WO2007036166A1 - Procede et systeme et appareil pour mettre en oeuvre l'attribution de largeur de bande et la gestion de repartition sur la base d'une station relais - Google Patents

Procede et systeme et appareil pour mettre en oeuvre l'attribution de largeur de bande et la gestion de repartition sur la base d'une station relais Download PDF

Info

Publication number
WO2007036166A1
WO2007036166A1 PCT/CN2006/002599 CN2006002599W WO2007036166A1 WO 2007036166 A1 WO2007036166 A1 WO 2007036166A1 CN 2006002599 W CN2006002599 W CN 2006002599W WO 2007036166 A1 WO2007036166 A1 WO 2007036166A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
map
message
mss
uplink
Prior art date
Application number
PCT/CN2006/002599
Other languages
English (en)
French (fr)
Inventor
Ruobin Zheng
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to EP06791185A priority Critical patent/EP1940185A4/en
Publication of WO2007036166A1 publication Critical patent/WO2007036166A1/zh
Priority to US12/058,486 priority patent/US8243662B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, system and device for implementing bandwidth allocation and scheduling management based on a relay station. Background of the invention
  • the layered model in FIG. 1 includes a physical layer (PHY) and a data link layer (MAC), and the data link layer is further divided into service specific convergence sublayers. (SSCS or abbreviated as CS), MAC Common Part Sublayer (MAC CPS) and Encryption Sublayer (SS).
  • PHY physical layer
  • MAC data link layer
  • SSCS service specific convergence sublayers.
  • MAC CPS MAC Common Part Sublayer
  • SS Encryption Sublayer
  • Bandwidth allocation and scheduling management are implemented at the MAC CPS layer.
  • One of the important features of broadband wireless access is support for multiple types of services. According to the characteristics of service data, services can be divided into four categories, and the following four service scheduling modes are provided accordingly:
  • UMS Unsolicited Grant Service
  • Non-real-time polling corresponding to non-real-time polling service (NrtPS).
  • the upstream bandwidth allocation of other services undergoes a bandwidth request/allocation process.
  • the different main types of service scheduling are reflected in the way the bandwidth request is sent.
  • the service scheduling refers to that the MAC layer controls data transmission on the connection according to different QoS requirements of the service flow corresponding to each connection.
  • Each connection corresponds to the same set of QoS parameters.
  • the corresponding relationship is shown in Table 1.
  • QoS parameters can be passed through DSA, DSC, DSD and
  • MAC layer flow management messages such as DSX-RVD is managed.
  • the broadband wireless access supports multiple points to send data to one point, for example, multiple SS/MSS (subscriber station/mobile subscriber station) sends data to the BS (base station). Therefore, collisions may occur, especially when sending long data, the probability of collision is high.
  • SS/MSS subscriber station/mobile subscriber station
  • the basic mechanism for the BS's upstream channel transmission opportunity is:
  • Step 1 The SS/MSS sends a bandwidth request (BW Request) for the connection to request the resource.
  • BW Request bandwidth request
  • Step 2 The BS performs uplink bandwidth allocation according to the bandwidth request, and describes, in an uplink mapping message (UL-MAP) message, a location and a usage profile of each burst of the corresponding connection.
  • UL-MAP uplink mapping message
  • Step 3 The SS/MSS sends a message at the specified burst location on the corresponding connection.
  • broadband wireless access supports data transmission to multiple points, such as the BS transmitting data to multiple SS/MSS.
  • the basic mechanism for transmitting the downlink channel of the BS is:
  • Step 1 The BS performs downlink scheduling, and describes the location of each burst of the corresponding connection and the ffl method in the DL-MAP message.
  • Step 2 The SS/MSS receives the message at the location of the specified burst on the corresponding connection.
  • the so-called bandwidth allocation refers to the process in which the BS provides an uplink transmission opportunity or a bandwidth opportunity to the subordinate SS/MSS. Specifically, after determining the scheduling service type and the corresponding QoS parameters, the BS scheduler can understand the throughput and delay requirements of the uplink service, and allocate opportunities for sending opportunities or requesting bandwidth when appropriate.
  • the process by which the BS provides the SS/MSS with a bandwidth request opportunity is called Polling.
  • Each frame includes a downlink subframe (DL subframe) and an uplink sub-caller (UL subfrarae).
  • DL subframe downlink subframe
  • UL subfrarae uplink sub-caller
  • TDD Time Division Duplex
  • the downlink subframe is transmitted first, and then the uplink subframe is transmitted.
  • the OFDM (or SC) frame structure under TDD is as shown in FIG. 2.
  • the uplink subframe and the downlink subframe are simultaneously transmitted, and the uplink subframe and the downlink subframe are transmitted at different frequencies, and the SS corresponding to the half-duplex FDD mode is uplinked.
  • the downlink subframe is not sent at the same time.
  • the OFDM (or SC) frame structure under FDD is shown in Figure 3.
  • one downlink subframe has only one downlink physical layer protocol data unit (DL PHY PDU), and one uplink subframe includes time slots in the following order: Contention slot for initial ranging (Contention slot for initial ranging) , Contention slot for BW requests and one or more uplink physical layer protocol data units (UL PHY PDUs), each UL PHY PDU is from a different subscriber station (SS).
  • DL PHY PDU downlink physical layer protocol data unit
  • UL PHY PDUs uplink physical layer protocol data units
  • the downlink PHY PDU starts with a preamble for physical synchronization; then the FCH (frame control header) burst, and the FCH includes a downlink frame prefix (DL_Frame_Prefix; DLFP), which is used to specify the tightness.
  • DL_Frame_Prefix DL_Frame_Prefix
  • the DL-MAP (downlink mapping) message if sent in the current frame, is the first MAC PDUo following the FCH. If there is a DL-MAP transmission, the UL-MAP is immediately followed by the DL-MAP or DLFP. If the DCD (downstream channel descriptor) and UCD (upstream channel descriptor) messages are sent in the frame, they will follow the DL-MAP and UL-MAP.
  • the DL-MAP, UL-MAP ⁇ DCD and UCD messages will be sent at the location of DL Burst # 1 (downstream burst 1).
  • the location and usage of other bursts of the downlink subframe are specified by the DL-MAP, and the location and profile of each burst of the uplink subframe are specified by the DL-MAP.
  • TTG and RTG are inserted when the uplink and downlink subframes alternate, to allow a period of time for the BS to complete the transmission and reception.
  • the downlink subframe is transmitted first, followed by the uplink subframe.
  • an uplink subframe and a downlink subframe are transmitted on different frequencies.
  • OFDMA frame structure under TDD or the OFDMA frame structure under FDD all effective subcarriers are divided into several subcarrier sets, and each subcarrier set is called a subchannel.
  • the PHY burst in OFDMA is assigned a set of adjacent subchannels and a set of OFDMA symbols.
  • a burst can be assigned to a user (SS) (or a group of users) on the uplink, and can be sent to the SS as a transmission unit on the downlink.
  • SS user
  • RS WiMAX relay station
  • the object of the present invention is to provide a method, system and device for implementing bandwidth allocation and scheduling management in a relay station, which effectively reduces the complexity of the RS and simplifies the complexity of the BWA transit network.
  • the present invention provides a method for implementing bandwidth allocation and scheduling management based on a relay station, including: - the base station BS constructs a mapping information unit MAP RS bandwidth grant message of the control relay station RS based on the extended BS physical layer frame structure, and sends the packet to the RS, The RS grants a message according to the received bandwidth grant bandwidth allocation and scheduling management for its communication channel;
  • the extended BS physical layer frame structure is: a BS physical layer frame structure configured to control a mapping information unit MAP RS of the relay station RS; the mapping information unit is: an uplink mapping information unit UL-MAP RS / or downlink mapping information Unit DL-MAP RS .
  • the BS physical layer frame structure further includes: a downlink mapping information element DL-MAP BS of the control BS and an uplink mapping information unit UL-MAP BS of the control BS , or a downlink mapping information element DL including a control BS in the BS physical layer frame structure
  • the BS physical layer frame structure further includes: a downlink channel descriptor DCD and/or an uplink channel descriptor UCD.
  • the method specifically includes: the SS/MSS acquires a transmission time slot or a time frequency block of the transmission bandwidth request message, and sends a bandwidth request message; and the bandwidth request message initiated by the SS/MSS is transited by the relay station RS, and then transmitted.
  • the BS performs bandwidth allocation and scheduling management according to the bandwidth request message, and constructs a bandwidth grant message based on the extended BS physical layer frame structure, and then sends the packet
  • the RS grants a bandwidth allocation and scheduling process according to the bandwidth of the BS, and transmits the processing result to the corresponding SS MSS;
  • the SS/MSS selects a corresponding connection and a location on the connection based on the information it receives, and interacts with the BS at the location through the connection;
  • the method specifically includes:
  • the BS actively allocates the uplink bandwidth of the RS, and grants the message to the RS through the UL-MAP RS bandwidth granting.
  • the RS performs the passive RS uplink scheduling on the bandwidth according to the UL-MAP RS bandwidth of the BS, and actively performs the downlink scheduling of the RS.
  • the DL-MAP RS bandwidth grant message is generated; the RS performs the transit processing on the UL-MAP RS bandwidth grant message, and grants the UL-MAP R ⁇ wide grant message and the actively generated DL-MAP RS bandwidth grant report after the transfer processing.
  • the text is sent to the SSSSS of RS.
  • the process of transmitting the bandwidth request message to the BS includes: the SS/MSS initiates the bandwidth by using the UL-MAP R of the BS relayed by the RS: the broadcast, multicast, or unicast request information element Request IE specified in the wide grant message
  • the request is sent to the BS after the received bandwidth request packet is forwarded.
  • the process of performing bandwidth allocation, scheduling management, and constructing a transmission bandwidth grant message by the BS includes:
  • the BS allocates and schedules the uplink bandwidth, the downlink bandwidth, and the uplink bandwidth of the RS according to the bandwidth request message, and constructs the DL-MAP BS , the UL-MAP BS, and the MB based on the extended BS physical layer frame structure.
  • ⁇ - ⁇ ? ⁇ Bandwidth grant message and then sent to RS; or,
  • the BS allocates and schedules the uplink bandwidth and the downlink bandwidth of the BS and the uplink bandwidth and the downlink bandwidth of the RS according to the bandwidth request message, and constructs DL-MAP BS and UL-MAPBS according to the extended BS physical layer frame structure.
  • DL-MAP R ⁇ ; nUL-MAP RS bandwidth grant message, and then sent to the RS.
  • the process of the RS performing bandwidth allocation and scheduling processing, and transmitting the processing result to the corresponding SS/MSS includes - And actively performing downlink scheduling on the bandwidth of the RS, generating a DL-MAP R wide grant message, and performing the transfer processing on the UL-MAP R ⁇ 1i wide grant message, and granting the UL-MAP RS bandwidth grant after the transfer processing And the DL-MAP RS bandwidth grant message is sent to the corresponding SS/MSS; or
  • the RS passively performs uplink scheduling and downlink scheduling of the RS bandwidth according to the DL-MAP RS UL-MAP R ⁇ width of the BS, and performs relay processing on the DL-MAP R ⁇ :IUL-MAP R ⁇ wide grant message. , and send it to the corresponding SS/MSS.
  • the process of the SS/MSS acquiring the transmission time slot or the time frequency block of the bandwidth request packet includes: SS/MSS that needs to send a bandwidth request, and randomly selects an RS uplink contention channel to send a contention code to the corresponding RS;
  • the RS randomly selects a BS uplink contention channel, and sends the bandwidth request contention code sent by the SS/MSS to the corresponding BS;
  • the BS allocates the uplink bandwidth of the BS and the RS for the SS/MSS according to the received contention code, and sends the bandwidth request, and Transmitting the allocated uplink bandwidth information to the RS by using a DL-MAP BS , a UL-MAP BS , or a DL-MAP R ⁇ nUL-MAP RS bandwidth grant message constructed based on the extended BS physical frame structure; or, the BS is configured according to The received contention code allocates the uplink bandwidth of the BS and the RS for the SS/MSS for transmitting the bandwidth request, and
  • the wide grant message sends the allocated uplink bandwidth information to the RS; the RS performs downlink and uplink scheduling according to the bandwidth of the DL-MAP BS and the UL-MAP B tRS of the BS, and performs DL-MAP R ⁇ I UL-MAP After the RS bandwidth grant packet is forwarded, it is sent to Corresponding SS/MSS; or, the RS passively performs RS uplink scheduling according to the UL-MAP RS of the BS, and actively performs downlink scheduling of the RS, The RS only performs the relay processing of the UL-MAP RS message, and sends the processed UL-MAP RS to the user SS/MSS of the RS, and directly sends the actively generated DL-MAP RS to the user SS/MSS of the RS; The SS/MSS acquires a transmission time slot or a time frequency block of the transmission bandwidth request message according to the received message.
  • the process of the SS/MSS acquiring the sending time slot or the time frequency block of the sending bandwidth request message includes:
  • the RS randomly selects a BS uplink contention channel, and requests a pseudo-random bandwidth request for the SS/MSS on the uplink contention channel.
  • the Ranging code is forwarded and sent to the corresponding BS;
  • the BS After receiving the pseudo-random Ranging code, the BS allocates an uplink bandwidth of the BS and the RS to the SS/MSS for transmitting a bandwidth request, and constructs a DL-MAP BS , a UL-based structure based on the extended BS physical frame structure.
  • the MAPBS DL-MAP R ⁇ I] UL-MAP RS bandwidth grant message is sent to the corresponding RS; or, the BS allocates the uplink bandwidth of the BS and the RS for the SS/MSS according to the received pseudo-random Ranging code, for transmitting the bandwidth request, And constructed by the extended BS physical frame structure or by DL-MAP BS , UL-MAP BS , and
  • the UL-MAP RS bandwidth grant message sends the allocated uplink bandwidth information to the RS;
  • the RS performs downlink and uplink scheduling on the RS according to the DL-MAPBS and the UL-MAP BS of the BS, and performs the DL-MAP RS and
  • the RS passively performs RS uplink scheduling according to the UL-MAP RS of the BS, actively performs downlink scheduling of the RS, and actively generates 0 ⁇ . 13 ⁇ 4 bandwidth grant message; RS only performs the relay processing of UL-MAP RS message, and sends the processed UL-MAP RS to the user SS/MSS of the RS, and directly sends the actively generated DL-MAP RS to RS user SS/MSS; The SS/MSS acquires a transmission time frequency block of the transmission bandwidth request message according to the received message.
  • the DL-MAP BS, UL-MAPBS , DL-MAP RS , and UL-MAP RS message including central unit Focused- Contention- IE competitive information and broadcast connection identifier broadcast CID.
  • the DL-MAP BS , the UL-MAP BS , and the DL-MAP RS ffiUL-MAP RS bandwidth grant message include a code division multiple access allocation information unit CDMA_Allocation_IE.
  • the process of the RS performing the transfer processing on the packet specifically includes:
  • the RS converts the incoming connection identifier CID of the received packet into a corresponding outgoing CID, and sends the packet to the corresponding BS or SS/MSS according to the connection corresponding to the outgoing CID; or
  • the RS converts the incoming connection identifier CID of the received packet into a corresponding outgoing CID, and sends the packet to the corresponding lower-level RS according to the connection corresponding to the outgoing CID; the RSs of the lower level sequentially receive the received message.
  • the incoming connection identifier CID of the packet is converted into the corresponding output.
  • the process is forwarded, and the processed message is sent to the corresponding BS or SS/MSS.
  • the present invention also provides a system for implementing bandwidth allocation and scheduling management based on a relay station, including SS/MSS, BS, and RS;
