WO2007032452A1 - Variable resonance circuit, filter, communication apparatus and method for regulating temperature characteristics of variable resonance circuit - Google Patents

Variable resonance circuit, filter, communication apparatus and method for regulating temperature characteristics of variable resonance circuit Download PDF

Info

Publication number
WO2007032452A1
WO2007032452A1 PCT/JP2006/318306 JP2006318306W WO2007032452A1 WO 2007032452 A1 WO2007032452 A1 WO 2007032452A1 JP 2006318306 W JP2006318306 W JP 2006318306W WO 2007032452 A1 WO2007032452 A1 WO 2007032452A1
Authority
WO
WIPO (PCT)
Prior art keywords
variable
resonance circuit
transmission line
temperature
capacitor
Prior art date
Application number
PCT/JP2006/318306
Other languages
French (fr)
Japanese (ja)
Other versions
WO2007032452A9 (en
Inventor
Hiroshi Katta
Original Assignee
Kyocera Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corporation filed Critical Kyocera Corporation
Priority to JP2007535547A priority Critical patent/JP4855407B2/en
Publication of WO2007032452A1 publication Critical patent/WO2007032452A1/en
Publication of WO2007032452A9 publication Critical patent/WO2007032452A9/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/2013Coplanar line filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/08Strip line resonators
    • H01P7/082Microstripline resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/08Strip line resonators
    • H01P7/084Triplate line resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J3/00Continuous tuning
    • H03J3/20Continuous tuning of single resonant circuit by varying inductance only or capacitance only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0123Frequency selective two-port networks comprising distributed impedance elements together with lumped impedance elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1758Series LC in shunt or branch path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1791Combined LC in shunt or branch path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J3/00Continuous tuning
    • H03J3/02Details
    • H03J3/16Tuning without displacement of reactive element, e.g. by varying permeability
    • H03J3/18Tuning without displacement of reactive element, e.g. by varying permeability by discharge tube or semiconductor device simulating variable reactance
    • H03J3/185Tuning without displacement of reactive element, e.g. by varying permeability by discharge tube or semiconductor device simulating variable reactance with varactors, i.e. voltage variable reactive diodes

Definitions

  • Variable resonance circuit filter device, communication device, and temperature characteristic adjustment method for variable resonance circuit
  • the present invention has a dielectric layer whose relative dielectric constant changes depending on an applied voltage as a resonance circuit used for communication equipment such as a mobile phone and high-frequency components such as a filter or an oscillator, and the capacitance changes.
  • a variable resonance circuit using a variable capacitor whose resonance frequency can be varied by the variable resonance capacitor in particular, a variable resonance in which a change in characteristics due to a temperature change of the resonance frequency and the resonance frequency variable rate is suppressed, that is, an excellent temperature characteristic.
  • the present invention relates to a filter device, a communication device, and a temperature characteristic adjustment method for the variable resonance circuit using the variable resonance circuit.
  • variable resonance circuit in which an impedance element including an inductor component such as an inductor or a transmission line and a variable capacitor are combined is known.
  • a variable resonance circuit is a voltage-controlled oscillator or a voltage-controlled variable circuit. It is used as a filter or a resonance circuit such as a notch circuit for removing unnecessary harmonic components and noise components.
  • Japanese Laid-Open Patent Publication No. 2003-110321 discloses that a ferroelectric oxide thin film having a velovskite structure such as strontium titanate or strontium barium titanate is used as a dielectric layer and sandwiched between them.
  • the resonance frequency can be changed by changing the relative dielectric constant of the dielectric layer and changing the capacitance.
  • a variable resonance circuit using a capacitive capacitor has been proposed.
  • the relative dielectric constant of the variable capacitor proposed in Japanese Unexamined Patent Application Publication No. 2003-110321 also changes with temperature. Further, it is known that the variable capacitance of a variable capacitor generally increases as the relative dielectric constant increases. For this reason, temperature characteristics occur in the capacitance value and the capacitance variable rate due to the temperature dependence of the dielectric constant. For this reason, the resonance frequency and the common frequency of a variable resonance circuit using such a variable capacitor are used. The rate of change of the vibration frequency differs depending on the ambient temperature, and there is a problem that a desired resonance characteristic cannot be obtained stably. For example, when this variable resonance circuit is used for a filter, there is a problem that frequency selectivity, pass characteristics, attenuation characteristics, and the like change according to the ambient temperature.
