WO2007036192A1 - Hochfrequenz-modulierter oberflächenemittierender halbleiterlaser - Google Patents

Hochfrequenz-modulierter oberflächenemittierender halbleiterlaser Download PDF

Info

Publication number
WO2007036192A1
WO2007036192A1 PCT/DE2006/001570 DE2006001570W WO2007036192A1 WO 2007036192 A1 WO2007036192 A1 WO 2007036192A1 DE 2006001570 W DE2006001570 W DE 2006001570W WO 2007036192 A1 WO2007036192 A1 WO 2007036192A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor laser
laser
emitting semiconductor
pump
resonator
Prior art date
Application number
PCT/DE2006/001570
Other languages
English (en)
French (fr)
Inventor
Michael Kühnelt
Josip Maric
Thomas Schwarz
Ulrich STEEGMÜLLER
Original Assignee
Osram Opto Semiconductors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors Gmbh filed Critical Osram Opto Semiconductors Gmbh
Priority to US11/992,681 priority Critical patent/US20090219957A1/en
Priority to JP2008532580A priority patent/JP2009510734A/ja
Priority to EP06775931A priority patent/EP1929597A1/de
Publication of WO2007036192A1 publication Critical patent/WO2007036192A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/041Optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02423Liquid cooling, e.g. a liquid cools a mount of the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0608Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by light, e.g. optical switch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar

