WO2007034808A1 - Substrate and method for manufacturing same - Google Patents

Substrate and method for manufacturing same Download PDF

Info

Publication number
WO2007034808A1
WO2007034808A1 PCT/JP2006/318586 JP2006318586W WO2007034808A1 WO 2007034808 A1 WO2007034808 A1 WO 2007034808A1 JP 2006318586 W JP2006318586 W JP 2006318586W WO 2007034808 A1 WO2007034808 A1 WO 2007034808A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
ultrafine particles
diamond
growth substrate
manufacturing
Prior art date
Application number
PCT/JP2006/318586
Other languages
French (fr)
Japanese (ja)
Inventor
Junji Watanabe
Mutsumi Touge
Masahiro Shimizu
Original Assignee
National University Corporation Kumamoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Kumamoto University filed Critical National University Corporation Kumamoto University
Priority to JP2007536507A priority Critical patent/JPWO2007034808A1/en
Publication of WO2007034808A1 publication Critical patent/WO2007034808A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0254Physical treatment to alter the texture of the surface, e.g. scratching or polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • C23C24/045Impact or kinetic deposition of particles by trembling using impacting inert media

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Provided are a substrate, which has a desired shape and a high density and high quality diamond film; a method for manufacturing such substrate; and a diamond substrate. A multitude of ultrafine particles (11) made of diamond are spread on a growing substrate (silicon substrate) (10). On the ultrafine particles (11), for instance, steel balls having a diameter of 1mm-3mm are arranged, then, ultrasonic vibration in a vertical direction is applied to the growing substrate (10). The steel balls vibrate and the ultrafine particles (11) are embedded in the growing substrate (10) in a desired pattern by the applied pressure. Then, when the ultrafine particles (11) are grown by CVD method, a diamond film (14) is formed. When the growing substrate (10) is removed, only the diamond film (14) (diamond substrate) can be obtained.