  • the SS/MSS includes a bandwidth requesting unit and a scheduling management unit, the BS includes a bandwidth allocation unit and a scheduling management unit, and the RS includes a scheduling management unit and a transit processing unit;
  • the bandwidth requesting unit of the SS/MSS is configured to initiate a bandwidth request
  • the scheduling management unit of the SS/MSS is configured to allocate and schedule the bandwidth of the SS/MSS according to the received bandwidth grant message
  • the bandwidth allocation unit of the BS is configured to allocate, according to the received bandwidth request, an uplink bandwidth and a downlink bandwidth of the BS, and an uplink bandwidth of the RS, and generate a UL-MAP R ⁇ width grant message;
  • the scheduling of the BS a management unit, configured to perform scheduling management on the uplink bandwidth and the downlink bandwidth of the BS, and the uplink bandwidth of the RS, and send the generated UL-MAP RS bandwidth grant message to the RS;
  • the scheduling management unit of the RS is configured to passively perform uplink scheduling of the RS bandwidth according to the received bandwidth of the received bandwidth of the BS, and actively perform downlink scheduling on the bandwidth of the RS to generate the DL-MAP.
  • a relay processing unit of the RS configured to: transfer a bandwidth request message sent by the SS/MSS to a corresponding BS; and perform a relay for granting a UL- ⁇ wide grant message of the received BS. After processing, the generated DL-MAP RS packet is processed and sent to the SS/MSS.
  • the RS also includes a bandwidth requesting unit for initiating a bandwidth request.
  • the system further includes at least one RS; the RS performs corresponding processing according to the received message, and performs a transfer process on the received message, and sends the processed message to the corresponding lower-level RS; Each RS performs corresponding processing according to the received message, and performs a transfer process on the received message, and sends the processed message to the corresponding BS or SS/MSS.
  • the present invention further provides another system for implementing bandwidth allocation and scheduling management based on a relay station, including SS/MSS, BS, and RS;
  • the SS/MSS includes a bandwidth requesting unit and a scheduling management unit
  • the BS includes a bandwidth allocation unit and a scheduling management unit
  • the RS includes a scheduling management unit and a transit processing unit;
  • the bandwidth requesting unit of the SS/MSS is configured to initiate a bandwidth request
  • the scheduling management unit of the SS/MSS is configured to allocate and schedule the bandwidth of the SS/MSS according to the received bandwidth grant message
  • the bandwidth allocation unit of the BS is configured to allocate an uplink bandwidth and a downlink bandwidth of the BS and the RS according to the received bandwidth request, and generate a ⁇ - ⁇ ? ⁇ And! ⁇ - ⁇ ? a bandwidth granting message; a scheduling management unit of the BS, configured to perform scheduling management on the uplink bandwidth and the downlink bandwidth of the BS, and the uplink bandwidth of the RS, and send the generated UL-MAP R ⁇ DL-MAP RS bandwidth grant message to the packet RS;
  • the scheduling management unit of the RS is configured to passively perform uplink scheduling and downlink scheduling of the RS bandwidth according to the DL-MAP RS UL-MAP RS packet of the BS; and the relay processing unit of the RS is configured to transit the SS/MSS And sending the bandwidth request message to the corresponding BS; and transmitting the DL-MAP RS and the UL-MAP R ⁇ : wide grant message of the received BS to the SS/MSS.
  • the RS also includes a bandwidth requesting unit for initiating a bandwidth request.
  • the system further includes at least one RS; the RS performs corresponding processing according to the received message, and performs a transfer process on the received message, and sends the processed message to the corresponding lower-level RS; Each RS performs corresponding processing according to the received message, and performs a transfer process on the received message, and sends the processed message to the corresponding BS or SS/MSS.
  • the present invention further provides a base station device, which is connected to a relay station device, the base station device includes a bandwidth allocation unit and a scheduling management unit, and a bandwidth allocation unit, configured to perform uplink bandwidth and downlink bandwidth to the base station device according to the received bandwidth request. And the uplink bandwidth of the relay station device is allocated, and a UL-MAP ⁇ wide grant message is generated; or the bandwidth allocation unit allocates the uplink bandwidth and the downlink bandwidth of the base station device and the relay station device according to the received bandwidth request, and generates UL-MAP R ⁇ :IDL- ⁇ ?
  • a bandwidth grant message configured to perform scheduling management on the uplink bandwidth and the downlink bandwidth of the BS, and the uplink bandwidth of the RS, and send the generated UL-MAP RS bandwidth grant message to the RS; or the scheduling management unit
  • the uplink bandwidth and the downlink bandwidth of the BS and the uplink bandwidth of the RS are scheduled and managed, and the generated UL-MAP R ⁇ nDL-MAP RS bandwidth grant message is sent to the RS.
  • the present invention also provides a relay station device, which is respectively connected to a base station device and a user station/mobile subscriber station device, the relay station device includes a scheduling management unit and a transit processing unit, and a scheduling management unit, configured to receive the base station device according to the The UL-MAP R ⁇ ' wide grant message passively performs uplink scheduling of the bandwidth of the relay station device, and actively performs downlink scheduling on the bandwidth of the relay station device to generate a DL-MAP RS message; or the scheduling management unit receives the packet according to the received The DL-MAP R ⁇ nUL-MAP RS message of the BS passively performs uplink scheduling and downlink scheduling of the bandwidth of the relay station device; the transit processing unit is configured to correspond to the bandwidth request packet sent by the transit user station/mobile subscriber station equipment BS ; and, for the receiving of the 1 ⁇ - ⁇ ?
  • the processing is performed, and the generated DL-MAP RS message is processed and sent to the user station/mobile subscriber station device; or transit Transmitting, by the processing unit, a bandwidth request message sent by the user station/mobile subscriber station device to the corresponding base station device; and, the DL-MAP RS of the received base station device After the transfer is processed with the UL-MAP R ⁇ ' wide grant message, it is sent to the subscriber station/mobile subscriber station equipment.
  • the present invention also provides a subscriber station/mobile subscriber station equipment, the subscriber station/mobile subscriber station equipment comprising: a bandwidth requesting unit and a scheduling management unit; a bandwidth requesting unit, configured to initiate a bandwidth request; The bandwidth of the subscriber station/mobile subscriber station equipment is allocated and scheduled according to the received bandwidth grant message.
  • the present invention sets a mapping information unit MAP RS for controlling the RS in the physical layer frame structure of the BS, and constructs an extended BS physical layer frame structure; the BS is based on the extended BS physical layer.
  • the frame structure constructs a mapping information message MAP RS of the relay station RS, and performs bandwidth allocation and scheduling management of the RS communication channel according to the MAP R ⁇ text by the RS.
  • the bandwidth allocation is mainly implemented in the BS, and the service scheduling is mainly implemented in the BS, and the RS only passively performs the uplink or downlink scheduling of the RS, thereby effectively reducing the complexity of the RS; and utilizing the bandwidth request and the bandwidth allocation relay to solve the multi-hop.
  • the transfer problem the complexity of the BWA transit network is simplified without the introduction of complex bandwidth request, allocation and scheduling management techniques and processes.
  • the frame constituting the bandwidth grant message is defined in the frame structure of the BS, and the bandwidth allocation of the RS is performed by the BS.
  • the bandwidth grant message indicates the location and usage of each burst of the SS/MSS corresponding to the RS, so that the RS performs bandwidth. The transfer of the granted message becomes possible.
  • Figure 1 is a schematic diagram of a layered model of the 802.16 protocol
  • Figure 2 shows the 802.16 OFDM (or SC) frame structure under TDD
  • Figure 3 shows the 802,16 OFDM (or SC) frame structure under the FDD 802.16 OFDM (or SC) frame structure FDD;
  • Figure 4 shows the 802.16 OFDMA (or SOFDMA) frame structure under TDD;
  • FIG. 5 is a reference model for bandwidth allocation and scheduling management of a single-hop BWA transit system according to an embodiment of the present invention
  • FIG. 6 is a reference model for bandwidth allocation and scheduling management of a multi-hop BWA transit system according to an embodiment of the present invention
  • FIG. 7 is an OFDM (or SC) frame structure of a BS in a TDD transit system according to an embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of an OFDM (or SC) frame of a BS in an FDD transit system according to an embodiment of the present invention
  • FIG. 9 is a schematic structural diagram of an OFDMA (or SOFDMA) frame of a BS in a TDD transit system according to an embodiment of the present invention
  • FIG. 10 is a flowchart of a bandwidth request relaying process of a BWA transit system according to an embodiment of the present invention
  • FIG. 11 is a flowchart of a first stage of an OFDM physical layer bandwidth request mechanism according to an embodiment of the present invention.
  • FIG. 12 is a flowchart of a first stage of an OFDMA physical layer bandwidth request mechanism according to an embodiment of the present invention. Mode for carrying out the invention
  • the first embodiment provided by the present invention includes: SS/MSS, RS, and BS; wherein, the BS includes a bandwidth allocation (BW Allocation) unit and a scheduling management unit (QoS Scheduling)
  • the unit includes a relay processing unit, a bandwidth request unit (BW Request & Grant Relay), and a scheduling management unit;
  • the SS MSS includes a bandwidth request unit and a scheduling management unit.
  • the SS/MSS initiates a bandwidth request through the bandwidth requesting unit; the RS forwards the bandwidth request to the BS through the transit processing unit; the Sj3 ⁇ 4 S initiates a bandwidth request to the BS through its bandwidth requesting unit.
  • the bandwidth allocation unit in the BS allocates the uplink bandwidth, the downlink bandwidth, and the uplink bandwidth of the RS according to the bandwidth request received by the BS,
  • the scheduling management unit in the BS performs scheduling management on the uplink bandwidth and the downlink bandwidth of the BS, and the uplink bandwidth of the RS, and sends the generated UL-MAP ⁇ wide grant message to the RS.
  • the scheduling management unit of the RS transmits the packet according to the UL-MAP RS bandwidth (ie, the UL-MAP RS packet) transmitted by the BS.
  • the uplink scheduling of the RS bandwidth, and the downlink scheduling of the bandwidth of the RS is actively performed to generate a DL-MAP RS bandwidth grant message (ie, a DL-MAP RS packet);
  • the SS / MSS receives a schedule management unit according to 1 ⁇ - ⁇ ] 3 ⁇ 4 and 01 ⁇ - nowadays? ⁇ 13 packets of bandwidth granted bandwidth SS / MSS performs allocation and scheduling management.
  • the second embodiment provided by the present invention is still shown in FIG.
  • the second embodiment differs from the first embodiment in that: in the BS according to the bandwidth allocation unit of the BS receives a bandwidth request, the uplink and downlink bandwidths BS and the RS are allocated, and generates 1 ⁇ - ⁇ eight 1]? ⁇ and 01 ⁇ ? 1 «Bandwidth grant message; Then, the scheduling management unit in the BS schedules and manages the uplink bandwidth and downlink bandwidth of the BS, and the uplink bandwidth of the RS, and grants the UL-MAP R nDL-MAP RS bandwidth. The message is sent to the RS.
  • RS scheduling management unit passively RS uplink scheduling and downlink scheduling according to a bandwidth of BS transmitted DL-MAP R ⁇ nUL- MAP RS message; RS relay processing unit of the BS transmissions to the DL- MAP R ⁇ BUL- MAP After the RS bandwidth is granted to the packet for transit processing, Send it to SS/MSS.
  • the present invention provides third and fourth embodiments, respectively, for the first and second embodiments provided by the present invention, as shown in FIG.
  • the third and fourth embodiments are different from the first and second embodiments in that: the third and fourth embodiments include a plurality of RSs.
  • the RS since the system includes a plurality of RSs, the RS performs corresponding processing according to the received message, and performs a transfer process on the received message, and then sends the message to the corresponding lower-level RS. .
  • Each of the lower-level RSs performs corresponding processing according to the received message, and performs a transfer process on the received message, and sends the processed message to the corresponding BS or SS/MSS.
  • the corresponding processing performed by the RS according to the received message is the same as the processing in the first embodiment.
  • the fifth embodiment provided by the present invention first, in the physical layer frame structure of the BS, sets DL-MAP RS (downlink mapping information unit for controlling RS) and UL-MAP RS (for RS control)
  • the uplink mapping information element constructs an extended BS physical layer frame structure.
  • the Di:-MAP R ⁇ nUL-MAP RS is located in the downlink subframe of the physical layer frame structure of the extended BS, and is used to define the location and usage of each burst of the SS/MSS corresponding to the RS.
  • the uplink bandwidth allocation (UL-MAP) is in units of minislots; for OFDM or OFDMA, the uplink bandwidth allocation (UL-MAP) is in units of symbols and subchannels.
  • Figure 7 is a schematic diagram of the OFDM (or SC) frame structure of the BS in the TDD transit system
  • Figure 8 is the OFDM of the BS in the FDD transit system (or
  • FIG. 9 is a schematic diagram of an OFDMA (or SOFDMA) frame structure of a BS in a TDD transit system, and an OFDMA (or SOFDMA) frame structure of a BS in an FDD transit system is identical to that of FIG. 9 except that the latter
  • the uplink subframe and the downlink subframe are simultaneously transmitted on different frequencies.
  • the specific format and content definition of the DL-MAP R ⁇ UL-MAP R message based on the frame structure of the extended BS may follow the specific format of the DL-MAP and UL-MAP message according to the existing 802.16 standard. Content definition.
  • the DL-MAP RS message is sent in the current frame, it will follow the DCD and UCD messages, or immediately after the DL-MAP B ⁇ .1 UL-MAP BS message. If the DL-MAP R ⁇ £ current frame is transmitted, the UL-MAP RS immediately follows the DL-MAP RS message, if the DL-MAP RS is not transmitted in the current frame, the UL-MAP RS immediately follows the DCD and UCD messages; or if The DL-MAP RS is not transmitted in the current frame, and the UL-MAP RS immediately follows the DL-MAP B IUL-MAP BS message.
  • the DCD and UCD messages will follow the DL-MAP B ⁇ [IUL-MAP BS , or immediately after the DL-MAP RS and UL-MAP RS .
  • DL-MAP BS , UL-MAP BS , DL-MAP RS , UL-MAP RS , DCD, and UCD will be sent in DL Burst # ⁇ .
  • the RS When the bandwidth request (BW Request) is initiated by the MSS/SS, the RS performs a BW Request Relay.
  • the RS itself can also initiate a BW Request.
  • the anchor BS implements bandwidth allocation (BW Allocation) according to the bandwidth request it receives, that is, the anchor BS allocates uplink and downlink bandwidths of the BS and the RS, respectively, and constructs DL-MAP BS and UL-MAP BS messages.
  • the anchor BS also needs to construct a DL-MA.P R ⁇ :iUL-MAP RS message based on the extended BS physical layer frame structure.
  • the BS After performing the uplink and downlink bandwidth allocation of the BS and the RS, the BS transmits the constructed DL-MAP BS and the UL-MAP BS and the DL-MAP R n UL-MAP RS message to the RS. Describe the location and usage profile of each burst of the corresponding connection of the SS/MSS belonging to the BS in the DL-MAP BS and the UL-MAP BS message sent by the BS to the RS, and the DL-MAP RS and the RS sent to the RS in the BS.
  • the UL-MAP RS message indicates the location and usage of each burst of the corresponding connection of the SSMSS belonging to the RS.
  • the service scheduling is mainly implemented on the BS.
  • the RS only passively performs uplink or downlink scheduling of the RS according to the DL-MAP B ⁇ nUL-MAP BS of the BS .
  • the sixth embodiment provided by the present invention, as described in FIG. 10, includes:
  • Step 1 The SS/MSS initiates bandwidth consultation according to the broadcast, multicast or unicast Request IE specified in the UL-MAP RS message of the BS relayed by the RS.
  • the BS describes the time interval in which the uplink iff seeks the uplink data transmission bandwidth.