Definitions

  • the invention relates to a surface-emitting semiconductor laser according to the preamble of patent claim 1.
  • Solid state lasers are generally used in the green and blue spectral range as modulatable lasers. Although these have a high output power, but due to the long life of the laser-active states in the solid state material, the modulation frequency is usually limited to less than 100 kHz. Such solid state lasers are often amplitude modulated with external, comparatively large and expensive electro or acoustooptic modulators.
  • An application of lasers in displays based on "flying spot" methods requires the availability of the three primary colors red, green and blue, a comparatively high output power as well as a high-frequency modulation of the laser For example, it is desirable to modulate the output power at a frequency of, for example, more than 1 MHz.
  • Surface-emitting semiconductor lasers with an external resonator mirror which are also known under the designation disk laser or VECSEL (Vertical External Cavity Surface Emitting Laser), are characterized by a high output power with high beam quality.
  • US Pat. No. 6,798,804 B2 discloses a surface-emitting semiconductor laser in which a high-frequency modulation of the emitted laser radiation is provided by modulation of a voltage which is applied to a pn junction of the surface-emitting semiconductor laser.
  • a modulation unit arranged outside the semiconductor laser is used.
  • the invention has for its object to provide an improved surface emitting semiconductor laser, in which there is a high-frequency modulation of the emitted laser radiation with relatively little effort.
  • a surface emitting semiconductor laser comprising a semiconductor chip, a first resonator mirror and at least one further resonator mirror, which is arranged outside the semiconductor chip and forms with the first resonator mirror a laser resonator with a resonator length L, and a pump laser
  • the pump radiation for optical pumping of the semiconductor laser With a pump power P P radiates into the semiconductor chip, the pump power P p with a modulation frequency f p modulated.
  • the resonator length L of the laser resonator is advantageously adapted to the modulation frequency f P.
  • the surface-emitting semiconductor laser advantageously has an output power which is modulated with the modulation frequency f P of the pump power. It has been found that in the case of such an optically pumped semiconductor laser an adaptation of the resonator length L of the laser resonator to the modulation frequency f P of the pump radiation source is expedient.
  • the shorter the resonator length L the higher the modulation frequency f P.
  • the laser resonator may have a resonator length L which is 30 mm or less.
  • the length L of the laser resonator is 20 mm or less, more preferably 10 mm or less.
  • the length L of the resonator is advantageously 25 mm or less.
  • the length of the resonator is advantageously not more than 10 mm.
  • the pump laser does not necessarily have a fixed modulation frequency, but may also have a variable modulation frequency.
  • the modulation frequency is to be understood as the maximum modulation frequency with which the pump laser can be modulated.
  • the adaptation of the resonator length to the modulation frequency is thus in this case to the maximum modulation frequency, which is provided for the modulation of the pump power.
  • Inequality L [mm] ⁇ 250 / f P [MHz] in this case also be satisfied for the maximum modulation frequency of the pump laser.
  • the modulation frequency f P is 1 MHz or more, preferably 10 MHz or more and particularly preferably even 50 MHz or more. This is particularly advantageous for use of the surface-emitting semiconductor laser in a laser display.
  • the pump power of the pump laser is preferably modulated by a modulation of a current with which the pump laser is operated.
  • the pump laser is preferably modulated such that the laser threshold of the pump laser is not undershot during the modulated operation.
  • the operating current of the pump laser can be varied with the frequency f P , wherein the operating current is greater in the minima of the time course than a SchwelIstromrack required for stimulation of stimulated emission in the pump laser.
  • the pump laser may be an external pump laser, ie a pump laser arranged outside the semiconductor chip.
  • the pump laser is a semiconductor laser diode.
  • the pump laser is a monolithic pump laser integrated in the semiconductor chip of the surface-emitting semiconductor laser.
  • the monolithic integration of one or more pump lasers and the surface emitting semiconductor laser on a common substrate is known in principle from the document DE 10026734, the content of which is hereby incorporated by reference.
  • an element for frequency conversion of the radiation emitted by the semiconductor laser is preferably arranged.
  • the frequency conversion can in particular be a frequency multiplication, for example a frequency doubling.
  • the surface-emitting semiconductor laser can have an active zone provided for the emission of infrared radiation, the infrared radiation inside the laser resonator being converted into visible light, particularly preferably into green or blue visible light.
  • the element provided for frequency conversion contained in the laser resonator may be, for example, an optically non-linear crystal.
  • the resonator includes a wavelength filter for stabilizing the emission wavelength, for example an etalon, a birefringent filter or a bandpass filter.
  • the surface emitting semiconductor laser preferably has a time averaged output of 10 mW or more.
  • FIG. 1 shows a schematic representation of a cross section through a surface emitting semiconductor laser according to an embodiment of the invention
  • FIG. 2 shows a schematic diagram of the operating current intensity I of the pump laser as a function of the time t in an exemplary embodiment of the invention
  • Figure 3 is a schematic diagram of the optical output power P out of the surface emitting semiconductor laser as a function of the time t in an embodiment of the invention.
  • Figure 4 is a schematic representation of a cross section through a surface emitting semiconductor laser according to another embodiment of the invention.
  • the surface-emitting semiconductor laser according to a first exemplary embodiment of the invention shown schematically in cross section in FIG. 1 contains a semiconductor chip 1 which contains a radiation-emitting active layer 2.
  • the active layer 2 is arranged in the semiconductor chip 1 between further semiconductor layers 3, which function, for example, as cladding or confinement layers.
  • the structure of a semiconductor chip of a surface emitting semiconductor laser is known in the art in principle and is therefore not explained in detail here.
  • a reflector 4 which represents a first resonator mirror for the laser radiation 7 emitted by the surface-emitting semiconductor laser, is contained in the semiconductor chip 1.
  • the first resonator mirror 4 is preferably a Bragg reflector, which is formed from a plurality of alternating layer pairs.
  • the semiconductor layers 2, 3, 4 of the semiconductor chip 1 are grown, for example, on a growth substrate 5.
  • the semiconductor chip 1 is preferably connected to a heat sink 6, for example on a rear side of the growth substrate 5 facing away from the semiconductor layers 2, 3, 4.
  • the heat sink 6 is preferably made of a metal with a high heat sink