Description

明 細 書  Specification
基板およびその製造方法  Substrate and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、ダイヤモンドなどの高硬度材料による所望のパターンの膜を有する基板 およびその製造方法に関する。  The present invention relates to a substrate having a film having a desired pattern made of a high hardness material such as diamond, and a method for manufacturing the same.
背景技術  Background art
[0002] ダイヤモンドは高 、機械的強度およびィ匕学的安定性等の材料特性を有して 、るこ とから半導体素子の基板や光通信部品の回路の一部に応用する研究がなされてい る。また、マイクロマシユング分野においては、機械的な力卩ェを行う際にダイヤモンド 製のマイクロマシン用工具が必要とされる。これらの用途に用いる場合には、ダイヤ モンド膜を様々なマイクロパターン形状 (微細形状)に形成する必要がある。  [0002] Diamond has material properties such as high mechanical strength and mechanical stability, and thus has been studied for application to a substrate of a semiconductor element and a part of a circuit of an optical communication component. The In the micromachining field, a diamond micromachine tool is required to perform mechanical force. When used in these applications, the diamond film must be formed in various micropattern shapes (fine shapes).
[0003] 微細形状のダイヤモンド膜を作製する方法としては、一様に作製したダイヤモンド 膜をパター-ングする方法が提案されている (第 1の方法、例えば特許文献 1参照)。 また、エキシマレーザ等の紫外光を用いて加工する方法 (第 2の方法)も考えられ、あ るいはマスクを用いた前処理を行い、 CVD (Chemical Vapor Deposition;化学気相 成長)法によってダイヤモンド膜を作製する方法 (第 3の方法)も考えられる。 [0003] As a method for producing a fine diamond film, a method of patterning a uniformly produced diamond film has been proposed (see a first method, for example, Patent Document 1). In addition, a method of processing using ultraviolet light such as an excimer laser (second method) is conceivable, or a pretreatment using a mask is performed and diamond is formed by a CVD (Chemical Vapor Deposition) method. A method for producing a film (third method) is also conceivable.
[0004] 特許文献 1 :特開平 6— 275575号公報 [0004] Patent Document 1: Japanese Patent Laid-Open No. 6-275575
発明の開示  Disclosure of the invention
[0005] し力しながら、上述の従来の方法では次のような問題があった。すなわち、第 1の方 法では、ダイヤモンドが上述の材料特性を有していることから精密にパターユングす ることは困難であり、第 2の方法にっ 、ては未だカ卩ェ技術として確立されて 、な!/、等 の問題がある。また、第 3の方法ではそのプロセスは複雑でコストがかかる等の問題 かあつた。  However, the conventional method described above has the following problems. In other words, in the first method, it is difficult to precisely pattern diamond because diamond has the above-mentioned material properties, and the second method is still established as a caching technology. Have been! There is a problem of /, etc. In the third method, the process was complicated and costly.
このように従来の方法では、ダイヤモンドを精密にかつ容易に加工する技術が確立 されていなかった。  As described above, in the conventional method, a technique for precisely and easily processing diamond has not been established.
[0006] 本発明は力かる問題点に鑑みてなされたもので、その第 1の目的は、ダイヤモンド などの高硬度材料を精度良ぐかつ安価に所望のパターンに加工することのできる 基板の製造方法を提供することにある。 [0006] The present invention has been made in view of serious problems, and a first object thereof is to process a high-hardness material such as diamond into a desired pattern with high accuracy and low cost. It is to provide a method for manufacturing a substrate.
[0007] また、本発明の第 2の目的は、上記方法により得られる高密度 ·高品質の基板を提 供することにある。  [0007] A second object of the present invention is to provide a high-density and high-quality substrate obtained by the above method.
[0008] 本発明による基板の製造方法は、成長基板の表面に多数の超微粒子を所望のパ ターンで選択的に埋め込む工程と、成長基板に埋め込まれた多数の超微粒子を成 長させて膜を形成する工程と、を含むものである。  [0008] A method of manufacturing a substrate according to the present invention includes a step of selectively embedding a large number of ultrafine particles in a desired pattern on the surface of a growth substrate, and a film obtained by growing the large number of ultrafine particles embedded in the growth substrate. Forming the step.
