WO2007036161A1 - Système de communications relais sans fil, et procédé - Google Patents

Système de communications relais sans fil, et procédé Download PDF

Info

Publication number
WO2007036161A1
WO2007036161A1 PCT/CN2006/002575 CN2006002575W WO2007036161A1 WO 2007036161 A1 WO2007036161 A1 WO 2007036161A1 CN 2006002575 W CN2006002575 W CN 2006002575W WO 2007036161 A1 WO2007036161 A1 WO 2007036161A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink
uplink
physical layer
slot
fdd
Prior art date
Application number
PCT/CN2006/002575
Other languages
English (en)
French (fr)
Inventor
Ruobin Zheng
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37899383&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007036161(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from CN2005101062913A external-priority patent/CN1941665B/zh
Priority claimed from CN 200510114596 external-priority patent/CN1956354A/zh
Priority claimed from CN2005101174783A external-priority patent/CN1960239B/zh
Priority claimed from CN 200510117477 external-priority patent/CN1960352A/zh
Priority claimed from CN 200510117222 external-priority patent/CN1960207A/zh
Priority claimed from CN 200510115917 external-priority patent/CN1964221A/zh
Priority claimed from CN200510115918.1A external-priority patent/CN1964222B/zh
Priority to CN2006800122322A priority Critical patent/CN101160997B/zh
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to EP06791161.0A priority patent/EP1931155B1/en
Publication of WO2007036161A1 publication Critical patent/WO2007036161A1/zh
Priority to US12/058,451 priority patent/US8218469B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15557Selecting relay station operation mode, e.g. between amplify and forward mode, decode and forward mode or FDD - and TDD mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a wireless relay communication system and method.
  • IEEE 802.16 consists mainly of two versions: 802.16 standard broadband fixed wireless access version
  • 802.16-2004 802.16 standard broadband mobile radio access version
  • 802.16e 802.16 standard broadband mobile radio access version
  • Two types of network elements are defined in the 802.16-2004 version: BS (base station) and SS (subscriber station); likewise, two types of network elements are defined in the 802.16e version: BS and MSS (mobile subscriber station) ).
  • the BS communicates directly with the user terminal (SS or MSS) for information interaction.
  • the coverage of the entire network is limited.
  • the user terminal since the user terminal directly communicates with the BS, the same BS needs to simultaneously process communication information of a large number of users, which inevitably leads to the user terminal.
  • the information processing performance is negatively affected, which in turn leads to a decrease in the throughput of the user terminal and affects the communication performance of the entire network.
  • SS user terminal
  • the present invention provides a wireless relay communication system, including: a base station BS, a user terminal, and a relay station RS, wherein the BS is provided with an interface for communicating with the RS, and the RS is provided with an interface for communicating with the user terminal and the BS, The user terminal is provided with an interface for communicating with the RS, and the BS, the RS and the user terminal communicate through the interface.
  • the BS is further provided with an interface for communicating with the user terminal, and the user terminal is provided with an interface for communicating with the BS, and the BS directly communicates with the user terminal through the interface.
  • the BS, the RS, and the user terminal use the same frequency point to communicate with each other, and the BS communicates with the user terminal or the RS through the uplink and downlink subframes respectively, and the RS communicates with the user terminal or the BS through the upper and lower subframes respectively. .
  • the physical layer unit of the TDD radio transmitter and the physical layer of the TDD radio receiver are respectively disposed in the three entities of the BS, the RS, and the user terminal.
  • each of the TDD radio transmitter physical layer units is respectively provided with a communication interface that communicates with a TDD radio receiver physical layer unit in another entity, where each TDD receiver physical layer unit is provided with another entity a communication interface of the physical layer unit communication of the TDD wireless transmitter; or, the RS is provided with a first TDD wireless transceiver and a second TDD wireless transceiver, wherein the first TDD wireless transceiver includes the same a frequency TDD radio receiver physical layer unit and a TDD radio transmitter physical unit, and corresponding to the FDD radio transmitter physical layer unit in the BS, and the FDD radio receiver physical layer unit in the user terminal, and maintaining the transmission and reception frame synchronization,
  • the second TDD wireless transceiver includes a TDD wireless receiver physical layer unit and a TDD wireless transmitter physical single with the same second frequency And corresponding to the physical layer unit of the FDD radio transmitter in the user terminal, and the physical layer unit of the FDD radio receiver in the BS, and keep the transmission and reception frame synchronization;
  • the RS includes a first TDM/TDMA-FDD wireless transceiver and a second TDM/TDMA-FDD wireless transceiver, wherein the first TDM/TDMA-FDD wireless transceiver in the RS includes a TDM-FDD wireless transmitter
  • the physical layer unit and the TDMA-FDD radio receiver physical unit correspond to the TDM-FDD radio receiver physical layer unit and the TDMA-FDD radio transmitter physical layer unit in the user terminal and maintain the transmission and reception frame synchronization
  • the second wireless TDM in the RS The TDMA-FDD radio transmitter physical layer unit and the TDM-FDD radio receiver physical unit included in the /TDMA-FDD transceiver correspond to the TDMA-FDD radio receiver physical layer unit in the BS and the TDM-FDD radio transmitter physical layer unit And keep the transmission and reception frame synchronization
  • the RS includes a first OFDMA-FDD wireless transceiver and a second OFDM-FDD wireless transceiver, where the first of the 'RS
  • the OFDMA-FDD radio transceiver includes a first OFDM-FDD radio transmitter physical layer unit and a first OFDMA-FDD radio receiver physical unit and a user terminal, an OFDM-FDD radio receiver physical layer unit and an OFDM-FDD radio transmission
  • the physical layer unit corresponds to and maintains the transmission and reception frame synchronization
  • the second OFDMA-FDD radio transceiver in the RS includes the second OFDMA-FDD radio transmitter physical layer unit and the second OFDMA-FDD radio receiver physical unit and the BS
  • the OFDMA-FDD radio receiver physical layer unit and the OFDMA-FDD radio transmitter physical layer unit correspond to and maintain the transmission and reception frame synchronization
  • the RS and the BS respectively include an FDD wireless transceiver, where the FDD wireless transceiver includes an FDD wireless transmitter physical layer unit and a PDD wireless receiver physical layer unit.
  • the RS performs wireless communication with the BS and the user terminal in an FDD manner, and the FDD wireless transceiver uplink in the RS and the FDD wireless transceiver in the BS use the same frequency in the downlink, the FDD wireless transceiver downlink in the RS, and the FDD in the BS.
  • the wireless transceiver uses the same frequency in the uplink; or the FDD wireless transceiver is included in the RS, and the FDD wireless transceiver in the RS and the FDD wireless transceiver in the BS use the same frequency in the downlink, and the FDD wireless transceiver in the RS
  • the uplink and the FDD radio transceiver in the BS adopt the same frequency, wherein the first FDD radio transmitter physical layer unit and the first FDD radio receiver physical unit and the BS in the first FDD radio transceiver in the user terminal
  • the FDD radio receiver physical layer unit corresponds to the FDD radio transmitter physical layer unit
  • the second FDD radio transceiver packet in the user terminal Second FDD radio transmitter physical layer unit and a second FDD radio receiver physical unit of the RS FDD radio receiver physical layer unit and the FDD radio transmitter physical layer unit corresponds.
  • the data link layer unit that is in communication with the physical layer unit is further disposed in the BS, the RS, and the user terminal, and the BS further includes a wired transmission processing unit that is in communication with the upper-level setting. Used to exchange information with the upper-level device or each base station device.
  • the BS further provides an interface for communicating with the user terminal, the BS adopts a predetermined channel coding and modulation mode, or adopts a predetermined transmit power value to preamble the preamble, the frame control header FCH, and the downlink mapping table DL-MAP. And the uplink mapping table UL-MAP information directly sends information from the interface to the user terminal.
  • the present invention also provides a method for implementing wireless telecommunication communication, including:
  • the downlink intermediate area and the uplink intermediate area are respectively set in the downlink subframe and the uplink subframe of the frame structure of the BS physical layer, and the downlink intermediate zone and the uplink transit zone are respectively set in the uplink subframe and the downlink subframe of the frame structure of the RS physical layer, a relay time slot or a medium rotor channel and an OFDM symbol combination for defining communication between the BS and the RS;
  • Wireless relay communication is performed between the BS, the RS, and the user terminal based on the set uplink and downlink physical layer frames of the BS and the RS.
  • the invention also optionally includes the following technical features:
  • the TDM mode downlink transfer zone and the uplink transit zone are respectively used in the downlink subframe and the uplink subframe of the BS physical layer frame structure.
  • the uplink sub-frame of the physical layer frame structure of the TDM/TDMA-FDD or OFDMA-FDD radio transceiver in the RS corresponding to the BS A downlink intermediate area and an uplink intermediate area are respectively set in the frame and the downlink subframe, and are used to define a transit time slot between the BS and the RS, or used to define a medium rotor channel and an OFDMA symbol combination between the BS and the RS;
  • TDD radio transceivers When two TDD radio transceivers are disposed in the RS, respectively, in the uplink subframe of the physical layer frame structure of the first TDD radio transceiver of the RS and the downlink subframe of the physical layer frame structure of the second TDD radio transceiver, respectively Setting a downlink transit zone and an uplink transit zone, which are used to define a subchannel and an OFDM symbol combination for information interaction between the BS and the RS;
  • a downlink transfer zone is set in an uplink subframe of the physical layer frame structure of the FDD radio receiver of the relay station RS, and is used to define the transit time of the downlink transit zone of the RS receiving BS.
  • a slot, or a combination of a medium rotor channel and an OFDM symbol for defining a downlink intermediate zone of the BS and the RS; setting an uplink relay zone in a downlink subframe of a physical layer frame structure of the FDD radio transmitter of the RS, for defining RS reception
  • the transit time slot of the uplink intermediate zone of the BS, or the medium rotor channel and the OFDM symbol combination used to define the uplink intermediate zone of the BS and the RS.
  • the method further includes:
  • the user terminal belonging to the BS When a single FDD radio transceiver is set in the RS, the user terminal belonging to the BS does not set a transmission slot or a transmission subchannel and an OFDM symbol combination in a period corresponding to the uplink intermediate area of the BS, corresponding to the downlink transit area of the BS. During the period, the user terminal belonging to the RS does not set a transmission slot or a transmission subchannel and an OFDM symbol combination;
  • the user terminal When two OFDMA-FDD radio transceivers are set in the RS, the user terminal does not set the transmission subchannel and the OFDM symbol combination during the period corresponding to the uplink intermediate zone of the BS, and the RS does not set any receiving subchannel and the OFDM symbol combination; The RS does not set the transmit subchannel and the OFDM symbol combination during the period corresponding to the downlink intermediate zone of the BS;
  • the uplink intermediate zone and the downlink transit zone in the physical layer frame structure of the BS correspond to each other, and during the period corresponding to the downlink transit zone and the uplink transit zone of the BS,
  • the user terminal does not set the receiving or transmitting time slot or the combination of the subchannel and the OFDM symbol; and if the RS transmits the information through the transit time slot, the uplink intermediate zone and the downlink transit zone in the physical layer frame structure of the BS
  • the time slots respectively correspond to the time slots of the uplink intermediate zone and the downlink transit zone in the physical layer frame structure of the RS;
  • the downlink transition zone of the BS corresponds to the slot and frequency relationship of the downlink transit zone of the TDM/TDMA-FDD radio transceiver corresponding to the BS in the RS.
  • the uplink transition zone of the BS and the slot and the frequency relationship of the uplink transit zone of the TDM/TDMA-FDD radio transceiver corresponding to the BS in the RS, and the user terminal corresponding to the uplink intermediate zone of the BS The transmission time slot is not set, and the RS does not set the reception time slot;
  • the user terminals under the coverage of the BS and the RS do not set the transmission subchannel and the OFDM-symbol combination during the period corresponding to the uplink intermediate zone of the BS, and the RS does not set the receiver.
  • Channel and 0FDMA symbol combination When there are two TDD radio transceivers in the RS, the user terminals under the coverage of the BS and the RS do not set the transmission subchannel and the OFDM-symbol combination during the period corresponding to the uplink intermediate zone of the BS, and the RS does not set the receiver.
  • Channel and 0FDMA symbol combination When there are two TDD radio transceivers in the RS, the user terminals under the coverage of the BS and the RS do not set the transmission subchannel and the OFDM-symbol combination during the period corresponding to the uplink intermediate zone of the BS, and the RS does not set the receiver.
  • Channel and 0FDMA symbol combination When there are two TDD radio transceivers in the RS, the user
  • the method further includes:
  • the at least two RSs are combined by different subchannels and 0FDMA symbols or by different TDM modes;
  • different RSs only have corresponding subchannels in the downlink intermediate area and
  • the OFDMA symbol combination transmits the relay data of the BS, and in other subchannels and the OFDM symbol combination, the transmission data of the BS is not transmitted, and the FDD radio receivers of different RSs only receive the corresponding subchannel and the OFDM symbol combination in the downlink intermediate area.
  • the relay data of the BS does not arrange for receiving the relay data of the BS in other subchannel and OFDM symbol combinations.
  • the transceivers corresponding to the BSs by using the different subchannels and the OFDM symbols are combined or adopted by the respective RSs.
  • the way of the division is to enjoy the down or I..
  • the method further includes:
  • a downlink relay broadcast subchannel or a relay broadcast time slot in a downlink subframe of a physical layer frame structure of the BS for defining a downlink subchannel and a 0FDMA symbol combination or a downlink time slot broadcasted by the BS to the RS;
  • a downlink intermediate broadcast subchannel or a relay broadcast receiving time slot in a downlink subframe of the physical layer frame structure of the RS, and defining an RS uplink subchannel and an OFDM symbol combination or an uplink time slot for receiving the downlink downlink broadcast of the BS; If two wireless transceivers are provided, a downlink relay broadcast subchannel or a relay broadcast receiving time slot is set in a physical layer frame structure of the transceiver corresponding to the BS;
  • the downlink relay broadcast subchannel or the relay broadcast slot or the relay broadcast reception slot set in the BS and the RS are selected and set in each frame.
  • the method when the RS transmits the information through the combination of the intermediate rotor channel and the OFDM symbol, the method further includes: defining a transit ranging subchannel in an uplink intermediate zone of the uplink subframe of the physical layer frame structure of the BS, Defining a BS reverse ranging receiving subchannel and an OFDM symbol combination for initial access ranging, periodic ranging, and bandwidth request of the RS, and the reverse ranging subchannel is also optionally used as an initial access ranging of the user terminal , periodic ranging, bandwidth request ranging subchannel;
  • a transit ranging subchannel in a downlink intermediate area of the physical layer frame structure of the RS and defining an RS initial ranging ranging, a periodic ranging, a bandwidth requesting RS reverse ranging transmitting subchannel, and an OFDM symbol combination; If two wireless transceivers are provided in the RS, the reverse ranging subchannel is set in a physical layer frame structure of the transceiver corresponding to the BS;
  • the time-frequency relationships of the relay ranging subchannels set in the BS and the RS are in one-to-one correspondence, are kept synchronized, and are selected in each frame.
  • the method further includes:
  • a ranging subchannel in an uplink subframe of a physical layer frame structure of the BS and defining a BS ranging ranging subchannel and an OFDM symbol combination for initial access ranging, 'periodic ranging, bandwidth requesting of the user terminal;
  • the ranging subchannel is set in the uplink subframe of the physical layer frame structure of the FDD radio receiver of the RS, and the initial access ranging and period for the user terminal are defined.
  • the method when the RS performs channel transmission through the transit time slot, the method further includes:
  • a downlink interference slot is defined in a downlink subframe of a physical layer frame structure of the BS and the RS, and is used to define downlink data slots in respective coverage areas of the BS and the RS, where the respective coverage areas include only BS and RS respectively. Covering the overlapping area, or including the non-overlapping area covered by the BS and the RS, and the overlapping area covered by the BS and the RS respectively; if two wireless transceivers are disposed in the RS, the transceiver corresponding to the RS and the user terminal
  • the downlink interference slot is set in a physical layer frame structure.
  • the downlink interference slot of the BS does not overlap with the downlink interference slot of the RS, and when there are at least two RSs, The at least two RSs share the downlink interference slot in a TDM manner, and select the downlink interference slot in each frame of the BS and the RS.
  • the method when the RS performs channel transmission through the transit time slot, the method further includes:
  • an uplink or downlink interference-free time slot in an uplink subframe of the BS and the RS and/or setting an uplink or downlink interference-free time slot in the downlink subframe of the BS and the RS, and defining the coverage by the BS and the RS respectively
  • the downlink or uplink data slot of the area; if there are two wireless transceivers in the RS, the uplink interference time slot or the uplink interference-free time is set in the physical layer frame structure of the wireless transceiver corresponding to the user terminal in the RS Gap
  • the downlink non-interference slot of the BS and the downlink non-interference slot of the RS, and the uplink non-interference slot of the BS and the uplink non-interference slot of the RS may be overlapped.
  • the uplink interference slots of the BS and the RS do not overlap each other in time.
  • the method further includes:
  • Defining a downlink subframe header or a downlink subframe header slot in a downlink subframe of a physical layer frame structure of the BS, or the BS, and the downlink subframe header or the downlink subframe header slot is a start of a downlink subframe.
  • a subchannel and an OFDM symbol combination or a time slot for defining a subchannel and an OFDM symbol combination or a time slot and transmitting indication information for transmitting user synchronization information, to indicate a BS, or a BS and an RS physical layer frame structure, a downlink subframe and an uplink.
  • the downlink subframe header is set in each frame; wherein, in the physical layer frame structure of the RS The downlink subframe header or the downlink subframe header slot defined in the subframe lags in time from the downlink subframe header or the downlink subframe header slot defined in the downlink subframe of the physical layer frame structure of the BS, and During the downlink subframe header period of the RS, the BS cannot arrange any combination of the receiving subchannel and the 0FDMA symbol, and the downlink frame header slot for the RS does not overlap with the downlink frame header slot of the BS, and is not provided for the uplink subframe of the BS. If there are two wireless transceivers in the RS, the downlink subframe header or the downlink subframe header slot is set in the physical layer frame structure of the transceiver corresponding to the RS and the user terminal;
  • the downlink subframe header receiving or downlink subframe header receiving time slot is in one-to-one correspondence with the time-frequency or time slot relationship of the downlink subframe header or the downlink subframe header receiving slot of the BS, and is completely synchronized; if the RS is set If there are two wireless transceivers, the downlink subframe header reception or the downlink subframe header reception slot is set in the physical layer frame structure of the transceiver corresponding to the RS and the BS.
  • the downlink subframe includes:
  • Preamble preamble Preamble preamble, frame control header FCH burst, downlink mapping table DL-MAP and/or uplink mapping table UL-MAP in orthogonal frequency division multiplexing or single carrier frame.
  • the method when there are multiple RSs, the method further includes:
  • the downlink subframe set by the RS does not overlap with the uplink subframe of other RSs;
  • the downlink frame header time slot of the RS does not overlap with the downlink frame header time slot and the downlink interference time slot of other RSs; or, the downlink frame header time slots of different RSs are completely overlapped in time, and the downlink frame header time slots have the same content.
  • the downlink frame header slot of the RS does not overlap with the downlink interference slot of other RSs.
  • the method further includes:
  • the downlink subframes of the physical layer frame structure of other RSs are not arranged with any transmission subchannel and 0FDMA symbol combination, or the downlink frame header slots of the RS are not combined with other
  • the downlink subframe headers of different RSs are completely overlapped in time, and the downlink subframe header contents are the same, or the downlink frame header slots of different RSs are completely overlapping in time synchronization, and The downlink frame header time slots have the same content, and the downlink frame header time slots of the RS do not overlap with the downlink interference time slots of other RSs.
  • the method when the RS transmits information through the transit time slot, the method further includes:
  • the time slot and frequency relationship of the downlink transit zone of the BS and the downlink transit zone of the RS are in one-to-one correspondence, and the time slot and frequency relationship of the uplink transit zone of the BS and the uplink transit zone of the RS are in one-to-one correspondence, and the BS is in the BS.
  • the uplink and downlink transfer areas set in the RS are selected in each frame.
  • the method when the RS transmits the information through the transit time slot, the method further includes:
  • An uplink contention slot is set in an uplink subframe of a physical layer frame structure of the BS, where the uplink contention slot includes an initial ranging contention slot and a bandwidth request slot, and the uplink contention slot is set in each frame.
  • the uplink contention time slot is set in the uplink subframe of the physical layer frame structure of the RS, and the uplink contention time slot includes the initial ranging contention time slot and the bandwidth request. Competing time slot; if two wireless transceivers are provided in the RS, the uplink contention time slot is set in the physical layer frame structure of the transceiver corresponding to the RS and the user terminal.
  • the method further includes: setting an uplink contention transmission time slot in a physical layer frame structure of the RS, and defining a time slot for an uplink contention time slot of the contending BS for the RS, the uplink contention transmission time slot and the The frequency of the uplink contention time slot of the BS is completely overlapped and synchronized, and the uplink contention time slot is set in each frame; if two wireless transceivers are disposed in the RS, in the physical layer frame structure of the transceiver corresponding to the RS and the BS The uplink contention transmission slot is set.
  • the method when there are two wireless transceivers in the RS, the method further includes:
  • the BS In the downlink subframe of the physical layer frame structure of the wireless transceiver corresponding to the user terminal in the BS or the RS, except for the downlink subframe header, the downlink transition region of the BS, and the OFDMA-FDD wireless transmitter corresponding to the user terminal in the RS Outside the corresponding period of the downlink subframe header of the BS and the downlink transition region of the BS, the BS and the different RS share the remaining portion of the downlink subframe through different subchannels and 0FDMA symbol combinations; and/or, in the BS or the RS, and the user In the uplink subframe of the physical layer frame structure of the OFDMA-FDD radio transceiver corresponding to the terminal, except for the uplink intermediate zone of the BS and the 0FDMA-FDD radio receiver corresponding to the user terminal in the RS, the BS is in the uplink intermediate zone corresponding period, BS Sharing the rest of the uplink subframe with different RSs through different subchannels and 0FDMA
  • the BS and the different RSs pass different subchannels except the downlink subframe header and the downlink transition zone of the BS.
  • the BS and the different RS share the rest of the uplink subframe by using different subchannels and OFDMA symbol combinations, and the downlink subframe header and the ranging subchannel are set to exist in each frame of the BS and the RS,
  • the downlink transit zone, the uplink transit zone, the downlink transit subchannel, the transit ranging subchannel, and the downlink subhead reception are not set to exist in each frame.
  • At least the transmission/reception transition gap TTG duration is reserved between the downlink subframe of the BS or the RS and the uplink subframe of the BS, and/or at least reserved reception between the uplink subframe of the BS or the RS and the downlink subframe of the BS /Transmission transition gap RTG duration; Moreover, for the case where the BS and the user terminal can communicate directly, during the TTG of the BS, the RS cannot arrange any transmission subchannel and 0FDMA symbol combination; during the RTG of the BS, the RS cannot arrange any receiver Channel and 0FDMA symbol combination.
  • Wireless relay communication is performed between the BS, the RS, and the user terminal by using FDD or TDD.
  • the present invention also provides a method for implementing wireless relay communication, including:
  • the BS transmits data to the RS, and the RS receives the data through the FDD wireless receiver of the RS;
  • the RS forwards the received data to the user terminal through a downlink subframe of the FDD radio transmitter of the RS;
  • the user terminal transmits uplink communication data in a time-frequency interval or time slot other than the corresponding period of the uplink intermediate zone of the BS, and the RS receives data sent by the user terminal;
  • the RS sends the uplink relay communication data to the BS through the uplink intermediate area of the downlink subframe, and the BS receives the uplink relay communication data in the uplink subframe.
  • the process for the BS to send data to the RS specifically includes:
  • the BS transmits the preamble in the downlink subframe header of the downlink subframe, and the RS receives the preamble through the downlink subframe header receiving subchannel, and synchronizes with the BS;
  • the BS After transmitting the preamble in the downlink subframe, the BS sends FCH, DL-MAP, and UL-MAP information, and the RS receives the FCH, DL-MAP, and UL-MAP information through the downlink subframe header receiving subchannel to obtain the BS.
  • the BS transmits the broadcast message by using the downlink relay broadcast of the downlink intermediate area of the downlink subframe, and the BS transmits the downlink relay communication data to the RS in the downlink intermediate RS of the downlink intermediate area of the downlink subframe, and the RS receives the broadcast by using the downlink relay broadcast subchannel.
  • the message, the RS receives the downlink relay communication data through a downlink transit zone of the RS.
  • the processing of forwarding, by the RS, the received data by using the downlink subframe includes:
  • the RS sends the FCH, DL-MAP, and UL-MAP information in the downlink subframe, and the FCH, DL-MAP, and UL-MP information can be sent by the BS to the RS, and the user terminal receives the FCH, DL-MAP, and UL-MAP information.
  • the RS sends the downlink relay communication data to the user terminal in the time-frequency interval except the downlink subframe header and the downlink transit region of the downlink subframe, where the relay communication data is sent by the BS to the RS, and the user terminal receives the corresponding time-frequency interval.
  • Downstream transit communication data ;
  • the user terminal receives the preamble in the downlink subframe header of the downlink subframe of the BS, and synchronizes with the BS, and the user terminal receives the FCH, DL-MAP, and UL-MAP information in the downlink subframe header of the downlink subframe of the BS, to obtain Sub-BS and RS downlink and uplink sub-burst sub- Channel or OFDMA symbol combined position or time slot location, and usage method information;
  • the RS transmits the downlink relay communication data to the user terminal in the time-frequency interval or the time slot except the downlink subframe header and the downlink transit region, and the relay communication data is sent by the BS to the RS, and the user terminal receives the corresponding time.
  • the downlink interval or time slot receives the downlink relay communication data.
  • the processing of the RS receiving the data sent by the user terminal specifically includes:
  • the user terminal After receiving the FCH, DL-MAP, and UL-MAP information, the user terminal obtains a sub-channel and an OFDM symbol combination position or a slot position of each downlink and uplink of the RS, and uses method information, and the user terminal is uplinked by the RS.
  • the uplink communication data is sent to the RS in a time-frequency interval or time slot other than the corresponding period of the uplink intermediate zone of the BS, and the RS receives the uplink communication data from the corresponding time-frequency interval or time slot;
  • the user terminal After receiving the FCH, DL-MAP, and UL-MAP information of the downlink subframe header of the downlink subframe of the BS, the user terminal obtains the subchannel and the OFDMA symbol combination or the slot position of the downlink and uplink bursts of the BS and the RS. And using the method information, the user terminal sends the uplink communication data to the RS in the uplink subframe of the RS, except for the time-frequency interval or time slot outside the corresponding period of the uplink intermediate zone of the BS, and the RS receives the uplink from the corresponding time-frequency interval or time slot. Communication data.
  • the process for the BS to receive the uplink relay communication data in the uplink subframe specifically includes:
  • the RS sends the uplink relay communication data to the BS in the uplink relay RS of the uplink intermediate area of the downlink subframe, where the relay communication data is sent by the BS to the RS, and the BS receives the uplink intermediate RS in the uplink intermediate area of the uplink subframe.
  • the uplink relay communication data is sent by the BS to the RS, and the BS receives the uplink intermediate RS in the uplink intermediate area of the uplink subframe.
  • the method further includes:
  • the RS uses the first wireless transceiver to transmit and receive information between the RS and the user terminal, and the RS uses the second wireless transceiver between the RS and the BS. Send and receive information;
  • the first frequency is used in the RS to receive the information sent by the BS, and The information is forwarded to the user terminal through the first frequency, and the information sent by the user terminal is received by using the second frequency, and forwarded to the BS through the second frequency.
  • the implementation of the present invention enables an advanced relay communication mode to be supported in a wireless communication system, that is, the MSS/SS can wirelessly transfer to the BS through the RS, thereby effectively expanding the effective coverage of the BS, and You can increase the throughput of MSS/SS.
  • the present invention also appropriately sets the uplink and downlink subframes applied in the relay communication process, so that various interferences that may occur during the wireless relay communication process can be effectively avoided.
  • Figure 1 is a schematic diagram of a communication system including an RS 1;
  • Figure 2 is a schematic diagram of a communication system including RS 2
  • FIG. 3 is a schematic diagram 1 of the same frequency interference mode
  • Figure 4 is a schematic diagram of a model for relay communication between BS and RS;
  • FIG. 5 is a schematic diagram of a physical layer frame structure of a BS and an RS in a first application scenario
  • 6 is a schematic diagram 2 of a physical layer frame structure of a BS and an RS in a first application scenario
  • 7 is a schematic diagram 3 of a physical layer frame structure of a BS and an RS in a first application scenario ;
  • FIG. 8 is a schematic diagram of a physical layer frame structure of a BS and an RS in a first application scenario
  • FIG. 9 is a schematic diagram of a physical layer frame structure of a BS and an RS in a first application scenario
  • Figure 10 is a schematic diagram of the OF Li A communication system model
  • Figure 11 is a schematic view of the specific structure of Figure 10;
  • FIG. 12 is a schematic diagram 1 of a physical layer frame structure of a BS and an RS in a second application scenario
  • FIG. 13 is a schematic diagram 2 of a physical layer frame structure of a BS and an RS in a second application scenario
  • FIG. 14 is a schematic diagram 3 of a physical layer frame structure of a BS and an RS in a second application scenario
  • 15 is a schematic diagram 4 of a physical layer frame structure of a BS and an RS in a second application scenario
  • Figure 16 is a schematic diagram of a communication system model of RS and BS, MS/SS in the case of an uplink single RS;
  • Figure 17 is a schematic diagram of a communication system model of RS and BS, MS/SS in the case of a downlink single RS;
  • Figure 18 is a schematic diagram 2 of the same frequency interference mode
  • Figure 19 is a schematic diagram of BS and RS advanced relay communication modes
  • Figure 20 is a schematic diagram of a simplified transit communication mode for BS and RS;
  • FIG. 21 is a schematic structural diagram of a specific implementation system in a third application scenario provided by the present invention.
  • 22 is a schematic structural diagram of a physical layer frame in an advanced relay communication mode in a third application scenario
  • FIG. 23 is a schematic structural diagram of a physical layer frame in a simplified transit communication mode in a third application scenario
  • 24 is a schematic diagram 1 of a physical layer frame structure of a BS and an RS in a third application scenario
  • 25 is a schematic diagram 2 of a physical layer frame structure of a BS and an RS in a third application scenario
  • 26 is a schematic diagram of a ⁇ -level relay communication mode in a fourth application scenario
  • FIG. 27 is a schematic diagram of a simplified transit communication mode in a fourth application scenario
  • 29 is a schematic diagram 3 of the same frequency interference mode
  • FIG. 30 is a schematic diagram of a physical layer frame structure of a BS and an RS in an advanced relay mode in a fourth application scenario
  • FIG. 31 is a schematic structural diagram of physical layer frames of BS and RS in a simplified transit mode in a fourth application scenario.
  • 32 is a schematic diagram 1 of a relay communication mode of a BS and an RS in a fifth application scenario
  • 33 is a second schematic diagram of a relay communication mode of a BS and an RS in a fifth application scenario
  • FIG. 34 is a schematic structural diagram of a specific implementation of a system in a fifth application scenario.
  • 35 is a schematic diagram 1 of a physical layer frame structure of a BS and an RS in a fifth application scenario provided by the present invention
  • FIG. 36 is a second schematic diagram of a physical layer frame structure of a BS and an RS in a fifth application scenario provided by the present invention.
  • FIG. 37 is a schematic diagram of a co-channel interference mode that may exist in a single FDD-based communication system according to the present invention.
  • 39 is a schematic diagram of a simplified transit communication mode of RS, BS, and MS/SS in a sixth application scenario
  • FIG. 40 is a schematic diagram of a functional framework of a relay communication system of RS and BS, MS/SS in a sixth application scenario;
  • 41 is a schematic structural diagram of physical layer frames of a BS and an RS in an advanced relay communication mode in implementation scheme 1 in a sixth application scenario
  • 42 is a schematic diagram of a physical layer frame structure of a BS and an RS in a simplified transit communication mode in Embodiment 1 of the sixth application scenario
  • FIG. 43 is a schematic diagram of an embodiment of a physical layer frame structure of a BS and an RS in an advanced relay communication mode in the implementation scheme 2 in the sixth application scenario;
  • 44 is a schematic diagram of an embodiment of a physical layer frame structure of a BS and an RS in an advanced relay communication mode in the implementation scheme 3 in the sixth application scenario;
  • 45 is a schematic functional block diagram of a relay communication system of RS and BS, MS/SS in a seventh application scenario;
  • 46 is a schematic diagram of a physical layer frame structure of a BS and an RS in an advanced relay communication mode in a sixth application scenario;
  • FIG. 47 is a schematic structural diagram of physical layer frames of BS and RS in a simplified transit communication mode in a sixth application scenario.
  • the wireless relay communication system and method according to the present invention may adopt different implementation examples according to different transit communication technologies used.
  • the RS may adopt information combination based on medium rotor information and 0FDMA symbol combination.
  • the relay time slot can also be used for information transmission, and the relay communication can be performed between the BS, the RS and the MS/SS based on the FDD technology or the TDD technology.
  • the first application scenario is as follows: A TDD transceiver is set in each of the BS, the RS, and the MS/SS, and the RS uses the set transit time slot for the relay communication. .
  • Fig. 1 shows the system model of single RS situation
  • Fig. 2 gives the system model of the case of multiple RS.
  • RS and BS, MS/SS use TDD/TDM Ting DMA mode to communicate at the same frequency point
  • MS/SS wirelessly accesses the BS through RS
  • RS acts as an MS/SS access BS.
  • TX represents a transmitting module
  • RX receiving module
  • the coverage areas of the BS and the RS are divided into three areas:
  • the first area 1 is, referred to as the 1 area: only the BS can cover, there is no interference from the RS to the MS/SS (MS BS in FIG. 1) and the SS/MS RS to the BS belonging to the BS;
  • the third zone 3 is referred to as zone 3: only the RS can cover, and there is no interference from the BS to the MS/SS (MS RS in FIG. 1) and the SS/MS BS to RS belonging to the RS;
  • the second zone 2 is abbreviated as 2 zones: both BS and RS can cover, there are interference from RS to SS/MS BS and BS to SS/MS RS , and there are also SS/MS BS to RS and SS/MS RS to BS.
  • Thousands of disturbances For example, in FIG. 2, the overlapping area of BS and RS1 is the second area 2 of RS1, and the overlapping area of BS and RS2 is the second area 2 of RS2.
  • the relay communication mode of BS and RS specifically includes the following transmission frames:
  • the DL BS is a downlink frame of a physical layer frame of the BS, from the BS to the SS/MS BS or the RS;
  • the UL BS is the uplink frame of the physical layer frame of the BS, and is synchronized by the SS/MS BS or RS to the BS, the SS/MS BS and the BS, the SS/MS BS and the BS maintain the transmission and reception frame synchronization, and the RS and the BS are in addition to the Relay. Zone, TTG and RTG keep the time slot synchronization of sending and receiving; (3) DL RS is the downlink frame of the physical layer frame of the RS, from the BS to the SS/MS RS 3 ⁇ 4RS;
  • the UL RS is the uplink frame of the physical layer frame of the RS, and the SS/MS RS or RS to the BS, and the SS/MS RS and the RS maintain the transmission and reception frame synchronization.
  • the BS can communicate with the RS, and then communicate with the SS/MS through the RS relay; at the same time, the information sent by the SS/MS to the BS can be transmitted through the RS, thereby effectively improving the wireless.
  • the coverage of the communication system is the uplink frame of the physical layer frame of the RS, and the SS/MS RS or RS to the BS, and the SS/MS RS maintain the transmission and reception frame synchronization.
  • the upper and lower frame structures of the physical layer of the BS and the RS need to be defined first, specifically:
  • Add a DL Relay Zone in the downlink frame DL BS of the physical layer frame structure of the BS used to define a downlink downlink data slot to be transmitted by the BS to the RS;
  • Adding a DL Relay Zone to the uplink frame UL RS of the physical layer frame structure of the RS used to define a BS downlink transfer data slot to be transmitted by the BS to the RS;
  • the time slot relationship between the DL Relay Zone of the BS and the DL Relay Zone of the RS, and the slot relationship of the UL Relay Zone of the BS and the UL Relay Zone of the RS must be one-to-one correspondence, so that the BS and the RS can be guaranteed.
  • the information is transmitted and received.
  • the SS/MS BS and the SS/MS RS do not arrange any receiving or transmitting time slots, in order to avoid SS/MS BS to RS and SS/MS RS BS.
  • the multiple RSs share the UL Relay Zone in a TDM manner.
  • DL RB Open a DL Relay Broadcast Slot in the DL Relay Zone of the downlink subframe DL BS of the physical layer frame structure of the BS , abbreviated as DL RB: used to define the downlink time slot broadcasted by the BS to the RS Broadcasting the DCD (downlink channel descriptor), UCD (upstream channel descriptor), FPC (fast power control), CLK-CMP (clock comparison) broadcast message defined by the 802.16 standard;
  • DCD downlink channel descriptor
  • UCD upstream channel descriptor
  • FPC fast power control
  • CLK-CMP clock comparison
  • DL RB RX Used to define the RS uplink of the receiving BS downlink relay broadcast time slot, and receive the DCD, UCD, FPC, CLK-CMP broadcast message defined by the 802.16 standard.
  • a DL Interference Slot in a downlink frame DL BS of a physical layer frame structure of the BS a BS downlink data slot for defining a downlink coverage area 1 and 2 of the BS;
  • a DL Interference Slot in the downlink frame DL RS of the physical layer frame structure of the RS an RS downlink data slot for defining the downlink coverage area 3 and 2 of the RS downlink coverage.
  • the DL Interference Slot of the BS cannot overlap with the DL Interference Slot of the RS in the time slot. ;
  • the multiple RSs share the DL Interference Slot in the TDM manner to avoid RS to RS interference.
  • the downlink frame header slot is the start of the downlink subframe, and is used to define the time slot for transmitting the user synchronization information and the time when the indication information is sent.
  • Gap to indicate the location and usage profile of each slot of the downlink frame and the uplink frame of the BS physical layer frame structure; including the preamble (preamble), FCH burst (frame control header burst) in the original 802.16 OFDM (or SC) frame And one or more downlink Bursts immediately following the FCH (Frame Control Header) specified by DLFP (Downlink Frame Prefix), the Burst includes: DL-MAP (downlink mapping table) and UL-MAP (uplink mapping)
  • the SS/MSBS, RS, and BS maintain the transmission and reception frame synchronization
  • the RS and the BS maintain the transmission and reception time slot synchronization except for the Relay Zone, the TTG (transmission/reception switching gap), and the RTG (reception/transmission conversion gap);
  • a DL Header Slot in the downlink frame DL RS of the physical layer frame structure of the RS as the start of the downlink subframe, used to define the time slot for transmitting the user synchronization information and the time when the indication information is sent Gap, to indicate the location and usage profile of each slot of the downlink frame and the uplink frame of the RS physical layer frame structure; including the preamble, FCH burst in the original 802.16 OFDM (or SC) frame and immediately following the FCH specified by the DLFP
  • One or more downlink Burst including DL-MAP and UL-MAP, SS/MS RS and RS keeps transmitting and receiving frame synchronization;
  • the DL Header Slot of the RS lags behind the DL Header Slot of the BS in time, and cannot overlap with the DL Header Slot, the DL Delay Zone, and the DL Interference Slot of the downlink frame DL BS of the physical layer frame structure of the BS .
  • the DL Header Slot of the RS cannot be temporally compared with the DL Header Slot of the downlink frame DL RS of the physical layer frame structure of other RSs.
  • UL Contention TX Slot uplink competing time slot
  • DL Interference Slot UL
  • UL Delay Zone overlap to avoid RS to RS interference.
  • DL Header Slots of different RSs overlap in time, They must be completely overlapping, strictly synchronized, and their contents must be the same to avoid RS to RS interference.
  • the present invention also defines a DL Header RX Slot in the uplink frame UL RS of the physical layer frame structure of the RS : for defining the receiving BS
  • the DL Header Slo moves the time slot, and the slot relationship of the DL Header Slot of the BS and the DL Header RX Slot of the RS must be completely overlapped and strictly synchronized.
  • the physical layer frame structure of the BS and the RS needs to be defined as follows, that is, the corresponding uplink interference slot is defined.
  • a UL Interference Slot in an uplink frame UL BS of a physical layer frame structure of the BS : a BS uplink data slot for defining a BS uplink coverage area 1 and 2; 2.
  • the UL Interference Slot is defined in the uplink frame UL RS of the physical layer frame structure of the RS : an RS uplink data slot used to define the RS uplink coverage area 3 and 2;
  • the UL Interference Slot of the BS defined above cannot overlap with the UL Interference Slot of the RS in time slots, avoiding interference of the SS/MS BS to the RS and the SS/MS RS to the BS;
  • the multiple RSs share the UL Interference Slot in a TDM manner to avoid interference from RS to IJRS.
  • the uplink contention time slots of the BS and the RS are also defined in the present invention, as follows:
  • the definition of UL Contention Slot (uplink contention timeslot) the UL RS in the uplink frame of the physical layer frame structure of RS, which include the original 802.16 OFDM (or SC) frame includes an initial Ranging contention timeslot and bandwidth request competition
  • the UL Contention TX Slot of the RS cannot overlap with the uplink intermediate zone and/or the uplink interference slot of the uplink frame of the BS.
  • a UL Contention TX Slot is also defined in a downlink frame DL RS of a physical layer frame structure of the RS : a slot for defining an UL Contention Slot for the RS to be used for competing the BS;
  • the slot relationship of the UL Contention Slot of the BS defined above and the UL Contention TX Slot of the RS must be completely overlapping and strictly synchronized.
  • the downlink time slot of the BS may not overlap with the uplink time slot of the RS, and the uplink time slot of the BS may not overlap with the downlink time slot of the RS. Avoid SS/MS BS to SS/MS RS and SS/MS RS to SS/MS BS and BS to 1JRS and RS to BS for $3 ⁇ 4.
  • At least the TTG duration is reserved between the downlink frame DL BS of the BS and the uplink frame UL BS of the BS ; the uplink frame UL BS of the BS to the downlink frame of the BS
  • the above-defined Slot or Zone does not necessarily have to exist every frame.
  • FIG. 5 is a schematic diagram of a single RS case
  • FIG. 6 is a schematic diagram of a multiple RS case.
  • the time slot indicated by the black block in the BS downlink frame DL BS and the RS downlink frame DL RS is a DL Header Slot;
  • the time slot indicated by the black block in the BS uplink frame UL BS and the RS uplink frame UL RS is a UL Contention Slot;
  • the white elongated block in the downlink frame DL RS of the RS indicates that the time slot is UL Contention TX Slot, and the time slot RX indicated by the white elongated block in the RS uplink frame UL RS is DL Header RX Slot.
  • the TX time slot in the BS downlink frame DL BS is the DL Interference Slot, and the BS downlink coverage area "and" 2 area";
  • the RX time slot in the BS uplink frame UL BS is the UL Interference Slot, and the BS uplink coverage area "and” Zone 2";
  • the ⁇ slot in the RS downlink frame DL RS is the DL Interference Slot, and the RS downlink covers the "3 zone” and "2 zone”; the RX slot in the RS uplink frame UL RS is the UL Interference Slot, and the RS uplink coverage "3 zone” And “2 districts”.
  • the DL Relay Zone of the BS is arranged after the DL Header Slot of the BS downlink frame DL BS
  • the UL Relay Zone of the BS is arranged after the UL Contention Slot of the BS downlink frame DL BS .
  • the MS does not schedule any receive or transmit time slots.
  • the UL Interference Slot of the BS does not overlap with the UL Interference Slot of the RS, and the DL of the BS
  • the Interference Slot does not overlap with the RS's DL Interference Slot.
  • the multiple RSs share the DL Relay Zone (ie, the DL RB'DL Relay R#1, #2... part in FIG. 6) and the UL Relay in the TDM manner.
  • Zone ie UL Relay 1 ⁇ #1, #2...), 01_Interference Slot and UL Interference Slot, to avoid RS to RS interference
  • FIG. 1 A specific implementation of the physical layer frame structure of the second BS and RS provided by the present invention is shown in FIG.
  • the UL Contention TX Slot of the RS appears in the frame, such as in the N-1 frame (FrameN-1), the N+1 frame (FrameN+1), and the N+3 frame (FrameN+3).
  • the downstream frame of ... is in the DL RS .
  • the DL Relay Zone of the BS and the UL Relay Zone of the BS may not be arranged in the same frame.
  • the DL Relay Zone of the BS is arranged at the end of the downlink frame DL BS of the frame (FrameN)
  • the DL Relay Zone of the Bay ijRS is arranged at the head of the uplink frame UL RS of the Nth frame (FrameN), followed by the UL Contention Slot.
  • the UL Relay Zone of the BS is arranged after the UL Contention Slot of the uplink frame UL BS of the N+1th frame (FrameN+1).
  • the MS is unsure of any receive or transmit time slots.
  • time slots may also be included:
  • Adding a DL Non-interference Slot in the downlink frame DL BS of the physical layer frame structure of the BS a BS downlink data slot for defining a BS downlink coverage zone;
  • the DL Non-interference Slot of the BS and the DL Non-interference Slot of the RS may overlap in a time slot.
  • the booster nUL Non-interference Slot is used to define the RS uplink data slot of the RS area coverage "3 zone";
  • the UL Non-interference Slot of the BS and the UL Non-interference Slot of the RS may overlap in a time slot.
  • the DL Header Slot of the RS lags behind the DL Header Slot of the BS, and the DL Header Slot of the RS and the DL Header Slot of the BS cannot overlap; the DL Header Slot of the RS must be located in the physical layer frame structure of the BS in time.
  • DL Non-interference Slot of the downlink frame DL BS ;
  • the DL Header Slots of different RSs cannot overlap with the downlink frames DL R ⁇ DL Header Slot, UL Contention TX Slot, DL Relay Zone and DL Interference Slot of the physical layer frame structure of other RSs in time, avoiding "RS to RS" Interference;
  • the DL Header Slots of different RSs overlap in time, they must be completely overlapped, strictly synchronized, and their contents must be the same to avoid RS to RS interference;
  • the physical layer frame structure implementation of the third BS and RS provided by the present invention is as shown in FIG. 8, wherein:
  • the time slot indicated by the black block in the BS downlink frame DL BS and the RS downlink frame DL RS is a DL Header Slot; the BS uplink frame UL BS and
  • the time slot indicated by the black block in the RS uplink frame UL RS is UL Contention Slot
  • the TX slot indicated by the white elongated block in the downlink frame DL RS of the RS is the UL Contention TX Slot
  • the RX slot indicated by the white elongated block in the RS uplink frame UL RS is the DL Header RX Slot.
  • the TX1 time slot in the BS downlink frame DL BS is the DL Non-interference Slot, the BS downlink coverage area ", the TX time slot is the DL Interference Slot, the BS downlink coverage area” and the "2 area”; the BS uplink frame UL BS
  • the RX1 time slot is a UL Non-Interference Slot, the BS uplink coverage is "1 zone”, the RX time slot is a UL Interference Slot, and the BS uplink coverage zone "and" 2 zone";
  • the TX3 slot in the RS downlink frame DL RS is the DL Non-interference Slot, the RS downlink covers the "3 zone", the TXB slot is the DL Interference Slot, the RS downlink covers the "3 zone” and the "2 zone”; RS uplink frame UL
  • the RX3 slot in the RS is a UL Non-interference Slot, the RS uplink covers “3 zones”, the RX slot is a UL Interference Slot, and the RS uplink covers "3 zones" and "2 zones”.
  • the DL Relay Zone of the BS is arranged after the DL Header Slot of the BS downlink frame DL BS , and the UL Relay Zone of the BS is arranged at
  • the MS does not schedule any receive or transmit time slots.
  • the UL Interference Slot of the BS does not overlap with the UL Interference Slot of the RS, and the DL of the BS
  • the Interference Slot does not overlap with the RS's DL Interference Slot.
  • the interference time slot in the physical layer frame structure of the BS and the RS may also define only the area that the BS and the RS can cover (ie, the 2 area), as follows:
  • a DL Interference Slot in a downlink frame DL BS of a physical layer frame structure of the BS a BS downlink data slot for defining a BS downlink coverage "2 zone";
  • the UL Interference Slot is defined in the uplink frame UL BS of the physical layer frame structure of the BS : a BS uplink data slot for defining a BS uplink coverage "2 zone";
  • the multiple inter-RSs share the UL Interference Slot in a TDM manner to avoid interference from "RS to RS";
  • the physical layer frame structure implementation of the fourth BS and RS provided by the present invention is as shown in FIG. 9, where:
  • the time slot indicated by the black block in the BS downlink frame DL BS and the RS downlink frame DL RS is a DL Header Slot;
  • the time slot indicated by the black block in the BS uplink frame UL BS and the RS uplink frame UL RS is a UL Contention Slot;
  • the TX slot indicated by the white elongated block in the downlink frame DL RS of the RS is the UL Contention TX Slot
  • the RX slot indicated by the white elongated block in the RS uplink frame UL RS is the DL Header RX Slot.
  • the TX1 slot in the BS downlink frame DL BS is the DL Non-interference Slot, the BS downlink coverage buffer zone, and the TX2 slot is DL.
  • Interference Slot BS downlink coverage "2 zone”; BS uplink frame UL BS RX1 time slot is UL Non-Interference Slot, BS uplink coverage zone", "RX2 time slot” is UL Interference Slot (2) Area”) ;
  • the TX3 slot in the RS downlink frame DL RS is the DL Non-interference Slot, the RS downlink covers the "3 zone”, the TX2 slot is the DL Interference Slot, the RS downlink covers the "2 zone”; and the RS uplink frame UL RS is RX3.
  • the gap is UL Non-interference Slot, RS uplink coverage "3 zone”, RX2 time slot is UL Interference Slot, RS uplink coverage "2 zone”.
  • the DL Relay Zone of the BS is arranged after the DL Header Slot of the BS downlink frame DL BS
  • the UL Relay Zone of the BS is arranged after the UL Contention Slot of the BS downlink frame DL BS .
  • the MS does not schedule any receive or transmit time slots.
  • the UL Interference Slot of the BS does not overlap with the UL Interference Slot of the RS, and the DL Interference Slot of the BS does not overlap with the DL Interference Slot of the RS.
  • the DL Non-interference Slot of the BS overlaps with the DL Non-interference Slot of the RS as much as possible on the time slot.
  • the UL Non-interference Slot of the BS overlaps with the UL Non-Interference Slot of the RS as much as possible on the time slot.
  • the second application scenario is as follows: BS, RS and MS/SS are respectively provided with TDD transceivers, and RS adopts a combination of medium rotor channel and 0FDMA symbol for transit communication.
  • the present invention mainly defines a physical layer frame structure of a BS and an RS by introducing a mechanism combining TDM and OFDMA.
  • the structure of the transit mode communication system mainly includes two types, as shown in FIG. 4 and FIG. 10 respectively, one is an advanced transfer mode communication system, and the other is to simplify the transfer mode communication system, and the following two systems respectively The model is explained.
  • FIG. 4 The advanced transit mode communication system model between RS and BS and MS/SS is shown in Figure 4. This is a common communication system model, in which TDD/TDM/OFDMA is used between RS and BS and MS/SS.
  • the MS/SS performs wireless relay access to the BS through the RS, and the RS acts as an MS/SS access BS.
  • the simplified transit mode communication system model of RS and BS, MS/SS is shown in Fig. 10 and Fig. 11.
  • the transfer mode is a communication system model provided by the present invention, wherein RS and BS, MS/SS
  • the TDD/TDM/OFDMA method is used to communicate at the same frequency point, and the RS acts as an MS/SS access BS.
  • the relay communication system including a simplified transition mode of the BS, the RS, and the SS/MS, wherein the BS is provided with an interface for communicating with the RS and the user terminal, and the RS is provided with an interface for communicating with the user terminal and the BS, The user terminals are respectively provided with an interface for communicating with the RS and the BS, and the BS, the RS and the user terminal communicate through the interface, as shown in FIG. 5:
  • the BS includes:
  • the wired transmission processing unit is capable of establishing communication with a higher-level device (such as a base station controller) or with a group of base station devices, and performing information interaction with the upper-level device or each base station device;
  • TDD wireless transceiver used for the same frequency point (such as l) wireless communication with RS or SS/MS in TDD mode, physical layer unit of TDD wireless transmitter, physical layer unit of TDD wireless receiver and data link of TDD wireless transceiver
  • the layer unit consists of: TDD radio transmitter physical layer unit: respectively, the same frequency point as the TDD charging line transceiver data link layer and the radio receiver physical layer unit in the RS or SS/MS with which it can communicate ( For example, f1) wireless communication; for simplified transit mode, the unit uses downlink channel header broadcast (such as Preamble, FCH, DL-MAP. UL-MAP) for DL BS to use channel coding and modulation with higher reliability than other transmitted data.
  • the mode (such as binary phase shift keying BPSK), or use higher transmit power than other transmitted data, directly sent by the BS to the MS/SS, not through the RS;
  • TDD radio receiver physical layer unit performs the same frequency (eg, f1) wireless communication with the TDD radio transceiver data link layer and the radio transmitter physical layer unit in the RS or SS/MS with which it can communicate;
  • f1 the same frequency
  • TDD wireless transceiver data link layer unit Data from the physical layer unit or wired transmission unit of the TDD wireless receiver is processed by the data link layer of the TDD wireless transceiver, and then forwarded to the wired transmission unit or the TDD wireless transmitter. Physical layer unit.
  • the RS includes:
  • TDD wireless transceiver used for the same frequency point (such as l) wireless communication with the BS or SS/MS in TDD mode, by TDD wireless transmitter physical layer unit, TDD wireless receiver physical layer unit and TDD wireless transceiver data link
  • the road layer unit is composed.
  • TDD radio transmitter physical layer unit performs the same frequency (eg, l) wireless communication with the TDD radio transceiver data link layer and the radio receiver physical layer unit in the BS or SS/MS with which it can communicate;
  • TDD radio receiver physical layer unit performs wireless communication at the same frequency point (such as f1) with the TDD radio transceiver data link layer and the radio transmitter physical layer unit in the BS or SS/MS with which it can communicate;
  • TDD wireless transceiver data link layer unit Data from the physical layer unit of the TDD radio receiver is processed by the data link layer of the TDD radio transceiver and forwarded to the physical layer unit of the TDD radio transmitter.
  • the SS/MS includes:
  • TDD wireless transceiver used for the same frequency point (such as l) wireless communication with the RS or BS in TDD mode, by TDD wireless transmitter physical layer unit, TDD wireless receiver physical layer unit and TDD wireless transceiver data link layer Unit composition.
  • TDD radio transmitter physical layer unit The same frequency point (such as l) wireless communication with the TDD radio transceiver data link layer and the RS or BS radio receiver physical layer unit with which it can communicate;
  • this unit Uplink access time slots (or contention slots) of the UL BS , such as initial Ranging contention slots and bandwidth request contention slots, or initial access ranging Ranging of MS/SS, Ranging, the bandwidth request passes through the Ranging Subchannel of the UL BS , and uses channel coding and modulation methods (such as binary phase shift keying BPSK) that are more reliable than other transmitted data, or uses other transmitted data.
  • the higher transmit power is sent directly to the BS by the MS/SS, not through the RS;
  • TDD radio receiver physical layer unit performing wireless communication at the same frequency point (such as f1) with the TDD radio transceiver data link layer and the radio transmitter physical layer unit in the RS or BS with which it can communicate;
  • TDD wireless transceiver data link layer unit Data from the physical layer unit or user of the TDD wireless receiver is processed by the data link layer of the TDD wireless transceiver, and then forwarded to the user or the physical layer unit of the TDD wireless transmitter.
  • each TDD radio transmitter physical layer unit described in BS, RS, and SS/MS is respectively provided with a communication interface that communicates with a TDD radio receiver physical layer unit in other entities.
  • Each of the TDD receiver physical layer units is provided with a communication interface for communicating with a TDD radio transmitter physical layer unit in other entities.
  • the downlink subframe header broadcast of the DL BS such as Preamble (preamble), FCH (frame control header), DL-MAP (downlink mapping table), UL-MAP (uplink mapping table), directly by BS issued to MS / SS, without transit through the RS; MS / SS of the ranging initial access ranging, periodic ranging, the ranging, Bandwidth request through the ranging subchannel ranging subchannel UL BS directly by the MS / SS sent to the BS, Not through RS relay.
  • Preamble preamble
  • FCH frame control header
  • DL-MAP downlink mapping table
  • UL-MAP uplink mapping table
  • burst such as data packets or message packets except DL-MAP, UL-MAP outside, it can not be issued directly by the BS MS / SS, RS DL BS must transit through the downlink; other BS uplink burst the UL For example, except for the initial access ranging Ranging and the periodic ranging Ranging. bandwidth request message of the MS/SS, it cannot be directly sent to the BS by the MS/SS, and must be relayed through the RS.
  • the BS can communicate with the RS, and then communicate with the SS/MS through the RS relay; and the information sent by the SS/MS to the BS can be transmitted and transmitted through the RS, thereby effectively improving The coverage of wireless communication systems.
  • the implementation of the present invention also needs to consider the mutual interference of the four cases shown in Figures 3(a) - (d) due to the use of the same frequency communication in the network system of the TDD mode.
  • the upper and lower subframe structures of the physical layer of the BS and the RS need to be defined first, specifically:
  • the downlink subframe DL BS of the physical layer frame structure of the BS adopt TDM technology, and add a DL Relay Zone (downlink transit zone) for defining a downlink downlink rotor channel and an OFDMA symbol combination transmitted by the BS to the BS;
  • a DL Relay Zone downlink transit zone
  • multiple RSs share the DL Relay Zone through different subchannels and OFDMA symbol combinations
  • the TDM technology is adopted in the uplink subframe UL RS of the physical layer frame structure of the RS , and the DL Relay Zone is added to define the medium-rotor channel and the OFDMA symbol combination of the DL Relay Zone of the RS receiving BS;
  • multiple RSs share the DL Relay Zone through different subchannels and OFDMA symbol combinations. Different RSs only receive the transit data of the BS in the corresponding subchannel and OFDMA symbol combination in the DL Relay Zone, and other subchannels and The OFDMA symbol combination is not scheduled to be received;
  • Adopting TDM technology in the uplink subframe UL BS of the physical layer frame structure of the BS adding a UL Relay Zone (upstream transit zone) for defining a combination of the uplink uplink rotor channel and the OFDMA symbol transmitted by the RS to the BS;
  • multiple RSs share the UL Relay Zone through different subchannels and OFDMA symbol combinations
  • a UL Relay Zone upstream transit zone
  • multiple RSs share the UL Relay Zone through different subchannels and OFDMA symbol combinations.
  • Different RSs only transmit the transit data of the BS in the corresponding subchannel and OFDMA symbol combination in the DL Relay Zone, and other subchannels and The OFDMA symbol combination cannot be scheduled to be sent;
  • the SS/MS BS and the 33/1/13 1 ⁇ do not arrange any receiving or transmitting subchannel and OFDMA symbol combinations to avoid the SS/MS BS to RS and SS/MS RS to BS interference.
  • a DL Relay Broadcast Subchannel is opened in the DL Relay Zone of the downlink subframe DL BS of the physical layer frame structure of the BS , and is used to define a downlink subchannel and an OFDMA symbol combination broadcasted by the BS to the RS.
  • Broadcast DCD downlink channel descriptor
  • UCD upstream channel descriptor
  • FPC fast power control
  • CLK_CMP clock comparison
  • RRS Relay Ranging Subchannel
  • the relay ranging subchannel RRS can also be used as the initial access ranging Ranging of the SS/MSS BS , periodic ranging Ranging, bandwidth request measurement Used by subchannels;
  • RRS TX Relay Ranging TX Subchannel
  • the time-frequency relationship between the Relay Ranging Subchannel of the BS and the Relay Ranging TX Subchannel of the RS must be one-to-one correspondence, strictly synchronized;
  • the BS and the different RSs pass different subchannels and OFDMA symbols except for the DL Header, the DL Relay Zone of the BS, and the UL Relay Zone of the RS.
  • the rest of the downlink subframes to avoid interference from RS to SS/MS RS , RS to SS/MS BS, and BS to SS/MS RS ;
  • the BS and the different RS share the uplink subgroup through different subchannels and OFDMA symbol combinations.
  • the rest of the frame avoids interference from SS/MS RS to RS, SS/MS BS to RS and SS/MS RS to BS.
  • the physical layer frame structure of the BS and the RS needs to be defined as follows: 1. Define a DL Header in the downlink subframe DL BS of the physical layer frame structure of the BS .
  • a frame header which is a start of a downlink subframe, and is used to define a subchannel and an OFDMA symbol combination for transmitting user synchronization information, and a subchannel and an OFDMA symbol for transmitting indication information.
  • the number combination is used to indicate the location and usage profile of each subchannel and OFDMA symbol combination of the downlink subframe and the uplink subframe of the BS physical layer frame structure.
  • Preamble, FCH, DL-MAP, UL-MAP, SS/MS BS , RS and BS in the original 802.16 OFDMA (or SOFDMA) frame are included to maintain the transmission and reception frame synchronization;
  • a DL Header (downlink subframe header) in a downlink subframe DL RS of the physical layer frame structure of the RS , which is a start of the downlink subframe, and is used to define a subchannel and an OFDMA symbol combination and a transmission indication for transmitting user synchronization information.
  • the subchannel of the information and the OFDMA symbol are combined to indicate the location and usage profile of each subchannel and OFDMA symbol combination of the RS physical layer frame structure downlink subframe and the uplink subframe.