  • Thermal conductivity in particular copper, formed.
  • an actively cooled heat sink may be provided which has microchannels through which a liquid or a gas flows.
  • the surface-emitting semiconductor laser contains at least one further resonator mirror 8, which forms a laser resonator with the first resonator mirror 4.
  • the second resonator mirror 8 is an external resonator mirror which is arranged outside the semiconductor chip 1 and has, for example, a concave curvature on a side facing the semiconductor chip 1.
  • the surface emitting semiconductor laser could also have one or more further resonator mirrors, which together form a folded resonator (not shown).
  • the excitation of the active layer 2 for the stimulated emission of laser radiation 7 takes place by optical pumping with a pump laser.
  • the pump laser 10 is, for example, a semiconductor laser arranged outside the semiconductor chip 1, which radiates pump radiation 14 into the active layer 2 of the semiconductor chip 1.
  • the pump power of the pump radiation 14 emitted by the pump laser 10 is modulated with a frequency f P , which is, for example, 1 MHz or more.
  • the modulation frequency fp is more than 10 MHz.
  • a modulation frequency of 50 MHz or more may be provided.
  • the length L of the laser resonator is adapted to the modulation frequency of the pump power.
  • the length L of the laser resonator is advantageously 30 mm or less.
  • the length L of the laser resonator is preferably 20 mm or less, particularly preferably 10 mm or less.
  • the length L of the laser resonator at a given modulation frequency f P does not exceed a value for which the following applies: L [mm] ⁇ 250 mm / f P [MHz].
  • the active layer 2 is preferably formed as a quantum well structure.
  • quantum well structure encompasses any structure in which charge carriers undergo quantization of their energy states by confinement.
  • quantum well structure does not specify the dimensionality of the quantization. It thus includes quantum wells, quantum wires and quantum dots and any combination of these structures.
  • the active layer 2 of the surface emitting semiconductor laser is preferably based on a phosphide compound semiconductor or arsenide compound semiconductor.
  • the active layer 2 is preferably In x Al y Ga x - y P or Al x In y Ga 1 - X-7 includes As, where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1 and x + y ⁇ 1 applies.
  • the active layer 2 may have a quantum well structure suitable for emission of infrared radiation.
  • the active layer is provided for emission of visible or ultraviolet radiation.
  • the active layer In x Al y Gai- x . y N, where 0 ⁇ x ⁇ 1, o ⁇ y ⁇ l and x + y ⁇ 1.
  • the semiconductor material of the active layer 2 does not necessarily have to have a mathematically exact composition according to one of the abovementioned formulas. Rather, it may include one or more dopants as well as additional ingredients that do not substantially alter the physical properties of the material.
  • the above formulas contain only the essential constituents of the crystal lattice (Al, Ga, In, P or As or N), even if these may be partially replaced by small amounts of other substances.
  • an element 9 suitable for frequency conversion of the radiation 7 emitted by the semiconductor laser is contained in the laser resonator.
  • the frequency conversion element 9 is preferably a nonlinear optical crystal. Frequency conversion, in particular frequency doubling, of the emitted laser radiation 7 is advantageously achieved by means of the frequency conversion element 9.
  • the active layer 2 is an infrared radiation emitting layer, wherein the emitted laser radiation 7 by means of the frequency conversion element 9 in visible light, in particular in green visible light, is converted.
  • the pump radiation 14 is advantageously focused by an optical element 11 into the active layer 2 of the semiconductor chip 1.
  • the optical element 11 may be a diffractive optical element or a refractive optical element, such as a lens act.
  • the high-frequency modulation of the pump power Pp is preferably carried out by a correspondingly high-frequency modulation of the operating current of the pump laser 10.
  • the pump laser 10 is thus a high-frequency modulated electrically pumped semiconductor laser.
  • FIGS. 2 and 3 an exemplary time profile of the operating current intensity I of the pump laser 10 and the output power P out of the surface-emitting semiconductor laser is shown schematically diagrammatically.
  • the output power P out of the laser radiation 7 emitted by the surface emitting semiconductor laser is also modulated with the modulation frequency f P of the operating current I of the pump laser.
  • the operating current of the pump laser 10 is modulated in such a way that a threshold current intensity I 3 required for exciting the laser emission of the pump laser is not undershot. Furthermore, it is advantageous if the output power of the surface-emitting semiconductor laser does not fall below a threshold power P 3 , below which otherwise would suspend the emission of laser radiation. This is the case, for example, in the time profiles of the operating current I 8 and I shown in FIGS. 2 and 3 the output power P out in the area to the left of the dashed line 15 of the case.
  • a further preferred embodiment of the surface emitting semiconductor laser according to the invention is shown schematically in cross section in FIG.
  • the surface-emitting semiconductor laser of this embodiment differs from the embodiment shown in FIG. 1 in that it does not have a pump laser arranged outside the semiconductor chip 1.
  • the surface-emitting semiconductor laser illustrated in FIG. 4 contains a pump laser 12 monolithically integrated into the semiconductor chip 1.
  • the pump laser 12 is an edge-emitting semiconductor laser which irradiates the pump radiation 14 in the lateral direction into the active layer 2 of the surface-emitting semiconductor laser.
  • the active layer 2 of the surface-emitting semiconductor laser is preferably surrounded on both sides by the pump laser 12 in the lateral direction. In the vertical direction of the pump laser 12 is surrounded by further semiconductor layers 3, which act in particular as a waveguide for the pump radiation 14 and are provided for current injection into the active layer of the pump laser 12.
  • the monolithic integration of the pump laser 12 in the semiconductor chip 1 of the surface emitting semiconductor laser has the particular advantage that the cost of adjusting an external pump laser is eliminated. Furthermore, due to the lateral irradiation of the pumping radiation 14 in the active layer 2 of the surface emitting semiconductor laser is an effective and ensures homogeneous optical pumping of the active layer 2.
  • the monolithic integrated pump laser 12 is an electrically pumped semiconductor laser, in which by means of electrical contacts 13 an operating current I is impressed.
  • the high-frequency modulation of the output power P out of the surface-emitting semiconductor laser takes place analogously to the semiconductor laser described above in connection with FIG.
  • the operating current I of the monolithically integrated pump laser 12 is thus modulated with a modulation frequency f P , which is preferably 1 MHz or more, in order to high-frequency modulate in this way, the output power P out of the surface emitting semiconductor laser with the modulation frequency f P of the pump laser 12.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

