WO2007036653A1 - Procede de fabrication d'un produit alimentaire ou biotechnologique mettant en oeuvre une regulation du potentiel redox - Google Patents

Procede de fabrication d'un produit alimentaire ou biotechnologique mettant en oeuvre une regulation du potentiel redox Download PDF

Info

Publication number
WO2007036653A1
WO2007036653A1 PCT/FR2006/050792 FR2006050792W WO2007036653A1 WO 2007036653 A1 WO2007036653 A1 WO 2007036653A1 FR 2006050792 W FR2006050792 W FR 2006050792W WO 2007036653 A1 WO2007036653 A1 WO 2007036653A1
Authority
WO
WIPO (PCT)
Prior art keywords
redox potential
fermentation
medium
production
steps
Prior art date
Application number
PCT/FR2006/050792
Other languages
English (en)
Other versions
WO2007036653A8 (fr
Inventor
Christel Girault
Dominique Ibarra
Original Assignee
L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to AT06794533T priority Critical patent/ATE431940T1/de
Priority to AU2006296491A priority patent/AU2006296491B2/en
Priority to DE602006006921T priority patent/DE602006006921D1/de
Priority to BRPI0616688-1A priority patent/BRPI0616688A2/pt
Priority to US12/088,633 priority patent/US8367128B2/en
Priority to EP06794533A priority patent/EP1943573B1/fr
Publication of WO2007036653A1 publication Critical patent/WO2007036653A1/fr
Publication of WO2007036653A8 publication Critical patent/WO2007036653A8/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12CBEER; PREPARATION OF BEER BY FERMENTATION; PREPARATION OF MALT FOR MAKING BEER; PREPARATION OF HOPS FOR MAKING BEER
    • C12C11/00Fermentation processes for beer
    • C12C11/003Fermentation of beerwort
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/123Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/13Fermented milk preparations; Treatment using microorganisms or enzymes using additives
    • A23C9/1307Milk products or derivatives; Fruit or vegetable juices; Sugars, sugar alcohols, sweeteners; Oligosaccharides; Organic acids or salts thereof or acidifying agents; Flavours, dyes or pigments; Inert or aerosol gases; Carbonation methods
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • A23L2/54Mixing with gases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/28Means for regulation, monitoring, measurement or control, e.g. flow regulation of redox potential
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D21/00Control of chemical or physico-chemical variables, e.g. pH value
    • G05D21/02Control of chemical or physico-chemical variables, e.g. pH value characterised by the use of electric means