[0009] すなわち、本発明の基板の製造方法では、成長基板上に所望のパターンで選択 的にダイヤモンドなどの超微粒子が埋め込まれ、続いて、これを核として超微粒子が 成長し、所望のパターンの形状を有する膜が形成される。  That is, in the substrate manufacturing method of the present invention, ultrafine particles such as diamond are selectively embedded in a desired pattern on the growth substrate, and then the ultrafine particles are grown using this as a nucleus to form the desired pattern. A film having the following shape is formed.
[0010] 超微粒子を散布する際には、超微粒子をエタノールに懸濁させた液を用いることが 好ましぐこれにより超微粒子が飛散することなく散布される。 [0010] When spraying the ultrafine particles, it is preferable to use a liquid in which the ultrafine particles are suspended in ethanol, whereby the ultrafine particles are sprayed without scattering.
[0011] 超微粒子を基板の所定位置に埋め込む方法としては、成長基板上に多数の超微 粒子 (例えばダイヤモンド)を配置し、超微粒子を加圧して超音波振動を付与する方 法がある。より具体的には、第 1の方法として、成長基板上に配置された多数の超微 粒子上に加圧球を載置し、成長基板に対して垂直方向の超音波振動を付与すること により超微粒子を埋め込む方法、第 2の方法として、成長基板上に配置された多数 の超微粒子上に加圧球を載置し、成長基板に対して面内方向の超音波振動を付与 して加圧球を成長基板上を直線的に移動させることにより超微粒子を線状パターン で埋め込む方法がある。 [0011] As a method of embedding ultrafine particles in a predetermined position of the substrate, there is a method in which a large number of ultrafine particles (for example, diamond) are arranged on a growth substrate, and ultrasonic vibrations are applied by pressurizing the ultrafine particles. More specifically, as a first method, a pressurized sphere is placed on a number of ultrafine particles arranged on the growth substrate, and ultrasonic vibrations in the vertical direction are applied to the growth substrate. As a second method for embedding ultrafine particles, a pressurized sphere is placed on a number of ultrafine particles arranged on the growth substrate, and ultrasonic vibration is applied to the growth substrate in the in-plane direction. There is a method of embedding ultrafine particles in a linear pattern by moving the pressure ball linearly on the growth substrate.
このような方法により、基板に対して超微粒子を点状、線状あるいは所望のパター ンで埋め込むことができる。また、鋼球を基板全面で走査させることにより基板全面に 超微粒子を埋め込むことも可能になる。加圧球としては、例えばステンレス鋼, Zr02 , A12 03など力もなる金属球、ガラス等力もなるセラミックス球あるいは榭脂球等を 用!/、ることができる。  By such a method, it is possible to embed ultrafine particles in the substrate in the form of dots, lines, or a desired pattern. It is also possible to embed ultrafine particles on the entire surface of the substrate by scanning the steel ball over the entire surface of the substrate. As the pressure sphere, for example, stainless steel, Zr02, A12 03, or other metal spheres, glass spheres, ceramic spheres, or resin balls can be used.
[0012] 膜としてダイヤモンド膜を形成する場合には、水素一メタン (H2 -CH4 )系ガスに よるプラズマ CVD法を用いることが好ましい。 CVD法を用いると、超微粒子の存在す る部分には必ずダイヤモンド核が形成され、従来よりも速い成長速度で、かつ、極め て高密度'高品質のダイヤモンド膜を備えた基板を作製することができる。 [0013] 成長基板としては、例えばケィ素(Si)基板等が利用可能である。 When a diamond film is formed as a film, it is preferable to use a plasma CVD method using hydrogen monomethane (H 2 —CH 4) -based gas. When using the CVD method, diamond nuclei are always formed in the areas where ultrafine particles exist, and a substrate with an extremely high density and high quality diamond film must be produced at a faster growth rate than before. Can do. [0013] For example, a silicon (Si) substrate can be used as the growth substrate.
[0014] 本発明による基板の製造方法では、成長基板上に膜を形成したのち、成長基板を 除去して膜そのものを基板とすることにより、例えばダイヤモンドからなる基板を作製 することができる。  [0014] In the substrate manufacturing method according to the present invention, after forming a film on the growth substrate, the growth substrate is removed and the film itself is used as a substrate, whereby a substrate made of, for example, diamond can be manufactured.
[0015] 本発明の基板の製造方法によれば、成長基板に多数の超微粒子を所望のパター ンで選択的に埋め込んだのち、埋め込まれた超微粒子を成長させて膜を形成するよ うにしたので、従来、膜形成が困難であったダイヤモンドなどの膜を所望の形状に、 かつ高密度'高品質で容易に作製することができる。よって、このダイヤモンド膜を備 えた基板を、例えば光一電子複合デバイス基板として用いることにより、その光学特 性および半導体特性を向上させることができる。  [0015] According to the substrate manufacturing method of the present invention, after a large number of ultrafine particles are selectively embedded in a desired pattern in a growth substrate, the embedded ultrafine particles are grown to form a film. Therefore, a film such as diamond, which has heretofore been difficult to form, can be easily produced in a desired shape and with high density and high quality. Therefore, by using the substrate provided with this diamond film as, for example, an optical-electronic composite device substrate, its optical characteristics and semiconductor characteristics can be improved.