Bei einem oberflächenemittierenden Halbleiterlaser mit einem Halbleiterchip (1), einem ersten Resonatorspiegel (4) und mindestens einem weiteren Resonatorspiegel (8), der außerhalb des Halbleiterchips (1) angeordnet ist und mit dem ersten Resonatorspiegel (4) einen Laserresonator mit einer Resonatorlänge L ausbildet, und einem Pumplaser (10), der zum optischen Pumpen des Halbleiterlasers (1) Pumpstrahlung (14) mit einer Pumpleistung in den Halbleiterchip (1) einstrahlt, ist die Pumpleistung mit einer Modulationsfrequenz fP moduliert und die Resonatorlänge L an die Modulationsfrequenz fP angepasst.

Description

Beschreibung
Hochfrequenz-modulierter oberflächenemittierender Halbleiterlaser
Die Erfindung betrifft einen oberflächenemittierenden Halbleiterlaser nach dem Oberbegriff des Patentanspruchs 1.
Diese Patentanmeldung beansprucht die Priorität der deutschen Patentanmeldungen 10 2005 046 695.8 und 10 2005 055 159.9, deren Offenbarungsgehalt hiermit durch Rückbezug aufgenommen wird.
Als modulierbare Laser werden im grünen und blauen Spektralbereich in der Regel Festkörperlaser verwendet. Diese weisen zwar eine hohe Ausgangsleistung auf, aber aufgrund der langen Lebensdauer der laseraktiven Zustände im Festkörpermaterial ist die Modulationsfrequenz in der Regel auf weniger als 100 kHz beschränkt. Derartige Festkörperlaser werden oftmals mit externen, vergleichsweise großen und teuren elektro- oder akustooptischen Modulatoren amplitudenmoduliert .
Eine Anwendung von Lasern in Displays auf der Basis von „flying spot" -Verfahren (Laserscanning-Displays) setzt die Verfügbarkeit der drei Grundfarben rot, grün und blau, eine vergleichsweise hohe Ausgangsleistung sowie eine Hochfrequenzmodulation der Laser voraus . Um eine hohe Auflösung des Displays zu erzielen, ist es wünschenswert, die Ausgangsleistung mit einer Frequenz von beispielsweise mehr als 1 MHz zu modulieren. Oberflächenemittierende Halbleiterlaser mit externem Resonatorspiegel, die auch unter den Bezeichnungen Scheibenlaser oder VECSEL (Vertical External Cavity Surface Emitting Laser) bekannt sind, zeichnen sich durch eine hohe Ausgangsleistung bei gleichzeitig hoher Strahlqualität aus.
Aus der Druckschrift US 6,798,804 B2 ist ein oberflächenemittierender Halbleiterlaser bekannt, bei dem eine hochfrequente Modulation der emittierten Laserstrahlung durch Modulation einer Spannung, die an einem pn-Übergang des oberflächenemittierenden Halbleiterlasers anliegt, vorgesehen ist. Dazu wird eine außerhalb des Halbleiterlasers angeordnete Modulationseinheit verwendet.
Der Erfindung liegt die Aufgabe zugrunde, einen verbesserten oberflächenemittierenden Halbleiterlaser anzugeben, bei dem mit vergleichsweise geringem Aufwand eine hochfrequente Modulation der emittierten Laserstrahlung erfolgt.
Diese Aufgabe wird durch einen oberflächenemittierenden Halbleiterlaser mit den Merkmalen des Patentanspruchs 1 gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind Gegenstand der abhängigen Ansprüche.
Bei einem oberflächenemittierenden Halbleiterlaser gemäß der Erfindung mit einem Halbleiterchip, einem ersten Resonatorspiegel und mindestens einem weiteren Resonatorspiegel, der außerhalb des Halbleiterchips angeordnet ist und mit dem ersten Resonatorspiegel einen Laserresonator mit einer Resonatorlänge L ausbildet, und einem Pumplaser, der zum optischen Pumpen des Halbleiterlasers Pumpstrahlung mit einer Pumpleistung PP in den Halbleiterchip einstrahlt, ist die Pumpleistung Pp mit einer Modulationsfrequenz fp moduliert. Die Resonatorlänge L des Laserresonators ist vorteilhaft an die Modulationsfrequenz fP angepasst.
Der oberflächenemittierende Halbleiterlaser weist aufgrund der Modulation der Pumpleistung vorteilhaft eine Ausgangsleistung auf, die mit der Modulationsfrequenz fP der Pumpleistung moduliert ist. Es hat sich herausgestellt, dass bei einem derart optisch gepumpten Halbleiterlaser eine Anpassung der Resonatorlänge L des Laserresonators an die Modulationsfrequenz fP der Pumpstrahlungsquelle zweckmäßig ist. Vorzugsweise ist die Resonatorlänge L umso kürzer, je höher die Modulationsfrequenz fP ist. Insbesondere kann der Laserresonator eine Resonatorlänge L aufweisen, die 30 mm oder weniger beträgt. Bevorzugt beträgt die Länge L des Laserresonators 20 mm oder weniger, besonders bevorzugt 10 mm oder weniger.
Bevorzugt gilt für die Resonatorlänge L [mm] ≤ 250 / fP [MHz] . Beispielsweise beträgt bei einer Modulationsfrequenz fp = 10 MHz die Länge L des Resonators mit Vorteil 25 mm oder weniger. Bei einer Modulationsfrequenz fp = 25 MHz beträgt die Länge des Resonators vorteilhaft nicht mehr als 10 mm.
Der Pumplaser muss nicht notwendigerweise eine feste Modulationsfrequenz aufweisen, sondern kann auch eine variable Modulationsfrequenz aufweisen. In diesem Fall ist unter der Modulationsfrequenz die maximale Modulationsfrequenz zu verstehen, mit der der Pumplaser modulierbar ist. Die Anpassung der Resonatorlänge an die Modulationsfrequenz erfolgt in diesem Fall also an die maximale Modulationsfrequenz, die zur Modulation der Pumpleistung vorgesehen ist. Insbesondere soll die Ungleichung L [mm] ≤ 250 / fP [MHz] in diesem Fall auch für die maximale Modulationsfrequenz des Pumplasers erfüllt sein.
Die Modulationsfrequenz fP beträgt bei einer Ausführungsform der Erfindung 1 MHz oder mehr, bevorzugt 10 MHz oder mehr und besonders bevorzugt sogar 50 MHz oder mehr. Dies ist insbesondere vorteilhaft für eine Verwendung des oberflächenemittierenden Halbleiterlasers in einem Laserdisplay.
Die Pumpleistung des Pumplasers wird bevorzugt durch eine Modulation eines Stroms, mit dem der Pumplaser betrieben wird, moduliert.
Um eine möglichst hohe Modulationsfrequenz fP erzielen zu können, ist der Pumplaser vorzugsweise derart moduliert, dass die Laserschwelle des Pumplasers während des modulierten Betriebs nicht unterschritten wird. Beispielsweise kann der Betriebsstrom des Pumplasers mit der Frequenz fP variiert werden, wobei der Betriebsstrom auch in den Minima des zeitlichen Verlaufs größer ist als eine zur Anregung von stimulierter Emission in dem Pumplaser erforderliche SchwelIstromstärke .
Zum Erreichen hoher Modulationsfrequenzen hat es sich weiterhin als' vorteilhaft herausgestellt, auch den oberflächenemittierenden Halbleiterlaser während des modulierten Betriebs derart zu betreiben, dass die Laserschwelle nicht unterschritten wird. Dies bedeutet, dass die hochfrequent modulierte Pumpleistung auch in den Minima des zeitlichen Verlaufs größer ist als eine zur Anregung der stimulierten Emission in dem oberflächenemittierenden Halbleiterlaser erforderliche Schwellenleistung. Der Pumplaser kann insbesondere ein externer Pumplaser, d. h. ein außerhalb des Halbleiterchips angeordneter Pumplaser, sein. Vorteilhaft handelt es sich bei dem Pumplaser um eine Halbleiter-Laserdiode .