  • the characteristics of IE are determined by the type of CID. If it is broadcast or multicast, all SS/MSS is required to participate in the competition bandwidth consultation; if it is a unicast CID, it means to apply for bandwidth for each specific connection.
  • the bandwidth request represents a mechanism by which the SS/MSS notifies the BS of the required upstream bandwidth.
  • SS/MSS can send bandwidth request messages:
  • the BW Requesto contention period usually refers to broadcast/multicast polling. This method may collide and needs to be considered for retreat.
  • a BW Request can have one of two attributes:
  • Increment When the BS receives the incremental BW Request, it superimposes the bandwidth of the Request application based on the current understanding of the bandwidth requirement of the CID.
  • the BS receives the total amount of BW Request, which replaces the current understanding of the CID bandwidth requirement.
  • the mechanism for sending B W Request during the contention period is different.
  • the bandwidth request message can use a separate bandwidth request header, such as modes 1 and 2, or as a piggybacked message, such as mode 3, and the piggyback mode is optional.
  • Polling Polling is the process by which the BS allocates bandwidth for the SS/MSS to send the upstream BW Request. Polling can be for a single SS or for a group of SSs. The former is called unicast Polling, the latter is called multicast Polling, and multicast Polling is a contention period. Collisions may occur, and random backoff should be considered.
  • the specific implementation method of unicast Polling is as follows: The BS allocates enough bandwidth for sending the BW Request to the Basic CID of the SS/MS. A Data Grant IE that points to the Basic CID of the SS MSS is usually assigned in the UL-MAP. Assigning a group of SSs is actually defining the Bandwidth Request Contention IE.
  • the multicast polling method is adopted, and a group of SS/MSs sends a BW Request during the contention multicast polling period. You can define a dedicated multicast or broadcast CDD.
  • the BS can be notified by the PM (Poll-me), which needs a unicast Polling for non-UGS connections.
  • Polling is in units of SS MSS, but bandwidth requests are in units of connections.
  • Step 2 The bandwidth request message is transited by the relay station RS, and the processed bandwidth request message is transmitted to the BS.
  • the BW Request transit process needs to perform CID conversion on the BW Request message.
  • the CID re-mapping table maintained in the RS is shown in Table 1.
  • to CID 0x8b.
  • the RS converts the incoming connection identifier CID of the received packet into a corresponding outgoing CID, and sends the packet to the corresponding BS or SS according to the connection corresponding to the CID. /MSS.
  • the RS When the BW Request packet is transited through multiple RSs, the RS first converts the incoming connection identifier CID of the received packet into a corresponding outgoing CID, and sends the packet to the corresponding connection according to the connection corresponding to the outgoing CID. And then, the lower-level RSs sequentially convert the incoming connection identifier CID of the received message into a corresponding outgoing CID, and transit the message through the connection corresponding to the converted connection identifier, and then perform transit processing. Until the message is sent to the corresponding BS or SS/MSS.
  • Step 3 The BS performs bandwidth allocation and scheduling management according to the bandwidth request packet, and constructs a bandwidth grant message based on the extended BS physical layer frame structure, and then transmits the broadband grant message to the RS.
  • the BS first performs bandwidth allocation according to the bandwidth request message; secondly, performs bandwidth grant (Grants).
  • a bandwidth grant process Based on Extended BS in the physical layer frame structure configured DL-MAP R ⁇ UUL-MAP RS packet and explains the position and use of each Burst belonging to the RS SS / MSS of the corresponding connection in the configuration of the packet Method; Finally, the constructed message is transmitted to the RS.
  • the BS indicates the location and usage of each burst of the corresponding connection of the SS/MSS belonging to the BS in the DL-MAP B ⁇ nUL-MAP BS message addressed to the RS.
  • Step 4 The RS performs uplink and downlink fading according to the received message, and performs relay processing on the packet, and then transmits the packet to the SS/MSS.
  • the RS passively performs downlink and uplink scheduling of the RS according to the DL-MAP R ⁇ nUL-MAP RS message transmitted by the BS.
  • the RS performs the relay of the DL-MAP RS and the UL-MAP RS message, that is, the bandwidth allocation relay, and the bandwidth allocation relay can pass the multi-hop RS.
  • the RS may convert the DL-MAP R (IUL-MAP RS message sent by the anchor BS to the DL-MAP and UL-MAP in the downlink subframe of the RS as it is, and send it to the SS/MSS belonging to the RS.
  • the point BS can accurately acquire and adjust the delay deviation caused by the RS relay.
  • the RS may adjust the delay offset of the BS allocated by the BS described in the DL-MAP R ⁇ flUL-MAP RS message sent by the anchor BS, and then convert it into DL-MAP and UL- in the downlink subframe of the RS.
  • MAP sent to the SS/MSS belonging to the RS. This method does not require the anchor BS to acquire and adjust the delay skew caused by the RS relay.
  • the DL-MAP R ⁇ nUL- MAP RS message transfer process also needs to check the CID remapping table, and perform CID conversion on the DL-MAP R ⁇ I UL-MAP RS message. No longer detailed.
  • Step 5 The SS/MSS selects a corresponding connection and a location on the connection according to the information in the bandwidth grant message, and exchanges information with the BS at the location by using the connection.
  • the SS/MSS By receiving the DL-MAP and UL-MAP messages in the downlink subframe of the RS, the SS/MSS obtains the bandwidth allocation and grant result of the anchor BS, and the SS/MSS corresponding connection can send the message to the specified burst location. RS.
  • the seventh embodiment provided by the present invention firstly sets a UL-MAP RS in a frame structure of a BS to construct an extended BS physical layer frame structure.
  • the UL-MAP RS is located in the downlink subframe of the physical layer frame structure of the extended BS, and is used to define the corresponding SS/MSS connection belonging to the RS. The location and usage of each burst.
  • the uplink bandwidth allocation is in units of minislots; for D-OFDM or OFDMA, the uplink bandwidth allocation is in units of symbols and subchannels.
  • FIG. 7, FIG. 8, and FIG. 9 are also taking FIG. 7, FIG. 8, and FIG. 9 as an example for description.
  • UL-MAP RS is set in the downlink subframe of the physical layer frame structure of the BS, and the transmission slot of the SUL-MAP RS is set behind the DCD and/or UCD, or Behind the DL-MAP BS and the UL-MAP BS .
  • the RS When the bandwidth request is initiated by the SS/MSS, the RS performs the BW Request Relay, and the RS itself can also initiate the BW Request.
  • the anchor BS implements bandwidth allocation (BW Allocation) according to the received bandwidth request, that is, the BSB BS separately allocates the uplink and downlink bandwidths of the BS and the uplink bandwidth of the RS, and constructs the DL-MAP BS and the UL-MAP BS report. Text. And constructing a UL-MAP RS message based on the extended BS physical layer frame structure.
  • the BS allocates the uplink and downlink bandwidths of the BS and the uplink bandwidth of the RS, and the RS allocates the downlink bandwidth.
  • the BS then sends the constructed DL-MAP BS , UL-MAP BS , and UL-MAP RS packets to the RS.
  • the UL-MAP BS message sent by the BS to the RS indicates the location and usage of each burst of the SS/MSS corresponding to the BS, and the DL-MAP R sent by the BS to the RS: I UL-MAP RS The location and usage of each burst of the corresponding SS/MSS connection belonging to the RS is described.
  • the RS performs the relay of the UL-MAP RS message (that is, the bandwidth allocation transit). Playing the main service scheduling implemented at the BS, RS but according to a BS DL-MAP B ⁇ ] UL- MAP B do scheduling uplink RS is movably, RS downlink scheduling initiative to do it.
  • the eighth embodiment provided by the present invention includes:
  • Step 1 The SS/MSS initiates a bandwidth request. The details are similar to those described in the seventh embodiment.
  • Step 2 The bandwidth request message is transited by the relay station RS, and the processed bandwidth request message is transmitted to the BS.
  • the details are similar to those described in the seventh embodiment.
  • Step 3 The BS performs bandwidth allocation and scheduling management according to the received bandwidth request message, and constructs a bandwidth grant message based on the extended BS physical layer frame structure, and then transmits the packet to the RS.
  • the BS first performs allocation of the uplink bandwidth, the downlink bandwidth, and the uplink bandwidth of the RS according to the bandwidth request message.
  • the bandwidth grant (Grants) is performed.
  • the process of bandwidth granting is: constructing a UL-MAP RS message based on the extended BS physical layer frame structure, and indicating the location and usage method of each Burst corresponding to the SS/MSS of the RS in the message; the BS is sending to the RS The location and usage of each burst of the corresponding connection of the SS/MSS belonging to the BS is described in the DL-MAP B ⁇ PUL-MAP BS message. Finally, the message is delivered to the RS. .
  • Step 4 RS DL-MAP BS according to UL-MA S and corresponding to the received packet processing and the BS transmits to the packet UL- MAP RS relay processing transmits UL-MAP RS message to the SS / MSS.
  • the RS passively performs uplink scheduling of the RS according to the UL-MAP RS message of the BS, and actively performs downlink scheduling of the RS. Actively generated
  • the DL-MAP RS is sent to the user SSMSS of the RS.
  • the description of the other parts is the same as that described in the seventh embodiment.
  • Step 5 The SS MSS selects a corresponding connection and a location on the connection according to the information in the received bandwidth grant message, and exchanges information with the BS at the location by using the connection.
  • the SS/MSS obtains the bandwidth allocation and grant result of the anchor BS by receiving the DL-MAP R UL-MAP RS message in the downlink subframe of the RS , and the SS/MSS connection can send the packet at the specified burst location. Give RS.
  • the ninth embodiment provided by the present invention includes: Step 1.
  • the BS actively allocates the RS uplink bandwidth and notifies the RS through the UL-MAP R ⁇ 3 ⁇ 4 text.
  • Step 2 When the RS receives the uplink UL-AP RS packet sent by the BS, - passively performs RS uplink scheduling on the bandwidth of the RS according to the uplink UL-MAP RS packet, actively performs RS downlink scheduling, and actively generates a downlink DL- MAP RS packet;
  • the RS performs the transit processing on the UL-MAP RS packet, and sends the transit-processed UL-MAP RS to the RS user SS/MSS, and the RS actively generates it! ⁇ - ⁇ ? ⁇ User RS/MSS sent to RS.
  • the tenth embodiment provided by the present invention is a contention-based bandwidth request mechanism supported by the OFDM physical layer, and includes two phases.
  • the first phase OFDM physical layer REQ Region-Focused bandwidth solicitation process, as shown in Figure I I:
  • Step 1 The SS/MSS that needs to send the bandwidth request randomly selects an RS uplink competing channel to send the contention code to the corresponding RS.
  • the SS/MSS that needs to send a bandwidth request first selects an RS uplink transmission opportunity during the REQ Region-Focused period, that is, the Contention Channel sends a Contention Code.
  • Step 2 The RS randomly selects a BS contending channel, and performs a transfer process on the bandwidth request contention code sent by the SS/MSS, and then sends the content to the corresponding BS.
  • the specific process is as follows: RS randomly selects an anchor point BS uplink transmission opportunity, that is, the contention channel forwards the SS/MSS bandwidth request contention code, and the bandwidth request contention code can be multi-hop RS.
  • Step 3 After the BS receives the contention code, the anchor BS allocates the uplink bandwidth of the BS and the RS for the SS/MSS to send a bandwidth request, by using DL-MAP BS , UL-MAPBS, DL-MAP R ⁇ [IUL- The MAP RS message is sent to the RS; or sent to the RS through the DL-MAP BS , the UL-MAP BS , and the UL-MAP RS message.
  • the upstream bandwidth allocation is not indicated by the BASIC CID, but is indicated by the broadcast CID and the OFDM Focused_Contention_IE.
  • Step 4 The RS passively performs RS downlink and uplink scheduling according to the DL-MAPR ⁇ IUL-MAP RS of the BS, and performs DL-MAP RS and
  • the RS After the UL-MAP RS bandwidth grants the packet to be forwarded, it is sent to the corresponding SS/MSS.
  • the RS performs the uplink scheduling of the RS according to the UL-MAP R of the BS, and actively performs the downlink scheduling of the RS to actively generate. ! ⁇ ! ? ! The bandwidth grant message; the RS only performs the relay processing of the UL-MAP RS message, and sends the transit-processed UL-MAP RS and the actively generated DL-MAP RS to the RS user SS/MSS.
  • the above message can be multi-hop RS.
  • the RS also needs to check the CID remapping table for the DL-MAP R ⁇ «UL-MAP RS message transfer processing, and perform CID conversion for the DL-MAP R ⁇ nUL-MAP RS message. No longer detailed.
  • Step 5 The SS/MSS acquires a contention channel for sending a bandwidth request message according to the received packet.
  • the bandwidth allocation and request mechanism is the same as the specific implementation process of the seventh or eighth embodiment, and will not be described in detail.
  • the contention-based bandwidth request mechanism supported by the OFDM physical layer supports the contention-based bandwidth request mechanism as described in the fourth embodiment or the fifth embodiment in addition to the implementation process described in the seventh embodiment.
  • a ranging (Ranging) subchannel and a special set of pseudorandom Ranging codes are defined for the OFDMA physical layer.
  • Pseudo-random code is divided into three types: Initial Ranging, Periodic Ranging and Bandwidth Rquest.
  • the OFDMA physical layer supports a contention-based CDMA bandwidth request mechanism, which is divided into two phases.
  • the SS/MSS needs to request bandwidth, randomly select a code from the Bandwidth Request pseudo-random Ranging code, and It is sent to the RS in the Ranging subchannel of the RS. .
  • Step 2 The RS randomly selects a BS uplink contention channel, such as a Ranging subchannel, and forwards the pseudorandom Ranging code randomly selected by the SS/MSS to the corresponding BS in the uplink contention channel.
  • the pseudo-random 1 & 1 1 1 code can be multi-hop RS.
  • Step 3 After the BS receives the pseudo-random Ranging code, the anchor BS allocates the uplink bandwidth of the BS and the RS for the SS/MSS for the transmission bandwidth, through the DL-MAP BS , the UL-MAP BS DL-MAP RS, and The UL-MAP RS 3 ⁇ 4 text is sent to the RS; or sent to the RS through the DL-MAP B s, the UL-MAP BS, and the UL-MAP RS message.
  • the upstream bandwidth is accomplished by allocating a CDMA-Allocation JE with a transmission area and ranging code information in the UL-MAP.
  • Step 4 The RS passively performs RS downlink and uplink scheduling according to the DL-MAP R .iUL-MAP RS of the BS, and performs the transfer processing on the DL-MAP R ⁇ I:I UL-MAP R ⁇ wide grant message, and then sends the packet. Or the corresponding SS/MSS; or, the RS performs the uplink scheduling of the RS according to the UL-MAP R of the BS, and actively performs the downlink scheduling of the RS, and actively generates the DL-MAP R ⁇ i?
  • Step 5 After receiving the transited UL-MAP RS , the SS/MSS may determine, according to the information carried in the CDMA-Allocation-IE, whether the uplink transmission opportunity belongs to itself. If it is its own, SS/MSS uses this sender to send bandwidth requests and data.
  • the bandwidth allocation and request mechanism is the same as the specific implementation process of the seventh embodiment or the eighth embodiment, and will not be described.
  • the contention-based bandwidth request mechanism supported by the OFDMA physical layer supports the contention-based bandwidth request mechanism as described in the fourth embodiment or the fifth embodiment in addition to the implementation process described in the eighth embodiment.
  • Bandwidth allocation (BW Allocation) is implemented only at the anchor BS.
  • the bandwidth allocation is mainly implemented in the BS.
  • the service scheduling is mainly implemented in the BS, which effectively reduces the complexity of the RS. - '
  • the UL-MAP RS is defined in the physical frame structure of the BS, and the uplink bandwidth allocation of the RS is performed by the anchor BS, and the location and usage method of each burst correspondingly connected to the SS MSS belonging to the RS through the UL- ⁇ It is possible to make the RS transmit the bandwidth of the UL-MAP RS text and actively generate the DL-MAP RS according to the information sent by the BS.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