[0016] また、成長基板上にダイヤモンドなどの膜を形成したのち、成長基板を除去し、残 つた膜を基板として用いるようにすれば、ダイヤモンドなど力もなる所望の形状の基板 を容易に作製することができる。よって、例えば、ダイヤモンドのみ力も構成される耐 久性に優れたマイクロマシン用工具などを作製することができる。  [0016] If a film such as diamond is formed on the growth substrate, and then the growth substrate is removed and the remaining film is used as the substrate, a substrate having a desired shape that can be used with diamond or the like can be easily manufactured. be able to. Thus, for example, it is possible to produce a micromachine tool with excellent durability that is composed of only diamond.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]本発明の一実施の形態に係るダイヤモンド膜を有する基板の製造工程を表す 図である。  FIG. 1 is a diagram showing a manufacturing process of a substrate having a diamond film according to an embodiment of the present invention.
[図 2]超微粒子の埋め込み工程を説明するための図である。  FIG. 2 is a diagram for explaining an embedding process of ultrafine particles.
[図 3]図 2に示した工程を具体的に説明するための斜視図である。  FIG. 3 is a perspective view for specifically explaining the process shown in FIG. 2.
[図 4]図 3に続く工程を表す上面図である。  FIG. 4 is a top view illustrating a process following FIG. 3.
[図 5]任意のパターン形状に超微粒子の埋め込む方法を説明するための図である。 発明を実施するための最良の形態  FIG. 5 is a diagram for explaining a method of embedding ultrafine particles in an arbitrary pattern shape. BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、本発明の実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0019] 図 1は本発明の一実施の形態に係るダイヤモンド膜を有する基板の製造方法を表 すものである。 FIG. 1 shows a method for manufacturing a substrate having a diamond film according to an embodiment of the present invention.
[0020] まず、図 1 (A)に示したように、ダイヤモンドからなる多数の超微粒子 11を散布した のち、これら超微粒子 11を基板 10に所望のパターンで選択的に埋め込む。  First, as shown in FIG. 1 (A), after a large number of ultrafine particles 11 made of diamond are dispersed, the ultrafine particles 11 are selectively embedded in the substrate 10 in a desired pattern.
[0021] 成長基板 10としては、例えば、 15mmX 15mmのシリコン(Si)基板等を用いること ができる。超微粒子 11としては、その直径が例えば、 5nm〜数十 nmであるものを用 V、ることが好まし 、。このようなナノサイズの超微粒子 11を用いることにより高密度の 埋め込みが可能となり、後述するダイヤモンドの核等の成長速度が向上する。 As the growth substrate 10, for example, a 15 mm × 15 mm silicon (Si) substrate or the like is used. Can do. As the ultrafine particles 11, it is preferable to use those having a diameter of 5 nm to several tens of nm, for example. By using such nano-sized ultrafine particles 11, high-density embedding becomes possible, and the growth rate of diamond nuclei and the like described later is improved.
[0022] 次に、図 1 (B)〜(D)に示したようにこのように成長基板 10に埋め込まれた多数の 超微粒子を CVD法、例えばプラズマ CVD法を用いて成長させることによりダイヤモ ンド膜を形成する。反応ガス Gとしては例えば水素—メタン (H2— CH4 )系ガスを用 いることができる。その過程では、まず、超微粒子 11を起点としてダイヤモンドの核 1 2が形成される(図 1 (B) )。ここで、核 12とは、その直径が 10nm〜100nmであるも のをいう。 Next, as shown in FIGS. 1 (B) to (D), a large number of ultrafine particles embedded in the growth substrate 10 as described above are grown using a CVD method, for example, a plasma CVD method. Forming an oxide film. As the reactive gas G, for example, hydrogen-methane (H2-CH4) gas can be used. In the process, diamond nuclei 12 are first formed starting from ultrafine particles 11 (FIG. 1 (B)). Here, the nuclei 12 have a diameter of 10 nm to 100 nm.
[0023] 続いて、これらの核 12を起点としてダイヤモンドの粒子 13が形成される(図 1 (C) )。  Subsequently, diamond particles 13 are formed starting from these nuclei 12 (FIG. 1 (C)).