Bei einer weiteren bevorzugten Ausführungsform der Erfindung ist der Pumplaser ein monolithisch in den Halbleiterchip des oberflächenemittierenden Halbleiterlasers integrierter Pumplaser. Die monolithische Integration eines oder mehrerer Pumplaser und des oberflächenemittierenden Halbleiterlasers auf einem gemeinsamen Substrat ist im Prinzip aus der Druckschrift DE 10026734 bekannt, deren Inhalt hiermit durch Referenz aufgenommen wird.
In dem Laserresonator des oberflächenemittierenden Halbleiterlasers ist bevorzugt ein Element zur Frequenzkonversion der von dem Halbleiterlaser emittierten Strahlung angeordnet. Die Frequenzkonversion kann dabei insbesondere eine Frequenzvervielfachung, beispielsweise eine Frequenzverdoppelung, sein. Beispielsweise kann der oberflächenemittierende Halbleiterlaser eine zur Emission von infraroter Strahlung vorgesehene aktive Zone aufweisen, wobei die infrarote Strahlung innerhalb des Laserresonators in sichtbares Licht, besonders bevorzugt in grünes oder blaues sichtbares Licht, konvertiert wird. Das in dem Laserresonator enthaltene, zur Frequenzkonversion vorgesehene Element kann zum Beispiel ein optisch nicht linearer Kristall sein.
Mit Vorteil enthält der Resonator ein Wellenlängenfilter zur Stabilisierung der Emissionswellenlänge, zum Beispiel ein Etalon, ein doppelbrechendes Filter oder ein Bandpassfilter. Der oberflächenemittierende Halbleiterlaser weist vorzugsweise eine zeitlich gemittelte Ausgangsleistung von 10 mW oder mehr auf .
Die Erfindung wird im Folgenden anhand von
Ausführungsbeispielen im Zusammenhang mit den Figuren 1 bis 4 näher erläutert .
Es zeigen:
Figur 1 eine schematische Darstellung eines Querschnitts durch einen oberflächenemittierenden Halbleiterlaser gemäß einem Ausführungsbeispiel der Erfindung,
Figur 2 eine schematische graphische Darstellung der Betriebsstromstärke I des Pumplasers in Abhängigkeit von der Zeit t bei einem Ausführungsbeispiel der Erfindung,
Figur 3 eine schematische graphische Darstellung der optischen Ausgangsleistung Pout des oberflächenemittierenden Halbleiterlasers in Abhängigkeit von der Zeit t bei einem Ausführungsbeispiel der Erfindung, und
Figur 4 eine schematische Darstellung eines Querschnitts durch einen oberflächenemittierenden Halbleiterlaser gemäß einem weiteren Ausführungsbeispiel der Erfindung.
Gleiche oder gleich wirkende Elemente sind in den Figuren mit den gleichen Bezugszeichen versehen. Die dargestellten Elemente sind nicht als maßstabsgerecht anzusehen, vielmehr können einzelne Elemente zum besseren Verständnis übertrieben groß dargestellt sein. Der in Figur 1 schematisch im Querschnitt dargestellte oberflächenemittierende Halbleiterlaser gemäß einem ersten Ausführungsbeispiel der Erfindung enthält einen Halbleiterchip 1, der eine Strahlungsemittierende aktive Schicht 2 enthält.
Die aktive Schicht 2 ist in dem Halbleiterchip 1 zwischen weiteren Halbleiterschichten 3 angeordnet, die beispielsweise als Mantel- oder Confinement-Schichten fungieren. Der Aufbau eines Halbleiterchips eines oberflächenemittierenden Halbleiterlasers ist dem Fachmann im Prinzip bekannt und wird daher an dieser Stelle nicht näher erläutert.
Weiterhin ist in dem Halbleiterchip 1 ein Reflektor 4, welcher einen ersten Resonatorspiegel für die von dem oberflächenemittierenden Halbleiterlaser emittierte Laserstrahlung 7 darstellt, enthalten. Der erste Resonatorspiegel 4 ist vorzugsweise ein Bragg-Reflektor, der aus einer Vielzahl von alternierenden Schichtpaaren gebildet ist.
Die Halbleiterschichten 2, 3, 4 des Halbleiterchips 1 sind zum Beispiel auf einem Aufwachssubstrat 5 aufgewachsen. Zur Verbesserung der Wärmeabfuhr ist der Halbleiterchip 1 vorzugsweise mit einer Wärmesenke 6 verbunden, beispielsweise an einer von den Halbleiterschichten 2, 3, 4 abgewandten Rückseite des Aufwachssubstrats 5. Die Wärmesenke 6 ist bevorzugt aus einem Metall mit einer hohen
Wärmeleitfähigkeit, insbesondere Kupfer, gebildet. Alternativ kann auch eine aktiv gekühlte Wärmesenke vorgesehen sein, die von einer Flüssigkeit oder einem Gas durchströmte Mikrokanäle aufweist. Der oberflächenemittierende Halbleiterlaser enthält mindestens einen weiteren Resonatorspiegel 8, der mit dem ersten Resonatorspiegel 4 einen Laserresonator ausbildet. Der zweite Resonatorspiegel 8 ist ein außerhalb des Halbleiterchips 1 angeordneter externer Resonatorspiegel, der zum Beispiel auf einer dem Halbleiterchip 1 zugewandten Seite eine konkave Krümmung aufweist.
Alternativ zu dem in Figur 1 dargestellten
Ausführungsbeispiel, bei dem der erste Resonatorspiegel 4 und der zweite Resonatorspiegel 8 einen linearen Laserresonator ausbilden, könnte der oberflächenemittierende Halbleiterlaser auch einen oder mehrere weitere Resonatorspiegel aufweisen, die gemeinsam einen gefalteten Resonator ausbilden (nicht dargestellt) .
Die Anregung der aktiven Schicht 2 zur stimulierten Emission von Laserstrahlung 7 erfolgt durch optisches Pumpen mit einem Pumplaser. Der Pumplaser 10 ist zum Beispiel ein außerhalb des Halbleiterchips 1 angeordneter Halbleiterlaser, der Pumpstrahlung 14 in die aktive Schicht 2 des Halbleiterchips 1 einstrahlt.
Die Pumpleistung der von dem Pumplaser 10 emittierten Pumpstrahlung 14 ist mit einer Frequenz fP moduliert, die beispielsweise 1 MHz oder mehr beträgt. Bevorzugt beträgt die Modulationsfrequenz fp mehr als 10 MHz. Insbesondere kann auch eine Modulationsfrequenz von 50 MHz oder mehr vorgesehen sein. Die Länge L des Laserresonators ist an die Modulationsfrequenz der Pumpleistung angepasst. Insbesondere ist es bei einer hohen Modulationsfrequenz fP vorteilhaft, wenn der Laserresonator des oberflächenemittierenden Halbleiterlasers eine vergleichsweise geringe Länge L aufweist. Die Länge L des Laserresonators beträgt vorteilhaft 30 mm oder weniger. Bevorzugt beträgt die Länge L des Laserresonators 20 mm oder weniger, besonders bevorzugt sogar 10 mm oder weniger.
Insbesondere hat es sich als vorteilhaft herausgestellt, wenn die Länge L des Laserresonators bei einer vorgegebenen Modulationsfrequenz fP einen Wert nicht überschreitet, für den gilt: L [mm] ≤ 250 mm / fP [MHz] .
Die aktive Schicht 2 ist vorzugsweise als QuantentopfStruktur ausgebildet. Die Bezeichnung Quantentopfstruktur umfasst dabei jegliche Struktur, bei der Ladungsträger durch Einschluss (confinement) eine Quantisierung ihrer Energiezustände erfahren. Insbesondere beinhaltet die Bezeichnung QuantentopfStruktur keine Angabe über die Dimensionalität der Quantisierung. Sie umfasst somit unter anderem Quantentröge, Quantendrähte und Quantenpunkte und jede Kombination dieser Strukturen.