基于中转站实现带宽分配和调度管理的方法、 系统和设备
技术领域
本发明涉及通信领域, 尤其涉及一种基于中转站实现带宽分配和调度管理的方法、系统和设备。 发明背景
目前宽带无线接入的分层模型如附图 1所示, 图 1中的分层模型包括物理层 (PHY) 和数据链路 层(MAC), 数据链路层又分为服务特定汇聚子层(SSCS或简写为 CS) 、 MAC公共部分子层(MAC CPS ) 和加密子层 (SS ) 。
带宽分配和调度管理在 MAC CPS层实现。 宽带无线接入的重要特性之一就是对多类型业务的支 持, 裉据业务数据特性可以将业务分成四种类别, 并相应地提供如下四种业务调度方式:
1、 主动分配, 其对应的业务称为主动分配业务 (Unsolicited Grant Service, UGS ) 。
2、 实时轮询, 对应实时轮询业务 (Real-time Polling Service; RtPS ) 。
3、 非实时轮询, 对应非实时轮询业务 (Non-real-time Polling Service; NrtPS) .。
4、 尽力而为, 对应尽力而为业务 (Best Effort Service; BE) 。
除了主动分配业务, 其它业务的上行带宽分配都要经历带宽请求 /分配的过程。 业务调度类型的 不同主耍体现在带宽请求发送方式的不同。
所述业务调度是指 MAC层根据各个连接对应业务流的不同 QoS要求, 控制连接上的数据传输。 每条连接都同一组 QoS参数相对应, 该对应关系如表 1所示。 QoS参数可以通过 DSA、 DSC、 DSD和
DSX-RVD等 MAC层流管理消息的交互进行管理。
表 1
Figure imgf000003_0001
对于上行链路, 由于宽带无线接入支持多点向一点发送数据, 如多个 SS/MSS ( subscriber station/mobile subscriber station, 用户站 /移动用户站) 向 BS (base station, 基站) 发送数据, 因此可 能会发生碰撞, 特别是发送长数据的时候, 发生碰撞的几率高。 为了避免过多的碰撞, BS的上行通 道发送机会的基本机制为:
第一步: SS/MSS发送对于连接的带宽请求 (BW Request) , 以请求资源。
第二步: BS根据所述带宽请求进行上行带宽分配, 并在上行映射消息 (UL- MAP)报文中说明 给相应连接的各个突发 (burst) 的位置和使用方法 (profile) 。
第三步: SS/MSS在相应连接上的指定的 burst的位置发送报文。 对于下行链路, 宽带无线接入支持一点向多点发送数据, 如 BS向多个 SS/MSS发送数据, 为了能 在时频空间内区分各个用户, BS的下行通道发送的基本机制为:
第一步: BS进行下行调度, 在 DL-MAP报文中说明相应连接的各个突发 (burst) 的位置和使 ffl 方法 (profile) 。
第二步: SS/MSS在相应连接上的指定的 burst的位置接收报文。
所谓带宽分配是指 BS给下属的 SS/MSS提供上行发送机会或者谘求带宽机会的过程。 具体为 - 确定调度业务类型和对应的 QoS参数后, BS的调度器就可以了解上行业务的吞吐量和延迟需求, 并在合适的时候分配发送机会或者请求带宽的机会。 BS给 SS/MSS提供发送带宽诮求机会的过程称为 轮询 (Polling) 。
目前,宽带无线接入的物理信道上传输的数据的格式为帧(Fmme)格式。每帧包括下行子帧(DL subframe) 和上行子喊 ( UL subfrarae) 。
如果采用 TDD (时分双工)模式,则下行子帧先传输, 随后传输上行子帧, TDD下的 OFDM (或 SC) 帧结构如附图 2所示。
如果釆用 FDD (频分双工) 模式, 则上行子帧和下行子帧同时传输, 而且上行子帧和下行子帧 以不同的频率发送,对应半双工的 FDD模式下的 SS,在上行子帧发送时不会同时发送下行子帧。 FDD 下的 OFDM (或 SC) 帧结构如附图 3所示。
无论采用 TDD模式还是 FDD模式, 一个下行子帧只有一个下行物理层协议数据单元 (DL PHY PDU) , 而一个上行子帧包含按以下顺序的时隙: 初始竞争时隙(Contention slot for initial ranging) 、 带宽请求竞争时隙(Contention slot for BW requests)和一个或多个上行物理层协议数据单元(UL PHY PDU) , 每个 UL PHY PDU来自不同的用户站 (SS) 。
下行 PHY PDU开始是一个前导码 (preamble) , 用于物理同步; 之后是 FCH (帧控制头) 突发 (burst) , FCH包括下行帧前缀(DL— Frame— Prefix; DLFP) , 用来指定紧随在 FCH之后的一个或多 个下行 Burst的 profile及其长度。 DL- MAP (下行映射)消息如果在当前帧发送, 则是跟在 FCH后面的 第一个 MAC PDUo如果有 DL-MAP发送, UL-MAP则紧跟在 DL-MAP或者 DLFP后面。如果 DCD (下 行信道描述符) 和 UCD (上行信道描述符) 消息在帧中发送, 它们将紧跟在 DL-MAP和 UL-MAP后 面。 DL- MAP、 UL-MAP ^ DCD和 UCD消息将在 DL Burst # 1 ( 1号下行突发) 的位置发送。 下行子 帧其它 burst的位置和使用方法 (profile) 由 DL- MAP指定, 上行子帧的各个 burst的位置和 profile由 DL-MAP指定。 在 TDD系统中, TTG和 RTG会插在上下行子帧交替的时候, 以留出一段时间让 BS完 成收发交替。
在如图 4所示的 TDD下的 OFDMA帧结构中, 下行子帧先传输, 随后是上行子帧。
在 FDD下的 OFDMA (或 SOFDMA) 帧结构中, 上行子帧和下行子帧在不同的频率上发送。 无论是 TDD下的 OFDMA帧结构中还是在 FDD下的 OFDMA帧结构中, 所有的有效子载波被分成 若干子载波集, 每一个子载波集称为一个子信道(subchannel) 。 OFDMA中的 PHY burst被分配一组 相邻的子信道和一组 OFDMA符号(symbol) 。一个 burst在上行可以分配给一个用户 (SS) (或一组 用户) , 在下行可以由 BS作为一个发送单元发给 SS。 上行 SS的初始接入、 周期性测距(Ranging) 、 带宽请求等都通过测距子信道 (Ranging subchannel)进行。 目前, 宽带无线接入已提出了 WiMAX中转站(RS, Relay Station) 的概念, RS—个重要的作用 是作为 BS与 SS/MSS间的中转, 伹是, 在设置了中转站的系统中, 目前还没有对 SS/MSS的带宽分配 和调度管理的方案。 发明内容
本发明的目的是提供一种 ¾于中转站实现带宽分配和调度管理的方法、 系统和设备, 有效减小 了 RS的复杂度; 简化了 BWA中转网络的复杂度。
本发明的目的是通过以下技术方案实现的:
本发明提供一种基于中转站实现带宽分配和调度管理的方法, 包括 - 基站 BS基于扩展的 BS物理层帧结构构造控制中转站 RS的映射信息单元 MAPRS带宽授予报文,并 发送给 RS, RS根据接收的带宽授予报文对其通信信道进行带宽分配和调度管理;
所述扩展的 BS物理层帧结构为: 设置有控制中转站 RS的映射信息单元 MAPRS的 BS物理层帧结 构; 所述映射信息单元为: 上行映射信息单元 UL-MAPRS /或下行映射信息单元 DL-MAPRS
下述方法的技术方案为可选技术方案。
所述 BS物理层帧结构还包括: 控制 BS的下行映射信息单元 DL- MAPBS和控制 BS的上行映射信息 单元 UL-MAPBS, 或者在 BS物理层帧结构包括控制 BS的下行映射信息单元 DL- MAPBS和控制 BS的上 行映射信息单元 UL-MAPBS单元的基础上, 所述 BS物理层帧结构还包括: 下行信道描述符 DCD和 /或 上行信道描述符 UCD。
所述方法具体包括: SS/MSS获取发送带宽请求报文的发送时隙或时间频率块, 并发送带宽请求 报文; SS/MSS发起的带宽请求报文经中转站 RS进行中转处理后, 传送给 BS; BS根据所述带宽请求 报文进行带宽分配和调度管理, 并基于所述扩展的 BS物理层帧结构构造带宽授予报文, 然后发送给
RS; 所述 RS根据 BS的带宽授予报文进行带宽分配和调度处理, 并将处理结果传送给对应的 SS MSS;
SS/MSS根据其接收的信息选择相应的连接以及所述连接上的位置,并通过所述连接在所述位置与 BS 交互信息;
或者所述方法具体包括:
BS主动分配 RS上行带宽, 并通过 UL-MAPRS带宽授予报文通知 RS; RS根据 BS发送的 UL-MAPRS 带宽授予报文对其带宽进行被动 RS上行调度, 并主动进行 RS下行调度, 主动产生 DL-MAPRS带宽授 予报文; RS对 UL-MAPRS带宽授予报文进行中转处理, 并将中转处理后的 UL-MAPR^ 宽授予报文和 主动产生的 DL-MAPRS带宽授予报文发给 RS的 SSMSS。
所述带宽请求报文传送给 BS的过程包括: SS/MSS通过使用 RS中转的 BS的 UL- MAPR :宽授予 报文中指定的广播、多播或单播的请求信息单元 Request IE发起带宽请求; RS对接收到的带宽请求报 文进行中转处理后, 发送给 BS。
所述 BS进行带宽分配、 调度管理、 构造发送带宽授予报文的过程包括:
BS根据带宽请求报文分别对 BS的上行带宽、 下行带宽以及 RS的上行带宽进行分配和调度管理, 并基于扩展的 BS物理层帧结构构造 DL- MAPBS、 UL- MAPBS和!^-^?^带宽授予报文, 然后发送给 RS; 或, BS根据带宽请求报文分别对 BS的上行带宽、下行带宽以及 RS的上行带宽和下行带宽进行分配和 调度管理,并基于所述扩展的 BS物理层帧结构构造 DL-MAPBS、 UL-MAPBS 、 DL-MAPR^;nUL-MAPRS 带宽授予报文, 然后发送给 RS。
所述 RS进行带宽分配和调度处理, 并将处理结果传送给对应的 SS/MSS的过程包括 -
Figure imgf000006_0001
并主动对 RS的带宽进行 下行调度, 产生 DL-MAPR 宽授予报文, 并对所述 UL-MAPR^1i宽授予报文进行中转处理, 将中转 处理后的 UL-MAPRS带宽授予报文和所述 DL-MAPRS带宽授予报文发送给对应的 SS/MSS; 或,
所述 RS根据 BS的 DL- MAPRS UL-MAPR^ 宽授予报文被动进行 RS带宽的上行调度和下行调 度, 并对 DL-MAPR^:IUL-MAPR^ 宽授予报文进行中转处理, 并发给对应的 SS/MSS。
所述 SS/MSS获取发送带宽请求报文的发送时隙或时间频率块的过程具体包括: 需要发送带宽请 求的 SS/MSS, 随机选择一个 RS上行竞争信道发送竞争码给相应的 RS; 所述 RS随机选择一个 BS上行 竞争信道, 将 SS/MSS发送的带宽请求竞争码发送给对应的 BS; BS根据接收到的竞争码为 SS/MSS分 配 BS和 RS的上行带宽用于发送带宽请求, 并通过基于扩展后的 BS物理帧结构构造的 DL-MAPBS、 UL-MAPBS、 DL- MAPR^nUL-MAPRS带宽授予报文将所述分配的上行带宽信息发送给 RS; 或, BS根 据接收到的竞争码为 SS/MSS分配 BS和 RS的上行带宽用于发送带宽请求, 并通过基于扩展后的 BS物 理帧结构构造的 DL- MAPBS、 UL-MAPBS、 和 UL-MAPR^ 宽授予报文将所述分配的上行带宽信息发 送给 RS; RS根据 BS的 DL-MAPBS和 UL-MAPB tRS的带宽进行下行和上行调度, 并对 DL-MAPR^†I UL-MAPRS带宽授予报文进行中转处理后, 发送给对应的 SS/MSS; 或, RS根据 BS的 UL-MAPRS被动 地做 RS上行调度, 主动地做 RS的下行调度,
Figure imgf000006_0002
RS仅做 UL-MAPRS 报文的中转处理,并将处理后的 UL-MAPRS发给 RS的用户 SS/MSS,以及直接将主动产生的 DL- MAPRS 发给 RS的用户 SS/MSS; SS/MSS根据接收到报文获取到发送带宽请求报文的发送时隙或时间频率块。
所述 SS/MSS获取发送带宽请求报文的发送时隙或时间频率块的过程包括:
当 SS/MSS需要请求带宽时, 在带宽请求伪随机测距 Ranging码中随机选择一个码 , 并通过 RS的 Ranging子信道发送给 RS;
RS随机选择一个 BS上行竞争信道, 并在所述上行竞争信道对 SS/MSS发送的带宽请求伪随机
Ranging码进行转发, 发送给相应的 BS;
当 BS收到所述伪随机 Ranging码后, 为所述 SS/MSS分配 BS和 RS的上行带宽用于发送带宽请求, 并通过基于扩展后的 BS物理帧结构构造的 DL-MAPBS、 UL-MAPBS DL- MAPR^I]UL-MAPRS带宽授 予报文发送给相应的 RS;或, BS根据接收到的伪随机 Ranging码为 SS/MSS分配 BS和 RS的上行带宽用 于发送带宽请求, 并通过基于扩展后的 BS物理帧结构构造的或通过 DL- MAPBS、 UL-MAPBS、 和
UL-MAPRS带宽授予报文将所述分配的上行带宽信息发送给 RS;
RS根据 BS的 DL-MAPBS和 UL-MAPBS对 RS进狞下行和上行调度, 并对所述 DL-MAPRS
UL-MAPRS带宽授予报文进行中转处理后, 发送给对应的 SS/MSS; 或, RS根据 BS的 UL- MAPRS被动 地做 RS上行调度, 主动地做 RS的下行调度, 主动产生 0 ^?带宽授予报文; RS仅做 UL-MAPRS 报文的中转处理,并将处理后的 UL-MAPRS发给 RS的用户 SS/MSS,以及直接将主动产生的 DL- MAPRS 发给 RS的用户 SS/MSS; 所述 SS/MSS根据接收到报文获取到发送带宽请求报文的发送时间频率块。
所述 DL-MAPBS、 UL-MAPBS、 DL-MAPRS和 UL-MAPRS报文中包括集中竞争信息单元 Focused— Contention— IE和广播连接标识 broadcast CID。
所述 DL-MAPBS、 UL-MAPBS、 DL-MAPRSffiUL-MAPRS带宽授予报文中包括码分多址分配信息单 元 CDMA— Allocation— IE。
所述 RS对报文进行中转处理的过程具体包括 -
RS将接收到的报文的入连接标识 CID转换为对应的出 CID ,并根据所述出 CID对应的连接将所述 报文发送给对应的 BS或 SS/MSS; 或,
RS对接收到的报文的入连接标识 CID转换为对应的出 CID , 并根据所述出 CID对应的连接将所述 报文发送给对应的下级 RS; 所述下级各 RS依次将接收到的报文的入连接标识 CID转换为对应的出
CID, 并通过转换后的连接标识对应的连接中转所述报文后, 进行中转处理, 并将处理后的报文发 送给对应的 BS或 SS/MSS。
本发明还提供一种基于中转站实现带宽分配和调度管理的系统, 包括 SS/MSS、 BS和 RS; 所述
SS/MSS包括带宽请求单元和调度管理单元, 所述 BS包括带宽分配单元和调度管理单元, 所述 RS包 括调度管理单元和中转处理单元;
所述 SS/MSS的带宽请求单元, 用于发起带宽请求; 所述 SS/MSS的调度管理单元, 用于根据接 收到的带宽授予报文对 SS/MSS的带宽进行分配和调度管理;
所述 BS的带宽分配单元, 用于根据接收到的带宽请求, 对 BS的上行带宽和下行带宽、 RS的上行 带宽进行分配, 并产生 UL-MAPR^宽授予报文; 所述 BS的调度管理单元, 用于对 BS的上行带宽和 下行带宽、 RS的上行带宽进行调度管理, 并将产生的 UL-MAPRS带宽授予报文发送给 RS;