ここで、粒子 13とは、その直径が数十 nm〜数百 nmであるものをいう。最後に、粒子 13を起点としてダイヤモンドの結晶 14Aが成長して膜 14を形成される(図 1 (D) )。こ れにより表面にダイヤモンドの膜 14を有する基板 15が完成する。  Here, the particle 13 refers to a particle having a diameter of several tens of nm to several hundreds of nm. Finally, a diamond crystal 14A grows from the particle 13 to form a film 14 (FIG. 1D). Thus, the substrate 15 having the diamond film 14 on the surface is completed.
[0024] 超微粒子 11の成長基板 10への埋め込みは、例えば以下の方法により実現するこ とができる。すなわち、図 2に示したように、成長基板 10の表面に多数の超微粒子 11 を散布したのち、これらの超微粒子 11上に加圧球 (鋼球 20)を載置する。そして、成 長基板 10に対して垂直方向の超音波振動 VIを与えて鋼球 20を同方向に振動させ るものである。  The embedding of the ultrafine particles 11 into the growth substrate 10 can be realized by, for example, the following method. That is, as shown in FIG. 2, a large number of ultrafine particles 11 are dispersed on the surface of the growth substrate 10, and then a pressure ball (steel ball 20) is placed on these ultrafine particles 11. Then, a vertical ultrasonic vibration VI is applied to the growth substrate 10 to vibrate the steel ball 20 in the same direction.
[0025] なお、多数の超微粒子 11の散布方法としては、例えばこれら超微粒子 11をェタノ ール等に懸濁させた液 Lを用い、これを成長基板 10上に塗布すればよい。これによ り、超微粒子 11が飛散することなく散布される。加圧球の材質および大きさは特に限 定されるものではないが、ここでは、例えば、直径 0. 2mm〜3mmのステンレス製の ものを用いる。超音波振動 VIとしては、例えば、 10W〜: LOOW©度の低エネルギー (周波数は 35ΚΗζ〜1ΜΗζ)のものが好ましい。これにより超微粒子 11が成長基板 10に高密度で埋め込まれる。  In addition, as a method for spraying a large number of ultrafine particles 11, for example, liquid L in which ultrafine particles 11 are suspended in ethanol may be used and applied to growth substrate 10. As a result, the ultrafine particles 11 are dispersed without being scattered. The material and size of the pressure ball are not particularly limited, but here, for example, a stainless steel material having a diameter of 0.2 mm to 3 mm is used. As the ultrasonic vibration VI, for example, those having a low energy of 10 W˜: LOOW © degree (frequency is 35ΚΗζ˜1ΜΗζ) are preferable. As a result, the ultrafine particles 11 are embedded in the growth substrate 10 at a high density.
[0026] 次に、超微粒子 11を所望のパターン形状に埋め込む方法について説明する。 Next, a method for embedding the ultrafine particles 11 in a desired pattern shape will be described.
[0027] まず、図 3 (A)に示した L字型のガイド 21, 21を成長基板 10上に所定の隙間 21A を隔てて載置する(図 3 (B) )。そののち、隙間 21 Aに多数の超微粒子 11を散布した のち鋼球 20を載置し、成長基板 10に超音波振動 VIを付与すると共に、図 4に示し たように、成長基板 10の面内方向にも超音波振動 V2も付与して鋼球 20を隙間 21A に沿って直線的に移動させる。これにより超微粒子 11に圧力が加わり成長基板 10に 対して線状に埋め込まれる。 First, the L-shaped guides 21 and 21 shown in FIG. 3A are placed on the growth substrate 10 with a predetermined gap 21A therebetween (FIG. 3B). After that, a large number of ultrafine particles 11 were sprayed in the gap 21 A. After that, the steel ball 20 is placed, and the ultrasonic vibration VI is applied to the growth substrate 10 and, as shown in FIG. 4, the ultrasonic vibration V2 is also applied to the growth substrate 10 in the in-plane direction. Is moved linearly along the gap 21A. As a result, pressure is applied to the ultrafine particles 11 so that the ultrafine particles 11 are embedded linearly in the growth substrate 10.
[0028] ガイド 21, 21の形状は、埋め込みのパターンに応じて変更すればよい。例えば筒 状のガイドとして、その内部で鋼球 20を上下動させることにより超微粒子 11を点状に 埋め込むことができる。また、大きな面積で均一な膜を形成したい場合には、枠状の ガイドとし、多数の鋼球 20を成長基板 10上の全面に配し、各鋼球 20で全面を走査 するように面内方向の振動を付与すればよい。  [0028] The shape of the guides 21, 21 may be changed according to the embedding pattern. For example, as a cylindrical guide, the ultrafine particles 11 can be embedded in the shape of dots by moving the steel ball 20 up and down inside. In addition, when it is desired to form a uniform film with a large area, a frame-shaped guide is used. What is necessary is just to give the vibration of a direction.