  • the present invention has been devised in view of the problems in the prior art as described above, and its purpose is to suppress changes in resonance characteristics such as resonance frequency and resonance frequency change rate due to changes in ambient temperature.
  • An object of the present invention is to provide a variable resonance circuit having excellent temperature characteristics, and to provide a filter device, a communication device, and a temperature characteristic adjusting method for the variable resonance circuit using the variable resonance circuit.
  • the present invention provides a variable capacitor using a first dielectric whose relative dielectric constant is a temperature coefficient X, and the relative dielectric constant is changed by application of a control voltage.
  • a variable resonance circuit comprising: an inductor having a second dielectric whose change is a temperature coefficient Y having a polarity opposite to that of the temperature coefficient X.
  • the first dielectric has a relative permittivity that changes when a control voltage is applied
  • the inductor includes a ground conductor and a line conductor formed on the second dielectric. It is a transmission line. That is, the relative permittivity changes with the application of the control voltage, and the change in the relative permittivity with respect to the temperature uses the first dielectric whose temperature coefficient is X, and the relative permittivity with the application of the control voltage.
  • the product of the capacitance value of the variable capacitor and the absolute value of the temperature coefficient X (hereinafter referred to as IXI), the equivalent capacitance value of the transmission line, and the absolute value of the temperature coefficient Y (in the following, the product of IYI is substantially equal.
  • the line conductor of the transmission line is characterized in that at least a part thereof is formed on a surface layer of the second dielectric and has a plurality of cutable branch portions.
  • the transmission line has a length that is an odd multiple of ⁇ g / 4 ( ⁇ g: effective wavelength of a high-frequency signal propagating through the transmission line), and one end thereof is used for high-frequency grounding. The other end is connected to the signal input terminal together with the variable capacitor, and a control voltage is applied between the one end and the high-frequency grounding capacitor.
  • the present invention further includes a direct current limiting capacitor connected to at least one of the variable capacitor and the transmission line.
  • the variable capacitor and The inductor is connected in parallel.
  • variable capacitor and the inductor are connected in series.
  • the first dielectric and the second dielectric are barium strontium titanate forces.
  • the present invention includes an input terminal, an output terminal, and a ground terminal, and the above variable on the input / output line connecting the input terminal and the output terminal or between the input / output line and the ground terminal.
  • a filter device is provided with a resonance circuit.
  • a communication apparatus including at least one of a reception circuit and a transmission circuit having the filter device.
  • the relative dielectric constant varies depending on the control voltage
  • the relative dielectric constant varies depending on the control voltage and the variable capacitor using the first dielectric whose change in the relative dielectric constant with respect to temperature is the temperature coefficient X.
  • a variable resonance circuit including a transmission line formed by forming a ground conductor and a line conductor on a second dielectric having a temperature coefficient Y whose polarity is opposite to that of the temperature coefficient X.
  • the product of the capacitance value of the variable capacitor and the absolute value of the temperature coefficient X, and the product of the equivalent capacitance value of the transmission line and the absolute value of the temperature coefficient Y are substantially equal to each other.
  • variable resonance circuit temperature is adjusted by adjusting one of the capacitance value of the variable capacitor, the temperature coefficient X, the equivalent capacitance value of the transmission line, and the temperature coefficient Y so as to be equal to each other.
  • This is a characteristic adjustment method.
  • at least a part of the line conductor of the transmission line is the first conductor.
  • the dielectric layer of 2 is formed so as to have a plurality of cutable branch portions, and the branch portions are cut to adjust the equivalent capacitance value of the transmission line.
  • FIG. 1 is an equivalent circuit diagram showing an embodiment of a variable resonance circuit according to an embodiment of the present invention.
  • FIG. 2 is a partially enlarged plan view showing an example of a line conductor of a variable transmission line having a plurality of cutable branch portions according to the present invention.
  • FIG. 3 is an equivalent circuit diagram showing a variable resonance circuit according to another embodiment of the present invention.