所述 RS的调度管理单元, 用于根据接收到的 BS的 1^-^^?^带宽授予报文被动进行 RS带宽的上 行调度, 并通过主动对 RS的带宽进行下行调度, 产生 DL-MAPRS报文; 所述 RS的中转处理单元, 用 于中转所述 SS/MSS发送来的带宽请求报文给对应的 BS; 以及, 对接收到的 BS的 UL- ΜΑΡκ^ 宽授予 报文进行中转处理, 对产生的 DL-MAPRS报文进行处理后, 发送给 SS/MSS。
所述 RS还包括带宽请求单元, 用于发起带宽请求。
所述系统还包括至少一个 RS; RS根据接收到的报文进行相应的处理, 以及对接收到的报文进行 中转处理, 并将处理后的报文发送给对应的下级各 RS; 所述下级各 RS依次根据接收到的报文进行相 应的处理, 以及对接收到的报文进行中转处理, 并将处理后的报文发送给对应的 BS或 SS/MSS。
本发明还提供另一种基于中转站实现带宽分配和调度管理的系统, 包括 SS/MSS、 BS和 RS; 所 述 SS/MSS包括带宽请求单元和调度管理单元, 所述 BS包括带宽分配单元和调度管理单元, 所述 RS 包括调度管理单元和中转处理单元;
所述 SS/MSS的带宽请求单元, 用于发起带宽请求; 所述 SS/MSS的调度管理单元, 用于根据接 收到的带宽授予报文对 SS/MSS的带宽进行分配和调度管理;
所述 BS的带宽分配单元,用于根据接收到的带宽请求,对 BS和 RS的上行带宽和下行带宽进行分 配, 并产生 ^^-^?^和!^-^?^带宽授予报文; BS的调度管理单元, 用于对 BS的上行带宽和下 行带宽、 RS的上行带宽进行调度管理, 并将产生的 UL-MAPR^DL-MAPRS带宽授予报文发送给 RS; 所述 RS的调度管理单元, 用于根据 BS的 DL-MAPRS UL-MAPRS报文被动进行 RS带宽的上行调 度和下行调度; 所述 RS的中转处理单元, 用于中转所述 SS/MSS发送来的带宽请求报文给对应的 BS; 以及, 对接收到的 BS的 DL- MAPRS和 UL-MAPR^:宽授予报文进行中转处理后, 发送给 SS/MSS。
下述系统的技术方案为可选技术方案。 '
所述 RS还包括带宽请求单元, 用于发起带宽请求。
所述系统还包括至少一个 RS; RS根据接收到的报文进行相应的处理, 以及对接收到的报文进行 中转处理, 并将处理后的报文发送给对应的下级各 RS; 所述下级各 RS依次根据接收到的报文进行相 应的处理 , 以及对接收到的报文进行中转处理, 并将处理后的报文发送给对应的 BS或 SS/MSS。
本发明还提供一种基站设备, 与中转站设备连接, 所述基站设备包括带宽分配单元和调度管理 单元; 带宽分配单元, 用于根据接收到的带宽请求, 对基站设备的上行带宽和下行带宽、 中转站设 备的上行带宽进行分配,并产生 UL-MAP^ 宽授予报文;或者带宽分配单元根据接收到的带宽请求, 对基站设备和中转站设备的上行带宽和下行带宽进行分配, 并产生 UL-MAPR^:IDL- ^^?^带宽授予 报文; 调度管理单元, 用于对 BS的上行带宽和下行带宽、 RS的上行带宽进行调度管理, 并将产生的 UL-MAPRS带宽授予报文发送给 RS; 或者调度管理单元对 BS的上行带宽和下行带宽、 RS的上行带宽 进行调度管理, 并将产生的 UL-MAPR^nDL-MAPRS带宽授予报文发送给 RS。
本发明还提供一种中转站设备, 分别与基站设备和用户站 /移动用户站设备连接, 所述中转站设 备包括调度管理单元和中转处理单元;调度管理单元,用于根据接收到的基站设备的 UL- MAPR^^'宽 授予报文被动进行中转站设备带宽的上行调度, 并通过主动对中转站设备的带宽进行下行调度, 产 生 DL-MAPRS报文; 或者调度管理单元根据接收到的 BS的 DL- MAPR^nUL-MAPRS报文被动进行中转 站设备带宽的上行调度和下行调度; 中转处理单元, 用于中转用户站 /移动用户站设备发送来的带宽 请求报文给对应的 BS; 以及, 对接收到的 BS的 1^-^?^带宽授予报文进行中转处理, 对产生的 DL- MAPRS报文进行处理后, 发送给用户站 /移动用户站设备; 或者中转处理单元中转所述用户站 /移 动用户站设备发送来的带宽请求报文给对应的基站设备; 以及, 对接收到的基站设备的 DL- MAPRS 和 UL-MAPR^'宽授予报文进行中转处理后, 发送给用户站 /移动用户站设备。
本发明还提供一种用户站 /移动用户站设备,所述用户站 /移动用户站设备包括: 带宽请求单元和 调度管理单元; 带宽请求单元, 用于发起带宽请求; 凋度管理单元, 用于根据接收到的带宽授予报 文对用户站 /移动用户站设备的带宽进行分配和调度管理。
由上述本发明提供的技术方案可以看出,本发明在 BS的物理层帧结构中设置控制 RS的映射信息 单元 MAPRS, 构造扩展的 BS物理层帧结构; BS基于所述扩展的 BS物理层帧结构构造控制中转站 RS 的映射信息报文 MAPRS, 并通过 RS根据所述 MAPR^ 文进行 RS的通信信道的带宽分配和调度管理。 通过本发明, 带宽分配主要在 BS实现, 业务调度主要在 BS实现, RS只是被动地做 RS的上行或下行 调度, 从而有效减小 RS的复杂度; 利用带宽请求和带宽分配中转, 解决多跳中转问题, 无需引进复 杂的带宽请求、 分配和调度管理技术和流程, BWA中转网络的复杂度得到简化。在 BS的帧结构中定 义构成带宽授予报文的帧, 由 BS做 RS的带宽分配, 通过带宽授予报文说明属于 RS的 SS/MSS相应连 接的各个 burst的位置和使用方法, 使得 RS作带宽授予报文的中转成为可能。 附图简要说明
图 1为 802.16协议分层模型示意图;
图 2为 TDD下的 802.16 OFDM (或 SC) 帧结构;
图 3为; FDD下的 802.16 OFDM (或 SC) 帧结构 FDD下的 802,16 OFDM (或 SC) 帧结构; 图 4为 TDD下的 802.16 OFDMA (或 SOFDMA) 帧结构;
图 5为本发明实施例的单跳 BWA中转系统带宽分配和调度管理参考模型;
图 6为本发明实施例的多跳 BWA中转系统带宽分配和调度管理参考模型;
图 7为本发明实施例的 TDD中转系统中 BS的 OFDM (或 SC) 帧结构;
图 8为本发明实施例的 FDD中转系统中 BS的 OFDM (或 SC) 帧结构示意图;
图 9为本发明实施例的 TDD中转系统中 BS的 OFDMA (或 SOFDMA) 帧结构示意图; 图 10为本发明实施例的 BWA中转系统带宽请求中转流程图;
图 11为本发明实施例的 OFDM物理层带宽请求机制第一阶段流程图;
图 12为本发明实施例的 OFDMA物理层带宽请求机制第一阶段流程图。 实施本发明的方式
针对本发明所述的系统, 本发明提供的第一实施例如图 5所示, 包括: SS/MSS、 RS和 BS; 其中,· BS包括带宽分配 (BW Allocation) 单元和调度管理单元 (QoS Scheduling) 单元; RS包括中转处理 单元、 带宽请求单元 (BW Request&Grant Relay) 和调度管理单元; SS MSS包括带宽请求单元和调 度管理单元。
SS/MSS通过带宽请求单元发起带宽请求; RS通过中转处理单元中转带宽请求给 BS; Sj¾ S通过 其带宽请求单元向 BS发起带宽请求。 BS中的带宽分配单元根据 BS接收到的带宽请求, 对 BS的上行 带宽和下行带宽、 RS的上行带宽进行分配,
Figure imgf000009_0001
BS中的调度管理单元 对 BS的上行带宽和下行带宽、 RS的上行带宽进行调度管理, 并将产生的 UL-MAP^ 宽授予报文发 送给 RS。
RS的调度管理单元, 根据 BS传输来的 UL-MAPRS带宽授予报文 (即 UL-MAPRS报文) 被动进行
RS带宽的上行调度, 并通过主动对 RS的带宽进行下行调度, 产生 DL-MAPRS带宽授予报文 (即 DL- MAPRS报文) ;
Figure imgf000009_0002
对 DL- MAPR^ 文进行中转处理后, 发送给 SS/MSS。
所述 SS/MSS的调度管理单元根据接收到的 1^-^?和01<-!^?1 3带宽授予报文对 SS/MSS的带 宽进行分配和调度管理。
针对本发明所述的系统, 本发明提供的第二实施例, 仍然如图 5所示。第二实施例与第一实施例 的区别在于: BS中的带宽分配单元根据 BS接收到的带宽请求, 对 BS和 RS的上行带宽和下行带宽进 行分配, 并产生 1^-^1八?]^和01^^?1«带宽授予报文; 然后, BS中的调度管理单元对 BS的上行带 宽和下行带宽、 RS的上行带宽进行调度管理, 并将 UL-MAPR nDL- MAPRS带宽授予报文发送给 RS。 RS的调度管理单元根据 BS传输来的 DL-MAPR^nUL- MAPRS报文被动进行 RS带宽的上行调度和下行 调度; RS的中转处理单元对 BS传输来的 DL- MAPR^BUL- MAPRS带宽授予报文进行中转处理后, 发 送给 SS/MSS。
分别针对本发明提供的第一和第二实施例,本发明提供了第三与第四实施例,如图 6所示。第三、 第四实施例与第一和第二实施例不同之处在于: 第三与第四实施例包括多个 RS。
在第三、第四实施例中, 由于系统中包括多个 RS,所以, RS根据接收到的报文进行相应的处理, 以及对接收到的报文进行中转处理后, 发送给对应的下级 RS。下级各 RS依次根据接收到的报文进行 相应的处理, 以及对接收到的报文进行中转处理, 并将处理后的报文发送给对应的 BS或 SS/MSS。 RS根据接收到的报文进行的相应处理与第一实施例中的处理过程相同。
针对本发明所述的方法, 本发明提供的第五实施例, 首先, 在 BS的物理层帧结构中设 DL-MAPRS (控制 RS的下行映射信息单元) 和 UL-MAPRS (控制 RS的上行映射信息单元) , 构造扩 展的 BS物理层帧结构。
Di:-MAPR^nUL-MAPRS位于扩展后的 BS的物理层帧结构的下行子帧中, 用于定义属于 RS的 SS/MSS相应连接的各个 burst的位置和使用方法 ( profile )。对于 SC而言,上行链路带宽分配 ( UL-MAP ) 以微时隙(minislot)为单位; 对于 OFDM或者 OFDMA而言, 上行链路带宽分配(UL-MAP) 以符号 和子信道为单位。
图 7为 TDD中转系统中 BS的 OFDM (或 SC)帧结构示意图,图 8为 FDD中转系统中 BS的 OFDM (或
SC) 帧结构示意图; 图 9为 TDD中转系统中 BS的 OFDMA (或 SOFDMA) 帧结构示意图, 而 FDD中 转系统中 BS的 OFDMA (或 SOFDMA)帧结构和图 9雷同, 不同之处在于后者的上行子帧和下行子帧 在不同的频率上同时发送。
基于扩展后的 BS的帧结构构造的 DL- MAPR^UL-MAPR 息报文的具体格式和内容定义,可以 遵循现有 802.16标准对 DL-MAP和 UL-MAP消息报文的具体格式和内容定义。
从扩展的 BS物理层帧结构可以看出: DL-MAPRS消息如果在当前帧发送, 将紧跟在 DCD和 UCD 消息后面, 或者紧跟在 DL-MAPB^.1UL- MAPBS消息后面。如果 DL-MAPR^£当前帧发送, UL- MAPRS 紧跟在 DL-MAPRS消息后面, 如果 DL- MAPRS不在当前帧发送, UL- MAPRS紧跟在 DCD和 UCD消息后 面; 或者如果 DL- MAPRS不在当前帧发送, 则 UL-MAPRS紧跟在 DL-MAPB IUL- MAPBS消息后面。如 果 DCD和 UCD消息在当前帧中发送, DCD和 UCD消息将紧跟在 DL-MAPB^[IUL-MAPBS后面、 或者 紧跟在 DL-MAPRS和 UL-MAPRS后面。 DL-MAPBS、 UL- MAPBS、 DL-MAPRS、 UL- MAPRS、 DCD和 UCD 将在 DL Burst # ί发送。
当带宽请求 (BW Request) 由 MSS/SS发起时, RS做带宽请求中转 (BW Request Relay) 。 RS 本身也可发起 BW Request。 锚点 BS根据其接收到的带宽请求实现带宽分配 (BW Allocation) , 即锚 点 BS要分别对 BS和 RS的上行和下行带宽进行分配, 并构造 DL-MAPBS和 UL-MAPBS报文。 锚点 BS还 需要基于扩展后的 BS物理层帧结构, 构造 DL-MA.PR^:iUL-MAPRS报文。
BS进行 BS和 RS的上行和下行带宽分配后, 将构造的 DL- MAPBS和 UL-MAPBS、 DL-MAPR n UL-MAPRS报文发送给 RS。 在 BS发给 RS的 DL-MAPBS和 UL-MAPBS报文中说明属于 BS的 SS/MSS相应 连接的各个 burst的位置和使用方法(profile) , 在 BS发给 RS的 DL-MAPRS和 UL- MAPRS报文中说明属 于 RS的 SSMSS相应连接的各个 burst的位置和使用方法 (profile) 。
当 RS做 DL-MAPR^nUL-MAPRS报文的中转, 即带宽分配中转时, 业务调度主要在 BS上实现, RS只是根据 BS的 DL-MAPB^nUL-MAPBS被动地做 RS的上行或下行调度。
本发明提供的第六实施例, 如图 10所述, 包括:
步骤 1、 SS/MSS根据 RS中转的 BS的 UL-MAPRS消息中指定的广播、 多播或单播 Request IE发起带 宽谘求。
通过此 Request lE, BS描述了上行链路 iff求上行数据传输带宽的时间间隔。 IE的特点由 CID的类 型决定。 如果是广播或者多播, 则需要所有的 SS/MSS参与竞争带宽谘求; 若为单播 CID, 则表示针 对每一个特定连接申请带宽。
带宽请求表示 SS/MSS将所需上行带宽通知 BS的一种机制。 SS/MSS发送带宽谙求消息的方式有 多种:
1、在争用时段发送 BW Requesto争用时段通常是指广播 /多播轮询(broadcast/multicast Polling), 该方式可能发生碰撞, 需要考虑随即退避。
2、 利用 BS分配的单播轮询 (Unicast Polling) 发送 BW Request。 对于 rt-Polling或者 nrt- Polling业 务流, BS会为其分配单播的 Polling时段, SS MS在该时段内发送申请, 则不会发生碰撞。
3、 利用发送数据的机会, 发送附带 (Piggyback) 的带宽请求。
BW Request可以具有下述两种属性之一:
1、 增量的(Increment) : BS收到增量的 BW Request, 则在当前对该 CID的带宽需求理解的基础 上叠加该 Request申请的带宽。
2、 总量的 (Aggregate) : BS收到总量的 BW Request, 则替代当前对该 CID带宽需求的理解。 另外对于不同的物理层方式 , 争用时段发送 B W Request的机制有所不同。
带宽请求报文可以釆用单独的带宽请求头, 如方式 1和 2, 或表示为一种捎带信息, 如方式 3, 捎 带方式为可选。
轮询 Polling是 BS为 SS/MSS分配的用于发送上行 BW Request的带宽的过程。 Polling可以是给单个 SS, 也可以是给一组 SS的。 前者称之为单播 Polling, 后者称为组播 Polling, 组播 Polling是争用时段, 可能发生碰撞, 要考虑随机退避。
单播 Polling的具体实现方法是: BS为 SS/MS的 Basic CID分配足够发送 BW Request的带宽。 通常 是在 UL- MAP分配一个指向 SS MSS的 Basic CID的 Data Grant IE。 给一组 SS分配, 实际就是定义 Bandwidth Request Contention IE。