[0029] また、例えば、図 5に示したような装置 30を用いて超微粒子 11を埋め込むようにし てもよい。具体的には、 X, Y軸方向に移動可能なステージ 31上に超微粒子 11を含 む液 Lが入った浴槽 32を載置し、浴槽 32中に成長基板 10を投入する。この後、細 線ばね 33を介して超音波振動子 34に連結された鋼球 20を超音波振動させつつ、ス テージ 31を稼動させて鋼球 20を成長基板 10の所望の位置に移動させる。この場合 も、鋼球 20の直径は例えば上記範囲(0. 2mm〜3mm)とすることが好ましい。この ような構成とすることにより、線状だけではなぐあらゆる任意のパターン状に超微粒 子 11を簡易に埋め込むことが可能となる。なお、ここでは、鋼球 20自体を直接振動さ せることにより超微粒子 11を埋め込むようにしたが、浴槽 32側に超音波振動を付与 し、その結果鋼球 20が振動するような構成としてもょ 、。  [0029] Further, for example, the ultrafine particles 11 may be embedded using an apparatus 30 as shown in FIG. Specifically, a bath 32 containing a liquid L containing ultrafine particles 11 is placed on a stage 31 movable in the X and Y axis directions, and the growth substrate 10 is put into the bath 32. Thereafter, the steel ball 20 connected to the ultrasonic vibrator 34 through the thin wire spring 33 is ultrasonically vibrated, and the stage 31 is operated to move the steel ball 20 to a desired position on the growth substrate 10. . Also in this case, the diameter of the steel ball 20 is preferably in the above range (0.2 mm to 3 mm), for example. By adopting such a configuration, it becomes possible to easily embed the ultrafine particles 11 in any arbitrary pattern shape other than the linear shape alone. In this example, the ultrafine particles 11 are embedded by directly vibrating the steel ball 20 itself. However, an ultrasonic vibration is applied to the bathtub 32 side, so that the steel ball 20 vibrates as a result. Oh ,.
[0030] このように本実施の形態では、多数の超微粒子 11を成長基板 10上に散布し、成長 基板 10に所望のパターンで埋め込んだのち、これらの超微粒子 11を成長させるよう にしたので、所望の形状を有し、かつ高密度 ·高品質のダイヤモンドの膜 14を有する 基板 15を容易にかつ、高速に形成することができる。また、超微粒子 11の成長基板 10への埋め込みも、鋼球 20の超音波振動 VIを利用して行うようにしたので、簡単に 実現することができる。従って、このダイヤモンドの膜 14を備えた基板 15を光—電子 複合デバイス基板として用いると、その光学特性および半導体特性が向上する。  As described above, in the present embodiment, since a large number of ultrafine particles 11 are dispersed on the growth substrate 10 and embedded in the growth substrate 10 in a desired pattern, the ultrafine particles 11 are grown. The substrate 15 having a desired shape and having a high-density and high-quality diamond film 14 can be formed easily and at high speed. In addition, since the ultrafine particles 11 are embedded in the growth substrate 10 by using the ultrasonic vibration VI of the steel ball 20, it can be easily realized. Therefore, when the substrate 15 provided with the diamond film 14 is used as an opto-electronic composite device substrate, its optical characteristics and semiconductor characteristics are improved.
[0031] 以上、実施の形態を挙げて本発明を説明したが、本発明は上記実施の形態に限 定されるものではなぐ種々変形可能である。例えば、上記実施の形態では、成長基 板 10にダイヤモンドの膜 14を形成してこれを基板 15としたが、ダイヤモンドの膜 14 を形成したのち、成長基板 10を除去することにより、残存した膜 14自体を基板 (ダイ ャモンド基板)とするようにしてもよい。成長基板 10を除去する具体的な方法としては エッチング法などを用いることができる。これにより、所望の形状を有し、かつ高密度' 高品質のダイヤモンド基板を得ることができる。よって、例えば、ダイヤモンドの膜 14 をマイクロマシン用工具の形状に併せて形成すれば、ダイヤモンド力 なるマイクロマ シン用工具を容易に作製することができる。更に、 X線から赤外に至る広い波長領域 の光学窓、機械摺動部分の耐磨耗性部品、高級装飾品の一部等を耐久性に優れた ダイヤモンドで作製することも可能である。また、超微粒子についてはダンャモンドに 限らない。 [0031] While the present invention has been described with reference to the embodiment, the present invention is not limited to the above embodiment and can be variously modified. For example, in the above embodiment, the growth base The diamond film 14 was formed on the plate 10 and used as the substrate 15.However, after the diamond film 14 was formed, the growth substrate 10 was removed so that the remaining film 14 itself became the substrate (diamond substrate). You may make it do. As a specific method for removing the growth substrate 10, an etching method or the like can be used. Thereby, a diamond substrate having a desired shape and a high density and high quality can be obtained. Therefore, for example, if the diamond film 14 is formed in accordance with the shape of the micromachine tool, a micromachine tool having a diamond force can be easily manufactured. In addition, it is possible to make optical windows in a wide wavelength range from X-rays to infrared rays, wear-resistant parts on sliding parts of machines, and some of high-end ornaments with diamonds with excellent durability. Ultra fine particles are not limited to dunamond.