  • FIG. 4 is an equivalent circuit diagram showing a variable resonance circuit of still another embodiment of the present invention.
  • FIG. 5 is an equivalent circuit diagram showing the filter device of one embodiment of the present invention.
  • FIG. 6 is an equivalent circuit diagram showing a filter device according to another embodiment of the present invention.
  • FIG. 7 is a block diagram showing a communication apparatus according to an embodiment of the present invention.
  • FIG. 8 is a partially enlarged plan view showing another example of the line conductor of the variable transmission line having a plurality of cutable branch portions according to the present invention.
  • 9A to 9C are sectional views showing examples of the transmission line of the present invention.
  • 10A to 10C are a plan view and a cross-sectional view of the variable resonance circuit shown in FIG. 4, respectively.
  • variable resonance circuit of the present invention will be described in detail with reference to the drawings.
  • FIG. 1 is an equivalent circuit diagram showing a variable resonance circuit according to an embodiment of the present invention.
  • a variable capacitor having a thin film dielectric layer as a first dielectric is used, and a ground conductor and a line conductor are connected to the dielectric layer as a second dielectric as an inductor.
  • An example using a transmission line that is formed will be described.
  • Ct is a variable capacitor
  • Tt is a ⁇ gZ4 variable transmission line as a transmission line
  • Cc is a high-frequency contact that forms a high-frequency grounding capacitor.
  • Ground capacitors, LI and L2 are choke coils containing RF blocking inductor components for supplying control voltage
  • S is a signal input terminal
  • VI and V2 are voltage control terminals for applying control voltage
  • Cd is This is a DC limiting capacitor that separates the voltage control terminals VI and V2 and limits the DC component to the signal input terminal S.
  • g is an effective wavelength when a high-frequency signal input from the signal input terminal S propagates through the ⁇ gZ4 variable transmission line Tt.
  • FIG. 1 a circuit in which a DC limiting capacitor element Cd and a variable capacitor Ct are connected in series between the signal input terminal S and the ground potential is connected to the DC limiting capacitor element Cd and the ⁇ gZ4 variable transmission line Tt.
  • a high-frequency grounding capacitor Cc is connected in parallel to the circuit connected in series.
  • the voltage control terminal VI is connected between the DC limiting capacitor element Cd and the variable capacitor Ct via the choke coil L1
  • the choke coil L2 is connected between the DC limiting capacitor element Cd and the ⁇ gZ4 variable transmission line Tt.
  • the voltage control terminal V2 is connected via.
  • one DC limiting capacitor element Cd is provided in each of the variable capacitor element Ct side circuit and the gZ4 variable transmission line Tt side circuit, but the variable input element Ct is connected to the signal input terminal S.
  • Side circuit and ⁇ gZ4 variable transmission line Tt side circuit connected in parallel Signal input terminal
  • the variable capacitive element Ct side circuit or ⁇ It may be provided in one of the circuits on the gZ4 variable transmission line Tt side.
  • control voltage When a control voltage is supplied from the voltage control terminal VI, the control voltage is applied from the voltage control terminal VI to the variable capacitor Ct via the RF blocking choke coil L1.
  • the direct current limiting capacitive element Cd prevents the direct current component from leaking to the signal input terminal S side and can provide a potential difference between the control voltages VI and V2, so that the control voltages V1 and V2 are separated. be able to. Therefore, control voltages VI and V2 are controlled independently. It is possible to
  • the RF blocking choke coils LI and L2 are for blocking high frequency signals from the signal input terminal S from flowing directly to the control voltage terminals VI and V2.
  • the variable capacitor Ct is composed of an upper electrode layer and a lower electrode layer sandwiching a thin film dielectric layer whose relative dielectric constant varies with the control voltage and whose variation relative to temperature is a temperature coefficient X.
  • the thin film dielectric layer has a predetermined dielectric constant corresponding to the applied control voltage, and therefore the capacitance value of the variable capacitor Ct is controlled to a desired value. be able to.
  • Any thin dielectric layer may be used as long as it is a high dielectric layer whose dielectric constant changes with application of voltage.
  • Any material can be used for the upper electrode layer and the lower electrode layer as long as they have conductivity.
