface of the large sphere 212 is smaller than the diameter of the small sphere (for example, 20 smaller than the diameter of the small sphere). It is set to a small interval of about 50 / ζ πι). The constriction region 218 prevents a small ball that rolls toward the opening surface 214 side by the tilt movement of the rod 211, for example, a small ball 217a shown in FIG. 40, from dropping out of the housing 216. .
[0096] 小球群 217は、ハウジング 216の球状凹部 215と大球 212の球面との間隔が小球 の直径よりも僅かに小さな間隔 (小球のサイズにも依存する力 例えば、小球の直径 よりも l〜5 /z m程度小さな間隔)に設定されているため、ハウジング 216と大球 212と の間に加圧状態で配設されている。このように、ハウジング 216の球状凹部 215には 、大球 212が小球群 217を介して緊密に接触支持された状態で嵌め合わされている ため、球面軸受 380は、特許文献 1の球面軸受の場合と同様にロッド 211の円滑か つ高精度の移動や回転が可能であり、精密位置決め装置等への利用に適したもの である。  [0096] The small ball group 217 includes a space in which the space between the spherical recess 215 of the housing 216 and the spherical surface of the large ball 212 is slightly smaller than the diameter of the small ball (a force that depends on the size of the small ball, for example, Therefore, it is disposed between the housing 216 and the large sphere 212 in a pressurized state. As described above, the spherical recess 215 of the housing 216 is fitted in a state in which the large sphere 212 is closely contacted and supported via the small sphere group 217. Therefore, the spherical bearing 380 is a spherical bearing of Patent Document 1. As in the case, the rod 211 can move and rotate with high precision and is suitable for use in precision positioning devices and the like.
[0097] また、球面軸受 380では、大球 212の表面に沿って小球群 217が保持器を用いず に配設されるため、大球の周囲には特許文献 1の球面軸受の場合と比較してより多く の数の小球を配置することができる。ロッド 211を備える大球 212を、より多くの数の 小球によって支持することにより、球面軸受 380の耐荷重を大きくすることができる。 In the spherical bearing 380, the small ball group 217 is arranged along the surface of the large ball 212 without using a cage. More compared The number of small spheres can be arranged. The load capacity of the spherical bearing 380 can be increased by supporting the large ball 212 including the rod 211 with a larger number of small balls.
[0098] 次に、球面軸受 380に備えられている揺動環状隔離具 221a、 221b, 221cについ て説明する。 Next, the swinging annular separators 221a, 221b, 221c provided in the spherical bearing 380 will be described.
[0099] 図 38の球面軸受 380のロッド 211が傾斜移動すると、これにより球状凹部 215と大 球 212との間にある複数個の小球の各々は大球とは逆向きに、すなわち前記複数個 の小球の全ては同じ向きに回転しながら転動する。  [0099] When the rod 211 of the spherical bearing 380 in FIG. 38 is tilted, each of the plurality of small spheres between the spherical recess 215 and the large sphere 212 is opposite to the large sphere, that is, the plurality of the plurality of small spheres. All of the small spheres roll while rotating in the same direction.
[0100] そして、球面軸受 380に揺動環状隔離具 221a、 221b, 221cが備えられていない と、ロッド 211が傾斜移動することで転動する小球群 217のうちの、例えば、一個の小 球の回転移動が困難になり、この小球に別の一個もしくは二個以上の小球が強く接 触すると、これらの複数個の小球力 その接触部において各々の小球の表面が逆向 きに移動しながら擦れ合うために大きな摩擦を生じて、幾つかの小球の転動が停止 する場合がある。このようにロッド 211が傾斜移動して!/、る最中に幾つかの小球の転 動が停止すると、ロッドの傾斜移動に必要なトルクの大きさが急激に変動するために ロッドが滑らかに傾斜移動できなくなる。  [0100] If the spherical bearing 380 is not provided with the swinging annular separators 221a, 221b, and 221c, for example, one small piece of the small ball group 217 that rolls when the rod 211 tilts and moves. Rotating movement of the sphere becomes difficult, and when one or more small spheres come into strong contact with this small sphere, the surface of each small sphere is reversed at the contact area. Some spheres may stop rolling due to large friction caused by friction while moving to each other. In this way, when the rod 211 is tilted! /, When some of the small balls stop rolling during the process, the magnitude of the torque required for the tilting movement of the rod suddenly fluctuates, so the rod is smooth. Can not be tilted.
[0101] 特に、ハウジング 216の開口面 214の側にある小球、例えば、図 40に示す小球 21 7aが狭窄域 218に到達してハウジング 216との接触により回転移動が困難になると、 この小球 217aに小球 217bが強く接触し、さらに小球 217bに小球 217cが強く接触 すると 、うように、連鎖的に小球が強く接触して 、くために小球の転動が停止し易くな る。  [0101] In particular, when a small sphere on the side of the opening surface 214 of the housing 216, for example, the small sphere 217a shown in FIG. 40, reaches the constricted region 218 and makes rotational movement difficult due to contact with the housing 216, this When the small ball 217b is in strong contact with the small ball 217a, and when the small ball 217c is in strong contact with the small ball 217b, the small balls are in strong contact with each other, and the rolling of the small balls is stopped. It becomes easy to do.