  • Preamble, FCH, DL-MAP, UL-MAP, SS/MS R ⁇ i]RS in the original 802.16 OFDMA (or SOFDMA) frame is included to maintain the transmission and reception frame synchronization;
  • the DL Header of the RS is only applied to the advanced relay mode shown in FIG. 4, and lags behind the DL Header of the BS in time; during the DL Header of the RS, the downlink subframe (DL BS ) of the BS cannot arrange any transmitter.
  • DL BS downlink subframe
  • the physical layer of the downlink sub-frame configuration other frame DL RS of RS can not arrange any combination of OFDMA symbols and transmitting subchannels, to avoid interference RS to SS / MS RS; in particular, if different DL RS is Headers overlap in time, they must be completely overlapping, strictly synchronized, and their contents must be the same to avoid RS to SS/MS R ⁇ interference;
  • the time-frequency relationship between the DL Header of the BS and the DL Header RX of the RS must be one-to-one correspondence and strictly synchronized.
  • it is also required to define the physical layer frame structure of the BS and the RS as follows:
  • Ranging Subchannel in the uplink subframe UL BS of the physical layer frame structure of the BS , and define initial access ranging Ranging, periodic ranging Ranging, and bandwidth request for the SS/MSS BS .
  • Ranging Subchannel in the uplink subframe UL RS of the physical layer frame structure of the RS , and define the initial access ranging Ranging, periodic ranging Ranging, and bandwidth request for the SS/MSS RS .
  • the RS ranging receives a subchannel and an OFDMA symbol combination.
  • the downlink subframe of the BS may not overlap with the uplink subframe of the RS, and the uplink subframe of the BS may not overlap with the downlink subframe of the RS. Avoid interference from SS/MS BS to SS/MS RS and SS/MS RS to SS/MS BS and BS to RS and RS to BS;
  • RS cannot schedule any transmit subchannel and OFDMA symbol combination during the TTG of the BS; during the RTG of the BS, the RS cannot schedule any receive subchannel and OFDMA symbol combination.
  • the above-defined subchannel and OFDMA symbol combinations or zones do not necessarily have to exist every frame.
  • BS, RS and SS/MSS communicate based on the above defined subframe structure, so that the corresponding relay communication can be realized, and good communication effects and various relay communication requirements can be ensured.
  • FIG. 12 is a schematic diagram in an advanced relay mode
  • FIG. 13 is a schematic diagram in a simplified relay mode.
  • the NULL or blank portion is the portion where no reception or transmission is arranged.
  • the DL Header in the BS downlink subframe DL BS and the RS downlink subframe DL RS is the Preamble and DL-MAP, UL-MAP region of the BS in FIG. 12 and FIG. 13; the DL Header RX in the RS uplink subframe UL RS .
  • the BS's DL Relay Zone (ie DL Relay broadcast, DL Relay R#1, #2... part) is arranged after the DL Header of the BS downlink subframe (DL BS ), the UL Relay Zone of the BS (ie UL Relay R#1, The #2... and RRS TX sections are arranged at the beginning of the BS downlink subframe DL BS .
  • the MS does not arrange any receive or transmit subchannel and OFDMA symbol combinations.
  • the RS cannot schedule any transmit subchannel and OFDMA symbol combinations during the TTG of the BS; during the RTG of the BS, the RS cannot schedule any receive subchannel and OFDMA symbol combinations.
  • a PHY burst is assigned a set of adjacent subchannels and a set of OFDMA symbols, and the BS and the different RS share the remainder of the downlink subframe through different subchannel and OFDMA symbol combinations.
  • the present invention also provides another physical layer frame structure embodiment of the BS and the RS, as shown in FIG. 14 and FIG. 15, wherein FIG. 14 is a physical layer frame structure in an advanced relay mode, and FIG. 15 is a simplified transit mode. Physical layer frame structure.
  • the RRS and RS RRS TX frames of the BS appear, such as in the downlink of the N-1 frame (FrameN-1), the N+1th frame (FrameN+1), and the N+3 frame (FrameN+3).
  • DL RS in the subframe such as in the downlink of the N-1 frame (FrameN-1), the N+1th frame (FrameN+1), and the N+3 frame (FrameN+3).
  • the DL Relay Zone of the BS and the UL Relay Zone of the BS may not be arranged in the same frame.
  • the BSS scoop DL Relay Zone is arranged at the end of the downlink subframe DL BS of the ! ⁇ 1 frame (FrameN)
  • the DL Relay Zone of the Bay ijRS is arranged at the top of the uplink subframe UL RS of the 1st frame (FrameN).
  • the UL Relay Zone of the BS is arranged at the head of the uplink subframe UL BS of the N+1th frame (FrameN+1), and the UL Relay Zone of the RS is arranged in the downlink subframe DL BS of the (N+1)th frame (FrameN+1) end.
  • the MS does not schedule any receive or transmit subchannel and OFDMA symbol combinations.
  • the RS cannot schedule any transmit subchannel and OFDMA symbol combinations during the TTG of the BS; during the RTG of the BS, the RS cannot schedule any receive subchannel and OFDMA symbol combinations.
  • the downlink transfer is divided into two phases.
  • the first phase is: a communication process from BS to RS
  • the second phase is: a communication process from RS to SS/MS; wherein, for the first phase, in Figure 4
  • the corresponding transfer processing modes in the advanced transfer mode and the simplified transfer mode shown in FIG. 10 and FIG. 11 are exactly the same, and for the second stage, the corresponding transfer processing modes in the advanced transfer mode and the simplified transfer mode are respectively Not the same, the following two stages will be explained separately.
  • the processing of the first phase includes: 1.
  • the BS transmits a preamble preamble in a first symbol symbol or time slot in a downlink subframe DL BS "DL Header";
  • the RS#1 receives the preamble preamble in the BS downlink subframe DL BS "DL Header” through the "DL Header RX" in the RS uplink subframe UL RS , and synchronizes with the BS;
  • the BS transmits the FCH, DL-MAP, and UL-MAP after the downlink subframe DL BS "DL Header" preamble.
  • RS#1 receives the downlink subframe DL through the "DL Header RX" in the RS uplink subframe UL RS .
  • FCH of BS "DL Header”
  • the BS sends a broadcast message message by using the "DL Relay broadcast" of the downlink subframe DL BS "DL Relay Zone";
  • the BS sends the downlink relay communication data to the RS#1 in the "DL Relay RS#1" of the downlink subframe DL BS "DL Relay Zone";
  • RS#1 receives the broadcast message message in the "DL Relay broadcast” of the BS downlink subframe (DL BS ) "DL DL Relay” in the RS uplink subframe UL RS “DL RB", which may include the need for RS#1 Transit broadcast news;
  • RS#1 receives the "DL Relay RS#1" mid-downlink communication data traffic data of the BS downlink subframe DL BS "DL Relay Zone” through the "DL Relay Zone” in the RS uplink subframe UL RS .
  • the second phase (RS->MS/SS) described includes:
  • RS#1 transmits a preamble preamble in a first symbol symbol or slot in a downlink subframe DL RS "DL Header";
  • the MS/SS receives the preamble preamble in the DL RS "DL Header" of the RS#1 downlink subframe, and synchronizes with RS#1.
  • RS#1 sends FCH, DL-MAP, UL-MAP in the downlink subframe DL RS "DL Header" preamble (FCH, DL-MAP, UL-MAP of RS #1 may have been in the first stage) 6 is sent by the BS to RS #1);
  • the MS/SS receives the FCH, DL-MAP, and UL-MAP of the downlink subframe DL RS "DL Header", and obtains the slot, subchannel, and/or OFDMA symbol position and usage method of each downlink and uplink burst of RS#1. (profile) information;
  • RS#1 In the downlink subframe DL RS , in the time-frequency interval except the DL Header and the DL Relay Zone, the downlink relay communication data traffic data (sent to the RS #1 by the BS in step 6) is sent to the MS. /SS;
  • the MS/SS receives the downlink relay communication data traffic data in the RS#1 downlink subframe DL RS from the corresponding time-frequency interval.
  • the MS/SS receives the preamble preamble in the BS downlink subframe DL BS "DL Header", and synchronizes with the BS;
  • the MS/SS receives the FCH, DL-MAP, and UL-MAP of the BS downlink subframe DL BS "DL Header", and obtains the time slot, subchannel, and/or OFDMA symbol position of each downlink and uplink burst of the BS and RS#1. And using profile information;
  • RS#1 In the downlink subframe DL RS , in the time-frequency interval except the DL Header and the DL Relay Zone, the downlink relay communication data traffic data (sent to the RS #1 by the BS in step 6) is sent to the MS. /SS;
  • the MS/SS receives the downlink relay communication data traffic data in the RS#1 downlink subframe DL RS from the corresponding time-frequency interval.
  • the uplink intermediate branch is also in two phases.
  • the first phase is: a communication process from SS/MS to RS
  • the second phase is: a communication process from RS to BS; wherein, for the first phase, in the figure 3 to the advanced transfer mode and simplified transfer mode shown in Figure 5
  • the corresponding transfer processing methods are different, and for the second stage, the corresponding transfer processing modes in the advanced transfer mode and the simplified transfer mode are exactly the same. The processing of the two stages will be described separately below.
  • the processing of the first phase includes:
  • the MS/SS receives the FCH, DL-MAP, and UL-MAP of the RS#1 downlink subframe DL RS "DL Header", and obtains the sub-channel and OFDMA symbol position and usage method of the RS#1 downlink and uplink bursts.
  • the MS/SS sends the uplink communication data traffic data to the RS#1 in the RS uplink subframe UL RS in a time slot other than the DL Header RX and the UL Relay Zone;
  • RS#1 receives the uplink communication data traffic data in the MS/SS uplink subframe UL RS from the corresponding time slot.
  • the MS/SS receives the FCH and DL-MAP ⁇ UL-MAP of the BS downlink subframe DL BS "DL Header”, obtains the subchannels of the BS and RS#1 downlink and uplink bursts, and the OFDMA symbol position and usage method (profile) Information
  • the MS/SS sends the uplink communication data traffic data to the RS#1 in the RS uplink subframe UL RS in the time slot except the DL Header RX and the UL Relay Zone;
  • RS#1 receives the uplink communication data traffic data in the MS/SS uplink subframe UL RS from the corresponding time slot.
  • the processing of the second phase (RS->BS) described includes:
  • RS#1 receives the FCH, DL-MAP, and UL-MAP of the BS downlink subframe DL BS "DL Header", and obtains subchannel and OFDMA symbol position and usage profile information of each downlink and uplink burst of the BS;
  • RS#1 sends the uplink relay communication data traffic data (which has been sent by the BS to RS #1 in step 2) to the BS in the "UL Relay RS#1" of the RS downlink subframe DL RS "UL Relay Zone";
  • the BS receives the uplink relay communication data traffic data in step 2 in the "UL Relay RS#1" of the uplink subframe UL BS "UL Relay Zone".
  • the third application scenario is as follows:
  • the RS includes two TDM/TDMA-FDD wireless transceivers corresponding to the BS and the MS, and the RS transmits the information through the transit time slot.
  • FIG. 16 is a case of a downlink single RS
  • FIG. 17 is a case of an uplink single RS
  • FIG. 2 is a case of multiple RSs.
  • TDM Time Division Multiplexing
  • TDMA Time Division Multiple Access
  • FDD Frequency Division Multiple Access
  • the MS/SS performs wireless relay access to the BS through the RS.
  • network system communication may have mutual interference in the four cases shown in Figure 18 (a) - (d).
  • TX represents a transmitting module
  • RX represents a receiving module.
  • Fig. 2 For the convenience of subsequent description, in Fig. 2, Fig. 16 and Fig. 17, the coverage area of the BS is divided into three areas:
  • Zone 1 Only the BS can cover the downlink, there is no interference from the RS to the MS/SS (MS BS in Figure 16) belonging to the BS;
  • Zone 2 Both BS and RS can be covered by downlink, and there is interference of "RSIIJSS/MSBS" and P"BS to SS/MS rs ";
  • Zone 3 Only RS can cover downlink, there is no interference from BS to MS/SS (MS RS in Figure 16) belonging to RS.
  • the overlapping area of BS and RS1 is the 2 area of RS1
  • the overlapping area of BS and RS2 is the 2 area of RS2.
  • the invention also divides the coverage area of the RS into three zones:
  • Zone 11 Only the BS can cover the uplink, there is no interference of "SS/MS R ⁇ ljBS";
  • Both BS and RS can cover uplink, and there is interference of "SS/MS BS to RS" and "SS/MS RS 3 ⁇ 4BS";
  • Zone 33 Only RS can cover uplink, there is no interference from "SS/MS BS to RS".
  • the overlapping area of BS and RS1 is the 22 area of RS1
  • the overlapping area of BS and RS2 is the 22 area of RS2.
  • the relay communication system provided by the present invention will be described below with reference to the accompanying drawings.
  • the present invention specifically includes a communication system in an advanced relay communication mode and a communication system in a simplified relay communication mode.
  • the RS and BS, MS/SS advanced relay communication modes provided by the present invention are as shown in FIG. 19.
  • the BS cannot directly communicate with the user terminals in the RS coverage area.
  • the RS needs to have two sets of FDD wireless transceivers: the first set of transmitters TX1 operates at frequency l, the receiver RX1 operates at frequency f2; the second set of transmitters TX2 operates at frequency f2, the receiver RX2 works at frequency fl.
  • the DL BS is a downlink frame of a physical layer frame of the BS, from the BS to the SS/MS BS (user terminal under the coverage of the BS) or the RS, and the UL BS is an uplink frame of the physical layer frame of the BS , by the SS/MS BS or the RS
  • the second set of wireless transceivers and BSs of the BS, SS/MS BS and RS maintain the transmission and reception frame synchronization;
  • the DL RS is the downlink frame of the physical layer frame of the RS, from the BS to the SS/MS RS (the user terminal under the RS coverage) or RS,
  • UL RS is the uplink frame of the physical layer frame of the RS, and the first set of wireless transceivers of SS/MS RS or RS to BS, SS/MS R ⁇ DRS maintains the transmission and reception frame synchronization.
  • the relay communication is implemented between the BS, the RS, and the SS/MS in the system according to the present invention based on OFDM (Orthogonal Frequency Division Multiplexing) technology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the RS and BS, 'MS/SS simplified transit communication mode provided by the present invention are as shown in FIG.
  • the BS can communicate directly with the user terminals (ie, SS/MS RS ) in the RS coverage area.
  • the RS needs to have two sets of FDD wireless transceivers: the first set of transmitters TX1 operates at frequency l, the receiver RX1 operates at frequency f2 , and the second set of transmitters TX2 operates at frequency f2, the receiver RX2 works at frequency l.
  • the DL BS is a downlink frame of a physical layer frame of the BS, from the BS to the SS/MS BS or the RS, and the UL BS is an uplink frame of the physical layer frame of the BS , by the SS/MS BS or the RS to the BS; SS/MS BS or SS /MS RS , RS's second set of wireless transceivers and BS keeps the frame synchronization.
  • the DL RS is a downlink frame of a physical layer frame of the RS, and is transmitted from the BS to the SS/MS RS or the RS, and the UL RS is an uplink frame of the physical layer frame of the RS , from the SS/MS RS or the RS to the BS.
  • the downlink broadcast burst (Broadcast Burst) of the DL BS is directly sent by the BS to the MS/SS RS , not through the RS;
  • the UL BS uplink random access ( Random Access) time slot (referred to as a contention slot or Contention slot), as an initial Ranging contention timeslot and bandwidth request contention slots, the BS directly to MS / SS, RS does not transit through;
  • Sending such as data packets or message messages other than DL-MAP and UL-MAP, cannot be directly sent by the BS to the MS/SS RS , and must be relayed through the RS;
  • other uplink time slots of the UL BS such as the initial Ranging competition
  • the time slot and bandwidth request time slots outside the contention time slot cannot be directly sent to the BS by the MS/SS RS , and must be exchanged through the RS.
  • the present invention provides a BS, RS and SS/MS relay communication system, which respectively adopt two communication modes: an advanced transfer mode and a simplified transfer mode, as shown in Fig. 21. .
  • the specific structure of the BS includes:
  • the wired transmission processing unit is capable of establishing communication with a higher-level device (such as a base station controller) or with a group of base station devices, and performing information interaction with the upper-level device or each base station device;
  • TDM TDMA-FDD wireless transceiver used for wireless communication with RS or SS/MS in TDM/TDMA-FDD mode, specifically by TDM-FDD wireless transmitter physical layer processing unit, TDMA-FDD wireless receiver physical layer processing unit And a TDM-TDMA wireless transceiver data link layer processing unit, wherein:
  • TDM-FDD wireless transmitter physical layer processing unit (frequency fl): TDM-TDMA wireless receiver 1 physical layer processing unit or SS/ in the data link layer of TDM-TDMA wireless transceiver and RS in communication with it
  • the TDM-FDD radio receiver physical layer processing unit in the MS performs wireless communication; for simplifying the relay mode, the unit uses the downlink sub-frame broadcast of the DL BS (such as Preamble ⁇ FCH, DL-MAP, UL-MAP) Other channel coding and modulation methods (such as binary phase shift keying BPSK) that transmit data with higher reliability, or transmit power that is more powerful than other transmitted data, are directly sent by the BS to the MS/SS, and are not relayed through the RS;
  • BPSK binary phase shift keying
  • TDMA-FDD radio receiver physical layer processing unit (frequency f2): TDMA-TDMA radio transceiver data link layer and TDMA-FDD radio transmitter 1 in the RS with which it can communicate, physical layer processing unit or SS/ The TDMA-FDD wireless transmitter physical layer processing unit in the MS performs wireless communication;
  • TDM-TDMA wireless transceiver data link layer processing unit data from the TDMA-FDD wireless receiver physical layer processing unit or wired transmission processing unit, after TDM-TDMA wireless transceiver data link layer data processing, forwarding A wired transmission processing unit or a TDM-FDD wireless transmitter physical layer processing unit.
  • the RS specifically includes:
  • TDM TDMA-FDD wireless transceivers 1 and 2 for wireless communication with TBS/TDMA-FDD in the same BS or SS/MS, specifically by the physical layer of TDM-FDD wireless transmitter 1 and TDMA-FDD wireless transmitter 2.
  • TDM-FDD wireless receiver 1 and physical layer processing unit of TDM-FDD wireless receiver 2 and TDM-TDMA wireless transceiver data link layer processing unit, said TDM-FDD wireless transmitter 1 and TDMA
  • the physical layer processing unit of the FDD wireless receiver 1 constitutes a first TDM/TDM A-FDD wireless transceiver
  • the physical layer processing unit of the TDMA-FDD wireless transmitter 2 and the TDM-FDD wireless receiver 2 constitutes a second TDM/TDMA-FDD wireless transceiver. among them:
  • TDMA-FDD radio transmitter 2 physical layer processing unit (frequency f2), ie the second TDMA-FDD radio transmitter physical layer processing unit: respectively with the TDM-TDMA radio transceiver data link layer and the BS with which it can communicate
  • the TDMA-FDD wireless receiver physical layer processing unit performs wireless communication
  • the TDM-FDD wireless receiver physical layer processing unit in the MS performs wireless communication;
  • TDM-FDD wireless receiver 2 physical layer processing unit (frequency is l), that is, the second TDMA-FDD wireless receiver physical layer processing unit: respectively, with the TDM-TDMA wireless transceiver data link layer and the BS with which it can communicate
  • the TDM-FDD wireless transmitter physical layer processing unit performs wireless communication
  • TDMA-FDD radio receiver 1 physical layer processing unit (frequency f2), that is, the first TDMA-FDD radio receiver physical layer processing unit: respectively with the TDM-TDMA radio transceiver data link layer and the SS/ with which it can communicate TDMA-FDD wireless transmission in MS
  • the radio physical layer processing unit performs wireless communication;
  • TDM-TDMA radio transceiver data link layer processing unit TDM-TDMA radio transceiver data link layer for data from TDM-FDD radio receiver 1 and/or TDMA-FDD radio receiver 2 physical layer processing unit After the data is processed, it is forwarded to the TDM-FDD wireless transmitter 1 and/or the TDMA-FDD wireless transmitter 2 physical layer processing unit.
  • the SS/MS specifically includes:
  • TDM/TDMA-FDD wireless transceiver used for wireless communication with RS' or BS in TDM/TDMA-FDD mode, by TDMA-FDD wireless transmitter physical layer processing unit, TDM-FDD wireless receiver physical layer processing unit and TDM-TDMA wireless transceiver data link layer processing unit.
  • TDMA-FDD radio transmitter physical layer processing unit TDMA-TDMA radio transceiver data link layer and TDMA-FDD radio receiver 1 physical layer processing unit or BS TDMA-FDD radio receiver physics in RS
  • the layer processing unit performs wireless communication; for simplifying the transfer mode, the unit has an uplink random access time slot (or a contention slot) of the UL BS , such as an initial Ranging contention time slot and a bandwidth request competition.
  • TDM-FDD wireless receiver physical layer processing unit TDM-FDD wireless transmission in the TDM-TDMA wireless transceiver data link layer and the TDM-FDD wireless transmitter 2 physical layer processing unit or BS in the RS The physical layer processing unit performs wireless communication;
  • TDM-TDMA wireless transceiver data link layer processing unit Data from the TDM-FDD wireless receiver physical layer processing unit or user is processed by the data link layer of the TDM-TDMA wireless transceiver, and then forwarded to the user or TDMA-FDD wireless transmitter physical layer processing unit.
  • the physical frame structure of the corresponding BS and RS is:
  • a DL Relay Zone is opened in the physical layer frame structure of the second set of radio receivers RX2 of the frequency f1 of the RS, and is used to define a transit data slot of the DL Relay Zone of the RS receiving BS;
  • the second set of wireless transmitters TX2 with the frequency of the RS is f2, and the hierarchical frame structure opens up the UL Relay Zone, which is used to define the relay data slot of the UL Relay Zone of the RS receiving BS;
  • the multiple RSs share the UL Reiay Zone by TDM.
  • the time slot and frequency relationship between the DL Relay Zone of the BS and the DL Relay Zone of the RS RX2 are mandatory. Required - Correspondence; The slot and frequency relationship of the UL Relay Zone of the BS and the UL Relay Zone of the RS TX2 must be - corresponding.
  • the SS/MS BS and SS/MS RS may not schedule any transmission time slots, and the RS may not arrange any reception time slots in order to avoid SS/MS BS to BS, SS. /MS RS to BS interference; during the BS DL Relay Zone, the RS does not arrange any transmission slots to avoid RS to RS self-interference.
  • the physical layer frame structure includes:
  • the downlink broadcast broadcast slot (abbreviated as DL RB) is used to define the broadcast to the RS by the BS.
  • DL RB downlink broadcast broadcast slot
  • DCD downlink channel descriptor
  • UCD upstream channel descriptor
  • FPC fast power control
  • CLK-CMP clock comparison
  • Relay Broadcast RX Slot Downlink Broadcast Receive Slot, abbreviated as DL RB RX
  • DL RB RX Downlink Broadcast Receive Slot
  • the following settings are also made in the physical layer frame structure of the BS and the RS:
  • the DL Interference Slot is shared by the multiple RSs in a TDM manner to avoid interference of "RS to SS/MS RS ";
  • the multiple RSs share the DL Interference Slot in a TDM manner to avoid
  • the DL Interference Slot of the BS cannot overlap with the DL Interference Slot of the RS TX1 in time slots, avoiding interference of "RS to SS/MS BS " and "BS to SS/MS RS ".
  • the following settings are also made in the physical layer frame structure of the BS and the RS:
  • a DL Header Slot in a downlink frame DL BS whose frequency is fl in the physical layer frame structure of the BS , and define a start time set as a downlink subframe, which is used to define when the user synchronization information is sent.
  • a slot and a time slot for transmitting the indication information, to indicate a location and a usage profile of each time slot of the downlink frame and the uplink frame of the BS physical layer frame structure;
  • the synchronization information and the indication information include a preamble in an original 802.16 OFDM (Orthogonal Frequency Division Multiplexing) or SC (Single Loaded 3 ⁇ 4) frame, an FCH burst, and one or more downlinks specified by the DLFP immediately following the FCH. Burst (including DL-MAP, UL-MAP), SS/MS BS , RS and BS keeps transmitting and receiving frame synchronization;
  • a DL Header Slot is defined in the downlink frame DL RS of the physical layer frame structure of the first set of wireless transmitters TX1 of the RS frequency of 1, and is set as a downlink subframe.
  • a start time a time slot for transmitting user synchronization information and a time slot for transmitting indication information, to indicate a location and a usage profile of each time slot of the downlink frame and the uplink frame of the RS physical layer frame structure
  • the synchronization information and the indication information include a preamble in the original 802.16 OFDM (or SC) frame, an FCH burst, and one or more downlink Bursts (including DL-MAP, UL- immediately following the FCH specified by the DLFP).
  • MAP SS/MS RS and RS keep transmitting and receiving frame synchronization;
  • the DL Header Slot of RS TX1 lags behind the DL Header Slot of the BS in time, and cannot overlap with the DL Header Slot, DL Delay Zone and DL Interference Slot of the downlink frame DL BS of the physical layer frame structure of the BS .
  • the DL Header Slot of RS TX1 cannot overlap with the DL Header Slot and DL Interference Slot of the downlink frame DL RS of the physical layer frame structure of other RS T'X1 in time, avoiding RS RS to SS/ MS RS interference; or, if the DL Header Slots of different RS TX1 overlap in time, they must ensure complete overlap, strict synchronization, and the contents of the DL Header Slot must be the same to avoid RS to SS/MS RS interference;
  • a DL Header RX Slot (downlink frame header receiving time slot) is opened in the physical layer frame structure of the second set of radio receiver RX2 with the frequency of the RS as f1, and is used to define a time slot of the DL Header Slot of the receiving BS;
  • the two sets of FDD transceivers of the RS acquire frequency and/or symbol synchronization according to the preamble and BS received by the DL Header RX Slot.
  • the following settings are also made in the physical layer frame structure of the BS and the RS:
  • a UL Interference Slot in the uplink frame UL RS of the physical layer frame structure of the first set of radio receivers RX 1 of the frequency of the RS , for defining the RS uplink coverage "33 area” And "22 area” RS uplink data slot; in the case of multiple RSs, the multi-RS needs to share the UL Interference Slot in a TDM manner to avoid RS to
  • the UL interference Slot of the BS cannot overlap with the UL Interference Slot of the RS RX1 in time slots to avoid Wo [l"SS/MS RS to BS" ⁇ spoon interference.
  • the following settings are also made in the physical layer frame structure of the BS and the RS:
  • the UL Contention Slot is defined in the uplink frame UL BS of the physical layer frame structure of the BS with a frequency of f2, and the time slot contains the original Ranging competition included in the original 802.16 OFDM (or SC) frame.
  • the time slot and bandwidth request contention slot meanwhile, in the advanced relay mode, the UL Contention Slot is also defined in the uplink frame UL RS of the physical layer frame structure of the first set of radio receivers RX1 of the frequency of the RS . Competing time slot), the time slot also includes an initial Ranging contention time slot and a bandwidth request contention time slot in the original 802.16 OFDM (or SC) frame;
  • Uplink contention transmission slot used to define a slot for the UL Contention Slot used by the RS to contend for the BS;
  • the slot and frequency relationship of the UL Contention Slot of the BS and the UL Contention TX Slot of the RS TX2 must be completely overlapped and strictly synchronized; the UL Contention TX Slot of the RS TX2 cannot be uplink and the uplink interference slot of the uplink frame of the BS. Stack.
  • the Slot or Zone does not have to exist every frame.
  • the physical layer frame structure of the BS and the RS of the present invention is specifically implemented as shown in FIG. 22 and FIG. 23, wherein FIG. 22 is a BS and a multiple RS case in the advanced relay mode.
  • Schematic diagram of the physical layer frame structure of the RS and FIG. 23 is a schematic diagram of the physical layer frame structure of the BS and the RS in the case of simplifying multiple RSs in the transit mode.
  • the transmission and reception frequencies of RS and BS are based on the frequency at the leftmost end of the frame in the figure.
  • the black long stripe slot in the BS downlink frame DLBS and the RS TX1 downlink frame DLRS is the DL Header Slot;
  • the BS uplink frame ULBS and the RS RX1 uplink frame ULRS in the black long strip slot is the UL Contention Slot;
  • the RS TX2 TX The white long slot is UL Contention TX Slot, and the RX white long slot of RS RX2 is DL Header RX Slot.
  • the TX time slot in the BS downlink frame DL BS is the DL Interference Slot and the RX time slot in the BS uplink frame UL BS is the UL Interference Slot (BS uplink coverage ⁇ 1 area) and ''22 zone ") -, RS ⁇ 1 downlink frame DL RS TX in timeslots of DL Interference slot (RS downlink coverage" zone 3 "and” area 2 "); RS RX1 in uplink frame UL RS RX slot For UL Interference Slot (RS Upstream Coverage "Zone 33" and "22 Zone”).
  • the DL Relay Zone of the BS is arranged after the DL Header Slot of the BS downlink frame DL BS
  • the UL Relay Zone of the BS is arranged after the UL Contention Slot of the BS downlink frame DL BS .
  • the SS/MS BS and the SS/MS RS do not arrange any transmission slots, and the RS does not arrange any reception slots; during the period corresponding to the BS DL Relay Zone, the RS does not arrange any transmission slots.
  • the UL Interference Slot of the BS does not overlap with the UL Interference Slot of the RS RX1, and the DL Interference Slot of the BS does not overlap with the DL Interference Slot of the RS TX1.
  • multiple RSs share the DL Relay Zone (ie DL RB, DL Relay R#1, #2...) and the UL Relay Zone (ie UL Relay R#1, #2.. Part), DL Interference Slot and UL Interference Slot.
  • the DL Header Slot of RS TX1 lags behind the DL Header Slot of the BS in time, and cannot overlap; the DL Header Slot of RS TX1 must be located in the downlink frame DL of the physical layer frame structure of the BS in time. Within the DL Non-interference Slot of the BS ;
  • the DL Non-interference Slot of the BS and the DL Non-interference Slot of the RS may overlap in a time slot;
  • the black long strip time slot in the BS downlink frame DL BS and the RS TXrF line frame DL RS is a DL Header Slot;
  • the black long strip time slot in the BS uplink frame UL BS and the RS RX1 uplink frame UL RS is a UL Contention Slot;
  • the TX white long strip time slot of RS TX2 is UL Contention TX Slot, and the RX white long strip time slot of RS RX2 is DL Header RX Slot.
  • the DL Header Slot of the RS TX1 downlink frame DL RS and the UL Contention Slot of the RS RX1 uplink frame UL RS in FIG. 24 do not exist, and the rest are basically similar.
  • the TX1 time slot in the BS downlink frame DL BS is a DL Non-interference Slot, and the TX time slot is a DL Interference Slot (BS downlink coverage zone) and "2 zone”); BS uplink frame UL
  • the RX1 time slot in the BS is the UL Non-interference Slot (the BS uplink coverage "11 area"), the RX time slot is the UL Interference Slot (the BS uplink coverage ⁇ 1 area" and the "22 area”); the RS TX1 downlink frame DL RS
  • the TX3 slot in the DL Non-interference Slot is the DL Interference Slot, and the RS RX1 uplink frame is in the UL RS .
  • the RX3 time slot is the UL Non-interference Slot (RS area coverage "33 area”), and the RX time slot is the UL Interference Slot (RS uplink coverage "33 area” and "22 area”).
  • the DL Relay Zone of the BS is arranged after the DL Header Slot of the BS downlink frame DL BS
  • the UL Relay Zone of the BS is arranged after the UL Contention Slot of the BS downlink frame DL BS
  • the time slot and frequency relationship of the DL Relay Zone of the BS and the DL Relay Zone of the RS RX2 - corresponding; the time slot and frequency relationship of the UL Relay Zone of the BS and the UL Relay Zone of the RS TX2 are in one-to-one correspondence.
  • SS/MS BS 33/1 ⁇ /15 [ ⁇ does not arrange any transmission slots
  • RS does not arrange any reception slots
  • RS does not Arrange any send time slot.
  • the UL Interference Slot of the BS does not overlap with the UL Interference Slot of the RS RX1, and the DL Interference Slot of the BS does not overlap with the DL Interference Slot of the RS TX1.
  • the present invention also provides an implementation of a third physical layer frame structure of BSs and RSs, the difference between this scheme and the second scheme described above is:
  • the UL Interference Slot is defined in the uplink frame UL BS of the physical layer frame structure of the BS , and is used to define the BS uplink data slot of the BS uplink coverage "22 area", that is, used for Defining an area covered only by the BS;
  • the UL Interference Slot is defined in the uplink frame UL RS of the physical layer frame structure of the first radio receiver RX1 of the RS frequency f2, and is used to define the RS of the RS coverage "22 area".
  • An uplink data slot that is, an area defined to be covered only by the RS;
  • the multiple inter-RSs share the UL Interference Slot in a TDM manner to avoid interference of "SS/i ⁇ /lS RS to RS".
  • the physical layer frame structure of the corresponding BS and RS provided by the present invention is as shown in FIG. 25, that is, the advanced relay communication mode. -
  • the transmission and reception frequencies of RS and BS are based on the frequency of the leftmost end of the frame in the figure.
  • the black long strip slot in the BS downlink frame DL BS and the RS TX1 downlink frame DL RS is the DL Header Slot; the BS uplink frame UL BS and the RS RX1 uplink frame UL RS in the black long strip slot is the UL Contention Slot;
  • the TX white long strip time slot of RS TX2 is UL Contention TX Slot, and the RX white long strip time slot of RS RX2 is DL Header RX Slot.
  • the DL Header Slot of the RS TX1 downlink frame DL RS and the UL Contention Slot of the RS RX1 uplink frame UL RS in FIG. 25 do not exist, and the rest are similar.
  • the TX1 time slot in the BS downlink frame DL BS is a DL Non-interference Slot
  • the ⁇ 2 time slot is a DL Interference Slot (BS downlink coverage "2 area”)
  • the RX1 in the BS uplink frame UL BS The time slot is UL Non-interference Slot
  • the RX2 time slot is UL Interference Slot (BS uplink coverage "22 area”)
  • the TX3 time slot in the RS TX1 downlink frame DL RS is DL Non- Interference Slot (RS downlink coverage "3 zone")
  • TX2 time slot is DL Interference Slot (RS downlink coverage "2 zone”
  • RS RX1 uplink frame UL RS "RX3 time slot” is UL Non-interference SI ot (RS uplink coverage "33 area”)
  • RX2 time slot is UL Interference Slot (RS uplink coverage "22 area”).
  • the DL Relay Zone of the BS is arranged after the DL Header Slot of the BS downlink frame DL BS
  • the UL Relay Zone of the BS is arranged after the UL Contention Slot of the BS downlink frame DL BS .
  • the slot and frequency relationship of the DL Relay Zone of the BS and the DL Relay Zone of the RS RX2 - corresponding; the slot and frequency relationship of the UL Relay Zone of the BS and the UL Relay Zone of the RS TX2 - correspond.
  • the SS/MS BS , SS/MS RS does not arrange any transmission slots, and the RS does not arrange any reception slots; during the period corresponding to the BS DL Relay Zone, the RS does not arrange any transmission slots.
  • the UL Interference Slot of the BS does not overlap with the UL Interference Slot of the RS RX1, and the DL Interference Slot of the BS does not overlap with the DL Interference Slot of the RS TX1.
  • the DL Non-interference Slot of the BS overlaps with the DL Non-interference Slot of RS TX1 as much as possible on the time slot.
  • the UL Non-interference Slot of the BS overlaps with the UL Non-interference Slot of the RS RX1 as much as possible on the time slot.
  • a corresponding TDM DMA-FDD relay communication processing flow is further provided, which specifically includes a downlink relay communication processing process from the BS to the user terminal, and an uplink relay communication processing process from the user terminal to the BS, and the following respectively The corresponding communication processing will be described.
  • the downlink relay communication processing procedure includes a first phase processing process from the BS to the RS and a second phase processing procedure from the RS to the user terminal.
  • the processing process of the advanced transfer mode and the simplified transfer mode is the same, including:
  • RS#1 receives the preamble preamble in the DL Header of the BS downlink subframe DL BS through the DL Header RX Slot with the RS RX2 frequency of 1, and realizes synchronization with the BS;
  • the BS sends the FCH, DL-MAP, and UL-MAP information after the preamble of the DL Header of the downlink subframe DL BS of frequency l;
  • RS#1 receives the FCH of the DL Header of the downlink subframe DL BS through the DL Header RX Slot of the RS RX2 frequency of 1,
  • DL-MAP obtains the slot position and usage profile information of each burst of the downlink and uplink of the BS;
  • the BS sends a broadcast message message by using the DL Relay broadcast of the DL Relay Zone of the downlink subframe DL BS of frequency l;
  • the BS sends the downlink relay communication data to the RS#1 in the DL Relay RS#1 of the DL Relay Zone of the downlink subframe DL BS of the frequency f1;
  • RS#1 receives the broadcast message message in the DL Relay broadcast of the DL Relay Zone of the BS downlink subframe DL BS through the RS RX2 frequency DL RB of the f1, which may include a message requiring the RS#1 relay broadcast;
  • RS#1 receives the downlink relay communication data of the DL Relay Zone of the DL Relay Zone of the BS downlink subframe DL BS through the RS RX2 frequency DL Relay Zone;
  • the corresponding processing includes:
  • RS#1 TX1 sends a preamble preamble in a DL Header with a downlink subframe DL RS frequency of 1.
  • the MS/SS receives the preamble preamble in the DL Header of the RS11 TX1 downlink subframe DL RS , and synchronizes with RS#1;
  • RS#1 TX1 sends FCH, DL-MAP, UL-MAP after the preamble of the DL Header with the downlink subframe DL RS frequency of 1, wherein the FCH, DL-MAP, UL-MAP information of RS #1 has been In step 6 described in the previous stage, it is sent by the BS to RS #1;
  • MS/SS receives RS#1 TX1 downlink subframe DL RS DL Header FCH, DL-MAP, UL-MAP, obtains RS#1 downlink and uplink sub-burst subchannel and OFDMA symbol position and usage method (profile Information
  • the TX1 transmits the downlink relay communication data to the MS/SS at the frequency 1, and likewise, the relay communication data.
  • step 6 of the first phase it has been sent by the BS to RS #1 TX1;
  • the MS/SS receives the downlink relay communication data traffic data in the RS#1 TX1 downlink subframe DL RS from the corresponding time slot.
  • the MS/SS receives the preamble preamble in the DL Header of the BS downlink subframe DL BS , and synchronizes with the BS; 2.
  • the MS/SS receives the FCH, DL-MAP, UL- of the DL Header of the BS downlink subframe DL BS .
  • MAP obtaining time slots, subchannels, and/or OFDMA symbol locations and usage profile information for each of the BS and RS#1 downlink and uplink bursts;
  • the downlink transmission communication data is sent to the MS/SS at the frequency 1, and the relay communication data is already in the first In step 6 of the phase, it is sent by the BS to RS #1 TX1;
  • the MS/SS receives the downlink relay communication data traffic data in the RS#1 TX1 downlink subframe DL RS from the corresponding time slot.
  • the uplink relay uplink communication processing process also includes the first phase processing process from the user terminal to the RS, and the second phase processing procedure from the RS to the BS.
  • the corresponding communication process includes:
  • the MS/SS receives the RS#1 TX1 downlink subframe DL RS frequency of the DL Header's FCH, DL-MAP, UL-MAP, and obtains the slot position and usage of the RS#1 TX1 downlink and uplink bursts ( Profile)
  • MS / SS in the RS #1 RX1 uplink subframe UL RS in the time slot other than the BS UL Relay Zone corresponding period, send the uplink communication data traffic data to the RS #1 at the frequency f2;
  • RS#1 RX1 receives uplink communication data in the MS/SS uplink subframe UL RS from the corresponding time slot at frequency f2;
  • the MS/SS receives the FCH, DL-MAP, and UL-MAP of the DL Header with the DL BS frequency of the BS downlink subframe DL BS , and obtains the slot positions of the downlink and uplink bursts of the first set of wireless transmitters of the BS and the RS#1. And using profile information;
  • MS / SS in the RS #1 RX1 uplink subframe UL RS in the time slot other than the BS UL Relay Zone corresponding period, send the uplink communication data traffic data to the RS #1 at the frequency f2;
  • RS#1 RX1 receives the uplink communication data in the MS/SS uplink subframe UL RS from the corresponding time slot at the frequency f2; in the intermediate communication process of the second phase (RS->BS), in the advanced relay process
  • RS->BS intermediate communication process of the second phase
  • RS#1 RX2 receives the FCH, DL-MAP, UL-MAP of the DL Header of the BS downlink subframe DL BS through the DL Header RX Slot of the frequency uplink f1 in the RS uplink subframe UL RS , and obtains the downlink and uplink bursts of the BS.
  • the RS#1 TX2 sends the uplink relay communication data traffic data to the BS in the UL Relay RS#1 of the UL Relay Zone of the RS downlink subframe DL RS at the frequency f2, and the step of the relay communication in the uplink relay communication processing procedure 2 has been sent by the BS to RS #1;
  • the BS receives the uplink relay communication data traffic data in S5 in the UL Relay RS#1 of the UL Relay Zone of ULBS in the uplink subframe of frequency f2.
  • the BS, the RS and the SS/MS implement a relay communication based on the OFDM technology to improve the multipath interference performance of the communication system.
  • the fourth application scenario is as follows:
  • the RS includes two TDD radio transceivers corresponding to the BS and the MS, and the RS transmits information through the combination of the middle rotor channel and the 0FDMA symbol.
  • the present invention provides a wireless relay communication system based on a mixture of FDD and TDD, and specifically includes a relay communication system of an advanced transfer mode and a relay communication system of a simplified transfer mode.
  • FIG. 26 The advanced relay communication system model of RS and BS, MS/SS provided by the present invention is shown in FIG.
  • RS and BS, MS/SS use FDD-TDD hybrid/TDM/0FDMA communication, BS and RS downlink use frequency f2, BS and RS uplink frequency f 1 ; MS/SS wireless via RS
  • the transit accesses the BS, and the RS acts as an MS/SS access BS.
  • the BS and MS/SS use FDD transceivers, while the RS requires two sets of TDD transceivers (ie, TDD transceiver 1 and TDD transceiver 2 in Figure 26):
  • the first set of TDD transceivers (abbreviated as TDD1) works at frequency ⁇
  • the second TDD transceiver (abbreviated as TDD2) operates at frequency f2.
  • the DL BS is a downlink subframe of a physical layer frame of the BS, and is an uplink subframe of a physical layer frame of the BS to the SS/MS BS or the RS, and the SS/MS B ⁇ RS to the BS, SS/MS B ⁇ nBS Keeping the transmission and reception frame synchronization, the first set of TDD receivers of the RS and the transmitter of the BS maintain the transmission and reception frame synchronization, and the second set of TDD transmitters of the RS and the receiver of the BS maintain the transmission and reception frame synchronization;
  • BS to The transmitter and the second set of TDD receivers of the RS maintain the transmission and reception frame synchronization, and the receiver of the SS/MS KS and the first set of TDD transmitters of the RS maintain the transmission and reception frame synchronization.
  • RS and BS, MS/SS use FDD-TDD hybrid/TDM/0FDMA communication, BS and RS downlink use frequency f2, BS and RS uplink use frequency f 1 ; RS as an MS/SS access BS.
  • the BS and MS/SS use FDD transceivers, while the RS requires two sets of TDD transceivers (ie, TDD transceiver 1 and TDD transceiver 2 in Figure 26):
  • the first set of TDD transceivers (abbreviated as TDD1) operates at frequency fl
  • the second set of TDD transceivers (abbreviated as TDD2) operates at frequency f2.
  • the downlink subframe of the physical layer frame of the DL FFI BS from the BS to the SS/MS B 'S, the uplink subframe of the physical layer frame of the ULB BS, from the SS/MS BS or RS to the BS; 35/3 ⁇ 415 85 or 55/ 3 ⁇ 4 ⁇ and 85 keep the frame synchronization.
  • the downlink subframe of the physical layer frame of the DL R ⁇ RS, from the BS to the SS/MS R ⁇ RS, and the UL RS is the uplink subframe of the physical layer frame of the RS, from the SS/MS Rf ⁇ RS to the BS.
  • the downlink broadcast burst (Broadcast Burst) of the DL BS is directly sent by the BS to the MS/SS, and does not pass through the RS; the initial access ranging of the MS/SS Ranging periodic ranging Ranging, bandwidth request through the UL BS 's ranging sub-channel Ranging Subchannel, directly sent by the MS/SS to the BS, not through the RS; for D other downlink bursts, such as data packets or DL- Messages outside the MAP and UL-MAP cannot be directly sent by the BS to the MS/SS, and must be relayed through the RS; other bursts of the uplink of the UL BS , such as the initial access ranging Ranging periodic ranging except the MS/SS In addition to Ran g ing and bandwidth request messages, they cannot be directly sent to the BS by the MS/SS and must be relayed through the RS.
  • the structure of the BS, RS and SS/MS relay communication system provided by the present invention will be described in detail below with reference to the accompanying drawings.
  • the structure is applicable to the two communication modes described above, namely, the advanced transfer mode and the simplified transfer mode.
  • the system structure includes:
  • the BS includes:
  • the wired transmission processing unit is capable of establishing communication with a higher-level device (such as a base station controller) or with a group of base station devices, and performing information interaction with the upper-level device or each base station device;
  • a higher-level device such as a base station controller
  • FDD line transceiver Used for wireless communication with RS or SS/MS in TDD/FDD hybrid or FDD mode, FDD wireless transmitter physical layer processing unit, FDD wireless receiver physical layer processing unit and FDD wireless transceiver data link
  • the road layer processing unit is composed.
  • FDD radio transmitter physical layer processing unit FDD radio reception in the physical layer processing unit or SS/MS of the TDD radio receiver 1 in the data link layer of the FDD radio transceiver and the RS that can communicate with it, respectively
  • the physical layer processing unit performs wireless communication; for simplifying the relay mode, the unit uses downlink channel header broadcasts of D (such as Preamble, FCH, DL-MAP, UL-MAP) to use channel coding with higher reliability than other transmitted data.
  • modulation mode such as binary phase shift keying BPSIO, or use higher transmission power than other transmitted data, directly sent by the BS to the MS/SS, not through the RS;
  • FDD wireless receiver physical layer processing unit (frequency f2): respectively with the FDD wireless transceiver data link layer and can communicate with it
  • the TDD radio transmitter 2 physical layer processing unit in the RS or the FDD radio transmitter physical layer processing unit in the SS/MS performs wireless communication;
  • FDD wireless transceiver data link layer processing unit data from the physical layer processing unit or the wired transmission processing unit of the FDD wireless receiver is processed by the data link layer of the FDD wireless transceiver, and then forwarded to the wired transmission processing unit or FDD wireless transmitter physical layer processing unit.
  • the structure of the RS in Figure 28 includes:
  • TDD wireless transceivers 1 and 2 for wireless communication with TSD/FDD hybrid mode with BS or SS/MS, physical layer processing unit of TDD wireless transmitters 1 and 2, physical layer of TDD wireless receivers 1 and 2
  • the processing unit is composed of a data link layer processing unit of the TDD wireless transceivers 1 and 2; wherein the TDD wireless transceiver 1, ie, the first TDD wireless transceiver, includes a physical layer processing unit of the TDD wireless transmitter 1 (the frequency is ⁇ ) and TDD wireless receiver 1 physical layer processing unit (frequency is ⁇ ), the TDD wireless transceiver 2, that is, the second TDD wireless transceiver includes a physical layer processing unit of TDD wireless transmitter 2 (frequency is f 2 ) And the TDD radio receiver 2 physical layer processing unit (frequency f2), which will be described separately below:
  • TDD radio transmitter 1 physical layer processing unit wirelessly communicates with the TDD radio transceiver 1 and 2 data link layers and the FDD radio receiver physical layer processing unit in the BS with which it can communicate;
  • TDD radio transmitter 2 physical layer processing unit (frequency f2): wirelessly communicating with the TDD radio transceiver 1 and 2 data link layers and the FDD radio receiver physical layer processing unit in the SS/MS with which they can communicate;
  • TDD radio receiver 1 physical layer processing unit wirelessly communicates with the FDD radio transmitter physical layer processing unit in the TDD radio transceiver data link layer and the BS with which it can communicate;
  • TDD radio receiver 2 physical layer processing unit (frequency f2): wirelessly communicates with the TDD radio transceiver data link layer and the FDD radio transmitter physical layer processing unit in the SS/MS with which it can communicate;
  • TDD wireless transceiver data link layer processing unit Data from the TDD wireless receiver 1 and/or 2 physical layer processing unit is processed by the data link layer of the TDD wireless transceiver, and then forwarded to the TDD wireless transmitter 1 And / or 2 physical layer processing units.
  • the structure of the SS/MS in Figure 28 includes:
  • FDD wireless transceiver used for wireless communication with RS or BS in TDD/FDD hybrid or FDD mode, physical layer processing unit of FDD wireless transmitter, physical layer processing unit of FDD wireless receiver and data link layer of FDD wireless transceiver Processing unit composition.
  • FDD radio transmitter physical layer processing unit wirelessly communicates with the FDD radio transceiver data link layer and the RS TDD radio receiver 2 physical layer processing unit or the BS FDD radio receiver physical layer processing unit in communication with the FDD radio transceiver; simplified relay mode, the uplink random access unit of UL BS (random access) time slot (referred to as a contention slot or Contention slot), as an initial Ranging contention timeslot and bandwidth request contention slots, or initial MSS / SS of Access Ranging Ranging.
  • Ranging Subchannel uses the channel coding and modulation method (such as Binary Phase Shift Keying BPSK) with higher reliability than other transmitted data, or adopts Ranging Subchannel.
  • BPSK Binary Phase Shift Keying
  • FDD radio receiver physical layer processing unit wirelessly communicate with the FDD radio transceiver data link layer and the TDD radio transmitter 1 physical layer processing unit or the FDD radio transmitter physical layer processing unit in the RS that can communicate with it ;
  • FDD wireless transceiver data link layer processing unit for data from the physical layer processing unit or user of the FDD wireless receiver After the data of the FDD wireless transceiver data link layer is processed, it is forwarded to the user or the physical layer processing unit of the FDD wireless transmitter.
  • network system communication may have mutual interference in the four cases as shown in Figs. 18(a) - (d).
  • TDD mode there may be co-channel interference between the RS systems in the three cases shown in Figure 29 (e) - (g).
  • TX represents the transmitting module
  • RX represents the receiving module.
  • the TDM technology is used, and the "DL Relay Zone" is added to define the downlink downlink rotor channel of the BS transmitted by the BS to the RS. Combined with the 0FDMA symbol;
  • multiple RSs share the DL Relay Zone through different subchannels and 0FDMA symbol combinations
  • the TDM technology is used to open the "DL Relay Zone" for Define the medium rotor channel and 0FDMA symbol combination of the DL Relay Zone of the RS receiving BS; 'For the case of multiple RSs, multiple RSs share the DL Relay Zone through different subchannels and 0FDMA symbol combinations.
  • Different RS TDD1 is only in the DL Relay Zone.
  • the corresponding subchannel and OFMA symbol combination receives the relay data of the BS, and the other subchannel and the 0FDMA symbol combination do not arrange the reception;
  • the frequency of the physical layer frame structure of the BS is:
  • the uplink subframe UL BS of f2 uses TDM technology, and adds "UL Relay Zone" to define the uplink of the BS transmitted by the RS to the BS. Combination of rotor channel and 0FDMA symbol;
  • TDD2 Physical layer frame structure of the second set of TDD transceivers (abbreviated as TDD2) with frequency f2 of RS
  • TDD2 Physical layer frame structure of the second set of TDD transceivers
  • the downlink subframe DL RS adopts TDM technology, and opens up a "UL Relay Zone" for defining a medium rotor channel and an OFDM symbol combination of the UL Relay Zone of the RS receiving BS;
  • multiple RSs share the UL Relay Zone through different subchannels and 0FDMA symbol combinations.
  • Different RS TDD2 only transmits the transit data of the BS in the corresponding subchannel and OFDM symbol combination in the DL Relay Zone, and other subchannels. The combination with the 0FDMA symbol cannot be scheduled to be sent.
  • the SS/MS BS , SS/MS RS does not arrange any transmit subchannel and 0FDMA symbol combination, and the RS does not arrange any receive subchannel and 0FDMA symbol combination to avoid "SS/MS ® BS".
  • the following settings are also required in the physical layer frame structure of the BS and the RS:
  • DL Relay Broadcast Subchannel is opened for defining the downlink subchannel broadcasted by the BS to the RS. Combined with the 0FDMA symbol, broadcasting DCD, UCD, FPC, CLK-CMP broadcast messages defined by the 802.16 standard;
  • the "DL Relay Broadcast Subchannel" is opened in the DL Relay Zone for defining the receiving downlink downlink broadcast subchannel of the receiving BS.
  • 0FDMA The RS uplink subchannel and the OFDMA symbol combination of the symbol receive the DCD, UCD, FPC, CLK-CMP broadcast message defined by the broadcast 802.16 standard.
  • the reverse ranging subchannel RRS can also be used as SS/MSS initial access ranging Ranging, periodic ranging Ranging, bandwidth request ranging subchannel ;
  • Relay Ranging TX Subchannel is used to define the initial of the RS. Access Ranging, RS Ranging Ranging Bandwidth Request RS Transit Ranging Transmit Subchannel and 0FDMA symbol combination.
  • the time-frequency relationship between the Relay Ranging Subchannel of the BS and the Relay Ranging TX Subchannel of the RS TDD2 must be one-to-one and strictly synchronized.
  • the BS and the different RS share the rest of the downlink subframe through different subchannels and 0FDMA symbol combinations to Avoid interference from "RS to SS/MS BS ", "RS to SS/MS BS “ and "BS to SS/MS RS ".
  • the BS and the different RS share the rest of the uplink subframe through different subchannels and combinations of 0FDMA symbols to avoid "RS" Interference to SS/MS IiS ", "SS/MS BS to RS” and "SS/MS Bi llBS".
  • DL Header in the downlink subframe DL BS whose frequency of the physical layer frame structure of the BS is ,, which is the start of the downlink subframe, and is used to define the f channel and the user synchronization information.
  • the synchronization information and the indication information include preamble, FCH, DL-MAP, UL-MAP, SS/MS BS RS and BS in the original 802.1160 FDMA (or S0FDMA) frame, and the BS keeps transmitting and receiving frame synchronization;
  • a "DL Header" is defined in the downlink subframe DL RS of the physical layer frame structure of the TDD1 of the frequency of the RS , which is used as the start of the downlink subframe. Defining subchannel and OFDM symbol combination for transmitting user synchronization information and subchannel and OFDM symbol combination for transmitting indication information to indicate RS TDD1 and TDD2 physical layer frame structure downlink sub-frame and sub-channel of uplink subframe and combination of 0FDMA symbols Location and usage method prof ile.
  • the synchronization information and the indication information include preatnble, FCH, DL-MAP in the original 802.16 0FDMA (or S0FDMA) frame,
  • the DL Header of RS TDD1 lags behind the DL Header of the BS in time; during the DL Header of RS TDD1, the downlink subframe DL BS of the BS cannot arrange any transmit subchannel and 0FDMA symbols to avoid "BS to SS/MS RS " interference.
  • the downlink subframe DL RS of the physical layer frame structure of other RS TDD1 during the DL Header of RS TDD1 It is not possible to arrange any transmit subchannel and OFDMA symbols to avoid "RS to SS/MS RS "interference; in special cases, if the DL Headers of different RS TDD1 overlap in time, they must be completely overlapped, and strictly synchronized, and The content must be the same to avoid "RS to SS/MS RS " interference.
  • DL Header RX (downlink subframe header reception) is developed in the physical layer frame structure uplink subframe UL RS of the TDD1 frequency of the RS , which is used to define the subchannel and 0FDMA symbol combination of the DL Header of the receiving BS;
  • the two sets of TDD transceivers acquire frequency and/or symbol coherence according to the preamble and BS received by the DL Header RX.
  • the time-frequency relationship between the DL Header of the BS and the DL Header RX of the RS TDD1 must be - corresponding, strictly synchronized.
  • Ranging Subchannel in the uplink subframe UL BS of the physical layer frame structure of the BS with the frequency f2, and define the initial access ranging Ranging and periodic measurement for the SS/MSS BS . a combination of Ranging, bandwidth requesting BS ranging receiving subchannel and 0FDMA symbol;
  • the downlink subframe of the RS shall not overlap with the uplink subframe of other RSs, and the uplink subframe of the RS shall not overlap with the downlink subframe of other RSs, avoiding "SS/MS R ljRS" and "SS/MS R ljSS/MS Interference with IiS .
  • At least the TTG duration is reserved between the downlink subframes DL RS of the RS and the uplink subframes of the RS; at least the RTG duration is reserved between the uplink subframe UL KS of the RS and the downlink subframe D of the RS.
  • the subchannel and OFDMA symbol combinations or zones defined above are not necessarily required to exist in every frame.
  • FIG. 30 and FIG. 31 a specific implementation of the physical layer frame structure of the corresponding BS and RS is shown in FIG. 30 and FIG. 31, wherein FIG. 30 is a physical layer frame of the BS and the RS in the advanced relay mode.
  • FIG. 31 is a schematic diagram of the physical layer frame structure of the BS and the RS in the simplified transit mode.
  • the transmission and reception frequencies of RS and BS are based on the leftmost frequency of the frame in the figure.
  • the "NULL" or blank portion of the figure indicates that no part is received or sent.
  • the positions of the BS downlink subframe DL BS and the RS TDD1 downlink subframe DL RS indicating Preamble, UL-MAP, DL-MAP, and FCH are DL Header; the RS TDD1 uplink subframe UL RS is marked with sync with BS ( The location with the BS synchronization) and Get MAP info (the MAP information) is DL Header RX.
  • BS's DL Relay Zone (BPDL Relay broadcast, DL Relay, section #27) is arranged after the DL Header of the BS downlink subframe DL ns , the UL Relay Zone of the BS (ie UL Relay earned, #2... and RRS TX part) ) Arranged at the beginning of the BS downlink subframe DL BS .
  • the SS/MS BS and the SS/MS RS do not arrange any combination of the transmission subchannel and the OFDMA symbol, and the RS does not arrange any combination of the reception subchannel and the 0FDMA symbol; during the period corresponding to the BS DL Relay Zone, The RS does not arrange any transmit subchannel and OFDMA symbol combinations.
  • a PHY burst is assigned a set of adjacent subchannels and a set of OFDMA symbols, and the BS and the different RS share the remainder of the downlink subframe through different subchannels and combinations of 0FDMA symbols.
  • the process of the relay communication process provided by the present invention will be described below in conjunction with a specific communication process application example.
  • the process of the relay communication process includes a downlink transfer process and an uplink transfer process, which will be separately described below.
  • the downlink transit process in the corresponding relay communication processing flow in the present invention includes two phases, the first phase is the processing from the BS to the RS, and the second phase is the processing from the RS to the user terminal:
  • the advanced transfer mode and the simplified transfer mode are handled in the same way, including:
  • the BS sends a preamble preamble to the first symbol in the DL Header of the downlink subframe D of the frequency fl;
  • RS#1 receives the preamble preamble in the DL Header of the BS downlink subframe D through the DL Header RX with the RS TDD1 frequency fl, and synchronizes with the BS;
  • the BS sends the FCH, DL-MAP, UL-MAP after the preamble of the DL Header of the downlink subframe DL BS of the frequency: l;
  • RS#1 receives the FCH, DL-MAP, UL-MAP of the DL Header of the downlink subframe DL BS through the DL Header RX of the RS TDD1 frequency fl, and obtains the subchannel and OFDMA symbol position of each downlink burst and uplink burst.
  • Use profile information
  • the BS sends a broadcast message message by using the DL Relay broadcast of the DL Relay Zone of the downlink subframe DL BS of frequency f 1;
  • BS is at the frequency ⁇ Relay zone DL Relay RS#1 sends downlink relay communication data traffic data to RS#1;
  • RS#1 receives the downlink relay communication data traffic data of the DL Relay Zone of the DL Relay Zone of the BS downlink subframe DL BS through the RS TDD1 frequency DL Relay Zone,
  • RS#1 TDD1 sends a preamble preamble in a first symbol symbol in a DL Header whose downlink subframe DL BS frequency is fl;
  • the MS/SS receives the preamble preamble in the DL Header of the RS11 TDD1 downlink subframe DL BS , and synchronizes with RS#1; 3.
  • the RS TDD1 is after the preamble of the DL Header whose downlink subframe DL RS frequency is fl Send FCH, DL-MAP, UL-MAP
  • FCH FCH, DL-MAP, UL-MAP of RS #1 may have been sent by the BS to RS #1 in step 6 of the first phase;
  • MS/SS receives RS#1 TDD1 downlink subframe DL RS DL Header FCH, DL-MAP, UL-MAP, obtains RS#1 TDDl and TDD2 downlink and uplink sub-burst subchannel and 0FDMA symbol position and use Method information
  • the RSiil TDD1 transmits the downlink relay communication data to the MS/SS in the time-frequency interval except the DL Header, and the relay communication data is in step 6 of the first phase. Has been sent by the BS to RS #1;
  • the MS/SS receives the downlink transit communication data traffic data in the RS#1 TDD1 downlink subframe 0 ⁇ from the corresponding time-frequency interval.
  • the processing of this phase is:
  • the MS/SS receives the preamble preamble in the DL Header of the BS downlink subframe DL BS , and synchronizes with the BS;
  • the MS/SS receives the FCH, DL-MAP, and UL-MAP of the BS downlink subframe DL ⁇ JDL Header, obtains the subchannels of the BS and RS#rF lines and the uplink bursts, and the 0FDMA symbol position and usage method (profile) information; 3.
  • the downlink subframe DL KS in the time-frequency interval except the DL Header, the downlink transmission communication data is sent to the MS/SS at the frequency fl, and the relay communication data is in the first stage. Step 6 has been sent by the BS to RS #1;
  • the MS/SS receives the downlink transit communication data in the RS#1 TDD1 downlink subframe 0 ⁇ 5 from the corresponding time-frequency interval.
  • the uplink relay process in the corresponding relay communication processing flow in the present invention includes two phases, the first phase is the processing from the user terminal to the RS, and the second phase is the processing from the RS to the BS:
  • MS/SS MS/SS receives RS#1 TDD1 downlink subframe DL RS frequency fl "DR Header" FCH, DL-MAP, UL-MAP, 10 Get RS TDDl and TDD2 downlink and uplink subbur sub Channel and OFDMA symbol location and usage profile information;
  • the MS/SS sends the uplink communication data traffic data to the RSttl at the frequency f2 in the RS TDD2 uplink subframe UL RS ;
  • RS TDD2 receives the uplink communication data traffic data in the MS/SS uplink subframe UL BS from the corresponding time-frequency interval at the frequency f 2 .
  • the processing for this phase is:
  • the MS/SS MS/SS receives the downlink sub-frame DL D J3 ⁇ 4 rate of the DL Header's FCH, DL-MAP, UL-MAP, and obtains the BS, 15 RS#1 TDD1 and TDD2 downlink and uplink bur st Subchannel and OFDMA symbol position and usage profile information;
  • the MS/SS sends the uplink communication data traffic data to the RS#1 in the RS TDD2 uplink subframe UL RS at the frequency f 2;
  • the RSW TDD2 receives the uplink communication data traffic data in the MS/SS uplink subframe UL BS from the corresponding time-frequency interval at the frequency f2.
  • RSttl TDD1 receives the FCH, DL-MAP, UL-MAP of the DL Header with the frequency fl in the BS downlink subframe 01 ⁇ , obtains the subchannel of the BS downlink and uplink bursts, and the OFDMA symbol position and usage method (profile) Information
  • the RS#1 TDD2 sends the uplink relay communication data to the BS in the UL Relay RSttl of the downlink subframe DL UL Relay Zone at the frequency f2, and the relay communication data is sent by the BS in the second step of the first phase.
  • the BS receives the uplink transit 25 communication data traffic data in S5 in the UL Relay RS#1 of the UL Relay Zone of the uplink subframe U of frequency ⁇ 2.
  • the fifth application scenario is as follows:
  • the RS includes two OFDMA-FDD transceivers corresponding to the BS and the MS, and the RS transmits information through the combination of the middle rotor channel and the 0FDMA symbol.
  • the advanced relay communication mode of the RS and the BS and the MS/SS of the present invention is as shown in FIG. 32, and the TDM-OFDMA-FDD mode is used for communication between the RS and the BS and the MS/SS, and the frequency f2, BS and RS are used for the downlink of the BS and the RS.
  • the uplink frequency 1 is used; the MS/SS performs the 30-line transit access to the BS through the RS, and the RS acts as an MS/SS access BS.
  • the RS needs to have two sets of FDD wireless transceivers, that is, the FDD transceiver 1 and the FDD transceiver 2 in FIG. 32, specifically: the first set of transmitters TX1 operates at frequency f1, and the receiver RX1 works. At frequency f2; the second set of transmitters TX2 operates at frequency f2 and receiver RX2 operates at frequency f1.
  • the DL BS is a downlink subframe of a physical layer frame of the BS
  • the BS is to the SS/MS BS or the RS
  • the UL BS is an uplink subframe of the physical layer frame of the BS , by the SS/MS BS.
  • RS to BS, SS/MS BS , RS's second set of wireless transceivers and BS keeps transmitting and receiving frames
  • DL RS is a downlink subframe of a physical layer frame of the RS, an uplink subframe of the physical layer frame of the RS from the BS to the SS/MS RS or the RS, and the RS /MS RS or RS to the BS, SS/
  • the first set of wireless transceivers of MS RS and RS maintains frame synchronization.
  • the simplified relay communication mode of the RS and BS, MS/SS of the present invention is as shown in FIG.
  • the corresponding RS also needs two sets of FDD wireless transceivers: the first set of transmitters TX1 operates at frequency l, the receiver RX1 operates at frequency f2; the second set of transmitters TX2 operates at frequency f2, and receiver RX2 operates at frequency l .
  • the DL BS is a downlink frame of a physical layer frame of the BS, and the BS is to the SS/MS BS or the RS, and the UL BS is an uplink frame of the physical layer frame of the BS , by the SS/MS BS or the RS.
  • the UL RS is the uplink frame of the physical layer frame of the RS, from the SS/MS RS or RS to the BS.
  • the downlink broadcast burst (Broadcast Burst) of the DL BS is directly sent by the BS to the MS/SS, and does not pass through the RS; the initial access ranging of the MS/SS Ranging, periodic ranging Ranging, bandwidth request through the UL BS ranging sub-channel Ranging Sub- hannel, directly sent by the MS/SS to the BS, not through the RS; for other downlink bursts of the DL BS , such as data packets or Messages other than DL-MAP and UL-MAP cannot be directly sent by the BS to the MS/SS, and must be relayed through the RS; other bursts of the uplink of the UL BS , such as the initial access ranging Ranging except the MS/SS, In addition to the periodic ranging Ranging and bandwidth request messages, it cannot be directly sent to the BS by the MS/SS, and must be relayed through the RS;
  • the present invention provides a wireless relay communication system including BS, RS and SS/MS, which respectively adopts two communication modes: a ⁇ -level transit mode and a simplified transit mode, as shown in FIG. 34:
  • BS includes:
  • the wired transmission processing unit is capable of establishing communication with a higher-level device (such as a base station controller) or with a group of base station devices, and performing information interaction with the upper-level device or each base station device;
  • a higher-level device such as a base station controller
  • OFDMA- FDD wireless transceiver used for wireless communication with the RS or SS/MS in the OFDMA-FDD mode.
  • the OFDMA-FDD radio transmitter physical layer processing unit the OFDMA-FDD radio receiver physical layer processing unit, and the OFDMA radio transceiver data link layer processing unit.