Definitions

  • the present invention relates to the field of manufacturing processes for food and biotechnological products, implementing one or more fermentation steps.
  • fermented food products such as fermented milk products (yogurts, white cheeses, etc.), fermented beverages (beers, wine, etc.),
  • the invention sets out to propose new operating conditions which make it possible, according to the case in point, to improve in particular the properties of the products thus manufactured, and in particular their microbiological, sensory, physicochemical, etc. properties, or the yields, the purities, etc.
  • the present invention proposes a novel method of conducting such methods by controlling and regulating the redox potential of the medium under consideration at a given level of redox potential (defined redox level). in each case so as to have an optimum desired effect), at one or more key points of the process, by controlled additions of one or more suitable gases or gas mixtures.
  • Measurements of the redox potential in a medium can be obtained using any available means such as, for example, redox probes which make it possible to make direct and continuous measurements in liquid or semi-liquid media, or indirectly by measurements of dissolved gas content, for example dissolved hydrogen in the medium.
  • the monitoring and regulation of the redox potential at certain key stages of the process make it possible, for example, to carry out steps or phases of the process under stable reducing conditions or alternating during the process steps under reducing conditions with steps under oxidizing conditions.
  • a condition is considered to be oxidative or reducing with respect to the redox potential of the medium prior to adjustment by the gases.
  • a condition will be said to be reducing when the oxidation-reduction potential is lower than the initial value before its adjustment and regulation (whether the potential reached is negative or not).
  • a condition will be called oxidizing when the oxidation-reduction potential is greater than the initial value before its adjustment and regulation (whether the potential reached is positive or not).
  • Eh oxidation-reduction potential
  • Eh is a state parameter of fermentations; its variation modifies the physico-chemical environment of microorganisms.
  • the metabolic activities and physiology of microorganisms are determined by the intracellular pH (pH in ) that will condition the activity of enzymes and the accessibility of certain substrates and cofactors in metabolic reactions.
  • the pH ⁇ is a function of the extracellular pH (pH ex ) and the ability of the microorganism to maintain a certain cellular homeostasis.
  • the difference between pHj ⁇ and pH ex will also modify the value of the proto-motive force ⁇ hT, which is notably involved in the exchanges of the microbial cell with the outside.
  • Eh and pHj ⁇ are intimately related; thus the energy found in compounds with high potential such as adenosine triphosphate (ATP) and gained by the catabolism of substrates can be used by the cell to maintain its pHj ⁇ (and therefore its ⁇ pH) through membrane ATPases.
  • ATP adenosine triphosphate
  • lactic acid bacteria are largely involved in the production of fermented milk product flavors; convert lactose into lactic acid, which leads to the production of diacetyl and acetaldehyde, which are the main aromas of fermented milks and fresh cheeses.
  • the Eh is an environmental parameter that will be able to condition the activities metabolism of microorganisms and in particular their ability to synthesize aroma molecules. In particular, it has been shown for Emmental and Cheddar cheese that good quality cheeses have a low redox potential.
  • Eh is a physico-chemical parameter that, by its nature, acts on all media, provided that they contain at least one molecule that can pass from an oxidized to reduced state and vice versa. This is why its effect is perceptible on all cellular functions. Its action has been shown on different types of bacterial strains, for illustrative purposes: - The addition of chemical reducers in culture media has significantly modified the growth and metabolic fluxes in Corynebacterium glutamicum, Clostridium acetobutylicum,
  • a gas-bound reductant E was able to modify the metabolic fluxes in Saccharomyces cerevisiae with an increase in the glycerol / ethanol ratio and the accumulation of reserve sugars with increased yeast survival during storage.
  • Eh is already indirectly taken into account through oxygen whose inhibitory effect on lactic acid bacteria is well identified. This effect is due to their inability to synthesize cytochromes and heme-core enzymes.
  • the present invention thus relates to a method of manufacturing a food or biotechnological product, implementing one or more steps, one or more of the steps implementing a medium, one or more of the steps implementing a medium.
  • a redox potential control operation is carried out in the middle of the step in question and characterized in that the driving is carried out of the method as follows: - the redox potential of the medium of the step, the redox potential of which is controlled by means of controlled additions of a treatment gas in the medium in question, is regulated at a predetermined set point, and
  • the transition to the next step of said step considered in the method is allowed when said setpoint value is reached, so as to carry out at least one of said process steps in a reducing condition and at least one of said process steps in said process; oxidizing condition.
  • the process is a method of manufacturing a fermented dairy product, and the regulation of the redox potential takes place in several steps so as to sequence the oxidation and reduction phases as follows:
  • a regulation of the redox potential is carried out so as to set up reducing conditions at one or more points of the process situated upstream of the pasteurization phase; a regulation of the redox potential is carried out so as to set up oxidizing conditions at one or more points of the process located downstream of the pasteurization.
  • the process is a method of manufacturing a fermented dairy product, and the regulation of the redox potential takes place in several steps so as to sequence the oxidation and reduction phases as follows:
  • a regulation of the redox potential is carried out so as to set up oxidizing conditions at one or more points of the process situated upstream of the pasteurization phase;
  • a regulation of the redox potential is carried out so as to set up reducing conditions at one or more points of the process situated downstream of the pasteurization.
  • the fermented milk product is a yogurt.
  • said process is carried out in such a way that, for at least one of said fermentation stages, controlled additions of a treatment gas make it possible to alternate phases of the fermentation considered under reducing conditions with phases fermentation considered under oxidizing conditions.
  • the process is a process for producing beer, and said process line allows regulation of the redox potential during the fermentation to take place in two stages: firstly, the fermentation takes place under controlled oxidizing conditions and in the presence of oxygen, to promote the growth of the yeast and its good physiological state, and in a second time, the redox potential is lowered to an optimal value to allow to improve the fermentation parameters, as well as the sensory criteria.
  • the process is a fermentor fermentation process for the production of biomass and / or metabolites
  • said method of operation makes it possible to regulate the redox potential of the medium at different successive values as a function of the different phases of the fermentation so as to perform a first phase under oxidizing conditions in order to promote the growth of the microbial strain by oxidizing conditions, and after obtaining a maximum biomass content to switch the fermenter under conditions reducing agents to initiate or intensify the production of one or more desired metabolites.
  • the process is a fermentor fermentation process for the production of biomass and / or metabolites, and said process control makes it possible to regulate the redox potential of the medium at different successive values as a function of the different phases of the fermentation, so as to to achieve a first phase made slightly reducing that is favorable to the growth of certain microorganisms and therefore the production of a large biomass, followed by a more reducing phase that will help promote the production of desired flavor compounds.
  • the method is a fermentor fermentation process for the production of biomass and / or metabolites, and said process line makes it possible to modify and regulate the redox potential of the medium at a different value at the end of the fermentation in order to adapt the metabolism or the physiology of microorganisms to prepare them at a later stage.
  • the process is a fermentor fermentation process for the production of biomass and / or metabolites, and said process allows the level of redox potential to be changed after the production of a desired metabolite to promote the excretion of the metabolite considered in the recovery environment.
  • the process is a fermentor fermentation process for the production of biomass and / or metabolites, and said process line makes it possible to change the level of redox potential after the production of a precursor of a molecule of interest for promote a chemical reaction to obtain the desired molecule of interest.
  • the process is a fermentor fermentation process for the production of biomass and / or metabolites, and in that after fermentation are carried out:
  • the process line makes it possible to change the level of redox potential after the separation of the medium containing the molecule of interest from the biomass (microbial cells) to favor the selective separation of the molecule of interest from the other compounds of the medium, giving priority to for example, the fixing on a resin is in the reduced form or in the oxidized form of the molecule of interest and its elution with a suitable solution.
  • the treatment gas will have to be chosen according to the process in question, from the stage under consideration, to the redox conditions that one wishes to achieve, and it will be possible to therefore consider using a neutral gas such as nitrogen, argon, helium, or carbon dioxide, but also an oxidizing gas such as oxygen or air, or a reducing gas such as hydrogen, or a mixture of such gases.
  • a neutral gas such as nitrogen, argon, helium, or carbon dioxide
  • an oxidizing gas such as oxygen or air
  • a reducing gas such as hydrogen
  • FIG. 1 a preparation of the milk, which generally comprises the addition of components such as fats or proteins or aromas for fixing the composition thereof;
  • yogurt seeding with the desired strains - depending on the type of yogurt or fermented milk product considered: a tank fermentation followed by a smoothing before a potting (eg yogurt called “stirred”), or the prior distribution of the mixture sowed in pots where will be carried out fermentation (eg yogurts called “firm” or “parboiled”);
  • Redox potential regulation at the following points in the chain can be considered: i) in the milk before standardization, j) in the dairy mixture resulting from the addition of the additional ingredients to the milk; k) before or after the step of homogenizing said dairy mixture;
  • reducing values can favorably affect the conformation of proteins, including serum proteins, rich in sulfur molecules.
  • the redox potential makes it possible to play on the state of these molecules, which are either in the form of thiol groups or in the form of disulfide bridges, and play a crucial role in the formation of the protein network after denaturation of the proteins during the step pasteurization.
  • the fermentation advantageously takes place in a controlled oxidative condition and in the presence of oxygen, to promote the growth of the yeast and its good physiological state.
  • the redox potential is lowered to an optimal value to allow to improve the fermentation parameters, as well as the sensory criteria (aromas, holding of the foam).
  • the brewing process typically involves two fermentation stages: - The main fermentation: after aeration of the must, it is inoculated with a yeast of the genus Saccharomyces, which will, by fermentation, transform the fermentable sugars into alcohol and carbon dioxide .
  • the secondary fermentation or "guard” this step takes place following the previous one by lowering the temperature of the medium to a temperature close to 0 0 C for a period that varies from a few days to a few weeks.
  • the young beer will become saturated with carbon dioxide, which will contribute very strongly to its foaming character. It is also during this phase of maturation that the beer is clarified and its flavor is refined.
  • the examples which follow will show that it is advantageous to ferment the must at selected times in an oxidizing condition and at times chosen in a reducing condition.
  • Example 1 Six tests of must fermentation, of the "Kirin" type, were carried out using a malt extract (this test is well known to those skilled in the art, it is a predictive, autonomous test, ie disconnected from overall process for the production of beer): 2 test musts (average redox potential: 40OmV), 2 musts whose redox potential was reduced by initial bubbling with nitrogen (average redox potential: 14OmV), and 2 musts whose Redox potential has been reduced by initial bubbling with a nitrogen / hydrogen mixture (96/4) (average redox potential: -415mV). The musts were inoculated with active dry yeast at 11 ⁇ 10 6 viable cells per ml. The objective was to determine the influence of the redox potential on the fermentative performance of yeast for 8 days at 8 ° C.
  • the fermentation parameters apparent extract (fermentable extract plus non-fermentable extract) of the must at the end of the test, apparent attenuation (percentage of fermentable extract used by the yeast with respect to the total extract of the must), degree of attenuation (proportion of the fermentable extract used by the yeast compared to the total fermentable extract).
  • Example 2 Six micro-brewing tests (micro-beer production) of 30 liters were carried out as follows: 2 aerated control musts (average redox potential: 291 mV), 2 musts whose redox potential was reduced by an initial bubbling with nitrogen (average redox potential: 216mV), and 2 musts whose redox potential was reduced by initial bubbling with a nitrogen / hydrogen mixture (96/4) (average redox potential: -29OmV). The beers thus obtained were analyzed. In summary, the redox potential of must before heating is controlled, the rest of the production line is traditional.
  • Table 2 Beer analysis results (average values of the 2 replicates for the foam resistance, and values of the 2 replicates for the SO 2 content).
  • fermentor production meets two needs, separately or simultaneously: the production of biomass and / or the production of molecules of interest.
  • the semi-continuous or "fed-batch” culture used for example for the production of biomass sensitive to inhibition by the substrate, and for which the continuous or periodic supply of nutrients is coupled to the growth, without which no continuous sampling of media is performed,
  • continuous culture for which the microorganisms are maintained in the exponential phase of growth by the continuous supply of a new medium which balances the continuous sampling of medium containing the cells in suspension.
  • These fermentations whether aerobic or anaerobic, take place in fermentor or bioreactor, with or without agitation, in a medium whose composition is defined so as to direct the fermentation towards the desired production.
  • the fermentation parameters such as pH, temperature, dissolved oxygen pressure, stirring speed, etc. are generally regulated to pre-determined optimum values so as to maximize the desired production.
  • microorganisms the growth of microorganisms, the production of oxidizing or reducing molecules by microorganisms,
  • the present invention then proposes continuously monitoring the redox potential and regulating it to its optimum value by using controlled additions of gas.
  • This optimum value is experimentally pre-determined in order to optimize the desired reaction at a given moment of the fermentation.
  • this regulation may or may not be associated with an adjustment of the redox potential of the new culture medium provided in the case of semi-continuous and continuous cultures.
  • the redox potential of the medium is regulated at different successive values as a function of the different periods of the fermentation, so as to drive the latter to direct it towards such or such desired reaction.
  • the fermentation can thus be controlled in a reducing condition at first and then be regulated in a more oxidizing condition in a second time and vice versa:
  • the level of regulation after the production of the desired metabolite (for example the production of a parietal enzyme) before harvesting or separation of the culture and therefore at the end of fermentation, to promote the excretion of the metabolite considered in the recovery medium.
  • This change in redox potential can also occur after the production of a precursor of the molecule of interest which, in a reducing condition, will undergo a chemical reaction making it possible to obtain the molecule of interest in question.
  • Centrifugation, filtration or ultrafiltration steps make it possible to recover the biomass produced. Purification steps can be performed on the fermentation medium to separate and concentrate metabolites: centrifugation, filtration, chromatography, precipitation by addition of salts or solvent etc.
  • the invention then proposes to regulate redox to promote the separation of these molecules of interest.
  • the production and / or the excretion in the culture medium takes place under an oxidizing (or reducing) condition, and is converted into a reducing (respectively oxidizing) condition to carry out the separation step.
  • a molecule can be retained in a chromatography column by binding to a resin in an oxidizing condition and then released into a reducing elution solution.
  • the seeding of the medium can be carried out directly, it can also be envisaged indirectly by virtue of the fact that or several successive pre-cultures to form the inoculum which will be used to seed the fermentation medium, and it is also possible to envisage according to the present invention the fact of carrying out a control and regulation of the redox potential of the preculture to the using controlled additions of a treatment gas in the pre-culture medium under consideration.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Polymers & Plastics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Nutrition Science (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Dairy Products (AREA)