[0102] 図 38から図 40に示すように、揺動環状隔離具 221a、 221b, 221cにより小球群 2 17を上下に隔離すると、転動方向に並ぶ複数個の小球、例えば、小球 217aと小球 217b,小球 217bと小球 217c、そして小球 217cと小球 217dは各々上下に隔離さ れて互いに接触しないため、上記のような小球の転動の停止が抑制される。このため 、球面軸受 380においては、小球群が保持器に保持されていないもののロッド 211 は滑らかに傾斜移動することができる。なお、揺動環状離隔具 221a、 221b, 221c のそれぞれは、ロッド 211が傾斜移動を繰り返すことによりハウジング 216の内部にて 上下に転動を繰り返す小球群 217に押圧されて揺動しながら小球群 217を上下に隔 離する。なお、揺動環状隔離具は、小球群 217を上下に隔離するが、大球の周方向 には隔離しない。 [0102] As shown in FIGS. 38 to 40, when the small ball group 2 17 is vertically separated by the swinging annular separators 221a, 221b, 221c, a plurality of small balls arranged in the rolling direction, for example, small balls Since 217a and globules 217b, globules 217b and globules 217c, and globules 217c and 217d are separated from each other and do not contact each other, the above-mentioned stoppage of the spheres is suppressed. . For this reason, in the spherical bearing 380, although the small ball group is not held by the cage, the rod 211 can smoothly tilt and move. Each of the oscillating annular spacers 221a, 221b, and 221c is small while oscillating by being pressed by a small ball group 217 that repeatedly rolls up and down inside the housing 216 as the rod 211 repeatedly tilts and moves. Separate ball group 217 vertically Release. Note that the oscillating annular separator separates the small ball group 217 vertically, but does not isolate it in the circumferential direction of the large sphere.
[0103] 球面軸受 380は、例えば、次のようにして製造される。先ず、ハウジング 216の本体 216aの内部に隔離具 221cよりも下方に配置される複数個の小球を入れ、これらの 小球の上に隔離具 221cを配置し、そして更に隔離具 221cの上に複数個の小球を 置く。次いで、本体 216aの内部に大球 212を押し込んでロッド 211を揺動させること により、上記のようにして本体 216aに収容した複数個の小球の配置を整えたのち、 大球 212を本体 216aの内部から引き出す。続いて、隔離具 221cの上に配置された 複数個の小球の上に隔離具 221bを置いたのちに、大球 212を本体 216aの内部に 再び押し込む。そして本体 216aと大球 212との間に更に複数個の小球を押し込み、 これらの小球の上に隔離具 221aを置いたのちに、更に複数個の小球を押し込む。 最後に、本体 216aに、例えば、ボルト(図示は略する)を用いて蓋 216bを固定する ことにより球面軸受 380を製造することができる。このように、球面軸受 380は、小球 の保持器を備える必要がないために構成が簡単で、その製造が容易である。  [0103] The spherical bearing 380 is manufactured as follows, for example. First, a plurality of small balls arranged below the separator 221c are placed inside the main body 216a of the housing 216, the separator 221c is arranged on these small balls, and further on the separator 221c. Place several spheres. Next, the large sphere 212 is pushed into the main body 216a and the rod 211 is swung to arrange the plurality of small spheres accommodated in the main body 216a as described above. Pull out from inside. Subsequently, after placing the separating tool 221b on the plurality of small balls arranged on the separating tool 221c, the large ball 212 is pushed again into the main body 216a. Further, a plurality of small spheres are pushed between the main body 216a and the large sphere 212, and after placing the isolator 221a on these small spheres, a plurality of small spheres are further pushed. Finally, the spherical bearing 380 can be manufactured by fixing the lid 216b to the main body 216a using, for example, a bolt (not shown). Thus, the spherical bearing 380 is simple in configuration because it is not necessary to include a small spherical cage, and its manufacture is easy.
[0104] 第四の構成の球面軸受のハウジング、ロッド、大球、小球、そして揺動環状隔離具 の材料の例は、上記の第三の構成の球面軸受の場合と同様である。  [0104] Examples of the material of the housing, rod, large sphere, small sphere, and oscillating annular separator of the spherical bearing of the fourth configuration are the same as those of the spherical bearing of the third configuration.
[0105] ハウジング 216の内部に配置する揺動環状隔離具の数は、実用的には 1〜5個(特 に 1〜3個)であることが好ましい。隔離具の数が多すぎると、球面軸受の製造に手間 がかかるからである。また、隔離具の形状は、図 38に示すように平面形状であること に限定されない。例えば、隔離具の形状は、隔離具の幅方向が大球の中心に向かう ように表面が傾斜した漏斗状の形状であってもよ 、。  [0105] The number of swinging annular separators arranged inside the housing 216 is preferably 1 to 5 (particularly 1 to 3) in practice. This is because if there are too many separators, it takes time to manufacture spherical bearings. Further, the shape of the separator is not limited to a planar shape as shown in FIG. For example, the shape of the separator may be a funnel shape whose surface is inclined so that the width direction of the separator is directed toward the center of the large sphere.