  • OFDMA-FDD radio transmitter physical layer processing unit (frequency is l): respectively in the physical layer processing unit or SS/MS of the OFDMA radio transceiver data link layer and the OFDMA-FDD radio receiver 2 in the RS with which it can communicate
  • the OFDMA-FDD radio receiver physical layer processing unit performs wireless communication; for simplifying the transfer mode, the unit broadcasts the downlink sub-frame header of the DL BS (eg
  • FCH, DL-AP, UL-MAP use channel coding and modulation methods (such as binary phase shift keying BPSK) that are more reliable than other transmitted data, or use higher transmit power than other transmitted data.
  • BPSK binary phase shift keying
  • OFDMA-FDD radio receiver physical layer processing unit (frequency f2): respectively in the physical layer processing unit or SS/MS of the OFDMA radio transceiver data link layer and the OFDMA-FDD radio transmitter 2 in the RS with which it can communicate
  • the OFDMA-FDD wireless transmitter physical layer processing unit performs wireless communication
  • OFDMA wireless transceiver data link layer processing unit data from the physical layer processing unit or the wired transmission processing unit of the OFDMA-FDD wireless receiver is processed by the data link layer of the OFDMA wireless transceiver, and then forwarded to the wired transmission processing.
  • Unit or OFDMA-FDD wireless transmitter physical layer processing unit OFDMA-FDD wireless transmitter physical layer processing unit.
  • the RS in the figure includes: OFDMA-FDD wireless transceivers 1 and 2: for communicating with the BS or SS/MS in the OFDMA-FDD mode, the physical layer processing unit of the OFDMA-FDD radio transmitters 1 and 2, the OFDMA-FDD radio receiver 1 And a physical layer processing unit of 2 and an OFDMA wireless transceiver data link layer processing unit.
  • OFDMA-FDD radio transmitter 1 physical layer processing unit (frequency is l), that is, the first OFDMA-FDD radio transmitter physical layer processing unit: respectively, with the OFDMA radio transceiver data link layer and the SS/MS that can communicate with it
  • the OFDMA-FDD wireless receiver physical layer processing unit performs wireless communication
  • OFDMA-FDD radio receiver 1 physical layer processing unit (frequency f2), that is, the first OFDMA-FDD radio receiver physical layer processing unit: respectively, with the OFDMA radio transceiver data link layer and the SS/MS that can communicate with it
  • the OFDMA-FDD wireless transmitter physical layer processing unit performs wireless communication
  • OFDMA radio transceiver data link layer processing unit Data from the OFDMA-FDD radio receiver 1 and/or 2 physical layer processing unit is processed by the data link layer of the OFDMA radio transceiver, and then forwarded to OFDMA-FDD Wireless transmitter 1 and / or 2 physical layer processing unit.
  • the OFDMA-FDD radio transmitter 1 and the OFDMA-FDD radio receiver 1 are first OFDMA-FDD radio transceivers, and the OFDMA-FDD radio transmitter 2 and the OFDMA-FDD radio receiver 2 are Two OFDMA-FDD wireless transceivers. '
  • the SS/MS in the figure includes:
  • OFDMA-FDD wireless transceiver used for wireless communication with the RS or BS in the OFDMA-FDD mode, by the OFDMA-FDD wireless transmitter physical layer processing unit, OFDMA-FDD wireless receiver physical layer processing unit and OFDMA wireless transceiver data
  • the link layer processing unit is composed.
  • OFDMA-FDD radio transmitter physical layer processing unit physical layer processing unit or BS OFDMA-FDD radio receiver physical layer processing unit or BS OFDMA-FDD radio receiver in the data link layer of the OFDMA radio transceiver and the RSA in the RSA communication system
  • the unit performs wireless communication; for simplifying the transfer mode, the unit has an uplink random access time slot (or a contention slot) of the UL BS , such as an initial Ranging contention time slot and a bandwidth request contention time slot, Or MS/SS initial access ranging Ranging, periodic ranging Ranging, bandwidth request through the UL BS ranging subchannel Ranging Subchannel, using more reliable channel coding and modulation than other transmitted data (such as binary phase Shift keying BPSK), or use higher transmission power than other transmitted data, directly sent to the BS by the MS/SS, not through the RS;
  • an uplink random access time slot or a contention slot
  • the unit has an uplink random access time slot (or a contention slot) of the UL BS
  • OFDMA-FDD radio receiver physical layer processing unit physical layer processing unit of OFDMA-FDD radio transmitter 1 or OFDMA-FDD radio transmitter in the RS with the OFDMA radio transceiver data link layer and the RSA radio transceiver
  • the layer processing unit performs wireless communication; OFDMA wireless transceiver data link layer processing unit: data from the physical layer processing unit or user of the OFDMA-FDD wireless receiver, processed by the data link layer of the OFDMA wireless transceiver, forwarded to the user or OFDMA-FDD wireless Transmitter physical layer processing unit.
  • network system communication may have phase-interference of four cases as shown in Figure 18 (a) - (d).
  • TX represents a transmitting module
  • RX represents a receiving module.
  • Adopt TDM Time Division Multiplexing
  • the Relay Zone is used to define a downlink downlink carrier channel and an OFDMA symbol combination transmitted by the BS to the RS.
  • multiple RSs are shared by different subchannels and OFDMA symbols.
  • the TDM technology is used to open the DL Relay Zone, which is used to define the middle rotor of the DL Relay Zone of the RS receiving BS.
  • Channel and OFDMA symbol combination for multiple RS cases, multiple RSs share DL Relay Zone through different subchannels and OFDMA symbol combinations, and different RS RX2 only receive BS in corresponding subchannel and OFDMA symbol combination in DL Relay Zone Transit data, no reception is scheduled in other subchannel and OFDMA symbol combinations;
  • the TDM technology is used, and the UL Relay Zone is added to define the uplink uplink rotor channel of the BS transmitted from the RS to the BS.
  • OFDMA symbol combination
  • multiple RSs share the UL Relay Zone through different subchannels and OFDMA symbol combinations
  • the TDM technology is adopted in the physical layer frame structure of the second set of wireless transmitters TX2 with the frequency of the RS, and the UL Relay Zone is opened to define the middle rotor channel of the UL Relay Zone of the RS receiving BS.
  • the UL Relay Zone is opened to define the middle rotor channel of the UL Relay Zone of the RS receiving BS.
  • OFDMA symbols for multiple RSs, multiple RSs share the UL Relay Zone through different subchannels and OFDMA symbol combinations, and different RS TX2 only transmits the transit of the BS in the corresponding subchannel and OFDMA symbol combination in the UL Relay Zone. Data, other subchannel and OFDM A symbol combinations cannot be scheduled for transmission.
  • the SS/MS BS , SS/MS RS does not arrange any transmit subchannel and OFDMA symbol combination, and the RS does not arrange any receive subchannel and OFDMA symbol combination to avoid "SS/MS BS to BS". ", "SS/MS RS BS"interference;
  • the RS does not arrange any transmission subchannel and OFDMA symbol combination to avoid "RS to RS" self interference.
  • a DL Relay Broa dcast Subchannel is opened in the DL Relay Zone of the downlink subframe DL BS of the physical layer frame structure of the BS , which is used to define a downlink subchannel broadcasted by the BS to the RS.
  • the broadcast information includes the DCD (downlink channel descriptor) defined by the 802.16 standard, UCD (upstream channel descriptor), FPC (fast power control), CLK-CMP (clock comparison) broadcast message;
  • a DL Relay Broadcast Subchannel is opened in the DL Relay Zone of the physical layer frame structure of the second set of radio receivers RX2 of the frequency of the RS, which is used to define the receiving downlink downlink broadcast subslot of the receiving BS.
  • the RS uplink subchannel and the OFDMA symbol are combined to receive the DCD, UCD, FPC, CLK_CMP broadcast message defined by the broadcast 802.16 standard.
  • the following settings are also made in the physical layer frame structure of the BS and the RS:
  • the frequency of the physical layer frame structure of BS uplink frame UL BS f2 right foot is defined Relay Ranging Subchannel (relay ranging subchannel, abbreviated as the RRS), the definition for the initial access ranging RS Ranging, periodic ranging Ranging, bandwidth requesting BS reverse ranging receiving subchannel and OFDMA symbol combination; the relay ranging subchannel RRS can also be used as the initial access ranging Ranging of the SS/MSS BS , periodic ranging Ranging , bandwidth request ranging subchannel;
  • RRS Relay Ranging subchannel
  • a Relay Ranging TX Subchannel (abbreviated as RRS TX) is established in the DL Relay Zone of the physical layer frame structure of the second set of wireless transmitters TX2 of the frequency of the RS, which is used to define the initiality of the RS.
  • RRS TX Relay Ranging TX Subchannel
  • the time-frequency relationship between the Relay Ranging Subchannel of the above BS and the Relay Ranging TX Subchannel of RS TX2 must be one-to-one correspondence and strictly synchronized.
  • the BS's DL Relay Zone and the RX TX1 are in the BS's DL Header, the BS's DL Relay Zone, the BS and the different The RS shares the rest of the downlink subframe through different subchannels and OFDMA symbol combinations to avoid "RS to SS/MS BS " and "BS to SS/MS RS " interference.
  • the BS and the different RSs share the rest of the uplink subframe through different subchannels and OFDMA symbol combinations to avoid "SS/MS BS to RS" and "SS/MS RS to BS” interference. .
  • the following settings are also made in the physical layer frame structure of the BS and the RS:
  • a DL Header (downlink subframe header) in a downlink subframe DL BS of a physical layer frame structure of the BS , which is a subchannel and an OFDMA symbol for transmitting user synchronization information, which is a start of a downlink subframe.
  • the synchronization information and the indication information specifically include: preamble, F CH, DL-MAP, and UL-MAP information in the original 802.16 OFDMA (or SOFDMA) frame, so that the SS/MS BS , the RS, and the BS maintain the transmission and reception frame synchronization;
  • the first set of wireless transmitters with a frequency of RS is the downlink subframe D of the physical layer frame structure of TX1.
  • a DL Header is defined in the L RS , and is set at a start time of the downlink subframe, and is used to define a subchannel and an OFDMA symbol combination for transmitting user synchronization information, and a subchannel and an OFDMA symbol combination for transmitting indication information, to a location and a usage profile of the first sub-channel and the OFDMA symbol combination of the first set of radio transmitter physical layer frame structure downlink subframes and uplink subframes of the RS;
  • the synchronization information and indication information also includes the Preamble (or SOFDMA) frame original 802. ⁇ 6 OFDMA, FC H, DL- MAP and UL-MAP information, so that SS / MS RS and RS transceiver holding frame synchronization.
  • the DL Header of RS TX1 lags behind the DL Header of the BS in time.
  • the downlink subframe DL BS of the BS cannot arrange any transmission subchannel and OFDMA symbol. Combine to avoid "BS to SS/MS RS "interference;
  • a downlink sub-frame DL RS of RS TX1 other physical layer frame structure does not arrange any combination of OFDMA symbols and transmitting subchannels, to prevent "RS to SS / MS RS" in interference.
  • the following settings are also made in the physical layer frame structure of the BS and the RS:
  • a DL Header RX (downlink subframe header reception) is opened in a physical layer frame structure of the second set of radio receivers RX2 of the frequency of the RS, for defining a subchannel and an OFDMA symbol combination of the DL Header of the receiving BS;
  • the two sets of FDD transceivers of the RS acquire the frequency and/or symbol synchronization according to the preamble and BS received by the DL Header RX Slot.
  • the time-frequency relationship between the DL Header of the BS and the DL Header RX of the RS RX2 must be - corresponding, strictly synchronized.
  • the following settings are also made in the physical layer frame structure of the BS and the RS:
  • Ranging Subchannel is defined in the uplink subframe UL BS of the physical layer frame structure of the BS with the frequency f2, and the initial access ranging Ranging and periodic ranging Ranging are defined for the SS/MSS BS .
  • Ranging Subchannel is defined in the uplink subframe UL RS of the physical layer frame structure of the first radio receiver RX1 of the RS frequency f2, defined for SS/MSS RS initial access ranging Ranging, periodic ranging Ranging, bandwidth requesting RS ranging receiving subchannel and OFDMA symbol combination.
  • the present invention further provides a specific implementation manner of a physical layer frame structure of a BS and an RS, as shown in FIG. 35 and FIG. 36, wherein FIG. 35 is a BS in an advanced relay mode.
  • FIG. 35 is a BS in an advanced relay mode.
  • FIG. 36 is a schematic diagram of the physical layer frame structure of the BS and the RS in the simplified transit mode.
  • the transmission and reception frequencies of RS and BS are based on the leftmost frequency of the frame in the figure.
  • the "NULL" or blank part in the figure is the part that does not arrange any reception or transmission.
  • the Preamble UL-MAP, DL-MAP, and FCH regions in the BS downlink subframe DL BS and the RS TX1 downlink subframe DL RS are DL Header; the RS vertical region in the RS RX2 uplink subframe 1) 1_ ⁇ For the DL Header RX.
  • the DL Relay Zone of the BS is arranged after the DL Header of the BS downlink subframe DL BS , which is the DL Relay broadcast, DL Relay R#1, #2... part of the figure; the UL Relay of the BS The Zone is arranged at the beginning of the BS downlink subframe DL BS , which is the UL Relay R#1, #2... and RRS TX sections.
  • the SS/MS BS and the SS/MS RS do not arrange any combination of the transmission subchannel and the OFDMA symbol, and the RS does not arrange any combination of the reception subchannel and the OFDMA symbol; during the period corresponding to the BS DL Relay Zone, The RS does not arrange any transmit subchannel and OFDMA symbol combinations.
  • a PHY burst is assigned a set of adjacent subchannels and a set of OFDMA symbols, and the BS and the different RS share the remainder of the downlink subframe through different subchannel and OFDMA symbol combinations.
  • the present invention also provides a processing flow of the OFDMA relay communication of the physical layer frame structure of the RS of the BS based on the foregoing setting, and the corresponding processing flow includes a downlink transit communication processing flow from the BS to the user terminal, and the user terminal to the BS Uplink transit communication processing flow.
  • the downlink process includes two processing phases.
  • the first phase is the communication process from the BS to the RS, and the second phase is the processing process from the RS to the user terminal. :
  • the BS sends a preamble preamble to the first symbol symbol in the DL Header of the downlink subframe DL BS of frequency l;
  • RS#1 receives the preamble preamble in the DL Header of the BS downlink subframe DL BS through the DL Header RX with the RS RX2 frequency f1, and the BS obtains synchronization;
  • the BS sends the FCH, the DL-MAP, and the U L-MAP information after the preamble of the DL Header of the downlink subframe DL BS of the frequency l;
  • RS#1 receives the FCH, D of the DL Header of the downlink subframe DL BS through the RS RX2 DL Header RX with frequency l
  • L-MAP, and UL-MAP information obtaining sub-channel and OFDMA symbol position and usage method (p rofile) information of each downlink of the BS downlink and uplink;
  • the BS sends a broadcast message to the DL Relay broadcast of the DL Relay Zone of the downlink subframe DL BS of the frequency fl;
  • the BS sends the downlink relay communication data to the RS#1 in the DL Relay RS#1 of the DL Relay Zone of the downlink subframe DL BS of the frequency fl;
  • RS#1 receives the broadcast message message in the DL Relay broadcast of the DL Relay Zone of the BS downlink subframe DL BS through the DL RB of the RS RX2 frequency fl, which may include a message requiring the relay broadcast of the RS#1;
  • RS#1 receives the downlink relay communication data traffic data of the DL Relay Zone of the DL Relay Zone of the BS downlink subframe DL BS through the DL Relay Zone with the RS RX2 frequency of 1.
  • the processing of this phase includes:
  • RS#1 TX1 sends a preamble prea mble in a first symbol symbol in a DL Header with a downlink subframe DL R ⁇ ii of 1;
  • the MS/SS receives the preamble preamble in the DL Header of the RS11 TX1 downlink subframe DL RS , and synchronizes with RS#1;
  • RS#1 TX1 sends FCH, DL-MAP, UL-MAP after the preamble of the DL Header with the downlink subframe DL RS frequency of 1, wherein FCH, DL-MAP, UL-MAP of RS #1 can be In step 6 of the first phase, it is sent by the BS to RS #1;
  • the MS/SS receives the FCH, DL-MAP, and UL-MAP information of the DL Header of the RS11 TX1 downlink subframe DL RS , and obtains the subchannels of the downlink and uplink bursts of the first set of radio transmitters of RS#1 and OFDMA symbol location and usage information (profile) information; 5, RS#1 TX1 in the downlink subframe DL RS , in the time-frequency interval except the DL Header ⁇ DL Relay Zone, the downlink relay communication data traffic data is sent to the MS/SS at the frequency f 1 , the relay communication data In step 6 of the first phase, it has been sent by the BS to RS #1;
  • the MS/SS receives the downlink relay communication data traffic data in the RS#1 TX1 downlink subframe DL RS from the corresponding time-frequency interval.
  • the processing of this stage specifically includes:
  • the MS/SS receives the preamble preamble in the DL Header of the BS downlink subframe DL BS , so as to obtain synchronization with the BS;
  • the MS/SS receives the FCH, DL-MAP, and UL-MAP information of the DL Header of the BS downlink subframe DL BS , and obtains the subchannel and OFDMA symbol positions and usage methods of the downlink and uplink bursts of the BS and the RS#1 ( Profile)
  • the TX1 transmits the downlink relay communication data to the MS/SS at the frequency f1, and the relay communication data is
  • the first step of step 6 has been sent by the BS to RS #1;
  • the MS/SS receives the downlink transit communication data traffic data in the RS#1 TX1 downlink subframe 01_ ⁇ from the corresponding time-frequency interval.
  • the flow of the uplink relay Uplink relay communication processing is further described below.
  • the uplink process also includes two processing stages, the first phase is a communication process from the user terminal to the RS, and the second phase is a process from the RS to the BS, specifically For:
  • the corresponding process includes:
  • MS/SS MS/SS receives RS#1 TX1 downlink subframe DL RS frequency is DL Header's FCH, DL-MAP, UL-MAP, obtains RS#1 first set of wireless transmitter downlink and uplink bursts Subchannel and OFDMA symbol location and usage information;
  • the MS/SS sends the uplink communication data traffic data to the RS#1 at the frequency f2 in the time-frequency interval except the corresponding period of the BS UL Relay Zone;
  • RS#1 RX1 receives the uplink communication data traffic data in the MS/SS uplink subframe (UL RS ) from the corresponding time-frequency interval at frequency f2.
  • the corresponding process includes:
  • MS/SS MS/SS receives the downlink sub-frame DL BS frequency DL Header FCH, DL-MAP, UL-MAP, obtains BS and RS#1 first set of wireless transmitters downlink and uplink bursts Subchannel and OFDMA symbol position and usage method (p rofile) information;
  • the MS/SS sends the uplink communication data traffic data to the RS#1 at the frequency f2 in the time-frequency interval except the corresponding period of the BS UL Relay Zone;
  • RS#1 RX1 receives the uplink communication data traffic data in the MS/SS uplink subframe UL RS from the time-frequency interval at the frequency f2.
  • the advanced transfer mode and the simplified transfer mode use the same processing method
  • RS#1 RX2 receives the FCH, DL-MAP, and UL-MAP of the DL Header with a frequency of 1 in the BS downlink subframe DL BS , and obtains the subchannel and OFDMA symbol position and usage method of each downlink and uplink of the BS.
  • RS#1 TX2 is sent in the uplink in the UL Relay RS#1 of the UL Relay Zone of the RS downlink subframe DL RS at the frequency f2. Transmitting the communication data to the BS, and the relay communication data is sent by the BS to the RS #1 in the second step of the first phase;
  • the BS receives the uplink relay communication data traffic data in S5 in the UL Relay RS#1 of the UL Relay Zone of the uplink subframe UL BS of the frequency f2.
  • the sixth application scenario is as follows:
  • the RS includes a single FDD wireless transceiver, and the RS transmits information through the relay time slot.
  • the present invention provides a wireless relay communication system and method.
  • the communication system model of RS and BS, MS/SS in the wireless relay communication system is shown in FIG. 2, FIG. 16, and FIG. 17, and FIG. 16 is a downlink single RS.
  • FIG. 17 is the case of the uplink single RS
  • FIG. 2 is the case of the multiple RS.
  • communication between RS and BS, MS/SS is performed by FDD/TDM (Time Division Multiplexing) / TDMA (Time Division Multiple Access).
  • the BS downlink and the RS uplink use the frequency ⁇
  • the BS uplink and the RS downlink use the frequency f2
  • the RS acts as an MS/SS access BS
  • the MS/SS performs wireless relay access to the BS through the RS.
  • network system communication has mutual interference in the four cases shown in Figure 37 (a) - (d).
  • TX represents a transmitting module
  • RX represents a receiving module.
  • the advanced relay communication mode of RS and BS, MS/SS provided by the present invention is as shown in FIG. 38, and is adopted between RS and BS, MS/SS.
  • BS downlink and RS uplink frequency ⁇ BS uplink and RS downlink use frequency f2;
  • RS acts as an MS/SS access BS, and MS/SS performs wireless relay access to BS through RS.
  • D is a downlink subframe of a physical layer frame of the BS, and is a BS to SS/MS liS or RS
  • the UL BS is an uplink of a physical layer frame of the BS. Subframe, from SS/MS BS or RS to BS,
  • the downlink subframe of the physical layer frame, from the BS to the SS/MS B ⁇ RS, U is the uplink subframe of the physical layer frame of the RS, and the SS/MS ⁇ J3 ⁇ 4S to the BS, SS/MS ⁇ ]RS keeps the transmission and reception frame synchronization .
  • the simplified relay communication mode of RS and BS, MS/SS provided by the present invention is as shown in FIG. BS downlink and RS uplink frequency, BS uplink and RS downlink use frequency f2, RS only needs to have one set of FDD wireless transceiver.
  • the DL BS is a downlink subframe of a physical layer frame of the BS, from the BS to the SS/MSBS or the RS, and the U is an uplink subframe of the physical layer frame of the BS , by the SS/MS BS or the RS to the BS; SS/MS BI ⁇ SS /MS BS and BS keep transmitting and receiving frame synchronization.
  • the downlink subframe of the physical layer frame of the DL Ri ⁇ RS, the uplink subframe of the physical layer frame of the RS by the BS to the SS/MS ⁇ RS, and the UL KS is the SS/MS BS or RS to BS.
  • the Broadcast Burst (downlink broadcast burst) of the DL BS is directly sent by the BS to the MS/SS, not through the RS; the uplink random access of the UL BS (Random) Access) time slot (referred to as a contention slot or Contention slot), as an initial Ranging contention timeslot and bandwidth request contention slots, the BS directly to MS / SS, without transit via the RS; for the DL BS of other downlink burst
  • a data message or a message message other than DL-MAP or UL-MAP cannot be directly sent by the BS to the MS/SS, and must be relayed through the RS; other uplink time slots of the UL BS , such as the initial Ranging contention time slot.
  • the time slot outside the time slot for competing with the bandwidth request cannot be directly sent by the MS/SS BS to the BS, and must be 'transferred' through the RS.
  • the functional framework of the wireless relay communication system provided by the present invention is shown in Fig. 40.
  • the wireless relay communication system includes BS, RS and SS/MS.
  • BS includes:
  • the wired transmission processing unit is capable of establishing communication with a higher-level device (such as a base station controller) or with a group of base station devices, and performing information interaction with the upper-level device or each base station device;
  • a higher-level device such as a base station controller
  • FDD wireless transceiver used for wireless communication with RS or SS/MS in FDD mode, composed of FDD wireless transmitter physical layer processing unit, FDD wireless receiver physical layer processing unit and FDD wireless transceiver data link layer processing unit .
  • the FDD radio transmitter physical layer processing unit (frequency is ⁇ ): wirelessly interacts with the FDD radio transceiver data link layer and the RS that can communicate with it or the radio receiver physical layer processing unit in the SS/MS belonging to the BS.
  • the FDD radio receiver physical layer processing unit (frequency f2): wirelessly communicates with the FDD radio transceiver data link layer and the RS that can communicate with it or the radio transmitter physical layer processing unit in the SS/MS belonging to the BS.
  • the FDD wireless transceiver data link layer processing unit processes the received data from the physical layer processing unit of the FDD wireless receiver as data processing layer of the FDD wireless transceiver, and forwards the data to the wired transmission processing unit.
  • the received data from the wired transmission processing unit is processed as data of the FDD wireless transceiver data link layer, and then forwarded to the FDD wireless receiver physical layer processing unit.
  • RS includes:
  • FDD wireless transceiver used for wireless communication with FDS in the same BS or SS/MS, composed of FDD wireless transmitter physical layer processing unit, FDD wireless receiver physical layer processing unit and FDD wireless transceiver data link layer processing unit .
  • FDD radio transmitter physical layer processing unit (frequency f2): respectively with the FDD radio transceiver data link layer in the RS or the FDD radio receiver physical layer processing unit in the RS and the BS or SS/MS with which it can communicate Wireless receiver physical layer processing unit for wireless communication; '
  • FDD radio receiver physical layer processing unit respectively with the FDD radio transceiver data link layer in the RS or the FDD radio transmitter physical layer processing unit in the RS and the BS or SS/MS with which it can communicate Wireless transmitter physical layer processing unit for wireless communication;
  • FDD wireless transceiver data link layer processing unit The data from the FDD wireless receiver physical layer processing unit is processed by the FDD wireless transceiver data link layer and forwarded to the FDD wireless transmitter physical layer processing unit.
  • SS/MS includes:
  • FDD wireless transceiver used for wireless communication with RS in FDD mode, consisting of FDD wireless transmitter physical layer processing unit, FDD wireless receiver physical layer processing unit and FDD wireless transceiver data link layer processing unit.
  • FDD radio transmitter physical layer processing unit (frequency fl): wirelessly communicates with the FDD radio transceiver data link layer and the RS radio receiver physical layer processing unit with which it can communicate with each other;
  • FDD radio receiver physical layer processing unit (frequency f2): wirelessly communicates with the FDD radio transceiver data link layer and the radio transmitter physical layer processing unit in the RS with which it can communicate;
  • FDD wireless transceiver data link layer processing unit for data from the FDD wireless receiver physical layer processing unit or user
  • the data of the FDD wireless transceiver data link layer is processed, it is forwarded to the user or the FDD wireless transmitter physical layer processing unit.
  • the invention needs to set a reasonable physical layer frame structure of the BS and the RS, so as to ensure that the relay communication process can be reliably implemented, and at the same time, various interferences that may exist in FIG. 7 can be effectively avoided. .
  • the present invention provides three implementation schemes of the physical layer frame structure of the BS and the RS, and the following
  • the DL Relay Zone is set in the D (downlink subframe) of the physical layer frame structure of the BS.
  • the DL Relay Zone is used to define the BS downlink transit data slot transmitted by the BS to the RS.
  • multiple RSs share the DL Relay Zone in a TDM manner.
  • I 15 Set the DL Relay Zone in the UL BS (Uplink Subframe) of the physical layer frame structure of the RX (FDD Radio Receiver) with the RS frequency of f 1 to define the transit data of the DL Relay Zone of the RS receiving BS. Gap.
  • the multiple RSs share the DL Relay Zone in a TDM manner.
  • the UL Relay Zone is set in the DL BS of the physical layer frame structure of the TX (FDD radio transmitter) of the frequency f of the RS, and is used to define the transit data slot of the UL Relay Zone of the RS receiving BS.
  • the multiple RSs share the UL Relay Zone in a TDM manner.
  • the slot and frequency relationship of the BS's DL Relay Zone and the RS's RX DL Relay Zone must be - corresponding.
  • the slot and frequency relationship of the UL Relay Zone of the BS and the UL Relay Zone of the TX of the RS must be - corresponding.
  • the SS/MS BS does not arrange any transmission slots to avoid interference from the SS/MS BS to the BS.
  • 33 3 1! 5 does not arrange any transmission slots to avoid interference of SS/MS RS ljRS.
  • DL RB (DL Relay Broadcast RX Slot) is set in the DL Relay Zone of the ULRS of the physical layer frame structure of the RX of the RS, and is used to define the receiving downlink downlink broadcast slot of the receiving BS.
  • the RS upstream time slot and the DCD, UCD, FPC, CLK-CMP broadcast message defined by the 802.16 standard are received.
  • the DL Interference Slot is defined in the DL BS of the physical layer frame structure of the TX whose frequency is f2, and is used to define the RS downlink data slot of the RS downlink coverage "1 area" and "2 area”. For the case of multiple RSs shown in FIG. 6, multiple RSs share the DL Interference Slot in a TDM manner to avoid RS to SS/MS interference.
  • the UL Interference Slot of the BS cannot overlap with the DL Interference Slot of the TX of the RS to avoid interference of the SS/MS B ljSS/MS RS .
  • the DL Header Slot is a start of a downlink subframe, and is used to define when the user synchronization information is sent.
  • a slot and a time slot for transmitting the indication information to indicate the location and usage profile of each slot of the downlink physical frame and the uplink subframe of the BS physical layer frame structure.
  • the information includes a preamble in the original 802.16 0FDM (or SC) frame,
  • the FCH burst and one or more downlink Burst (including DL-MAP, UL-MAP) immediately following the FCH specified by the DLFP, the SS/MS BS , the RS, and the BS maintain the transmission and reception frame synchronization.
  • a DL Header Slot is defined in a DL RS of a physical layer frame structure of a TX having a frequency of f 2, and the DL Header Slot is a start of a downlink subframe, and is used to define a transmission.
  • the information includes the original 802.16 0FDM (or SC)
  • the DL Header Slot of the TX of the RS lags behind the DL Header Sloto of the BS in time.
  • the DL Header Slot of the TX of the RS cannot overlap with the DL ⁇ DL Header Slot and the DL Interference Slot of the physical layer frame structure of the TX of other RSs in time to avoid RS to Interference from SS/MS BS .
  • the DL Header Slots of different RS TXs are g-stacked in time, they must be completely overlapped, strictly synchronized, and their contents must be the same to avoid interference from "RS to SS/MS BS ".
  • the DL Header RX Slot is set in the physical layer frame structure of the RX whose RS frequency is ,, and is used to define the slot of the DL Header Slot that receives the BS.
  • the time slot relationship between the DL Header Slot of the BS and the DL Header RX Slot of the RX of the RS must be completely overlapping and strictly synchronized.
  • the UL Interference Slot is defined in the U of the physical layer frame structure of the BS with the frequency f2, which is used to define the BS uplink data slot of the "11 area" and "22 area" of the BS uplink coverage.
  • the UL Interference Slot is defined in the UL BS of the physical layer frame structure of the RX whose frequency is ⁇ , and is used to define RS uplink data slots of the RS uplink coverage "33 area" and "22 area". For the case of multiple RSs shown in FIG. 6, multiple RSs share the UL Interference Slot in a TDM manner to avoid interference of SS/MS R; ljRS.
  • the DL Interference Slot of the BS cannot overlap with the UL Interference Slot of the RX of the RS to avoid interference from the SS/MSRS to the SS/MSBS.
  • the UL Contention Slot (uplink contention slot), which include the original initial UL Ranging competition (or SC) frame 802. 16 0FDM Contention Slot of BS UL frequency F2 of the physical layer frame structure of BS The slot and bandwidth request contention slots.
  • the UL Contention Slot is defined in the UL RS of the physical layer frame structure of the RX of the frequency of the RS , and the UL Contention Slot includes the original 802.16 OFDM (or SC). ) When the initial Ranging in the frame competes The slot and bandwidth request contention slots.
  • the UL Contention TX Slot is set in the physical layer frame structure of the TX of the RS with the frequency f2, and is used to define a slot for the UL Contention Slot used by the RS to contend for the BS.
  • the slot and frequency relationship of the UL Contention Slot of the BS and the UL Contention TX Slot of the TX of the TX must be completely overlapping and strictly synchronized.
  • the present invention further provides a specific implementation manner of a physical layer frame structure of a BS and an RS, as shown in FIG. 11 and FIG. 12, wherein FIG. 11 is a mode in a transit communication mode.
  • FIG. 12 is a schematic diagram of the physical layer frame structure of the BS and the RS in the simplified transit mode.
  • the transmission and reception frequencies of RS and BS are based on the frequency at the leftmost end of the frame in the figure.
  • the "black slot indicated by the black arrow" in the downlink subframe DL BS of the BS and the downlink subframe DL RS of the RS is the DL Header Slot
  • the uplink subframe UL BS of the BS and the uplink subframe UL of the RX of the RS is the DL Header Slot
  • the "black time slot indicated by the black arrow" in the BS is the UL Contention Slot
  • the white time slot indicated by the white arrow in the TX of the RS is the UL Contention TX Slot
  • the "TX time slot” in the downlink subframe DL BS of the BS is DL Interference Slot
  • "RX time slot” in the uplink subframe UL BS of the BS 3 ⁇ 4 UL Interference Slot (BS uplink coverage "11 area” and “22 area")
  • TX's TX downlink subframe DL is DL Interference Slot (RS downlink coverage "3 area” and "2 area)
  • the "RX slot” in the uplink subframe ULRS of the RX of the RS is the UL Interference Slot (RS area coverage "33 area” and "22 area”).
  • the DL Relay Zone of the BS is arranged after the DL Header Slot of the downlink subframe DL BS of the BS, and the UL Relay Zone of the BS is arranged after the downlink subframe DL UL Contention Slot of the BS.
  • the SS/MS BS does not arrange any transmission slots;
  • the SS/MS IiS does not arrange any transmission slots.
  • the DL Interference Slot of the BS cannot overlap with the UL Interference Slot of the RX of the RS, and the UL Interference Slot of the BS cannot overlap with the DL Interference Slot of the TX of the RS.
  • multiple RSs share the DL Relay Zone (SPDL RB, DL Relay R#l, #2...) and the UL Relay Zone (ie, UL Relay R#l, #2) in a TDM manner. ...part), DL Interference Slot and UL Interference Sloto
  • the implementation 2 has the following features and implementations 1 different:
  • the DL Header Slot of the TX of the RS lags behind the DL Header Slot of the BS in time, and they cannot overlap each other.
  • the DL Header Slot of the TX of the RS must be located in the UL Non-interference Slot of the uplink subframe UL BS of the physical layer frame structure of the BS in time.
  • the following six features are added to Implementation 2:
  • the DL Non-Interference Slot is added to the downlink subframe D of the physical layer frame structure of the BS, which is used to define the BS downlink data slot of the "1 area" of the BS downlink coverage.
  • the UL Non-interference Slot of the BS and the DL Non-interference Slot of the RS may overlap in a time slot.
  • the DL Non-interference Slot of the BS and the UL Non-Interference Slot of the RX of the RS may overlap each other in a time slot.
  • the present invention further provides a specific implementation manner of a physical layer frame structure of a BS and an RS in an advanced relay communication mode, as shown in FIG.
  • the transmission and reception frequencies are based on the frequency at the leftmost end of the frame in the figure.
  • the "black time slot indicated by the black arrow" in the downlink subframe DL BS of the BS and the downlink subframe D of the TX of the RS is a DL Header Slot
  • the "black time slot indicated by the black arrow” is the UL Contention Slot.
  • the "white time slot indicated by the white arrow" in the TX of the RS is the UL Contention TX Slot
  • the "white time slot indicated by the white arrow" of the RX of the RS is the DL Header RX Slot.
  • the "TX time slot” in the downlink subframe D of the BS is a DL Non-interference Slot
  • the "TX time slot” is a DL Interference Slot (BS downlink coverage "1 area” and “2 area”.
  • the "gift” slot in the uplink subframe UL BS of the BS is the UL Non-Interference Slot
  • the "RX slot” is the UL Interference Slot (BS uplink coverage "11 area” and "22”Area”).
  • the "TX3 time slot” in the downlink subframe DL RS of the TX of the RS is DL Non-Interference Slot
  • the "TX time slot” is the DL Interference Slot (RS downlink coverage "3 zone” And “2 districts”).
  • the "RX3 time slot” in the uplink subframe UL liS of the RS is UL Non- Interference Slot
  • the "RX time slot” is the UL Interference Slot (RS uplink coverage "33 area” and "22 District”).
  • the DL Relay Zone of the BS is arranged after the downlink subframe D DL Header Slot of the BS, and the UL Relay Zone of the BS is arranged after the downlink subframe DL UL Contention Slot of the BS.
  • the SS/MS BS does not arrange any transmission slots; during the period corresponding to the DL Relay Zone of the BS, the SS/MS RS does not arrange any transmission slots.
  • the DL Interference Slot of the BS cannot overlap with the UL Interference Slot of the RX of the RS, and the UL Interference Slot of the BS cannot overlap with the DL Interference Slot of the TX of the RS.
  • the implementation scheme 3 has the following four characteristics and the implementation scheme 2 is different:
  • the DL Interference Slot is defined in the downlink subframe DL BS of the physical layer frame structure of the FDD radio transmitter TX whose frequency is RS, and is used to define the RS downlink data slot of the RS downlink coverage "2 area". For the case of multiple RSs as shown in FIG. 6, multiple RSs share the DL Interference Slot in a TDM manner to avoid interference from RS to SS/MSRS.
  • the UL Interference Slot is defined in the uplink 'subframe UL BS of the physical layer frame structure of the BS with a frequency of f2, and is used to define a BS uplink data slot of the BS uplink coverage "22 area".
  • the UL Interference Slot is defined in the uplink subframe UL RS of the physical layer frame structure of the FDD radio receiver RX whose frequency is fl, and is used to define an RS uplink data slot of the RS uplink coverage "22 area". For the case of multiple RSs shown in FIG. 2, multiple RSs share the UL Interference Slot in a TDM manner to avoid interference from SS/MSR S to RS.
  • the present invention further provides a specific implementation manner of the physical layer frame structure of the BS and the RS in the advanced relay communication mode, as shown in FIG. 44, where RS, BS The transmission and reception frequencies are based on the frequency at the leftmost end of the frame in the figure.
  • the "black slot indicated by the black arrow" in the downlink subframe DL BS of the BS and the downlink subframe DL RS of the RS is the DL Header Slot, the uplink subframe UL BS of the BS and the uplink subframe U of the RX of the RS
  • the "black time slot indicated by the black arrow” is the "white time slot indicated by the white arrow” in the TX of the UL Contention Slot.
  • the UL contention TX Slot in the TX of the RS, the white arrow of the RX of the RS The gap is "DL Header RX Slot.
  • the "TX time slot” in the downlink subframe DL BS of the BS is a DL Non-interference Slot
  • the "TX time slot” is a DL Interference Slot (BS downlink coverage "2 area”).
  • the "RX time slot” in the uplink subframe UL BS of the BS is a UL Non-interference Slot
  • the "RX time slot” is a UL Interference Slot (BS area coverage "22 area”)
  • RS The "TX3 slot” in the downlink subframe DL RS of the TX is the DL Non-Interference Slot
  • the "TX slot” is the DL Interference Slot (RS downlink coverage "2 area”).
  • the "RX3 time slot” in the uplink subframe UL RS of the RS is the UL Non-interference Slot
  • the "RX time slot” is the UL Interference Slot (RS area coverage "22 area”) .
  • the DL Relay Zone of the BS is arranged after the DL Header Slot of the downlink subframe DL BS of the BS, and the UL Relay Zone of the BS is arranged at After Contention Slot.
  • the SS/MS BS does not arrange any transmission slots.
  • the SS/MS RS does not arrange any transmission slots.
  • the DL Interference Slot of the BS cannot overlap with the UL Interference Slot of the RX of the RS, and the UL Interference Slot of the BS cannot overlap with the DL Interference Slot of the TX of the RS.
  • BS UL The Non-interference Slot and the TX DL Non-interference Slot of the RS overlap as much as possible on the time slot.
  • the DL Non-interference Slot of the BS overlaps with the UL Non-interference Slot of the RS RX as much as possible on the time slot.
  • FIG. 44 downlink subframe of DL DL Header Slot of RS TX and uplink subframe of RS RX UL Contention of UL RS Slot does not exist, the rest are the same.
  • the present invention further provides a processing flow of the wireless relay communication system based on the physical layer frame structure of the BS and the RS set as described above, and the corresponding processing flow includes a downlink transit communication processing flow from the BS to the user terminal, and a user The uplink to relay communication processing flow from the terminal to the BS.
  • the downlink process includes two processing phases.
  • the first phase is the communication process from the BS to the RS, and the second phase is the processing process from the RS to the user terminal. :
  • the BS transmits a preamble preamble in a DL Header of a downlink subframe DL BS of frequency ⁇ .
  • the RSIF1 receives the preamble preamble in the DL Header of the downlink subframe D of the BS through the DL Header RX whose RX frequency of the RS is fl, and synchronizes with the BS.
  • BS at a frequency of fl ⁇ FCH is transmitted after a sub-frame DL BS in the DL Header of the preamble, DL- MAP, and UL- MAP information.
  • RS#1 receives the FCH, DL-MAP, and UL-MAP information of the DL Header of the downlink subframe DLBS through the DL Header RX Slot of the RS RX2 frequency fl, and obtains the slot position and usage of each downlink and uplink burst of the BS. Method information.
  • the BS sends a broadcast message message by using the DL Relay broadcast of the DL Relay Zone of the downlink subframe D of the frequency ⁇ ;
  • the BS transmits the downlink transit communication data to the RS#1 in the DL Relay RSiil of the DL Relay Zone of the downlink subframe D of the frequency fl;
  • RS receives the broadcast message message in the DL Relay broadcast of the DL Relay Zone of the BS downlink subframe D through the DL RB with the RS RX frequency fl, which may include a message requiring the RS#1 relay broadcast;
  • RS # 1 receives the downlink relay communication data traffic DL DS BS downlink subframe of the DL Relay Zone in DL Relay RSttl f DL Relay Zone 1 by the RS RX frequency datao
  • the processing of this phase includes:
  • the TX of RS#1 transmits the preamble preamble in the DL Header whose downlink subframe DL frequency is f2.
  • the MS/SS receives the preamble preamble in the DL Header of the TX downlink subframe DL BS of RS#1, and synchronizes with RSm.
  • the TX of RS#1 sends FCH, DL-MAP, UL-MAP after the preamble of the DL Header whose downlink subframe DL RS frequency is f2; wherein, FCH, DL-MAP, UL-P of RS #1 can It is sent by the BS to RS #1 in step 6 of the first phase.
  • the MS/SS receives the FCH, DL-MAP, and UL-MAP information of the DL Header of the TX downlink subframe DL RS of the RS#1, and obtains the slot position and usage of each downlink and uplink of the RS. information.
  • the TX of RSttl is sent in the downlink subframe DL RS in the time-frequency interval except the DL Header and the DL Relay Zone, and is transmitted at the frequency f2.
  • the downlink relay communication data is sent to the MS/SS, and the relay communication data is sent by the BS to the TX of the RS ttl in step 6.
  • the MS/SS receives the downlink relay communication data of the downlink subframe D4 of the RS#1 from the corresponding time-frequency interval.
  • the processing of this phase specifically includes:
  • the MS/SS receives the preamble preamble in the DL Header of the downlink subframe D of the BS, thereby synchronizing with the BS.
  • the MS/SS receives the FCH, DL-MAP, and UL-MAP information of the DL Header of the downlink subframe DL BS of the BS , and obtains the slot position and usage profile information of the downlink and uplink bursts of the BS and the RS.
  • the RSttl TX transmits the downlink relay communication data to the MS/SS at the frequency f2 in the time-frequency interval except the DL Header ⁇ DL Relay Zone, and the relay communication data is in the The step 6 of the first stage has been sent by the BS to the RS secondary TX.
  • the MS/SS receives the downlink transit communication data traffic data in the downlink subframe of RS#1 from the corresponding time-frequency interval.
  • the flow of the uplink relay Uplink relay communication processing is further described below.
  • the uplink process also includes two processing stages, the first phase is a communication process from the user terminal to the RS, and the second phase is a process from the RS to the BS, specifically For:
  • the corresponding processing process includes:
  • the MS/SS receives the TX downlink subframe of RS#1, the DL Header's FCH, DL-MAP, and UL-MAP of the DL BS frequency of f2, and obtains the slot position and usage of the TX downlink and uplink bursts of RS#1. Method information.
  • the MS/SS transmits the uplink communication data traf fic data to RSttl at a frequency ⁇ in a time slot other than the BS UL Relay Zone corresponding period in the RX uplink subframe UL RS of RSItl.
  • the RX of RS#1 receives the MS/SS uplink subframe from the corresponding time slot at the frequency fl (the uplink communication data in the U.)
  • the corresponding processing process includes:
  • MS/SS receives the downlink subframe of the BS.
  • the FCH of the DL Header with the frequency of fl is DL, DL-MAP, and UL-MAP.
  • the MS/SS sends the uplink communication data traffic data to the RSttl at the frequency fl in a time slot other than the corresponding period of the BS UL Relay Zone.
  • the RX of RS#1 receives the uplink communication data traffic data in the MS/SS uplink subframe UL RS from the corresponding time slot at the frequency fl.
  • the advanced relay communication mode and the simplified transit communication mode adopt the same processing method
  • RX of RS#1 receives the FCH, DL-MAP, and UL-MAP information of the downlink subframe D ⁇ DL Header of the BS through the DL Header RX Slot of the uplink subframe UL BS in the RS, and obtains the downlink of the BS. And the slot location and usage profile information of each burst.
  • the TX of RS#1 sends the uplink relay communication data to the BS in the UL Relay RS of the RS downlink subframe DL UL Relay Zone at frequency f2, and the relay communication data is already in step 2 of the first phase.
  • the BS sends to RS #1.
  • the BS receives the uplink transit communication data in S5 in the UL Relay RS#1 of the UL Relay Zone of the uplink subframe UL BS of frequency f2.
  • the BS, the RS, and the SS/MS may be implemented based on the OFDM technology.
  • the seventh application scenario is as follows:
  • the RS includes a single FDD wireless transceiver, and the user terminal includes two FDD wireless transceivers respectively corresponding to the BS and the RS, and the RS transmits information through the combination of the middle rotor channel and the 0FDMA symbol.
  • the present invention provides a wireless relay communication orthogonal frequency division multiplexing access system and method, and the advanced relay communication mode of RS and BS, MS/SS provided by the present invention, as shown in FIG. 36, RS and BS, MS/ Inter-SS uses FDD TDM/OFDMA communication, BS downlink and RS uplink use frequency 1, BS uplink and RS downlink frequency f2; RS only needs one FDD wireless transceiver, RS as an MS/SS access BS, The MS/SS performs wireless relay access to the BS through the RS.
  • the simplified relay communication mode of RS and BS, MS/SS provided by the present invention is as shown in FIG.
  • the BS downlink and the RS uplink use the frequency f1
  • the BS uplink and the RS downlink use the frequency f2
  • the RS only needs to have one FDD wireless transceiver.
  • Broadcast Burst downlink broadcast burst of DL BS , such as Preamble, FCH, DL-MAP, UL-MAP, directly by
  • the BS sends the MS/SS to the MS, and does not pass through the RS.
  • the initial access ranging Ranging, periodic ranging Ranging, and bandwidth request of the MS/SS are directly sent by the MS/SS to the BS through the Ranging Subchannel of the UL BS .
  • the downlink other bursts of the DL BS such as data packets or message messages other than DL-MAP and UL-MAP, cannot be directly sent by the BS to the MS/SS, and must be relayed through the RS;
  • the other uplink bursts of the BS such as the initial access ranging Ranging, periodic ranging Ranging, and bandwidth request messages of the MS/SS, cannot be directly sent by the MS/SS to the BS, and must be relayed through the RS.
  • TX represents a transmitting module
  • RX represents a receiving module
  • the functional framework of the wireless relay communication orthogonal frequency division multiplexing access system provided by the present invention is shown in FIG. 45.
  • the wireless relay communication orthogonal frequency division multiplexing access system includes BS, RS and SS/MS.
  • BS includes:
  • the wired transmission processing unit is capable of establishing communication with a higher-level device (such as a base station controller) or with a group of base station devices, and performing information interaction with the upper-level device or each base station device;
  • a higher-level device such as a base station controller
  • FDD wireless transceiver used for wireless communication with RS or SS/MS in FDD mode, composed of FDD wireless transmitter physical layer processing unit, FDD wireless receiver physical layer processing unit and FDD wireless transceiver data link layer processing unit .
  • the FDD radio transmitter physical layer processing unit (frequency is l): respectively with the FDD radio transceiver data link layer and the FDD radio receiver 1 physical layer processing unit or the FDD in the RS in the SS/MS with which it can communicate
  • the wireless receiver physical layer processing unit performs wireless communication; for simplifying the transfer mode, the unit uses the downlink sub-frame broadcast of the DL BS (such as Preamble, FCH, DL-MAP, UL-MAP) to be more reliable than other transmitted data.
  • the channel coding and modulation method (such as binary phase shift keying BPSK), or higher transmission power than other transmitted data, is directly sent by the BS to the MS/SS, not through the RS relay.
  • the FDD radio receiver physical layer processing unit (frequency f2): respectively, the FDD radio transceiver data link layer and the FDD radio transmitter 1 physical layer processing unit or the FDD in the RS in the SS/MS with which it can communicate
  • the wireless transmitter physical layer processing unit performs wireless communication.
  • the FDD wireless transceiver data link layer processing unit performs the data processing of the received physical layer processing unit of the FDD wireless receiver as data processing layer of the FDD wireless transceiver, and forwards the data to the wired transmission processing unit. Receiving the received data from the wired transmission processing unit as data processing of the FDD wireless transceiver data link layer, and forwarding the data to the FDD wireless transmitter physics Layer processing unit.
  • SS/MS includes:
  • FDD wireless transceiver used for wireless communication with FDS in the same BS or RS, physical layer processing unit of FDD wireless transmitters 1 and 2, physical layer processing unit of FDD wireless receivers 1 and 2, and FDD wireless transceiver
  • the data link layer processing unit is composed of.
  • the physical layer processing unit (frequency f2) of the FDD wireless transmitter 1 wirelessly communicates with the data link layer processing unit of the FDD wireless transceiver and the FDD wireless receiver physical layer processing unit in the BS with which it can communicate, respectively
  • the unit has an uplink access time slot (or called a contention slot) for the UL BS , such as an initial Ranging contention slot and a bandwidth request contention slot, or MS/SS.
  • BPSK binary phase shift keying
  • the physical layer processing unit (frequency f1) of the FDD radio transmitter 2 wirelessly communicates with the data link layer processing unit of the FDD radio transceiver and the FDD radio receiver physical layer processing unit in the RS with which it can communicate, respectively.
  • the physical layer processing unit (frequency fl) of the FDD radio receiver 1 is in wireless communication with the data link layer processing unit of the FDD radio transceiver and the physical layer processing unit of the FDD radio transmitter in the BS with which it can communicate, respectively.
  • FDD radio receiver 2 physical layer processing unit (frequency f2): wirelessly communicates with the data link layer processing unit of the FDD radio transceiver and the radio transmitter physical layer processing unit in the RS with which it can communicate;
  • Data link layer processing unit of the FDD wireless transceiver data of the physical layer processing unit from the FDD wireless receiver 1 and/or 2 is processed by the data link layer of the FDD wireless transceiver, and then forwarded to the FDD wireless transmission.
  • RS includes:
  • FDD wireless transceiver used for wireless communication with SS/MS or BS in FDD mode, composed of FDD wireless transmitter physical layer processing unit, FDD wireless receiver physical layer processing unit and FDD wireless transceiver data link layer processing unit .
  • FDD radio transmitter physical layer processing unit respectively with the FDD radio receiver physical layer processing unit in the RS or the FDD radio transceiver data link layer in the RS and the physics of the FDD radio receiver 2 in the SS/MS with which it can communicate
  • the layer processing unit or the BS FDD radio receiver physical layer processing unit performs wireless communication;
  • FDD radio receiver physical layer processing unit respectively with the FDD radio transmitter physical layer processing unit in the RS or the FDD radio transceiver data link layer in the RS and the physics of the FDD radio transmitter 2 in the SS/MS with which it can communicate
  • the layer processing unit or the FDD radio transmitter physical layer processing unit in the BS performs wireless communication;
  • FDD wireless transceiver data link layer processing unit The data from the physical layer processing unit of the FDD wireless receiver is processed by the FDD wireless transceiver data link layer and forwarded to the user. The data from the user is processed by the FDD wireless transceiver data link layer and forwarded to the FDD wireless transmitter physical layer processing unit.
  • the TDM technology is adopted, and the DL Relay Zone is added.
  • a row transfer area used to define a BS downlink intermediate rotor channel and an OFDMA symbol combination transmitted by the BS to the RS; for multiple RS cases, the multiple RS shares the DL Relay Zone through different subchannels and OFDMA symbol combinations;
  • Receiving the relay data of the BS in combination with the OFDMA symbol, the other subchannel and the OFDMA symbol combination are not arranged to receive the transit data of the BS;
  • the TDM technology is adopted, and the UL Relay Zone is added to define the uplink uplink rotor channel and OFDMA of the BS transmitted from the RS to the BS. Symbol combination; for multiple RS cases, multiple RSs share a UL Relay Zone through different subchannels and OFDMA symbol combinations;
  • the TDM technology is adopted in the downlink subframe DL BS of the physical layer frame structure of the TX (FDD radio transmitter) of the frequency f of the RS, and the UL Relay Zone is opened to define the UL of the RS receiving BS.
  • Relay Medium's medium-rotor channel and OFDMA symbol combination For multi-RS cases, multiple RSs share the UL Relay Zone through different sub-channels and OFDMA symbol combinations.
  • the TX of different RSs only corresponds to the corresponding sub-channel and OFDMA in the DL Relay Zone.
  • the transmission data of the BS is transmitted in the symbol combination, and the other subchannel and the OFDMA symbol combination cannot be scheduled to be transmitted;
  • the SS/MS BS does not arrange any transmission subchannel and OFDMA symbol combination to avoid "SS/MS BS to BS"interference; during the DL Relay Zone of the BS, SS /MS RS does not arrange any transmit and transmit subchannel and OFDMA symbol combinations to avoid "SS/MS R ijRS"interference;
  • a "DL Relay Broadcast Subchannel" is defined for defining a downlink subchannel broadcasted by the BS to the RS.
  • a "DL Relay Broadcast Subchannel” is defined for defining a downlink subchannel broadcasted by the BS to the RS.
  • Subchannel (transit ranging subchannel, abbreviated as RRS), defines the initial access ranging Ranging for the RS.
  • the Relay Ranging TX Subchannel (referred to as RRS TX) is used in the DL Relay Zone of the physical layer frame structure of the TX with the frequency of the f2, which is used to define the initial access ranging Ranging of the RS.
  • the time-frequency relationship between the Relay Ranging Subchannel of the BS and the Relay Ranging TX Subchannel of the TX must be one-to-one, strictly synchronized;
  • the BS receives the DL Header, the UL Relay Zone, and the BS in the corresponding period of the DL Header of the RX D Machine and different RS TX through different sub
  • the channel and OFDMA symbols are combined to share the rest of the RS downlink subframe or the BS uplink subframe to avoid interference of "SS/MS BS to SS/MS RS ";
  • the RX of the BS transmitter and the different RS pass RX rest of uplink subframes of different combinations of OFDMA symbols and subchannels share BS or RS of the downlink subframe, to avoid "SS / MS R ⁇ ijSS / MS BS"interference;
  • a DL Header (a downlink subframe header) in a downlink subframe DL BS whose frequency is a physical layer frame structure of the BS , where the DL Header is a start of a downlink subframe, and is used to define a subchannel for transmitting user synchronization information.
  • the subchannel and the OFDMA symbol combined with the OFDMA symbol and the indication information are combined to indicate the location and usage profile of each subchannel and OFDMA symbol combination of the BS physical layer frame structure downlink subframe and the uplink subframe.
  • the DL Header includes preamble, FCH, DL-MAP, UL-MAP, SS/MSBS, RS, and BS in the original 802.16 OFDMA (or SOFDMA) frame to maintain the transmission and reception frame synchronization;
  • a DL Header (a downlink subframe header) is defined in a downlink subframe DL RS of a physical layer frame structure of a TX with a frequency of f2, where the DL Header is a start of a downlink subframe.
  • a subchannel and an OFDMA symbol combination for defining a subchannel and an OFDMA symbol combination for transmitting user synchronization information, and indicating a combination of each subchannel and OFDMA symbol of the RS physical layer frame structure downlink subframe and the uplink subframe Location and usage profile.
  • the DL Header includes preamble, FCH, DL-MAP, UL-MAP, SS/MSRS, and RS in the original 802.16 OFDMA (or SOFDMA) frame to maintain frame synchronization;
  • the DL Header of the TX of the RS lags behind the DL Header of the BS; during the DL Header of the TX of the RS, the BS receiver cannot arrange any combination of the receiving subchannel and the OFDMA symbol;
  • the physical layer frame structure can not arrange any combination of OFDMA symbols and transmitting subchannels, to avoid "RS to SS / MS RS "Interference; in special cases, if the DL Headers of TXs of different RSs overlap in time, they must be completely overlapped, strictly synchronized, and their contents must be the same to avoid "RS to SS/MS RS "interference;
  • a DL Header RX (downlink subframe header reception) is opened, which is used to define a subchannel and an OFDMA symbol combination of the DL Header receiving the BS;
  • Ranging Subchannel in the uplink subframe UL BS with a frequency of f2 in the physical layer frame structure of the BS , and define an initial access ranging Ranging for the SS/MS BS , and a periodic ranging Ranging a BS ranging ranging receiving subchannel and an OFDMA symbol combination of the bandwidth request;
  • a Ranging Subchannel is defined in an uplink subframe UL RS of a physical layer frame structure of an FDD radio receiver RX with a frequency of 1 of RS , defined for SS/ MS RS initial access ranging
  • the DL Header and Ranging Subchannel defined above are set in each frame, and other subchannels and OFDMA symbol combinations or zones defined above are selected in each frame.
  • the present invention further provides a specific implementation manner of a physical layer frame structure of a BS and an RS, as shown in FIG. 46 and FIG. 47, wherein FIG. 46 is a BS in an advanced relay communication mode.
  • Schematic diagram of the physical layer frame structure of the RS and Figure 47 A schematic diagram of a physical layer frame structure of a BS and an RS in a simplified transit mode.
  • the transmission and reception frequencies of RS and BS are based on the frequency of the leftmost end of the frame in the figure, where "NULL" or blank portion is the portion where no reception or transmission is arranged.
  • White vertical stripe area in the downlink subframe DL BS of the BS , including preamble, FCH, DL-MAP, and UL-MAP of the DL BS as DL Header; "white vertical” in the RX uplink subframe UL RS of the RS Strip area", including UL R ⁇ sync with BS, Get MAP info is DL Header RX.
  • the DL Relay Zone (ie DL Relay broadcast, DL Relay R#1, #2... part) of the BS is arranged after the DL Header of the downlink subframe DL BS of the BS, the UL Relay Zone of the BS (ie UL Relay R#1) , #2...and the TX portion of the RRS) are arranged at the beginning of the downlink subframe DL BS of the BS .
  • the SS/MS BS does not arrange any combination of the transmission subchannel and the OFDMA symbol; during the period corresponding to the DL Relay Zone of the BS, the SS/MS RS does not arrange any transmission and transmission subchannel and OFDMA symbol combination. .
  • a PHYburst is assigned a set of adjacent subchannels and a set of OFDMA symbols.
  • the BS receiver and the TX of the different RS pass different subchannels and
  • the OFDMA symbol combination shares the rest of the RS downlink subframe or the BS uplink subframe; in the BS downlink subframe or the RS RX uplink subframe, except for the DL Header, the DL Header RX and the DL Relay Zone, the BS transmitter and the different The RX of the RS shares the remaining portion of the BS downlink subframe or the RS RX uplink subframe by combining different subchannels and OFDMA symbols.
  • the present invention further provides a processing flow of the wireless relay communication orthogonal frequency division multiplexing access system based on the physical layer frame structure of the BS and the RS set as described above, and the corresponding processing flow includes a downlink from the BS to the user terminal.
  • the downlink process includes two processing phases.
  • the first phase is the communication process from the BS to the RS, and the second phase is the processing process from the RS to the user terminal. :
  • the BS transmits a preamble preamble in a DL Header of a downlink subframe DL BS of frequency 1.
  • RS#1 receives the preamble preamble in the DL Header of the downlink subframe DL BS of the BS through the RX of the RS by the DL Header RX of the R. [IBS acquires synchronization.
  • the BS After the BS transmits the preamble in the DL Header of the downlink subframe DL BS of the frequency f1, the BS transmits the FCH, the DL-MAP, and the UL-MAP information.
  • RS#1 receives the downlink sub-frame DL Header's FCH through the DL Header RX of the RX frequency of the RS.
  • DL-MAP, and UL-MAP information obtain sub-channel and OFDMA symbol position and usage method profile information of each downlink of the BS downlink and uplink.
  • the BS sends a broadcast message message by using the DL Relay broadcast of the DL Relay Zone of the downlink subframe DL BS of frequency l;
  • the BS transmits downlink transit communication data in the DL Relay RS#1 of the DL Relay Zone of the downlink subframe DL BS of frequency l. Traffic data to RS#1;
  • RS#1 receives the broadcast message message in the DL Relay broadcast of the DL Relay Zone of the BS downlink subframe DL BS through the DL RB of the RX frequency of the RS of the RS, which may include a message requiring the relay broadcast of the RS#1;
  • RS#1 receives the downlink relay communication data traffic data of the DL Relay RS#1 of the DL Relay Zone of the BS downlink subframe DL BS through the DL Relay Zone of the RX frequency of the RS.
  • the processing of this phase includes:
  • the TX of RS#1 transmits the preamble preamble in the DL Header whose frequency of the downlink subframe DL RS is f2.
  • the MS/SS receives the preamble preamble in the DL Header of the TX downlink subframe DL RS of RS#1, and synchronizes with RS#1. 3.
  • the TX of RS#1 sends the FCH after transmitting the preamble in the DL Header with the downlink subframe DL RS frequency f2.
  • the MS/SS receives the FCH, DL-MAP, and UL-MAP information of the DL Header of the TX downlink subframe DL RS of RS#1, and obtains the subchannel and OFDMA symbol position of each downlink and uplink of RS#1. Use the profile information.
  • the RS of the RS#1 transmits the downlink relay communication data to the MS/SS at the frequency f2 in the time-frequency interval except the DL Header and the DL Relay Zone, and the relay communication data is used.
  • TX 0 that has been sent by the BS to RS #1 in step 6.
  • MS / SS receives the downlink relay communication data interval RS # 1 TX in downlink sub-frame DL RS of traffic data from the corresponding time-frequency.
  • the processing of this phase specifically includes:
  • the MS/SS receives the preamble preamble in the DL Header of the downlink subframe DL BS of the BS , thereby acquiring synchronization with the BS.
  • the MS/SS receives the FCH, DL-MAP, and UL-MAP information of the DL Header of the downlink subframe DL BS of the BS , and obtains the subchannels of the BS and RS#1 downlink and uplink bursts, and the OFDMA symbol position and usage method. (profile) information.
  • the TX of RS#1 transmits the downlink relay communication data to the MS/SS at the frequency f2 in the time-frequency interval except the DL Header and the DL Relay Zone in the downlink subframe DL RS , and the relay communication data is transmitted.
  • the MS/SS receives the downlink relay communication data traffic data in the TX downlink subframe DL RS of the RS#1 from the corresponding time-frequency interval.
  • the flow of the uplink relay Uplink relay communication processing is further described below.
  • the uplink process also includes two processing stages, the first phase is a communication process from the user terminal to the RS, and the second phase is a process from the RS to the BS, specifically for:
  • the corresponding processing process includes:
  • the MS/SS receives the downlink subframe of the TX of the RS#1 DL RS frequency of the DL Header of the F2, the DL-MAP, the UL-MAP, and obtains the first set of wireless transmitters of the RS#1 downlink and uplink bursts Subchannel and OFDMA symbol locations and methods of use
  • the MS/SS transmits the uplink communication data traffic data to RS#1 at the frequency f1 in the time-frequency interval except the period corresponding to the UL Relay Zone of the BS. 3.
  • the RX of RS#1 receives the uplink communication data in the MS/SS uplink subframe UL RS from the corresponding time-frequency interval at the frequency fl.
  • the corresponding processing process includes:
  • the MS/SS receives the downlink subframe of the BS , and the DL Header's FCH, DL-MAP, and UL-MAP of the DL BS frequency of the fl, obtains the subchannel and the OFDMA symbol position and use of the downlink and uplink bursts of the BS and the RS#1. Method information.
  • the MS/SS transmits the uplink communication data traffic data to RS#1 at the frequency f1 in the time-frequency interval except the period corresponding to the UL Relay Zone of the BS.
  • RS # RX 1 is at frequency fl receive uplink communication data MS / SS in the uplink sub-frame UL RS in the corresponding time-frequency interval from traffic data 0
  • the advanced relay communication mode and the simplified transit communication mode use the same processing method
  • the RX of RS#1 receives the FCH, DL-MAP, and UL-MAP of the "DL Header" with a frequency of 1 in the downlink subframe DL BS of the BS , and obtains the subchannel and OFDMA symbol position of each downlink and uplink of the BS. Use the profile information.
  • the TX of RS#1 transmits the uplink relay communication data to the BS in the UL Relay RS#1 of the UL Relay Zone of the downlink subframe DL RS of the RS at the frequency f2, and the relay communication data is in the first stage.
  • Step 2 has been sent by the BS to RS #1.
  • the BS receives the uplink relay communication data traffic data in S5 in the UL Relay RS#1 of the UL Relay Zone of the uplink subframe UL BS of the frequency f2.