Abstract

Un procédé de fabrication d'un produit alimentaire ou biotechnologique, mettant en œuvre une ou plusieurs étapes, l'une ou plusieurs des étapes mettant en œuvre un milieu, l'une ou plusieurs des étapes mettant en œuvre un milieu étant une étape de fermentation, au cours duquel on procède, durant au moins l'une des étapes du procédé à une opération de contrôle du potentiel redox du milieu de l'étape considérée, et se caractérisant en ce que l'on effectue la conduite du procédé de la manière suivante : - on régule à un niveau prédéterminé de consigne le potentiel redox du milieu de l'étape dont le potentiel redox est contrôlé à l'aide d'ajouts contrôlés d'un gaz de traitement dans le milieu considéré, et - on autorise le passage à l'étape suivante de ladite étape considérée dans le procédé lorsque ladite valeur de consigne est atteinte, de façon à réaliser au moins une des dites étapes du procédé en condition réductrice et au moins une des dites étapes du procédé en condition oxydante.

Description

Procédé de fabrication d'un produit alimentaire ou biotechnologique mettant en œuvre une régulation du potentiel redox.
La présente invention concerne le domaine des procédés de fabrication de produits alimentaires et biotechnologiques, mettant en œuvre une ou des étapes de fermentation.
Les procédés envisagés sont très variés et peuvent être divisés en deux grandes familles :
- les procédés de fabrication de produits fermentes alimentaires tels que les produits laitiers fermentes (yaourts, fromages blancs etc.), les boissons fermentées (bières, vin etc.),
- les procédés de fabrication de biomasse (ferments lactiques, levures etc.) et de métabolites (ingrédients alimentaires, molécules d'intérêt telles que les enzymes, acides aminés, médicaments, éthanol...etc...). L'invention s'attache à proposer de nouvelles conditions opératoires permettant selon le cas considéré d'améliorer notamment les propriétés des produits ainsi fabriqués, et notamment leurs propriétés microbiologiques, sensorielles, physico-chimiques etc., ou bien les rendements, les puretés etc ... Comme on le verra ci-dessous plus en détails, la présente invention propose une nouvelle méthode de conduite de tels procédés par le contrôle et la régulation du potentiel redox du milieu considéré à un niveau donné de potentiel redox (niveau du redox défini dans chaque cas de façon à avoir un effet souhaité optimum), en un ou plusieurs points clés du procédé, ceci par des ajouts contrôlés d'un ou plusieurs gaz ou mélanges gazeux adaptés.
On peut obtenir des mesures du potentiel redox dans un milieu à l'aide de tout moyen disponible tel que par exemple les sondes redox qui permettent de faire des mesures directes et en continu dans des milieux liquides ou semi-liquides, ou encore par voie indirecte par des mesures de teneur en gaz dissous, par exemple d'hydrogène dissous dans le milieu.
Le suivi et la régulation du potentiel redox à certaines étapes clés du procédé permettent par exemple de réaliser des étapes ou phases du procédé en conditions réductrices stables ou d'alterner durant le procédé des étapes en conditions réductrices avec des étapes en conditions oxydantes.
Une condition est considérée oxydante ou réductrice par rapport au potentiel redox du milieu avant l'ajustement par les gaz. Ainsi une condition sera dite réductrice quand le potentiel d'oxydoréduction sera inférieur à la valeur initiale avant son ajustement et sa régulation (que le potentiel atteint soit négatif ou non). Inversement, une condition sera dite oxydante quand le potentiel d'oxydoréduction sera supérieur à la valeur initiale avant son ajustement et sa régulation (que le potentiel atteint soit positif ou non). On rappellera que les oxydo-réductions sont des étapes essentielles dans les réactions de l'anabolisme et du catabolisme cellulaire, pour lesquelles le sens des échanges est déterminé par le potentiel d'oxydo-réduction (ci-après Eh). Le Eh est un paramètre d'état des fermentations ; sa variation modifie l'environnement physico-chimique des microorganismes. Les activités métaboliques et la physiologie des microorganismes sont déterminées par le pH intracellulaire (pHin) qui va conditionner l'activité des enzymes et l'accessibilité de certains substrats et cofacteurs dans les réactions du métabolisme. Le pHjπ est fonction du pH extracellulaire (pHex) et de l'aptitude du microorganisme à maintenir une certaine homéostasie cellulaire. La différence entre le pHjπ et le pHex va également modifier la valeur de la force proto-motrice ΔμhT, qui est notamment impliquée dans les échanges de la cellule microbienne avec l'extérieur. Les paramètres Eh et pHjπ sont intimement liés ; ainsi l'énergie retrouvée dans les composés à haut potentiel comme d'adénosine tri-phosphate (ATP) et gagnée par le catabolisme des substrats pourra être utilisée par la cellule pour maintenir son pHjπ (et donc son ΔpH) grâce aux ATPases membranaires.
Selon Urbach et al en 1995 (« Contribution of lactic acid bacteria to flavour compound formation in dairy products", International Dairy Journal. 5: 877-903), les bactéries lactiques sont largement impliquées dans la production des arômes des produits laitiers fermentes ; elles convertissent le lactose en acide lactique ; ceci conduit à la production de diacétyle et d'acétaldéhyde qui sont les principaux arômes des laits fermentes et des fromages frais. Le Eh est un paramètre environnemental qui va pouvoir conditionner les activités métaboliques des microorganismes et notamment leur capacité à synthétiser des molécules d'arômes. En particulier, il a été montré pour l'emmental et le cheddar, que les fromages de bonne qualité avaient un faible potentiel d'oxydoréduction. Le Eh est un paramètre physico-chimique qui, de par sa nature, agit sur tous les milieux, pourvu que ceux-ci contiennent au moins une molécule qui puisse passer d'un état oxydé à réduit et vice versa. C'est pourquoi son effet est perceptible sur toutes les fonctions cellulaires. Son action a été montrée sur différents types de souches bactériennes, à titre illustratif : - L'ajout de réducteurs chimiques dans les milieux de culture a permis de modifier significativement la croissance et les flux métaboliques chez Corynebacterium glutamicum, Clostridium acetobutylicum,
Sporidiobolus ruinenii et Escherichia coli ;
Un Eh réducteur fixé par des gaz a permis de modifier les flux métaboliques chez Saccharomyces cerevisiae avec une augmentation du ratio glycérol/éthanol et l'accumulation des sucres de réserve avec augmentation de la survie des levures lors de la conservation.
En milieu industriel, le Eh est déjà indirectement pris en compte au travers de l'oxygène dont l'effet inhibiteur sur les bactéries lactiques est bien identifié. Cet effet est dû à leur incapacité à synthétiser des cytochromes et les enzymes à noyau hème.
On sait par ailleurs qu'il est aussi possible en agissant sur le Eh de modifier la survie des ferments probiotiques, les flux métaboliques, la production et/ou la stabilité des molécules d'arômes. L'ensemble de ces résultats a été obtenu suite à une modification du Eh par les microorganismes eux-mêmes, par des molécules oxydo-réductrices, ou par traitement thermique.
Dans le domaine de l'utilisation de mélanges gazeux dans les milieux de fermentation de bactéries lactiques on peut citer également les travaux de
Henriksen et al parus dans Letters in Applied Microbiology en 2000 (vol. 30 p415-418) qui se sont intéressés à la croissance de bactéries lactiques, et ont montré que lorsque les cultures étaient balayées par de l'azote la croissance était fortement ralentie, alors que l'ajout d'infimes quantités de CO2 dans ce cas faisait redémarrer la croissance sous forme exponentielle. La présente invention concerne alors un procédé de fabrication d'un produit alimentaire ou biotechnologique, mettant en œuvre une ou plusieurs étapes, l'une ou plusieurs des étapes mettant en œuvre un milieu, l'une ou plusieurs des étapes mettant en œuvre un milieu étant une étape de fermentation, au cours duquel on procède, durant au moins l'une des étapes du procédé à une opération de contrôle du potentiel redox du milieu de l'étape considérée, et se caractérisant en ce que l'on effectue la conduite du procédé de la manière suivante : - on régule à un niveau prédéterminé de consigne le potentiel redox du milieu de l'étape dont le potentiel redox est contrôlé à l'aide d'ajouts contrôlés d'un gaz de traitement dans le milieu considéré, et