[0106] また、ハウジング 216の内部に入れる小球の数は、ハウジング 216の狭窄域 218よ りも内側の空間に隔離具と共に収容可能である限り特に制限はないが、この空間に 隔離具と共に収容できる小球の最大数の 65〜95個数%の範囲内にあることが好ま しぐ 70〜80個数%の範囲内にあることが更に好ましい。ハウジングに入れる小球の 数が多すぎると小球同士が強く接触し易くなり、そして小球の数が少なすぎると球面 軸受の耐荷重が小さくなるからである。  [0106] Further, the number of small spheres to be placed inside the housing 216 is not particularly limited as long as it can be accommodated together with the isolator in the space inside the narrowed area 218 of the housing 216. It is preferably in the range of 65 to 95% by number of the maximum number of small spheres that can be accommodated, and more preferably in the range of 70 to 80% by number. This is because if the number of small balls placed in the housing is too large, the small balls are likely to come into strong contact with each other, and if the number of small balls is too small, the load bearing capacity of the spherical bearing becomes small.
[0107] 本発明の球面軸受においては、図 38に示すようにハウジング 216の狭窄域 218と 球状凹部 215との間に膨張域 213が形成されていることが好ましい。膨張域 213に おいては、ハウジング 216の内側面と大球 212の球面との間隔が小球の直径よりも 僅かに大きな間隔 (例えば、小球の直径よりも 10〜20 m程度大きな間隔)に設定 されている。このため、ロッド 211の傾斜移動に伴い小球が転動して膨張域 213まで 到達すると、小球は加圧状態から開放される。これは、ロッド 211の傾斜移動によりハ ウジング 216の開口面 214の側に転動した小球力 ハウジングと大球とにより加圧さ れた状態のまま上記の狭窄域 218にてハウジングに強く接触して停止すると、大球 2 12が回転し難くなつてロッドが滑らかに傾斜移動できなくなることがあり、膨張域 213 を形成することで、小球が加圧状態のまま狭窄域にてハウジングに強く接触すること を防止できるからである。 [0107] In the spherical bearing of the present invention, as shown in FIG. It is preferable that an expansion region 213 is formed between the spherical recess 215. In the expansion region 213, the distance between the inner surface of the housing 216 and the spherical surface of the large sphere 212 is slightly larger than the diameter of the small sphere (for example, a distance about 10 to 20 m larger than the diameter of the small sphere). Is set. For this reason, when the small sphere rolls to reach the expansion region 213 as the rod 211 is inclined, the small sphere is released from the pressurized state. This is because the small ball force rolled to the side of the opening surface 214 of the housing 216 due to the tilting movement of the rod 211, and in the state of being pressed by the large ball, strongly contacts the housing in the narrowed area 218 described above. If the ball stops, the rod may not be able to rotate smoothly because the large ball 2 12 is difficult to rotate.By forming the expansion region 213, the small ball remains in the pressurized region in the constricted region. This is because strong contact can be prevented.
[0108] また、ハウジング 216の球状凹部 215の底部(開口面 214の側とは逆側)に上記と は別の膨張域 (以下、第二の膨張域という)を形成することも好ましい。このような第二 の膨張域を形成することで、球面軸受 380のロッド 211にカ卩わる荷重は、大球 212の 底部、すなわち第二の膨張域にある加圧状態力 解放された小球には付与されずに 、第二の膨張域を除く球状凹部 215にある多数の小球に分散して付与される。この ため、球面軸受 380の耐荷重を増大させることができる。  [0108] It is also preferable to form an expansion region (hereinafter referred to as a second expansion region) different from the above at the bottom of the spherical recess 215 of the housing 216 (the side opposite to the opening surface 214). By forming such a second expansion region, the load applied to the rod 211 of the spherical bearing 380 can be applied to the bottom of the large ball 212, that is, the small ball released from the pressurized state force in the second expansion region. However, it is distributed and applied to a large number of small spheres in the spherical recess 215 excluding the second expansion region. For this reason, the load resistance of the spherical bearing 380 can be increased.
[0109] 図 41は、本発明の第四の構成の球面軸受の別の一例を示す図である。図 41の球 面軸受 410の構成は、揺動環状隔離具 221a、 221b, 221cの小球と対向する面に 、隔離具の周方向に伸びる溝 231もしくは切り欠き 232が形成されていること以外は 図 38の球面軸受 380と同様である。このような溝 231や切り欠き 232に小球が嵌まる ことにより各々の隔離具の横方向への移動が規制されるため、各々の隔離具は、ハ ウジング 216の内側面に接触し難くなる。このため、各々の隔離具は、ロッドの傾斜 移動により転動する小球と共に円滑に移動できるようになり、また上記の接触による ハウジング 216の内側面での傷の発生が抑制される。  FIG. 41 is a diagram showing another example of the spherical bearing of the fourth configuration according to the present invention. The configuration of the spherical surface bearing 410 in FIG. 41 is that a groove 231 or a notch 232 extending in the circumferential direction of the separator is formed on the surface of the swinging annular separator 221a, 221b, 221c facing the small ball. Is the same as the spherical bearing 380 in FIG. Since the movement of the separators in the lateral direction is restricted by the small balls fitted in the grooves 231 and the notches 232, the separators are difficult to contact the inner surface of the housing 216. . For this reason, each separator can move smoothly together with the small ball that rolls by the tilting movement of the rod, and the occurrence of scratches on the inner surface of the housing 216 due to the contact is suppressed.