Description

无线中转通信系统及方法
技术领域
本发明涉及无线通信技术领域, 尤其涉及一种无线中转通信系统及方法。
发明背景
宽带无线接入标准 IEEE 802. 16 主要包括两个版本: 802. 16 标准的宽带固定无线接入版本
( 802. 16-2004) 和 802. 16标准的宽带移动无线接入版本 ( 802. 16e)。 其中, 802. 16-2004版本中 定义了两种网元: BS (基站) 和 SS (用户站); 同样, 在 802. 16e版本中也定义了两种网元: BS和 MSS (移动用户站)。
目前, BS与用户终端 (SS或 MSS ) 之间直接进行通信, 以进行信息的交互。 这样, 由于基站的 覆盖范围有限, 导致整个网络的覆盖范围受限; 同时, 还由于用户终端直接与 BS通信, 因此, 同一 BS需耍同时处理大量用户的通信信息, 这必然导致针对用户终端的信息处理性能受到负面影响, 进 而导致用户终端的吞吐量降低, 影响整个网络的通信性能。
发明内容
本发明的目的是提供一种无线中转通信系统及方法, 从而可以实现 BS与用户终端 (SS或 MSS ) 之间的中转通信, 进而扩大 BS的覆盖范围, 增加用户终端的吞吐量。
本发明提供了一种无线中转通信系统, 包括: 基站 BS、 用户终端和中转站 RS , 所述的 BS设置 有与 RS通信的接口, 所述的 RS设置有与用户终端和 BS通信的接口, 所述的用户终端则设置有与 RS通信的接口, 所述的 BS、 RS和用户终端之间通过所述接口通信。
本发明所述的系统中还可选地包含以下技术特征:
所述的 BS还设置有与用户终端通信的接口, 且所述用户终端设置有与 BS通信的接口, BS通过 所述接口与用户终端之间直接通信。
所述 BS、 RS和用户终端之间采用同频点进行通信, 且所述 BS分别通过上、 下行子帧与用户终 端或 RS通信, 所述 RS分别通过上、 下子帧与用户终端或 BS通信。
若所述的 BS、 RS及用户终端之间基于时分双工 TDD通信, 则所述的 BS、 RS和用户终端三个实 体中分别设置有 TDD无线发射机物理层单元和 TDD无线接收机物理层单元, 且所述的各 TDD无线发 射机物理层单元分别提供有与其他实体中的 TDD无线接收机物理层单元通信的通信接口, 所述的各 TDD接收机物理层单元分别提供有与其他实体中的 TDD无线发射机物理层单元通信的通信接口; 或 者, 所述 RS中设置有第一 TDD无线收发机和第二 TDD无线收发机, 其中, 第一 TDD无线收发机包含 釆用相同的第一频率的 TDD无线接收机物理层单元和 TDD无线发射机物理单元,并与 BS中的 FDD无 线发射机物理层单元, 以及用户终端中的 FDD无线接收机物理层单元对应并保持收发帧同步, 第二 TDD无线收发机包含釆用相同的第二频率的 TDD无线接收机物理层单元和 TDD无线发射机物理单元, 且与用户终端中的 FDD无线发射机物理层单元,以及 BS中的 FDD无线接收机物理层单元对应并保持 收发帧同步;
或者,
若所述的 BS、 RS及用户终端之间基于时分复用 T丽 /时分复用接入 TDMA-频分双工 FDD通信, 则 所述 RS中包括第一 TDM/TDMA- FDD无线收发机和第二 TDM/TDMA- FDD无线收发机, 其中, RS中的第 一 TDM/TDMA- FDD无线收发机包含的 TDM- FDD无线发射机物理层单元和 TDMA- FDD无线接收机物理单 元与用户终端中的 TDM- FDD无线接收机物理层单元和 TDMA-FDD无线发射机物理层单元对应并保持收 发帧同步, RS中的第二无线 TDM/TDMA- FDD收发机包含的 TDMA-FDD无线发射机物理层单元和 TDM-FDD 无线接收机物理单元与 BS中的 TDMA- FDD无线接收机物理层单元和 TDM- FDD无线发射机物理层单元 对应并保持收发帧同步;
或者,
若所述的 BS、 RS及用户终端之间基于 OFDMA- FDD通信, 则所述 RS中包括第一 OFDMA- FDD无线 收发机和第二 0FDMA-FDD 无线收发机, 其中, ' RS 中的第一 OFDMA- FDD 无线收发机包含的第一 0FDMA-FDD无线发射机物理层单元和第一 OFDMA- FDD无线接收机物理单元与用户终端中的 0FDMA-FDD 无线接收机物理层单元和 0FDMA-FDD无线发射机物理层单元对应并保持收发帧同步; RS 中的第二 OFDMA- FDD无线收发机包含的第二 OFDMA- FDD无线发射机物理层单元和第二 OFDMA- FDD无线接收机 物理单元与 BS中的 OFDMA- FDD无线接收机物理层单元和 OFDMA- FDD无线发射机物理层单元对应并保 持收发帧同步;
或者,
若所述的 BS、 RS及用户终端之间基于 FDD通信, 则 RS和 BS中分别包括 FDD无线收发机, 该 FDD无线收发机包括 FDD无线发射机物理层单元和 PDD无线接收机物理层单元, RS以 FDD方式同 BS 和用户终端进行无线通信, 所述 RS中的 FDD无线收发机上行和 BS中的 FDD无线收发机下行采用相 同的频率, RS中的 FDD无线收发机下行和 BS中的 FDD无线收发机上行采用相同的频率; 或者, RS 中包括 FDD无线收发机, 所述 RS中的 FDD无线收发机上行和 BS中的 FDD无线收发机下行采用相同 的频率, RS中的 FDD无线收发机下行和 BS中的 FDD无线收发机上行采用相同的频率, 其中, 用户 终端中的第一 FDD无线收发机包含的第一 FDD无线发射机物理层单元和第一 FDD无线接收机物理单 元与 BS中的 FDD无线接收机物理层单元和 FDD无线发射机物理层单元对应, 用户终端中的第二 FDD 无线收发机包含的第二 FDD无线发射机物理层单元和第二 FDD无线接收机物理单元与 RS中的 FDD无 线接收机物理层单元和 FDD无线发射机物理层单元对应。
所述的 BS、 RS和用户终端中还分别设置有与所述的物理层单元连接通信的数据链路层单元, 而 且, 所述的 BS中还设置有与上级设置连接通信的有线传输处理单元, 用于与上一级设备或各基站设 备之间进行信息交互。
所述的 BS还提供与用户终端通信的接口, 所述 BS通过采用预定的信道编码和调制方式, 或者, 采用预定的发射功率值将前导码 Prearable、帧控制头 FCH、下行映射表 DL-MAP和上行映射表 UL- MAP 信息直接从该接口将信息发送给用户终端。
本发明还提供丫一种无线屮转通信的实现方法, 乜括:
在 BS物理层帧结构的下行子帧和上行子帧中分别设置下行中转区和上行中转区, 在 RS物理层 帧结构的上行子帧和下行子帧中分别设置下行中转区和上行中转区, 用于定义 BS与 RS之间通信的 中转时隙或中转子信道和 0FDMA符号组合;
在 BS、 RS及用户终端之间基于设置的 BS和 RS的上、 下行物理层帧进行无线中转通信。 本发明还可选地包括以下技术特征:
在 BS物理层帧结构的下行子帧和上行子帧中分别采用 TDM方式下行中转区和上行中转区。 当 RS 中设置有两个 TDM/TDMA- FDD或 0FDMA-FDD无线收发机时, 则在与 BS对应的 RS 中的 TDM/TDMA- FDD或 OFDMA- FDD无线收发机的物理层帧结构的上行子帧和下行子帧中分别设置下行中转 区和上行中转区, 用于定义 BS和 RS之间的中转时隙, 或者, 用于定义 BS和 RS之间的中转子信道 和 OFDMA符号组合;
当 RS中设置有两个 TDD无线收发机时, 则在 RS的第一 TDD无线收发机的物理层帧结构的上行 子帧和第二 TDD无线收发机的物理层帧结构的下行子帧中分别设置下行中转区和上行中转区, 用于 定义 BS和 RS间进行信息交互的子信道和 0FDMA符号组合;
当 RS中设置有一个 FDD无线收发机时, 则在中转站 RS的 FDD无线接收机的物理层帧结构的上 行子帧中设置下行中转区, 用于定义 RS接收 BS的下行中转区的中转时隙, 或者, 用于定义 BS和 RS的下行中转区的中转子信道和 0FDMA符号组合; 在 RS的 FDD无线发射机的物理层帧结构的下行 子帧中设置上行中转区, 用于定义 RS接收 BS的上行中转区的中转时隙, 或者, 用于定义 BS和 RS 的上行中转区的中转子信道和 0FDMA符号组合。
所述的方法还包括:
当 RS中设置有单个 FDD无线收发机, 则在 BS的上行中转区对应的期间内, 属于 BS的用户终端 不设置发送时隙或发送子信道和 0FDMA符号组合, 在 BS的下行中转区对应的期间内, 属于 RS的用 户终端不设置发送时隙或发送子信道和 0FDMA符号组合;
当 RS中设置有两个 OFDMA- FDD无线收发机, 则在在 BS的上行中转区对应的期间, 用户终端不 设置发送子信道和 0FDMA符号组合, RS不设置任何接收子信道和 0FDMA符号组合; 在 BS的下行中 转区对应的期间, RS不设置发送子信道和 0FDMA符号组合;
当 RS中设置有单个 TDD无线收发机时, 则在所述的 BS的物理层帧结构中的上行中转区和下行 中转区对应, 而且, 在 BS的下行中转区和上行中转区对应的期间, 用户终端不设置接收或发送时隙 或子信道和 0FDMA符号组合; 而且, 若 RS通过中转时隙进行信息的传递, 则所述的 BS的物理层帧 结构中的上行中转区和下行中转区的时隙分别与 RS 的物理层帧结构中的上行中转区和下行中转区 的时隙对应;
当 RS 设置有两个 TDM/TDMA- FDD无线收发机, 则所述的 BS的下行中转区与 RS中与 BS对应 的 TDM/TDMA- FDD无线收发机的下行中转区的时隙和频率关系对应,所述的 BS的上行中转区和 RS中 与 BS对应的 TDM/TDMA- FDD无线收发机的上行中转区的时隙和频率关系对应, 而且, 在 BS的上行中 转区对应的期间, 用户终端不设置发送时隙, RS不设置接收时隙;
当 RS中存在两个 TDD无线收发机时, 则在所述 BS的上行中转区对应的期间, BS和 RS覆盖下 的用户终端均不设置发送子信道和 0FDMA-符号组合, RS不设置接收子信道和 0FDMA符号组合。
所述的方法还包括:
当存在至少两个 RS时,该至少两个 RS通过不同的子信道和 0FDMA符号组合或者采 jfl不同的 TDM 方式共 '' F行或上行屮转区;
且当采用不同的子信道和 0FDMA符号组合共享时,不同的 RS只在下行中转区中相应的子信道和 OFDMA符号组合中发送 BS的中转数据, 在其它子信道和 0FDMA符号组合中不安棑发送 BS的中转数 据, 不同的 RS的 FDD无线接收机只在下行中转区中相应的子信道和 0FDMA符号组合 接收 BS的中 转数据, 在其它子信道和 0FDMA符号组合中不安排接收 BS的中转数据。
本发明中, 当 RS中设置有两个无线收发机时, 对于存在至少两个 RS的情况, 各 RS之间利用其 与 BS对应的收发机通过不同的子信道和 0FDMA符号组合或者采用不 |司的 ΤϋΜ方式 享下行或 I ·.行巾 转区。
所述的方法还包括:
在 BS的物理层帧结构的下行子帧中设置下行中转广播子信道或中转广播时隙, 用于定义由 BS 广播给 RS的下行子信道和 0FDMA符号组合或下行时隙;
在 RS的物理层帧结构的下行子帧中设置下行中转广播子信道或中转广播接收时隙,用于定义接 收 BS下行中转广播的 RS上行子信道和 0FDMA符号组合或上行时隙;若 RS中设置有两个无线收发机, 则在其与 BS对应的收发机的物理层帧结构中设置下行中转广播子信道或中转广播接收时隙;
且所述在 BS和 RS中设置的下行中转广播子信道或中转广播时隙或中转广播接收时隙在每一帧 中选择设置。
本发明中, 当 RS通过中转子信道和 0FDMA符号组合进行信息的传递, 则所述的方法还包括: 在 BS的物理层帧结构的上行子帧的上行中转区中定义中转测距子信道, 定义用于 RS的初始接 入测距、 周期性测距、 带宽请求的 BS中转测距接收子信道和 0FDMA符号组合, 该中转测距子信道还 可选地作为用户终端的初始接入测距、 周期性测距、 带宽请求测距子信道用;
在 RS的物理层帧结构的下行中转区中设置中转测距子信道, 用于定义 RS的初始接入测距、 周 期性测距、带宽请求的 RS中转测距发送子信道和 0FDMA符号组合; 若 RS中设置有两个无线收发机, 则在其与 BS对应的收发机的物理层帧结构中设置所述的中转测距子信道;
所述在 BS和 RS中设置的中转测距子信道的时频关系一一对应, 保持同步, 并在每一帧中选择 设置。
所述的方法还包括:
在 BS的物理层帧结构的上行子帧中定义测距子信道, 定义用于用户终端的初始接入测距、'周期 性测距、 带宽请求的 BS测距接收子信道和 0FDMA符号组合;
当 BS无法与 RS覆盖下的用户终端直接通信时,在 RS的 FDD无线接收机的物理层帧结构的上行 子帧中设置测距子信道, 定义用于用户终端的初始接入测距、 周期性测距、 带宽请求的 RS测距接收 子信道和 0FDMA符号组合; 若 RS中设置有两个无线收发机, 则在 RS与用户终端对应的收发机的物 理层帧结构中设置所述的测距子信道。 '
本发明中, 当 RS通过中转时隙进行信道传递时, 所述方法还包括:
在 BS和 RS的物理层帧结构的下行子帧中定义下行干扰时隙, 用于定义 BS和 RS各自覆盖区域 中的下行数据时隙, 所述的各自覆盖的区域包括仅由 BS和 RS各自覆盖的重叠区域, 或者, 包括由 BS和 RS各自覆盖的不重叠区域以及 BS和 RS各自覆盖的重叠区域;若 RS中设置有两个无线收发机, 则在 RS与用户终端对应的收发机的物理层帧结构中设置所述的下行干扰时隙。
所述的 BS的下行干扰时隙与 RS的下行干扰时隙在时隙上不重叠, 且当有至少两个 RS时, 所述 的至少两个 RS釆用 TDM的方式共享所述下行干扰时隙,且在 BS和 RS的每帧中选择设置所述下行干 扰时隙。
本发明中, 当 RS通过中转时隙进行信道传递时, 所述方法还包括:
在 BS和 RS的上行子帧中设置上行或下行无干扰时隙, 和 /或, 在 BS和 RS的下行子帧中设置上 行或下行无干扰时隙, 用于定义仅由 BS和 RS各自覆盖区域的下行或上行数据时隙; 若在 RS中存在 两个无线收发机,则在 RS中与用户终端对应的无线收发机的物理层帧结构中设置所述上行干扰时隙 或上行无干扰时隙;
而且, BS的下行无干扰时隙和 RS的下行无干扰时隙, 以及 BS的上行无干扰时隙和 RS的上行 无干扰时隙均可重叠设置。
所述的 BS和 RS的上行干扰时隙在时间上互不重叠。
所述的方法还包括:
在 BS, 或 BS和 RS的物理层帧结构的下行子帧中定义下行子帧头或下行子帧头时隙, 所述的下 行子帧头或下行子帧头时隙为下行子帧的开始, 用于定义发送用户同步信息的子信道和 0FDMA符号 组合或时隙和发送指示信息的子信道和 0FDMA符号组合或时隙, 以指示 BS , 或 BS和 RS物理层帧结 构下行子帧和上行子帧的各子信道和 0FDMA符号组合的位置和使用方法, 或者, 各时隙的位置和使 用方法, 该下行子帧头在每帧中均设置; 其中, 在 RS的物理层帧结构的下行子帧中定义的下行子帧 头或下行子帧头时隙在时间上滞后于所述在 BS 的物理层帧结构的下行子帧中定义的下行子帧头或 下行子帧头时隙, 且对于 RS的下行子帧头期间, BS不能安排任何接收子信道和 0FDMA符号组合, 对于 RS的下行帧头时隙不与 BS的下行帧头时隙重叠, 并且设置于 BS的上行子帧的无干扰时隙内; 若 RS中设置有两个无线收发机, 则在 RS与用户终端对应的收发机的物理层帧结构中设置所述的下 行子帧头或下行子帧头时隙;
在 RS的物理层帧结构中设置下行子帧头接收或下行子帧头接收时隙, 用于定义接收 BS的下行 子帧头的子信道和 0FDMA符号组合或下行子帧头时隙的时隙, 该下行子帧头接收或下行子帧头接收 时隙和所述 BS的下行子帧头或下行子帧头接收时隙的时频或时隙关系一一对应, 完全同步; 若 RS 中设置有两个无线收发机, 则在 RS与 BS对应的收发机的物理层帧结构中设置所述的下行子帧头接 收或下行子帧头接收时隙。
所述的下行子帧包括:
正交频分复用或单载波帧中的前导码 preamble、 帧控制头 FCH burst , 下行映射表 DL- MAP和 / 或上行映射表 UL- MAP。
本发明中, 当存在多个 RS时, 所述的方法还包括:
所述的 RS设置的所述的下行子帧与其他 RS的上行子帧不重叠;
或者,
RS的下行帧头时隙与其他 RS的下行帧头时隙和下行干扰时隙不重叠; 或者, 不同 RS的下行帧 头时隙在时间上完全重叠同步, 且下行帧头时隙内容相同, RS 的下行帧头时隙与其他 RS的下行干 扰时隙不重叠设置。
23、 根据权利要求 20所述的无线中转通信的方法, 其特征在于, 若所述的 RS中设置的两无线 收发机以不同的频率分别进行下行和上行通信时,则 RS在用于向用户终端发送下行信息的无线收发 机的物理层帧结构的下行子帧中设置下行子帧头。
所述的方法还包括:
当存在至少两个 RS时, 在 RS下行子帧头期间, 其它 RS的物理层帧结构的下行子帧不安排任何 发送子信道和 0FDMA符号组合, 或者, RS的下行帧头时隙不与其他 RS的下行帧头时隙和下行干扰 时隙重叠;
或者,
当存在至少两个 RS时, 若不同 RS的下行子帧头在时间上完全重叠同步, 且其下行子帧头内容 相同, 或者, 不同 RS的下行帧头时隙在时间上完全重叠同步, 且下行帧头时隙内容相同, RS的下 行帧头时隙不与其他 RS的下行干扰时隙重叠。
本发明中, 当 RS通过中转时隙进行信息的传递, 则所述的方法还包括:
所述 BS的下行中转区和 RS的下行中转区的时隙和频率关系一一对应,所述 BS的上行中转区和 RS的上行中转区的时隙和频率关系一一对应, 所述在 BS和 RS中设置的上行和下行中转区在每帧中 选择设置。
本发明中, 当 RS通过中转时隙进行信息的传递, 所述方法还包括:
在 BS的物理层帧结构的上行子帧中设置上行竞争时隙,该上行竞争时隙中包含初始测距竞争时 隙和带宽请求宽争时隙, 该上行竞争时隙在每帧中设置;
当 BS无法与 RS覆盖区域中的用户终端直接通信时, '在 RS的物理层帧结构的上行子帧中设置上 行竞争时隙, 该上行竞争时隙中包含初始测距竞争时隙和带宽请求竞争时隙; 若 RS中设置有两个无 线收发机, 则在 RS与用户终端对应的收发机的物理层帧结构中设置所述的上行竞争时隙。
所述的方法还包括: 在 RS的物理层帧结构中设置上行竞争发送时隙, 用于定义 RS发送的用于 竞争 BS的上行竞争时隙的时隙, 该上行竞争发送时隙和所述 BS的上行竞争时隙的频率完全重叠同 步, 且该上行竞争时隙在每帧中设置; 若 RS中设置有两个无线收发机, 则在 RS与 BS对应的收发机 的物理层帧结构中设置所述的上行竞争发送时隙。
本发明中, 当 RS存在两个无线收发机时, 所述的方法还包括:
当 RS中存在两个 OFDMA- FDD无线收发机时,
在 BS或 RS中与用户终端对应的无线收发机的物理层帧结构的下行子帧中, 除下行子帧头、 BS 的下行中转区和 RS中与用户终端对应的 OFDMA- FDD无线发射机在 BS的下行子帧头、 BS的下行中转 区的对应期间外, BS和不同的 RS通过不同的子信道和 0FDMA符号组合共享下行子帧的余下部分; 和 /或, 在 BS或 RS中与用户终端对应的 OFDMA- FDD无线收发机物理层帧结构的上行子帧中, 除 BS 的上行中转区和 RS中与用户终端对应的 0FDMA-FDD无线接收机在 BS的上行中转区对应期间外, BS 和不同的 RS通过不同的子信道和 0FDMA符合组合共享上行子帧的其余部分;
当 RS中存在两个 TDD无线收发机时,
在所述 BS或 RS中与用户终端对应的 TDD无线收发机的物理层帧结构的下行子帧中,除下行子帧头 和 BS的下行中转区外, BS和不同的 RS通过不同的子信道和 0FDMA符号组合共享下行子帧的其余部分; 和 /或, 在 BS或 RS中与 BS对应的 TDD无线收发机的物理层帧结构的上行子帧中, 除 BS的上行中转区外, BS和不同的 RS通过不同的子信道和 OFDMA符号组合共享上行子帧的其余部分,且所述的下行子帧头和 测距子信道设置为存在于 BS和 RS每一帧中, 所述的下行中转区、上行中转区、下行中转广播子信道、 中转测距子信道、 下行子帧头接收则不设置为存在于每一帧中。
所述的 BS或 RS的下行子帧到 BS的上行子帧间至少预留发送 /接收转换间隙 TTG时长, 和 /或, BS或 RS的上行子帧到 BS的下行子帧间至少预留接收 /发送转换间隙 RTG时长; 而且, 对于 BS和用 户终端可以直接通信的情况, 在 BS的 TTG期间, RS不能安排任何发送子信道和 0FDMA符号组合; 在 BS的 RTG期间, RS不能安排任何接收子信道和 0FDMA符号组合。
所述的 BS、 RS和用户终端之间采用 FDD或 TDD方式进行无线中转通信。
本发明还提供了一种无线中转通信的实现方法, 包括:
由 BS到用户终端的下行通信过程:
在 BS的下行子帧中, BS向 RS发送数据, RS通过 RS的 FDD无线接收机接收所述数据;
RS通过 RS的 FDD无线发射机的下行子帧转发所述接收到的数据给用户终端;
由用户终端到 BS的上行通信过程:
用户终端在除 BS 的上行中转区对应期间外的时频区间或时隙发送上行通信数据, RS接收用户 终端发来的数据;
RS通过下行子帧的上行中转区发送上行中转通信数据给 BS, BS在上行子帧中接收所述的上行 中转通信数据。
所述的 BS向 RS发送数据的处理具体包括:
BS在下行子帧的下行子帧头中发送前导码, RS通过下行子帧头接收子信道接收该前导码, 并与 BS取得同步;
BS在下行子帧中发送了所述前导码后, 发送 FCH、 DL- MAP和 UL- MAP信息, RS通过下行子帧头 接收子信道接收该 FCH、 DL-MAP和 UL-MAP信息, 获得 BS下行和上行各个 burst的子信道和 0FDMA 符号组合位置或时隙位置, 以及使用方法信息;
BS利用下行子帧的下行中转区的下行中转广播发送广播消息, BS在下行子帧的下行中转区的下 行中转 RS中发送下行中转通信数据给 RS , RS通过下行中转广播子信道接收所述广播消息, RS通过 RS的下行中转区接收所述下行中转通信数据。
所述的 RS通过下行子帧转发接收到的数据的处理具体包括:
在 RS的下行子帧的下行子帧头中发送前导码, 用户终端接收该前导码, 并与 RS取得同步;
RS在下行子帧中发送 FCH、 DL-MAP > UL- MAP信息, 该 FCH、 DL - MAP、 UL- MP信息可以由 BS发 送给 RS, 用户终端接收该 FCH、 DL-MAP, UL- MAP信息, 获得 RS下行和上行各个 burst的子信道和 0FDMA符号组合位置或时隙位置, 以及使用方法信息;
RS在下行子帧的除下行子帧头、 下行中转区外的时频区间发送下行中转通信数据给用户终端, 所述的中转通信数据由 BS发送给 RS , 用户终端从相应时频区间接收该下行中转通信数据;
或者,
用户终端接收 BS的下行子帧的下行子帧头中的前导码, 与 BS取得同步, 用户终端接收 BS的下 行子帧的下行子帧头中的 FCH、 DL-MAP和 UL- MAP信息, 获得 BS和 RS的下行和上行各个 burst的子 信道和 OFDMA符号组合位置或时隙位置, 以及使用方法信息;
RS在下行子帧中, 除下行子帧头、 下行中转区外的时频区间或时隙发送下行中转通信数据给用 户终端, 所述的中转通信数据由 BS发送给 RS, 用户终端从相应时频区间或时隙接收该下行中转通 信数据。
所述的 RS接收用户终端发来的数据的处理具体包括:
用户终端接收到所述 FCH、 DL- MAP、 UL- MAP信息后, 获得 RS的下行和上行各个 burst的子信道 和 0FDMA符号组合位置或时隙位置, 以及使用方法信息, 用户终端在 RS的上行子帧中, 在除 BS的 上行中转区对应期间外的时频区间或时隙发送上行通信数据给 RS , RS从相应时频区间或时隙接收该 上行通信数据;
或者, '
用户终端接收到所述 BS的下行子帧的下行子帧头的 FCH、 DL-MAP, UL-MAP信息后, 获得 BS和 RS的下行和上行各个 burst的子信道和 OFDMA符号组合或时隙位置, 以及使用方法信息, 用户终端 在 RS的上行子帧, 除 BS的上行中转区对应期间外的时频区间或时隙发送上行通信数据给 RS, RS从 相应时频区间或时隙接收该上行通信数据。
所述的 BS在上行子帧中接收上行中转通信数据的处理具体包括:
RS的接收 BS的下行子帧的下行子帧头的 FCH、 DL- MAP和 UL-MAP信息, 获得 BS下行和上行各 个 burst的子信道和 0FDMA符号组合位置或时隙位置, 以及使用方法信息;
RS在下行子帧的上行中转区的上行中转 RS中发送上行中转通信数据给 BS , 所述的中转通信数 据是由 BS发送给 RS, BS在上行子帧的上行中转区的上行中转 RS中接收该上行中转通信数据。
若 RS中设置有两个无线收发机, 所述的方法还包括:
若所述的两个无线收发机分别与 BS和用户终端对应,则在 RS与用户终端之间 RS使用第一无线 收发机进行信息的收发, 在 RS与 BS之间 RS使用第二无线收发机进行信息发收发;
若所述的两个无线收发机分别采用不同的频率对应由 BS 至用户终端的信息传递及由用户终端 到 BS的信息传递过程, 则在 RS中使用第一频率接收 BS发来的信息, 并通过第一频率中转发送给用 户终端, 使用第二频率接收用户终端发来的信息, 并通过第二频率中转发送给 BS。
由上述技术方案可以看出, 本发明的实现使得在无线通信系统中可以支持高级中转通信模式, 即 MSS/SS可以通过 RS进行无线中转接入 BS ,从而有效扩大了 BS的有效覆盖范围,并可以增加 MSS/SS 的吞吐量。 而且, 本发明还对中转通信过程中应用的上、 下行子帧进行了合理地设置, 从而可以有 效地避免无线中转通信过程中可能出现的各种干扰。
附图简要说明
图 1为包括 RS的通信系统示意图 1;
图 2为包括 RS的通信系统示意图 2
图 3为同频干扰模式示意图一;
图 4为 BS与 RS之间中转通信的模型示意图;
图 5为第一应用场景下的 BS和 RS的物理层帧结构示意图 1 ;
图 6为第一应用场景下的 BS和 RS的物理层帧结构示意图 2 ; 图 7为第一应用场景下的 BS和 RS的物理层帧结构示意图 3 ;
图 8为第一应用场景下的 BS和 RS的物理层帧结构示意图 4;
图 9为第一应用场景下的 BS和 RS的物理层帧结构示意图 5;
图 10为 OF丽 A通信系统模型示意图;
图 11为图 10的具体结构示意图;
图 12为第二应用场景下的 BS和 RS的物理层帧结构示意图一;
图 13为第二应用场景下的 BS和 RS的物理层帧结构示意图二;
图 14为第二应用场景下的 BS和 RS的物理层帧结构示意图三;
图 15为第二应用场景下的 BS和 RS的物理层帧结构示意图四;
图 16为上行单 RS情况的 RS和 BS、 MS/SS的通信系统模型示意图;
图 17为下行单 RS情况的 RS和 BS、 MS/SS的通信系统模型示意图;
图 18为同频干扰模式示意图二;
图 19为 BS和 RS高级中转通信模式示意图;
图 20为 BS和 RS简化中转通信模式示意图;
图 21为本发明提供的第三应用场景下的具体实现系统的结构示意图;
图 22为第三应用场景下的高级中转通信模式下的物理层帧结构示意图;
图 23为第三应用场景下的简化中转通信模式下的物理层帧结构示意图;
图 24为第三应用场景下的 BS和 RS的物理层帧结构示意图一;
图 25为第三应用场景下的 BS和 RS的物理层帧结构示意图二; ,
图 26为第四应用场景下的髙级中转通信模式示意图;
图 27为第四应用场景下的简化中转通信模式示意图;
图 28为本发明所述的第四应用场景下的系统的具体实现结构示意图;
图 29为同频干扰模式示意图三;
图 30为第四应用场景下的高级中转模式下的 BS和 RS的物理层帧结构示意图;
图 31为第四应用场景下的简化中转模式下的 BS和 RS的物理层帧结构示意图。
图 32为第五应用场景下的 BS和 RS的中转通信模式示意图一;
图 33为第五应用场景下的 BS和 RS的中转通信模式示意图二;
图 34为第五应用场景下的系统的具体实现结构示意图;
图 35为本发明提供的第五应用场景下的 BS和 RS的物理层帧结构示意图一;
图 36为本发明提供的第五应用场景下的 BS和 RS的物理层帧结构示意图二;
图 37为本发明所述基于单 FDD的通信系统中可能存在的同频干扰模式示意图;
图 38为第六应用场景下的 RS和 BS、 MS/SS的高级中转通信模式示意图;
图 39为第六应用场景下的 RS和 BS、 MS/SS的简化中转通信模式示意图;
图 40为第六应用场景下的 RS和 BS、 MS/SS的中转通信系统的功能框架示意图;
图 41为第六应用场景下的实现方案 1中的高级中转通信模式下的 BS和 RS的物理层帧结构示意图; 图 42为第六应用场景下的述实现方案 1中的简化中转通信模式下的 BS和 RS的物理层帧结构示意 图; ,
图 43为第六应用场景下的实现方案 2中一种高级中转通信模式下的 BS和 RS的物理层帧结构的实 施例示意图;
图 44为第六应用场景下的实现方案 3中一种高级中转通信模式下的 BS和 RS的物理层帧结构的实 施例示意图;
图 45为第七应用场景下的 RS和 BS、 MS/SS的中转通信系统的功能框架示意图;
图 46为第六应用场景下的高级中转通信模式下的 BS和 RS的物理层帧结构示意图;
图 47为第六应用场景下的简化中转通信模式下的 BS和 RS的物理层帧结构示意图。
实施本发明的方式
在具体实现过程中, 本发明所述的无线中转通信系统及方法可以根据采用的中转通信技术的不 同而具体采用不同的实现实例,例如, RS可以采用基于中转子信息和 0FDMA符号组合进行信息传递, 也可以采用中转时隙进行信息的传递, 而且, BS、 RS和 MS/SS之间可以基于 FDD技术或 TDD技术进 行中转通信。
为便于对本发明的理解, 下面将结合附图对本发明提供的各种应用场景下的具体实现方式进行 详细的说明。
第一种应用场景为: BS、 RS和 MS/SS中分别设置有 TDD收发机, 且 RS釆用设置的中转时隙进 行中转通信。 .
RS和 BS、 MS/SS的通信系统模型如图 1和图 2所示, 图 1中给出了单 RS情况系统模型, 图 2中给 出了多 RS的情况的系统模型。 在系统中 RS和 BS、 MS/SS间采用 TDD/TDM汀 DMA方式在同频点下 通信, MS/SS通过 RS进行无线中转接入 BS, RS作为一个 MS/SS接入 BS。
由于 TDD模式的网络系统采用同频通信, 则必然会存在如图 3 (a) -(d)所示的 4种情况的相互干 扰。 其中, TX表示发送模块, RX表示的接收模块。
本发明中, 将 BS和 RS的覆盖区域分成 3个区:
第一区 1为, 简称 1区: 仅 BS能覆盖, 不存在 RS到属于 BS的 MS/SS (图 1中的 MSBS)、 SS/MSRS 到 BS的干扰;
第三区 3为, 简称 3区: 仅 RS能覆盖, 不存在 BS到属于 RS的 MS/SS (图 1中的 MSRS)、 SS/MSBS 到 RS的干扰;
第二区 2为, 简称 2区: BS和 RS都能覆盖, 存在 RS到 SS/MSBS和 BS到 SS/MSRS的干扰, 也存在 SS/MSBS到 RS和 SS/MSRS到 BS的千扰。 例如, 在图 2中, BS和 RS1的重叠区为 RS1的第二区 2, 而 BS和 RS2的重叠区为 RS2的第二区 2。
BS和 RS的中转通信模式, 如图 4所示, 具体包括以下传送帧:
( 1 ) DLBS为 BS的物理层帧的下行帧, 由 BS到 SS/MSBS或 RS;
( 2) ULBS为 BS的物理层帧的上行帧,由 SS/MSBS或 RS到 BS, SS/MSBS和 BS保持同步, SS/MSBS 和 BS保持收发帧同步, RS和 BS除 Relay Zone、 TTG和 RTG外保持收发的时隙同步; (3) DLRS为 RS的物理层帧的下行帧, 由 BS到 SS/MSRS¾RS;
(4) ULRS为 RS的物理层帧的上行帧, 由 SS/MSRS或 RS到 BS, SS/MSRS和 RS保持收发帧同步。 基于上述各帧, BS便可以与 RS之间进行通信, 进而通过 RS中转后与 SS/MS之间通信; 同时, 还可以将 SS/MS发送给 BS的信息通过 RS中转发送, 从而有效提高无线通信系统的覆盖范围。
为使得 RS通过位于 BS与 SS/MS之间实现中转通信功能, 便需要定义相应的物理层帧结构, 同 时, 为保证通信的可靠性, 还需要合理地根据中转通信需求进行帧结构的定义, 只有定义了合理的 BS和 RS的物理层帧结构才能够使得基于 RS的中转通信顺利实现 , 并有效避免通信过程中可能产生 的干扰。 可以看出, BS和 RS的物理层帧结构的定义是实现基于 RS的中转通信的关键。 为此, 针对 上述 BS与 RS中转通信过程中的传送帧的需求, 下面将对各帧结构的定义进行详细说明。
为实现 RS在 BS与 SS/MS之间的中转通信功能, 首先需要在定义 BS和 RS的物理层的上、下行帧 结构, 具体为:
1、 在 BS的物理层帧结构的下行帧 DLBS中增加 DL Relay Zone (下行中转区) : 用于定义将由 BS传给 RS的 BS下行中转数据时隙;
2、 在 RS的物理层帧结构的上行帧 ULRS中增加 DL Relay Zone (下行中转区) : 用于定义将由 BS传给 RS的 BS下行中转数据时隙;
3、 在 BS的物理层帧结构的上行帧 ULBS中增加 UL Relay Zone (上行中转区) : 用于定义将由 RS传给 BS的 BS上行中转数据时隙;
4、 在 RS的物理层帧结构的下行帧 DLRS中增加 UL Relay Zone (上行中转区) : 用于定义将由 RS传给 BS的 BS上行中转数据时隙。
对于所述的 BS的 DL Relay Zone和 RS的 DL Relay Zone的时隙关系, 以及 BS的 UL Relay Zone 和 RS的 UL Relay Zone的时隙关系必须一一对应, 这样, 才能够保证 BS与 RS之间配合进行信息的 收发。
而且, 在 BS的 DL Rday Zone和 UL Relay Zone对应的期间, SS/MSBS和 SS/MSRS不安排任何 接收或发送时隙, 目的是为了避免 SS/MSBS到 RS和 SS/MSRS BS的干扰;
另外, 对于图 2所示的多 RS的情况, 多 RS采用 TDM的方式共享 UL Relay Zone。
本发明中为了 BS与 RS之间交互广播业务信息 ,还需耍在 BS和 RS的帧结构中的中转区进行如下 定义:
1、在 BS的物理层帧结构的下行子帧 DLBS的 DL Relay Zone中开辟 DL Relay Broadcast Slot (下 行中转广播时隙) , 简写为 DL RB: 用于定义由 BS广播给 RS的下行时隙, 广播 802.16标准定义的 DCD (下行信道描述符) 、 UCD (上行信道描述符) 、 FPC (快速功率控制) 、 CLK— CMP (时钟 比较) 广播报文;
2、 在 RS的物理层帧结构的上行帧 ULRS的 DL Relay Zone中开辟 DL Relay Broadcast RX Slot
(下行中转广播接收时隙) , 简写为 DL RB RX: 用于定义接收 BS下行中转广播时隙的 RS上行时 , 接收 802.16标准定义的 DCD、 UCD、 FPC, CLK— CMP广播报文。
本发明中为了避免 BS与 RS中转通信过程中的干扰,还需要针对 BS和 RS的物理层帧进行如下的 定义: .
1、 在 BS的物理层帧结构的下行帧 DLBS中定义 DL Interference Slot (下行干扰时隙) : 用于定 义 BS下行覆盖 1区和 2区的 BS下行数据时隙;
2、 在 RS的物理层帧结构的下行帧 DLRS中定义 DL Interference Slot (下行干扰时隙) : 用于定 义 RS下行覆盖 3区和 2区的 RS下行数据时隙。
在上述帧结构定义中, BS的 DL Interference Slot不能与 RS的 DL Interference Slot在时隙上相重 叠,
Figure imgf000014_0001
;
而且, 对于图 2所示的多 RS的情况, 多 RS釆用 TDM的方式共享 DL Interference Slot, 避免 RS 到 RS的干扰。
本发明中, 为实现基于 RS的中转通信, 还需要对 BS和 RS的物理层帧结构进行如下定义:
1、 在 BS的物理层帧结构的下行帧 DLBS中定义 DL Header Slot (下行帧头时隙, 其为下行子帧 的开始, 用于定义发送用户同步信息的时隙和发送指示信息的时隙, 以指示 BS物理层帧结构下行帧 和上行帧的各时隙的位置和使用方法 profile; 包含原 802.16 OFDM (或 SC)帧中的 preamble (前导 码) 、 FCH burst (帧控制头突发) 及由 DLFP (下行帧前缀) 指定的紧随在 FCH (帧控制头) 之后 的一个或多个下行 Burst, 所述的 Burst包括: DL- MAP (下行映射表) 和 UL-MAP (上行映射表) ; 另外, SS/MSBS、 RS和 BS保持收发帧同步, RS和 BS除 Relay Zone、 TTG (发送 /接收转换间隙) 和 RTG (接收 /发送转换间隙) 外保持收发的时隙同步;
2、 在 RS的物理层帧结构的下行帧 DLRS中定义 DL Header Slot (下行帧头时隙) : 为下行子帧 的开始, 用于定义发送用户同步信息的时隙和发送指示信息的时隙, 以指示 RS物理层帧结构下行帧 和上行帧的各时隙的位置和使用方法 profile; 包含原 802.16 OFDM (或 SC)帧中的 preamble、 FCH burst及由 DLFP指定的紧随在 FCH之后的一个或多个下行 Burst,包括 DL-MAP和 UL-MAP, SS/MSRS 和 RS保持收发帧同步;
其中, RS的 DL Header Slot在时间上滞后于 BS的 DL Header Slot, 且不能和 BS的物理层帧结 构的下行帧 DLBS的 DL Header Slot、 DL Delay Zone和 DL Interference Slot重叠。
RS的 DL Header Slot在时间上不能和其它 RS的物理层帧结构的下行帧 DLRS的 DL Header Slot、
UL Contention TX Slot (上行竞争接收时隙)、 DL Interference Slot (下行干扰时隙)和 UL Delay Zone 重叠, 避免 RS到 RS的干扰; 特殊情况下, 如果不同 RS的 DL Header Slot在时间上重叠, 则必须完 全重叠, 严格同步, 且其内容必须相同, 避免 RS到 RS的干扰。
同时,为便于 RS接收 BS的 DL Header Slot的时隙,本发明还在 RS的物理层帧结构的上行帧 ULRS 中定义 DL Header RX Slot (下行帧头接收时隙): 用于定义接收 BS的 DL Header Slo動时隙, 且要 求 BS的 DL Header Slot和 RS的 DL Header RX Slot的时隙关系必须完全重叠、 严格同步。
本发明中, 为避免上行干扰, 还需要对 BS和 RS的物理层帧结构做如下的定义, 即定义相应的 上行干扰时隙。
1、 在 BS的物理层帧结构的上行帧 ULBS中定义 UL Interference Slot (上行干扰时隙) : 用于定 义 BS上行覆盖 1区和 2区的 BS上行数据时隙; 2、 在 RS的物理层帧结构的上行帧 ULRS中定义 UL Interference Slot (上行干扰时隙) : 用于定 义 RS上行覆盖 3区和 2区的 RS上行数据时隙;
针对上述定义的 BS的 UL Interference Slot不能与 RS的 UL Interference Slot在时隙上相重叠,避 免 SS/MSBS到 RS和 SS/MSRS到 BS 的干扰;
而且, 对于图 2所示的多 RS的情况, 多 RS采用 TDM的方式共享 UL Interference Slot, 避免 RS 至 IJRS的干扰。
本发明中还定义了 BS和 RS的上行竞争时隙, 具体如下:
1、 在 BS的物理层帧结构的上行帧 ULBS中定义 UL Contention Slot (上行竞争时隙) , 其中, 包 含原 802.16 OFDM (或 SC) 帧中的包含了初始 Ranging (寻址) 竞争时隙和带宽请求竞争时隙;
2、 在 RS的物理层帧结构的上行帧 ULRS中定义 UL Contention Slot (上行竞争时隙) , 其中, 包 含原 802.16 OFDM (或 SC) 帧中的包含了初始 Ranging竞争时隙和带宽请求竞争时隙; 所述 RS的 UL Contention TX Slot不能与 BS的上行帧的上行中转区和 /或上行干扰时隙重叠。
在 RS的物理层帧结构的下行帧 DLRS中还定义了 UL Contention TX Slot (上行竞争发送时隙) : 用于定义 RS发送的用于竞争 BS的 UL Contention Slot的时隙;
上述定义的 BS的 UL Contention Slot和 RS的 UL Contention TX Slot的时隙关系必须完全重叠, 且严格同步。
在上述定义的各帧结构中, 除 DL Relay Zone和 UL Relay Zone外, BS的下行时隙不得和 RS的 上行时隙相重叠, BS的上行时隙也不得和 RS的下行时隙相重叠, 避免 SS/MSBS到 SS/MSRS和 SS/MSRS到 SS/MSBS及 BS至 1JRS 和 RS到 BS的干 $¾。
BS的下行帧 DLBS到 BS的上行帧 ULBS间至少预留 TTG时长; BS的上行帧 ULBS到 BS的下行帧
DLBd、 至少预留 RTG时长; RS的下行帧 DLRS®RS的上行帧 ULRS间至少预留 TTG时长; RS的上行 帧 ULRS到 RS的下行帧 DLRS间至少预留 RTG时长。
而且, 在上述定义的各帧结构中, 除 DL Header Slot和 UL Contention Slot外, 上述定义的 Slot 或 Zone不一定每帧都必须存在。
为便于理解本发明, 下面将结合具体的应用实例对本发明的具体实现方式进行详细说明。 本发明提供的第一种 BS和 RS的物理层帧结构实施例如图 5或图 6所示, 图 5为单 RS情况的示意 图, 图 6为多 RS情况的示意图。
BS下行帧 DLBS和 RS下行帧 DLRS中的黑色块标示的时隙为 DL Header Slot; BS上行帧 ULBS和 RS上行帧 ULRS中的黑色块标示的时隙为 UL Contention Slot;
RS的下行帧 DLRS中的白色细长块标示时隙为 UL Contention TX Slot, RS上行帧 ULRS中的白色 细长块标示的时隙 RX为 DL Header RX Slot。
BS下行帧 DLBS中的 TX时隙为 DL Interference Slot, BS下行覆盖 Ί区"和" 2区" ; BS上行帧 ULBS 中的 RX时隙为 UL Interference Slot, BS上行覆盖 Ί区"和" 2区";
RS下行帧 DLRS中的 ΤΧ时隙为 DL Interference Slot, RS下行覆盖" 3区"和" 2区" ; RS上行帧 ULRS 中的 RX时隙为 UL Interference Slot, RS上行覆盖" 3区"和" 2区"。 图 5和图 6中, BS的 DL Relay Zone安排在 BS下行帧 DLBS的 DL Header Slot之后, BS的 UL Relay Zone安排在 BS下行帧 DLBS的 UL Contention Slot之后。 BS的 DL Relay Zone和 RS的 DL Relay Zone 的时隙——对应; BS的 UL Relay Zone和 RS的 UL Relay Zone的时隙——对应; 在 BS的 DL Relay Zone和 UL Relay Zone对应的期间, MS不安排任何接收或发送时隙。
BS的 UL Interference Slot与 RS的 UL Interference Slot在时隙上不相重叠, 同时, BS的 DL
Interference Slot与 RS的 DL Interference Slot在时隙上不相重叠。
本发明中, 对于图 6所示的多 RS的情况, 多 RS采用 TDM的方式共享 DL Relay Zone (即图 6中 的 DL RB'DL Relay R#1、#2...部分)、 UL Relay Zone (即 UL Relay 1^#1,#2...部分)、01_ Interference Slot和 UL Interference Slot, 从而可以避免 RS到 RS的干扰
本发明提供的第二种 BS和 RS的物理层帧结构的具体实施例如图 7所示。
图 7中, RS的 UL Contention TX Slot隔帧出现, 如出现在第 N- 1帧 (FrameN-1 ) 、 第 N+1帧 ( FrameN+1 ) 、 第 N+3帧 (FrameN+3) 、 …的下行帧 DLRS中。
BS的 DL Relay Zone和 BS的 UL Relay Zone可以不安排在同一帧。 例如, BS的 DL Relay Zone 安排在第 贞 (FrameN ) 的下行帧 DLBS的末尾, 贝 ijRS的 DL Relay Zone安排在第 N帧 (FrameN ) 的上行帧 ULRS之首, 之后为 UL Contention Slot。 BS的 UL Relay Zone安排在第 N+1帧(FrameN+1 ) 的上行帧 ULBS的 UL Contention Slot之后。
BS的 DL Relay Zone和 RS的 DL Relay Zone的时隙——对应; BS的 UL Relay Zone和 RS的 UL Relay Zone的时隙——对应; 在 BS的 DL Relay Zone和 UL Relay Zone对应的期间, MS不安棑任何 接收或发送时隙。
本发明中, 基于前面描述的 BS和 RS的物理层帧结构, 其中还可以包括以下时隙的定义:
1、 在 BS的物理层帧结构的下行帧 DLBS中增.加 DL Non-interference Slot (下行无干扰时隙) : 用于定义 BS下行覆盖 Ί区"的 BS下行数据时隙;
2、 在 RS的物理层帧结构的下行帧 DLRS中增加 DL Non-Interference Slot (下行无干扰时隙) : 用于定义 RS下行覆盖" 3区"的 RS下行数据时隙;
其中, BS的 DL Non-interference Slot与 RS的 DL Non-interference Slot在时隙上可相重叠。
3、 在 BS的物理层帧结构的上行帧 ULBS中增加 UL Non-interference Slot (上行无干扰时隙) : 用于定义 BS上行覆盖 Ί区"的 BS上行数据时隙;
4、 在 RS的物理层帧结构的上行帧 ULRS中增力 nUL Non-interference Slot (上行无干扰时隙) : 用于定义 RS上行覆盖" 3区"的 RS上行数据时隙;
其中, BS的 UL Non-interference Slot与 RS的 UL Non-interference Slot在时隙上可相重叠。 此时, RS的 DL Header Slot在时间上滞后于 BS的 DL Header Slot, 且 RS的 DL Header Slot和 BS的 DL Header Slot不能重叠; RS的 DL Header Slot在时间上必须位于 BS的物理层帧结构的下行 帧 DLBS的 DL Non-interference Slot内;
而且, 不同 RS的 DL Header Slot在时间上不能和其它 RS的物理层帧结构的下行帧 DLR^ DL Header Slot, UL Contention TX Slot, DL Relay Zone和 DL Interference Slot重叠, 避免" RS到 RS" 的干扰; 特殊情况下, 如果不同 RS的 DL Header Slot在时间上重叠, 则必须完全重叠, 严格同步, 且其内容必须相同, 避免 RS到 RS的干扰;
基于上述包含下行无干扰时隙和上行无干扰时隙的 BS和 RS物理层帧, 本发明提供的第三种 BS 和 RS的物理层帧结构实施例如图 8所示, 其中:
BS下行帧 DLBS和 RS下行帧 DLRS中的黑色块标示的时隙为 DL Header Slot; BS上行帧 ULBS
RS上行帧 ULRS中的黑色块标示的时隙为 UL Contention Slot;
RS的下行帧 DLRS中的白色细长块标示的 TX时隙为 UL Contention TX Slot, RS上行帧 ULRS中的 白色细长块标示的 RX时隙为 DL Header RX Slot。
BS下行帧 DLBS中的 TX1时隙为 DL Non-interference Slot, BS下行覆盖 Ί区", TX时隙为 DL Interference Slot, BS下行覆盖 Ί区"和" 2区" ; BS上行帧 ULBS中的 RX1时隙为 UL Non- Interference Slot, BS上行覆盖" 1区", RX时隙为 UL Interference Slot, BS上行覆盖 Ί区"和" 2区";
RS下行帧 DLRS中的 TX3时隙为 DL Non-interference Slot, RS下行覆盖" 3区", TXB寸隙为 DL Interference Slot, RS下行覆盖" 3区"和" 2区"; RS上行帧 ULRS中的 RX3时隙为 UL Non-interference Slot, RS上行覆盖" 3区", RX时隙为 UL Interference Slot, RS上行覆盖 " 3区"和" 2区"。
BS的 DL Relay Zone安排在 BS下行帧 DLBS的 DL Header Slot之后, BS的 UL Relay Zone安排在
BS下行帧 DLBS的 UL Contention Slot之后。
BS的 DL Relay Zone和 RS的 DL Relay Zone的时隙——对应; BS的 UL Relay Zone和 RS的 UL Relay Zone的时隙——对应; 在 BS的 DL Relay Zone和 UL Relay Zone对应的期间, MS不安排任何 接收或发送时隙。
BS的 UL Interference Slot与 RS的 UL Interference Slot在时隙上不相重叠, BS的 DL
Interference Slot与 RS的 DL Interference Slot在时隙上不相重叠。
本发明中,所述的 BS和 RS的物理层帧结构中的干扰时隙还可以仅对 BS和 RS都能够覆盖的区域 (即所述的 2区) 进行定义, 具体如下:
1、 在 BS的物理层帧结构的下行帧 DLBS中定义 DL Interference Slot (下行干扰时隙) : 用于定 义 BS下行覆盖" 2区"的 BS下行数据时隙;
2、 在 RS的物理层帧结构的下行帧 DLRS中定义 DL Interference Slot (下行干扰时隙) : 用于定 义 RS下行覆盖" 2区"的 RS下行数据时隙;
3、 在 BS的物理层帧结构的上行帧 ULBS中定.义 UL Interference Slot (上行干扰时隙) : 用于定 义 BS上行覆盖" 2区"的 BS上行数据时隙;
4、 在 RS的物理层帧结构的上行帧 ULRS中定义 UL Interference Slot (上行干扰时隙) : 用于定 义 RS上行覆盖' '2区"的 RS上行数据时隙;
而且, 对于图 2所示的多 RS的情况, 多 RS之间釆用 TDM的方式共享 UL Interference Slot, 避免 "RS到 RS"的干扰;
基于上述 BS和 RS的物理层帧结构, 本发明提供的第四种 BS和 RS的物理层帧结构实施例如图 9 所示, 其中: BS下行帧 DLBS和 RS下行帧 DLRS中的黑色块标示的时隙为 DL Header Slot; BS上行帧 ULBS和 RS上行帧 ULRS中的黑色块标示的时隙为 UL Contention Slot;
RS的下行帧 DLRS中的白色细长块标示的 TX时隙为 UL Contention TX Slot, RS上行帧 ULRS中的 白色细长块标示的 RX时隙为 DL Header RX Slot。
BS下行帧 DLBS中的 TX1时隙为 DL Non-interference Slot, BS下行覆盖 Ί区", TX2时隙为 DL
Interference Slot, BS下行覆盖 " 2区" ; BS上行帧 ULBS中的 RX1时隙为 UL Non- Interference Slot, BS上行覆盖 Ί区", "RX2时隙"为 UL Interference Slot ( BS上行覆盖 "2区") ;
RS下行帧 DLRS中的 TX3时隙为 DL Non-interference Slot, RS下行覆盖" 3区", TX2时隙为 DL Interference Slot, RS下行覆盖" 2区" ; RS上行帧 ULRS中的 RX3时隙为 UL Non-interference Slot, RS上行覆盖" 3区", RX2时隙为 UL Interference Slot, RS上行覆盖 " 2区"。
BS的 DL Relay Zone安排在 BS下行帧 DLBS的 DL Header Slot之后, BS的 UL Relay Zone安排在 BS下行帧 DLBS的 UL Contention Slot之后。
BS的 DL Relay Zone和 RS的 DL Relay Zone的时隙——对应; BS的 UL Relay Zone和 RS的 UL Relay Zone的时隙——对应; 在 BS的 DL Relay Zone和 UL Relay Zone对应的期间, MS不安排任何 接收或发送时隙。
BS的 UL Interference Slot与 RS的 UL Interference Slot在时隙上不相重叠, BS的 DL Interference Slot与 RS的 DL Interference Slot在时隙上不相重叠。 BS的 DL Non-interference Slot与 RS的 DL Non-interference Slot在时隙上尽可能相重叠。 BS的 UL Non-interference Slot与 RS的 UL Non- Interference Slot在时隙上尽可能相重叠。
第二种应用场景为: BS、 RS和 MS/SS中分别设置有 TDD收发机, RS采用中转子信道和 0FDMA符 号组合进行中转通信。
针对该应用场景, 本发明主要是通过引入 TDM与 OFDMA相结合的机制, 定义 BS和 RS的物理层 帧结构。
本发明中, 中转模式通信系统的结构主要包括两种, 分别如图 4和图 10所示, 一种为高级中转模 式通信系统, 另一种为简化中转模式通信系统, 下面将分别对两系统模型进行说明。
(一) RS和 BS、 MS/SS间的高级中转模式通信系统模型如图 4所示, 这是一种通常通信系统模 型, 其中, RS和 BS、 MS/SS间采用 TDD/TDM/OFDMA方式在同频点下通信, MS/SS通过 RS进行 无线中转接入 BS, RS作为一个 MS/SS接入 BS。
(二) RS和 BS、 MS/SS的简化中转模式通信系统模型如图 10和图 1 1所示, 该中转模式为本发 明提供的一种通信系统模型, 其中, RS和 BS、 MS/SS间釆用 TDD/TDM/OFDMA方式在同频点下通 信, RS作为一个 MS/SS接入 BS。
该包括 BS、 RS和 SS/MS的简化中转模式的中转通信系统, 所述的 BS设置有与 RS和用户终端通 信的接口, 所述的 RS设置有与用户终端和 BS通信的接口, 所述的用户终端则分别设置有与 RS和 BS 通信的接口, 所述的 BS、 RS和用户终端之间通过所述接口通信, 如图 5所示:
其中, 所述的 BS包括: 有线传输处理单元: 能够与上一级设备 (如基站控制器) 或分别与一组基站设备建立通信, 并 与上一级设备或各基站设备之间进行信息的交互;
TDD无线收发机: 用于同 RS或 SS/MS以 TDD方式进行同频点 (如 l )无线通信, 由 TDD无线发 射机物理层单元、 TDD无线接收机物理层单元和 TDD无线收发机数据链路层单元组成, 分别为: TDD无线发射机物理层单元: 分别与 TDD充线收发机数据链路层及可与其通信的 RS或 SS/MS 中的无线接收机物理层单元进行同频点 (如 f1 ) 无线通信; 对于简化中转模式, 本单元对 DLBS的下 行子帧头广播 (如 Preamble、 FCH、 DL-MAP. UL-MAP) 采用比其它发送数据可靠性更高的信道 编码和调制方式 (如二进制相移键控 BPSK) , 或釆用比其它发送数据更高的发射功率, 直接由 BS 发给 MS/SS, 不通过 RS中转;
TDD无线接收机物理层单元: 分别与 TDD无线收发机数据链路层及可与其通信的 RS或 SS/MS 中的无线发射机物理层单元进行同频点 (如 f1 ) 无线通信;
TDD无线收发机数据链路层单元: 对来自 TDD无线接收机物理层单元或有线传输单元的数据, 作 TDD无线收发机数据链路层的数据处理后 , 转发给有线传输单元或 TDD无线发射机物理层单元。
所述的 RS包括:
TDD无线收发机: 用于同 BS或 SS/MS以 TDD方式进行同频点 (如 l )无线通信, 由 TDD无线发 射机物理层单元、 TDD无线接收机物理层单元和 TDD无线收发机数据链路层单元组成。
TDD无线发射机物理层单元: 分别与 TDD无线收发机数据链路层及可与其通信的 BS或 SS/MS 中的无线接收机物理层单元进行同频点 (如 l ) 无线通信;
TDD无线接收机物理层单元: 分别与 TDD无线收发机数据链路层及可与其通信的 BS或 SS/MS 中的无线发射机物理层单元进行同频点 (如 f1 ) 无线通信;
TDD无线收发机数据链路层单元: 对来自 TDD无线接收机物理层单元的数据, 作 TDD无线收发 机数据链路层的数据处理后, 转发给 TDD无线发射机物理层单元。
所述的 SS/MS包括:
TDD无线收发机: 用于同 RS或 BS以 TDD方式进行同频点 (如 l ) 无线通信, 由 TDD无线发射 机物理层单元、 TDD无线接收机物理层单元和 TDD无线收发机数据链路层单元组成。
TDD无线发射机物理层单元: 分别与 TDD无线收发机数据链路层及可与其通信的 RS或 BS无线 接收机物理层单元进行同频点 (如 l ) 无线通信; 对于简化中转模式, 本单元对 ULBS的上行随机接 入(Random Access)时隙(或称为竞争时隙 Contention slot) , 如初始 Ranging竞争时隙和带宽请 求竞争时隙, 或 MS/SS的初始接入测距 Ranging、 周期性测距 Ranging, 带宽请求通过 ULBS的测距 子信道 Ranging Subchannel, 采用比其它发送数据可靠性更高的信道编码和调制方式 (如二进制相 移键控 BPSK) ,或采用比其它发送数据更高的发射功率, 直接由 MS/SS发给 BS, 不通过 RS中转;
TDD无线接收机物理层单元: 分别与 TDD无线收发机数据链路层及可与其通信的 RS或 BS中的 无线发射机物理层单元进行同频点 (如 f1 ) 无线通信;