- on autorise le passage à l'étape suivante de ladite étape considérée dans le procédé lorsque ladite valeur de consigne est atteinte, de façon à réaliser au moins une des dites étapes du procédé en condition réductrice et au moins une des dites étapes du procédé en condition oxydante.
On parlera indifféremment dans ce qui suit d'étapes ou de phases constituant le procédé, ou encore de phases constituant une étape du procédé.
Le procédé selon l'invention pourra par ailleurs adopter l'une ou plusieurs des caractéristiques techniques suivantes :
- le procédé est un procédé de fabrication d'un produit laitier fermenté, et la régulation du potentiel redox a lieu en plusieurs des étapes de façon à séquencer les phases d'oxydation et de réduction de la façon suivante :
- on effectue une régulation du potentiel redox de façon à mettre en place des conditions réductrices en un ou plusieurs points du procédé situés en amont de la phase de pasteurisation ; - on effectue une régulation du potentiel redox de façon à mettre en place des conditions oxydantes en un ou plusieurs points du procédé situés en aval de la pasteurisation.
- le procédé est un procédé de fabrication d'un produit laitier fermenté, et la régulation du potentiel redox a lieu en plusieurs des étapes de façon à séquencer les phases d'oxydation et de réduction de la façon suivante :
- on effectue une régulation du potentiel redox de façon à mettre en place des conditions oxydantes en un ou plusieurs points du procédé situés en amont de la phase de pasteurisation ;
- on effectue une régulation du potentiel redox de façon à mettre en place des conditions réductrices en un ou plusieurs points du procédé situés en aval de la pasteurisation.
- le produit laitier fermenté est un yaourt. - ladite conduite du procédé est réalisée de manière à ce que, pour au moins l'une des dites étapes de fermentation, des ajouts contrôlés d'un gaz de traitement permettent d'alterner des phases de la fermentation considérée en conditions réductrices avec des phases de la fermentation considérée en conditions oxydantes. - le procédé est un procédé de fabrication de bière, et ladite conduite du procédé permet que la régulation du potentiel redox pendant la fermentation ait lieu en deux temps : dans un premier temps, la fermentation a lieu en condition oxydante régulée et en présence d'oxygène, pour favoriser la croissance de la levure et son bon état physiologique, et dans un second temps, le potentiel redox est abaissé à une valeur optimale pour permettre d'améliorer les paramètres de fermentation, ainsi que les critères sensoriels.
- le procédé est un procédé de fermentation en fermenteur visant à la fabrication de biomasse et/ou de métabolites, et ladite conduite du procédé permet de réguler le potentiel redox du milieu à différentes valeurs successives en fonction des différentes phases de la fermentation de façon à réaliser une première phase en conditions oxydantes afin de favoriser la croissance de la souche microbienne par des conditions oxydantes, et après l'obtention d'une teneur maximale en biomasse de basculer le fermenteur en conditions réductrices afin d'initier ou d'intensifier la production d'un ou plusieurs métabolites recherchés.
- le procédé est un procédé de fermentation en fermenteur visant à la fabrication de biomasse et/ou de métabolites, et ladite conduite du procédé permet de réguler le potentiel redox du milieu à différentes valeurs successives en fonction des différentes phases de la fermentation, de façon à réaliser une première phase rendue légèrement réductrice qui est favorable à la croissance de certains microorganismes et donc à la production d'une biomasse importante, suivie par une phase plus réductrice qui va permettre de favoriser la production de composés d'arômes souhaités.
- le procédé est un procédé de fermentation en fermenteur visant à la fabrication de biomasse et/ou de métabolites, et ladite conduite du procédé permet de modifier et réguler le potentiel redox du milieu à une valeur différente en fin de fermentation afin d'adapter le métabolisme ou la physiologie des micro-organismes pour les préparer à une étape ultérieure.
- le procédé est un procédé de fermentation en fermenteur visant à la fabrication de biomasse et/ou de métabolites, et ladite conduite du procédé permet de changer le niveau de potentiel redox après la production d'un métabolite désiré pour favoriser l'excrétion du métabolite considéré dans le milieu de récupération.
- le procédé est un procédé de fermentation en fermenteur visant à la fabrication de biomasse et/ou de métabolites, et ladite conduite du procédé permet de changer le niveau de potentiel redox après la production d'un précurseur d'une molécule d'intérêt pour favoriser une réaction chimique permettant l'obtention de la molécule d'intérêt recherchée.
- le procédé est un procédé de fermentation en fermenteur visant à la fabrication de biomasse et/ou de métabolites, et en ce que postérieurement à la fermentation sont réalisées :
- des étapes de centrifugation, et/ou filtration et/ou ultrafiltration visant à récupérer la biomasse produite, ou
- des étapes de purification sur le milieu de fermentation pour séparer et concentrer des métabolites, et ladite conduite du procédé permet de changer le niveau de potentiel redox après la séparation du milieu contenant la molécule d'intérêt de la biomasse (cellules microbiennes) pour favoriser la séparation sélective de la molécule d'intérêt des autres composés du milieu en privilégiant par exemple la fixation sur une résine soit sous la forme réduite soit sous la forme oxydée de la molécule d'intérêt et son élution par une solution adaptée.
Il est donc proposé de contrôler le potentiel redox à des endroits clés dans le procédé, à l'aide de tout moyen disponible tel que par exemple les sondes redox. Ce contrôle permet d'ajuster le potentiel redox et de maîtriser l'ajout de gaz dans le milieu, tout en déterminant avec précision le moment où il est possible de stopper le processus de modification du redox.
Il est possible d'envisager un système de régulation automatique du potentiel redox du milieu, puisque l'on sait par exemple que certains microorganismes, de par leur activité, modifient le potentiel redox d'un milieu. Il est ainsi permis de garder un redox stable pendant une période donnée d'une fermentation.
Il peut être également possible, selon le procédé considéré, d'alterner des phases de conditions réductrices et oxydantes de façon à privilégier à des moments définis dans le procédé la mise en place de réactions biochimiques et/ou biologiques qui par leur enchaînement permet l'obtention d'un produit à caractéristiques définies. Ainsi à titre illustratif, il peut être intéressant de conduire une fermentation avec une première phase rendue légèrement réductrice par ajout d'azote (chassant une partie de l'oxygène dissous) qui est favorable à la croissance de certains microorganismes et donc à la production d'une biomasse importante, suivie par une phase plus réductrice (par exemple à l'aide d'un mélange contenant de l'hydrogène) qui va permettre par exemple de favoriser la production de composés d'arômes souhaités tels que par exemple l'acétaldéhyde produit par les bactéries lactiques.
Comme on l'aura compris à la lecture de ce qui précède, le gaz de traitement devra être choisi en fonction du procédé considéré, de l'étape considérée, des conditions redox que l'on souhaite atteindre, et l'on pourra donc envisager d'utiliser un gaz neutre tel que l'azote, l'argon, l'hélium, ou le dioxyde de carbone, mais aussi un gaz oxydant tel que l'oxygène ou l'air, ou encore un gaz réducteur tel que l'hydrogène, ou encore un mélange de tels gaz. D'autres caractéristiques et avantages ressortiront de la description suivante, donnée uniquement à titre d'exemple et faite notamment en référence à la figure 1 annexée qui illustre un exemple d'application de l'invention au cas d'une installation de fabrication de yaourts ou autres produits laitiers fermentes.