[0110] 図 42は、本発明の第四の構成の球面軸受に用いる揺動環状隔離具の別の構成 例を示す平面図である。図 42の揺動環状隔離具 221には、隔離具 221の上に接触 して配置される複数個の小球を二点鎖線で記入した。  FIG. 42 is a plan view showing another configuration example of the swinging annular separator used for the spherical bearing of the fourth configuration according to the present invention. In the oscillating annular separator 221 in FIG. 42, a plurality of small spheres arranged in contact with the separator 221 are indicated by two-dot chain lines.
[0111] 図 42に示すように、揺動環状隔離具 221の小球と対向する面には、各々隔離具 2 21の径方向に伸びる複数本の溝 233が形成されて 、ることが好ま 、。揺動環状隔 離具 221に複数本の溝 233を形成することにより、隔離具 221に接して配置して 、る 複数個の小球 (例えば、小球 217a)は、溝 233が形成された位置に安定に配置され 易くなり、これらの小球が互いに強く接触することを抑制することができる。 [0111] As shown in FIG. 42, the surface of the oscillating annular separator 221 facing the small spheres has a separator 2 respectively. Preferably, 21 radial grooves 233 are formed. A plurality of small spheres (for example, small spheres 217a) arranged in contact with the separator 221 by forming a plurality of grooves 233 in the oscillating annular separator 221 are formed with the grooves 233. It becomes easy to be stably arranged at a position, and it is possible to suppress these small spheres from coming into strong contact with each other.
[0112] なお、揺動環状隔離具の小球と対向する面には、隔離具の周方向に伸びる溝もし くは切り欠きと、隔離具の径方向に伸びる溝との両者を形成してもよい。また、このよう な溝や切り欠きに代えて、揺動環状隔離具の小球と対向する面に、隔離具の周方向 に沿って互いに間隔をあけて窪みを形成することもできる。 [0112] In addition, a groove or notch extending in the circumferential direction of the separator and a groove extending in the radial direction of the separator are formed on the surface of the swinging annular separator facing the small ball. Also good. Further, in place of such grooves and notches, depressions can be formed on the surface of the oscillating annular separator facing the small balls at intervals from each other along the circumferential direction of the separator.
図面の簡単な説明  Brief Description of Drawings
[0113] [図 1]本発明の第一の構成の球面軸受の一例を示す図である。 FIG. 1 is a view showing an example of a spherical bearing having a first configuration according to the present invention.
[図 2]図 1の球面軸受 10のロッド 11が傾斜した状態を示す図である。  2 is a view showing a state in which the rod 11 of the spherical bearing 10 in FIG. 1 is inclined.
[図 3]本発明の第一の構成の球面軸受の別の一例を示す図である。  FIG. 3 is a view showing another example of the spherical bearing having the first configuration according to the present invention.
[図 4]本発明の第一の構成の球面軸受の更に別の一例を示す図である。  FIG. 4 is a view showing still another example of the spherical bearing having the first configuration according to the present invention.
[図 5]本発明の第一の構成の球面軸受の更に別の一例を示す図である。  FIG. 5 is a view showing still another example of the spherical bearing having the first configuration according to the present invention.
[図 6]本発明の第一の構成の球面軸受の更に別の一例を示す図である。  FIG. 6 is a view showing still another example of the spherical bearing having the first configuration according to the present invention.
[図 7]本発明の第一の構成の球面軸受の更に別の一例を示す図である。  FIG. 7 is a view showing still another example of the spherical bearing having the first configuration according to the present invention.
[図 8]図 7の球面軸受 70の環状押圧具 21と、押圧具 21の上面に接して配置されてい る小球との配置を示す平面図である。  8 is a plan view showing an arrangement of the annular pressing tool 21 of the spherical bearing 70 of FIG. 7 and small spheres arranged in contact with the upper surface of the pressing tool 21. FIG.
[図 9]本発明の第一の構成の球面軸受の更に別の一例を示す図である。  FIG. 9 is a view showing still another example of the spherical bearing of the first configuration according to the present invention.
[図 10]図 9の球面軸受 90のロッド 11が傾斜した状態を示す図である。  FIG. 10 is a view showing a state in which the rod 11 of the spherical bearing 90 in FIG. 9 is inclined.
[図 11]本発明の第一の構成の球面軸受の更に別の一例を示す図である。  FIG. 11 is a view showing still another example of the spherical bearing having the first configuration according to the present invention.
[図 12]図 11に記入した切断線 I—I線に沿って切断した球面軸受 110の断面図であ る。  FIG. 12 is a cross-sectional view of the spherical bearing 110 cut along the cutting line II along the line entered in FIG.