Claims

請求の範囲 The scope of the claims
[1] 成長基板の表面に多数の超微粒子を所望のパターンで選択的に埋め込む工程と 前記成長基板に埋め込まれた多数の超微粒子を成長させて膜を形成する工程と を含むことを特徴とする基板の製造方法。  [1] The method includes a step of selectively embedding a large number of ultrafine particles in a desired pattern on the surface of a growth substrate, and a step of growing a large number of ultrafine particles embedded in the growth substrate to form a film. Substrate manufacturing method.
[2] 前記多数の超微粒子を懸濁させた液を用いて超微粒子を前記基板上に散布する ことを特徴とする請求項 1記載の基板の製造方法。  [2] The method for producing a substrate according to [1], wherein the ultrafine particles are dispersed on the substrate using a liquid in which the large number of ultrafine particles are suspended.
[3] 前記成長基板上に多数の超微粒子を配置し、前記超微粒子を加圧して超音波振 動を付与する [3] A large number of ultrafine particles are arranged on the growth substrate, and the ultrasonic particles are applied by pressurizing the ultrafine particles.
ことを特徴とする請求項 1に記載の基板の製造方法。  The method for manufacturing a substrate according to claim 1, wherein:
[4] 前記成長基板上に配置された前記多数の超微粒子上に加圧球を載置し、前記成 長基板に対して垂直方向の超音波振動を付与することにより前記超微粒子を埋め込 む [4] A pressure sphere is placed on the large number of ultrafine particles arranged on the growth substrate, and the ultrafine particles are embedded by applying vertical ultrasonic vibration to the growth substrate. Mu
ことを特徴とする請求項 3に記載の基板の製造方法。  The method for manufacturing a substrate according to claim 3.
[5] 前記成長基板上に配置された前記多数の超微粒子上に加圧球を載置し、前記成 長基板に対して面内方向の超音波振動を付与して加圧球を前記成長基板上を直線 的に移動させることにより前記超微粒子を線状パターンで埋め込む [5] A pressure ball is placed on the large number of ultrafine particles arranged on the growth substrate, and an ultrasonic vibration in an in-plane direction is applied to the growth substrate to grow the pressure ball. The ultrafine particles are embedded in a linear pattern by linearly moving on the substrate.
ことを特徴とする請求項 3に記載の基板の製造方法。  The method for manufacturing a substrate according to claim 3.
[6] 前記加圧球を前記基板に対して相対的に走査させることにより超微粒子を面状パ ターンで埋め込む [6] Ultra fine particles are embedded in a planar pattern by scanning the pressure ball relative to the substrate.
ことを特徴とする請求項 5記載のダイヤモンド膜を有する基板の製造方法。  The method for producing a substrate having a diamond film according to claim 5.
[7] 前記加圧球を所定の位置に固定することにより超微粒子を前記成長基板に点状に 埋め込む [7] Ultrafine particles are embedded in the growth substrate in the form of dots by fixing the pressure sphere in place.
ことを特徴とする請求項 4に記載の基板の製造方法。  5. The method for manufacturing a substrate according to claim 4, wherein:
[8] 前記超微粒子はダイヤモンドである [8] The ultrafine particles are diamond.
ことを特徴とする請求項 1に記載の基板の製造方法。  The method for manufacturing a substrate according to claim 1, wherein:
[9] 前記成長基板上に膜を形成したのち、前記成長基板を除去し、残存した膜を基板 とする ことを特徴とする請求項 1に記載の基板の製造方法。 [9] After forming a film on the growth substrate, the growth substrate is removed, and the remaining film is used as a substrate. The method for manufacturing a substrate according to claim 1, wherein:
[10] 請求項 1に記載の方法により形成され、表面に所望のパターンのダイヤモンド膜を 有する [10] A diamond film having a desired pattern is formed on the surface, which is formed by the method according to claim 1.
ことを特徴とする基板。  A substrate characterized by that.
[11] 請求項 9に記載の方法により形成され、所望のパターン形状を有することを特徴と する基板。  [11] A substrate formed by the method according to claim 9, and having a desired pattern shape.
PCT/JP2006/318586 2005-09-20 2006-09-20 Substrate and method for manufacturing same WO2007034808A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007536507A JPWO2007034808A1 (en) 2005-09-20 2006-09-20 Substrate and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-271920 2005-09-20
JP2005271920 2005-09-20

Publications (1)

Publication Number Publication Date
WO2007034808A1 true WO2007034808A1 (en) 2007-03-29

Family

ID=37888851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318586 WO2007034808A1 (en) 2005-09-20 2006-09-20 Substrate and method for manufacturing same