On reconnaît sur la figure 1 les éléments et étapes suivantes : - une préparation du lait qui comprend en général les additions de composants tels que matières grasses ou protéines ou encore arômes pour en fixer la composition ;
- une étape de chauffage ;
- une étape de pasteurisation (traitement thermique) ; - une homogénéisation (qui peut avoir lieu avant ou après la pasteurisation) ;
- un refroidissement jusqu'à la température à laquelle aura lieu l'ensemencement;
- l'ensemencement avec les souches souhaitées ; - selon le type de yaourt ou produit laitier fermenté considéré : une fermentation en tank suivie d'un lissage avant une mise en pot (ex : yaourts dits « brassés »), ou bien la répartition préalable du mélange ensemencé en pots où s'effectuera la fermentation (ex : yaourts dits « fermes » ou « étuvés ») ;
- un refroidissement des produits avant leur stockage.
On peut envisager selon d'effectuer une régulation du potentiel redox aux points suivants de la chaîne : i) dans le lait de départ avant standardisation, j) dans le mélange laitier résultant de l'ajout des ingrédients additionnels dans le lait ; k) avant ou après l'étape d'homogénéisation dudit mélange laitier ;
I) avant ou après l'étape de pasteurisation du mélange laitier ; m) avant ou après l'étape d'ensemencement du mélange laitier avec une ou plusieurs souches de bactéries lactiques ; n) avant le conditionnement du produit en emballage final.
Conformément à l'invention, dans ce cas de la fabrication de yaourts ou produits laitiers fermentes on peut envisager de séquencer les phases d'oxydation et de réduction. En effet, sans être à aucun moment lié par l'explication qui suit, on peut penser que les valeurs réductrices pourront favorablement jouer sur la conformation des protéines, notamment les protéines sériques, riches en molécules soufrées. Le potentiel redox permet de jouer sur l'état de ces molécules qui se trouvent soit sous forme de groupements thiol, soit sous forme de ponts disulfures, et jouent un rôle crucial dans la formation du réseau protéique après dénaturation des protéines lors de l'étape de pasteurisation. L'utilisation de conditions réductrices en amont de la phase de pasteurisation permettra donc de coupler cet effet à l'effet de la chaleur sur les protéines ce qui aura pour conséquence de réaliser des gels protéiques de structure stable qui seront favorables notamment à une limitation des phénomènes de synérèse dans les yaourts. En aval de la pasteurisation, il sera alors avantageux de rétablir des valeurs redox moins réductrices (ou égales aux valeurs habituelles du lait) qui permettront aux bactéries ensemencées de se développer normalement sans influencer leur métabolisme et donc sans conséquence organoleptique.
Il peut également être avantageux d'ajuster une valeur cible du potentiel redox lors de la fermentation pour influencer de manière volontaire le métabolisme des ferments lactiques, et ainsi par exemple orienter la production d'arômes vers les composés souhaités.
En basculant pour finir le potentiel redox du produit fini à une valeur plus réductrice que celle de la fermentation, on pourra stabiliser microbiologiquement le yaourt et ainsi mieux le préserver du développement éventuel de certaines levures ou moisissures.
On a plus particulièrement développé dans ce qui précède les exemples de la fabrication de yaourts mais l'on peut également évoquer le cas de la fabrication de boissons fermentées telles que la bière ainsi que le cas de productions de produits en fermenteurs. C'est ce qui sera fait ci-dessous.
Evoquons donc à présent le cas de la fabrication de la bière. On va montrer ci-dessous le fait que dans le cas de la fabrication de la bière, il est intéressant de faire en sorte que la régulation du potentiel redox pendant la fermentation ait lieu en deux temps, en deux phases. Dans un premier temps, la fermentation a avantageusement lieu en condition oxydante régulée et en présence d'oxygène, pour favoriser la croissance de la levure et son bon état physiologique. Dans un second temps, le potentiel redox est abaissé à une valeur optimale pour permettre d'améliorer les paramètres de fermentation, ainsi que les critères sensoriels (arômes, tenue de la mousse).
Rappelons que le procédé brassicole comporte typiquement deux étapes de fermentation : - La fermentation principale : après aération du moût, celui-ci est ensemencé avec une levure du genre Saccharomyces, qui va, par fermentation, transformer les sucres fermentescibles en alcool et en gaz carbonique.
- La fermentation secondaire ou « garde » : cette étape se déroule à la suite de la précédente en abaissant la température du milieu à une température proche de 00C pendant une durée qui varie de quelques jours à quelques semaines. La bière jeune va se saturer en dioxyde de carbone, ce qui contribuera très fortement à son caractère moussant. C'est aussi pendant cette phase de maturation que la bière se clarifie et que sa flaveur s'affine. Les exemples qui suivent vont montrer qu'il est avantageux de fermenter le moût par moments choisis en condition oxydante et par moments choisis en condition réductrice.
Exemple 1 : Six tests de fermentation de moût, de type « Kirin », ont été réalisés en utilisant un extrait de malt (ce test est bien connu de l'homme du métier, c'est un test prédictif, autonome, i.e déconnecté du procédé global de fabrication de la bière) : 2 moûts témoins (potentiel redox moyen : 40OmV), 2 moûts dont le potentiel redox a été réduit par un bullage initial à l'azote (potentiel redox moyen : 14OmV), et 2 moûts dont le potentiel redox a été réduit par un bullage initial avec un mélange azote/hydrogène (96/4) (potentiel redox moyen : -415mV). Les moûts ont été ensemencés par une levure sèche active à 11.106 cellules viables par ml_. L'objectif était de déterminer l'influence du potentiel redox sur la performance fermentaire de la levure, pendant 8 jours à 8°C.
Les paramètres suivants ont été suivis :
- la décroissance de l'extrait fermentescible pendant 8 jours,
- l'évolution de la turbidité du moût en fermentation (croissance de la levure) par la mesure de la densité optique du moût à 800nm pendant 8 jours,
- les paramètres de fermentation : extrait apparent (extrait fermentescible plus extrait non fermentescible) du moût en fin de test, atténuation apparente (pourcentage d'extrait fermentescible utilisé par la levure par rapport à l'extrait total du moût), degré d'atténuation (proportion de l'extrait fermentescible utilisé par la levure par rapport à l'extrait fermentescible total).
Les résultats (rapportés au niveau du tableau 1 ) ont montré que la baisse du potentiel redox du moût entraîne une amélioration des paramètres de fermentation: diminution de l'extrait apparent, augmentation du degré d'atténuation et de l'atténuation apparente, et augmentation de la densité optique. Ces résultats traduisent une utilisation plus importante de sucres fermentescibles et une croissance plus importante de la levure en conditions plus réductrices.
Figure imgf000013_0001
Tableau 1 : Valeurs moyennes des résultats des tests de fermentation
Exemple 2 : Six tests de micro-brassage (micro-fabrication de bière) de 30 litres ont été réalisés de la façon suivante : 2 moûts témoins aérés (potentiel redox moyen : 291 mV), 2 moûts dont le potentiel redox a été réduit par un bullage initial à l'azote (potentiel redox moyen : 216mV), et 2 moûts dont le potentiel redox a été réduit par un bullage initial avec un mélange azote/hydrogène (96/4) (potentiel redox moyen : -29OmV). Les bières ainsi obtenues ont été analysées. En résumé, le potentiel redox du moût avant chauffage est contrôlé, le reste de la chaîne de fabrication est traditionnel.
Les résultats présentés dans le tableau 2 montrent que modifier le potentiel redox permet d'améliorer la tenue de la mousse. En effet plus le potentiel redox est faible plus la mousse tient longtemps.