[図 13]図 11に記入した切断線 II— II線に沿って切断した球面軸受 110の断面図であ る。  FIG. 13 is a cross-sectional view of the spherical bearing 110 cut along the cutting line II—II line entered in FIG. 11.
[図 14]図 11の球面軸受 110のロッド 11が傾斜した状態を示す図である。  14 is a view showing a state in which the rod 11 of the spherical bearing 110 in FIG. 11 is inclined.
[図 15]本発明の第一の構成の球面軸受の更に別の一例を示す図である。  FIG. 15 is a view showing still another example of the spherical bearing having the first configuration according to the present invention.
[図 16]本発明の第一の構成の球面軸受の更に別の一例を示す図である。 [図 17]図 16の球面軸受 160のロッド 11が傾斜した状態を示す図である。 FIG. 16 is a view showing still another example of the spherical bearing having the first configuration according to the present invention. FIG. 17 is a view showing a state in which the rod 11 of the spherical bearing 160 in FIG. 16 is inclined.
圆 18]本発明の第一の構成の球面軸受の更に別の一例を示す図である。 FIG. 18 is a view showing still another example of the spherical bearing having the first configuration according to the present invention.
圆 19]本発明の第一の構成の球面軸受の更に別の一例を示す図である。 FIG. 19 is a view showing still another example of the spherical bearing having the first configuration according to the present invention.
[図 20]図 19の球面軸受 230のロッドが傾斜した状態を示す図である。  20 is a view showing a state in which the rod of the spherical bearing 230 in FIG. 19 is tilted.
圆 21]本発明の第一の構成の球面軸受の更に別の一例を示す図である。 FIG. 21 is a view showing still another example of the spherical bearing having the first configuration according to the present invention.
圆 22]本発明の第一の構成の球面軸受の更に別の一例を示す図である。但し、図 2FIG. 22 is a view showing still another example of the spherical bearing having the first configuration according to the present invention. However, Figure 2
2は、球面軸受 260をロッドの先端の側から見た図である。 2 is a view of the spherical bearing 260 as seen from the tip end side of the rod.
圆 23]本発明の第二の構成の球面軸受の一例を示す図である。 FIG. 23 is a view showing an example of a spherical bearing having a second configuration according to the present invention.
[図 24]図 23の球面軸受 190のロッド l la、 l ibが傾斜した状態を示す図である。 圆 25]本発明の第二の構成の球面軸受の別の一例を示す図である。  FIG. 24 is a view showing a state where the rods l la and l ib of the spherical bearing 190 of FIG. 23 are inclined. FIG. 25 is a view showing another example of the spherical bearing of the second configuration of the present invention.
圆 26]本発明の第二の構成の球面軸受の更に別の一例を示す図である。 FIG. 26 is a view showing still another example of the spherical bearing having the second configuration according to the present invention.
圆 27]本発明の第三の構成の球面軸受の一例を示す図である。 [27] FIG. 27 is a view showing an example of a spherical bearing having a third configuration according to the present invention.
[図 28]図 27の球面軸受 270の大球 112が傾斜移動した状態を示す図である。  FIG. 28 is a view showing a state where the large sphere 112 of the spherical bearing 270 of FIG. 27 is tilted.
[図 29]図 27の球面軸受 270の使用の態様を示す図である。  FIG. 29 is a view showing a mode of use of the spherical bearing 270 of FIG. 27.
[図 30]図 29に示す球面軸受 270に取り付けられたロッド 111が傾斜した状態を示す 図である。  FIG. 30 is a view showing a state in which a rod 111 attached to the spherical bearing 270 shown in FIG. 29 is inclined.
圆 31]本発明の第三の構成の球面軸受の別の一例を示す図である。 [31] FIG. 31 is a view showing another example of the spherical bearing of the third configuration according to the present invention.
圆 32]本発明の第三の構成の球面軸受の更に別の一例を示す図である。 [32] FIG. 32 is a view showing still another example of the spherical bearing of the third configuration according to the present invention.
圆 33]本発明の第三の構成の球面軸受の更に別の一例を示す図である。 FIG. 33] A view showing still another example of the spherical bearing of the third configuration according to the present invention.
圆 34]本発明の第三の構成の球面軸受の更に別の一例を示す図である。 [34] FIG. 34 is a view showing still another example of the spherical bearing of the third configuration according to the present invention.
圆 35]本発明の第三の構成の球面軸受に用いる揺動環状隔離具の別の構成例を示 す平面図である。 [35] FIG. 35 is a plan view showing another configuration example of the oscillating annular separator used in the spherical bearing of the third configuration of the present invention.
圆 36]本発明の第三の構成の球面軸受の更に別の一例を示す図である。 [36] FIG. 36 is a view showing still another example of the spherical bearing of the third configuration according to the present invention.
[図 37]図 36の球面軸受 360の大球 112が傾斜移動した状態を示す図である。 圆 38]本発明の第四の構成の球面軸受の一例を示す図である。  FIG. 37 is a view showing a state where the large sphere 112 of the spherical bearing 360 of FIG. 36 is tilted. [38] FIG. 38 is a view showing an example of a spherical bearing of a fourth configuration of the present invention.