TDD无线收发机数据链路层单元: 对来自 TDD无线接收机物理层单元或用户的数据, 作 TDD无 线收发机数据链路层的数据处理后, 转发给用户或 TDD无线发射机物理层单元。 可以看出, 在图 1 1中, BS、 RS及 SS/MS中所述的各 TDD无线发射机物理层单元分别提供有与 其他实体中的 TDD无线接收机物理层单元通信的通信接口, 所述的各 TDD接收机物理层单元分别提 供有与其他实体中的 TDD无线发射机物理层单元通信的通信接口。
参照图 10所示, DLBS的下行子帧头广播, 如 Preamble (前导码)、 FCH (帧控制头)、 DL-MAP (下行映射表) 、 UL-MAP (上行映射表) , 直接由 BS发给 MS/SS, 不通过 RS中转; MS/SS的初 始接入测距 Ranging, 周期性测距 Ranging、 带宽请求通过 ULBS的测距子信道 Ranging Subchannel, 直接由 MS/SS发给 BS, 不通过 RS中转。
对于 DLBS的下行其它突发, 如数据报文或除 DL-MAP、 UL-MAP外的消息报文, 不能直接由 BS 发给 MS/SS, 必须通过 RS中转; ULBS的上行其它突发, 如除 MS/SS的初始接入测距 Ranging、 周期 性测距 Ranging. 带宽请求报文外, 不能直接由 MS/SS发给 BS , 必须通过 RS中转。
基于上述各子帧, BS便可以与 RS之间进行通信,进而通过 RS中转后与 SS/MS之间通信; 同时, 还可以将 SS/MS发送给 BS的信息通过 RS中转发送, 从而有效提高无线通信系统的覆盖范围。
另外, 本发明的实现还需要考虑到由于 TDD模式的网络系统采用同频通信所存在的如图 3 (a ) - ( d ) 所示的 4种情况的相互干扰。
基于上述中转通信需求, 为使得 RS通过位于 BS与 SS/MS之间实现中转通信功能, 便需要定义 相应的物理层帧结构, 同时, 为保证通信的可靠性, 还需要合理地根据中转通信需求进行帧结构的 定义, 只有定义了合理的 BS和 RS的物理层帧结构才能够使得基于 RS的中转通信顺利实现 ' 并有效 避免通信过程中可能产生的干扰。
可以看出, BS和 RS的物理层帧结构的定义是实现基于 RS的中转通信的关键。 为此, 针对上述 BS与 RS中转通信过程中的传送帧的需求, 下面将对各帧结构的定义进行详细说明。
为实现 RS在 BS与 SS/MS之间的中转通信功能, 首先需要在定义 BS和 RS的物理层的上、下行子 帧结构, 具体为:
1、在 BS的物理层帧结构的下行子帧 DLBS中釆用 TDM技术,增加 DL Relay Zone (下行中转区), 用于定义由 BS传给 RS的 BS下行中转子信道和 OFDMA符号组合;
对于多 RS的情况, 多 RS通过不同的子信道和 OFDMA符号组合共享 DL Relay Zone;
2、在 RS的物理层帧结构的上行子帧 ULRS中采用 TDM技术,增加 DL Relay Zone (下行中转区), 用于定义 RS接收 BS的 DL Relay Zone的中转子信道和 OFDMA符号组合;
对于多 RS的情况, 多 RS通过不同的子信道和 OFDMA符号组合共享 DL Relay Zone, 不同的 RS 只在 DL Relay Zone中相应的子信道和 OFDMA符号组合中接收 BS的中转数据, 其它子信道和 OFDMA符号组合不安排接收;
3、在 BS的物理层帧结构的上行子帧 ULBS中采用 TDM技术,增加 UL Relay Zone (上行中转区) , 用于定义由 RS传给 BS的 BS上行中转子信道和 OFDMA符号组合;
对于多 RS的情况, 多 RS通过不同的子信道和 OFDMA符号组合共享 UL Relay Zone;
4、在 RS的物理层帧结构的下行子帧 DLRS中釆用 TDM技术,增加 UL Relay Zone (上行中转区), 用于定义 RS接收 BS的 UL Relay Zone的中转子信道和 OFDMA符号组合; 对于多 RS的情况, 多 RS通过不同的子信道和 OFDMA符号组合共享 UL Relay Zone, 不同的 RS 只在 DL Relay Zone中相应的子信道和 OFDMA符号组合中发送 BS的中转数据, 其它子信道和 OFDMA符号组合不能安排发送;
需要说明的是, 在 BS的 DL Relay Zone和 UL Relay Zone对应的期间, SS/MSBS和 33/1 /131^不 安排任何接收或发送子信道和 OFDMA符号组合, 避免 SS/MSBS到 RS和 SS/MSRS到 BS的干扰。
本发明中为了 BS与 RS之间交互广播业务信息,还需要在 BS和 RS的帧结构中的中转区进行如下 定义:
1、 在 BS的物理层帧结构的下行子帧 DLBS的 DL Relay Zone中开辟 DL Relay Broadcast Subchannel (下行中转广播子信道), 用于定义由 BS广播给 RS的下行子信道和 OFDMA符号组合, 广播 802.16标准定义的 DCD (下行信道描述符)、 UCD (上行信道描述符)、 FPC (快速功率控制)、 CLK_CMP (时钟比较) 广播报文;
2、 在 RS的物理层帧结构的上行子帧 ULRS的 DL Relay Zone中开辟 DL Relay Broadcast Subchannel (下行中转广播子信道) , 用于定义接收 BS下行中转广播时隙的 RS上行子信道和 OFDMA符号组合, 接收广播 802.16标准定义的 DCD、 UCD、 FPC, CLK—CMP广播报文。 为便于 SS/MSS顺利接入 BS还需要在所述的还需要在 BS和 RS的帧结构中的中转区进行如下定 义:
1、 在 BS的物理层帧结构的上行子帧 ULBS的 UL Relay Zone中定义 Relay Ranging Subchannel (中转测距子信道, 简写为 RRS ) , 定义用于 RS的初始接入测距 Ranging, 周期性测距 Ranging、 带宽请求的 BS中转测距接收子信道和 OFDMA符号组合; 该中转测距子信道 RRS也可作为 SS/MSSBS的初始接入测距 Ranging, 周期性测距 Ranging、 带宽请求测距子信道用;
2、 在 RS的物理层帧结构的下行子帧 DLRS的 DL Relay Zone中定义 Relay Ranging TX Subchannel (中转测距子信道, 简写为 RRS TX) , 用于定义 RS的初始接入测距 Ranging、 周期性 测距 Ranging、 带宽请求的 RS中转测距发送子信道和 OFDMA符号组合;
其中, BS的 Relay Ranging Subchannel和 RS的 Relay Ranging TX Subchannel的时频关系必须 一一对应, 严格同步;
在 BS或 RS的物理层帧结构的下行子帧中, 除 DL Header (下行帧头) 、 BS的 DL Relay Zone 和 RS的 UL Relay Zone外, BS和不同的 RS通过不同的子信道和 OFDMA符号组合共享下行子帧的其 余部分, 避免 RS到 SS/MSRS、 RS到 SS/MSBS和 BS到 SS/MSRS 的干扰;
在 BS或 RS的物理层帧结构的上行子帧中, 除 DL Header RX、 RS的 DL Relay Zone和 BS的 UL Relay Zone外, BS和不同的 RS通过不同的子信道和 OFDMA符号组合共享上行子帧的其余部分, 避 免 SS/MSRS到 RS、 SS/MSBS到 RS 和 SS/MSRS到 BS 的干扰。 本发明中, 为实现基于 RS的中转通信, 还需耍对 BS和 RS的物理层帧结构进行如下定义: 1、 在 BS的物理层帧结构的下行子帧 DLBS中定义 DL Header (下行子帧头) , 为下行子帧的开 始, 用于定义发送用户同步信息的子信道和 OFDMA符号组合和发送指示信息的子信道和 OFDMA符 号组合, 以指示 BS物理层帧结构下行子帧和上行子帧的各子信道和 OFDMA符号组合的位置和使用 方法 profile。 包含原 802.16 OFDMA (或 SOFDMA)帧中的 preamble、 FCH 、 DL-MAP、 UL-MAP, SS/MSBS、 RS和 BS保持收发帧同步;
2、 在 RS的物理层帧结构的下行子帧 DLRS中定义 DL Header (下行子帧头) , 为下行子帧的开 始, 用于定义发送用户同步信息的子信道和 OFDMA符号组合和发送指示信息的子信道和 OFDMA符 号组合, 以指示 RS物理层帧结构下行子帧和上行子帧的各子信道和 OFDMA符号组合的位置和使用 方法 profile。 包含原 802.16 OFDMA (或 SOFDMA)帧中的 preamble、 FCH 、 DL-MAP、 UL-MAP, SS/MSR^i]RS保持收发帧同步;
其中, RS的 DL Header仅应用于图 4所示的高级中转模式, 且在时间上滞后于 BS的 DL Header; 在 RS的 DL Header期间, BS的下行子帧 (DLBS)不能安排任何发送子信道和 OFDMA符号组合, 避 免 BS到 33/1\/15|½的干扰;
在 RS的 DL Header期间, 其它 RS的物理层帧结构的下行子帧 DLRS不能安排任何发送子信道和 OFDMA符号组合, 避免 RS到 SS/MSRS的干扰; 特殊情况下, 如果不同 RS的 DL Header在时间上重 叠, 则必须完全重叠, 严格同步, 且其内容必须相同, 避免 RS到 SS/MSR^干扰;
3、 在 RS的物理层帧结构的上行子帧 ULRS中定义 DL Header RX (下行子帧头接收), 用于定义 接收 BS的 DL Header的子信道和 OFDMA符号组合;
在上述帧结构中, BS的 DL Header和 RS的 DL Header RX的时频关系必须一一对应、严格同步。 本发明中, 为实现基于 RS的中转通信, 还需要对 BS和 RS的物理层帧结构进行如下定义:
1、 在 BS的物理层帧结构的上行子帧 ULBS中定义 Ranging Subchannel (测距子信道) , 定义用 于 SS/MSSBS的初始接入测距 Ranging、 周期性测距 Ranging、 带宽请求的 BS测距接收子信道和
OFDMA符号组合;
2、 在 RS的物理层帧结构的上行子帧 ULRS中定义 Ranging Subchannel (测距子信道) , 定义用 于 SS/MSSRS的初始接入测距 Ranging、 周期性测距 Ranging、 带宽请求的 RS测距接收子信道和 OFDMA符号组合。
在上述定义的子帧结构中, 除 DL Relay Zone和 UL Relay Zone夕, BS的下行子帧不得和 RS的 上行子帧相重叠, BS的上行子帧也不得和 RS的下行子帧相重叠, 避免 SS/MSBS到 SS/MSRS 和 SS/MSRS到 SS/MSBS及 BS到 RS和 RS到 BS的干扰;
同时, BS的下行子帧 DLBS到 BS的上行子帧 ULBS间至少预留 TTG (发送 /接收转换间隙) 时长; BS的上行子帧 ULBS到 BS的下行子帧 DLBS间至少预留 RTG (接收 /发送转换间隙) 时长; RS的下行 子帧 DLRS到 RS的上行子帧 ULRS间至少预留 TTG时长; RS的上行子帧 ULRS到 RS的下行子帧 DLRS间 至少预留 RTG时长; 对于简化中转模式, 在 BS的 TTG期间, RS不能安排任何发送子信道和 OFDMA 符号组合; 在 BS的 RTG期间, RS不能安排任何接收子信道和 OFDMA符号组合。
而且, 除 DL Header^ Ranging Subchannel外, 上述定义的子信道和 OFDMA符号组合或 Zone 不一定每帧都必须存在。 在 OFDMA或 SOFDMA系统中, BS、 RS和 SS/MSS之间基于上述定义的子帧结构进行通信, 便 可以实现相应的中转通信, 并可以保证良好的通信效果, 以及各种中转通信需求。
为便于理解本发明, 下面将结合具体的应用实例对本发明的具体实现方式进行详细说明。 本发明提供的第一种 BS和 RS的物理层帧结构实施例如图 12或图 13所示, 图 12为高级中转模式 下的示意图, 图 13为简化中转模式下的示意图。
图中, NULL或空白部分为不安排任何接收或发送的部分。 其中, BS下行子帧 DLBS和 RS下行子 帧 DLRS中的 DL Header为图 12和图 13中 BS的 Preamble和 DL- MAP、 UL- MAP区域; RS上行子帧 ULRS 中的 DL Header RX为图 12和图 13中 RS的 Preamble和 DL- MAP、 UL- MAP区域。
BS的 DL Relay Zone (即 DL Relay broadcast, DL Relay R#1, #2…部分)安排在 BS下行子帧 ( DLBS) 的 DL Header之后, BS的 UL Relay Zone (即 UL Relay R#1, #2...和 RRS TX部分) 安排 在 BS下行子帧 DLBS的开始部分。在 BS的 DL Relay Zone和 UL Relay Zone对应的期间, MS不安排任 何接收或发送子信道和 OFDMA符号组合。
对于简化中转模式, 在 BS的 TTG期间, RS不能安排任何发送子信道和 OFDMA符号组合; 在 BS 的 RTG期间, RS不能安排任何接收子信道和 OFDMA符号组合。
PHY突发 ( burst)被分配了一组相邻的子信道和一组 OFDMA符号 (symbol), BS和不同的 RS通 过不同的子信道和 OFDMA符号组合共享下行子帧的其余部分。
本发明还提供了另外一种 BS和 RS的物理层帧结构实施例, 如图 14和图 15所示, 其中, 图 14为 高级中转模式下的物理层帧结构, 图 15为简化中转模式下的物理层帧结构。
BS的 RRS和 RS的 RRS TX隔帧出现,如出现在第 N- 1帧(FrameN- 1 )、第 N+1帧(FrameN+1 )、 第 N+3帧 (FrameN+3 ) …的下行子帧 DLRS中。
BS的 DL Relay Zone和 BS的 UL Relay Zone可以不安排在同一帧。 例如, BSS勺 DL Relay Zone 安排在第!\1帧(FrameN ) 的下行子帧 DLBS的末尾, 贝 ijRS的 DL Relay Zone安排在第1\1帧(FrameN ) 的上行子帧 ULRS之首。 BS的 UL Relay Zone安排在第 N+1帧 (FrameN+1 ) 的上行子帧 ULBS之首, RS的 UL Relay Zone安排在第 N+1帧(FrameN+1 )的下行子帧 DLBS的末尾。在 BS的 DL Relay Zone 和 UL Relay Zone对应的期间, MS不安排任何接收或发送子信道和 OFDMA符号组合。
对于简化中转模式, 在 BS的 TTG期间, RS不能安排任何发送子信道和 OFDMA符号组合; 在 BS 的 RTG期间, RS不能安排任何接收子信道和 OFDMA符号组合。
下面将再结合具体的通信过程应用实例对本发明进行说明。
本发明中相应的中转流程如下:
(―) 、 下行中转 Downlink relay
所述下行中转分为两个阶段,第一阶段为: 由 BS到 RS的通信过程,第二阶段为: 由 RS到 SS/MS 的通信过程; 其中, 对于第一阶段来说, 在图 4、 图 10和图 11所示的高级中转模式和简化中转模式 中相应的中转处理方式完全相同, 而对于第二阶段来说, 则在高级中转模式和简化中转模式中相应 的中转处理方式却各不相同, 下面将分别对两个阶段的处理进行说明。
其中, 第一阶段 (BS->RS ) 的处理过程包括: 1、 BS在下行子帧 DLBS"DL Header"中的第一个符号 symbol或时隙发送前导码 preamble;
2、 RS#1通过 RS上行子帧 ULRS中" DL Header RX"接收 BS下行子帧 DLBS"DL Header"中的前导 码 preamble, 和 BS取得同步;
3、 BS在下行子帧 DLBS"DL Header" preamble之后中发送 FCH, DL-MAP, UL-MAP ; 4、 RS#1通过 RS上行子帧 ULRS中" DL Header RX"接收下行子帧 DLBS"DL Header" 的 FCH,
DL-MAP, UL-MAP, 获得 BS下行和上行各个 burst (突发) 的时隙、 子信道和 /或 OFDMA符号位置 和使用方法 (profile) 信息;
5、 BS利用下行子帧 DLBS"DL Relay Zone"的" DL Relay broadcast"发送广播消息 message;
6、 BS在下行子帧 DLBS"DL Relay Zone"的 " DL Relay RS#1 " 中发送下行中转通信数据 traffic data给 RS#1 ;
7、 RS#1通过 RS上行子帧 ULRS中" DL RB" 接收 BS下行子帧 (DLBS) "DL Relay Zone"的" DL Relay broadcast"中的广播消息 message , 其中可以包含需要 RS#1中转广播的消息;
8、 RS#1通过 RS上行子帧 ULRS中 "DL Relay Zone"接收 BS下行子帧 DLBS"DL Relay Zone"的 "DL Relay RS#1 " 中下行中转通信数据 traffic data。
所述的第二阶段 (RS- >MS/SS) 包括:
( 1 ) 对于高级中转模式的处理
1、 RS#1在下行子帧 DLRS"DL Header"中的第一个符号 symbol或时隙发送前导码 preamble;
2、 MS/SS接收 RS#1下行子帧 DLRS"DL Header"中的前导码 preamble, 和 RS#1取得同步
3、 RS#1 在下行子帧 DLRS"DL Header" preamble之后中发送 FCH, DL-MAP, UL-MAP (RS # 1的 FCH, DL-MAP, UL- MAP可以已在第一阶段的步骤 6中由 BS发送给 RS #1 ) ;
4、 MS/SS接收下行子帧 DLRS"DL Header" 的 FCH, DL-MAP, UL-MAP, 获得 RS#1下行和 上行各个 burst的时隙、 子信道和 /或 OFDMA符号位置和使用方法 (profile) 信息;
5、 RS#1 在下行子帧 DLRS中, 在除 DL Header、 DL Relay Zone外的时频区间, 发送下行中转 通信数据 traffic data (在步骤 6中已由 BS发送给 RS #1 ) 给 MS/SS;
6、 MS/SS从相应时频区间接收 RS#1下行子帧 DLRS中的下行中转通信数据 traffic data。
(2) 对于简化中转模式的处理
1、 MS/SS接收 BS下行子帧 DLBS"DL Header"中的前导码 preamble, 和 BS取得同步;
2、 MS/SS接收 BS下行子帧 DLBS"DL Header" 的 FCH, DL-MAP, UL-MAP, 获得 BS和 RS#1 下行和上行各个 burst的时隙、 子信道和 /或 OFDMA符号位置和使用方法 (profile) 信息;
3、 RS#1 在下行子帧 DLRS中, 在除 DL Header、 DL Relay Zone外的时频区间, 发送下行中转 通信数据 traffic data (在步骤 6中已由 BS发送给 RS #1 ) 给 MS/SS;
4、 MS/SS从相应时频区间接收 RS#1下行子帧 DLRS中的下行中转通信数据 traffic data。
(二) 、 上行中转 Uplink relay
所述上行中转分同样为两个阶段, 第一阶段为: 由 SS/MS到 RS的通信过程, 第二阶段为: 由 RS到 BS的通信过程; 其中, 对于第一阶段来说, 在图 3至图 5所示的高级中转模式和简化中转模式 中相应的中转处理方式各不相同, 而对于第二阶段来说, 则在高级中转模式和简化中转模式中相应 的中转处理方式完全相同, 下面将分别对两个阶段的处理进行说明。
其中, 第一阶段 (MS/SS - >RS) 的处理过程包括:
( 1 ) 对于高级中转模式的处理
1、 MS/SS接收 RS#1下行子帧 DLRS"DL Header" 的 FCH, DL-MAP, UL-MAP, 获得 RS#1 下行和上行各个 burst的子信道和 OFDMA符号位置和使用方法 ( profile ) 信息;
2、 MS/SS在 RS上行子帧 ULRS中, 在除 DL Header RX、 UL Relay Zone外的时隙, 发送上行通 信数据 traffic data给 RS#1;
3、 RS#1从相应时隙接收 MS/SS上行子帧 ULRS中的上行通信数据 traffic data。
( 2 ) 对于简化中转模式的处理
1、 MS/SS接收 BS下行子帧 DLBS"DL Header" 的 FCH、 DL-MAP ^ UL-MAP, 获得 BS和 RS#1 下行和上行各个 burst的子信道和 OFDMA符号位置和使用方法 (profile) 信息;
2、 MS/SS在 RS上行子帧 ULRS中, 在除 DL Header RX、 UL Relay Zone夕卜的时隙, 发送上行通 信数据 traffic data给 RS#1;
3、 RS#1从相应时隙接收 MS/SS上行子帧 ULRS中的上行通信数据 traffic data。
所述的第二阶段 (RS- >BS) 的处理包括:
1、 RS#1 接收 BS下行子帧 DLBS"DL Header" 的 FCH, DL-MAP, UL-MAP, 获得 BS下行和 上行各个 burst的子信道和 OFDMA符号位置和使用方法 (profile) 信息;
2、 RS#1在 RS下行子帧 DLRS"UL Relay Zone"的 "UL Relay RS#1"中发送上行中转通信数据 traffic data (在步骤 2中已由 BS发送给 RS #1 ) 给 BS;
3、 BS在上行子帧 ULBS"UL Relay Zone"的 "UL Relay RS#1 "中接收步骤 2中的上行中转通信 数据 traffic data。
第三种应用场景为: RS中包含两个分别与 BS和 MS对应的 TDM/TDMA-FDD无线收发机, 且 RS通 过中转时隙进行信息的传递。
对于包含 RS和 BS、 MS/SS的通信系统模型如图 16、 图 17和图 2所示, 图 16为下行单 RS的情况, 图 17为上行单 RS的情况,图 2则为多 RS的情况。在该通信系统模型中, RS和 BS、 MS/SS间釆用 TDM (时分复用) TDMA (时分复用接入) -FDD方式通信, BS和 RS下行采用频率 f2, BS和 RS上行采 用频率 l , 从而实现频分双工, 即 FDD。 其中, RS作为一个 MS/SS接入 BS, 对于高级中转模式, MS/SS通过 RS进行无线中转接入 BS。 在 FDD模式下, 网络系统通信可能会存在如图 18 (a) - (d) 所示的 4种情况的相互干扰。 其中, TX表示发送模块, RX表示接收模块。
为便于后续描述, 在图 2、 图 16和图 17中, 将 BS的覆盖区域分成 3个区:
1区: 仅 BS能下行覆盖, 不存在 RS到属于 BS的 MS/SS (图 16中为 MSBS) 的干扰;
2区: BS和 RS都能下行覆盖, 存在 "RSIIJSS/MSBS"禾 P"BS到 SS/MSrs" 的干扰;
3区: 仅 RS能下行覆盖, 不存在 BS到属于 RS的 MS/SS (图 16中为 MSRS) 的干扰。
在图 4中, BS和 RS1的重叠区为 RS1的 2区, 而 BS和 RS2的重叠区为 RS2的 2区。 本发明还将 RS的覆盖区域分成 3个区:
11区: 仅 BS能上行覆盖, 不存在 "SS/MSR^ljBS"的干扰;
22区: BS和 RS都能上行覆盖, 存在 "SS/MSBS到 RS"和" SS/MSRS¾BS" 的干扰;
33区: 仅 RS能上行覆盖, 不存在 "SS/MSBS到 RS"的干扰。
在图 2中, BS和 RS1的重叠区为 RS1的 22区, 而 BS和 RS2的重叠区为 RS2的 22区。 下面将结合附图对本发明提供的中转通信系统进行说明, 本发明具体包括高级中转通信模式下 的通信系统和简化中转通信模式下的通信系统。
本发明提供的 RS和 BS、 MS/SS高级中转通信模式如图 19所示, 在高级中转通信模式下, BS无 法与 RS覆盖区域中的用户终端直接通信。 在图 19中, 所述的 RS需有两套 FDD无线收发机: 第一套 发射机 TX1工作于频率 l, 接收机 RX1工作于频率 f2; 第二套发射机 TX2工作于频率 f2, 接收机 RX2 工作于频率 fl。 DLBS为 BS的物理层帧的下行帧, 由 BS到 SS/MSBS (BS覆盖下的用户终端) 或 RS, ULBS为 BS的物理层帧的上行帧, 由 SS/MSBS或 RS到 BS, SS/MSBS、 RS的第二套无线收发机和 BS 保持收发帧同步; DLRS为 RS的物理层帧的下行帧, 由 BS到 SS/MSRS ( RS覆盖下的用户终端)或 RS, ULRS为 RS的物理层帧的上行帧, 由 SS/MSRS或 RS到 BS, SS/MSR^DRS的第一套无线收发机保持 收发帧同步。
而且, 本发明所述的系统中的 BS、 RS和 SS/MS之间基于 OFDM (正交频分复用) 技术实现中 转通信。
本发明提供的 RS和 BS、' MS/SS简化中转通信模式如图 20所示。 在简化中转通信模式下, BS可 以与 RS覆盖区域中的用户终端 (即 SS/MSRS) 直接通信。 在图 20中, 所述的 RS需有两套 FDD无线 收发机: 第一套发射机 TX1工作于频率 l , 接收机 RX1工作于频率 f2; 第二套发射机 TX2工作于频率 f2, 接收机 RX2工作于频率 l。 DLBS为 BS的物理层帧的下行帧, 由 BS到 SS/MSBS或 RS, ULBS为 BS 的物理层帧的上行帧, 由 SS/MSBS或 RS到 BS; SS/MSBS或 SS/MSRS、 RS的第二套无线收发机和 BS 保持收发帧同步。 DLRS为 RS的物理层帧的下行帧, 由 BS到 SS/MSRS或 RS, ULRS为 RS的物理层帧 的上行帧, 由 SS/MSRS或 RS到 BS。
其中, DLBS的下行广播突发 (Broadcast Burst) , 如 Preamble、 FCH、 DL-MAP、 UL-MAP, 直接由 BS发给 MS/SSRS, 不通过 RS中转; ULBS的上行随机接入 (Random Access) 时隙 (或称为 竞争时隙 Contention slot) , 如初始 Ranging竞争时隙和带宽请求竞争时隙, 直接由 MS/SS发给 BS, 不通过 RS中转; 对于 DLBS的下行其它突发, 如数据报文或除 DL-MAP、 UL- MAP外的消息报文, 不 能直接由 BS发给 MS/SSRS, 必须通过 RS中转; ULBS的上行其它时隙, 如除初始 Ranging竞争时隙和 带宽请求竞争时隙外的时隙, 不能直接由 MS/SSRS发给 BS, 必须通过 RS中转交互。
下面将结合附图对两系统的详细实现结构进行说明。
本发明提供了一种 BS、 RS和 SS/MS中转通信系统, 分别采用两种通信模式: 高级中转模式和 简化中转模式, 具体如图 21所示。 .
其中, 所述的 BS的具体结构包括: 有线传输处理单元: 能够与上一级设备 (如基站控制器) 或分别与一组基站设备建立通信, 并 与上一级设备或各基站设备之间进行信息的交互;
TDM TDMA-FDD无线收发机: 用于同 RS或 SS/MS以 TDM/TDMA-FDD方式进行无线通信, 具 体由 TDM-FDD无线发射机物理层处理单元、 TDMA-FDD无线接收机物理层处理单元和 TDM-TDMA 无线收发机数据链路层处理单元组成, 其中:
TDM-FDD无线发射机物理层处理单元 (频率为 fl ) : 分别与 TDM-TDMA无线收发机数据链路 层及可与其通信的 RS中的 TDM- FDD无线接收机 1物理层处理单元或 SS/MS中的 TDM- FDD无线接收 机物理层处理单元进行无线通信; 对于简化中转模式, 本单元对 DLBS的下行子帧头广播 (如 Preamble^ FCH、 DL-MAP、 UL-MAP )釆用比其它发送数据可靠性更高的信道编码和调制方式(如 二进制相移键控 BPSK) , 或釆用比其它发送数据更髙的发射功率, 直接由 BS发给 MS/SS, 不通过 RS中转;
TDMA- FDD无线接收机物理层处理单元(频率为 f2) : 分别与 TDM- TDMA无线收发机数据链路 层及可与其通信的 RS中的 TDMA-FDD无线发射机 1物理层处理单元或 SS/MS中的 TDMA-FDD无线 发射机物理层处理单元进行无线通信;
TDM- TDMA无线收发机数据链路层处理单元:对来自 TDMA- FDD无线接收机物理层处理单元或 有线传输处理单元的数据, 作 TDM-TDMA无线收发机数据链路层的数据处理后, 转发给有线传输处 理单元或 TDM-FDD无线发射机物理层处理单元。
图中, 所述的 RS具体包括:
TDM TDMA-FDD无线收发机 1和 2:用于同 BS或 SS/MS以 TDM/TDMA-FDD方式进行无线通信, 具体由 TDM- FDD无线发射机 1和 TDMA- FDD无线发射机 2的物理层处理单元、 TDMA-FDD无线接收 机 1和 TDM- FDD无线接收机 2的物理层处理单元和 TDM- TDMA无线收发机数据链路层处理单元组 成,所述的 TDM-FDD无线发射机 1和 TDMA-FDD无线接收机 1的物理层处理单元组成第一 TDM/TDM A-FDD无线收发机, 所述的 TDMA- FDD无线发射机 2和 TDM-FDD无线接收机 2的物理层处理单元组 成第二 TDM/TDMA-FDD无线收发机。 其中:
TDMA- FDD无线发射机 2物理层处理单元 (频率为 f2 ) , 即第二 TDMA-FDD无线发射机物理层 处理单元: 分别与 TDM-TDMA无线收发机数据链路层及可与其通信的 BS中的 TDMA- FDD无线接收 机物理层处理单元进行无线通信;
TDM- FDD无线发射机 1物理层处理单元(频率为 fl ), 即第一 TDM- FDD无线发射机物理层处理 单元: 分别与 TDM- TDMA无线收发机数据链路层及可与其通信的 SS/MS中的 TDM-FDD无线接收机 物理层处理单元进行无线通信;
TDM-FDD无线接收机 2物理层处理单元 (频率为 l ) , 即第二 TDMA- FDD无线接收机物理层处 理单元: 分别与 TDM-TDMA无线收发机数据链路层及可与其通信的 BS中的 TDM- FDD无线发射机物 理层处理单元进行无线通信; .
TDMA-FDD无线接收机 1物理层处理单元 (频率为 f2) , 即第一 TDMA-FDD无线接收机物理层 处理单元:分别与 TDM- TDMA无线收发机数据链路层及可与其通信的 SS/MS中的 TDMA- FDD无线发 射机物理层处理单元进行无线通信;
TDM-TDMA无线收发机数据链路层处理单元: 对来自 TDM- FDD无线接收机 1和 /或 TDMA-FDD 无线接收机 2物理层处理单元的数据, 作 TDM-TDMA无线收发机数据链路层的数据处理后, 转发给 TDM- FDD无线发射机 1和 /或 TDMA-FDD无线发射机 2物理层处理单元。
图中, 所述的 SS/MS具体包括:
TDM/TDMA-FDD无线收发机: 用于同 RS'或 BS以 TDM/TDMA- FDD方式进行无线通信, 由 TDMA-FDD无线发射机物理层处理单元、 TDM- FDD无线接收机物理层处理单元和 TDM- TDMA无线 收发机数据链路层处理单元组成。
TDMA-FDD无线发射机物理层处理单元:分别与 TDM-TDMA无线收发机数据链路层及可与其通 信的 RS中 TDMA- FDD无线接收机 1物理层处理单元或 BS TDMA-FDD无线接收机物理层处理单元进 行无线通信; 对于简化中转模式, 本单元对 ULBS的上行随机接入(Random Access) 时隙(或称为 竞争时隙 Contention slot) , 如初始 Ranging竞争时隙和带宽请求竞争时隙, 或 MS/SS的初始接入测 距 Ranging、 周期性测距 Ranging, 带宽请求通过 ULBS的测距子信道 Ranging Subchannel, 采用比 其它发送数据可靠性更高的信道编码和调制方式(如二进制相移键控 BPSK), 或釆用比其它发送数 据更高的发射功率, 直接由 MS/SS发给 BS, 不通过 RS中转;
TDM-FDD无线接收机物理层处理单元: 分别与 TDM-TDMA无线收发机数据链路层及可与其通 信的 RS中 TDM- FDD无线发射机 2物理层处理单元或 BS中的 TDM- FDD无线发射机物理层处理单元 进行无线通信;
TDM- TDMA无线收发机数据链路层处理单元: 对来自 TDM- FDD无线接收机物理层处理单元或 用户的数据, 作 TDM- TDMA无线收发机数据链路层的数据处理后, 转发给用户或 TDMA-FDD无线发 射机物理层处理单元。
为保证可靠地通信, 还需要设置相应的 BS和 RS的物理层帧结构, 之后, 才可以基于相应的物 理层帧结构实现无线通信系统中的中转通信。
为此, 下面将对本发明中物理层帧结构的具体设置方式进行描述:
首先, 为实现通过 RS的中转通信, 相应的 BS和 RS的物理帧结构为:
1、 在 BS的物理层帧结构的频率为 l的下行帧 DLBS中增加 DL Relay Zone (下行中转区) , 用于 定义由 BS传给 RS的 BS下行中转数据时隙;
2、 在 RS的频率为 f1 的第二套无线接收机 RX2的物理层帧结构中开辟 DL Relay Zone (下行中 转区) , 用于定义 RS接收 BS的 DL Relay Zone的中转数据时隙;
3、 在 BS的物理层帧结构的频率为 f2的上行帧 ULBS中增加 UL Relay Zone (上行中转区), 用于 定义将由 RS传给 BS的 BS上行中转数据时隙;
4、 在 RS的频率为 f2的第二套无线发射机 TX2的物,理层帧结构开辟 UL Relay Zone (上行中转 区) , 用于定义 RS接收 BS的 UL Relay Zone的中转数据时隙;
而且, 对于多 RS的情况, 所述的多 RS之间采用 TDM的方式共享 UL Reiay Zone。
在上述物理层帧结构中, BS的 DL Relay Zone和 RS RX2的 DL Relay Zone的时隙和频率关系必 须——对应; BS的 UL Relay Zone和 RS TX2的 UL Relay Zone的时隙和频率关系必须——对应。 在 BS UL Relay Zone对应的期间, SS/MSBS、 SS/MSRS不可以安排任何发送时隙, 同时, RS 也不可以安排任何接收时隙,目的是为了避免 SS/MSBS到 BS、SS/MSRS到 BS的干扰;在 BS DL Relay Zone对应的期间, RS不安排任何发送时隙, 以避免 RS到 RS的自身干扰。
同时, 为保证广播消息的中转发送, 所述的物理层帧结构包括:
1、 在 BS的物理层帧结构的频率为 f1的下行子帧 DLBS的 DL Relay Zone中开辟 DL Relay Broadcast Slot (下行中转广播时隙, 简写为 DL RB) ' 用于定义由 BS广播给 RS的下行时隙, 广播 802.16标准定义的 DCD (下行信道描述符) 、 UCD (上行信道描述符) 、 FPC (快速功率控制) 、 CLK— CMP (时钟比较) 广播报文;
2、 在 RS的频率为 fl的第二套无线接收机 RX2的物理层帧结构的的 DL Relay Zone中开辟 DL
Relay Broadcast RX Slot (下行中转广播接收时隙, 简写为 DL RB RX) , 用于定义接收 BS下行中 转广播时隙的 RS上行时隙, 接收 802.16标准定义的 DCD、 UCD、 FPC、 CLK— CMP广播报文。
本发明中, 在所述的 BS和 RS的物理层帧结构中还进行如下设置:
1、 在 BS的物理层帧结构的频率为 l的下行帧 DLBS中定义 DL Interference Slot (下行干扰时 隙) , 用于定义 BS下行覆盖 Ί区"和" 2区"的 BS下行数据时隙;
对于图 4所示的多 RS的情况, 所述的多 RS之间采用 TDM的方式共享 DL Interference Slot, 以避 免" RS到 SS/MSRS"的干扰;
2、 在 RS的频率为 f1的第一套无线发射机 TX1的物理层帧结构的下行帧 DLRS中定义 DL Interference Slot (下行干扰时隙) , 用于定义 RS下行覆盖 Ί区"和" 2区"的 RS下行数据时隙;
对于图 4所示的多 RS的情况, 所述的多 RS之间采用 TDM的方式共享 DL Interference Slot, 避免
RS到 SS/MSR^千扰;
其中, BS的 DL Interference Slot不能与 RS TX1的 DL Interference Slot在时隙上相重叠, 避免 "RS到 SS/MSBS"和" BS到 SS/MSRS" 的干扰。 本发明中, 在所述的 BS和 RS的物理层帧结构中还进行如下设置:
1、 在 BS的物理层帧结构的频率为 fl的下行帧 DLBS中定义 DL Header Slot (下行帧头时隙) , 定义设置为下行子帧的开始时刻, 用于定义发送用户同步信息的时隙和发送指示信息的时隙, 以指 示 BS物理层帧结构下行帧和上行帧的各时隙的位置和使用方法 profile;
所述的同步信息和指示信息包含原 802.16 OFDM (正交频分复用) 或 SC (单载¾) 帧中的 preamble, FCH burst及由 DLFP指定的紧随在 FCH之后的一个或多个下行 Burst (包括 DL-MAP、 UL- MAP) , SS/MSBS、 RS和 BS保持收发帧同步;
2、在高级中转模式下,在 RS的频率为 l的第一套无线发射机 TX1的物理层帧结构的下行帧 DLRS 中定义 DL Header Slot (下行帧头时隙) , 设置为下行子帧的开始时刻, 用于定义发送用户同步信 息的时隙和发送指示信息的时隙, 以指示 RS物理层帧结构下行帧和上行帧的各时隙的位置和使用方 法 profile; 同样, 所述的同步信息和指示信息包含原 802.16 OFDM (或 SC)帧中的 preamble、 FCH burst 及由 DLFP指定的紧随在 FCH之后的一个或多个下行 Burst (包括 DL-MAP、 UL-MAP ) , SS/MSRS 和 RS保持收发帧同步;
在高级中转模式下, RS TX1的 DL Header Slot在时间上滞后于 BS的 DL Header Slot, 且不能和 BS的物理层帧结构的下行帧 DLBS的 DL Header Slot, DL Delay Zone和 DL Interference Slot重叠.; 在高级中转模式下, RS TX1的 DL Header Slot在时间上不能和其它 RS T'X1的物理层帧结构的 下行帧 DLRS的 DL Header Slot、 DL Interference Slot重叠, 避兔 RS到 SS/MSRS的干扰; 或者, 如果 不同 RS TX1的 DL Header Slot在时间上重叠, 则必须保证完全重叠, 严格同步, 且 DL Header Slot 的内容必须相同, 避免 RS到 SS/MSRS的干扰;
3、在 RS的频率为 f1 的第二套无线接收机 RX2的物理层帧结构的中开辟 DL Header RX Slot (下 行帧头接收时隙),用于定义接收 BS的 DL Header Slot的时隙; RS的两套 FDD收发机根据 DL Header RX Slot接收到的 preamble和 BS取得频率和 /或符号同步。
需要说明的是: BS的 DL Header Slot和 RS RX2的 DL Header RX Slot的时隙关系必须完全重 叠, 且严格同步。
本发明中, 在所述的 BS和 RS的物理层帧结构中还进行如下设置:
1、 在 BS的物理层帧结构的频率为 f2的上行帧 ULBS中定义 UL Interference Slot (上行干扰时 隙) , 用于定义 BS上行覆盖 Ί 1区"和" 22区"的 BS上行数据时隙;
2、 在 RS的频率为 f 2的第一套无线接收机 RX 1的物理层帧结构的上行帧 U LRS中定义 U L Interference Slot (上行干扰时隙) , 用于定义 RS上行覆盖" 33区"和" 22区"的 RS上行数据时隙; 在多 RS的情况, 所述的多 RS之间需要采用 TDM的方式共享 UL Interference Slot, 以避免 RS到
SS/MSRS的干扰;
BS的 UL interference Slot不能与 RS RX1的 UL Interference Slot在时隙上相重叠, 以避免
Figure imgf000030_0001
禾 [l"SS/MSRS到 BS" β勺干扰。
本发明中, 在所述的 BS和 RS的物理层帧结构中还进行如下设置:
1、在 BS的物理层帧结构的频率为 f2的上行帧 ULBS中定义 UL Contention Slot (上行竞争时隙), 该时隙包含了原 802.16 OFDM (或 SC) 帧中的包含了初始 Ranging竞争时隙和带宽请求竞争时隙; 同时,在高级中转模式下,在 RS的频率为 f2 的第一套无线接收机 RX1的物理层帧结构的上行帧 ULRS中也定义了 UL Contention Slot (上行竞争时隙) , 该时隙同样包含原 802.16 OFDM (或 SC) 帧中的包含了初始 Ranging竞争时隙和带宽请求竞争时隙;
2、 在 RS的频率为 f2的第二套无线发射机 TX2的物理层帧结构的中开辟 UL Contention TX Slot
(上行竞争发送时隙) , 用于定义 RS发送的用于竞争 BS的 UL Contention Slot的时隙;
BS的 UL Contention Slot和 RS TX2的 UL Contention TX Slot的时隙和频率关系必须完全重叠, 且严格同步; RS TX2的 UL Contention TX Slot不能与 BS的上行帧的上行中转区和上行干扰时隙 fi 叠。
在上述物理层帧结构的设置走义过程中, 除 DL Header Slot、 UL Contention Slot外, 上述定义 的 Slot或 Zone不一定每帧都必须存在。
根据上述本发明所述物理层帧结构方案, 本发明的 BS和 RS的物理层帧结构具体实施例如图 22 和图 23所示, 其中, 图 22为高级中转模式下多 RS情况下的 BS和 RS的物理层帧结构示意图, 图 23为 简化中转模式下多 RS情况下的 BS和 RS的物理层帧结构示意图。 其中, RS、 BS的发送和接收频率 以图中帧最左端的频率标注为准。
BS下行帧 DLBS和 RS TX1下行帧 DLRS中的黑色长条形时隙为 DL Header Slot; BS上行帧 ULBS和 RS RX1上行帧 ULRS中的黑色长条形时隙为 UL Contention Slot; RS TX2的 TX白色长条形 时隙为 UL Contention TX Slot, RS RX2的 RX白色长条时隙为 DL Header RX Slot。
BS下行帧 DLBS中的 TX时隙为 DL Interference Slot( BS下行覆盖 Ί区"和" 2区") ; BS上行帧 ULBS 中的 RX时隙为 UL Interference Slot ( BS上行覆盖 Ί 1区"和' '22区") -, RS ΤΧ1下行帧 DLRS中的 TX时 隙为 DL Interference Slot ( RS下行覆盖" 3区"和" 2区") ; RS RX1上行帧 ULRS中的 RX时隙为 UL Interference Slot ( RS上行覆盖" 33区"和" 22区") 。
BS的 DL Relay Zone安排在 BS下行帧 DLBS的 DL Header Slot之后, BS的 UL Relay Zone安排在 BS下行帧 DLBS的 UL Contention Slot之后。 BS的 DL Relay Zone和 RS RX2的 DL Relay Zone的时隙 和频率关系——对应; BS的 UL Relay Zone和 RS TX2的 UL Relay Zone的时隙和频率关系——对应; 在 BS UL Relay Zone对应的期间, SS/MSBS、 SS/MSRS不安排任何发送时隙, RS不安排任何接收 时隙; 在 BS DL Relay Zone对应的期间, RS不安排任何发送时隙。
BS的 UL Interference Slot与 RS RX1的 UL Interference Slot在时隙上不相重叠, BS的 DL Interference Slot与 RS TX1的 DL Interference Slot在时隙上不相重叠。
对于多 RS的情况, 多 RS采用 TDM的方式共享 DL Relay Zone (即 DL RB, DL Relay R#1 ,#2... 部分)、 UL Relay Zone (即 UL Relay R#1 ,#2...部分)、 DL Interference Slot和 UL Interference Slot。
本发明中还提供了另一种 BS和 RS的物理层帧结构的设置方案, 该实现方案的主要特点为:
1、 在高级中转模式下, RS TX1的 DL Header Slot在时间上滞后于 BS的 DL Header Slot, 且不 能重叠; RS TX1的 DL Header Slot在时间上必须位于 BS的物理层帧结构的下行帧 DLBS的 DL Non-interference Slot内;
2、 在 BS的物理层帧结构的频率为 fl的下行帧 DLBS中增加 DL Non-interference Slot (下行无干 扰时隙) , 用于定义 BS下行覆盖 Ί区"的 BS下行数据时隙;
3、 在 RS的频率为 l的第一套无线发射机 TX1的物理层帧结构的下行帧 DLRS中增加 DL Non-interference Slot (下行无干扰时隙) , 用于定义 RS下行覆盖" 3区"的 RS下行数据时隙。
其中 , BS的 DL Non-interference Slot与 RS的 DL Non-interference Slot在时隙上可相重叠;
3、 在 BS的物理层帧结构的频率为 f2的上行帧 ULBS中增加 UL Non-interference Slot (上行无干 扰时隙) , 用于定义 BS上行覆盖 "1 1区"的 BS上行数据时隙;
4、 在 RS的频率为 f2 的第一套无线接收机 RX1的物理层帧结构的上行帧 ULRS中增加 UL Non-interference Slot (上行无干扰时隙) , 用于定义 RS上行覆盖" 33区"的 RS上行数据时隙; 其中, BS的 UL Non-interference Slot与 RS RX1的 UL Non-interference Slot在时隙上可相重叠。 根据上述这一物理层帧结构特征, 相应的 BS和 RS的物理层帧结构的具体实现如图 24所示, 即 为高级中转模式下的中转通信。其中, RS、 BS的发送和接收频率以图 24中帧最左端的频率(f1或 f2) 标注为准。 .
BS下行帧 DLBS和 RS TXrF行帧 DLRS中的黑色长条形时隙为 DL Header Slot; BS上行帧 ULBS 和 RS RX1上行帧 ULRS中的黑色长条形时隙为 UL Contention Slot; RS TX2的 TX白色长条形时隙为 UL Contention TX Slot, RS RX2的 RX白色长条形时隙为 DL Header RX Slot。
对于简化模式下的中转通信, 图 24中 RS TX1下行帧 DLRS的 DL Header Slot和 RS RX1上行帧 ULRS的 UL Contention Slot不存在, 其余基本相似。
BS下行帧 DLBS中的 TX1时隙为 DL Non-interference Slot ( BS下行覆盖 Ί区") , TX时隙为 DL Interference Slot (BS下行覆盖 Ί区"和" 2区") ; BS上行帧 ULBS中的 RX1时隙为 UL Non-interference Slot ( BS上行覆盖 "11区") , RX时隙为 UL Interference Slot ( BS上行覆盖 Ί 1区"和" 22区"); RS TX1 下行帧 DLRS中的 TX3时隙为 DL Non-interference Slot ( RS下行覆盖" 3区") , TX时隙为 DL Interference Slot ( RS下行覆盖" 3区"和" 2区") ; RS RX1上行帧 ULRS中的 RX3时隙为 UL Non-interference Slot (RS上行覆盖" 33区") , RX时隙为 UL Interference Slot ( RS上行覆盖 "33区" 和" 22区") 。
BS的 DL Relay Zone安排在 BS下行帧 DLBS的 DL Header Slot之后, BS的 UL Relay Zone安排在 BS下行帧 DLBS的 UL Contention Slot之后。 BS的 DL Relay Zone和 RS RX2的 DL Relay Zone的时隙 和频率关系——对应; BS的 UL Relay Zone和 RS TX2的 UL Relay Zone的时隙和频率关系一一对应。
而且, 在 BS UL Relay Zone对应的期间, SS/MSBS、 33/1\/15[^不安排任何发送时隙, RS不安 排任何接收时隙; 在 BS DL Relay Zone对应的期间, RS不安排任何发送时隙。
BS的 UL Interference Slot与 RS RX1的 UL Interference Slot在时隙上不相重叠, BS的 DL Interference Slot与 RS TX1的 DL Interference Slot在时隙上不相重叠。
本发明还提供了第三种 BS和 RS的物理层帧结构的实现方案, 这一方案与前面描述的第二种方 案的区别在于:
1、在 BS的物理层帧结构的频率为 fl的下行帧 DLBS中定义 DL Interference Slot (下行干扰时隙), 用于定义 BS下行覆盖" 2区"的 BS下行数据时隙, 即用于定义仅由 BS覆盖的区域;
2、 在 RS的频率为 f1的第一套无线发射机 TX 1的物理层帧结构的下行帧 D LRS中定义 D L Interference Slot (下行干扰时隙) , 用于定义 RS下行覆盖" 2区"的 RS下行数据时隙, 即用于定义仅 由 RS覆盖的区域;
3、在 BS的物理层帧结构的频率为 f2的上行帧 ULBS中定义 UL Interference Slot (上行干扰时隙), 用于定义 BS上行覆盖" 22区"的 BS上行数据时隙, 即用于定义仅由 BS覆盖的区域;
4、 在 RS的频率为 f2 的第一套无线接收机 RX1的物理层帧结构的上行帧 ULRS中定义 UL Interference Slot (上行干扰时隙) , 用于定义 RS上行覆盖" 22区"的 RS上行数据时隙, 即用于定义 仅由 RS覆盖的区域; 其中, 对于多 RS的情况, 所述的多 RS之间采用 TDM的方式共享 UL Interference Slot, 避免 "SS/i\/lSRS到 RS"的干扰。 根据所述的第三种物理层帧结构的实现方案, 本发明提供的相应的 BS和 RS的物理层帧结构的 • 具体实施例如图 25所示, 即高级中转通信模式。-其中, RS、 BS的发送和接收频率以图中帧最左端 的频率标注为准。
BS下行帧 DLBS和 RS TX1下行帧 DLRS中的黑色长条形时隙为 DL Header Slot; BS上行帧 ULBS 禾口 RS RX1上行帧 ULRS中的黑色长条形时隙为 UL Contention Slot; RS TX2的的 TX白色长条形时隙 为 UL Contention TX Slot, RS RX2的 RX白色长条形时隙为 DL Header RX Slot。
对于简化模式, 图 25中 RS TX1下行帧 DLRS的 DL Header Slot和 RS RX1上行帧 ULRS的 UL Contention Slot不存在, 其余类似。
BS下行帧 DLBS中的 TX1时隙为 DL Non-interference Slot ( BS下行覆盖 Ί区"), ΤΧ2时隙为 DL Interference Slot ( BS下行覆盖 "2区") ; BS上行帧 ULBS中的 RX1时隙为 UL Non-interference Slot ( BS上行覆盖 Ί 1区") , RX2时隙为 UL Interference Slot ( BS上行覆盖 "22区") ; RS TX1下 行帧 DLRS中的 TX3时隙为 DL Non-interference Slot ( RS下行覆盖" 3区") , TX2时隙为 DL Interfer ence Slot ( RS下行覆盖" 2区") ; RS RX1上行帧 ULRS中的" RX3时隙"为 UL Non-interference SI ot ( RS上行覆盖" 33区") , RX2时隙为 UL Interference Slot ( RS上行覆盖 "22区") 。
BS的 DL Relay Zone安排在 BS下行帧 DLBS的 DL Header Slot之后, BS的 UL Relay Zone安排 在 BS下行帧 DLBS的 UL Contention Slot之后。 BS的 DL Relay Zone和 RS RX2的 DL Relay Zone 的时隙和频率关系——对应; BS的 UL Relay Zone和 RS TX2的 UL Relay Zone的时隙和频率关系 ——对应。
在 BS UL Relay Zone对应的期间, SS/MSBS、 SS/MSRS不安排任何发送时隙, RS不安排任何 接收时隙; 在 BS DL Relay Zone对应的期间, RS不安排任何发送时隙。
BS的 UL Interference Slot与 RS RX1的 UL Interference Slot在时隙上不相重叠, BS的 DL Interference Slot与 RS TX1的 DL Interference Slot在时隙上不相重叠。 BS的 DL Non-interference Slot与 RS TX1的 DL Non-interference Slot在时隙上尽可能相重叠。 BS的 UL Non-interference Slot 与 RS RX1的 UL Non-interference Slot在时隙上尽可能相重叠。
本发明中, 还提供了相应的 TDM汀 DMA-FDD中转通信处理流程, 具体包括由 BS到用户终端的 下行中转通信处理过程, 以及由用户终端到 BS的上行中转通信处理过程, 下面将分别对相应的通信 处理过程进行说明。
首先, 对由 BS到用户终端的下行中转 Downlink relay通信处理过程进行说明, 所述下行中转通 信处理过程包括由 BS到 RS的第一阶段处理过程和由 RS到用户终端的第二阶段处理过程, 其中: 在所述的第一阶段(BS->RS)处理过程中,高级中转模式和简化中转模式釆用的处理过程相同, 具体包括:
1、 BS在频率为 f1的下行子帧 DLBS的 DL Header中的发送前导码 preamble; 2、 RS#1通过 RS RX2频率为 l的 DL Header RX Slot接收 BS下行子帧 DLBS的 DL Header中的前 导码 preamble, 实现与 BS的同步;
3、 BS在频率为 l的下行子帧 DLBS的 DL Header的 preamble之后中发送 FCH, DL-MAP, UL-MAP 信息;
4、 RS#1通过 RS RX2频率为 l的 DL Header RX Slot接收下行子帧 DLBS的 DL Header的 FCH,
DL-MAP, UL-MAP, 获得 BS下行和上行各个 burst的时隙位置和使用方法 (profile) 信息;
5、 BS利用频率为 l的下行子帧 DLBS的 DL Relay Zone的 DL Relay broadcast发送广播消息 message;
6、 BS在频率为 f1的下行子帧 DLBS的 DL Relay Zone的 DL Relay RS#1中发送下行中转通信数据 traffic data 给 RS#1 ;
7、 RS#1通过 RS RX2频率为 f1的 DL RB接收 BS下行子帧 DLBS的 DL Relay Zone的 DL Relay broadcast中的广播消息 message , 其中可以包含需要 RS#1中转广播的消息;
8、 RS#1通过 RS RX2频率为 l的 DL Relay Zone接收 BS下行子帧 DLBS的 DL Relay Zone的 DL Relay RS#1 中下行中转通信数据 traffic data;
在所述的第二阶段 (RS->MS/SS ) 处理过程中:
( 1 ) 在高级中转模式下, 相应的处理包括:
1、 RS#1 TX1在下行子帧 DLRS频率为 l的 DL Header中发送前导码 preamble;
2、 MS/SS接收 RS#1 TX1下行子帧 DLRS的 DL Header中的前导码 preamble, 和 RS#1取得同步;
3、 RS#1 TX1在下行子帧 DLRS频率为 l的 DL Header的 preamble之后中发送 FCH, DL-MAP, UL-MAP, 其中, RS # 1的 FCH, DL-MAP, UL- MAP信息已经在前面第一阶段描述的步骤 6中由 BS 发送给 RS #1;
4、 MS/SS接收 RS#1 TX1下行子帧 DLRS的 DL Header的 FCH, DL-MAP, UL-MAP, 获得 RS#1 下行和上行各个 burst的子信道和 OFDMA符号位置和使用方法 (profile) 信息;
5、 RS#1 TX1在下行子帧 DLRS中, 在除 DL Header、 DL Relay Zone外的时隙, 以频率 l发送 下行中转通信数据 traffic data给 MS/SS, 同样, 所述的中转通信数据在第一阶段的步驟 6中已由 BS 发送给 RS #1 TX1;
6、 MS/SS从相应时隙接收 RS#1 TX1下行子帧 DLRS中的下行中转通信数据 traffic data。
( 2) 在简化中转模式下, 相应的通信处理过程包括:
1、 MS/SS接收 BS下行子帧 DLBS的 DL Header中的前导码 preamble, 和 BS取得同步; 2、 MS/SS接收 BS下行子帧 DLBS的 DL Header的 FCH , DL-MAP, UL-MAP, 获得 BS和 RS#1下 行和上行各个 burst的时隙、 子信道和 /或 OFDMA符号位置和使用方法 (profile) 信息;
3、 RS#1 TX1在下行子帧 DLRS中, 在除 DL Header、 DL Relay Zone外的时隙, 以频率 l发送 下行中转通信数据 traffic data给 MS/SS, 该中转通信数据已经在第一阶段的步骤 6中由 BS发送给 RS #1 TX1;
4、 MS/SS从相应时隙接收 RS#1 TX1下行子帧 DLRS中的下行中转通信数据 traffic data。 在所述的上行中转 Uplink relay通信处理过程, 同样包括由用户终端到 RS的第一阶段处理过程, 以及由 RS到 BS的第二阶段处理过程。
在第一阶段 (MS/SS ->RS ) 中转通信处理过程中, 具体包括高级中转模式下的中转通信和简 化模式下的中转通信, 其中:
( 1 ) 在高级中转模式下, 相应的通信处理过程包括:
1、 MS/SS接收 RS#1 TX1下行子帧 DLRS频率为 fl的 DL Header的 FCH, DL-MAP, UL-MAP, 获得 RS#1 TX1下行和上行各个 burst的时隙位置和使用方法 (profile) 信息;
2、 MS/SS在 RS#1 RX1上行子帧 ULRS中, 在除 BS UL Relay Zone对应期间外的时隙, 以频率 f2 发送上行通信数据 traffic data给 RS#1;
3、 RS#1 RX1以频率 f2从相应时隙接收 MS/SS上行子帧 ULRS中的上行通信数据 traffic data;
(2) 在简化中转模式下, 相应的通信处理过程包括:
1、 MS/SS接收 BS下行子帧 DLBS频率为 l的 DL Header的 FCH, DL-MAP, UL-MAP, 获得 BS 和 RS#1 第一套无线发射机下行和上行各个 burst的时隙位置和使用方法 (profile) 信息;
2、 MS/SS在 RS#1 RX1上行子帧 ULRS中,在除 BS UL Relay Zone对应期间外的时隙, 以频率 f2 发送上行通信数据 traffic data给 RS#1;
3、 RS#1 RX1以频率 f2从相应时隙接收 MS/SS上行子帧 ULRS中的上行通信数据 traffic data; 在第二阶段(RS->BS)的中转通信处理过程中, 在高级中转模式和简化中转模式下相应的通信 处理过程相同, 具体包括:
1、 RS#1 RX2通过 RS上行子帧 ULRS中频率为 f1的 DL Header RX Slot接收 BS下行子帧 DLBS的 DL Header的 FCH, DL-MAP, UL-MAP, 获得 BS下行和上行各个 burst的子信道和〇FDMA符号位 置和使用方法 (profile) 信息;
2、 RS#1 TX2以频率 f2在 RS下行子帧 DLRS的 UL Relay Zone的 UL Relay RS#1中发送上行中转 通信数据 traffic data给 BS, 所述中转通信在上述上行中转通信处理过程的步骤 2中已由 BS发送给 RS #1 ;
3、 BS在频率为 f2的上行子帧 ULBS的 UL Relay Zone的 UL Relay RS#1中接收 S5中的上行中转 通信数据 traffic data。
而且, 本发明所述的中转通信过程中, 所述的 BS、 RS和 SS/MS之间基于 OFDM技术实现中 转通信, 以提高通信系统的抗多径干扰性能。
第四种应用场景为: RS中包含两个分别与 BS和 MS对应的 TDD无线收发机, 且 RS通过中转子 信道和 0FDMA符号组合进行信息的传递。
本发明供了一种基于 FDD和 TDD混合的无线中转通信系统, 具体包括高级中转模式的中转通信系 统和简化中转模式的中转通信系统。
本发明提供的 RS和 BS、 MS/SS的高级中转通信系统模型,如图 26所示。在图 26中, RS和 BS、 MS/SS 间采用 FDD- TDD混合 /TDM/0FDMA方式通信, BS和 RS下行采用频率 f2, BS和 RS上行釆用频率 f 1 ; MS/SS 通过 RS进行无线中转接入 BS, RS作为一个 MS/SS接入 BS。 在图 26中, BS和 MS/SS采用 FDD收发机,而 RS需有两套 TDD无线收发机(即图 26中 TDD收发机 1和 TDD 收发机 2 ) : 第一套 TDD收发机 (简写为 TDD1 )工作于频率 Π, 第二套 TDD收发机 (简写为 TDD2 )工作 于频率 f2。 DLBS为 BS的物理层帧的下行子帧, 由 BS到 SS/MSBS或 RS, U BS的物理层帧的上行子帧, 由 SS/MSB^ RS到 BS , SS/MSB^nBS保持收发帧同步, RS的第一套 TDD接收机和 BS的发射机保持收发帧同 步, RS的第二套 TDD发射机和 BS的接收机保持收发帧同步;
Figure imgf000036_0001
由 BS到
Figure imgf000036_0002
的发射机和 RS的第二套 TDD 接收机保持收发帧同步, SS/MSKS的接收机和 RS的第一套 TDD发射机保持收发帧同步。
本发明提供的 RS和 BS、 MS/SS的简化中转通信模式, 如图 27所示。 在图 27中, RS和 BS、 MS/SS间 采用 FDD- TDD混合 /TDM/0FDMA方式通信, BS和 RS下行采用频率 f2 , BS和 RS上行采用频率 f 1 ; RS作为一 个 MS/SS接入 BS。
在图 27中, BS和 MS/SS采用 FDD收发机,而 RS需有两套 TDD无线收发机(即图 26中 TDD收发机 1和 TDD 收发机 2) : 第一套 TDD收发机 (简写为 TDD1 )工作于频率 f l, 第二套 TDD收发机 (简写为 TDD2)工作 于频率 f2。 DLFFI BS的物理层帧的下行子帧, 由 BS到 SS/MSB 'S , ULB BS的物理层帧的上行子帧, 由 SS/MSBS或 RS到 BS ; 35/¾1585或55/¾^^和85保持收发帧同步。 DLR ^RS的物理层帧的下行子帧, 由 BS 到 SS/MSR^^RS, ULRS为 RS的物理层帧的上行子帧, 由 SS/MSRf^ RS到 BS。 其中, DLBS的下行广播突发 (Broadcast Burst ) , 如 Preamble、 FCH、 DL- MAP、 UL-MAP, 直接由 BS发给 MS/SS , 不通过 RS中转; MS/SS的初始接入测距 Ranging 周期性测距 Ranging、 带宽请求通过 ULBS的测距子信道 Ranging Subchannel ,直接由 MS/SS发给 BS,不通过 RS中转;对于 D 的下行其它突发,如数据报文或除 DL- MAP、 UL- MAP外的消息报文, 不能直接由 BS发给 MS/SS , 必须通过 RS中转; ULBS的上行其它突发, 如除 MS/SS 的初始接入测距 Ranging 周期性测距 Ranging、 带宽请求报文外, 不能直接由 MS/SS发给 BS , 必须通 过 RS中转。
下面将结合附图, 对本发明提供的 BS、 RS和 SS/MS中转通信系统的结构进行详细说明。 如图 28 所示, 该结构分别适用于所述的两种通信模式, 即高级中转模式和简化中转模式。 在图 28中, 所述 系统结构包括:
其中, 所述的 BS包括:
有线传输处理单元: 能够与上一级设备 (如基站控制器) 或分别与一组基站设备建立通信, 并 与上一级设备或各基站设备之间进行信息的交互;
FDD线收发机: 用于同 RS或 SS/MS以 TDD/FDD混合或 FDD方式进行无线通信, 由 FDD无线发射机物理 层处理单元、 FDD无线接收机物理层处理单元和 FDD无线收发机数据链路层处理单元组成。
FDD无线发射机物理层处理单元 (频率为 Π ) : 分别与 FDD无线收发机数据链路层及可与其通信 的 RS中的 TDD无线接收机 1物理层处理单元或 SS/MS中的 FDD无线接收机物理层处理单元进行无线通 信; 对于简化中转模式, 本单元对 D 的下行子帧头广播 (如 Preamble、 FCH、 DL- MAP、 UL-MAP ) 采 用比其它发送数据可靠性更高的信道编码和调制方式 (如二进制相移键控 BPSIO , 或采用比其它发 送数据更高的发射功率, 直接由 BS发给 MS/SS , 不通过 RS中转;
FDD无线接收机物理层处理单元 (频率为 f2 ) : 分别与 FDD无线收发机数据链路层及可与其通信 的 RS中的 TDD无线发射机 2物理层处理单元或 SS/MS中的 FDD无线发射机物理层处理单元进行无线通 信;
FDD无线收发机数据链路层处理单元: 对来自 FDD无线接收机物理层处理单元或有线传输处理单 元的数据, 作 FDD无线收发机数据链路层的数据处理后, 转发给有线传输处理单元或 FDD无线发射机 物理层处理单元。
图 28中的 RS的结构包括:
TDD无线收发机 1和 2: 用于同 BS或 SS/MS以 TDD/FDD混合方式进行无线通信, 由 TDD无线发射机 1 和 2的物理层处理单元、 TDD无线接收机 1和 2的物理层处理单元和 TDD无线收发机 1和 2的数据链路层处 理单元组成; 其中, 所述的 TDD无线收发机 1, 即第一 TDD无线收发机包括 TDD无线发射机 1物理层处理 单元 (频率为 Π ) 和 TDD无线接收机 1物理层处理单元 (频率为 Π ) , 所述的 TDD无线收发机 2, 即第 二 TDD无线收发机包括 TDD无线发射机 2物理层处理单元(频率为 f 2 )和 TDD无线接收机 2物理层处理单 元 (频率为 f2 ) , 下面将分别进行说明:
TDD无线发射机 1物理层处理单元(频率为 Π ): 分别与 TDD无线收发机 1和 2数据链路层及可与其 通信的 BS中的 FDD无线接收机物理层处理单元进行无线通信;
TDD无线发射机 2物理层处理单元(频率为 f2 ): 分别与 TDD无线收发机 1和 2数据链路层及可与其 通信的 SS/MS中的 FDD无线接收机物理层处理单元进行无线通信;
TDD无线接收机 1物理层处理单元(频率为 fl ) : 分别与 TDD无线收发机数据链路层及可与其通信 的 BS中的 FDD无线发射机物理层处理单元进行无线通信; ,
TDD无线接收机 2物理层处理单元(频率为 f2 ): 分别与 TDD无线收发机数据链路层及可与其通信 的 SS/MS中的 FDD无线发射机物理层处理单元进行无线通信;
TDD无线收发机数据链路层处理单元: 对来自 TDD无线接收机 1和 /或 2物理层处理单元的数据, 作 TDD无线收发机数据链路层的数据处理后, 转发给 TDD无线发射机 1和 /或 2物理层处理单元。
图 28中的 SS/MS的结构包括:
FDD无线收发机: 用于同 RS或 BS以 TDD/FDD混合或 FDD方式进行无线通信, 由 FDD无线发射机物理 层处理单元、 FDD无线接收机物理层处理单元和 FDD无线收发机数据链路层处理单元组成。
FDD无线发射机物理层处理单元:分别与 FDD无线收发机数据链路层及可与其通信的 RS中 TDD无线 接收机 2物理层处理单元或 BS FDD无线接收机物理层处理单元进行无线通信; 对于简化中转模式, 本 单元对 ULBS的上行随机接入(Random Access)时隙(或称为竞争时隙 Contention slot ),如初始 Ranging 竞争时隙和带宽请求竞争时隙, 或 MSS/SS的初始接入测距 Ranging 周期性测距 Ranging. 带宽请求 通过 U 的测距子信道 Ranging Subchannel , 采用比其它发送数据可靠性更高的信道编码和调制方式 (如二进制相移键控 BPSK) , 或采用比其它发送数据更高的发射功率, 直接由 MS/SS发给 BS, 不通过 RS中转;
FDD无线接收机物理层处理单元:分别与 FDD无线收发机数据链路层及可与其通信的 RS中 TDD无线 发射机 1物理层处理单元或 BS中的 FDD无线发射机物理层处理单元进行无线通信;
FDD无线收发机数据链路层处理单元: 对来自 FDD无线接收机物理层处理单元或用户的数据, 作 FDD无线收发机数据链路层的数据处理后, 转发给用户或 FDD无线发射机物理层处理单元。
本发明中, 在 FDD模式下, 网络系统通信可能存在如图 18 (a) - (d)所示的 4种情况的相互干扰。 在 TDD模式下, RS系统间还可能存在如图 29 (e) - (g)所示的 3种情况的同频干扰。 其中, TX表示发送 模块, RX表示接收模块。
因此, 为满足中转通信的需要, 有效克服通信系统可能存在的各种干扰, 则需要合理地设置 BS 和 RS的物理层帧结构, 并基于相应的物理层帧结构通过 RS实现可靠的中转通信。
下面将首先描述本发明提供的 BS和 RS的物理层帧结构:
1、 在 BS的物理层帧结构的频率为 Π的下行子帧 D 中釆用 TDM技术, 增加 "DL Relay Zone (下 行中转区) " , 用于定义由 BS传给 RS的 BS下行中转子信道和 0FDMA符号组合;
对于多 RS的情况, 则多 RS通过不同的子信道和 0FDMA符号组合共享 DL Relay Zone;
2、 在 RS的频率为 Π 的第一套 TDD收发机 (简写为 TDD1) 的物理层帧结构的上行子帧 ULRS中采用 TDM技术, 开辟 "DL Relay Zone (下行中转区) " , 用于定义 RS接收 BS的 DL Relay Zone的中转子 信道和 0FDMA符号组合; ' 对于多 RS的情况, 多 RS通过不同的子信道和 0FDMA符号组合共享 DL Relay Zone, 不同的 RS TDD1 只在 DL Relay Zone中相应的子信道和 OFMA符号组合中接收 BS的中转数据, 在其它子信道和 0FDMA 符号组合则不安排接收;
3、 在 BS的物理层帧结构的频率为: f2的上行子帧 ULBS中釆用 TDM技术, 增加 "UL Relay Zone (上 行中转区) " , 用于定义由 RS传给 BS的 BS上行中转子信道和 0FDMA符号组合;
同样, 对于多 RS的情况, 多 RS需要通过不同的子信道和 0FDMA符号组合共享 UL Relay Zone; 4、在 RS的频率为 f2的第二套 TDD收发机(简写为 TDD2)的物理层帧结构的下行子帧 DLRS中采用 TDM 技术, 开辟 "UL Relay Zone (上行中转区) " , 用于定义 RS接收 BS的 UL Relay Zone的中转子信道 和 0FDMA符号组合;
对于多 RS的情况, 多 RS通过不同的子信道和 0FDMA符号组合共享 UL Relay Zone, 不同的 RS TDD2 只在 DL Relay Zone中相应的子信道和 OFDM符号组合中发送 BS的中转数据, 其它子信道和 0FDMA符号 组合不能安排发送。
在 BS UL Relay Zone对应的期间, SS/MSBS、 SS/MSRS不安排任何发送子信道和 0FDMA符号组合, RS 不安排任何接收子信道和 0FDMA符号组合, 以避免 "SS/MS ®BS" 、 "SS/MS^ljBS" 的干扰; 同时, 在 BS DL Relay Zone对应的期间, RS不安排任何发送子信道和 0FDMA符号组合, 以避免 "RS到 RS" 的 自身干扰。
为便于 BS和 RS之间广播信息的传递, 还需要在 BS和 RS的物理层帧结构中进行如下的设置:
1、在 BS的物理层帧结构的频率为 Π的下行子帧 D 的 DL Relay Zone中开辟 "DL Relay Broadcast Subchannel (下行中转广播子信道) " , 用于定义由 BS广播给 RS的下行子信道和 0FDMA符号组合, 广播 802. 16标准定义的 DCD、 UCD、 FPC、 CLK— CMP广播报文;
2、 在 RS的频率为 fl 的 TDD1的物理层帧结构上行子帧 ULlis的 DL Relay Zone中开辟 "DL Relay Broadcast Subchannel (下行中转广播子信道) " , 用于定义接收 BS下行中转广播子信道和 0FDMA 符号的 RS上行子信道和 OFDMA符号组合, 接收广播 802. 16标准定义的 DCD、 UCD、 FPC、 CLK—CMP广播报 文。
本发明中, 还需要在 BS和 RS的物理层帧结构中进行如下的设置:
1、 在 BS的物理层帧结构的频率为 f2的上行子帧 U 的 UL Relay Zone中定义 "Relay Ranging Subchannel (中转测距子信道, 简写为 RRS) " , 定义用于 RS的初始接入测距 Ranging、 周期性测距
Ranging, 带宽请求的 BS中转测距接收子信道和 0FDMA符号组合; 该中转测距子信道 RRS也可作为 SS/MSS 初始接入测距 Ranging、 周期性测距 Ranging、 带宽请求测距子信道用;
2、在 KS的频率为 f2的 TDD2的物理层帧结构下行子帧 DLR DL Relay Zone中开辟 "Relay Ranging TX Subchannel (中转测距子信道, 简写为 RRS TX) " , 用于定义 RS的初始接入测距 Ranging、 周期 性测距 Ranging 带宽请求的 RS中转测距发送子信道和 0FDMA符号组合。
BS的 Relay Ranging Subchannel和 RS TDD2的 Relay Ranging TX Subchannel的时频关系必须一 一对应, 严格同步。
在 BS或 RS TDD1的物理层帧结构的下行子帧中, 除 DL Header和 BS的 DL Relay Zone外, BS和不同 的 RS通过不同的子信道和 0FDMA符号组合共享下行子帧的其余部分, 以避免 "RS到 SS/MSBS" 、 "RS 到 SS/MSBS"和 "BS到 SS/MSRS" 的干扰。
在 BS或 RS TDD2的物理层帧结构的上行子帧中, 除 BS的 UL Relay Zone外, BS和不同的 RS通过不 同的子信道和 0FDMA符号组合共享上行子帧的其余部分, 以避免 "RS到 SS/MSIiS"、 "SS/MSBS到 RS" 和 "SS/MSBi llBS" 的干扰。
本发明中, 还需要在 BS和 RS的物理层帧结构中进行如下的设置:
1、 在 BS的物理层帧结构的频率为 Π的下行子帧 DLBS中定义 "DL Header (下行子帧头) " , 为下 行子帧的开始, 用于定义发送用户同步信息的 f信道和 0FDMA符号组合和发送指示信息的子信道和 0FMA符号组合, 以指示 BS物理层帧结构下行子帧和上行子帧的各子信道和 0FDMA符号组合的位置和 使用方法 profile;
所述的同步信息和指示信息包含原 802. 16 0FDMA (或 S0FDMA) 帧中的 preamble、 FCH、 DL-MAP, UL- MAP, SS/MSBS RS和 BS保持收发帧同步;
2、在高级中转模式下,在 RS的频率为 f 1的 TDD1的物理层帧结构的下行子帧 DLRS中定义 "DL Header (下行子帧头) " , 为下行子帧的开始, 用于定义发送用户同步信息的子信道和 0FDMA符号组合和 发送指示信息的子信道和 0FDMA符号组合, 以指示 RS TDD1和 TDD2物理层帧结构下行子帧和上行子帧 的各子信道和 0FDMA符号组合的位置和使用方法 prof ile。
所述的同步信息和指示信息包含原 802. 16 0FDMA (或 S0FDMA) 帧中的 preatnble、 FCH、 DL- MAP、
UL-MAP, SS/MSBS和 RS保持收发帧同步;
3、 在高级中转模式下、 RS TDD1的 DL Header在时间上滞后于 BS的 DL Header; 在 RS TDD1的 DL Header期间, BS的下行子帧 DLBS不能安排任何发送子信道和 0FDMA符号, 以避免 "BS到 SS/MSRS" 的干 扰。
在高级中转模式下, 在 RS TDD1的 DL Header期间, 其它 RS TDD1的物理层帧结构的下行子帧 DLRS 不能安排任何发送子信道和 OFDMA符号,以避免 "RS到 SS/MSRS "的干扰;特殊情况下,如果不同 RS TDD1 的 DL Header在时间上重叠, 则必须完全重叠, 严'格同步, 且其内容必须相同, 以避免 "RS到 SS/MSRS" 的干扰。
本发明中, 还需要在 BS和 RS的物理层帧结构中进行如下的设置:
在 RS的频率为 Π 的 TDD1的物理层帧结构上行子帧 ULRS中开辟 "DL Header RX (下行子帧头接 收) " , 用于定义接收 BS的 DL Header的子信道和 0FDMA符号组合; RS的两套 TDD收发机根据 DL Header RX接收到的 preamble和 BS取得频率和 /或符号同歩。
BS的 DL Header和 RS TDD1的 DL Header RX的时频关系必须——对应、 严格同步。
本发明中, 还需要在 BS和 RS的物理层帧结构中进行如下的设置:
1、在 BS的物理层帧结构的频率为 f2的上行子帧 ULBS中定义 "Ranging Subchannel (测距子信道) ", 定义用于 SS/MSSBS的初始接入测距 Ranging、 周期性测距 Ranging、 带宽请求的 BS测距接收子信道和 0FDMA符号组合;
2、在高级中转模式下, 在 RS的频率为 f2的 TDD2的物理层帧结构的上行子帧 ULRS中定义 "Ranging Subchannel (测距子信道) " , 定义用于 SS/MSSRS的初始接入测距 Ranging, 周期性测距 Ranging、 带 宽请求的 RS测距接收子信道和 0FDMA符号组合。
RS的下行子帧不得和其它 RS的上行子帧相重叠, RS的上行子帧也不得和其它 RS的下行子帧相重 叠, 避免 "SS/MSR ljRS" 和 "SS/MSR ljSS/MSIiS" 的干扰。
RS的下行子帧 DLRS到 RS的上行子帧 U 间至少预留 TTG时长; RS的上行子帧 ULKS到 RS的下行子帧 D 间至少预留 RTG时长。
本发明中, 除 DL Header Ranging Subchannel外, 上述定义的子信道和 OFDMA符号组合或 Zone 不要求一定在每帧中都必须存在。
本发明中, 根据上述物理层帧结构, 相应的 BS和 RS的物理层帧结构的具体实施例如图 30和图 31 所示, 其中, 图 30为高级中转模式下的 BS和 RS的物理层帧结构示意图, 图 31为简化中转模式下的 BS 和 RS的物理层帧结构示意图。 在图 30和图 31中, RS、 BS的发送和接收频率以图中帧最左端的频率标 注为准。 图中的 "NULL"或空白部分表示不安排任何接收或发送的部分。
BS下行子帧 DLBS和 RS TDD1下行子帧 DLRS中的标示着 Preamble、 UL- MAP、 DL- MAP和 FCH的位置为 DL Header; RS TDD1上行子帧 ULRS中的标示着 sync with BS (与 BS同步) 和 Get MAP info (获取 MAP信息) 的位置为 DL Header RX。
BS的 DL Relay Zone ( BPDL Relay broadcast, DL Relay脆, #2…部分) 安排在 BS下行子帧 DLns 的 DL Header之后, BS的 UL Relay Zone (即 UL Relay赚, #2…和 RRS TX部分) 安排在 BS下行子帧 DLBS的开始部分。 在 BS UL Relay Zone对应的期间, SS/MSBS、 SS/MSRS不安排任何发送子信道和 OFDMA 符号组合, RS不安排任何接收子信道和 0FDMA符号组合; 在 BS DL Relay Zone对应的期间, RS不安排 任何发送子信道和 OFDMA符号组合。
PHY突发(burst)被分配了一组相邻的子信道和一组 OFDMA符号 (symbol ) , BS和不同的 RS通过 不同的子信道和 0FDMA符号组合共享下行子帧的其余部分。 下面将再结合具体的通信过程应用实例对本发明提供的中转通信处理过程进行说明, 所述的中 转通信处理过程包括下行中转过程和上行中转过程, 下面将分别对其进行说明。
本发明中相应的中转通信处理流程中的下行中转过程包括两个阶段, 第一阶段为由 BS至 RS的处 理, 第二阶段为由 RS至用户终端的处理:
(一) 第一阶段 (BS -〉 RS )
在第一阶段中, 高级中转模式和简化中转模式的处理相同, 具体包括:
1、 BS在频率为 fl的下行子帧 D 的 DL Header中的第一个符号 symbol发送前导码 preamble;
2、 RS#1通过 RS TDDl频率为 fl的 DL Header RX接收 BS下行子帧 D 的 DL Header中的前导码 preamble, 和 BS取得同步;
3、 BS在频率为: l的下行子帧 DLBS的 DL Header的 preamble之后中发送 FCH, DL- MAP, UL- MAP;
4、 RS#1通过 RS TDDl频率为 fl的 DL Header RX接收下行子帧 DLBS的 DL Header的 FCH, DL- MAP, UL - MAP, 获得 BS下行和上行各个 burst的子信道和 OFDMA符号位置和使用方法 (profile) 信息;
5、 BS利用频率为 f 1的下行子帧 DLBS的 DL Relay Zone的 DL Relay broadcast发送广播消息 message;
6、 BS在频率为 Π
Figure imgf000041_0001
Relay Zone的 DL Relay RS#1中发送下行中转通信数据 traffic data给 RS#1;
7、 RSifl通过 RS TDDl频率为 f 1的 DL
Figure imgf000041_0002
Relay Zone的 DL Relay broadcast 中的广播消息 message , 其中可以包含需要 RS#1中转广播的消息;
8、 RS#1通过 RS TDD1频率为 Π的 DL Relay Zone接收 BS下行子帧 DLBS的 DL Relay Zone的 DL Relay RS#1中下行中转通信数据 traffic data,
(二) 第二阶段 (RS -〉 MS/SS ) :
在该阶段, 髙级中转模式和简化中转模式下的处理方式不同, 其中:
对于高级中转模式, 该阶段的处理为:
1、 RS#1 TDDl在下行子帧 DLBS频率为 fl的 DL Header中的第一个符号 symbol发送前导码 preamble;
2、 MS/SS接收 RS#1 TDDl下行子帧 DLBS的 DL Header中的前导码 preamble, 和 RS#1取得同步; 3、 RS TDD1在下行子帧 DLRS频率为 fl的 DL Header的 preamble之后中发送 FCH, DL- MAP, UL- MAP
(RS # 1的 FCH, DL- MAP, UL-MAP可以已经在第一阶段的步骤 6中由 BS发送给 RS #1; ·
4、 MS/SS接收 RS#1 TDDl下行子帧 DLRS的 DL Header的 FCH, DL- MAP, UL- MAP , 获得 RS#1 TDDl 和 TDD2下行和上行各个 burst的子信道和 0FDMA符号位置和使用方法 (profile ) 信息;
5、 RSiil TDDl在下行子帧 DLKS中, 在除 DL Header外的时频区间, 以频率 Π发送下行中转通信数 据 traffic data给 MS/SS , 所述的中转通信数据在第一阶段的步骤 6中已由 BS发送给 RS #1;
6、 MS/SS从相应时频区间接收 RS#1 TDDl下行子帧 0^中的下行中转通信数据 traffic data。 对于简化中转模式, 该阶段的处理过程为:
1、 MS/SS接收 BS下行子帧 DLBS的 DL Header中的前导码 preamble , 和 BS取得同步;
2、 MS/SS接收 BS下行子帧 DL^^JDL Header的 FCH, DL-MAP, UL- MAP, 获得 BS和 RS#rF行和上行 各个 burst的子信道和 0FDMA符号位置和使用方法 (profile ) 信息; 3、 RS#1 TDD1在下行子帧 DLKS中, 在除 DL Header外的时频区间, 以频率 fl发送下行中转通信数 据 traffic data给 MS/SS , 所述的中转通信数据在第一阶段的步骤 6中已由 BS发送给 RS #1;
4、 MS/SS从相应时频区间接收 RS#1 TDD1下行子帧 0^5中的下行中转通信数据 traffic data。
. 5 同样, 本发明中相应的中转通信处理流程中的上行中转过程包括两个阶段, 第一阶段为由用户 终端至 RS的处理, 第二阶段为由 RS至 BS的处理:
(一) 第一阶段 (MS/SS -〉 RS) :
对于高级中转模式, 该阶段的处理为:
1、 MS/SS MS/SS接收 RS#1 TDD1下行子帧 DLRS频率为 fl的" DL Header" 的 FCH, DL- MAP, UL-MAP, 10 获得 RS TDDl和 TDD2下行和上行各个 burst的子信道和 OFDMA符号位置和使用方法 (profile)信息;
2、 MS/SS在 RS TDD2上行子帧 ULRS中, 以频率 f2发送上行通信数据 traffic data给 RSttl ;
3、 RS TDD2以频率 f 2从相应时频区间接收 MS/SS上行子帧 ULBS中的上行通信数据 traffic data。 对于简化中转模式, 该阶段的处理为:
1、 MS/SS MS/SS接收 BS下行子帧 DLD J¾率为 Π的 DL Header的 FCH, DL-MAP, UL- MAP, 获得 BS、 15 RS#1 TDD1和 TDD2下行和上行各个 bur st的子信道和 OFDMA符号位置和使用方法 (profile ) 信息;
2、 MS/SS在 RS TDD2上行子帧 ULRS中, 以频率 f 2发送上行通信数据 traffic data给 RS#1;
3、 RSW TDD2以频率 f2从相应时频区间接收 MS/SS上行子帧 ULBS中的上行通信数据 traffic data。 第二阶段 (RS->BS ) :
在该阶段, 高级中转模式和简化中转模式的处理方式相同, 具体为:
20 1、 RSttl TDD1接收 BS下行子帧 01^中频率为 fl的 DL Header的 FCH, DL- MAP, UL-MAP, 获得 BS 下行和上行各个 burst的子信道和 OFDMA符号位置和使用方法 (profile ) 信息;
2、 RS#1 TDD2以频率 f2在下行子帧 DL UL Relay Zone的 UL Relay RSttl中发送上行中转通信数 据 traffic data给 BS , 所述中转通信数据在第一阶段的步骤 2中已由 BS发送给 RS #1 ;
3、 BS在频率为 Ϊ2的上行子帧 U 的 UL Relay Zone的 UL Relay RS#1中接收 S5中的上行中转 25 通信数据 traffic data。
第五种应用场景为: RS中包含两个分别与 BS和 MS对应的 OFDMA- FDD无线收发机, 且 RS通过 中转子信道和 0FDMA符号组合进行信息的传递。
本发明的 RS和 BS、 MS/SS的高级中转通信模式, 如图 32所示, RS和 BS、 MS/SS间采用 TDM- OFDMA- FDD方式通信, BS和 RS下行采用频率 f2, BS和 RS上行釆用频率 l; MS/SS通过 RS进行无 30 线中转接入 BS, RS作为一个 MS/SS接入 BS。
在图 32中, 所述的 RS需有两套 FDD无线收发机, 即图 32中 FDD收发机 1和 FDD收发机 2, 具体 为: 第一套发射机 TX1工作于频率 f1, 接收机 RX1工作于频率 f2; 第二套发射机 TX2工作于频率 f2, 接收机 RX2工作于频率 f1。
另外, 在图 32中, DLBS为 BS的物理层帧的下行子帧, 由 BS到 SS/MSBS或 RS, ULBS为 BS的物 35 理层帧的上行子帧, 由 SS/MSBS或 RS到 BS, SS/MSBS、 RS的第二套无线收发机和 BS保持收发帧同
I 步; DLRS为 RS的物理层帧的下行子帧, 由 BS到 SS/MSRS或 RS, ULRS为 RS的物理层帧的上行子帧, 由 SS/MSRS或 RS到 BS, SS/MSRS和 RS的第一套无线收发机保持收发帧同步。
本发明的 RS和 BS、 MS/SS的简化中转通信模式, 如图 33所示。 相应的 RS同样需有两套 FDD无 线收发机: 第一套发射机 TX1工作于频率 l , 接收机 RX1工作于频率 f2; 第二套发射机 TX2工作于频 率 f2, 接收机 RX2工作于频率 l。 而且, 在图 33中,, DLBS为 BS的物理层帧的下行帧, 由 BS到 SS/M SBS或 RS, ULBS为 BS的物理层帧的上行帧, 由 SS/MSBS或 RS到 BS; SS/M'SBS或 SS/MSRS、 RS的第 二套无线收发机和 BS保持收发帧同步。 DLRS RS的物理层帧的下行帧,
Figure imgf000043_0001
U LRS为 RS的物理层帧的上行帧, 由 SS/MSRS或 RS到 BS。 其中, DLBS的下行广播突发 (Broadcast Burst) , 如 Preamble、 FCH、 DL-MAP、 UL-MAP, 直接由 BS发给 MS/SS, 不通过 RS中转; MS/ SS的初始接入测距 Ranging、周期性测距 Ranging、 带宽请求通过 ULBS的测距子信道 Ranging Subc hannel, 直接由 MS/SS发给 BS, 不通过 RS中转; 对于 DLBS的下行其它突发, 如数据报文或除 DL- MAP、 UL-MAP外的消息报文, 不能直接由 BS发给 MS/SS, 必须通过 RS中转; ULBS的上行其它突 发, 如除 MS/SS的初始接入测距 Ranging, 周期性测距 Ranging、 带宽请求报文外, 不能直接由 MS/ SS发给 BS, 必须通过 RS中转。
本发明提供了一种包括 BS、 RS和 SS/MS无线中转通信系统, 分别采用两种通信模式: 髙级中 转模式和简化中转模式, 具体如图 34所示:
其中, BS包括:
有线传输处理单元: 能够与上一级设备 (如基站控制器) 或分别与一组基站设备建立通信, 并 与上一级设备或各基站设备之间进行信息的交互;
OFDMA- FDD无线收发机: 用于同 RS或 SS/MS以 OFDMA- FDD方式进行无线通信, 由
OFDMA-FDD无线发射机物理层处理单元、OFDMA- FDD无线接收机物理层处理单元和 OFDMA无线 收发机数据链路层处理单元组成。
OFDMA- FDD无线发射机物理层处理单元(频率为 l ) : 分别与 OFDMA无线收发机数据链路层 及可与其通信的 RS中的 OFDMA-FDD无线接收机 2物理层处理单元或 SS/MS中的 OFDMA-FDD无线 接收机物理层处理单元进行无线通信; 对于简化中转模式, 本单元对 DLBS的下行子帧头广播 (如
Preamble. FCH、 DL- AP, UL-MAP)釆用比其它发送数据可靠性更高的信道编码和调制方式(如 二进制相移键控 BPSK) ,或釆用比其它发送数据更高的发射功率,直接由 BS发给 MS/SS,不通过 RS 中转;
OFDMA-FDD无线接收机物理层处理单元(频率为 f2) : 分别与 OFDMA无线收发机数据链路层 及可与其通信的 RS中的 OFDMA-FDD无线发射机 2物理层处理单元或 SS/MS中的 OFDMA- FDD无线 发射机物理层处理单元进行无线通信;
OFDMA无线收发机数据链路层处理单元:对来自 OFDMA- FDD无线接收机物理层处理单元或有 线传输处理单元的数据, 作 OFDMA无线收发机数据链路层的数据处理后,转发给有线传输处理单元 或 OFDMA-FDD无线发射机物理层处理单元。
图中的 RS包括: OFDMA-FDD无线收发机 1和 2 : 用于同 BS或 SS/MS以 OFDMA- FDD方式进行无线通信, 由 OFDMA- FDD无线发射机 1和 2的物理层处理单元、 OFDMA- FDD无线接收机 1和 2的物理层处理单元 和 OFDMA无线收发机数据链路层处理单元组成。
OFDMA- FDD无线发射机 2物理层处理单元(频率为 f2 ) , 即第二 OFDMA-FDD无线发射机物理 层处理单元: 分别与 OFDMA无线收发机数据链路层及可与其通信的 BS中的 OFDMA- FDD无线接收 机物理层处理单元进行无线通信;
OFDMA-FDD无线发射机 1物理层处理单元(频率为 l ) , 即第一 OFDMA-FDD无线发射机物理 层处理单元: 分别与 OFDMA无线收发机数据链路层及可与其通信的 SS/MS中的 OFDMA-FDD无线 接收机物理层处理单元进行无线通信;
OFDMA-FDD无线接收机 2物理层处理单元(频率为 f1 ) , 即第二 OFDMA-FDD无线接收机物理 层处理单元: 分别与 OFDMA无线收发机数据链路层及可与其通信的 BS中的 OFDMA- FDD无线发射 机物理层处理单元进行无线通信;
OFDMA- FDD无线接收机 1物理层处理单元(频率为 f2) , 即第一 OFDMA- FDD无线接收机物理 层处理单元: 分别与 OFDMA无线收发机数据链路层及可与其通信的 SS/MS中的 OFDMA- FDD无线 发射机物理层处理单元进行无线通信;
OFDMA无线收发机数据链路层处理单元: 对来自 OFDMA- FDD无线接收机 1和 /或 2物理层处理 单元的数据, 作 OFDMA无线收发机数据链路层的数据处理后, 转发给 OFDMA-FDD无线发射机 1和 / 或 2物理层处理单元。
其中, 所述的 OFDMA- FDD无线发射机 1和 OFDMA-FDD无线接收机 1为第一 OFDMA- FDD无线 收发机, 所述的 OFDMA-FDD无线发射机 2和 OFDMA- FDD无线接收机 2为第二 OFDMA- FDD无线收 发机。 '
图中的 SS/MS包括:
OFDMA- FDD无线收发机:用于同 RS或 BS以 OFDMA-FDD方式进行无线通信, 由 OFDMA- FDD 无线发射机物理层处理单元、 OFDMA- FDD无线接收机物理层处理单元和 OFDMA无线收发机数据链 路层处理单元组成。
OFDMA- FDD无线发射机物理层处理单元:分别与 OFDMA无线收发机数据链路层及可与其通信 的 RS中 OFDMA- FDD无线接收机 1物理层处理单元或 BS OFDMA- FDD无线接收机物理层处理单元 进行无线通信; 对于简化中转模式, 本单元对 ULBS的上行随机接入(Random Access) 时隙(或称 为竞争时隙 Contention slot) , 如初始 Ranging竞争时隙和带宽请求竞争时隙, 或 MS/SS的初始接入 测距 Ranging、 周期性测距 Ranging, 带宽请求通过 ULBS的测距子信道 Ranging Subchannel, 采用 比其它发送数据可靠性更高的信道编码和调制方式 (如二进制相移键控 BPSK) ,或采用比其它发送 数据更高的发射功率, 直接由 MS/SS发给 BS, 不通过 RS中转; '
OFDMA-FDD无线接收机物理层处理单元:分别与 OFDMA无线收发机数据链路层及可与其通信 的 RS中 OFDMA- FDD无线发射机 1物理层处理单元或 BS中的 OFDMA- FDD无线发射机物理层处理 单元进行无线通信; OFDMA无线收发机数据链路层处理单元:对来自 OFDMA- FDD无线接收机物理层处理单元或用 户的数据, 作 OFDMA无线收发机数据链路层的数据处理后,转发给用户或 OFDMA- FDD无线发射机 物理层处理单元。
在 FDD通信模式下, 网络系统通信可能会存在如图 18 ( a) - ( d ) 所示的 4种情况的相'互干扰。 其中, TX表示发送模块, RX表示接收模块。
本发明为实现基于 RS的中转通信, 则需要设置合理的 BS和 RS的物理层帧结构, 从而保证中转 通信过程能够可靠地实现, 同时, 还可以有效避免可能存在的各种干扰。
下面将对本发明提供的 BS和 RS的物理层帧结构的具体实现方式进行详细地说明。
为实现基于 RS的中转通信功能, 则需要在 BS和 RS的物理层帧结构中进行如下的设置:
1、 在 BS的物理层帧结构的频率为 l的下行子帧 DLBS中采用 TDM (时分复用) 技术, 增加 DL
Relay Zone (下行中转区) , 用于定义由 BS传给 RS的 BS下行中转子信道和 OFDMA符号组合; 本发明中, 对于多 RS的情况, 则多 RS通过不同的子信道和 OFDMA符号组合共享 DL Relay Zo 门 6;
2、 在 RS的频率为 l的第二套无线接收机 RX2的物理层帧结构中釆用 TDM技术, 开辟 DL Relay Zone (下行中转区) , 用于定义 RS接收 BS的 DL Relay Zone的中转子信道和 OFDMA符号组合; 对于多 RS的情况, 则多 RS通过不同的子信道和 OFDMA符号组合共享 DL Relay Zone, 不同的 RS RX2只在 DL Relay Zone中相应的子信道和 OFDMA符号组合中接收 BS的中转数据, 在其它子 信道和 OFDMA符号组合则不安排接收;
3、在 BS的物理层帧结构的频率为 f2的上行子帧 ULBS中釆用 TDM技术,增加 UL Relay Zone (上 行中转区) , 用于定义由 RS传给 BS的 BS上行中转子信道和 OFDMA符号组合;
对于多 RS的情况, 多 RS通过不同的子信道和 OFDMA符号组合共享 UL Relay Zone;
4、在 RS的频率为 f2的第二套无线发射机 TX2的物理层帧结构中采用 TDM技术,开辟 UL Relay Zone (上行中转区) , 用于定义 RS接收 BS的 UL Relay Zone的中转子信道和 OFDMA符号组合; 对于多 RS的情况, 多 RS通过不同的子信道和 OFDMA符号组合共享 UL Relay Zone, 不同的 R S TX2只在 UL Relay Zone中相应的子信道和 OFDMA符号组合中发送 BS的中转数据, 其它子信道 和 OFDM A符号组合不能安排发送。
在 BS UL Relay Zone对应的期间, SS/MSBS、 SS/MSRS不安排任何发送子信道和 OFDMA符号 组合, RS不安排任何接收子信道和 OFDMA符号组合, 以避免 "SS/MSBS到 BS"、 "SS/MSRS BS"的 干扰; 在 BS DL Relay Zone对应的期间, RS不安排任何发送子信道和 OFDMA符号组合, 避免" R S到 RS"的自身干扰。
为保证中转通信过程中 BS和 RS之间的广播信息的传递,还需要在 BS和 RS的物理层帧结构中进 行如下设置: ·
1、 在 BS的物理层帧结构的频率为 l的下行子帧 DLBS的 DL Relay Zone中开辟 DL Relay Broa dcast Subchannel (下行中转广播子信道) , 用于定义由 BS广播给 RS的下行子信道和 OFDMA符 号组合, 广播的信息包括 802.16标准定义的 DCD (下行信道描述符) 、 UCD (上行信道描述符) 、 FPC (快速功率控制) 、 CLK— CMP (时钟比较) 广播报文;
2、在 RS的频率为 fl 的第二套无线接收机 RX2的物理层帧结构的 DL Relay Zone中开辟 DL Re lay Broadcast Subchannel (下行中转广播子信道) , 用于定义接收 BS下行中转广播时隙的 RS上 行子信道和 OFDMA符号组合, 接收广播 802.16标准定义的 DCD、 UCD、 FPC、 CLK— CMP广播报 文。
本发明中, 还在 BS和 RS的物理层帧结构中进行如下设置:
1、 在 BS的物理层帧结构的频率为 f2的上行亍帧 ULBS的 UL Relay Zone中定义 Relay Ranging Subchannel (中转测距子信道, 简写为 RRS) , 定义用于 RS的初始接入测距 Ranging、 周期性测距 Ranging, 带宽请求的 BS中转测距接收子信道和 OFDMA符号组合; 该中转测距子信道 RRS也可作 为 SS/MSSBS的初始接入测距 Ranging, 周期性测距 Ranging、 带宽请求测距子信道用;
2、 在 RS的频率为 f2的第二套无线发射机 TX2的物理层帧结构的 DL Relay Zone中开辟 Relay Ranging TX Subchannel (中转测距子信道, 简写为 RRS TX) , 用于定义 RS的初始接入测距 Ran ging、 周期性测距 Ranging、 带宽请求的 RS中转测距发送子信道和 OFDMA符号组合。
上述 BS的 Relay Ranging Subchannel和 RS TX2的 Relay Ranging TX Subchannel的时频关 系必须一一对应, 严格同步。
而且, 在 BS或 RS TX1的物理层帧结构的下行子帧中, 除 DL Header, BS的 DL Relay Zone 和 RX TX1在 BS的 DL Header, BS的 DL Relay Zone的对应期间外, BS和不同的 RS通过不同的子 信道和 OFDMA符号组合共享下行子帧的其余部分, 以避免 "RS到 SS/MSBS"和" BS到 SS/MSRS" 的干 扰。
在 BS或 RS RX1的物理层帧结构的上行子帧中,除 BS的 UL Relay Zone和 RS RX1在 BS的 UL
Relay Zone的对应期间外, BS和不同的 RS通过不同的子信道和 OFDMA符号组合共享上行子帧的其 余部分, 以避免 "SS/MSBS到 RS"和" SS/MSRS到 BS" 的干扰。
本发明中, 还在 BS和 RS的物理层帧结构中进行如下设置:
1、 在 BS的物理层帧结构的频率为 l的下行子帧 DLBS中定义 DL Header (下行子帧头) , 为下 行子帧的开始,用于定义发送用户同步信息的子信道和 OFDMA符号组合和发送指示信息的子信道和 OFDMA符号组合,以指示 BS物理层帧结构下行子帧和上行子帧的各子信道和 OFDMA符号组合的位 置和使用方法 profile;
所述的同步信息和指示信息具体包括: 原 802.16 OFDMA (或 SOFDMA) 帧中的 preamble、 F CH 、 DL-MAP和 UL- MAP信息, 使得 SS/MSBS、 RS和 BS保持收发帧同步;
2、 在高级中转模式下, 在 RS的频率为 l的第一套无线发射机 TX1的物理层帧结构的下行子帧 D
LRS中定义 DL Header (下行子帧头) , 且设置在下行子帧的开始时刻, 用于定义发送用户同步信息 的子信道和 OFDMA符号组合和发送指示信息的子信道和 OFDMA符号组合,以指示 RS的第一套无线 发射机物理层帧结构下行子帧和上行子帧的各子信道和 OFDMA符号组合的位置和使用方法 profile;
所述的同步信息和指示信息同样包含原 802.Ί 6 OFDMA (或 SOFDMA) 帧中的 preamble、 FC H 、 DL- MAP和 UL-MAP信息, 从而使得 SS/MSRS和 RS保持收发帧同步。 本发明中, 在髙级中转模式下, RS TX1的 DL Header在时间上滞后于 BS的 DL Header, 在 R S TX1的 DL Header期间, BS的下行子帧 DLBS不能安排任何发送子信道和 OFDMA符号组合, 以避 免" BS到 SS/MSRS"的干扰;
在高级中转模式下, 在 RS TX1的 DL Header期间, 其它 RS TX1的物理层帧结构的下行子帧 D LRS不能安排任何发送子信道和 OFDMA符号组合, 以避免 "RS到 SS/MSRS"的干扰。
在特殊情况下, 如果不同 RS TX1的 DL Header在时间上重叠, 则必须完全重叠, 严格同步, 且其内容必须相同, 避免" RS到 SS/MSRS "的干扰。
本发明中, 还在 BS和 RS的物理层帧结构中进行如下设置:
1、 在 RS的频率为 fl 的第二套无线接收机 RX2的物理层帧结构中开辟 DL Header RX (下行子 帧头接收) , 用于定义接收 BS的 DL Header的子信道和 OFDMA符号组合; RS的两套 FDD收发机根 据 DL Header RX Slot接收到的 preamble和 BS取得频率禾 Π/或符号同步。
BS的 DL Header和 RS RX2的 DL Header RX的时频关系必须——对应、 严格同步。
本发明中, 还在 BS和 RS的物理层帧结构中进行如下设置:
1、 在 BS的物理层帧结构的频率为 f2的上行子帧 ULBS中定义 Ranging Subchannel (测距子信 道) , 定义用于 SS/MSSBS的初始接入测距 Ranging、 周期性测距 Ranging、 带宽请求的 BS测距接收 子信道和 OFDMA符号组合;
2、 在高级中转模式下, 在 RS的频率为 f2 的第一套无线接收机 RX1的物理层帧结构的上行子帧 ULRS中定义 Ranging Subchannel (测距子信道) , 定义用于 SS/MSSRS的初始接入测距 Ranging, 周期性测距 Ranging, 带宽请求的 RS测距接收子信道和 OFDMA符号组合。
本发明中, 除 DL Header^ Ranging Subchannel外, 上述定义的子信道和 OFDMA符号组合或
Zone不一定每帧都必须存在。
根据上述提供的物理层帧结构, 本发明还提供了一种 BS和 RS的物理层帧结构的具体实施方式, 如图 35和图 36所示, 其中, 图 35为高级中转模式下的 BS和 RS的物理层帧结构示意图, 图 36为简化 中转模式下的 BS和 RS的物理层帧结构示意图。
图中, RS、 BS的发送和接收频率以图中帧最左端的频率标注为准, 图中的 "NULL"或空白部分 为不安排任何接收或发送的部分。
下面将对图 35和图 36中具体帧结构进行描述:
图中, BS下行子帧 DLBS和 RS TX1下行子帧 DLRS中的 Preamble UL-MAP、 DL-MAP和 FCH区 域为 DL Header; RS RX2上行子帧 1)1_^中的白色竖条形区域为 DL Header RX。
BS的 DL Relay Zone安排在 BS下行子帧 DLBS的 DL Header之后, 所述的 DL Relay Zone即为 图中的 DL Relay broadcast, DL Relay R#1, #2...部分; BS的 UL Relay Zone安排在 BS下行子 帧 DLBS的开始部分, 所述的即 UL Relay R#1, #2…和 RRS TX部分。 在 BS UL Relay Zone对应 的期间, SS/MSBS、 SS/MSRS不安排任何发送子信道和 OFDMA符号组合, RS不安排任何接收子信 道和 OFDMA符号组合; 在 BS DL Relay Zone对应的期间, RS不安排任何发送子信道和 OFDMA 符号组合。 PHY突发 (burst) 被分配了一组相邻的子信道和一组 OFDMA符号 (symbol) , BS和不同的 R S通过不同的子信道和 OFDMA符号组合共享下行子帧的其余部分。
本发明还提供了具体的基于上述设置的 BS的 RS的物理层帧结构的 OFDMA中转通信的处理流 程,相应的处理流程包括由 BS到用户终端的下行中转通信处理流程, 以及由用户终端到 BS的上行中 转通信处理流程。
下面首先对下行中转 Downlink relay通信处理流程进行说明 , 该下行流程包括两个处理阶段, 第一阶段为由 BS至 RS的通信过程, 第二阶段则为由 RS至用户终端的处理过程, 具体为:
(一) 第一阶段 (BS- >RS ) :
在该阶段中, 高级中转模式和简化中转模式下均采用相同的处理;
1、 BS在频率为 l的下行子帧 DLBS的 DL Header中的第一个符号 symbol发送前导码 preamble;
2、 RS#1通过 RS RX2频率为 f1的 DL Header RX接收 BS下行子帧 DLBS的 DL Header中的前导 码 preamble, 禾口 BS取得同步;
3、 BS在频率为 l的下行子帧 DLBS的 DL Header的 preamble之后中发送 FCH, DL-MAP, 以及 U L-MAP信息;
4、 RS#1通过 RS RX2频率为 l的 DL Header RX接收下行子帧 DLBS的 DL Header 的 FCH, D
L-MAP, 及 UL-MAP信息, 获得 BS下行和上行各个 burst的子信道和 OFDMA符号位置和使用方法(p rofile) 信息;
5、 BS利用频率为 fl的下行子帧 DLBS的 DL Relay Zone的 DL Relay broadcast发送广播消息 m essage;
6、 BS在频率为 fl的下行子帧 DLBS的 DL Relay Zone的 DL Relay RS#1中发送下行中转通信数 据 traffic data 给 RS#1;
7、 RS#1通过 RS RX2频率为 fl的 DL RB接收 BS下行子帧 DLBS的 DL Relay Zone的 DL Relay broadcast中的广播消息 message , 其中可以包含需要 RS#1中转广播的消息;
8、 RS#1通过 RS RX2频率为 l的 DL Relay Zone接收 BS下行子帧 DLBS的 DL Relay Zone的 D L Relay RS#1中下行中转通信数据 traffic data。
(二) 第二阶段 (RS- >MS/SS) :
对于高级中转模式, 该阶段的处理包括:
1、 RS#1 TX1在下行子帧 DLR^ii率为 l的 DL Header中的第一个符号 symbol发送前导码 prea mble;
2、 MS/SS接收 RS#1 TX1下行子帧 DLRS的 DL Header中的前导码 preamble,和 RS#1取得同步;
3、 RS#1 TX1在下行子帧 DLRS频率为 l的 DL Header的 preamble之后中发送 FCH, DL-MAP , UL-MAP; 其中, RS # 1的 FCH, DL-MAP, UL-MAP可在第一阶段的步骤 6中由 BS发送给 RS #1 ;
4、 MS/SS接收 RS#1 TX1下行子帧 DLRS的 DL Header的 FCH , DL-MAP, 以及 UL-MAP信息, 获得 RS#1第一套无线发射机下行和上行各个 burst的子信道和 OFDMA符号位置和使用方法(profile ) 信息; 5、 RS#1 TX1在下行子帧 DLRS中, 在除 DL Header^ DL Relay Zone外的时频区间, 以频率 f 1发送下行中转通信数据 traffic data给 MS/SS,所述的中转通信数据在第一阶段的步骤 6中已由 BS发 送给 RS #1 ;
6、 MS/SS从相应时频区间接收 RS#1 TX1下行子帧 DLRS中的下行中转通信数据 traffic data。 对于简化中转模式, 该阶段的处理过程具体包括:
1、 MS/SS接收 BS下行子帧 DLBS的 DL Header中的前导码 preamble, 从而与 BS取得同步;
2、 MS/SS接收 BS下行子帧 DLBS的 DL Header的 FCH, DL-MAP, 以及 UL-MAP信息, 获得 BS 和 RS#1下行和上行各个 burst的子信道和 OFDMA符号位置和使用方法 (profile) 信息;
3、 RS#1 TX1在下行子帧 DLRS中, 在除 DL Header DL Relay Zone外的时频区间, 以频率 f 1发送下行中转通信数据 traffic data给 MS/SS,所述的中转通信数据在第一阶段的步骤 6中已由 BS发 送给 RS #1;
4、 MS/SS从相应时频区间接收 RS#1 TX1下行子帧 01_^中的下行中转通信数据 traffic data。 下面再对上行中转 Uplink relay通信处理流程进行说明, 该上行流程同样包括两个处理阶段, 第 一阶段为由用户终端至 RS的通信过程, 第二阶段则为由 RS至 BS的处理过程, 具体为:
(―) 第一阶段 (MS/SS ->RS ) :
该阶段中, 对于高级中转模式, 则相应的处理过程包括:
1、 MS/SS MS/SS接收 RS#1 TX1下行子帧 DLRS频率为 fl的 DL Header 的 FCH , DL-MAP, UL-MAP,获得 RS#1 第一套无线发射机下行和上行各个 burst的子信道和 OFDMA符号位置和使用方 法 ( profile) 信息;
2、 MS/SS在 RS RX1上行子帧 ULRS中, 在除 BS UL Relay Zone对应期间外的时频区间, 以频 率 f2发送上行通信数据 traffic data给 RS#1;
3、 RS#1 RX1以频率 f2从相应时频区间接收 MS/SS上行子帧(ULRS)中的上行通信数据 traffic data。
该阶段中, 对于简化中转模式, 则相应的处理过程包括:
1、 MS/SS MS/SS接收 BS下行子帧 DLBS频率为 l的 DL Header的 FCH, DL-MAP, UL-MAP, 获得 BS和 RS#1第一套无线发射机下行和上行各个 burst的子信道和 OFDMA符号位置和使用方法 ( p rofile) 信息;
2、 MS/SS在 RS RX1上行子帧 ULRS中, 在除 BS UL Relay Zone对应期间外的时频区间, 以频 率 f2发送上行通信数据 traffic data给 RS#1;
3、 RS#1 RX1以频率 f2从时频区间接收 MS/SS上行子帧 ULRS中的上行通信数据 traffic data。
(二) 第二阶段 (RS->BS ) :
在该阶段中, 高级中转模式和简化中转模式釆用相同的处理方式;
1、 RS#1 RX2接收 BS下行子帧 DLBS中频率为 l的 DL Header 的 FCH, DL-MAP, UL-MAP, 获得 BS下行和上行各个 burst的子信道和 OFDMA符号位置和使用方法 (profile) 信息;
2、 RS#1 TX2以频率 f2在 RS下行子帧 DLRS的 UL Relay Zone的 UL Relay RS#1中发送上行中 转通信数据 traffic data给 BS, 所述的中转通信数据在第一阶段的步骤 2中已经由 BS发送给 RS #1 ;
3、 BS在频率为 f2的上行子帧 ULBS的 UL Relay Zone的 UL Relay RS#1中接收 S5中的上行 中转通信数据 traffic data。
第六种应用场景为: RS中包含单个 FDD无线收发机, 且 RS通过中转时隙合进行信息的传递。 本发明提供了一种无线中转通信系统及方法, 在该无线中转通信系统中 RS和 BS、 MS/SS的通信系 统模型如图 2、 图 16和图 17所示, 图 16为下行单 RS的情况, 图 17为上行单 RS的情况, 图 2则为多 RS的 情况。 在该通信系统模型中, RS和 BS、 MS/SS间采用 FDD/TDM (时分复用) /TDMA (时分复用接入)方 式进行通信。
BS下行和 RS上行采用频率 Π, BS上行和 RS下行采用频率 f2; RS作为一个 MS/SS接入 BS, MS/SS通 过 RS进行无线中转接入 BS。 在 FDD模式下, 网络系统通信存在如图 37 (a) - (d)所示的 4种情况的相互 干扰。 其中, TX表示发送模块, RX表示接收模块。
为便于后续描述, 在上述图 2、 图 16和图 17所示的三种通讯系统模型中, 将 BS的覆盖区域分成 3 个区:
1、 " 1 " 区: 仅 BS能下行覆盖, 在该区域中, 不存在 "RS到属于 BS的 MS/SS (图 16中为 MSBS) " 的干扰;
2、 "3" 区: 仅 RS能下行覆盖, 在该区域中, 不存在 "BS到属于 RS的 MS/SS (图 16中为 MSRS) " 的干扰;
3、 "2 "区: BS和 RS都能下行覆盖, 在该区域中, 存在 "RS到 SS/MS "和 "BS到 SS/MSRS "的干 扰。 在图 6中, BS和 RS1的重叠区为 RS1的 "2" 区, 而 BS和 RS2的重叠区为 RS2的 "2" 区。
在上述图 2、 图 16和图 17所示的三种通讯系统模型中, 将 RS的覆盖区域分成 3个区:
1、 " 11"区: 仅 BS能上行覆盖, 在该区域中, 不存在 "SS/MSR ljBS" 的干扰;
2、 "33" 区: 仅 RS能上行覆盖, 在该区域中, 不存在 " SS/MSBS到 RS" 的干扰;
3、 "22"区: BS和 RS都能上行覆盖, 在该区域中, 存在 "SS/MSBS到 RS"和 "SS/MSB jBS" 的 干扰。 在图 6中, BS和 RS1的重叠区为 RS1的 "22" 区, 而 BS和 RS2的重叠区为 RS2的 "22" 区。