如果对于 BS来说, 单播 Polling的资源开销太大的话, 就采用组播 Polling的方式, 一组 SS/MS在 争用的组播 Polling时段发送 BW Request。 可以定义专门的组播或者广播 CDD。
对于当前有 UGS业务流的 SS/MSS, 可以通过 PM (Poll- me, 轮循我) 位通知 BS, 该 SS/MS需耍 一个单播 Polling, 用于非 UGS的连接。
轮询以 SS MSS为单位, 但带宽请求以连接为单位。
步骤 2、 带宽请求报文经中转站 RS进行中转处理, 并将处理后的带宽请求报文传送给 BS。 BW Request中转处理需要对 BW Request报文做 CID的转换。 RS中维护的 CID重映射表如表 1所 示。 其中 RS->BS的连接为 CID3 (出 CID=0x8b) , MSS/SS->RS间的连接为 CID2 (入 ClD=0x3f) 。 BW Request中转处理需将 BW Request报文中的 CID由入 CID=0x3ff|换为出 CID=0x8b。 序号 SFID 入 CID 出 CID QoS
1 0x7426 0x3f (即 CID2) 0x8b (即 CID3 ) rt- polling
2 0x1694 0x49 Oxal BE
3
表 1
当 BW Request报文经过一个 RS进行中转时, RS将接收到的报文的入连接标识 CID转换为对应的 出 CID , 并根据出 CID对应的连接将所述报文发送给对应的 BS或 SS/MSS。
当 BW Request报文经过多个 RS进行中转时, 首先 RS对接收到的报文的入连接标识 CID转换为对 应的出 CID, 并根据所述出 CID对应的连接将所述报文发送给对应的下级 RS; 然后, 所述下级各 RS 依次将接收到的报文的入连接标识 CID转换为对应的出 CID,并通过转换后的连接标识对应的连接中 转所述报文后, 进行中转处理, 直到报文发送给对应的 BS或 SS/MSS。
步骤 3、 BS根据带宽请求报文进行带宽分配和调度管理, 并基于扩展的 BS物理层帧结构构造带 宽授予报文, 然后, 将宽带授予报文传送给 RS。
在此步骤中, 首先 BS根据带宽请求报文进行带宽分配; 其次, 进行带宽授予 (Grants) 。 带宽 授予的过程为: 基于扩展的 BS物理层帧结构构造 DL-MAPR^UUL-MAPRS报文, 并在构造的报文中说 明属于 RS的 SS/MSS相应连接的各个 Burst的位置和使用方法; 最后, 将构造的报文传送给 RS。 BS在 发给 RS的 DL-MAPB^nUL-MAPBS报文中说明属于 BS的 SS/MSS相应连接的各个 burst的位置和使用方 法。
步骤 4、 RS根据接收的报文进行上下行凋度, 并对报文进行中转处理, 然后传送给 SS/MSS。
RS根据 BS传输来的 DL-MAPR^nUL-MAPRS报文被动地做 RS的下行、上行调度。 RS做 DL-MAPRS 和 UL-MAPRS报文的中转, 即带宽分配中转, 带宽分配中转可以经多跳 RS。 RS可以按原样将锚点 BS 发送来的 DL-MAPR [IUL-MAPRS报文转换为 RS的下行子帧中的 DL-MAP和 UL- MAP,发给属于 RS的 SS/MSS 这要求锚点 BS能够精确地获取和调整 RS中转带来的时延偏差。
RS可以将锚点 BS发送来的 DL-MAPR^flUL-MAPRS报文中描述的 BS分配的 Grants做时延偏差调 整后, 再转换为 RS的下行子帧中的 DL-MAP和 UL-MAP, 发给属于 RS的 SS/MSS。该方式无需锚点 BS 获取和调整 RS中转带来的时延偏差。
DL-MAPR^nUL- MAPRS报文中转处理同样需要査 CID重映射表, 对 DL-MAPR^I UL-MAPRS报文 做 CID的转换。 不再详述。
步骤 5, SS/MSS根据所述带宽授予报文中的信息选择相应的连接以及所述连接上的位置, 并通 过所述连接在所述位置与 BS交互信息。
通过接收 RS的下行子帧中的 DL-MAP和 UL-MAP报文, SS/MSS获得锚点 BS带宽分配和授予的结 果, SS/MSS相应连接就可以在指定的 burst的位置发送报文给 RS。
针对本发明所述的方法, 本发明提供的第七实施例, 首先, 在 BS的帧结构中设置 UL-MAPRS, 构造扩展的 BS物理层帧结构。
UL-MAPRS位于扩展后的 BS的物理层帧结构的下行子帧中,用于定义属于 RS的 SS/MSS相应连接 的各个 burst的位置和使用方法 (profile) 。 对于 SC而言, 上行链路带宽分配以微时隙 (minislot) 为 单位; 对丁- OFDM或者 OFDMA而言, 上行链路带宽分配以符号和子信道为单位。
仍然以图 7、 图 8、 图 9为例进行说明。
从扩展的 BS物理层帧结构可以看出: 在 BS的物理层帧结构的下行子帧中设置 UL- MAPRS, 并设 SUL-MAPRS的发送时隙在 DCD和 /或 UCD的后面, 或者在 DL-MAPBS和 UL- MAPBS的后面。 设 ffl DL-MAPBS、 UL-MAPBS、 UL-MAPRS、 DCD和 UCD在 DL Burst # 1发送。
带宽请求由 SS/MSS发起时, RS做 BW Request Relay (带宽请求中转) , RS本身也可发起 BW Request。 锚点 BS根据接收的带宽请求实现带宽分配(BW Allocation) , 即铖点 BS要分别对 BS的上 行和下行带宽, 以及 RS的上行带宽进行分配, 并构造 DL-MAPBS和 UL-MAPBS报文。 以及基于扩展后 的 BS物理层帧结构, 构造 UL-MAPRS报文。
BS分别对 BS上行、 下行带宽和 RS的上行带宽进行分配, RS对其下行带宽进行分配, 然后 BS将 构造的 DL-MAPBS、 UL-MAPBS、 UL-MAPRS报文发送给 RS。 BS发给 RS的 UL- MAPBS报文中说明了属 于 BS的 SS/MSS相应连接的各个 burst的位置和使用方法 (profile ) , BS发给 RS的 DL-MAPR :I UL-MAPRS报文中说明了属于 RS的 SS/MSS相应连接的各个 burst的位置和使用方法 (profile) 。
RS做 UL-MAPRS报文的中转 (即带宽分配中转) 。 业务调度主耍在 BS上实现, RS只是根据 BS 的 DL-MAPB^]UL- MAPB 动地做 RS的上行调度, RS主动做其下行调度。
本发明提供的第八实施例, 仍然如图 10所示, 包括:
步骤 1、 SS/MSS发起带宽请求。 具体说明雷同与第七实施例中的相关描述。
步骤 2、 带宽请求报文经中转站 RS进行中转处理, 并将处理后的带宽请求报文传送给 BS。 具体 说明雷同与第七实施例中的相关描述。
步骤 3、 BS根据接收的带宽请求报文进行带宽分配和调度管理, 并基于扩展的 BS物理层帧结构 构造带宽授予报文, 然后传送给 RS。
在此步骤中,首先 BS根据带宽请求报文进行 BS的上行带宽、下行带宽以及 RS的上行带宽的分配; 其次, 进行带宽授予 (Grants) 。 带宽授予的过程为: 基于扩展的 BS物理层帧结构构造 UL-MAPRS 报文, 并在报文中说明属于 RS的 SS/MSS相应连接的各个 Burst的位置和使用方法; BS在发给 RS的 DL-MAPB^PUL-MAPBS报文中说明属于 BS的 SS/MSS相应连接的各个 burst的位置和使用方法。最后, 将报文传送给 RS。 .
步骤 4、RS根据接收的 DL-MAPBS和 UL-MA S报文进行相应的处理,并对 BS传送来的 UL- MAPRS 报文进行中转处理, 将 UL-MAPRS报文传送给 SS/MSS。
RS根据 BS的 UL-MAPRS报文被动地做 RS的上行调度, 主动地做 RS的下行调度。 并主动产生
DL- MAPRS发给 RS的用户 SSMSS。 其它部分的说明雷同与第七实施例中的相关描述。
步骤 5, SS MSS根据接收的带宽授予报文中的信息选择相应的连接以及连接上的位置, 并通过 所述连接在所述位置与 BS交互信息。
通过接收 RS的下行子帧中的 DL-MAPR UL-MAPRS报文, SS/MSS获得锚点 BS带宽分配和授予 的结果, SS/MSS相应连接就可以在指定的 burst的位置发送报文给 RS。
本发明提供的第九实施例, 包括: 步骤 1、 BS主动分配 RS上行带宽, 并通过 UL-MAPR^¾文通知 RS。
步骤 2、 RS接收到 BS发送的上行 UL- APRS»文时, -根据所述上行 UL-MAPRS报文对 RS的带宽被 动进行 RS上行调度, 主动进行 RS下行调度, 主动产生下行 DL-MAPRS报文; RS对 UL-MAPRS报文进 行中转处理, 并将中转处理后的 UL-MAPRS发给 RS的用户 SS/MSS , RS将其主动产生的!^-^^?^发 给 RS的用户 SS/MSS。
本发明提供的第十实施例为 OFDM物理层支持的基于竞争的带宽请求机制, 包括两个阶段。 第 一个阶段: OFDM物理层 REQ Region-Focused带宽谙求流程, 如图 I I所示:
步骤 1、 需要发送带宽请求的 SS/MSS , 随机选择一个 RS上行竞争信道发送竞争码给相应的 RS。 需要发送带宽请求的 SS/MSS首先在 REQ Region-Focused期间, P追机选择一个 RS上行发送机会, 即竞争信道(Contention Channel) 发送竞争码 (Contention Code) 。
步骤 2、 RS随机选择一个 BS竞争信道, 对 SS/MSS发送的带宽请求竞争码进行中转处理后, 发送 给对应的 BS。具体过程为: RS随机选择一个锚点 BS上行发送机会, 即兗争信道(Contention Channel) 将 SS/MSS的带宽请求竞争码进行转发, 带宽请求竞争码可以经多跳 RS。
步骤 3、 当 BS收到该竞争码后, 锚点 BS为 SS/MSS分配 BS和 RS的上行带宽用于发送带宽请求, 通过 DL-MAPBS、 UL-MAPBS、 DL-MAPR^[IUL-MAPRS报文发送给 RS;或通过 DL-MAPBS、 UL-MAPBS、 和 UL- MAPRS报文发送给 RS。在该实施例中上行带宽分配不用 BASIC CID指示,而是用 broadcast CID 和 OFDM Focused— Contention_IE共同指示。 OFDM Focused— Contention— IE中包含 SS/MSS使用的竞争 信道、竞争码和发送机会。这样 SS MSS就可以根据自己刚才使用的参数知道 BS是否为其分配了上行 机会。
步骤 4、 RS根据 BS的 DL-MAPR^IUL- MAPRS被动地进行 RS下行和上行调度, 并对 DL-MAPRS
UL-MAPRS带宽授予报文进行中转处理后, 发送给对应的 SS/MSS; 或者, RS根据 BS的 UL-MAPR^ 动地做 RS上行调度,主动地做 RS的下行调度,主动产生。!^! ?!^带宽授予报文; RS仅做 UL- MAPRS 报文的中转处理, 并将中转处理后的 UL-MAPRS和主动产生的 DL-MAPRS发给 RS的用户 SS/MSS。
上述报文可以经多跳 RS。 RS对 DL-MAPR^«UL-MAPRS报文中转处理同样需要査 CID重映射表 , 对 DL-MAPR^nUL-MAPRS报文做 CID的转换。 不再详述。
步骤 5、 SS/MSS根据接收到报文获取到发送带宽请求报文的竞争信道。
SS/MSS接收到经中转的 UL-?^?!^后, 判断自己是否有发送带宽请求 B W Request报文的机会。 第二个阶段: 带宽分配与请求机制与第七或第八实施例的具体实施过程雷同, 不再详细描述。 OFDM物理层支持的基于竞争的带宽请求机制除第七实施例描述的实施过程外, 还支持如第四 实施例或第五实施例所述的基于竞争的带宽请求机制。
本发明提供的第十一实施例, 针对 OFDMA物理层, 定义测距(Ranging )子信道和一组特殊的 伪随机 Ranging码。伪随机码又分为 Initial Ranging、 Periodic Ranging和 Bandwidth Rquest三种。 OFDMA 物理层支持基于竞争的 CDMA带宽请求机制, 其分为两个阶段。第一个阶段: OFDMA物理层带宽请 求流程, 如图 12所示, 包括- 步骤 1、 当 SS/MSS需要请求带宽时, 从 Bandwidth Request伪随机 Ranging (测距) 码中随机选择 一个码, 并在 RS的 Ranging子信道中发送给 RS。 . 步骤 2、 RS随机选择一个 BS上行竞争信道如 Ranging子信道, 并在上行竞争信道将 SS/MSS随机 选取的伪随机 Ranging码转发给相应的 BS。 伪随机 1 &1 11 码可以经多跳 RS。
步骤 3、 当 BS收到该伪随机 Ranging码后, 锚点 BS为 SS/MSS分配 BS和 RS的上行带宽用于发送带 宽¾求, 通过 DL- MAPBS、 UL-MAPBS DL-MAPRS和 UL-MAPRS¾文发送给 RS; 或通过 DL-MAPBs、 UL-MAPBS和 UL-MAPRS报文发送给 RS。
该上行带宽通过在 UL- MAP中分配一个带有发送区域和 ranging code信息的 CDMA一 Allocation JE 来完成。
步骤 4、 RS根据 BS的 DL- MAPR .iUL-MAPRS被动地进行 RS下行和上行调度, 并对 DL-MAPR^I:I UL-MAPR^ 宽授予报文进行中转处理后, 发送给对应的 SS/MSS; 或者, RS根据 BS的 UL-MAPR 动地做 RS上行调度, 而主动地做 RS的下行调度, 主动产生 DL-MAPR^i?宽授予报文; RS仅做 UL- MAPRS报文的中转处理, 并将处理后的 UL-MAPRS发给 RS的用户 SS/MSS , 以及直接将主动产生 的 DL-MAPRS发给 RS的用户 SS/MSS。
步骤 5、 SS/MSS接收到经中转的 UL-MAPRS后, 可以根据 CDMA— Allocation— IE中携带的信息确 定是否该上行发送机会是否属于自己。 如果属于自己, SS/MSS用该发送机会发送带宽请求和数据。
第二个阶段, 带宽分配与请求机制与第七实施例或第八实施例的具体实施过程雷同, 不再描述。
OFDMA物理层支持的基于竞争的带宽请求机制除第八实施例描述的实施过程外,还支持如第四 实施例或第五实施例所述的基于竞争的带宽请求机制。
由上述本发明的具体实施方案可以看出, 其存在如下有益效果:
1、 带宽分配 (BW Allocation) 仅在锚点 BS实现, 带宽分配主要在 BS实现; 业务调度则主要在 BS实现, 有效减小了 RS的复杂度。 - '
2、利用带宽请求和带宽分配中转, 解决多跳中转问题, 无需引进复杂的带宽请求、 分配和凋度 管理技术和流程, 简化了 BWA中转网络的复杂度。
3、 在 BS的物理帧结构中定义 DL- MAPR^nUL-MAPRS, 由锚点 BS做 RS的带宽分配, 通过
Figure imgf000015_0001
使用方法(profile) , 使得 RS只作 DL-MAPR^PUL-MAPRS报文的带宽分配中转成为可能。 或在 BS的 物理帧结构中定义 UL-MAPRS , 由锚点 BS做 RS的上行带宽分配, 通过 UL- ΑΡ^ϋ明给属于 RS的 SS MSS相应连接的各个 burst的位置和使用方法 (profile) , 使得 RS作 UL-MAPRS 文的带宽分配中 转, 并根据 BS发送的信息主动生成 DL-MAPRS, 成为可能。
以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并不局限于此, 任何熟悉本 技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到的变化或替换, 都应涵盖在本发明的 保护范围之内。 因此, 本发明的保护范围应该以权利要求的保护范围为准。