Par ailleurs, l'analyse sensorielle (réalisée sous forme de tests triangulaires) montre des différences significatives (au seuil de 5%) entre la bière témoin et celle obtenue après réduction du potentiel redox par le mélange N2/H2. Les descripteurs cités (oxydé, forte acidité) sur la bière témoin dénotent un certain état d'oxydation de la bière, plus prononcé que sur la bière obtenue avec le mélange N2/H2. En revanche, on note une légère tendance à l'augmentation de la teneur en SO2 des bières issues des moûts avec réduction du potentiel redox par N2 ou N2/H2. La teneur en SO2 augmente en général en fonction du mauvais état physiologique des levures. L'augmentation observée ici s'explique certainement par le manque d'aération de la levure. Les conditions réductrices ont donc amélioré la qualité sensorielle de la bière, sans toutefois améliorer les paramètres de fermentation de la façon décrite en exemple 1. Témoin Condition N2 Condition N2/H2
Tenue de mousse (s)
266 278 293 (méthode NIBEM)
SO2 (mg/l) < 1 < 1 < 1 3.8 < 1 2.6
Tableau 2 : Résultats d'analyse des bières (valeurs moyennes des 2 répétitions pour la tenue de mousse, et valeurs des 2 répétitions pour la teneur en SO2).
On a donc bien montré par ce qui précède que dans le cas de la fabrication de la bière, il est intéressant de faire en sorte que la régulation du potentiel redox pendant la fermentation ait lieu en deux temps. Dans un premier temps, la fermentation a lieu en condition oxydante régulée et en présence d'oxygène, pour favoriser la croissance de la levure et son bon état physiologique. Dans un second temps, le potentiel redox est abaissé à une valeur optimale pour permettre d'améliorer les paramètres de fermentation, ainsi que les critères sensoriels (arômes, tenue de la mousse).
Evoquons maintenant ci-dessous le cas des productions en fermenteurs.
D'une façon générale, les productions en fermenteurs répondent à deux besoins, de façon distincte ou simultanée : la production de biomasse et/ou la production de molécules d'intérêt. Plusieurs objectifs peuvent être recherchés :
- la production de biomasse,
- la production de biomasse couplée à celle de molécules d'intérêt (métabolites primaires), - la production de molécules d'intérêt autres que celles produites en même temps que la biomasse, c'est-à-dire les métabolites secondaires, - l'enchaînement de la production de biomasse puis de molécules d'intérêt.
Il existe différents types de culture :
- la culture discontinue ou batch pour laquelle le milieu de culture est apporté en une seule fois au début, sans qu'il y ait apport ou extraction de milieu au cours de la fermentation,
- la culture semi-continue ou « fed-batch », utilisée par exemple pour la production de biomasse sensible à l'inhibition par le substrat, et pour laquelle l'apport continu ou périodique de nutriments est couplé à la croissance, sans qu'aucun prélèvement continu de milieu ne soit réalisé,
- la culture continue, pour laquelle les microorganismes sont maintenus en phase exponentielle de croissance par l'apport continu d'un milieu neuf qui équilibre le prélèvement continu de milieu contenant les cellules en suspension. Ces fermentations, qu'elles soient aérobies ou anaérobies, ont lieu en fermenteur ou bioréacteur, avec ou sans agitation, dans un milieu dont la composition est définie de façon à orienter la fermentation vers la production voulue. De même, les paramètres de fermentation tels que le pH, la température, la pression d'oxygène dissous, la vitesse d'agitation etc .. sont en général régulés à des valeurs optimum pré-déterminées de façon à maximiser la production recherchée.
On sait que le potentiel redox peut-être en perpétuelle évolution au cours d'une fermentation pour une ou plusieurs des raisons suivantes :
- la croissance des microorganismes, - la production de molécules oxydantes ou réductrices par les microorganismes,
- l'apport de milieu de culture neuf dans le cas des cultures semi- continues et continues.
La présente invention propose alors de contrôler en permanence le potentiel redox et de le réguler à sa valeur optimum par l'utilisation d'ajouts contrôlés de gaz. Cette valeur optimum est pré-déterminée expérimentalement de façon à optimiser la réaction recherchée à un moment donné de la fermentation.
Avantageusement, on pourra associer ou non à cette régulation un ajustement du potentiel redox du milieu de culture neuf apporté dans le cas des cultures semi-continues et continues.
Selon un des aspects de l'invention, on régule le potentiel redox du milieu à différentes valeurs successives en fonction des différentes périodes de la fermentation, de façon à piloter celle-ci pour l'orienter vers telle ou telle réaction souhaitée.
La fermentation peut ainsi être régulée en condition réductrice dans un premier temps puis être régulée en condition plus oxydante dans un second temps et inversement :
- on peut par exemple choisir de favoriser la croissance de la souche microbienne par des conditions oxydantes et après l'obtention d'une teneur maximale en biomasse basculer le fermenteur en conditions plus réductrices afin d'initier ou d'intensifier la production d'un ou plusieurs métabolites recherchés. On sait par exemple que Saccharomyces se développe mieux en conditions oxydantes et produit plus de glycérol en conditions réductrices. De même on sait que des cultures de Corynebacterium glutamicum produisent plus d'acides aminés en conditions réductrices ou que Sporidiobolus produit plus de composés d'arômes en milieu réducteur.
- il est également possible, en régulant le potentiel redox du milieu à une valeur différente en fin de fermentation, d'adapter le métabolisme ou la physiologie des micro-organismes pour les préparer à une étape ultérieure. Il peut ainsi être intéressant par exemple de produire Saccharomyces cerevisiae en présence d'oxygène et de basculer le milieu de production de cette levure à un niveau réducteur optimum afin de l'adapter à son utilisation future, comme par exemple la panification. On peut ainsi piloter la fermentation à 2 ou 3 valeurs de redox successives, voir plus selon les besoins. Ainsi on peut envisager de rechanger le niveau de régulation après la production du métabolite désiré (par exemple la production d'une enzyme pariétale) avant sa récolte ou séparation du milieu de culture et donc en fin de fermentation, pour favoriser l'excrétion du métabolite considéré dans le milieu de récupération. Ce changement de potentiel redox peut également intervenir après la production d'un précurseur de la molécule d'intérêt qui en condition réductrice subira une réaction chimique permettant l'obtention de la molécule d'intérêt en question.
On sait par ailleurs qu'après la fermentation proprement dite, plusieurs procédés peuvent être appliqués. Des étapes de centrifugation, filtration ou ultrafiltration permettent de récupérer la biomasse produite. Des étapes de purification peuvent être réalisées sur le milieu de fermentation pour séparer et concentrer des métabolites : centrifugation, filtration, chromatographies, précipitation par ajout de sels ou solvant etc ..
L'invention propose alors de réguler le redox pour favoriser la séparation de ces molécules d'intérêt. Par exemple la production et/ou l'excrétion dans le milieu de culture a lieu en condition oxydante (ou réductrice), et on bascule en condition réductrice (respectivement oxydante) pour conduire l'étape de séparation. Ainsi par exemple, une molécule peut être retenue dans une colonne de chromatographie en se fixant à une résine en condition oxydante et être ensuite relarguée dans une solution d'élution réductrice.
Si dans les procédés visés par la présente invention, comprenant une ou plusieurs étapes de fermentation, l'ensemencement du milieu peut être effectué de façon directe, on peut également l'envisager de manière indirecte par le fait que l'on effectue au préalable une ou plusieurs pré-cultures successives afin de constituer l'inoculum qui servira à ensemencer le milieu de fermentation, et on peut alors également envisager selon la présente invention le fait de procéder à un contrôle et une régulation du potentiel redox de la préculture à l'aide d'ajouts contrôlés d'un gaz de traitement dans le milieu de pré-culture considéré.