本发明提供的 RS和 BS、 MS/SS的高级中转通信模式, 如图 38所示, RS和 BS、 MS/SS间采用
FDD/TDM/OFDM方式通信, BS下行和 RS上行釆用频率 Π, BS上行和 RS下行采用频率 f2; RS作为一个 MS/SS 接入 BS , MS/SS通过 RS进行无线中转接入 BS。
在图 38中,所述的 RS只需要一套 FDD无线收发机, D 为 BS的物理层帧的下行子帧, 由 BS到 SS/MSliS 或 RS, ULBS为 BS的物理层帧的上行子帧, 由 SS/MSBS或 RS到 BS,
Figure imgf000050_0001
的物理层帧的下行子帧, 由 BS到 SS/MSB^RS, U 为 RS的物理层帧的上行子帧, 由 SS/MS^J¾S到 BS, SS/MS^]RS保持收发帧同步。
本发明提供的 RS和 BS、 MS/SS的简化中转通信模式, 如图 39所示。 BS下行和 RS上行釆用频率 , BS上行和 RS下行采用频率 f2, RS只需有一套 FDD无线收发机。 DLBS为 BS的物理层帧的下行子帧, 由 BS 到 SS/MSBS或 RS, U 为 BS的物理层帧的上行子帧, 由 SS/MSBS或 RS到 BS ; SS/MSBI^SS/MSBS和 BS保持收发 帧同步。 DLRi^RS的物理层帧的下行子帧, 由 BS到 SS/MS^ RS, ULKS为 RS的物理层帧的上行子帧, 由 SS/MSBS或 RS到 BS。其中, DLBS的 Broadcast Burst (下行广播突发),如 Preamble、 FCH、 DL- MAP、 UL- MAP, 直接由 BS发给 MS/SS, 不通过 RS中转; ULBS的上行随机接入 (Random Access) 时隙 (或称为竞争时隙 Contention slot ) , 如初始 Ranging竞争时隙和带宽请求竞争时隙, 直接由 MS/SS发给 BS, 不通过 RS 中转; 对于 DLBS的下行其它突发, 如数据报文或除 DL- MAP、 UL-MAP外的消息报文, 不能直接由 BS发给 MS/SS , 必须通过 RS中转; ULBS的上行其它时隙, 如除初始 Ranging竞争时隙和带宽请求竞争时隙外的 时隙, 不能直接由 MS/SSBS发给 BS, 必须通过 RS中'转交互。
本发明提供的无线中转通信系统的功能框架如图 40所示, 该无线中转通信系统包括 BS、 RS和 SS/MS的。
其中 BS包括:
有线传输处理单元: 能够与上一级设备 (如基站控制器) 或分别与一组基站设备建立通信, 并 与上一级设备或各基站设备之间进行信息的交互;
FDD无线收发机: 用于同 RS或 SS/MS以 FDD方式进行无线通信, 由 FDD无线发射机物理层处理单元、 FDD无线接收机物理层处理单元和 FDD无线收发机数据链路层处理单元组成。
其中, FDD无线发射机物理层处理单元 (频率为 Π ) : 分别与 FDD无线收发机数据链路层及可与 其通信的 RS或属于 BS的 SS/MS中的无线接收机物理层处理单元进行无线通信;
其中, FDD无线接收机物理层处理单元 (频率为 f2 ) : 分别与 FDD无线收发机数据链路层及可与 其通信的 RS或属于 BS的 SS/MS中的无线发射机物理层处理单元进行无线通信;
其中, FDD无线收发机数据链路层处理单元: 将接收到的来自 FDD无线接收机物理层处理单元的 数据作 FDD无线收发机数据链路层的数据处理后, 转发给有线传输处理单元。将接收到的来自有线传 输处理单元元的数据作 FDD无线收发机数据链路层的数据处理后, 转发给 FDD无线接收机物理层处理 单元。
RS包括:
FDD无线收发机: 用于同 BS或 SS/MS以 FDD方式进行无线通信, 由 FDD无线发射机物理层处理单元、 FDD无线接收机物理层处理单元和 FDD无线收发机数据链路层处理单元组成。
FDD无线发射机物理层处理单元 (频率为 f2 ) : 分别与 RS中的 FDD无线收发机数据链路层或 RS中 的 FDD无线接收机物理层处理单元及可与其通信的 BS或 SS/MS中的无线接收机物理层处理单元进行无 线通信; '
FDD无线接收机物理层处理单元 (频率为 Π ) : 分别与 RS中的 FDD无线收发机数据链路层或 RS中 的 FDD无线发射机物理层处理单元及可与其通信的 BS或 SS/MS中的无线发射机物理层处理单元进行无 线通信;
FDD无线收发机数据链路层处理单元: 对来自 FDD无线接收机物理层处理单元的数据, 作 FDD无线 收发机数据链路层的数据处理后, 转发给 FDD无线发射机物理层处理单元。
SS/MS包括:
FDD无线收发机: 用于同 RS以 FDD方式进行无线通信, 由 FDD无线发射机物理层处理单元、 FDD无 线接收机物理层处理单元和 FDD无线收发机数据链路层处理单元组成。 FDD无线发射机物理层处理单元 (频率为 fl ) : 分别与 FDD无线收发机数据链路层及可与其通信 I 的 RS无线接收机物理层处理单元进行无线通信;
FDD无线接收机物理层处理单元 (频率为 f2 ) : 分别与 FDD无线收发机数据链路层及可与其通信 的 RS中的无线发射机物理层处理单元进行无线通信;
5 FDD无线收发机数据链路层处理单元: 对来自 FDD无线接收机物理层处理单元或用户的数据, 作
FDD无线收发机数据链路层的数据处理后, 转发给用户或 FDD无线发射机物理层处理单元。
本发明为实现基于 RS的中转通信', 需要设置合理的 BS和 RS的物理层帧结构, 从而保证中转通信 过程能够可靠地实现, 同时, 还可以有效地避免图 7中可能存在的各种干扰。
. 为实现基于 RS的中转通信功能, 本发明提供了 BS和 RS的物理层帧结构的三种实现方案, 下面分
10 别介绍该三种方案的具体实现方式。
在 BS和 RS的物理层帧结构的实现方案 1中需要进行如下的设置:
1、 在 BS的物理层帧结构的频率为 Π的 D (下行子帧) 中设置 DL Relay Zone (下行中转区) , 用于定义由 BS传给 RS的 BS下行中转数据时隙。 对于图 6所示的多 RS的情况 , 多 RS采用 TDM的方式共享 DL Relay Zone。
I 15 2、在 RS频率为 f 1的 RX (FDD无线接收机)的物理层帧结构的 ULBS (上行子帧)设置 DL Relay Zone, 用于定义 RS接收 BS的 DL Relay Zone的中转数据时隙。 对于图 6所示的多 RS的情况, 多 RS采用 TDM的方 式共享 DL Relay Zone。
3、 在 BS的物理层帧结构的频率为 f2的 ULBS (上行子帧) 中增加 UL Relay Zone (上行中转区) , 用于定义将由 RS传给 BS的 BS上行中转数据时隙。 对于图 6所示的多 RS的情况, 多 RS采用 TDM的方式共
20 享 UL Relay Zone。
4、 在 RS的频率为 f2的 TX (FDD无线发射机) 的物理层帧结构的 DLBS设置 UL Relay Zone, 用于定 义 RS接收 BS的 UL Relay Zone的中转数据时隙。 对于图 6所示的多 RS的情况, 多 RS采用 TDM的方式共享 UL Relay Zone。
5、 BS的 DL Relay Zone和 RS的 RX的 DL Relay Zone的时隙和频率关系必须——对应。 BS的 UL Relay 25 Zone和 RS的 TX的 UL Relay Zone的时隙和频率关系必须——对应。
6、 在 BS的 UL Relay Zone对应的期间内, SS/MSBS不安排任何发送时隙, 避免 SS/MSBS到 BS的干扰。 在 BS的 DL Relay Zone对应的期间, 33 31!5不安排任何发送时隙, 避免 SS/MSRS ljRS的干扰。
I 7、 在 BS的物理层帧结构的频率为 fl的 DLBS的 DL Relay Zone中设置 DL RB (DL Relay Broadcast
Slot, 下行中转广播时隙) , 用于定义由 BS广播给 RS的下行时隙和广播 802. 16标准定义的 DCD、 UCD、 30 FPC (快速功率控制) 、 CLK— CMP (时钟比较) 广播报文。
8、 在 RS的频率为 fl的 RX的物理层帧结构的 ULRS的 DL Relay Zone中设置 DL RB ( DL Relay Broadcast RX Slot , 下行中转广播接收时隙) , 用于定义接收 BS下行中转广播时隙的 RS上行时隙和 接收 802. 16标准定义的 DCD、 UCD、 FPC、 CLK— CMP广播报文。
9、 在 BS的物理层帧结构的频率为 fl的 D 中定义 DL Interference Slot (下行干扰时隙) , 用 35 于定义 BS下行覆盖 " 1区"和 "2区" 的 BS下行数据时隙。 10、 在 RS的频率为 f2的 TX的物理层帧结构的 DLBS中定义 DL Interference Slot, 用于定义 RS下行 覆盖 " 1区"和 "2区" 的 RS下行数据时隙。 对于图 6所示的多 RS的情况, 多 RS采用 TDM的方式共享 DL Interference Slot, 避免 RS到 SS/MS 干扰。
11、 BS的 UL Interference Slot不能与 RS的 TX的 DL Interference Slot在时隙上相重叠, 避免 SS/MSB ljSS/MSRS的干扰。
12、 在 BS的物理层帧结构的频率为 Π的 DLBS中定义 DL Header Slot (下行子帧头时隙) , 该 DL Header Slot为下行子帧的开始, 用于定义发送用户同步信息的时隙和发送指示信息的时隙, 以指示 BS物理层帧结构下行子帧和上行子帧的各时隙的位置和使用方法 profile 该信息包括原 802. 16 0FDM (或 SC) 帧中的 preamble、 FCH burst及由 DLFP指定的紧随在 FCH之后的一个或多个下行 Burst (包括 DL- MAP、 UL- MAP) , SS/MSBS、 RS和 BS保持收发帧同步。
13、在所述的高级中转通信模式中,在 RS的频率为 f 2的 TX的物理层帧结构的 DLRS中定义 DL Header Slot, 该 DL Header Slot为下行子帧的开始, 用于定义发送用户同步信息的时隙和发送指示信息的 时隙, 以指示 RS物理层帧结构下行子帧和上行子帧的各时隙的位置和使用方法 profile该信息包含 原 802. 16 0FDM (或 SC) 帧中的 preamble、 FCH burst及由 DLFP指定的紧随在 FCH之后的一个或多个下 行 Burst (包括 DL- MAP、 UL- MAP) , SS/MSR nRS保持收发帧同步。
14、 在所述的高级中转通信模式中, RS的 TX的 DL Header Slot在时间上滞后于 BS的 DL Header Sloto
15、 在上面所述的高级中转通信模式中, RS的 TX的 DL Header Slot在时间上不能和其它 RS的 TX 的物理层帧结构的 DL^ lDL Header Slot、 DL Interference Slot重叠, 以避免 RS到 SS/MSBS的干扰。 在特殊情况下, 如果不同 RS TX的 DL Header Slot在时间上 g叠, 则必须完全重叠, 严格同步, 且其 内容必须相同, 避免 "RS到 SS/MSBS" 的干扰。
16、 在 RS的频率为 Π的 RX的物理层帧结构的中设置 DL Header RX Slot (下行子帧头接收时隙) , 用于定义接收 BS的 DL Header Slot的时隙。
17、 BS的 DL Header Slot和 RS的 RX的 DL Header RX Slot的时隙关系必须完全重叠, 且严格同步。 18、 在 BS的物理层帧结构的频率为 f2的 U 中定义 UL Interference Slot (上行干扰时隙) , 用 于定义 BS上行覆盖 " 11区"和 "22区" 的 BS上行数据时隙。
19、 在 RS的频率为 Π的 RX的物理层帧结构的 ULBS中定义 UL Interference Slot, 用于定义 RS上行 覆盖 "33区"和 "22区" 的 RS上行数据时隙。 对于图 6所示的多 RS的情况, 多 RS采用 TDM的方式共享 UL Interference Slot, 以避免 SS/MSR; ljRS的干扰。
20、 BS的 DL Interference Slot不能与 RS的 RX的 UL Interference Slot在时隙上相重叠, 以避 免 SS/MSRS到 SS/MSBS的干扰。
21、 在 BS的物理层帧结构的频率为 f2的 ULBS中定义 UL Contention Slot (上行竞争时隙) , 该 UL Contention Slot中包含原 802. 16 0FDM (或 SC) 帧中的初始 Ranging竞争时隙和带宽请求竞争时隙。
22、 在上面所述的高级中转通信模式中, 在 RS的频率为 f 1的 RX的物理层帧结构的 ULRS中定义 UL Contention Slot, 该 UL Contention Slot中包含原 802. 16 OFDM (或 SC) 帧中的初始 Ranging竞争时 隙和带宽请求竞争时隙。
23、在 RS的频率为 f2的 TX的物理层帧结构的中设置 UL Contention TX Slot (上行竞争发送时隙) , 用于定义 RS发送的用于竞争 BS的 UL Contention Slot的时隙。
24、 BS的 UL Contention Slot和 RS的 TX的 UL Contention TX Slot的时隙和频率关系必须完全重 叠, 且严格同步。
25、 除 DL Header Slot, UL Contention Slot外, 上述定义的 Slot或 Zone不一定每帧都必须存 在。
根据上述提供的物理层帧结构, 本发明还提供了一种 BS和 RS的物理层帧结构的具体实施方式, 如图 11和图 12所示, 其中, 图 11为髙级中转通信模式下的 BS和 RS的物理层帧结构示意图, 图 12为简 化中转模式下的 BS和 RS的物理层帧结构示意图。 图 11和图 12中, RS、 BS的发送和接收频率以图中帧 最左端的频率标注为准。
下面将对图 41和图 42中具体帧结构进行描述:
BS的下行子帧 DLBS和 RS的 TX的下行子帧 DLRS中的 "黑色箭头所指的黑色时隙"为 DL Header Slot, BS的上行子帧 ULBS和 RS的 RX的上行子帧 ULBS中的 "黑色箭头所指的黑色时隙"为 UL Contention Slot, RS的 TX中的白色箭头所指的白色时隙" ) 为 UL Contention TX Slot, RS的 RX中的 "白色箭头所指的 白色时隙"为 DL Header RX Sloto
BS的下行子帧 DLBS中的 "TX时隙"为 DL Interference Slot (BS下行覆盖 " 1区"和 "2区" ) , BS的上行子帧 ULBS中的 "RX时隙" ¾UL Interference Slot (BS上行覆盖 " 11区"和 "22区" ) , RS 的 TX下行子帧 DL,iS中的 "TX时隙"为 DL Interference Slot (RS下行覆盖 " 3区"和 "2区" ) , RS 的 RX的上行子帧 ULRS中的 "RX时隙"为 UL Interference Slot (RS上行覆盖 "33区"和 "22区" ) 。
BS的 DL Relay Zone安排在 BS的下行子帧 DLBS的 DL Header Slot之后, BS的 UL Relay Zone安排在 BS的下行子帧 DL UL Contention Slot之后。 BS的 DL Relay Zone和 RS的 RX的 DL Relay Zone的时隙 和频率关系——对应; BS的 UL Relay Zone和 RS的 TX的 UL Relay Zone的时隙和频率关系——对应; 在 BS的 UL Relay Zone对应的期间, SS/MSBS不安排任何发送时隙; 在 BS的 DL Relay Zone对应的期间, SS/MSIiS不安排任何发送时隙。
BS的 DL Interference Slot不能与 RS的 RX的 UL Interference Slot在时隙上相重叠, BS的 UL Interference Slot不能与 RS的 TX的 DL Interference Slot在时隙上相重叠。
对于图 6所示的多 RS的情况, 多 RS采用 TDM的方式共享 DL Relay Zone ( SPDL RB、 DL Relay R#l、 #2…部分)、 UL Relay Zone (即 UL Relay R#l, #2…部分)、 DL Interference Slot和 UL Interference Sloto
在本发明提供的 BS和 RS的物理层帧结构的实现方案 2中需要进行如下的设置:
在上述实现方案 1的特征 1到 25中, 实现方案 2有如下一个特征和实现方案 1不同:
14、在上面所述的高级中转通信模式中, RS的 TX的 DL Header Slot在时间上滞后于 BS的 DL Header Slot, 且它们互相不能重叠。 RS的 TX的 DL Header Slot在时间上必须位于 BS的物理层帧结构的上行 子帧 ULBS的 UL Non-interference Slot内。 另外, 实现方案 2要新增如下六个特征:
26、 在 BS的物理层帧结构的频率为 fl的下行子帧 D 中增加 DL Non- Interference Slot (下行无 干扰时隙) , 用于定义 BS下行覆盖 " 1区"的 BS下行数据时隙。
27、 在 RS的频率为 f 2的 FDD无线发射机 TX的物理层帧结构的下行子帧 中增加 DL Non-interference Slot , 用于定义 RS下行覆盖 " 3区" 的 RS下行数据时隙。
28、 所述 BS的 UL Non-interference Slot与 RS的 DL Non-interference Slot在时隙上可相重叠。
29、 在 BS的物理层帧结构的频率为 f2的上行子帧 U 中增加 "UL Non-Interference Slot (上行 无干扰时隙) , 用于定义 BS上行覆盖 " 11区" WBS上行数据时隙。
30、 在 RS的频率为 Π的 FDD无线接收机 RX的物理层帧结构的上行子帧 ULRS中增加 UL 1 Non-interference Slot , 用于定义 RS上行覆盖 " 33区" 的 RS上行数据时隙。
31、 所述 BS的 DL Non-interference Slot与 RS的 RX的 UL Non-Interference Slot在时隙上可互 相重叠。
根据上述提供的实现方案 2的物理层帧结构 ,本发明还提供了一种高级中转通信模式下的 BS和 RS 的物理层帧结构的具体实施方式, 如图 43所示, 其中, RS、 BS的发送和接收频率以图中帧最左端的 频率标注为准。
下面将对图 43中具体帧结构进行描述:
BS的下行子帧 DLBS和 RS的 TX的下行子帧 D 中的 "黑色箭头所指的黑色时隙"为 DL Header Slot ,
Figure imgf000055_0001
"黑色箭头所指的黑色时隙" 为 UL Contention Slot。
RS的 TX中的 "白色箭头所指的白色时隙"为 UL Contention TX Slot , RS的 RX的 "白色箭头所指的白 色时隙"为 DL Header RX Slot。
BS的下行子帧 D 中的 "TX时隙"为 DL Non-interference Slot (BS下行覆盖 " 1区" ) , "TX 时隙"为 DL Interference Slot (BS下行覆盖 " 1区"和 " 2区" ) 。 BS的上行子帧 ULBS中的 "赠 ' 隙"为 UL Non- Interference Slot ( BS上行覆盖 " 11区" ) , "RX时隙"为 UL Interference Slot (BS上行覆盖 " 11区"和 "22区")。 RS的 TX的下行子帧 DLRS中的 "TX3时隙"为 DL Non- Interference S lot ( RS下行覆盖 " 3区"), "TX时隙"为 DL Interference Slot (RS下行覆盖 " 3区"和 "2区") 。
RS的 RX的上行子帧 ULliS中的 "RX3时隙"为 UL Non- Interference Slot ( RS上行覆盖 " 33区" ) , "RX 时隙"为 UL Interference Slot ( RS上行覆盖 " 33区"和 "22区" ) 。
BS的 DL Relay Zone安排在 BS的下行子帧 D DL Header Slot之后, BS的 UL Relay Zone安排在 BS的下行子帧 DL UL Contention Slot之后。 BS的 DL Relay Zone和 RS的 RX的 DL Relay Zone的时隙 和频率关系 对应; BS的 UL Relay Zone和 RS的 TX的 UL Relay Zone的时隙和频率关系——对应; 在 BS的 UL Relay Zone对应的期间, SS/MSBS不安排任何发送时隙; 在 BS的 DL Relay Zone对应的期间, SS/MSRS不安排任何发送时隙。
BS的 DL Interference Slot不能与 RS的 RX的 UL Interference Slot在时隙上相重叠, BS的 UL Interference Slot不能与 RS的 TX的 DL Interference Slot在时隙上相重叠。
对于简化模式, 其物理层帧结构和上述高级中转通信模式下的物理层帧结构的区别在于: 图 43 I 中的 RS TX下行子帧 DL DL Header Slot和 RS RX上行子帧 UL^ UL Contention Slot不存在, 其余 雷同。
在本发明提供的 BS和 RS的物理层帧结构的实现方案 3中需要进行如下的设置:
在上述实现方案 2的特征 1到 31中, 实现方案 3有如下四个特征和实现方案 2不同:
9、 在 BS的物理层帧结构的频率为 Π的下行子帧 DLBS中定义 DL Interference Slot (下行干扰时 隙) , 用于定义 BS的下行覆盖 "2区" 的 BS下行数据时隙。
10、 在 RS的频率为 Ώ的 FDD无线发射机 TX的物理层帧结构的下行子帧 DLBS中定义 DL Interference Slot, 用于定义 RS下行覆盖 "2区"的 RS下行数据时隙。 对于如图 6所示的多 RS的情况, 多 RS采用 TDM 的方式共享 DL Interference Slot, 以避免 RS到 SS/MSRS的干扰。
18、 在 BS的物理层帧结构的频率为 f2的上行 '子帧 ULBS中定义 UL Interference Slot, 用于定义 BS 上行覆盖 "22区" 的 BS上行数据时隙。
19、 在 RS的频率为 fl的 FDD无线接收机 RX的物理层帧结构的上行子帧 ULRS中定义 UL Interference Slot, 用于定义 RS上行覆盖 "22区" 的 RS上行数据时隙。 对于图 2所示的多 RS的情况, 多 RS采用 TDM 的方式共享 UL Interference Slot, 以避免 SS/MSRS到 RS的干扰。
根据上述提供的实现方案 3的物理层帧结构,本发明还提供了一种高级中转通信模式下的 BS和 RS 的物理层帧结构的具体实施方式, 如图 44所示, 其中, RS、 BS的发送和接收频率以图中帧最左端的 频率标注为准。
BS的下行子帧 DLBS和 RS的 TX的下行子帧 DLRS中的 "黑色箭头所指的黑色时隙"为 DL Header Slot, BS的上行子帧 ULBS和 RS的 RX的上行子帧 U 中的 "黑色箭头所指的黑色时隙"为 UL Contention Slot. RS的 TX中的 "白色箭头所指的白色时隙"为 UL Contention TX Slot, RS的 RX的 "白色箭头所指的白 色时隙"为 DL Header RX Slot。
BS的下行子帧 DLBS中的 "TX时隙"为 DL Non-interference Slot (BS下行覆盖 "1区" ) , "TX 时隙"为 DL Interference Slot (BS下行覆盖 "2区" ) 。 BS的上行子帧 ULBS中的 "RX时隙"为 UL Non-interference Slot (BS上行覆盖 " 11区" ) , "RX时隙"为 UL Interference Slot (BS上行覆 盖 "22区" ) , RS的 TX的下行子帧 DLRS中的 "TX3时隙"为 DL Non- Interference Slot (RS下行覆盖 "3区" ) , "TX时隙"为 DL Interference Slot (RS下行覆盖 "2区" ) 。 RS的 RX的上行子帧 ULRS 中的 "RX3时隙"为 UL Non-interference Slot (RS上行覆盖" 33区"), "RX时隙"为 UL Interference Slot (RS上行覆盖 "22区" ) 。
BS的 DL Relay Zone安排在 BS的下行子帧 DLBS的 DL Header Slot之后, BS的 UL Relay Zone安排在
Figure imgf000056_0001
Contention Slot之后。 BS的 DL Relay Zone和 RS的 RX的 DL Relay Zone的时隙 和频率关系——对应; BS的 UL Relay Zone和 RS的 TX的 UL Relay Zone的时隙和频率关系——对应; 在 BS的 UL Relay Zone对应的期间, SS/MSBS不安排任何发送时隙。 在 BS的 DL Relay Zone对应的期间, SS/MSRS不安排任何发送时隙。
BS的 DL Interference Slot不能与 RS的 RX的 UL Interference Slot在时隙上相重叠, BS的 UL Interference Slot不能与 RS的 TX的 DL Interference Slot在时隙上相重叠。 BS的 UL Non-interference Slot与 RS的 TX的 DL Non-interference Slot在时隙上尽可能相重叠。 BS的 DL Non-interference Slot与 RS RX的 UL Non-interference Slot在时隙上尽可能相重叠。
对于简化模式, 其物理层帧结构和上述高级中转通信模式下的物理层帧结构的区别在于: 图 44 中 RS TX的下行子帧 DL DL Header Slot和 RS RX的上行子帧 ULRS的 UL Contention Slot不存在, 其 余雷同。
本发明还提供了具体的基于上述设置的 BS和 RS的物理层帧结构的所述无线中转通信系统的处理 流程, 相应的处理流程包括由 BS到用户终端的下行中转通信处理流程, 以及由用户终端到 BS的上行 中转通信处理流程。
下面首先对下行中转 Downlink relay通信处理流程进行说明, 该下行流程包括两个处理阶段, 第一阶段为由 BS至 RS的通信过程, 第二阶段则为由 RS至用户终端的处理过程, 具体为:
(一) 第一阶段 (BS-〉RS ) :
在该阶段中, 高级中转通信模式和简化中转模式下均采用相同的处理;
1、 BS在频率为 Π的下行子帧 DLBS的 DL Header中发送前导码 preamble。
2、 RSifl通过 RS的 RX频率为 fl的 DL Header RX接收 BS的下行子帧 D 的 DL Header中的前导码 preamble, 和 BS取得同步。
3、 BS在频率为 fl的下^ 1子帧 DLBS的 DL Header的 preamble之后中发送 FCH, DL- MAP, 以及 UL- MAP 信息。
4、 RS#1通过 RS RX2频率为 fl的 DL Header RX Slot接收下行子帧 DLBS的 DL Header的 FCH, DL- MAP, 及 UL- MAP信息, 获得 BS下行和上行各个 burst的时隙位置和使用方法 (profile ) 信息。
5、 BS利用频率为 Π的下行子帧 D 的 DL Relay Zone的 DL Relay broadcast发送广播消息 message;
6、 BS在频率为 fl的下行子帧 D 的 DL Relay Zone的 DL Relay RSiil中发送下行中转通信数据 traffic data给 RS#1 ; .
Ί、 RS 通过 RS RX频率为 fl的 DL RB接收 BS下行子帧 D 的 DL Relay Zone的 DL Relay broadcast 中的广播消息 message , 其中可以包含需要 RS#1中转广播的消息; '
8、 RS#1通过 RS RX频率为 f 1的 DL Relay Zone接收 BS下行子帧 DLDS的 DL Relay Zone的 DL Relay RSttl 中下行中转通信数据 traffic datao
(二) 第二阶段 (RS -〉 MS/SS ) :
对于高级中转通信模式, 该阶段的处理包括:
1、 RS#1的 TX在下行子帧 DL 频率为 f2的 DL Header中发送前导码 preamble。
2、 MS/SS接收 RS#1的 TX下行子帧 DLBS的 DL Header中的前导码 preamble, 和 RSm取得同步。
3、 RS#1的 TX在下行子帧 DLRS频率为 f2的 DL Header的 preamble之后中发送 FCH, DL- MAP, UL- MAP; 其中, RS # 1的 FCH, DL- MAP, UL- P可以在第一阶段的步骤 6中由 BS发送给 RS #1。
4、 MS/SS接收 RS#1的 TX下行子帧 DLRS的 DL Header的 FCH, DL- MAP, 以及 UL-MAP信息, 获得 RS 的下行和上行各个 burst的时隙位置和使用方法 (profile) 信息。
5、 RSttl的 TX在下行子帧 DLRS中, 在除 DL Header、 DL Relay Zone外的时频区间, 以频率 f2发送 下行中转通信数据 traffic data给 MS/SS, 所述的中转通信数据在步骤 6中已由 BS发送给 RS ttl的 TX。 6、 MS/SS从相应时频区间接收 RS#1的 ΤΧ下行子帧 D 4的下行中转通信数据 traffic data。 对于简化中转通信模式, 该阶段的处理过程具体包括:
1、 MS/SS接收 BS的下行子帧 D 的 DL Header中的前导码 preamble, 从而与 BS取得同步。
2、 MS/SS接收 BS的下行子帧 DLBS的 DL Header的 FCH, DL- MAP, 以及 UL- MAP信息, 获得 BS和 RS 下行和上行各个 burst的时隙位置和使用方法 (profile) 信息。
3、 RSttl的 TX在下行子帧 DLBS中, 在除 DL Header ^ DL Relay Zone外的时频区间, 以频率 f2发送 下行中转通信数据 traffic data给 MS/SS, 所述的中转通信数据在第一阶段的步骤 6中已由 BS发送给 RS 輔 TX。
4、 MS/SS从相应时频区间接收 RS#1的 ΤΧ下行子帧 01^中的下行中转通信数据 traffic data。 下面再对上行中转 Uplink relay通信处理流程进行说明, 该上行流程同样包括两个处理阶段, 第一阶段为由用户终端至 RS的通信过程, 第二阶段则为由 RS至 BS的处理过程, 具体为:
(―) 第一阶段 (MS/SS -) RS) :
该阶段中, 对于高级中转通信模式, 则相应的处理过程包括:
1、 MS/SS接收 RS#1的 TX下行子帧 DLBS频率为 f2的 DL Header的 FCH, DL-MAP, UL- MAP, 获得 RS#1 的 TX下行和上行各个 burst的时隙位置和使用方法 (profile) 信息。
2、 MS/SS在 RSItl的 RX上行子帧 ULRS中, 在除 BS UL Relay Zone对应期间外的时隙, 以频率 Π发送 上行通信数据 traf f i c data给 RSttl。
3、 RS#1的 RX以频率 fl从相应时隙接收 MS/SS上行子帧 (U 中的上行通信数据 traffic data„ 该阶段中, 对于简化中转通信模式, 则相应的处理过程包括:
• 1、 MS/SS接收 BS的下行子帧 D 频率为 fl的 DL Header的 FCH, DL- MAP, UL- MAP, 获得 BS和 RS#1 下行和上行各个 burst的时隙和使用方法 (profile) 信息。
2、 MS/SS在 RSiil的 RX上行子帧 U 中, 在除 BS UL Relay Zone对应期间外的时隙, 以频率 fl发送 上行通信数据 traffic data给 RSttl。
3、 RS#1的 RX以频率 fl从相应时隙接收 MS/SS上行子帧 ULRS中的上行通信数据 traffic data。
(二) 第二阶段 (RS->BS) :
在该阶段中, 高级中转通信模式和简化中转通信模式采用相同的处理方式;
1、 RS#1的 RX通过 RS的上行子帧 ULBS中频率为 fl的 DL Header RX Slot接收 BS的下行子帧 D ^DL Header的 FCH、DL-MAP、和 UL- MAP信息,获得 BS下行和上行各个 burst的时隙位置和使用方法 (profile) 信息。
2、 RS#1的 TX以频率 f2在 RS下行子帧 DL UL Relay Zone的 UL Relay RS 中发送上行中转通信 数据 traffic data给 BS, 所述的中转通信数据在第一阶段的步骤 2中已经由 BS发送给 RS #1。
3、 BS在频率为 f2的上行子帧 ULBS的 UL Relay Zone的 UL Relay RS#1中接收 S5中的上行中转通信 数据 traffic data»
而且, 本发明所述的中转通信过程中, 所述的 BS、 RS和 SS/MS之间可以基于 0FDM技术实现中 转通信, 用于抗多径千扰。
第七种应用场景为: RS中包含单个 FDD无线收发机, 用户终端中包括两个分别与 BS和 RS对应 的 FDD无线收发机, 且 RS通过中转子信道和 0FDMA符号组合进行信息的传递。
本发明提供了一种无线中转通信正交频分复用接入系统及方法, 本发明提供的 RS和 BS、 MS/SS的高级中转通信模式, 如图 36所示, RS和 BS、 MS/SS间釆用 FDD TDM/OFDMA方式通信, BS下行和 RS上行采用频率 1, BS上行和 RS下行釆用频率 f2; RS只需要一套 FDD无线收发机, RS 作为一个 MS/SS接入 BS , MS/SS通过 RS进行无线中转接入 BS。
本发明提供的 RS和 BS、 MS/SS的简化中转通信模式, 如图 37所示。 BS下行和 RS上行采用频率 f1, BS上行和 RS下行采用频率 f2, RS只需有一套 FDD无线收发机。
DLBS的 Broadcast Burst (下行广播突发) , 如 Preamble、 FCH、 DL-MAP、 UL-MAP, 直接由
BS发给 MS/SS, 不通过 RS中转; MS/SS的初始接入测距 Ranging、 周期性测距 Ranging、 带宽请求 通过 ULBS的测距子信道 Ranging Subchannel , 直接由 MS/SS发给 BS, 不通过 RS中转; 对于 DLBS 的下行其它突发, 如数据报文或除 DL-MAP、 UL-MAP外的消息报文, 不能直接由 BS发给 MS/SS, 必须通过 RS中转; ULBS的上行其它突发,如除 MS/SS的初始接入测距 Ranging、周期性测距 Ranging、 带宽请求报文外, 不能直接由 MS/SS发给 BS, 必须通过 RS中转。
在 FDD模式下, 上述高级和简化中转通信模式存在如图 18 ( a) -(d)的 4种情况的相互干扰。 其 中, TX表示发送模块, RX表示接收模块。
本发明提供的无线中转通信正交频分复用接入系统的功能框架如图 45所示, 该无线中转通信正 交频分复用接入系统包括 BS、 RS和 SS/MS的。
其中 BS包括:
有线传输处理单元: 能够与上一级设备 (如基站控制器) 或分别与一组基站设备建立通信, 并 与上一级设备或各基站设备之间进行信息的交互;
FDD无线收发机:用于同 RS或 SS/MS以 FDD方式进行无线通信, 由 FDD无线发射机物理层处理 单元、 FDD无线接收机物理层处理单元和 FDD无线收发机数据链路层处理单元组成。
其中, FDD无线发射机物理层处理单元 (频率为 l ) : 分别与 FDD无线收发机数据链路层及可 与其通信的 SS/MS中的 FDD无线接收机 1物理层处理单元或 RS中的 FDD无线接收机物理层处理单元 进行无线通信;对于简化中转模式,本单元对 DLBS的下行子帧头广播(如 Preamble, FCH、 DL-MAP、 UL-MAP )采用比其它发送数据可靠性更高的信道编码和调制方式(如二迸制相移键控 BPSK) , 或 采用比其它发送数据更高的发射功率, 直接由 BS发给 MS/SS, 不通过 RS中转。
其中, FDD无线接收机物理层处理单元 (频率为 f2) : 分别与 FDD无线收发机数据链路层及可 与其通信的 SS/MS中的 FDD无线发射机 1物理层处理单元或 RS中的 FDD无线发射机物理层处理单元 进行无线通信。
其中, FDD无线收发机数据链路层处理单元: 将接收到的来自 FDD无线接收机物理层处理单元 的数据作 FDD无线收发机数据链路层的数据处理后, 转发给有线传输处理单元。 将接收到的来自有 线传输处理单元元的数据作 FDD无线收发机数据链路层的数据处理后, 转发给 FDD无线发射机物理 层处理单元。
SS/MS包括:
FDD无线收发机: 用于同 BS或 RS以 FDD方式进行无线通信, 由 FDD无线发射机 1和 2的物理层 处理单元、 FDD无线接收机 1和 2的物理层处理单元和 FDD无线收发机的数据链路层处理单元组成。
其中, FDD无线发射机 1的物理层处理单元(频率为 f2) : 分别与 FDD无线收发机的数据链路层 处理单元及可与其通信的 BS中的 FDD无线接收机物理层处理单元进行无线通信; 对于简化中转模 式, 本单元对 ULBS的上行随机接入 (Random Access) 时隙 (或称为竞争时隙 Contention slot) , 如初始 Ranging竞争时隙和带宽请求竞争时隙, 或 MS/SS的初始接入测距 Ranging, 周期性测距 Ranging, 带宽请求通过 ULBS的测距子信道 Ranging Subchannel, 采用比其它发送数据可靠性更高 的信道编码和调制方式(如二进制相移键控 BPSK) , 或采用比其它发送数据更高的发射功率, 直接 由 MS/SS发给 BS, 不通过 RS中转。
FDD无线发射机 2的物理层处理单元(频率为 f1 ) : 分别与 FDD无线收发机的数据链路层处理单 元及可与其通信的 RS中的 FDD无线接收机物理层处理单元进行无线通信。
FDD无线接收机 1的物理层处理单元(频率为 fl ): 分别与 FDD无线收发机的数据链路层处理单 元及可与其通信的 BS中的 FDD无线发射机的物理层处理单元进行无线通信。
FDD无线接收机 2物理层处理单元(频率为 f2) : 分别与 FDD无线收发机的数据链路层处理单元 及可与其通信的 RS中的无线发射机物理层处理单元进行无线通信;
FDD无线收发机的数据链路层处理单元:对来自 FDD无线接收机 1和 /或 2的物理层处理单元的数 据,作 FDD无线收发机数据链路层的数据处理后,转发给 FDD无线发射机 1和 /或 2的物理层处理单元。
RS包括:
FDD无线收发机:用于同 SS/MS或 BS以 FDD方式进行无线通信, 由 FDD无线发射机物理层处理 单元、 FDD无线接收机物理层处理单元和 FDD无线收发机数据链路层处理单元组成。
FDD无线发射机物理层处理单元: 分别与 RS中的 FDD无线接收机物理层处理单元或 RS中的 FDD无线收发机数据链路层及可与其通信的 SS/MS中 FDD无线接收机 2的物理层处理单元或 BS FDD无线接收机物理层处理单元进行无线通信;
FDD无线接收机物理层处理单元: 分别与 RS中的 FDD无线发射机物理层处理单元或 RS中的 FDD无线收发机数据链路层及可与其通信的 SS/MS中 FDD无线发射机 2的物理层处理单元或 BS中的 FDD无线发射机物理层处理单元进行无线通信; .
FDD无线收发机数据链路层处理单元: 对来自 FDD无线接收机物理层处理单元的数据, 作 FDD 无线收发机数据链路层的数据处理后, 转发给用户。 对来自用户的数据, 作 FDD无线收发机数据链 路层的数据处理后, 转发给 FDD无线发射机物理层处理单元。
本发明为实现上述无线中转通信正交频分复用接入系统, 需要设置合理的 BS和 RS的物理层帧 结构,从而保证中转通信过程能够可靠地实现,同时,还可以有效地避免图 7中可能存在的各种干扰。
在 BS和 RS的物理层帧结构的实现方案 1中需要进行如下的设置:
1、在 BS的物理层帧结构的频率为 f1的下行子帧 DLBS中采用 TDM技术, 增加 DL Relay Zone (下 行中转区) , 用于定义由 BS传给 RS的 BS下行中转子信道和 OFDMA符号组合; 对于多 RS的情况, 多 RS通过不同的子信道和 OFDMA符号组合共享 DL Relay Zone;
2、在 RS的频率为 l的 RX ( FDD无线接收机)的物理层帧结构的上行子帧 ULRS中采用 TDM技术, 开辟 "DL Relay Zone (下行中转区) ", 用于定义 RS接收 BS的 DL Relay Zone的中转子信道和 OFDMA符号组合; 对于多 RS的情况, 多 RS通过不同的子信道和 OFDMA符号组合共享 DL Relay Zone, 不同的 RS的 RX只在 DL Relay Zone中相应的子信道和 OFDMA符号组合中接收 BS的中转数 据, 其它子信道和 OFDMA符号组合不安排接收 BS的中转数据;
3、在 BS的物理层帧结构的频率为 f2的上行子帧 ULBS中采用 TDM技术, 增加 UL Relay Zone (上 行中转区) , 用于定义由 RS传给 BS的 BS上行中转子信道和 OFDMA符号组合; 对于多 RS的情况, 多 RS通过不同的子信道和 OFDMA符号组合共享 UL Relay Zone;
4、在 RS的频率为 f2的 TX (FDD无线发射机)的物理层帧结构的下行子帧 DLBS中采用 TDM技术, 开辟 UL Relay Zone (上行中转区),用于定义 RS接收 BS的 UL Relay Zone的中转子信道和 OFDMA 符号组合; 对于多 RS的情况, 多 RS通过不同的子信道和 OFDMA符号组合共享 UL Relay Zone, 不 同的 RS的 TX只在 DL Relay Zone中相应的子信道和 OFDMA符号组合中发送 BS的中转数据, 其它子 信道和 OFDMA符号组合不能安排发送;
5、 在 BS的 UL Relay Zone对应的期间, SS/MSBS不安排任何发送子信道和 OFDMA符号组合, 避免" SS/MSBS到 BS"的干扰; 在 BS的 DL Relay Zone对应的期间, SS/MSRS不安排任何发送发送子 信道和 OFDMA符号组合, 避免" SS/MSR ijRS"的干扰;
6、 在 BS的物理层帧结构的频率为 l的下行子帧 DLBS的 DL Relay Zone中开辟 "DL Relay Broadcast Subchannel (下行中转广播子信道) , 用于定义由 BS广播给 RS的下行子信道和 OFDMA 符号组合, 广播 802.16标准定义的 DCD、 UCD、 FPC、 CLK— CMP广播报文;
7、 在 RS的频率为 l 的 RX的物理层帧结构的 DL Relay Zone中开辟 DL Relay Broadcast Subchannel (下行中转广播子信道) , 用于定义接收 BS下行中转广播的 RS上行子信道和 OFDMA 符号组合, 接收 802.16标准定义的 DCD、 UCD、 FPC、 CLK— CMP广播报文;
8、 在 BS的物理层帧结构的频率为 f2的上行子帧 ULBS的 UL Relay Zone中定义 Relay Ranging
Subchannel (中转测距子信道, 简写为 RRS) , 定义用于 RS的初始接入测距 Ranging. 周期性测距 Ranging, 带宽请求的 BS中转测距接收子信道和 OFDMA符号组合; 该 RRS也可作为 SS/MSBS的初 始接入测距 Ranging、 周期性测距 Ranging、 带宽请求测距子信道用;
9、 在 RS的频率为 f2的 TX的物理层帧结构的 DL Relay Zone中开辟 Relay Ranging TX Subchannel (中转测距子信道, 简写为 RRS TX) , 用于定义 RS的初始接入测距 Ranging、 周期性 测距 Ranging、 带宽请求的 RS中转测距发送子信道和 OFDMA符号组合;
10、 BS的 Relay Ranging Subchannel和 RS的 TX的 Relay Ranging TX Subchannel的时频关系 必须一一对应, 严格同步;
11、 在 BS物理层帧结构的上行子帧或 RS的 TX物理层帧结构的下行子帧中, 除 DL Header、 UL Relay Zone和 BS在 RX的丁 X的 DL Header的对应期间外, BS接收机和不同的 RS的 TX通过不同的子 信道和 OFDMA符号组合共享 RS下行子帧或 BS上行子帧的其余部分, 避免 "SS/MSBS到 SS/MSRS" 的干扰; .
12、 在 BS物理层帧结构的下行子帧或 RS的 RX的物理层帧结构的上行子帧中, 除 DL Header, DL Header RX和 DL Relay Zone外, BS发射机和不同的 RS的 RX通过不同的子信道和 OFDMA符号 组合共享 BS下行子帧或 RS的 RX上行子帧的其余部分, 避免 "SS/MSR^ijSS/MSBS"的干扰;
13、 在 BS的物理层帧结构的频率为 ΓΙ的下行子帧 DLBS中定义 DL Header (下行子帧头) , 该 DL Header为下行子帧的开始, 用于定义发送用户同步信息的子信道和 OFDMA符号组合和发送指示信 息的子信道和 OFDMA符号组合,以指示 BS物理层帧结构下行子帧和上行子帧的各子信道和 OFDMA 符号组合的位置和使用方法 profile。 该 DL Header包含原 802.16 OFDMA (或 SOFDMA) 帧中的 preamble, FCH 、 DL-MAP, UL-MAP, SS/MSBS、 RS和 BS保持收发帧同步;
14、 在所述高级中转通信模式中, 在 RS的频率为 f2的 TX的物理层帧结构的下行子帧 DLRS中定 义 DL Header (下行子帧头) , 该 DL Header为下行子帧的开始, 用于定义发送用户同步信息的子信 道和 OFDMA符号组合和发送指示信息的子信道和 OFDMA符号组合,以指示 RS物理层帧结构下行子 帧和上行子帧的各子信道和 OFDMA符号组合的位置和使用方法 profile。 该 DL Header包含原 802.16 OFDMA (或 SOFDMA)帧中的 preamble、 FCH 、 DL- MAP、 UL-MAP, SS/MSRS和 RS保持收发 帧同步;
15、 在所述高级中转通信模式中, RS的 TX的 DL Header在时间上滞后于 BS的 DL Header; 在 RS的 TX的 DL Header期间 , BS接收机不能安排任何接收子信道和 OFDMA符号组合;
16、在所述高级中转通信模式中, 在 RS的 TX的 DL Header期间, 其它 RS TX的物理层帧结构的 DLRS不能安排任何发送子信道和 OFDMA符号组合, 避免" RS到 SS/MSRS"的干扰; 特殊情况下, 如 果不同 RS的 TX的 DL Header在时间上重叠, 则必须完全重叠, 严格同步, 且其内容必须相同, 避免 "RS到 SS/MSRS"的干扰;
17、 在 RS的频率为 l的 FDD无线接收机 RX的物理层帧结构中开辟 DL Header RX (下行子帧头 接收) , 用于定义接收 BS的 DL Header的子信道和 OFDMA符号组合;
18、 BS的 DL Header和 RS的 RX的 DL Header RX的时频关系必须——对应、 严格同步;
19、 在 BS的物理层帧结构的频率为 f2的上行子帧 ULBS中定义 Ranging Subchannel (测距子信 道) , 定义用于 SS/MSBS的初始接入测距 Ranging、 周期性测距 Ranging、 带宽请求的 BS测距接收 子信道和 OFDMA符号组合;
20、 在所述高级中转通信模式中, 在 RS的频率为 l的 FDD无线接收机 RX的物理层帧结构的上 行子帧 ULRS中定义 Ranging Subchannel (测距子信道) , 定义用于 SS/MSRS的初始接入测距
Ranging, 周期性测距 Ranging, 带宽请求的 RS测距接收子信道和 OFDMA符号组合;
21、 上述定义的 DL Header、 Ranging Subchannel在每帧中都设置, 上述定义的其它子信道和 OFDMA符号组合或 Zone在每帧中选择设置。
根据上述提供的物理层帧结构, 本发明还提供了一种 BS和 RS的物理层帧结构的具体实施方式, 如图 46和图 47所示, 其中, 图 46为高级中转通信模式下的 BS和 RS的物理层帧结构示意图, 图 47为 简化中转模式下的 BS和 RS的物理层帧结构示意图。 图 46和图 47中, RS、 BS的发送和接收频率以图 中帧最左端的频率标注为准, 其中" NULL"或空白部分为不安排任何接收或发送的部分。
下面将对图 46和图 47中的具体帧结构进行描述:
BS的下行子帧 DLBS中的"白色竖条形区域", 其中包括 DLBS的 preamble、 FCH 、 DL-MAP和 UL- MAP为 DL Header; RS的 RX上行子帧 ULRS中的"白色竖条形区域", 其中包括 ULR^ sync with BS、 Get MAP info为 DL Header RX。
BS的 DL Relay Zone (即 DL Relay broadcast, DL Relay R#1、 #2...部分) 安排在 BS的下行子 帧 DLBS的 DL Header之后, BS的 UL Relay Zone (即 UL Relay R#1、 #2...和 RRS的 TX部分) 安排 在 BS的下行子帧 DLBS的开始部分。在 BS的 UL Relay Zone对应的期间, SS/MSBS不安排任何发送子 信道和 OFDMA符号组合;在 BS的 DL Relay Zone对应的期间, SS/MSRS不安排任何发送发送子信道 和 OFDMA符号组合。
PHYburst (突发)被分配了一组相邻的子信道和一组 OFDMA符号 (symbol) 。 在 BS上行子帧 或 RS的 TX下行子帧中, 除 DL Header UL Relay Zone和 BS在 RX的 TX的 DL Header的对应期间夕卜, BS接收机和不同的 RS的 TX通过不同的子信道和 OFDMA符号组合共享 RS下行子帧或 BS上行子帧 的其余部分;在 BS下行子帧或 RS的 RX上行子帧中,除 DL Header, DL Header RX和 DL Relay Zone 夕卜, BS发射机和不同的 RS的 RX通过不同的子信道和 OFDMA符号组合共享 BS下行子帧或 RS RX上 行子帧的其余部分。
本发明还提供了具体的基于上述设置的 BS和 RS的物理层帧结构的所述无线中转通信正交频分 复用接入系统的处理流程, 相应的处理流程包括由 BS到用户终端的下行中转通信处理流程, 以及由 用户终端到 BS的上行中转通信处理流程。
下面首先对下行中转 Downlink relay通信处理流程进行说明, 该下行流程包括两个处理阶段, 第 一阶段为由 BS至 RS的通信过程, 第二阶段则为由 RS至用户终端的处理过程, 具体为:
(―) 第一阶段 (BS- >RS) :
在该阶段中, 高级中转通信模式和简化中转模式下均采用相同的处理;
1、 BS在频率为 l的下行子帧 DLBS的 DL Header中发送前导码 preamble。
2、 RS#1通过 RS的 RX的频率为 l的 DL Header RX接收 BS的下行子帧 DLBS的 DL Header中的前 导码 preamble, 禾 [IBS取得同步。
3、 BS在频率为 f1的下行子帧 DLBS的 DL Header中发送了 preamble之后, 发送 FCH, DL-MAP, 以及 UL- MAP信息。
4、 RS#1通过 RS的 RX的频率为 f1的 DL Header RX接收下行子帧 DLBS的 DL Header的 FCH,
DL-MAP, 及 UL-MAP信息, 获得 BS下行和上行各个 burst的子信道和 OFDMA符号位置和使用方法 profile信息。
5、 BS利用频率为 l的下行子帧 DLBS的 DL Relay Zone的 DL Relay broadcast发送广播消息 message;
6、 BS在频率为 l的下行子帧 DLBS的 DL Relay Zone的 DL Relay RS#1中发送下行中转通信数据 traffic data给 RS#1 ;
7、 RS#1通过 RS的 RX频率为 l的 DL RB接收 BS下行子帧 DLBS的 DL Relay Zone的 DL Relay broadcast中的广播消息 message , 其中可以包含需要 RS#1中转广播的消息;
8、 RS#1通过 RS的 RX频率为 fl的 DL Relay Zone接收 BS下行子帧 DLBS的 DL Relay Zone的 DL Relay RS#1中下行中转通信数据 traffic data。
(二) 第二阶段 (RS- >MS/SS ) :
对于高级中转通信模式, 该阶段的处理包括:
1、 RS#1的 TX在下行子帧 DLRS的频率为 f2的 DL Header中发送前导码 preamble。
2、 MS/SS接收 RS#1的 TX下行子帧 DLRS的 DL Header中的前导码 preamble,和 RS#1取得同步。 3、 RS#1的 TX在下行子帧 DLRS频率为 f2的 DL Header中发送了 preamble之后, 发送 FCH ,
DL-MAP, UL-MAP; 其中, RS# 1的 FCH, DL-MAP, UL-MAP可以在第一阶段的步骤 6中由 BS 发送给 RS #1。
4、 MS/SS接收 RS#1的 TX下行子帧 DLRS的 DL Header的 FCH , DL-MAP, 以及 UL-MAP信息, 获得 RS#1的下行和上行各个 burst的子信道和 OFDMA符号位置和使用方法 (profile) 信息。
5、 RS#1的 TX在下行子帧 DLRS中, 在除 DL Header、 DL Relay Zone外的时频区间, 以频率 f2 发送下行中转通信数据 traffic data给 MS/SS,所述的中转通信数据在步骤 6中已由 BS发送给 RS #1的 TX0
6、 MS/SS从相应时频区间接收 RS#1的 TX下行子帧 DLRS中的下行中转通信数据 traffic data。 对于简化中转通信模式, 该阶段的处理过程具体包括:
1、 MS/SS接收 BS的下行子帧 DLBS的 DL Header中的前导码 preamble, 从而与 BS取得同步。
2、 MS/SS接收 BS的下行子帧 DLBS的 DL Header的 FCH , DL-MAP , 以及 UL- MAP信息, 获得 BS和 RS#1下行和上行各个 burst的子信道和 OFDMA符号位置和使用方法 ( profile) 信息。
3、 RS#1的 TX在下行子帧 DLRS中, 在除 DL Header、 DL Relay Zone外的时频区间, 以频率 f2 发送下行中转通信数据 traffic data给 MS/SS,所述的中转通信数据在第一阶段的步骤 6中已由 BS发送 给 RS #1的 TX。
4、 MS/SS从相应时频区间接收 RS#1的 TX下行子帧 DLRS中的下行中转通信数据 traffic data。 下面再对上行中转 Uplink relay通信处理流程进行说明, 该上行流程同样包括两个处理阶段, 第 一阶段为由用户终端至 RS的通信过程, 第二阶段则为由 RS至 BS的处理过程, 具体为:
(一) 第一阶段 (MS/SS ->RS ) :
该阶段中, 对于高级中转通信模式, 则相应的处理过程包括:
1、 MS/SS接收 RS#1的 TX的下行子帧 DLRS频率为 f2的 DL Header的 FCH, DL-MAP, UL-MAP, 获得 RS#1的第一套无线发射机下行和上行各个 burst的子信道和 OFDMA符号位置和使用方法
( profile) 信息。
2、 MS/SS在 RS#1的 RX上行子帧 ULRS中, 在除 BS的 UL Relay Zone对应期间外的时频区间, 以频率 f1发送上行通信数据 traffic data给 RS#1。 3、 RS#1的 RX以频率 fl从相应时频区间接收 MS/SS上行子帧 ULRS中的上行通信数据 traffic
( 3。
该阶段中, 对于简化中转通信模式, 则相应的处理过程包括:
1、 MS/SS接收 BS的下行子帧 DLBS频率为 fl的 DL Header的 FCH, DL-MAP, UL-MAP, 获得 BS 和 RS#1下行和上行各个 burst的子信道和 OFDMA符号位置和使用方法 (profile) 信息。
2、 MS/SS在 RS#1的 RX上行子帧 ULRS中, 在除 BS的 UL Relay Zone对应期间外的时频区间, 以频率 f1发送上行通信数据 traffic data给 RS#1。
3、 RS#1的 RX以频率 fl从相应时频区间接收 MS/SS上行子帧 ULRS中的上行通信数据 traffic data0
(二)第二阶段 (RS- >BS) :
在该阶段中, 高级中转通信模式和简化中转通信模式采用相同的处理方式; '
1、 RS#1的 RX接收 BS的下行子帧 DLBS中频率为 l的" DL Header" 的 FCH、 DL- MAP和 UL- MAP, 获得 BS下行和上行各个 burst的子信道和 OFDMA符号位置和使用方法 (profile) 信息。
2、 RS#1的 TX以频率 f2在 RS的下行子帧 DLRS的 UL Relay Zone的 UL Relay RS#1中发送上行中 转通信数据 traffic data给 BS, 所述的中转通信数据在第一阶段的步骤 2中已经由 BS发送给 RS #1。
3、 BS在频率为 f2的上行子帧 ULBS的 UL Relay Zone的 UL Relay RS#1中接收 S5中的上行 中转通信数据 traffic data。
以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并不局限于此, 任何熟悉本 技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到的变化或替换, 都应涵盖在本发明的 保护范围之内。 因此, 本发明的保护范围应该以权利要求的保护范围为准。