  • a sapphire R substrate is used as the support substrate for forming the variable capacitor Ct
  • Pt is used as the lower electrode layer on this substrate
  • (Ba Sr) Ti O (0 ⁇ x ⁇ l, 0 ⁇ y ⁇ l
  • variable capacitor Ct with a structure using PtZAu (lower layer Z upper layer is shown below) is formed in the upper electrode layer, an element having a high Q value and suitable for a high-frequency circuit can be obtained. it can.
  • the temperature coefficient X of the relative dielectric constant of the thin film dielectric layer can be changed by changing the composition ratio, film thickness, film forming temperature, etc. of the thin film dielectric layer.
  • the lower electrode layer is not required, so that the device can be easily fabricated, integrated, and the like.
  • the gZ4 variable transmission line Tt includes a microstrip line (FIG. 9A) and a coplanar line (FIG. 9B) configured by forming a ground conductor 12 and a line conductor 10 on a dielectric layer 11. ) And stripline (Fig. 9C).
  • a line conductor 10 is formed on one main surface of the dielectric layer 11, and a ground conductor 12 is formed on the entire other main surface of the dielectric layer 11.
  • a line conductor 10 is formed on one main surface of the dielectric layer 11, and two ground conductors 12 are formed on the one main surface so as to be spaced from each other with the line conductor 10 interposed therebetween. .
  • a ground conductor 12 is formed on the entire main surfaces of the dielectric layer 11, and a line conductor 10 is formed inside the dielectric layer 11.
  • the configuration in which the dielectric layer 11 exists between the electric field generated between the line conductor 10 and the ground conductor 12 makes it possible to form the gZ4 variable transmission line Tt.
  • the dielectric layer has a predetermined dielectric constant corresponding to the applied control voltage, so that the equivalent capacitance value of the ⁇ gZ4 variable transmission line Tt can be controlled to a desired value. it can.
  • the ground conductor and the line conductor are made of a conductive material, and the dielectric layer has a temperature coefficient X in which the change in relative dielectric constant with respect to temperature is opposite to that of the temperature coefficient X.
  • a configuration using a material whose relative permittivity changes is used. For example, Pt for the ground conductor and (Ba Sr) Ti O (0 ⁇ x ⁇ l, 0 ⁇ y ⁇ ll -xy 3 for the dielectric layer
  • the temperature coefficient Y of the relative permittivity of the dielectric layer can be adjusted by changing the composition ratio of the dielectric layer, the film formation temperature, etc.
  • the dielectric layer may be composed of a plurality of layers using different compositions or materials.
  • the temperature coefficient is Ba-rich, for example (Ba Sr) Ti 2 O, the temperature coefficient
  • composition ratio is Sr rich, for example (Ba Sr) Ti 2 O, the temperature coefficient is negative.
  • the temperature coefficient can be controlled by applying strain to the thin film dielectric layer of the variable capacitor Ct and the dielectric layer of the ⁇ gZ4 variable transmission line Tt due to stress or the like. In other words, the temperature coefficient becomes negative when one of the cues is below the operating temperature range, and the temperature coefficient becomes positive when the Curie point exceeds the operating temperature range.
  • the dielectric layer and thin-film dielectric layer include Bi—Zr—Nb oxide (BZN), Sr—Bi—Ta oxide (SBT), Pb—La—.
  • BZN Bi—Zr—Nb oxide
  • SBT Sr—Bi—Ta oxide
  • Pb—La Ti-based oxide
  • variable transmission line Tt is a gZ4 short-circuited transmission line in the high-frequency region, and is equivalent to an LC parallel resonant circuit near the resonance frequency.
  • the equivalent inductor of the variable transmission line Tt is L
  • the equivalent capacitance is C.
  • the capacitance value of the variable capacitor Ct when the control voltage (applied voltage) Va is applied from the voltage control terminal VI is Ct2
  • the resonance frequency of the variable resonance circuit can be changed to an arbitrary value by adjusting the capacitance value of the variable capacitor Ct and the capacitance value of the equivalent capacitance C of the variable transmission line Tt according to the applied voltage.
  • variable capacitor Ct and variable transmission line Tt vary depending on the ambient temperature.