[図 39]図 38に記入した切断線 III— III線に沿って切断した球面軸受 380の断面図で ある。  FIG. 39 is a cross-sectional view of spherical bearing 380 taken along line III-III in FIG. 38.
[図 40]図 38の球面軸受 380のロッド 211が傾斜した状態を示す図である。 [図 41]本発明の第四の構成の球面軸受の別の一例を示す図である。 FIG. 40 is a view showing a state in which the rod 211 of the spherical bearing 380 in FIG. 38 is inclined. FIG. 41 is a view showing another example of the spherical bearing of the fourth configuration according to the present invention.
[図 42]本発明の第四の構成の球面軸受に用いる揺動環状隔離具の別の構成例を示 す平面図である。  FIG. 42 is a plan view showing another configuration example of the oscillating annular separator used in the spherical bearing of the fourth configuration of the present invention.
符号の説明 Explanation of symbols
10、 30、 40、 50、 60、 70、 90、 110、 150、 160、 180 球面軸受  10, 30, 40, 50, 60, 70, 90, 110, 150, 160, 180 Spherical bearing
11、 l la、 l ib ロッド  11, l la, l ib rod
12 大球  12 large spheres
13、 13a、 13b 膨張域  13, 13a, 13b Expansion region
14、 14a、 14b 開口面  14, 14a, 14b Opening surface
15 球状凹部  15 Spherical recess
16 ハウジング  16 Housing
16a ハウジングの本体部  16a Housing body
16b ハウジングの蓋部  16b Housing lid
17 小球群  17 globules
17a, 17b、 17c、 17d 小球  17a, 17b, 17c, 17d
18、 18a, 18b 狭窄域  18, 18a, 18b Stenosis
19 膨張域  19 Expansion range
21, 21a, 21b 環状押圧具  21, 21a, 21b Ring press
22, 22a, 22b 環状押圧具  22, 22a, 22b Ring press
23、 24 環状押圧具  23, 24 Ring press
25, 25a, 25b 環状押圧具  25, 25a, 25b annular pressing tool
26 環状押圧具  26 Ring press
27 小球  27 small balls
27a, 27b 小球  27a, 27b small ball
31、 32 溝  31, 32 groove
33、 34 切り欠き  33, 34 Notch
35 溝  35 groove
36 環状の弾性体 板ばね 36 Annular elastic body Leaf spring
渦卷ばね Vortex spring
、 210、 220 球面軸受 210, 220 Spherical bearing
、 250、 260 球面軸受 250, 260 Spherical bearing
、 310、 320、 330、 340、 360 球面軸受 ロッド , 310, 320, 330, 340, 360 Spherical bearing rod
大球 Large ball
a, 113b 膨張域a, 113b Expansion area
a, 114b 開口面 a, 114b Opening surface
球状凹部  Spherical recess
ハウジング housing
a ハウジングの本体a Housing body
b, 116c ハウジングの蓋 b, 116c Housing lid
小球群 Small ball group
a, 117b、 117c 小球a, 117b, 117c
a, 118b 狭窄域 a, 118b Stenosis
透孔 Through hole
a, 119b 開口a, 119b opening
a, 121b 環状押圧具a, 121b Annular press
a, 123b 膨張域 a, 123b Expansion range
ネジ  screw
座金  Washer
ナット nut
a, 131b 環状押圧具 a, 131b Ring press
、 141a, 141b 揺動環状隔離具 溝 141a, 141b Oscillating annular separator Groove
 Groove
、 410 球面軸受 ロッド、 410 spherical bearings rod,
大球  Large ball
膨張域  Expansion area
開口面  Opening surface
球状凹部  Spherical recess
ハウジング housing
a ノヽウジングの本体a Knowing body
b ハウジングの蓋 b Housing lid
小球群 Small ball group
a, 17b、 17c、 17d 小球 a, 17b, 17c, 17d
狭窄域  Stenosis
、 221a, 221b, 221c 揺動環状隔離具 溝 , 221a, 221b, 221c Oscillating annular separator groove
切り欠き  Cutout
 Groove

Claims

請求の範囲 The scope of the claims
[I] 球面上にロッドを備えた大球、該大球より大きな直径を持ち且つ膨張域を介して開 口面が形成されてなる、該大球を収容している球状凹部を有するハウジング、該凹部 内で大球の表面に沿って加圧状態で配設された小球群、そして大球のロッドの基部 の周囲に配置され、ロッド基部との係合状態にて小球群を押圧することのできる環状 押圧具からなる球面軸受。  [I] a large sphere having a rod on a spherical surface, a housing having a larger diameter than the large sphere and having an opening surface formed through an expansion region, and having a spherical recess that accommodates the large sphere; A small sphere group arranged in a pressurized state along the surface of the large sphere in the recess, and arranged around the base of the rod of the large sphere, and presses the small sphere group in an engaged state with the rod base. A spherical bearing made of an annular pressing tool.
[2] 環状押圧具が揺動可能で、ロッドの傾斜移動によりロッド基部と係合する揺動環状 押圧具である請求項 1に記載の球面軸受。  [2] The spherical bearing according to [1], wherein the annular pressing tool is a swinging annular pressing tool that is swingable and engages with the rod base by tilting the rod.