Die aktive Schicht 2 des oberflächenemittierenden Halbleiterlasers basiert bevorzugt auf einem Phosphid- Verbindungshalbleiter oder Arsenid-Verbindungshalbleiter . Dies bedeutet, dass die aktive Schicht 2 vorzugsweise InxAlyGai-x-yP oder InxAIyGa1-X-7As umfasst, wobei 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 und x + y ≤ 1 gilt. Insbesondere kann die aktive Schicht 2 eine zur Emission infraroter Strahlung geeignete QuantentopfStruktur aufweisen.
Alternativ ist es auch möglich, dass die aktive Schicht zur Emission sichtbarer oder ultravioletter Strahlung vorgesehen ist. Beispielsweise kann die aktive Schicht InxAlyGai-x.yN umfassen, wobei 0 < x < 1, o ≤ y ≤ l und x + y ≤ 1 gilt. Das Halbleitermaterial der aktiven Schicht 2 muss nicht zwingend eine mathematisch exakte Zusammensetzung nach einer der oben genannten Formeln aufweisen. Vielmehr kann es einen oder mehrere Dotierstoffe sowie zusätzliche Bestandteile aufweisen, welche die physikalischen Eigenschaften des Materials im Wesentlichen nicht ändern. Der Einfachheit halber beinhalten obige Formeln jedoch nur die wesentlichen Bestandteile des Kristallgitters (Al, Ga, In, P oder As oder N) , auch wenn diese teilweise durch geringe Mengen weiterer Stoffe ersetzt sein können.
Bei einer bevorzugten Ausführungsform der Erfindung ist in dem Laserresonator ein zur Frequenzkonversion der von dem Halbleiterlaser emittierten Strahlung 7 geeignetes Element 9 enthalten. Das Frequenzkonversionselement 9 ist vorzugsweise ein nicht linearer optischer Kristall. Mittels des Frequenzkonversionselements 9 wird vorteilhaft eine Frequenzvervielfachung, insbesondere eine Frequenzverdoppelung, der emittierten Laserstrahlung 7 erzielt .
Bei einer besonders bevorzugten Ausführungsform der Erfindung ist die aktive Schicht 2 eine infrarote Strahlung emittierende Schicht, wobei die emittierte Laserstrahlung 7 mittels des Frequenzkonversionselements 9 in sichtbares Licht, insbesondere in grünes sichtbares Licht, konvertiert wird.
Die Pumpstrahlung 14 wird vorteilhaft durch ein optisches Element 11 in die aktive Schicht 2 des Halbleiterchips 1 fokussiert. Bei dem optischen Element 11 kann es sich um ein diffraktives optisches Element oder ein refraktives optisches Element, beispielsweise eine Linse, handeln.
Die hochfrequente Modulation der Pumpleistung Pp erfolgt vorzugsweise durch eine entsprechend hochfrequente Modulation der Betriebsstromstärke des Pumplasers 10. Der Pumplaser 10 ist also ein Hochfrequenz-modulierter elektrisch gepumpter Halbleiterlaser .
In den Figuren 2 und 3 ist ein beispielhafter zeitlicher Verlauf der Betriebsstromstärke I des Pumplasers 10 und der Ausgangsleistung Pout des oberflächenemittierenden Halbleiterlasers schematisch graphisch dargestellt. Dadurch, dass die aktive Schicht 2 des Halbleiterchips 1 des oberflächenemittierenden Halbleiterlasers von dem hochfrequent modulierten Pumplaser 10 optisch gepumpt wird, ist auch die Ausgangsleistung Pout der von dem oberflächenemittierenden Halbleiterlaser emittierten Laserstrahlung 7 mit der Modulationsfrequenz fP der Betriebsstromstärke I des Pumplasers moduliert.
Um eine möglichst hohe Modulationsfrequenz erzielen zu können, ist es vorteilhaft, wenn der Betriebsstrom des Pumplasers 10 derart moduliert ist, dass eine zur Anregung der Laseremission des Pumplasers erforderliche Schwellenstromstärke I3 nicht unterschritten wird. Weiterhin ist es vorteilhaft, wenn auch die Ausgangsleistung des oberflächenemittierenden Halbleiterlasers eine Schwellenleistung P3, unterhalb derer ansonsten die Emission von Laserstrahlung aussetzen würde, nicht unterschreitet. Dies ist zum Beispiel bei den in den Figuren 2 und 3 dargestellten zeitlichen Verläufen des Betriebsstroms I8 und der Ausgangsleistung Pout in dem Bereich links von der gestrichelten Linie 15 der Fall.
Ein weiteres bevorzugtes Ausführungsbeispiel des oberflächenemittierenden Halbleiterlasers gemäß der Erfindung ist in Figur 4 schematisch im Querschnitt dargestellt.
Der oberflächenemittierende Halbleiterlaser dieses Ausführungsbeispiels unterscheidet sich von dem in Figur 1 dargestellten Ausführungsbeispiel dadurch, dass er keinen außerhalb des Halbleiterchips 1 angeordneten Pumplaser aufweist. Im Gegensatz dazu enthält der in Figur 4 dargestellte oberflächenemittierende Halbleiterlaser einen monolithisch in den Halbleiterchip 1 integrierten Pumplaser 12. Der Pumplaser 12 ist ein kantenemittierender Halbleiterlaser, der Pumpstrahlung 14 in lateraler Richtung in die aktive Schicht 2 des oberflächenemittierenden Halbleiterlasers einstrahlt. Die aktive Schicht 2 des oberflächenemittierenden Halbleiterlasers ist in lateraler Richtung vorzugsweise beidseits von dem Pumplaser 12 umgeben. In vertikaler Richtung ist der Pumplaser 12 von weiteren Halbleiterschichten 3 umgeben, die insbesondere als Wellenleiter für die Pumpstrahlung 14 fungieren und zur Stromeinprägung in die aktive Schicht des Pumplasers 12 vorgesehen sind.
Die monolithische Integration des Pumplasers 12 in den Halbleiterchip 1 des oberflächenemittierenden Halbleiterlasers hat insbesondere den Vorteil, dass der Aufwand für die Justierung eines externen Pumplasers entfällt. Weiterhin ist aufgrund der lateralen Einstrahlung der Pumpstrahlung 14 in die aktive Schicht 2 des oberflächenemittierenden Halbleiterlasers ein effektives und homogenes optisches Pumpen der aktiven Schicht 2 gewährleistet .
Der monolithisch integrierte Pumplaser 12 ist ein elektrisch gepumpter Halbleiterlaser, in den mittels elektrischer Kontakte 13 ein Betriebsstrom I eingeprägt wird.
Die hochfrequente Modulation der Ausgangsleistung Pout des oberflächenemittierenden Halbleiterlasers erfolgt in analoger Weise wie bei dem zuvor im Zusammenhang mit der Figur 1 beschriebenen Halbleiterlaser. Der Betriebsstrom I des monolithisch integrierten Pumplasers 12 wird also mit einer Modulationsfrequenz fP moduliert, die vorzugsweise 1 MHz oder mehr beträgt, um auf diese Weise auch die Ausgangsleistung Pout des oberflächenemittierenden Halbleiterlasers mit der Modulationsfrequenz fP des Pumplasers 12 hochfrequent zu modulieren.
Die weiteren zuvor im Zusammenhang mit den Figuren 1 bis 3 erläuterten vorteilhaften Ausgestaltungen der Erfindung gelten selbstverständlich auch für das in Figur 4 dargestellte Ausführungsbeispiel .
Die Erfindung ist nicht durch die Beschreibung anhand der Ausführungsbeispiele beschränkt. Vielmehr umfasst die Erfindung jedes neue Merkmal sowie jede Kombination von Merkmalen, was insbesondere jede Kombination von Merkmalen in den Patentansprüchen beinhaltet, auch wenn dieses Merkmal oder diese Kombination selbst nicht explizit in den Patentansprüchen oder Ausführungsbeispielen angegeben ist.