Country Status (2)

Country Link
JP (1) JPWO2007034808A1 (en)
WO (1) WO2007034808A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009291911A (en) * 2008-06-06 2009-12-17 Disco Abrasive Syst Ltd Lapping apparatus
JP2014009388A (en) * 2012-06-29 2014-01-20 Toyota Motor Corp Surface treatment method
WO2023147255A1 (en) * 2022-01-27 2023-08-03 Applied Materials, Inc. In situ nucleation for nanocrystalline diamond film deposition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132691A (en) * 1990-09-25 1992-05-06 Nec Corp Production of diamond thin film by gaseous phase method using diamond fine powder as seed crystal
JPH1081586A (en) * 1996-09-03 1998-03-31 Sumitomo Electric Ind Ltd Vapor synthesized diamond and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132691A (en) * 1990-09-25 1992-05-06 Nec Corp Production of diamond thin film by gaseous phase method using diamond fine powder as seed crystal
JPH1081586A (en) * 1996-09-03 1998-03-31 Sumitomo Electric Ind Ltd Vapor synthesized diamond and its production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WATANABE J. ET AL.: "Silicon Kiban no Maeshori Gijutsu to CVD Diamond Usumaku no Tokusei no Kankei", 2004 NENDO SEIMITSU KOGAKUKAI MIYAZAKI CHIHO KOENKAI, 2004, pages 55 - 56 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009291911A (en) * 2008-06-06 2009-12-17 Disco Abrasive Syst Ltd Lapping apparatus
JP2014009388A (en) * 2012-06-29 2014-01-20 Toyota Motor Corp Surface treatment method
WO2023147255A1 (en) * 2022-01-27 2023-08-03 Applied Materials, Inc. In situ nucleation for nanocrystalline diamond film deposition
US11946134B2 (en) 2022-01-27 2024-04-02 Applied Materials, Inc. In situ nucleation for nanocrystalline diamond film deposition

Also Published As

Publication number Publication date
JPWO2007034808A1 (en) 2009-03-26

Similar Documents

Publication Publication Date Title
TWI295227B (en) Step and repeat imprint lithography process
JP5405574B2 (en) Templates and methods for producing high aspect ratio templates for lithography, and use of templates to drill substrates at the nanoscale
JP6703617B2 (en) Combined laser treatment of solids to be separated
TW201114702A (en) Breaking apparatus and breaking method
Chand et al. Microfabricated small metal cantilevers with silicon tip for atomic force microscopy
TWI469916B (en) Nanowire manufacturing method
Kim et al. Novel Ultrananocrystalline Diamond Probes for High‐Resolution Low‐Wear Nanolithographic Techniques
TW200843867A (en) Nanolithography with use of viewports
US20090199392A1 (en) Ultrasound transducer probes and system and method of manufacture
Hamdana et al. Nanoindentation of crystalline silicon pillars fabricated by soft UV nanoimprint lithography and cryogenic deep reactive ion etching
JP2006108649A (en) Metallic mold for nano-imprint, forming method of nano-pattern, and resin molding
JP7190563B2 (en) Method and apparatus for casting polymer products
US10087068B2 (en) Stress relieved microfabricated cantilever
WO2007034808A1 (en) Substrate and method for manufacturing same
JP2004209971A (en) Method for manufacturing nano-structure, nano-structure manufactured by the method, as well as manufacturing device for conducting the method
Matsui Three-dimensional nanostructure fabrication by focused ion beam chemical vapor deposition
KR20060028386A (en) Piezoelectric material working method
US20090233058A1 (en) Carbon nanotube structure and method for producing the same
JP2004122283A (en) Manufacturing method of regular arrangement microstructure of nano size
JP2009283264A (en) Micro topography switch array
Nagashima et al. Wrinkle‐Assisted Capillary Bridging for the Directed Assembly of Single‐Level DNA Nanowire Arrays
US20100132080A1 (en) Method of making and assembling capsulated nanostructures
Ramanathan et al. Nanopatterning of ultrananocrystalline diamond thin films via block copolymer lithography
Li et al. Hierarchical micro-and nanoscale structures on surfaces produced using a one-step pattern transfer process
KR101479707B1 (en) Method for patterning a thin film by controlled cracking and thin film patterning structure thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007536507

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06798145

Country of ref document: EP

Kind code of ref document: A1