[3] 揺動環状押圧具がその内側周縁に環状の弾性体を備える請求項 2に記載の球面 軸受。 [3] The spherical bearing according to claim 2, wherein the oscillating annular pressing tool includes an annular elastic body at an inner peripheral edge thereof.
[4] 環状押圧具が、予めロッドの基部の周囲に固定されて係合状態にある固定環状押 圧具である請求項 1に記載の球面軸受。  4. The spherical bearing according to claim 1, wherein the annular pressing tool is a fixed annular pressing tool that is fixed in advance around the base of the rod and is in an engaged state.
[5] 固定環状押圧具がその内側周縁に備えられた環状の弾性体を介してロッドの基部 の周囲に固定されている請求項 4に記載の球面軸受。 5. The spherical bearing according to claim 4, wherein the fixed annular pressing tool is fixed around the base portion of the rod via an annular elastic body provided on the inner peripheral edge thereof.
[6] 環状押圧具の小球と対向する面に、該押圧具の周方向に伸びる溝もしくは切り欠 きが形成されて 、る請求項 1に記載の球面軸受。 6. The spherical bearing according to claim 1, wherein a groove or notch extending in the circumferential direction of the pressing tool is formed on a surface of the annular pressing tool facing the small sphere.
[7] 環状押圧具の小球と対向する面に、各々該押圧具の径方向に伸びる複数本の溝 が形成されて ヽる請求項 1に記載の球面軸受。 7. The spherical bearing according to claim 1, wherein a plurality of grooves each extending in a radial direction of the pressing tool are formed on a surface of the annular pressing tool facing the small sphere.
[8] 膨張域と開口面との間に狭窄域が形成されている請求項 1に記載の球面軸受。 8. The spherical bearing according to claim 1, wherein a constriction region is formed between the expansion region and the opening surface.
[9] 球面の上下の各々にロッドを備えた大球、該大球よりも大きな直径を持ち且つ上下 の各々に膨張域を介して開口面が形成されてなる、該大球を収容している球状凹部 を有するハウジング、該凹部内で大球の表面に沿って加圧状態で配設された小球群[9] A large sphere having a rod on each of the upper and lower surfaces of the spherical surface, having a larger diameter than the large sphere, and having an opening surface formed on each of the upper and lower surfaces through an expansion region, A housing having a spherical recess, and a group of small spheres arranged in a pressurized state along the surface of the large sphere in the recess
、そして大球の各々のロッドの基部の周囲に配置され、ロッド基部との係合状態にて 小球群を押圧することのできる環状押圧具力 なる球面軸受。 And a spherical bearing which is arranged around the base of each rod of the large sphere and has an annular pressing force that can press the small ball group in an engaged state with the rod base.
[10] 少なくとも一方の環状押圧具が揺動可能で、ロッドの傾斜移動によりロッド基部と係 合する揺動環状押圧具である請求項 9に記載の球面軸受。 10. The spherical bearing according to claim 9, wherein at least one of the annular pressing members is a swinging annular pressing member that is swingable and engages with the rod base by tilting the rod.
[II] 少なくとも一方の環状押圧具が、予めロッドの基部の周囲に固定されて係合状態に ある固定環状押圧具である請求項 9に記載の球面軸受。 [II] The spherical bearing according to claim 9, wherein at least one of the annular pressing tools is a fixed annular pressing tool that is fixed in advance around the base of the rod and is in an engaged state.
[12] 各々の膨張域と開口面との間に狭窄域が形成されている請求項 9に記載の球面軸 受。 12. The spherical bearing according to claim 9, wherein a constriction region is formed between each expansion region and the opening surface.
[13] 上下の各々に開口を有する透孔を中央に備えた大球、該大球よりも大きな直径を 持ち且つ上下のそれぞれに膨張域を介して開口面が形成されてなる、該大球を収 容している球状凹部を有するハウジング、該凹部内で大球の表面に沿って加圧状態 で配設された小球群、そして大球の各々の開口の周囲に付設され、大球の回転によ り上記小球群を押圧することのできる環状押圧具力 なる球面軸受。  [13] A large sphere having a through-hole having an opening in the upper and lower sides in the center, the large sphere having a larger diameter than the large sphere and having an opening surface formed in each of the upper and lower sides through an expansion region A housing having a spherical recess that accommodates the sphere, a group of small spheres disposed under pressure along the surface of the large sphere in the recess, and a large sphere attached around each opening of the large sphere. A spherical bearing having an annular pressing force that can press the small ball group by rotating the lens.
[14] 大球の表面に沿って小球群を上下に隔離する揺動環状隔離具を備える請求項 13 に記載の球面軸受。  14. The spherical bearing according to claim 13, further comprising an oscillating annular separator that vertically isolates the small ball group along the surface of the large sphere.
[15] 揺動環状隔離具の小球と対向する面に、該隔離具の周方向に伸びる溝もしくは切 り欠きが形成されている請求項 14に記載の球面軸受。  15. The spherical bearing according to claim 14, wherein a groove or notch extending in a circumferential direction of the separator is formed on a surface of the swinging annular separator facing the small ball.