Claims

Patentansprüche
1. Oberflächenemittierender Halbleiterlaser mit einem Halbleiterchip (1) , einem ersten Resonatorspiegel (4) und mindestens einem weiteren Resonatorspiegel (8) , der außerhalb des Halbleiterchips (1) angeordnet ist und mit dem ersten Resonatorspiegel (4) einen Laserresonator mit einer Resonatorlänge L ausbildet, und mindestens einem Pumplaser (10, 12), der zum optischen Pumpen des Halbleiterlasers (1) Pumpstrahlung (14) mit einer Pumpleistung in den Halbleiterchip (1) einstrahlt, dadurch gekennzeichnet, dass die Pumpleistung mit einer Modulationsfreguenz fp moduliert ist und der Laserresonator eine Resonatorlänge L aufweist, die an die Modulationsfrequenz fP angepasst ist.
2. Oberflächenemittierender Halbleiterlaser nach Anspruch 1, dadurch gekennzeichnet, dass für die Resonatorlänge L gilt: L [mm] ≤ 250 / fp [MHz] .
3. Oberflächenemittierender Halbleiterlaser nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass für die Modulationsfrequenz fp gilt: fp ≥ 1 MHz.
4. Oberflächenemittierender Halbleiterlaser nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass für die Modulationsfrequenz fp gilt: fp > 10 MHz.
5. Oberflächenemittierender Halbleiterlaser nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass für die Modulationsfrequenz fp gilt: fp ≥ 50 MHz.
6. Oberflächenemittierender Halbleiterlaser nach einem der vorhergehenden Ansprüche , dadurch gekennzeichnet, dass die Resonatorlänge L 30 mm oder weniger, bevorzugt 20 mm oder weniger, beträgt.
7. Oberflächenemittierender Halbleiterlaser nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Pumpleistung durch eine Modulation eines Stroms I, mit dem der Pumplaser (10, 12) betrieben wird, moduliert ist .
8. Oberflächenemittierender Halbleiterlaser nach einem der vorhergehenden Ansprüche , dadurch gekennzeichnet, dass die Pumpleistung derart moduliert ist, dass eine Laserschwelle des Pumplasers (10, 12) während des modulierten Betriebs nicht unterschritten wird.
9. Oberflächenemittierender Halbleiterlaser einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Laserschwelle des oberflächenemittierenden Halbleiterlasers während des modulierten Betriebs nicht unterschritten wird.
10. Oberflächenemittierender Halbleiterlaser nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Pumplaser (12) monolithisch in den Halbleiterchip (1) des oberflächenemittierenden Halbleiterlasers integriert ist.
11. Oberflächenemittierender Halbleiterlaser nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Pumplaser (10) außerhalb des Halbleiterchips (1) angeordnet ist .
12. Oberflächenemittierender Halbleiterlaser nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in dem Laserresonator ein Frequenzkonversionselement (9) zur Frequenzkonversion der von dem Halbleiterlaser emittierten Strahlung angeordnet ist .
13. Oberflächenemittierender Halbleiterlaser nach Anspruch 12, dadurch gekennzeichnet, dass die Frequenzkonversion eine Frequenzvervielfachung, insbesondere eine Frequenzverdopplung ist.
14. Oberflächenemittierender Halbleiterlaser nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass der Halbleiterchip (1) infrarote Strahlung emittiert, die von dem Frequenzkonversionselement (9) in sichtbares Licht, insbesondere in grünes sichtbares Licht, konvertiert wird.
15. Oberflächenemittierender Halbleiterlaser nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine optische Ausgangsleitung des oberflächenemittierenden Halbleiterlasers 10 mW oder mehr beträgt .
PCT/DE2006/001570 2005-09-29 2006-09-08 Hochfrequenz-modulierter oberflächenemittierender halbleiterlaser WO2007036192A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/992,681 US20090219957A1 (en) 2005-09-29 2006-09-08 Radio-Frequency-Modulated Surface-Emitting Semiconductor Laser
JP2008532580A JP2009510734A (ja) 2005-09-29 2006-09-08 高周波変調表面発光型半導体レーザ
EP06775931A EP1929597A1 (de) 2005-09-29 2006-09-08 Hochfrequenz-modulierter oberflächenemittierender halbleiterlaser

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102005046695 2005-09-29
DE102005046695.8 2005-09-29
DE102005055159A DE102005055159B4 (de) 2005-09-29 2005-11-18 Hochfrequenz-modulierter oberflächenemittierender Halbleiterlaser
DE102005055159.9 2005-11-18

Publications (1)

Publication Number Publication Date
WO2007036192A1 true WO2007036192A1 (de) 2007-04-05

Family

ID=37491732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2006/001570 WO2007036192A1 (de) 2005-09-29 2006-09-08 Hochfrequenz-modulierter oberflächenemittierender halbleiterlaser

Country Status (7)

Country Link
US (1) US20090219957A1 (de)
EP (1) EP1929597A1 (de)
JP (1) JP2009510734A (de)
KR (1) KR20080065998A (de)
DE (1) DE102005055159B4 (de)
TW (1) TWI317194B (de)
WO (1) WO2007036192A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008030254A1 (de) * 2008-06-25 2009-12-31 Osram Opto Semiconductors Gmbh Halbleiterlasermodul
KR101022568B1 (ko) * 2008-12-24 2011-03-16 경희대학교 산학협력단 양자점을 이용한 레이저 디스플레이용 녹색광원