Claims

权利要求
1、 一种基于中转站实现带宽分配和调度管理的方法, 其特征在于, 包括:
基站 BS基于扩展的 BS物理层帧结构构造控制中转站 RS的映射信息单元 MAPR 宽授予报文,并 发送给 RS, RS根据接收的带宽授予报文对其通信信道进行带宽分配和调度管理;
所述扩展的 BS物理层帧结构为: 设置有控制中转站 RS的映射信息单元 MAPR^ lBS物理层帧结 构; 所述映射信息单元为: 上行映射信息单元 UL-MAPR^n/或下行映射信息单元 DL-MAPRS
2、 根据权利耍求 1所述的方法, 其特征在于, 所述 BS物理层帧结构还包括: 控制 BS的下行映射 信息单元 DL-MAPBS和控制 BS的上行映射信息单元 UL-MAPBS, 或者在 BS物理层帧结构包括控制 BS 的下行映射信息举元 DL-MAPBS和控制 BS的上行映射信息单元 UL-MAPBS单元的基础上, 所述 BS物 理层帧结构还包括: 下行信道描述符 DCD和 /或上行信道描述符 UCD。
3、 根据权利耍求 1所述的方法, 其特征在于, 所述方法具体包括:
SS/MSS获取发送带宽请求报文的发送时隙或时间频率块, 并发送带宽请求报文;
SS/MSS发起的带宽请求报文经中转站 RS进行中转处理后, 传送给 BS;
BS裉据所述带宽请求报文进行带宽分配和调度管理,并基于所述扩展的 BS物理层帧结构构造带 宽授予报文, 然后发送给 RS ;
所述 RS根据 BS的带宽授予报文进行带宽分配和调度处理, 并将处理结果传送给对应的 SS/MSS;
SS/MSS根据其接收的信息选择相应的连接以及所述连接上的位置, 并通过所述连接在所述位置 与 BS交互信息;
或者所述方法具体包括:
BS主动分配 RS上行带宽, 并通过 UL- MAPRS带宽授予报文通知 RS;
RS根据 BS发送的 UL- MAPRS带宽授予报文对其带宽进行被动 RS上行凋度,并主动进行 RS下行调 度, 主动产生 DL-MAPR^'宽授予报文; RS对 UL-MAPR^'宽授予报文进行中转处理, 并将中转处理 后的 UL-MAPRS带宽授予报文和主动产生的 DL-MAPRS带宽授予报文发给 RS的 SS/MSS。
4、 根据权利耍求 3所述的方法, 其特征在于, 所述带宽请求报文传送给 BS的过程包括- SS/MSS通过使用 RS中转的 BS的 UL- MAPR^ 宽授予报文中指定的广播、多播或单播的请求信息 单元 Request lE发起带宽请求; RS对接收到的带宽请求报文进行中转处理后, 发送给 BS。
5、 根据权利要求 3所述的方法, 其特征在于, 所述 BS进行带宽分配、 调度管理、 构造发送带宽 授予报文的过程包括:
BS根据带宽请求报文分别对 BS的上行带宽、 下行带宽以及 RS的上行带宽进行分配和调度管理, 并基于扩展的 BS物理层帧结构构造 DL-MAPBS、 UL- MAPBS和 UL- MAPRS带宽授予报文, 然后发送给 RS; 或,
BS根据带宽请求报文分别对 BS的上行带宽、下行带宽以及 RS的上行带宽和下行带宽进行分配和 调度管理,并基于所述扩展的 BS物理层帧结构构造 DL- MAPBS、 UL-MAPBs 、 DL-MAPRS和 UL-MAPRS 带宽授予报文, 然后发送给 RS。
6、 根据权利要求 3所述的方法, 其特征在于, 所述 RS进行带宽分配和调度处理, 并将处理结果 传送给对应的 SS/MSS的过程包括:
所述 RS裉据 BS的 UL-MAPR 宽授予报文被动进行 RS带宽的上行调度,并主动对 RS的带宽进行 下行调度, 产生 DL-MAPR ?宽授予报文, 并对所述 UL-MAPR^:宽授予报文进行中转处理, 将中转 处理后的 UL-MAPRS带宽授予报文和所述 DL-MAPRS带宽授予报文发送给对应的 SS/MSS; 或,
所述 RS根据 BS的 DL-MAPR IUL-MAPR^宽授予报文被动进行 RS带宽的上行调度和下行调 度, 并对 DL-MAPR^l:IUL-MAPR^宽授予报文迸行中转处理, 并发给对应的 SS/MSS。
7、 根据权利要求 3所述的方法, 其特征在于, 所述 SS/MSS获取发送带宽请求报文的发送时隙或 时间频率块的过程具体包括:
需要发送带宽请求的 SS/MSS, 随机选择一个 RS上行竞争信道发送竞争码给相应的 RS; 所述 RS随机选择一个 BS上行竞争信道, 将 SS/MSS发送的带宽请求竞争码发送给对应的 BS;
BS根据接收到的兗争码为 SS/MSS分配 BS和 RS的上行带宽用于发送带宽请求, 并通过基于扩展 后的 BS物理帧结构构造的 DL-MAPBS、 UL-MAPBS DL-MAPR^nUL-MAPR^宽授予报文将所述分 配的上行带宽信息发送给 RS; 或, BS根据接收到的竞争码为 SSMSS分配 BS和 RS的上行带宽用于发 送带宽请求, 并通过基于扩展后的 BS物理帧结构构造的 DL-MAPBS、 UL-MAPBS 和 UL-MAPRS带宽 授予报文将所述分配的上行带宽信息发送给 RS;
RS根据 BS的 DL-MAPBS和 UL-MAPBS对 RS的带宽进行下行和上行调度, 并对 DL-MAPRS和 UL- MAPRS带宽授予报文进行中转处理后, 发送给对应的 SS/MSS; 或, RS根据 BS的 UL- MAPRS被动 地做 RS上行调度, 主动地做 RS的下行调度, 主动产生 DL- ^^?!^带宽授予报文; RS仅做 UL- MAPRS 报文的中转处理,并将处理后的 UL-MAPRS发给 RS的用户 SS/MSS ,以及直接将主动产生的 DL- MAPRS 发给 RS的用户 SS/MSS;
SS/MSS根据接收到报文获取到发送带宽请求报文的发送时隙或时间频率块。
8、 根据权利要求 3所述的方法, 其特征在于, 所述 SSMSS获取发送带宽请求报文的发送时隙或 时间频率块的过程包括:
当 SS/MSS需要请求带宽时, 在带宽请求伪随机测距 Ranging码中随机选择一个码, 并通过 RS的 Ranging子信道发送给 RS;
RS随机选择一个 BS上行竞争信道, 并在所述上行竞争信道对 SS/MSS发送的带宽请求伪随机 Ranging码进行转发, 发送给相应的 BS;
当 BS收到所述伪随机 Ranging码后, 为所述 SS/MSS分配 BS和 RS的上行带宽用于发送带宽请求, 并通过基于扩展后的 BS物理帧结构构造的 DL- MAPBS、 UL- MAPBS、 DL- MAPRS和 UL-MAPRS带宽授 予报文发送给相应的 RS;或, BS根据接收到的伪随机 Ranging码为 SS/MSS分配 BS和 RS的上行带宽用 于发送带宽请求, 并通过基于扩展后的 BS物理帧结构构造的或通过 DL-MAPBS、 UL- MAPBS、 和 UL- MAPRS带宽授予报文将所述分配的上行带宽信息发送给 RS;
RS根据 BS的 DL- MAPBS和 UL- MAPBS对 RS进行下行和上行调度, 并对所述 DL-MAPRS和 UL-MAPRS带宽授予报文进行中转处理后, 发送给对应的 SS/MSS; 或, RS根据 BS的 UL- MAPRS被动 地做 RS上行调度, 主动地做 RS的下行调度, 主动产生 01^-^?^带宽授予报文; RS仅做 UL- MAPRS 报文的中转处理,并将处理后的 UL-MAPRS发给 RS的用户 SS/MSS,以及直接将主动产生的 DL-MAPRS 发给 RS的用户 SS/MSS;
所述 SS MSS根据接收到报文获取到发送带宽请求报文的发送时间频率块。
9、根据权利耍求 7所述的方法,其特征在于,所述 DL-MAPBS、 UL-MAPBS、 DL-MAPRS和 UL-MAPRS 报文中包括集中竞争信息单元 Focused—Contention— IE和广播连接标识 broadcast CID。
10、 根据权利耍求 8所述的方法, 其特征在于, 所述 DL-MAPBS、 UL-MAPBS、 DL-MAPRS和 UL-MAPR 宽授予报文中包括码分多址分配信息单元 CDMA— Allocation— IE。
11、 根据权利要求 3、 , 6、 7或 8所述的方法, 其特征在于, 所述 RS对报文进行中转处理的过 程具体包括:
RS将接收到的报文的入连接标识 CID转换为对应的出 CID, 并根据所述出 CID对应的连接将所述 报文发送给对应的 BS或 SS/MSS; 或,
RS对接收到的报文的入连接标识 CID转换为对应的出 CID,并根据所述出 CID对应的连接将所述 报文发送给对应的下级 RS;
所述下级各 RS依次将接收到的报文的入连接标识 CID转换为对应的出 CID,并通过转换后的连接 标识对应的连接中转所述报文后, 进行中转处理, 并将处理后的报文发送给对应的 BS或 SS/MSS。
12、 一种基于中转站实现带宽分 K和调度管理的系统, 其特征在于: 包括 SS/MSS、 BS和 RS; 所述 SS/MSS包括带宽请求单元和调度管理单元, 所述 BS包括带宽分配单元和调度管理单元, 所述 RS包括调度管理单元和中转处理单元;
所述 SS/MSS的带宽请求单元, 用于发起带宽请求;
所述 SS/MSS的调度管理单元, 用于根据接收到的带宽授予报文对 SS/MSS的带宽进行分配和调 度管理;
所述 BS的带宽分配单元, 用于裉据接收到的带宽请求, 对 BS的上行带宽和下行带宽、 RS的上行 带宽进行分配, 并产生^-?^1¾3带宽授予报文;
所述 BS的调度管理单元, 用于对 BS的上行带宽和下行带宽、 RS的上行带宽进行调度管理, 并将 产生的 UL-MAPRS带宽授予报文发送给 RS;
所述 RS的调度管理单元, 用于根据接收到的 BS的 UL-MAPR '宽授予报文被动进行 RS带宽的上 行调度, 并通过主动对 RS的带宽进行下行调度, 产生 DL-MAPRS报文;
所述 RS的中转处理单元, 用于中转所述 SS/MSS发送来的带宽请求报文给对应的 BS; 以及, 对
Figure imgf000018_0001
对产生的 DL- MAPRS报文进行处理后, 发送给 SS/MSS
13、 根据权利要求 12所述的系统, 其特征在于: 所述 RS还包括带宽请求单元, 用于发起带宽请 求。
14、 根据权利要求 12所述的系统, 其特征在于: 还包括至少一个 RS;
RS根据接收到的报文进行相应的处理, 以及对接收到的报文进行中转处理, 并将处理后的报文 发送给对应的下级各 RS; 所述下级各 RS依次根据接收到的报文进行相应的处理, 以及对接收到的报文进行中转处理, 并 将处理后的报文发送给对应的 BS或 SS/MSS。
15、 一种基于中转站实现带宽分配和调度管理的系统, 其特征在于: 包括 SS/MSS、 BS和 RS; 所述 SS/MSS包括带宽 ifi求单元和调度管理单元, 所述 BS包括带宽分配单元和调度管理单元, 所述 RS包括调皮管理单元和中转处理单元;
所述 SS/MSS的带宽请求单元, 用于发起带宽请求;
所述 SS MSS的调度管理单元, 用于根据接收到的带宽授予报文对 SS/MSS的带宽进行分配和调 度管理;
所述 BS的带宽分配单元,用于根据接收到的带宽请求,对 BS和 RS的上行带宽和下行带宽进行分 配, 并产生!^-!^?^和!^-!^八?^带宽授予报文;
所述 BS的调度管理单元, 用于对 BS的上行带宽和下行带宽、 RS的上行带宽进行调度管理, 并将 产生的 UL- MAPR IDL_MAPR fi?宽授予拫文发送给 RS;
所述 RS的调度管理单元, 用于根据 BS的 DL-MAPR^PUL-MAPRS报文被动进行 RS带宽的上行调 度和下行调度; '
所述 RS的中转处理单元, 用于中转所述 SS/MSS发送来的带宽请求报文给对应的 BS ; 以及, 对 接收到的 BS的 DL- MAPR^nUL-MAPRS带宽授予报文进行中转处理后, 发送给 SS MSS。
16、 根据权利要求 15所述的系统, 其特征在于:
所述 RS还包括带宽请求单元, 用于发起带宽请求。
17、 根据权利要求 15所述的系统, 其特征在于: 还包括至少一个 RS;
RS根据接收到的报文进行相应的处理, 以及对接收到的报文进行中转处理, 并将处理后的报文 发送给对应的下级各 RS;
所述下级各 RS依次根据接收到的报文进行相应的处理, 以及对接收到的报文进行中转处理, 并 将处理后的报文发送给对应的 BS或 SS/MSS。
18、 一种基站设备, 与中转站设备连接, 其特征在于: 所述基站设备包括带宽分配单元和调度 管理单元;
带宽分配单元, 用于根据接收到的带宽请求, 对基站设备的上行带宽和下行带宽、 中转站设备 的上行带宽进行分配, 并产生!;!^^?^带宽授予报文; 或者带宽分配单元根据接收到的带宽请求, 对基站设备和中转站设备的上行带宽和下行带宽迸行分配, 并产生 1^-1^?和0 1^入?带宽授予 报文;
调度管理单元, 用于对 BS的上行带宽和下行带宽、 RS的上行带宽进行调度管理, 并将产生的
UL- MAPRS带宽授予报文发送给 RS; 或者调度管理单元对 BS的上行带宽和下行带宽、 RS的上行带宽 进行调度管理, 并将产生的 UL- MAPR^nDL- MAPRS带宽授予报文发送给 RS。
19、 一种中转站设备, 分别与基站设备和用户站 /移动用户站设备连接, 其特征在于: 所述中转 站设备包括调度管理单元和中转处理单元;
调度管理单元,用于根据接收到的基站设备的 UL-MAPRS带宽授予报文被动进行中转站设备带宽 的上行调度, 并通过主动对中转站设备的带宽进行下行调度, 产生 DL-MAPRS报文; 或者调度管理单 元根据接收到的 BS的 DL-MAPRS UL- MAPRS报文被动进行中转站设备带宽的上行调度和下行调度; 中转处理单元, 用于中转用户站 /移动用户站设备发送来的带宽请求报文给对应的 BS; 以及, 对 接收到的 BS的 UL-MAPR^ ;宽授予报文进行中转处理,对产生的 DL-MAPRS报文迸行处理后, 发送给 用户站 /移动用户站设备;或者中转处理单元中转所述用户站 /移动用户站设备发送来的带宽请求报文 给对应的基站设备; 以及, 对接收到的基站设备的 DL-MAPRS UL-MAPRS带宽授予报文进行中转处 理后, 发送给用户站 /移动用户站设备。
20、一种用户站 /移动用户站设备, 其特征在于, 所述用户站 /移动用户站设备包括: 带宽请求单 元和调度管理单元;
带宽请求单元, 用于发起带宽请求;
调度管理单元, 用于根据接收到的带宽授予报文对用户站 /移动用户站设备的带宽进行分配和调 度管理。
PCT/CN2006/002599 2005-09-30 2006-09-30 Procede et systeme et appareil pour mettre en oeuvre l'attribution de largeur de bande et la gestion de repartition sur la base d'une station relais WO2007036166A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06791185A EP1940185A4 (en) 2005-09-30 2006-09-30 METHOD AND SYSTEM AND DEVICE FOR REALIZING THE BANDWIDTH ALLOCATION AND DISPATCH MANAGEMENT BASED ON A RELAY STATION
US12/058,486 US8243662B2 (en) 2005-09-30 2008-03-28 Method, system and apparatus for implementing bandwidth allocation based on a relay station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200510107411.1 2005-09-30
CN200510107411.1A CN1941666B (zh) 2005-09-30 2005-09-30 基于中转站实现带宽分配和调度管理的方法和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/058,486 Continuation US8243662B2 (en) 2005-09-30 2008-03-28 Method, system and apparatus for implementing bandwidth allocation based on a relay station

Publications (1)

Publication Number Publication Date
WO2007036166A1 true WO2007036166A1 (fr) 2007-04-05