[16] 揺動環状隔離具の小球と対向する面に、各々該隔離具の径方向に伸びる複数本 の溝が形成されている請求項 14に記載の球面軸受。  16. The spherical bearing according to claim 14, wherein a plurality of grooves each extending in a radial direction of the separator are formed on a surface of the swinging annular separator facing the small ball.
[17] 球面上にロッドを備えた大球、該大球より大きな直径を持ち且つ狭窄域を介して開 口面が形成されてなる、該大球を収容している球状凹部を有するハウジング、該凹部 内で大球の表面に沿って加圧状態で配設された小球群、そして該大球の表面に沿 つて小球群を上下に隔離している少なくとも一つの揺動環状隔離具力 なる球面軸 受。  [17] A large sphere having a rod on a spherical surface, a housing having a larger diameter than the large sphere and having an opening surface formed through a constricted region, and having a spherical recess that accommodates the large sphere, A small ball group arranged in a pressurized state along the surface of the large sphere in the recess, and at least one oscillating annular separator that vertically separates the small ball group along the surface of the large sphere A spherical bearing that is a force.
[18] 揺動環状隔離具の小球と対向する面に、該隔離具の周方向に伸びる溝もしくは切 り欠きが形成されている請求項 17に記載の球面軸受。  18. The spherical bearing according to claim 17, wherein a groove or notch extending in a circumferential direction of the separator is formed on a surface of the oscillating annular separator facing the small ball.
[19] 揺動環状隔離具の小球と対向する面に、各々該隔離具の径方向に伸びる複数本 の溝が形成されている請求項 17に記載の球面軸受。 19. The spherical bearing according to claim 17, wherein a plurality of grooves each extending in a radial direction of the separator are formed on a surface of the swinging annular separator facing the small ball.
PCT/JP2006/319274 2005-09-28 2006-09-28 Spherical bearing WO2007037311A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005282066A JP2007092855A (en) 2005-09-28 2005-09-28 Spherical bearing
JP2005282071A JP5188675B2 (en) 2005-09-28 2005-09-28 Spherical bearing
JP2005-282066 2005-09-28
JP2005282056 2005-09-28
JP2005-282056 2005-09-28
JP2005-282071 2005-09-28
JP2006128622A JP4972339B2 (en) 2005-09-28 2006-05-02 Spherical bearing
JP2006-128622 2006-05-02

Publications (1)

Publication Number Publication Date
WO2007037311A1 true WO2007037311A1 (en) 2007-04-05

Family

ID=37899735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319274 WO2007037311A1 (en) 2005-09-28 2006-09-28 Spherical bearing

Country Status (1)

Country Link
WO (1) WO2007037311A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57182632U (en) * 1980-06-21 1982-11-19
JPH0587121A (en) * 1991-09-30 1993-04-06 Saita Kogyo Kk Ball joint
JP2001146916A (en) * 1999-11-22 2001-05-29 Minebea Co Ltd Universal spherical ball bearing
JP2002115712A (en) * 2000-10-06 2002-04-19 Hiihaisuto Seiko Kk Spherical bearing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57182632U (en) * 1980-06-21 1982-11-19
JPH0587121A (en) * 1991-09-30 1993-04-06 Saita Kogyo Kk Ball joint
JP2001146916A (en) * 1999-11-22 2001-05-29 Minebea Co Ltd Universal spherical ball bearing
JP2002115712A (en) * 2000-10-06 2002-04-19 Hiihaisuto Seiko Kk Spherical bearing

Similar Documents

Publication Publication Date Title
JP5211963B2 (en) Ball bearing, conveyor, vacuum processing equipment
WO2007037311A1 (en) Spherical bearing
JP2008229827A (en) Work supporting block
JP5188675B2 (en) Spherical bearing
US10077803B2 (en) Ball-socket type tilting pad journal bearing
JP4972339B2 (en) Spherical bearing
JP4749279B2 (en) Spherical bearing
JP5085216B2 (en) Spherical bearing
JP5920044B2 (en) Tapered roller assembly device
JP2009041735A (en) Spherical bearing
JP2006329216A (en) Bearing manufacturing method and ball bearing device
JP2009294050A (en) Measuring instrument of coefficient of rolling friction
JP4353458B2 (en) Ball joint
JP4401799B2 (en) Work holding vise
US20040104524A1 (en) Simplified flexural pivot
JP6901135B2 (en) Thrust Needle Bearing Assembly Equipment
JP2021122891A (en) Spindle device
OA11777A (en) Purely rolling bearing.
JP2006184169A (en) Rolling fatigue evaluation method of steel ball for bearing, and thrust type rolling fatigue tester
US5658081A (en) Adjusting mechanism for a prestressed bearing arrangement
KR101221686B1 (en) Pre-load control device of bearing for machine tool
JP2015175510A (en) Hydrostatic gas bearing rotation guide device
JP2000052104A (en) Spindle device for machine tool
CZ20033062A3 (en) Sliding radial bearing
JP6828630B2 (en) Tapered roller bearing assembly equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06810722

Country of ref document: EP

Kind code of ref document: A1