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10026734A1 (de) * 2000-05-30 2001-12-13 Osram Opto Semiconductors Gmbh Optisch gepumpte oberflächenemittierende Halbleiterlaservorrichtung und Verfahren zu deren Herstellung
US20020048301A1 (en) * 1999-07-30 2002-04-25 Peidong Wang Single mode operation of microelectromechanically tunable, half-symmetric, vertical cavity surface emitting lasers
US6795477B1 (en) * 1999-08-12 2004-09-21 Cortek Inc. Method for modulating an optically pumped, tunable vertical cavity surface emitting laser (VCSEL)
EP1693936A2 (de) * 2005-02-16 2006-08-23 Samsung Electronics Co., Ltd. Halbleiterlaservorrichtung mit integriertem Modulator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5311526A (en) * 1993-02-25 1994-05-10 At&T Bell Laboratories Article that comprises a semiconductor laser, and method of operating the article
DE10108079A1 (de) * 2000-05-30 2002-09-12 Osram Opto Semiconductors Gmbh Optisch gepumpte oberflächenemittierende Halbleiterlaservorrichtung und Verfahren zu deren Herstellung
DE10214120B4 (de) * 2002-03-28 2007-06-06 Osram Opto Semiconductors Gmbh Optisch pumpbare oberflächenemittierende Halbleiterlaservorrichtung
GB2399942A (en) * 2003-03-24 2004-09-29 Univ Strathclyde Vertical cavity semiconductor optical devices
GB0311563D0 (en) * 2003-05-20 2003-06-25 Nokia Corp Optical data transmission system
EP1560306B1 (de) * 2004-01-30 2014-11-19 OSRAM Opto Semiconductors GmbH Oberflächenemittierender Halbleiterlaser mit einem Interferenzfilter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020048301A1 (en) * 1999-07-30 2002-04-25 Peidong Wang Single mode operation of microelectromechanically tunable, half-symmetric, vertical cavity surface emitting lasers
US6795477B1 (en) * 1999-08-12 2004-09-21 Cortek Inc. Method for modulating an optically pumped, tunable vertical cavity surface emitting laser (VCSEL)
DE10026734A1 (de) * 2000-05-30 2001-12-13 Osram Opto Semiconductors Gmbh Optisch gepumpte oberflächenemittierende Halbleiterlaservorrichtung und Verfahren zu deren Herstellung
EP1693936A2 (de) * 2005-02-16 2006-08-23 Samsung Electronics Co., Ltd. Halbleiterlaservorrichtung mit integriertem Modulator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LUTGEN S ET AL: "Green semiconductor disk laser with 0.7W cw output power", PROCEEDINGS OF SPIE; CONFERENCE: VERTICAL-CAVITY SURFACE-EMITTING LASERS IX, SAN JOSE, CA, USA, 25-27 JANUARY 2005 2005, vol. 5737, 25 January 2005 (2005-01-25), pages 109 - 112, XP002411447 *
STEEGMULLER U ET AL: "High green frequency converted semiconductor laser for projection displays", DIGEST OF TECHNICAL PAPERS - SID INTERNATIONAL SYMPOSIUM; 2005 SID INTERNATIONAL SYMPOSIUM, BOSTON, MA, USA, 25-27 MAY 2005, vol. 36, no. 2, 25 May 2005 (2005-05-25), pages 1608 - 1609, XP001244411 *

Also Published As

Publication number Publication date
DE102005055159B4 (de) 2013-02-21
TW200715678A (en) 2007-04-16
US20090219957A1 (en) 2009-09-03
TWI317194B (en) 2009-11-11
JP2009510734A (ja) 2009-03-12
EP1929597A1 (de) 2008-06-11
KR20080065998A (ko) 2008-07-15
DE102005055159A1 (de) 2007-04-05

Similar Documents

Publication Publication Date Title
EP0890204B1 (de) Gütegesteuerter halbleiterlaser
EP1959527B1 (de) Laseranordnung und Halbleiterlaser zum optischen Pumpen eines Lasers
DE10214120B4 (de) Optisch pumpbare oberflächenemittierende Halbleiterlaservorrichtung
WO2009082999A2 (de) Kantenemittierender halbleiterlaserchip mit einem strukturierten kontaktstreifen
DE10260183A1 (de) Vertikal emittierender, optisch gepumpter Halbleiterlaser mit externem Resonator
EP1560306B1 (de) Oberflächenemittierender Halbleiterlaser mit einem Interferenzfilter
DE102004007881A1 (de) Optische gepumpte Laservorrichtung zur Erzeugung von Laserimpulsen
EP2409368A2 (de) Optoelektronisches halbleiterbauteil
DE102008011654B4 (de) Laservorrichtung
DE102005055159B4 (de) Hochfrequenz-modulierter oberflächenemittierender Halbleiterlaser
WO2021228660A1 (de) Halbleiterlaserbauelement und verfahren zum betrieb zumindest eines halbleiterlasers
DE102008009412B4 (de) Infrarot-Halbleiterlaser
DE102022117299A1 (de) Laserbauteil und verfahren zum betreiben eines laserbauteils
DE2058917C3 (de) Verfahren und Vorrichtung zum Modulieren eines Halbleiter-Lasers
EP0598855B1 (de) Optisch steuerbarer halbleiterlaser
DE10312742B4 (de) Optisch gepumpte Halbleiterlaservorrichtung
EP1586143B1 (de) Faser-laser
DE102020204022A1 (de) Sensor und Verfahren zur Erfassung von zumindest einer Messgröße
DE102006042196A1 (de) Oberflächenemittierender Halbleiterkörper mit vertikaler Emissionsrichtung und stabilisierter Emissionswellenlänge
DE102008036254A1 (de) Halbleiterlaser
DE102004011456A1 (de) Oberflächenemittierender Halbleiterlaser mit einem Interferenzfilter
WO2023198864A1 (de) Laseranordnung und verfahren zum betreiben einer laseranordnung
DE102012209625B3 (de) Laseranordnung mit nichtlinearem Kristall
DE102021210999A1 (de) Halbleiterlaserchip mit Brechungsindex-Variationsbereich
WO1998023000A1 (de) Laser- und verstärkersystem zur erzeugung von laserstrahlung im sichtbaren wellenlängenbereich

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006775931

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200680035757.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2008532580

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020087010328

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2006775931

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11992681

Country of ref document: US