Family

ID=37899384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/002599 WO2007036166A1 (fr) 2005-09-30 2006-09-30 Procede et systeme et appareil pour mettre en oeuvre l'attribution de largeur de bande et la gestion de repartition sur la base d'une station relais

Country Status (4)

Country Link
US (1) US8243662B2 (zh)
EP (1) EP1940185A4 (zh)
CN (1) CN1941666B (zh)
WO (1) WO2007036166A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2217012A1 (en) * 2008-01-11 2010-08-11 ZTE Corporation Data transmitting and associating method of non-transparent centralized scheduling in multi-hop relay network
KR100976383B1 (ko) * 2007-07-05 2010-08-18 삼성전자주식회사 다중 홉 릴레이 방식을 사용하는 광대역 무선 접속 통신시스템에서 중계국이 구성한 브로드캐스트 메시지의 전송정보를 처리하기 위한 장치 및 방법
US20130107797A1 (en) * 2007-07-06 2013-05-02 Zte (Usa) Inc. Resource allocation in wireless multi-hop relay networks
CN104604270A (zh) * 2012-09-07 2015-05-06 高通股份有限公司 用于在多跳网络中关联的系统、装置和方法

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100579024C (zh) * 2006-03-02 2010-01-06 华为技术有限公司 一种中转系统及带宽分配和调度方法
US20080108355A1 (en) * 2006-11-03 2008-05-08 Fujitsu Limited Centralized-scheduler relay station for mmr extended 802.16e system
KR100774364B1 (ko) * 2006-12-08 2007-11-08 한국전자통신연구원 이동통신 시스템에서 중계기 및 이를 이용한 레인징 방법
TWI360316B (en) * 2007-04-05 2012-03-11 Inst Information Industry Relay station, transmission method, and tangible m
CN101282156B (zh) * 2007-04-05 2012-07-18 中兴通讯股份有限公司 一种支持多跳中继网络中变化的链路间传输负载的方法
JP4900007B2 (ja) * 2007-04-12 2012-03-21 富士通株式会社 無線基地局、中継局、帯域割当方法
CN101617483B (zh) * 2007-07-02 2012-10-03 华为技术有限公司 一种带宽请求方法及中继站
CN101388692B (zh) * 2007-09-10 2013-03-20 中兴通讯股份有限公司 正交频分复用多址系统的中继站选择和子信道分配方法
CN101394317B (zh) * 2007-09-21 2011-02-02 中国科学院沈阳自动化研究所 用于多通道无线多跳网络的通道切换模式生成及分配方法
CN101415225B (zh) * 2007-10-15 2011-09-21 华为技术有限公司 一种调度类型通知方法和装置
CN101483886B (zh) * 2008-01-10 2011-12-07 中兴通讯股份有限公司 多跳中继网络中的中继站广播消息传输方法
KR20100008322A (ko) * 2008-07-15 2010-01-25 엘지전자 주식회사 가변 포맷의 메시지를 이용한 대역 요청 방법
JP2010034625A (ja) * 2008-07-25 2010-02-12 Fujitsu Ltd 無線基地局、移動局、無線通信システムおよび無線通信方法
KR20100026911A (ko) * 2008-08-29 2010-03-10 엘지전자 주식회사 상향링크 자원 요청 방법 및 데이터 전송 방법
KR20100089728A (ko) 2009-02-03 2010-08-12 엘지전자 주식회사 무선 통신 시스템에서 확인 응답 전송 및 수신 방법
KR101036482B1 (ko) 2009-02-03 2011-05-24 엘지전자 주식회사 무선 통신 시스템에서 임의 접속 방법
US8310921B2 (en) 2008-09-04 2012-11-13 Lg Electronics Inc. Method of random access in a wireless system
CN101677462B (zh) * 2008-09-17 2012-10-17 华为技术有限公司 一种带宽分配方法及装置
KR101600484B1 (ko) * 2008-09-18 2016-03-08 엘지전자 주식회사 QoS 파라미터를 이용한 상향링크 자원 할당 방법
WO2010032985A2 (en) * 2008-09-18 2010-03-25 Lg Electronics Inc. METHOD FOR ALLOCATING UPLINK RESOURCES USING QoS PARAMETER
CN101730115B (zh) * 2008-10-24 2013-01-30 华为技术有限公司 中继传输的方法及设备
KR101577455B1 (ko) * 2008-12-03 2015-12-15 엘지전자 주식회사 데이터 중계 방법
US8848594B2 (en) 2008-12-10 2014-09-30 Blackberry Limited Method and apparatus for discovery of relay nodes
US8040904B2 (en) 2008-12-17 2011-10-18 Research In Motion Limited System and method for autonomous combining
US20100150022A1 (en) * 2008-12-17 2010-06-17 Research In Motion Corporation System and Method for a Relay Protocol Stack
US8355388B2 (en) 2008-12-17 2013-01-15 Research In Motion Limited System and method for initial access to relays
US8311061B2 (en) 2008-12-17 2012-11-13 Research In Motion Limited System and method for multi-user multiplexing
US8402334B2 (en) 2008-12-17 2013-03-19 Research In Motion Limited System and method for hybrid automatic repeat request (HARQ) functionality in a relay node
US8265128B2 (en) 2008-12-19 2012-09-11 Research In Motion Limited Multiple-input multiple-output (MIMO) with relay nodes
US8335466B2 (en) 2008-12-19 2012-12-18 Research In Motion Limited System and method for resource allocation
US8446856B2 (en) 2008-12-19 2013-05-21 Research In Motion Limited System and method for relay node selection
KR101584814B1 (ko) 2008-12-23 2016-01-13 엘지전자 주식회사 무선통신 시스템에서 스케줄링 요청 전송방법 및 장치
WO2010076773A2 (en) 2008-12-29 2010-07-08 France Telecom Resource allocation method and system
US8526454B2 (en) * 2009-03-27 2013-09-03 Nokia Corporation Apparatus and method for bit remapping in a relay enhanced communication system
US8837352B2 (en) 2009-04-07 2014-09-16 Lg Electronics Inc. Method for allocating resources in a broadband wireless access system
KR101638899B1 (ko) 2009-04-08 2016-07-12 엘지전자 주식회사 무선 통신 시스템에서 확인 응답 전송 및 수신 방법
US8768358B2 (en) * 2009-07-16 2014-07-01 Clearwire Ip Holdings Llc Systems and methods of bandwidth allocation during handoff
CN101997598A (zh) * 2009-08-21 2011-03-30 富士通株式会社 中继节点、时分双工通信系统及通信方法
JP5440052B2 (ja) * 2009-09-11 2014-03-12 ソニー株式会社 中継局装置、基地局装置、移動局装置および無線通信システム
CN102036386B (zh) * 2009-09-29 2014-12-10 中兴通讯股份有限公司 Lte-a系统及其中继链路的物理下行控制信道的资源分配方法
CN102149195A (zh) * 2010-02-09 2011-08-10 中兴通讯股份有限公司 公共配置信息处理方法及系统
WO2011112056A2 (ko) * 2010-03-11 2011-09-15 한국전자통신연구원 무선 시스템의 조정자 장치, 소스 장치 및 릴레이 장치의 통신 방법 및 프레임 구조
CN102238563A (zh) * 2010-04-21 2011-11-09 华为终端有限公司 无线连接方法及设备
US8699442B2 (en) 2010-06-29 2014-04-15 Lg Electronics Inc. Method and apparatus for transmitting data frame in WLAN system
US8811254B2 (en) * 2010-12-08 2014-08-19 Fujitsu Limited Dynamic connection admission control to enforce service level agreements in multicast networks
GB2491835A (en) * 2011-06-13 2012-12-19 Neul Ltd Communication using time frames of at least one second duration
GB201114079D0 (en) 2011-06-13 2011-09-28 Neul Ltd Mobile base station
CN107580333B (zh) * 2013-03-22 2022-04-05 华为技术有限公司 Ofdma竞争方法及接入点
JP5713095B2 (ja) * 2013-12-16 2015-05-07 ソニー株式会社 中継局装置、基地局装置、移動局装置および無線通信システム
US9693367B2 (en) * 2014-01-13 2017-06-27 Zte Corporation Contention arbitration using code division multiplexing
JP5983804B2 (ja) * 2015-03-04 2016-09-06 ソニー株式会社 中継局装置、基地局装置、移動局装置および無線通信システム
US10560295B2 (en) 2015-06-25 2020-02-11 Zte Corporation Slotted OFDMA based random access
CN104994586B (zh) * 2015-07-01 2018-06-05 河南科技大学 适用于超高速无线局域网的自适应带宽发送机制
US10506664B2 (en) * 2015-10-14 2019-12-10 Lg Electronics Inc. Method and apparatus for supporting user equipments capable of uplink transmission only via grouping in wireless communication system
US10727922B2 (en) 2016-06-23 2020-07-28 Zte Corporation Integrated OFDMA and EDCA channel access mechanism
KR102149630B1 (ko) 2016-11-05 2020-08-28 애플 인크. 비대칭 대역폭 지원 및 동적 대역폭 조정
WO2018094279A2 (en) 2016-11-17 2018-05-24 Zte Corporation Slotted ofdma based channel access
CN108259139A (zh) * 2016-12-29 2018-07-06 深圳市金立通信设备有限公司 数据调度传输方法、调度实体、传输装置、基站及终端
CN108738113A (zh) * 2017-04-21 2018-11-02 维沃移动通信有限公司 一种信息传输方法、终端及基站
CN109428762B (zh) * 2017-09-05 2021-09-07 华为技术有限公司 一种带宽调度方法及装置
CN110445824B (zh) * 2018-05-04 2022-03-11 中国移动通信有限公司研究院 NB-IoT数据上报方法、装置、系统和计算机可读存储介质
JP7336699B2 (ja) * 2019-05-15 2023-09-01 パナソニックIpマネジメント株式会社 共用周波数管理装置および共用周波数管理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1309511A (zh) * 2000-02-14 2001-08-22 三洋电机株式会社 无线基站和无线电话装置
CN1430428A (zh) * 2001-12-29 2003-07-16 厦门雅迅网络股份有限公司 一种为移动台动态分配无线信道资源的方法
WO2004006603A2 (en) * 2002-07-08 2004-01-15 Soma Networks, Inc System, apparatus and method for uplink resource allocation
CN1524395A (zh) * 2001-05-26 2004-08-25 ���ſ�����޹�˾ 通信带宽分配的方法和设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19950005A1 (de) 1999-10-18 2001-04-19 Bernhard Walke Verfahren zum Betrieb drahtloser Basisstationen für paketvermittelnde Funksysteme mit garantierter Dienstgüte
GB0200237D0 (en) * 2002-01-07 2002-02-20 Imec Inter Uni Micro Electr Wireless cellular network architecture
KR20050015119A (ko) * 2003-08-04 2005-02-21 삼성전자주식회사 광대역 무선 접속 통신 시스템에서 레인징 신호 변조 장치및 방법
SE0303602D0 (sv) * 2003-12-30 2003-12-30 Ericsson Telefon Ab L M Method and arrangement in self-organizing cooperative network
AU2003298477B2 (en) * 2003-12-30 2008-10-02 Nokia Technologies Oy Communication system using relay base stations with asymmetric data links
GB0501973D0 (en) * 2005-01-31 2005-03-09 Nokia Corp A communication system
US8554232B2 (en) * 2005-08-17 2013-10-08 Apple Inc. Method and system for a wireless multi-hop relay network
CN100579024C (zh) * 2006-03-02 2010-01-06 华为技术有限公司 一种中转系统及带宽分配和调度方法
GB2447883A (en) * 2007-03-02 2008-10-01 Fujitsu Ltd Bandwidth allocation in multi-hop wireless communication systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1309511A (zh) * 2000-02-14 2001-08-22 三洋电机株式会社 无线基站和无线电话装置
CN1524395A (zh) * 2001-05-26 2004-08-25 ���ſ�����޹�˾ 通信带宽分配的方法和设备
CN1430428A (zh) * 2001-12-29 2003-07-16 厦门雅迅网络股份有限公司 一种为移动台动态分配无线信道资源的方法
WO2004006603A2 (en) * 2002-07-08 2004-01-15 Soma Networks, Inc System, apparatus and method for uplink resource allocation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1940185A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100976383B1 (ko) * 2007-07-05 2010-08-18 삼성전자주식회사 다중 홉 릴레이 방식을 사용하는 광대역 무선 접속 통신시스템에서 중계국이 구성한 브로드캐스트 메시지의 전송정보를 처리하기 위한 장치 및 방법
US8135335B2 (en) 2007-07-05 2012-03-13 Samsung Electronics Co., Ltd Apparatus and method for processing transmission information of broadcast message constituted by relay station (RS) in multihop relay broadband wireless access (BWA) communication system
US20130107797A1 (en) * 2007-07-06 2013-05-02 Zte (Usa) Inc. Resource allocation in wireless multi-hop relay networks
US9014117B2 (en) * 2007-07-06 2015-04-21 Zte (Usa) Inc. Resource allocation in wireless multi-hop relay networks
EP2217012A1 (en) * 2008-01-11 2010-08-11 ZTE Corporation Data transmitting and associating method of non-transparent centralized scheduling in multi-hop relay network
EP2217012A4 (en) * 2008-01-11 2014-03-05 Zte Corp METHOD FOR TRANSMITTING AND ASSOCIATING DATA FOR NON-TRANSPARENT CENTRALIZED SCHEDULING IN A RELAY NETWORK FOR MULTIPLE BONDS
US8787270B2 (en) 2008-01-11 2014-07-22 Zte Corporation Data transmission and association method in a non-transparent centralized scheduling multi-hop relay network
CN104604270A (zh) * 2012-09-07 2015-05-06 高通股份有限公司 用于在多跳网络中关联的系统、装置和方法
US10039071B2 (en) 2012-09-07 2018-07-31 Qualcomm Incorporated Systems, apparatus, and methods for association in multi-hop networks
CN104604270B (zh) * 2012-09-07 2018-11-20 高通股份有限公司 用于在多跳网络中关联的系统、装置和方法

Also Published As

Publication number Publication date
EP1940185A4 (en) 2010-04-28
CN1941666A (zh) 2007-04-04
EP1940185A1 (en) 2008-07-02
CN1941666B (zh) 2014-07-30
US8243662B2 (en) 2012-08-14
US20080259857A1 (en) 2008-10-23

Similar Documents

Publication Publication Date Title
WO2007036166A1 (fr) Procede et systeme et appareil pour mettre en oeuvre l&#39;attribution de largeur de bande et la gestion de repartition sur la base d&#39;une station relais
KR101078673B1 (ko) 중계 시스템과 대역폭 할당 및 스케줄링 방법
KR101059363B1 (ko) 무선 통신 시스템
EP3295741B1 (en) Allocating resources for a device-to-device transmission
US5751708A (en) Access method for broadband and narrowband networks
CA2985543A1 (en) Transmitting a scheduling request for a device-to-device transmission
KR20050014315A (ko) 광대역 무선 접속 통신 시스템에서 역방향 신호 전송 방법
KR101366285B1 (ko) 실시간 서비스를 지원받는 단말을 위한 자원할당방법
WO2008025282A1 (fr) Station de base, station relais, système de communication à relais hertzien et procédé correspondant
US20090201874A1 (en) Radio base station, relay station , and band allocation method
KR101784008B1 (ko) 중계국을 포함하는 무선 통신 시스템에서 대역폭 요청 채널 할당 방법 및 장치
WO2009086664A1 (zh) 用于资源分配请求和分配的方法与装置
JP2007068092A (ja) 無線通信方法および中継局
JP2007006199A (ja) 高速無線アクセスシステムにおける中継局のメディアアクセス制御方法及びプログラム
US20110176516A1 (en) Systems and Methods for Bandwidth Allocation
KR101498056B1 (ko) 릴레이를 지원하는 무선접속 시스템에서 멀티캐스트 및 방송서비스 제공방법
Kaneko et al. Proposed relay method with P-MP structure of IEEE 802.16-2004
Danpu et al. WiMAX and Its Applications (2)
Kweku et al. QoS requirements for bandwidth request and allocation in WiMAX Networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006791185

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006791185

Country of ref document: EP