Claims

REVENDICATIONS
1. Procédé de fabrication d'un produit alimentaire ou biotechnologique, mettant en œuvre une ou plusieurs étapes, l'une ou plusieurs des étapes mettant en œuvre un milieu, l'une ou plusieurs des étapes mettant en œuvre un milieu étant une étape de fermentation , au cours duquel on procède, durant au moins l'une des étapes du procédé à une opération de contrôle du potentiel redox du milieu de l'étape considérée, et se caractérisant en ce que l'on effectue la conduite du procédé de la manière suivante : - on régule à un niveau prédéterminé de consigne te potentiel redox du milieu de l'étape dont le potentiel redox est contrôlé à l'aide d'ajouts contrôlés d'un gaz de traitement dans le milieu considéré, et
- on autorise le passage à l'étape suivante de ladite étape considérée dans le procédé lorsque ladite valeur de consigne est atteinte, de façon à réaliser au moins une des dites étapes du procédé en condition réductrice et au moins une des dîtes étapes du procédé en condition oxydante.
2. Procédé selon la revendication 1 , caractérisé en ce que le procédé est un procédé de fabrication d'un produit laitier fermenté, et en ce que la régulation du potentiel redox a lieu en plusieurs des étapes de façon à séquencer les phases d'oxydation et de réduction de la façon suivante :
- on effectue une régulation du potentiel redox de façon à mettre en place des conditions réductrices en un ou plusieurs points du procédé situés en amont de la phase de pasteurisation ;
- on effectue une régulation du potentiel redox de façon à mettre en place des conditions oxydantes en un ou plusieurs points du procédé situés en aval de la pasteurisation.
3. Procédé selon la revendication 1 , caractérisé en ce que le procédé est un procédé de fabrication d'un produit laitier fermenté, et en ce que la régulation du potentiel redox a lieu en plusieurs des étapes de façon à séquencer les phases d'oxydation et de réduction de la façon suivante : - on effectue une régulation du potentiel redox de façon à mettre en place des conditions oxydantes en un ou plusieurs points du procédé situés en amont de la phase de pasteurisation ;
- on effectue une régulation du potentiel redox de façon à mettre en place des conditions réductrices en un ou plusieurs points du procédé situés en aval de la pasteurisation.
4. Procédé selon la revendication 2 ou 3 caractérisé en ce que le produit laitier fermenté est un yaourt.
5. Procédé selon la revendication 1, caractérisé en ce que ladite conduite du procédé est réalisée de manière à ce que, pour au moins l'une des dites étapes de fermentation, des ajouts contrôlés d'un gaz de traitement permettent d'alterner des phases de la fermentation considérée en conditions réductrices avec des phases de la fermentation considérée en conditions oxydantes.
6. Procédé selon la revendication 5, caractérisé en ce que le procédé est un procédé de fabrication de bière, et en ce que ladite conduite du procédé permet que la régulation du potentiel redox pendant la fermentation ait lieu en deux temps : dans un premier temps, la fermentation a lieu en condition oxydante régulée et en présence d'oxygène, pour favoriser la croissance de la levure et son bon état physiologique, et dans un second temps, le potentiel redox est abaissé à une valeur optimale pour permettre d'améliorer les paramètres de fermentation, ainsi que les critères sensoriels.
7. Procédé selon la revendication 5, caractérisé en ce que le procédé est un procédé de fermentation en fermenteur visant à la fabrication de biomasse et/ou de métabolites, et en ce que ladite conduite du procédé permet de réguler le potentiel redox du milieu à différentes valeurs successives en fonction des différentes phases de la fermentation de façon à réaliser une première phase en conditions oxydantes afin de favoriser la croissance de la souche microbienne par des conditions oxydantes, et après l'obtention d'une teneur maximale en biomasse de basculer le fermenteur en conditions réductrices afin d'initier ou d'intensifier la production d'un ou plusieurs métabolites recherchés.
S. Procédé selon la revendication 5, caractérisé en ce que le procédé est un procédé de fermentation en fermenteur visant à ta fabrication de biomasse et/ou de métabolites, et en ce que ladite conduite du procédé permet de réguler le potentiel redox du milieu à différentes valeurs successives en fonction des différentes phases de la fermentation, de façon à réaliser une première phase rendue légèrement réductrice qui est favorable à la croissance de certains microorganismes et donc à la production d'une biomasse importante, suivie par. une phase plus réductrice qui va permettre de favoriser la production de composés d'arômes souhaités.
9. Procédé selon la revendication 5, caractérisé en ce que le procédé est un procédé de fermentation en fermenteur visant à la fabrication de biomasse et/ou de métabolites, et en ce que ladite conduite du procédé permet de modifier et réguler le potentiel redox du milieu à une valeur différente en fin de fermentation afin d'adapter le métabolisme ou la physiologie
( des micro-organismes pour les préparer à une étape ultérieure.
10. Procédé selon la revendication 5, caractérisé en ce que le procédé est un procédé de fermentation en fermenteur visant à Ia fabrication de biomasse et/ou de métabolites, et en ce que ladite conduite du procédé permet de changer le niveau de potentiel redox après la production d'un métabolite désiré pour favoriser l'excrétion du métabolite considéré dans le milieu de récupération.
11. Procédé selon la revendication 5, caractérisé en ce que le procédé est un procédé de fermentation en fermenteur visant à la fabrication de biomasse et/ou de métabolites, et en ce que ladite conduite du procédé permet de changer le niveau de potentiel redox après la production d'un précurseur d'une molécule d'intérêt pour favoriser une réaction chimique permettant l'obtention de la molécule d'intérêt recherchée.
12. Procédé selon l'une des revendications S à 11 , caractérisé en ce que le procédé est un procédé de fermentation en fermenteur visant à la fabrication de biomasse et/ou de métabolites, et en ce que postérieurement à la fermentation sont réalisées :
- des étapes de centrifugation, et/ou filtration et/ou ultrafiltration visant à récupérer la biomasse produite, ou - des étapes de purification sur le milieu de fermentation pour séparer et concentrer des métabolites, et en ce que ladite conduite du procédé permet de changer le niveau de potentiel redox après la séparation du milieu contenant la molécule d'intérêt de la biomasse pour favoriser la séparation sélective de la molécule d'intérêt des autres composés du milieu en privilégiant par exemple la fixation sur une résine soit sous la forme réduite soit sous la forme oxydée de la molécule d'intérêt et son élution par une solution adaptée.
PCT/FR2006/050792 2005-09-30 2006-08-08 Procede de fabrication d'un produit alimentaire ou biotechnologique mettant en oeuvre une regulation du potentiel redox WO2007036653A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AT06794533T ATE431940T1 (de) 2005-09-30 2006-08-08 Verfahren zum herstellen eines nahrungsmittel- oder biotechnologischen produkts unter verwendung einer redox-potentialregulierung
AU2006296491A AU2006296491B2 (en) 2005-09-30 2006-08-08 Method for making a food or biotechnological product using redox potential regulation
DE602006006921T DE602006006921D1 (de) 2005-09-30 2006-08-08 Verfahren zum herstellen eines nahrungsmittel- oder biotechnologischen produkts unter verwendung einer redox-potentialregulierung
BRPI0616688-1A BRPI0616688A2 (pt) 2005-09-30 2006-08-08 processo de fabricação de um produto alimentar ou biotecnológico usando uma regulação do potencial redox
US12/088,633 US8367128B2 (en) 2005-09-30 2006-08-08 Method for making a food or biotechnological product using redox potential regulation
EP06794533A EP1943573B1 (fr) 2005-09-30 2006-08-08 Procede de fabrication d'un produit alimentaire ou biotechnologique mettant en oeuvre une regulation du potentiel redox