Claims

权利要求
1、 一种无线中转通信系统, 其特征在于, 包括: 基站 BS、 用户终端和中转站 RS, 所述的 BS设 置有与 RS通信的接口, 所述的 RS设置有与用户终端和 BS通信的接口, 所述的用户终端则设置有与 RS通信的接口, 所述的 BS、 RS和用户终端之间通过所述接口通信。
2、 根据权利要求 1所述的无线中转通信系统, 其特征在于, 所述的 BS还设置有与用户终端通 信的接口, 且所述用户终端设置有与 BS通信的接口, BS通过所述接口与用户终端之间直接通信。
3、 根据权利要求 2所述的无线中转通信系统, 其特征在于, 所述 BS、 RS和用户终端之间釆用 同频点进行通信, 且所述 BS分别通过上、 下行子帧与用户终端或 RS通信, 所述 RS分别通过上、 下 子帧与用户终端或 BS通信。
4、 根据权利要求 1、 2或 3所述的无线中转通信系统, 其特征在于,
若所述的 BS、 RS及用户终端之间基于时分双工 TDD通信, 则所述的 BS、 RS和用户终端三个实 体中分别设置有 TDD无线发射机物理层单元和 TDD无线接收机物理层单元, 且所述的各 TDD无线发 射机物理层单元分别提供有与其他实体中的 TDD无线接收机物理层单元通信的通信接口, 所述的各 TDD接收机物理层单元分别提供有与其他实体中的 TDD无线发射机物理层单元通信的通信接口; 或 者, 所述 RS中设置有第一 TDD无线收发机和第二 TDD无线收发机, 其中, 第一 TDD无线收发机包含 采用相同的第一频率的 TDD无线接收机物理层单元和 TDD无线发射机物理单元,并与 BS中的 FDD无 线发射机物理层单元, 以及用户终端中的 FDD无线接收机物理层单元对应并保持收发帧同步, 第二 TDD无线收发机包含采用相同的第二频率的 TDD无线接收机物理层单元和 TDD无线发射机物理单元, 且与用户终端中的 FDD无线发射机物理层单元,以及 BS中的 FDD无线接收机物理层单元对应并保持 收发帧同步;
或者,
若所述的 BS、 RS及用户终端之间基于时分复用 TDM/时分复用接入 TDMA-频分双工 FDD通信, 则 所述 RS中包括第一 TDM/TDMA- FDD无线收发机和第二 TDM/TMA-FDD无线收发机, 其中, RS中的第 一 TDM/TDMA-FDD无线收发机包含的 TDM- FDD无线发射机物理层单元和 TDMA FDD无线接收机物理单 元与用户终端中的 TDM-FDD无线接收机物理层单元和 TDMA- FDD无线发射机物理层单元对应并保持收 发帧同步, RS中的第二无线 TDM/TDMA- FDD收发机包含的 TDMA FDD无线发射机物理层单元和 TDM- FDD 无线接收机物理单元与 BS中的 TDMA- FDD无线接收机物理层单元和 TDM- FDD无线发射机物理层单元 对应并保持收发帧同步;
或者,
若所述的 BS、 RS及用户终端之间基于 0FDMA- FDD通信, 则所述 RS中包括第一 0FDMA-FDD无线 收发机和第二 OFMA- FDD 无线收发机, 其中, RS 中的第一 OFDMA FDD 无线收发机包含的第一 0FDMA-FDD无线发射机物理层单元和第一 OFDMA- FDD无线接收机物理单元与用户终端中的 OFDMA- FDD 无线接收机物理层单元和 OF丽 A-FDD无线发射机物理层单元对应并保持收发帧同步; RS 中的第二 OFDMA- FDD无线收发机包含的第二 0FDMA-FDD无线发射机物理层单元和第二 OFDMA- FDD无线接收机 物理单元与 BS中的 OFDMA- FDD无线接收机物理层单元和 0FDMA-FDD无线发射机物理层单元对应并保 持收发帧同步; 或者,
若所述的 BS、 RS及用户终端之间基于 FDD通信, 则 RS和 BS中分别包括 FDD无线收发机, 该 FDD无线收发机包括 FDD无线发射机物理层单元和 FDD无线接收机物理层单元, RS以 FDD方式同 BS 和用户终端进行无线通信, 所述 RS中的 FDD无线收发机上行和 BS中的 FDD无线收发机下行釆用相 同的频率, RS中的 FDD无线收发机下行和 BS中的 FDD无线收发机上行釆用相同的频率; 或者, RS 中包括 FDD无线收发机, 所述 RS中的 FDD无线收发机上行和 BS中的 FDD无线收发机下行采用相同 的频率, RS中的 FDD无线收发机下行和 BS中的 FDD无线收发机上行采用相同的频率, 其中, 用户 终端中的第一 FDD无线收发机包含的第一 FDD无线发射机物理层单元和第一 FDD无线接收机物理单 元与 BS中的 FDD无线接收机物理层单元和 FDD无线发射机物理层单元对应, 用户终端中的第二 FDD 无线收发机包含的第二 FDD无线发射机物理层单元和第二 FDD无线接收机物理单元与 RS中的 FDD无 线接收机物理层单元和 FDD无线发射机物理层单元对应。
5、 根据权利要求 4所述的无线中转通信系统, 其特征在于, 所述的 BS、 RS和用户终端中还分 别设置有与所述的物理层单元连接通信的数据链路层单元, 而且, 所述的 BS中还设置有与上级设置 连接通信的有线传输处理单元, 用于与上一级设备或各基站设备之间进行信息交互。
6、 根据权利要求 1、 2或 3所述的无线中转通信系统, 其特征在于, 所述的 BS还提供与用户终 端通信的接口, 所述 BS通过采用预定的信道编码和调制方式, 或者, 釆用预定的发射功率值将前导 码 Preamble , 帧控制头 FCH、 下行映射表 DL-MAP和上行映射表 UL- MAP信息直接从该接口将信息发 送给用户终端。
7、 一种无线中转通信的实现方法, 其特征在于, 包括:
在 BS物理层帧结构的下行子帧和上行子帧中分别设置下行中转区和上行中转区, 在 RS物理层 帧结构的上行子帧和下行子帧中分别设置下行中转区和上行中转区, 用于定义 BS与 RS之间通信的 中转时隙或中转子信道和 0FDMA符号组合;
在 BS、 RS及用户终端之间基于设置的 BS和 RS的上、 下行物理层帧进行无线中转通信。 '
8、 根据权利要求 7所述的无线中转通信的实现方法, 其特征在于, 在 BS物理层帧结构的下行 子帧和上行子帧中分别采用 TDM方式下行中转区和上行中转区。
9、 根据权利要求 7所述的无线中转通信的实现方法, 其特征在于, 所述的方法还包括: 当 RS 中设置有两个 TDM/TDMA- FDD或 0FDMA-FDD无线收发机时, 则在与 BS对应的 RS 中的 TDM/TDMA-FDD或 0FDMA-FDD无线收发机的物理层帧结构的上行子帧和下行子帧中分别设置下行中转 区和上行中转区, 用于定义 BS和 RS之间的中转时隙, 或者, 用于定义 BS和 RS之间的中转子信道 和 0FDMA符号组合;
当 RS中设置有两个 TDD无线收发机时, 则在 RS的第一 TDD无线收发机的物理层帧结构的上行 子帧和第二 TDD无线收发机的物理层帧结构的下行子帧中分别设置下行中转区和上行中转区, 用于 定义 BS和 RS间进行信息交互的子信道和 0FDMA符号组合;
当 RS中设置有一个 FDD无线收发机时, 则在中转站 RS的 FDD无线接收机的物理层帧结构的上 行子帧中设置下行中转区, 用于定义 RS接收 BS的下行中转区的中转时隙, 或者, 用于定义 BS和 RS的下行中转区的中转子信道和 0FDMA符号组合; 在 RS的 FDD无线发射机的物理层帧结构的下行 子帧中设置上行中转区, 用于定义 RS接收 BS的上行中转区的中转时隙, 或者, 用于定义 BS和 RS 的上行中转区的中转子信道和 OFDMA符号组合。
10、根据权利要求 7、 8或 9所述的无线中转通信的实现方法,其特征在于,所述的方法还包括: 当 RS中设置有单个 FDD无线收发机, 则在 BS的上行中转区对应的期间内, 属于 BS的用户终端 不设置发送时隙或发送子信道和 0FDMA符号组合, 在 BS的下行中转区对应的期间内, 属于 RS的用 户终端不设置发送时隙或发送子信道和 0FDMA符号组合;
当 RS中设置有两个 OFDMA- FDD无线收发机, 则在在 BS的上行中转区对应的期间, 用户终端不 设置发送子信道和 0FDMA符号组合, RS不设置任何接收子信道和 0FDMA符号组合; 在 BS的下行中 转区对应的期间, RS不设置发送子信道和 0FDMA符号组合;
当 RS中设置有单个 TDD无线收发机时, 则在所述的 BS的物理层帧结构中的上行中转区和下行 中转区对应, 而且, 在 BS的下行中转区和上行中转区对应的期间, 用户终端不设置接收或发送时隙 或子信道和 0FDMA符号组合; 而且, 若 RS通过中转时隙进行信息的传递, 则所述的 BS的物理层帧 结构中的上行中转区和下行中转区的时隙分别与 RS 的物理层帧结构中的上行中转区和下行中转区 的时隙对应;
当 RS中设置有两个 TDM/TDMA- FDD无线收发机, 则所述的 BS的下行中转区与 RS中与 BS对应 的 TDM/TDMA- FDD无线收发机的下行中转区的时隙和频率关系对应,所述的 BS的上行中转区和 RS中 与 BS对应的 TDM/TDMA- FDD无线收发机的上行中转区的时隙和频率关系对应, 而且, 在 BS的上行中 转区对应的期间, 用户终端不设置发送时隙, RS不设置接收时隙;
当 RS中存在两个 TDD无线收发机时, 则在所述 BS的上行中转区对应的期间, BS和 RS覆盖下 的用户终端均不设置发送子信道和 0FDMA符号组合, RS不设置接收子信道和 0FDMA符号组合。
11、根据权利要求 7、 8或 9所述的无线中转通信的实现方法,其特征在于,所述的方法还包括: 当存在至少两个 RS时,该至少两个 RS通过不同的子信道和 0FDMA符号组合或者采用不同的 TDM 方式共享下行或上行中转区; _
且当采用不同的子信道和 0FDMA符号组合共享时,不同的 RS只在下行中转区中相应的子信道和 0FDMA符号组合中发送 BS的中转数据, 在其它子信道和 0FDMA符号组合中不安排发送 BS的中转数 据, 不同的 RS的 FDD无线接收机只在下行中转区中相应的子信道和 0FMA符号组合中接收 BS的中 转数据, 在其它子信道和 0FDMA符号组合中不安排接收 BS的中转数据。
12、 根据权利要求 11所述的无线中转通信的实现方法, 其特征在于, 当 RS中设置有两个无线 收发机时, 对于存在至少两个 RS的情况, 各 RS之间利用其与 BS对应的收发机通过不同的子信道和 0FD 符号组合或者采用不同的 TDM方式共享下行或上行中转区。
13、根据权利要求 7、 8或 9所述的无线中转通信的实现方法,其特征在于,所述的方法还包括: 在 BS的物理层帧结构的下行子帧中设置下行中转广播子信道或中转广播时隙, 用于定义由 BS 广播给 RS的下行子信道和 0FDMA符号组合或下行时隙;
在 RS的物理层帧结构的下行子帧中设置下行中转广播子信道或中转广播接收时隙,用于定义接 收 BS下行中转广播的 RS上行子信道和 0FDMA符号组合或上行时隙;若 RS中设置有两个无线收发机, 则在其与 BS对应的收发机的物理层帧结构中设置下行中转广播子信道或中转广播接收时隙; 且所述在 BS和 RS中设置的下行中转广播子信道或中转广播时隙或中转广播接收时隙在每一帧 中选择设置。
14、 根据权利要求 7、 8或 9所述的无线中转通信的实现方法, 其特征在于, 当 RS通过中转子 信道和 0FDMA符号组合进行信息的传递, 则所述的方法还包括:
在 BS的物理层帧结构的上行子帧的上行中转区中定义中转测距子信道, 定义用于 RS的初始接 入测距、 周期性测距、 带宽请求的 BS中转测距接收子信道和 0FDMA符号组合, 该中转测距子信道还 可选地作为用户终端的初始接入测距、 周期性测距、 带宽请求测距子信道用;
在 RS的物理层帧结构的下行中转区中设置中转测距子信道, 用于定义 RS的初始接入测距、 周 期性测距、带宽请求的 RS中转测距发送子信道和 0FDMA符号组合; 若 RS中设置有 个无线收发机, 则在其与 BS对应的收发机的物理层帧结构中设置所述的中转测距子信道;
所述在 BS和 RS中设置的中转测距子信道的时频关系一一对应, 保持同步, 并在每一帧中选择 设置。
15、 根据权利要求 7、 8或 9所述的无线中转通信的实现的方法, 其特征在于, 所述的方法还包 括:
在 BS的物理层帧结构的上行子'帧中定义测距子信道, 定义用于用户终端的初始接入测距、周期 性测距、 带宽请求的 BS测距接收子信道和 0FDMA符号组合;
当 BS无法与 RS覆盖下的用户终端直接通信时,在 RS的 FDD无线接收机的物理层帧结构的上行 子帧中设置测距子信道, 定义用于用户终端的初始接入测距、 周期性测距、 带宽请求的 RS测距接收 子信道和 0FDMA符号组合; 若 RS中设置有两个无线收发机, 则在 RS与用户终端对应的收发机的物 理层帧结构中设置所述的测距子信道。
16、 根据权利要求 7、 8或 9所述的无线中转通信的实现方法, 其特征在于, 当 RS通过中转时 隙进行信道传递时, 所述方法还包括:
在 BS和 RS的物理层帧结构的下行子帧中定义下行干扰时隙, 用于定义 BS和 RS各自覆盖区域 中的下行数据时隙, 所述的各自覆盖的区域包括仅由 BS和 RS各自覆盖的重叠区域, 或者, 包括由 BS和 RS各自覆盖的不重叠区域以及 BS和 RS各自覆盖的重叠区域;若 RS中设置有两个无线收发机, 则在 RS与用户终端对应的收发机的物理层帧结构中设置所述的下行干扰时隙。
17、 根据权利要求 16所述的无线中转通信的实现方法, 其特征在于, 所述的 BS的下行干扰时 隙与 RS的下行干扰时隙在时隙上不重叠, 且当有至少两个 RS时, 所述的至少两个 RS采用 TDM的方 式共享所述下行干扰时隙, 且在 BS和 RS的每帧中选择设置所述下行干扰时隙。
18、 根据权利要求 7、 8或 9所述的无线中转通信的实现方法, 其特征在于, 当 RS通过中转时 隙进行信道传递时, 所述方法还包括:
在 BS和 RS的上行子帧中设置上行或下行无干扰时隙, 和 /或, 在 BS和 RS的下行子帧中设置上 行或下行无干扰时隙, 用于定义仅由 BS和 RS各自覆盖区域的下行或上行数据时隙; 若在 RS中存在 两个无线收发机,则在 RS中与用户终端对应的无线收发机的物理层帧结构中设置所述上行干扰时隙 或上行无干扰时隙;
而且, BS的下行无干扰时隙和 RS的下行无干扰时隙, 以及 BS的上行无干扰时隙和 RS的上行 无干扰时隙均可重叠设置。
19、根据权利要求 18所述的无线中转通信的实现方法, 其特征在于, 所述的 BS和 RS的上行干 扰时隙在时间上互不重叠。
20、根据权利要求 7、 8或 9所述的无线中转通信的实现方法,其特征在于,所述的方法还包括: 在 BS, 或 BS和 RS的物理层帧结构的下行子帧中定义下行子帧头或下行子帧头时隙, 所述的下 行子帧头或下行子帧头时隙为下行子帧的开始, 用于定义发送用户同步信息的子信道和 0FDMA符号 组合或时隙和发送指示信息的子信道和 0FDMA符号组合或时隙, 以指示 BS , 或 BS和 RS物理层帧结 构下行子帧和上行子帧的各子信道和 0FDMA符号组合的位置和使用方法, 或者, 各时隙的位置和使 '用方法, 该下行子帧头在每帧中均设置; 其中, 在 RS的物理层帧结构的下行子帧中定义的下行子帧 头或下行子帧头时隙在时间上滞后于所述在 BS 的物理层帧结构的下行子帧中定义的下行子帧头或 下行子帧头时隙, 且对于 RS的下行子帧头期间, BS不能安排任何接收子信道和 0FDMA符号组合, 对于 RS的下行帧头时隙不与 BS的下行帧头时隙重叠, 并且设置于 BS的上行子帧的无干扰时隙内; 若 RS中设置有两个无线收发机, 则在 RS与用户终端对应的收发机的物理层帧结构中设置所述的下 行子帧头或下行子帧头时隙;
在 RS的物理层帧结构中设置下行子帧头接收或下行子帧头接收时隙, 用于定义接收 BS的下行 子帧头的子信道和 0FDMA符号组合或下行子帧头时隙的时隙, 该下行子帧头接收或下行子帧头接收 时隙和所述 BS的下行子帧头或下行子帧头接收时隙的时频或时隙关系一一对应, 完全同步; 若 RS 中设置有两个无线收发机, 则在 RS与 BS对应的收发机的物理层帧结构中设置所述的下行子帧头接 收或下行子帧头接收时隙。
21、 根据权利要求 20所述的无线中转通信的方法, 其特征在于, 所述的下行子帧包括: 正交频分复用或单载波帧中的前导码 preamble、 帧控制头 FCH burst , 下行映射表 DL- MAP和 / 或上行映射表 UL-MAP。
22、 根据权利要求 20所述的无线中转通信的方法, 其特征在于, 当存在多个 RS时, 所述的方 法还包括:
所述的 RS设置的所述的下行子帧与其他 RS的上行子帧不重叠;
或者,
RS的下行帧头时隙与其他 RS的下行帧头时隙和下行干扰时隙不重叠; 或者, 不同 RS的下行帧 头时隙在时间上完全重叠同步, 且下行帧头时隙内容相同, RS 的下行帧头时隙与其他 RS的下行干 扰时隙不重叠设置。
23、 根据权利要求 20所述的无线中转通信的方法, 其特征在于, 若所述的 RS中设置的两无线 收发机以不同的频率分别进行下行和上行通信时,则 RS在用于向用户终端发送下行信息的无线收发 机的物理层帧结构的下行子帧中设置下行子帧头。
24、 根据权利要求 20所述的无线中转通信的方法, 其特征在于, 所述的方法还包括: 当存在至少两个 RS时, 在 RS下行子帧头期间, 其它 RS的物理层帧结构的下行子帧不安排任何 发送子信道和 0FDMA符号组合, 或者, RS的下行帧头时隙不与其他 RS的下行帧头时隙和下行干扰 时隙重叠; 或者,
当存在至少两个 RS时, 若不同 RS的下行子帧头在时间上完全重叠同步, 且其下行子帧头内容 相同, 或者, 不同 RS 的下行帧头时隙在时间上完全重叠同步, 且下行帧头时隙内容相同, RS的下 行帧头时隙不与其他 RS的下行千扰时隙重叠。
25、 根据权利要求 7、 8或 9所述的无线中转通信的实现方法, 其特征在于, 当 RS通过中转时 隙进行信息的传递, 则所述的方法还包括:
所述 BS的下行中转区和 RS的下行中转区的时隙和频率关系一一对应,所述 BS的上行中转区和 RS的上行中转区的时隙和频率关系一一对应, 所述在 BS和 RS中设置的上行和下行中转区在每帧中 选择设置。
26、 根据权利要求 7、 8或 9所述的无线中转通信的实现方法, 其特征在于, 当 RS通过中转时 隙进行信息的传递, 所述方法还包括:
在 BS的物理层帧结构的上行子帧中设置上行竞争时隙,该上行竞争时隙中包含初始测距竞争时 隙和带宽请求竞争时隙, 该上行竞争时隙在每帧中设置;
当 BS无法与 RS覆盖区域中的用户终端直接通信时,在 RS的物理层帧结构的上行子帧中设置上 行竞争时隙, 该上行竞争时隙中包含初始测距竞争时隙和带宽请求竞争时隙; 若 RS中设置有两个无 线收发机, 则在 RS与用户终端对应的收发机的物理层帧结构中设置所述的上行竞争时隙。
27、 根据权利要求 26所述的无线中转通信的实现方法, 其特征在于, 所述的方法还包括: 在 RS的物理层帧结构中设置上行竞争发送时隙,用于定义 RS发送的用于竞争 BS的上行竞争时 隙的时隙, 该上行竞争发送时隙和所述 BS的上行竞争时隙的频率完全重叠同步, 且该上行竞争时隙 在每帧中设置; 若 RS中设置有两个无线收发机, 则在 RS与 BS对应的收发机的物理层帧结构中设置 所述的上行竞争发送时隙。
28、 根据权利要求 7、 8或 9所述的无线中转通信的实现方法, 其特征在于, 当 RS存在两个无 线收发机时, 所述的方法还包括:
当 RS中存在两个 OF厦 A- FDD无线收发机时,
在 BS或 RS中与用户终端对应的无线收发机的物理层帧结构的下行子帧中, 除下行子帧头、 BS 的下行中转区和 RS中与用户终端对应的 0FDMA- FDD无线发射机在 BS的下行子帧头、 BS的下行中转 区的对应期间外, BS和不同的 RS通过不同的子信道和 0FDMA符号组合共享下行子帧的余下部分; 和 /或, 在 BS或 RS中与用户终端对应的 0FDMA-FDD无线收发机物理层帧结构的上行子帧中, 除 BS 的上行中转区和 RS中与用户终端对应的 0FDMA-FDD无线接收机在 BS的上行中转区对应期间外, BS 和不同的 RS通过不同的子信道和 0FDMA符合组合共享上行子帧的其余部分;
当 RS中存在两个 TDD无线收发机时,
在所述 BS或 RS中与用户终端对应的 TDD无线收发机的物理层帧结构的下行子帧中,除下行子帧头 和 BS的下行中转区外, BS和不同的 RS通过不同的子信道和 0FDMA符号组合共享下行子帧的其余部分; 和 /或, 在 BS或 RS中与 BS对应的 TDD无线收发机的物理层帧结构的上行子帧中, 除 BS的上行中转区外, BS和不同的 RS通过不同的子信道和 0FDMA符号组合共享上行子帧的其余部分,且所述的下行子帧头和 测距子信道设置为存在于 BS和 RS每一帧中, 所述的下行中转区、上行中转区、 下行中转广播子信道、 中转测距子信道、 下行子帧头接收则不设置为存在于每一帧中。
29、 根据权利要求 7、 8或 9所述的无线中转通信的实现方法, 其特征在于, 所述的 BS或 RS的 下行子帧到 BS的上行子帧间至少预留发送 /接收转换间隙 TTG时长, 和 /或, BS或 RS的上行子帧到 BS的下行子帧间至少预留接收 /发送转换间隙 RTG时长; 而且, 对于 BS和用户终端可以直接通信的 情况, 在 BS的 TTG期间, RS不能安排任何发送子信道和 0FDMA符号组合; 在 BS的 RTG期间, RS不 能安排任何接收子信道和 0FDMA符号组合。
30、 根据权利要求 7、 8或 9所述的无线中转通信的实现方法, 其特征在于, 所述的 BS、 RS和 用户终端之间采用 FDD或 TDD方式进行无线中转通信。
31、 一种无线中转通信的实现方法, 其特征在于, 包括:
由 BS到用户终端的下行通信过程:
在 BS的下行子帧中, BS向 RS发送数据, RS通过 RS的 FDD无线接收机接收所述数据; RS通过 RS的 FDD无线发射机的下行子帧转发所述接收到的数据给用户终端;
由用户终端到 BS的上行通信过程:
用户终端在除 BS的上行中转区对应期间外的时频区间或时隙发送上行通信数据, RS接收用户 终端发来的数据;
RS通过下行子帧的上行中转区发送上行中转通信数据给 BS, BS在上行子帧中接收所述的上行 中转通信数据。
32、根据权利要求 31所述的无线中转通信的实现方法, 其特征在于, 所述的 BS向 RS发送数据 的处理具体包括:
BS在下行子帧的下行子帧头中发送前导码, RS通过下行子帧头接收子信道接收该前导码, 并与
BS取得同步;
BS在下行子帧中发送了所述前导码后, 发送 FCH、 DL- MAP和 UL- MAP信息, RS通过下行子帧头 接收子信道接收该 FCH、 DL-MAP和 UL- MAP信息, 获得 BS下行和上行各个 burst的子信道和 0FDMA 符号组合位置或时隙位置, 以及使用方法信息;
BS利用下行子帧的下行中转区的下行中转广播发送广播消息, BS在下行子帧的下行中转区的下 行中转 RS中发送下行中转通信数据给 RS, RS通过下行中转广播子信道接收所述广播消息, RS通过 RS的下行中转区接收所述下行中转通信数据。
33、 根据权利要求 31所述的无线中转通信的实现方法, 其特征在于, 所述的 RS通过下行子帧 转发接收到的数据的处理具体包括:
在 RS的下行子帧的下行子帧头中发送前导码, 用户终端接收该前导码, 并与 RS取得同步;
RS在下行子帧中发送 FCH、 DL-MAP, UL-MAP信息, 该 FCH、 DL-MAP UL-MAP信息可以由 BS发 送给 RS , 用户终端接收该 FCH、 DL-MAP, UL-MAP信息, 获得 RS下行和上行各个 burst的子信道和 0FDMA符号组合位置或时隙位置, 以及使用方法信息;
RS在下行子帧的除下行子帧头、 下行中转区外的时频区间发送下行中转通信数据给用户终端, 所述的中转通信数据由 BS发送给 RS, 用户终端从相应时频区间接收该下行中转通信数据;
或者, 用户终端接收 BS的下行子帧的下行子帧头中的前导码, 与 BS取得同步, 用户终端接收 BS的下 行子帧的下行子帧头中的 FCH、 DL-MAP和 UL- MAP信息, 获得 BS和 RS的下行和上行各个 burst的子 信道和 0FDMA符号组合位置或时隙位置, 以及使用方法信息;
RS在下行子帧中, 除下行子帧头、 下行中转区外的时频区间或时隙发送下行中转通信数据给用 户终端, 所述的中转通信数据由 BS发送给 RS , 用户终端从相应时频区间或时隙接收该下行中转通 信数据。
34、 根据权利要求 31所述的无线中转通信的实现方法, 其特征在于, 所述的 RS接收用户终端 发来的数据的处理具体包括:
用户终端接收到所述 FCH、 DL- MAP、 UL- MAP信息后, 获得 RS的下行和上行各个 burst的子信道 和 0FDMA符号组合位置或时隙位置, 以及使用方法信息, 用户终端在 RS的上行子帧中, 在除 BS的 上行中转区对应期间外的时频区间或时隙发送上行通信数据给 RS, RS从相应时频区间或时隙接收该 上行通信数据;
或者,
用户终端接收到所述 BS的下行子帧的下行子帧头的 FCH、 DL-MAP、 UL- MAP信息后, 获得 BS和 RS的下行和上行各个 burst的子信道和 0FDMA符号组合或时隙位置, 以及使用方法信息, 用户终端 在 RS的上行子帧, 除 BS的上行中转区对应期间外的时频区间或时隙发送上行通信数据给 RS , RS从 相应时频区间或时隙接收该上行通信数据。
35、 根据权利要求 31所述的无线中转通信的实现方法, 其特征在于, 所述的 BS在上行子帧中 接收上行中转通信数据的处理具体包括:
RS的接收 BS的下行子帧的下行子帧头的 FCH、 DL- MAP和 UL- MAP信息, 获得 BS下行和上行各 个 burst的子信道和 0FDMA符号组合位置或时隙位置, 以及使用方法信息;
RS在下行子帧的上行中转区的上行中转 RS中发送上行中转通信数据给 BS , 所述的中转通信数 据是由 BS发送给 RS, BS在上行子帧的上行中转区的上行中转 RS中接收该上行中转通信数据。
36、根据权利要求 31至 35任一项所述的无线中转通信的实现方法, 其特征在于, 若 RS中设置 有两个无线收发机, 所述的方法还包括:
若所述的两个无线收发机分别与 BS和用户终端对应,则在 RS与用户终端之间 RS使用第一无线 收发机进行信息的收发, 在 RS与 BS之间 RS使用第二无线收发机进行信息发收发 ·,
若所述的两个无线收发机分别采用不同的频率对应由 BS 至用户终端的信息传递及由用户终端 到 BS的信息传递过程, 则在 RS中使用第一频率接收 BS发来的信息, 并通过第一频率中转发送给用 户终端, 使用第二频率接收用户终端发来的信息, 并通过第二频率中转发送给 BS。
PCT/CN2006/002575 2005-09-30 2006-09-29 Système de communications relais sans fil, et procédé WO2007036161A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06791161.0A EP1931155B1 (en) 2005-09-30 2006-09-29 Wireless relay communication system and method
CN2006800122322A CN101160997B (zh) 2005-09-30 2006-09-29 无线中转通信系统及方法
US12/058,451 US8218469B2 (en) 2005-09-30 2008-03-28 Wireless relay communication system and method

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
CN2005101062913A CN1941665B (zh) 2005-09-30 2005-09-30 基于中转站实现无线中转的方法
CN200510106291.3 2005-09-30
CN 200510114596 CN1956354A (zh) 2005-10-26 2005-10-26 一种无线中转通信系统及实现方法
CN200510114596.9 2005-10-26
CN 200510117477 CN1960352A (zh) 2005-10-31 2005-10-31 基于ofdma-fdd的无线中转通信系统及方法
CN2005101174783A CN1960239B (zh) 2005-10-31 2005-10-31 基于tdm/tdma-fdd的无线中转通信系统及其通信方法
CN200510117478.3 2005-10-31
CN200510117477.9 2005-10-31
CN200510117222.2 2005-11-01
CN 200510117222 CN1960207A (zh) 2005-11-01 2005-11-01 基于fdd和tdd混合的无线中转通信系统及方法
CN200510115917.7 2005-11-11
CN200510115918.1 2005-11-11
CN 200510115917 CN1964221A (zh) 2005-11-11 2005-11-11 无线中转通信正交频分复用接入系统及方法
CN200510115918.1A CN1964222B (zh) 2005-11-11 2005-11-11 无线中转通信系统及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/058,451 Continuation US8218469B2 (en) 2005-09-30 2008-03-28 Wireless relay communication system and method

Publications (1)

Publication Number Publication Date
WO2007036161A1 true WO2007036161A1 (fr) 2007-04-05

Family

ID=37899383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/002575 WO2007036161A1 (fr) 2005-09-30 2006-09-29 Système de communications relais sans fil, et procédé

Country Status (4)

Country Link
US (1) US8218469B2 (zh)
EP (1) EP1931155B1 (zh)
KR (1) KR101002878B1 (zh)
WO (1) WO2007036161A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090111376A1 (en) * 2007-10-30 2009-04-30 Samsung Electronics Co. Ltd. Apparatus and method for transmitting and receiving data in a communication system
WO2009090233A1 (de) 2008-01-16 2009-07-23 Nokia Siemens Networks Oy Weiterleitungsknoten und endgerät für ein fdd-kommunikationsnetzwerk und verfahren diese zu betreiben
US20100220645A1 (en) * 2007-11-21 2010-09-02 Yeong Hyeon Kwon Method for communicating with relay station
RU2509431C1 (ru) * 2008-10-24 2014-03-10 Хуавэй Текнолоджиз Ко., Лтд. Способ и устройство ретрансляционной передачи
US8787271B2 (en) 2009-12-17 2014-07-22 Electronics And Telecommunications Research Institute Method and device for communication between devices with different transmission coverage

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007053954A1 (en) * 2005-11-10 2007-05-18 Nortel Networks Limited Zones for wireless networks with relays
US8416729B2 (en) 2007-03-10 2013-04-09 Lingna Holdings Pte., Llc Optimizing downlink throughput with user cooperation and scheduling in adaptive cellular networks
EP2209224A4 (en) * 2007-11-07 2013-06-26 Alcatel Lucent Shanghai Bell METHOD AND DEVICE FOR RESOURCE PLANNING BETWEEN DIFFERENT TDD SYSTEMS
KR101484277B1 (ko) * 2008-02-20 2015-01-19 삼성전자주식회사 Tdd 트랜시버에서의 신호 처리 방법 및 이를 위한 장치
US20110228742A1 (en) * 2008-06-13 2011-09-22 Zhi-Chun Honkasalo Sub Channel Generation for a Wireless Mesh Network
KR101511786B1 (ko) * 2008-06-30 2015-04-14 엘지전자 주식회사 주파수 분할 이중 중계국을 포함하는 무선통신 시스템 및 이 무선통신 시스템에서의 무선자원의 이용 방법
CN102113398B (zh) * 2008-08-01 2014-07-02 Lg电子株式会社 在包括中继站的无线通信系统中的对于回程链路和接入链路的资源分配方法
US8971241B2 (en) * 2008-09-30 2015-03-03 Qualcolmm Incorporated Techniques for supporting relay operation in wireless communication systems
US9203564B2 (en) 2008-10-20 2015-12-01 Qualcomm Incorporated Data transmission via a relay station in a wireless communication system
US20100112178A1 (en) 2008-10-31 2010-05-06 Fillmore Daniel T High protein crispy food product and method for preparing the same
KR101432734B1 (ko) 2008-11-04 2014-08-21 삼성전자주식회사 복수의 안테나를 이용하여 데이터를 포워딩하는 데이터 전송 시스템
WO2010053286A2 (en) * 2008-11-05 2010-05-14 Lg Electronics Inc. Relay frame structure for supporting transparent and bidirectional relays
US20100120442A1 (en) * 2008-11-12 2010-05-13 Motorola, Inc. Resource sharing in relay operations within wireless communication systems
US8358608B2 (en) * 2008-11-14 2013-01-22 Samsung Electronics Co., Ltd. Method and apparatus for HARQ operation with network coding
US8243648B2 (en) * 2008-12-19 2012-08-14 Intel Corporation Spatial reuse techniques with wireless network relays
KR101470654B1 (ko) * 2009-01-05 2014-12-09 엘지전자 주식회사 Tdd에 기반한 무선통신 시스템에서 데이터 중계 방법
US8787277B2 (en) * 2009-02-09 2014-07-22 Lg Electronics Inc. Method and apparatus for transmitting uplink control information
CN102318228B (zh) * 2009-02-11 2015-11-25 Lg电子株式会社 用于传送上行链路信号和反馈信息的方法以及使用该方法的中继装置
KR101506576B1 (ko) * 2009-05-06 2015-03-27 삼성전자주식회사 무선 통신 시스템에서 백홀 서브프레임 채널 송수신 방법 및 이를 위한 장치
KR101265651B1 (ko) * 2009-05-12 2013-05-22 엘지전자 주식회사 광대역 무선 통신 시스템에서 단말과 중계기 함께 데이터를 송수신하기 위한 방법
CN102461306B (zh) * 2009-06-12 2015-11-25 诺基亚公司 便于中继节点通信的方法和装置
JP5251776B2 (ja) * 2009-07-27 2013-07-31 ソニー株式会社 基地局、通信システム、移動端末および中継装置
EP2467962A1 (en) 2009-08-21 2012-06-27 Aware, Inc. Header repetition in packet-based ofdm systems
EP2293467B1 (en) * 2009-09-03 2012-11-07 Mitsubishi Electric R&D Centre Europe B.V. Method and a device for relaying symbols transferred by a source to a destination
JP5187909B2 (ja) * 2009-10-05 2013-04-24 株式会社エヌ・ティ・ティ・ドコモ 移動通信方法及びリレーノード
KR20110047073A (ko) * 2009-10-29 2011-05-06 삼성전자주식회사 주파수 분할 복신 방식의 무선통신시스템에서 프레임 구성 장치 및 방법
KR101764888B1 (ko) 2010-02-16 2017-08-16 한국전자통신연구원 광대역 근거리 무선 통신 장치 및 방법
US9407409B2 (en) * 2010-02-23 2016-08-02 Qualcomm Incorporated Channel state information reference signals
CN102083135B (zh) * 2010-08-20 2013-10-16 电信科学技术研究院 长期演进升级系统中的中继下行数据发送方法和设备
CN101931451B (zh) * 2010-09-19 2013-03-06 福建邮科通信技术有限公司 直放站的自激处理方法
WO2012051756A1 (en) * 2010-10-20 2012-04-26 Nokia Corporation Shortened subframe format for fdd
RO130953A2 (ro) 2014-07-04 2016-02-26 Ixia, A California Corporation Metode, sisteme şi suport citibil de calculator pentru distribuirea traficului de pachete de date prin protocolul de comunicaţii bazat pe ip () pentru transportul serviciilor generale de transmisiide date organizate în mod pachet pe canal radio (gprs)
DE102014015394A1 (de) * 2014-10-17 2016-04-21 Wabco Gmbh Verfahren zum Aufbau und Betrieb eines drahtlosen Fahrzeug-Netzwerks
GB201520008D0 (en) * 2015-11-12 2015-12-30 Telensa Ltd Methods and apparatus for transmitting data in a network
US9961588B2 (en) 2016-02-24 2018-05-01 Keysight Technologies Singapore (Holdings) Pte. Ltd. Methods, systems, and computer readable media for distributing monitored network traffic
CN107770865A (zh) * 2016-08-17 2018-03-06 北京信威通信技术股份有限公司 一种无线帧结构的配置方法
US10218539B2 (en) * 2017-07-26 2019-02-26 Cisco Technology, Inc. Forwarding data between an array of baseband units and an array of radio heads in distributed wireless system using TDM switches
IL256681B (en) * 2017-12-31 2021-06-30 Elta Systems Ltd Partial repeater device for uplink transmission–system, method and computer software product

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1252650A (zh) * 1998-10-23 2000-05-10 富士通株式会社 采用时分多址-时分双工传输方式的无线中继系统
CN1377542A (zh) * 1999-10-18 2002-10-30 西门子公司 保证服务质量的数据包交换无线系统的无线基站运行方法
WO2005067225A1 (en) * 2003-12-31 2005-07-21 Nokia Corporation Wireless multi-hop system with macroscopic multiplexing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2778303B1 (fr) * 1998-05-04 2000-06-02 Alsthom Cge Alcatel Procede de transfert d'une communication entre deux relais d'une cellule d'un systeme de radio-communication numerique cellulaire
SG110012A1 (en) * 2001-12-28 2005-04-28 Ntt Docomo Inc Radio communication system, base station, relay station, mobile station, and packet transmission control method
CN101257659B (zh) * 2002-06-06 2011-04-06 株式会社Ntt都科摩 分组通信系统、分组通信方法、基站、移动站、控制装置
JP2004064142A (ja) * 2002-07-24 2004-02-26 Ntt Docomo Inc 送信電力制御方法、これに用いて好適な無線通信システム、無線基地局及び移動局
US7542439B2 (en) * 2005-09-09 2009-06-02 Intel Corporation Methods and apparatus for providing a cooperative relay system associated with a broadband wireless access network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1252650A (zh) * 1998-10-23 2000-05-10 富士通株式会社 采用时分多址-时分双工传输方式的无线中继系统
CN1377542A (zh) * 1999-10-18 2002-10-30 西门子公司 保证服务质量的数据包交换无线系统的无线基站运行方法
WO2005067225A1 (en) * 2003-12-31 2005-07-21 Nokia Corporation Wireless multi-hop system with macroscopic multiplexing

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DENG SHIOIANG ET AL.: "Recommendation on Design 802.16 Tge PMP mode backward compatible Frame Structure", IEEE C802.16MMR-05/004, 9 September 2005 (2005-09-09)
REN ET AL.: "Recommendation on PNP Mode Compatible TDD Frame Structure", IEEE C802. 16MMR-05/027R1, 9 September 2005 (2005-09-09)
See also references of EP1931155A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090111376A1 (en) * 2007-10-30 2009-04-30 Samsung Electronics Co. Ltd. Apparatus and method for transmitting and receiving data in a communication system
US8971793B2 (en) * 2007-10-30 2015-03-03 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving data in a communication system
US9705584B2 (en) 2007-10-30 2017-07-11 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving data in a communication system
US20100220645A1 (en) * 2007-11-21 2010-09-02 Yeong Hyeon Kwon Method for communicating with relay station
US8787269B2 (en) * 2007-11-21 2014-07-22 Lg Electronics Inc. Method for communicating with relay station
WO2009090233A1 (de) 2008-01-16 2009-07-23 Nokia Siemens Networks Oy Weiterleitungsknoten und endgerät für ein fdd-kommunikationsnetzwerk und verfahren diese zu betreiben
US20110110247A1 (en) * 2008-01-16 2011-05-12 Ruediger Halfmann Routing Node and Terminal for an FDD Communication Network and Method for Operating Them
RU2509431C1 (ru) * 2008-10-24 2014-03-10 Хуавэй Текнолоджиз Ко., Лтд. Способ и устройство ретрансляционной передачи
US9203501B2 (en) 2008-10-24 2015-12-01 Huawei Technologies Co., Ltd. Relay transmission method and apparatus
US8787271B2 (en) 2009-12-17 2014-07-22 Electronics And Telecommunications Research Institute Method and device for communication between devices with different transmission coverage

Also Published As

Publication number Publication date
EP1931155A1 (en) 2008-06-11
KR20080054422A (ko) 2008-06-17
US8218469B2 (en) 2012-07-10
US20080219229A1 (en) 2008-09-11
EP1931155A4 (en) 2009-07-22
EP1931155B1 (en) 2014-01-01
KR101002878B1 (ko) 2010-12-21

Similar Documents

Publication Publication Date Title
WO2007036161A1 (fr) Système de communications relais sans fil, et procédé
US8116256B2 (en) Wireless data frame structure among nodes
CN101944971B (zh) 无线通信帧结构和设备
EP2071887B1 (en) Wireless access control method, relay station and base station
JP5544416B2 (ja) リレー方式の通信システムにおける信号送信方法及び装置
US8265044B2 (en) Method, system and base station using frame configuration which supports relay for wireless transmission
EP2641342B1 (en) Apparatus and method to reduce interference between frequency-division duplex and time-division duplex signals in a communication system
US20080165881A1 (en) Method for Accessing Channels in OFDMA Mobile Multihop Relay Networks
EP2020820B1 (en) Method and device for configuring traffic paths in relay system and switching method for mobile stations
JP5191202B2 (ja) 無線通信システム、方法、およびデータ構造
CN101160997B (zh) 无线中转通信系统及方法
WO2007101406A1 (fr) Système et procédé de communication radio par relais
CN1964222B (zh) 无线中转通信系统及方法
US20080084892A1 (en) Wireless communication systems, methods, and data structure
CN101442755B (zh) 一种支持Relay的无线通信系统
CN1960239B (zh) 基于tdm/tdma-fdd的无线中转通信系统及其通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200680012232.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006791161

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087010164

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2006791161

Country of ref document: EP