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0552977A FR2891634B1 (fr) 2005-09-30 2005-09-30 Procede de fabrication d'un produit alimentaire ou biotechnologique mettant en oeuvre une regulation du potentiel redox
FR0552977 2005-09-30

Publications (2)

Publication Number Publication Date
WO2007036653A1 true WO2007036653A1 (fr) 2007-04-05
WO2007036653A8 WO2007036653A8 (fr) 2007-06-14

Family

ID=36123021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/050792 WO2007036653A1 (fr) 2005-09-30 2006-08-08 Procede de fabrication d'un produit alimentaire ou biotechnologique mettant en oeuvre une regulation du potentiel redox

Country Status (8)

Country Link
US (1) US8367128B2 (fr)
EP (1) EP1943573B1 (fr)
AT (1) ATE431940T1 (fr)
AU (1) AU2006296491B2 (fr)
BR (1) BRPI0616688A2 (fr)
DE (1) DE602006006921D1 (fr)
FR (1) FR2891634B1 (fr)
WO (1) WO2007036653A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2254988B1 (fr) * 2008-02-15 2017-02-01 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Procede utilise pour augmenter la biomasse et l'activite metabolique de microorganismes par la regulation combinee du potentiel d'oxydo-reduction et de l'oxygene dissous durant le processus de fermentation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3084817B1 (fr) * 2018-08-10 2020-09-18 Air Liquide Procede de production d'un liquide fermente
CN109470754B (zh) * 2018-12-18 2021-01-08 福建省农业科学院农业工程技术研究所 一种葡萄酒贮藏期间过度氧化的预警方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5453286A (en) * 1989-02-09 1995-09-26 Elopak Systems A.G. Method for converting milk into fermented milk
WO1998027824A1 (fr) * 1996-12-24 1998-07-02 Societe Des Produits Nestle S.A. Produit laitier fermente
FR2848122A1 (fr) * 2002-12-06 2004-06-11 Agronomique Inst Nat Rech Procede de controle de la retention d'un compose organique ou d'une pluralite de composes organiques au sein d'une phase liquide ou solide et applications du procede, notamment en agro-alimentaire.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3201328A (en) * 1961-03-24 1965-08-17 Ramsden & Son Ltd R Continuous fermentation apparatus for beer production
US3175915A (en) 1963-06-26 1965-03-30 Nat Dairy Prod Corp Manufacture of american cheese
FR2610795B1 (fr) 1987-02-18 1990-06-22 Ramet Jean Paul Procede de conservation de produits alimentaires fragiles et se presentant a l'etat divise
FR2811331B1 (fr) 2000-07-04 2003-01-24 Air Liquide Procede de culture de micro-organismes en conditions reductrices obtenues par un flux gazeux
RU2220580C2 (ru) 2001-09-03 2004-01-10 Распопов Владимир Александрович Способ обработки молока для производства сыра
US7078201B2 (en) * 2004-12-01 2006-07-18 Burmaster Brian M Ethanol fermentation using oxidation reduction potential

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5453286A (en) * 1989-02-09 1995-09-26 Elopak Systems A.G. Method for converting milk into fermented milk
WO1998027824A1 (fr) * 1996-12-24 1998-07-02 Societe Des Produits Nestle S.A. Produit laitier fermente
FR2848122A1 (fr) * 2002-12-06 2004-06-11 Agronomique Inst Nat Rech Procede de controle de la retention d'un compose organique ou d'une pluralite de composes organiques au sein d'une phase liquide ou solide et applications du procede, notamment en agro-alimentaire.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2254988B1 (fr) * 2008-02-15 2017-02-01 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Procede utilise pour augmenter la biomasse et l'activite metabolique de microorganismes par la regulation combinee du potentiel d'oxydo-reduction et de l'oxygene dissous durant le processus de fermentation

Also Published As

Publication number Publication date
ATE431940T1 (de) 2009-06-15
WO2007036653A8 (fr) 2007-06-14
BRPI0616688A2 (pt) 2011-06-28
AU2006296491B2 (en) 2011-10-20
DE602006006921D1 (de) 2009-07-02
AU2006296491A1 (en) 2007-04-05
US20100151077A1 (en) 2010-06-17
FR2891634A1 (fr) 2007-04-06
EP1943573B1 (fr) 2009-05-20
US8367128B2 (en) 2013-02-05
EP1943573A1 (fr) 2008-07-16
FR2891634B1 (fr) 2013-12-06

Similar Documents

Publication Publication Date Title
Sumby et al. Measures to improve wine malolactic fermentation
Trcek et al. Correlation between acetic acid resistance and characteristics of PQQ-dependent ADH in acetic acid bacteria
Tilloy et al. Reducing alcohol levels in wines through rational and evolutionary engineering of Saccharomyces cerevisiae
Athanasiadis et al. Development of a novel whey beverage by fermentation with kefir granules. Effect of various treatments
Mirończuk et al. Heterologous overexpression of bacterial hemoglobin VHb improves erythritol biosynthesis by yeast Yarrowia lipolytica
EP1943573B1 (fr) Procede de fabrication d&#39;un produit alimentaire ou biotechnologique mettant en oeuvre une regulation du potentiel redox
Li et al. Reducing diacetyl production of wine by overexpressing BDH1 and BDH2 in Saccharomyces uvarum
Pasotti et al. Engineering endogenous fermentative routes in ethanologenic Escherichia coli W for bioethanol production from concentrated whey permeate
Wu et al. Valorization of cheese whey to lactobionic acid by a novel strain Pseudomonas fragi and identification of enzyme involved in lactose oxidation
Nizam et al. Effects of arcA and arcB genes knockout on the metabolism in Escherichia coli under anaerobic and microaerobic conditions
EP2254988B1 (fr) Procede utilise pour augmenter la biomasse et l&#39;activite metabolique de microorganismes par la regulation combinee du potentiel d&#39;oxydo-reduction et de l&#39;oxygene dissous durant le processus de fermentation
CA2414814C (fr) Procede de culture de micro-organismes en conditions reductrices obtenues par un flux gazeux
Rubio-Fernández et al. Influence of fermentation oxygen partial pressure on semicontinuous acetification for wine vinegar production
ES2352633B1 (es) Cepa mutante de lactococcus lactis lactis y método para la producción industrial de acetoína.
JP2006304637A (ja) 高エキス食酢の製造法
Jeon et al. Electrochemical and biochemical analysis of ethanol fermentation of zymomonas mobilis KCCM11336
Schuurmans et al. Effect of hxk2 deletion and HAP4 overexpression on fermentative capacity in Saccharomyces cerevisiae
WO1999055836A1 (fr) BACTERIES SURPRODUCTRICES D&#39;α-ACETOLACTATE, ET PROCEDE D&#39;OBTENTION
JP2009240298A (ja) 高アルコール果汁発酵法
CA2523701C (fr) Procede par lequel on modifie les qualites sensorielles d&#39;un produit laitier fermente et sa maturation lors de la conservation dudit produit
Štefuca et al. 2-Phenylethanol biooxidation by Gluconobacter oxydans: influence of cultivation conditions on biomass production and biocatalytic activity of cells
Delshadi Characterization of novel yeasts that ferment lactose in cheese whey
JP2001314182A (ja) 乳酸菌を使用する清酒の製造方法
EP0050571A1 (fr) Procédé de culture de microorganismes, en particulier de levures, sur du lactoserum avec une association de souches judicieusement choisies et des mutants spécifiques d&#39;une souche
JPWO2007037300A1 (ja) 有用物質の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006794533

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12088633

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006296491

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2006296491

Country of ref document: AU

Date of ref document: 20060808

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006296491

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2006794533

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0616688

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080328