  • the change in the capacitance value of the variable capacitor Ct with respect to the temperature change can be detected by the variable transmission line Tt. Since the change of the equivalent capacitance value is mitigated, the change of the resonance frequency of the variable resonance circuit due to the temperature change can be reduced.
  • the capacity change rate is different at different temperatures. This is because the capacitance is proportional to the relative dielectric constant, which is a function of temperature. In general, it is known that the capacity change rate increases as the relative dielectric constant increases.
  • the change rate of the capacitance is 1 I Ctl, 1 Ct2, I / Ctl, (Ctl ,: temperature Initial capacitance value at T ', Ct2': Capacitance value when control voltage is applied at temperature T, Ctl'-Ct2 ': Capacitance change amount) is also small, but the relative permittivity of variable transmission line Tt is polar Is increased due to the inverse temperature coefficient Y, the capacity change rate of the equivalent capacity C is increased.
  • the force capacitor described in the example in which the variable capacitor Ct and the gZ4 variable transmission line Tt are connected in parallel may be connected in series. If both are connected in parallel, the impedance will increase at the resonance frequency, so that if the signal is used as a shunt, only signals near the resonance frequency can be passed. In addition, if both are connected in series, the impedance is reduced at the resonance frequency. Therefore, if the signal is used as a shunt, only the signal near the resonance frequency can be attenuated.
  • At least a part of the line conductor constituting the variable transmission line Tt is formed on the surface layer of the dielectric layer and has a plurality of severable branch portions.
  • a chip capacitor type may be used as the variable capacitor, or a thin film dielectric layer and a pair of electrodes sandwiching the thin film dielectric layer may be formed by a thin film forming method. You can also use a tip coil as the inductor.
  • FIG. 2 is a partially enlarged plan view showing an example of a line conductor of a variable transmission line that has a plurality of severable branch portions that constitute the variable resonance circuit of the present invention.
  • the line conductor 10 includes a trunk portion 10a and an annular portion 10b protruding from the trunk portion 10a. It has bridging parts B and C so that it can be cut into pieces.
  • a part A of the portion where the trunk portion 10a and the annular portion 10b overlap, and the bridging portions B and C are defined as branch portions.
  • the branch part A can open the annular part 10b if it is removed.
  • the hatching different from the other line conductors 10 is given for easy understanding of the branch portions A to C.
  • the high frequency signal flowing through the trunk portion 10a passes through the portion A which is the shortest distance.
  • the high-frequency signal enters the annular portion 10b from the trunk portion 10a and returns to the trunk portion 10a through the B portion. Therefore, since the line length of the line conductor 10 is longer than when passing through part A, the resonance frequency can be adjusted to be lower than the resonance frequency in the initial state. Also, if part B is removed in addition to part A, the high-frequency signal enters the annular part 10b from the trunk part 10a and returns to the trunk part 10a through the part C. The frequency can be adjusted even lower.
  • the high-frequency signal returns from trunk part 10a to annular part 10b and returns to trunk part 10a, so that the line length becomes the longest and the resonance frequency can be adjusted to be lower. I can do it. In other words, the resonance frequency can be adjusted by cutting the branch portion.
  • the line conductor 10 is formed on the surface layer of the dielectric layer so that the line conductor 10 can be easily removed from the outside by a laser or the like even when the variable resonance circuit is mounted.
  • the resonance frequency can be adjusted in a wide frequency range. For example, when a control voltage that maximizes the relative permittivity is applied to the variable capacitor Ct and the variable transmission line Tt, the resonance in the initial state is obtained so as to obtain the maximum value in the desired resonance frequency variable range. If the frequency is set by adjusting the length of the line conductor 10 of the variable transmission line Tt, the capacitance variable rate of the variable capacitance capacitor Ct and the equivalent capacitance value of the transmission line Tt by the applied voltage is maximized. I can make it. Since it is possible to resonate at a desired frequency using the variable capacitor Ct and the variable transmission line Tt having such a variable capacity variable rate as much as possible, the resonance frequency can be adjusted in a wide frequency range.
  • the control voltage required to obtain the desired resonance frequency is reduced by adjusting the state (OV) so that the desired resonance frequency can be obtained. Therefore, the power consumption of the variable resonance circuit can be reduced.
  • FIG. 3 is an equivalent circuit diagram showing a variable resonance circuit according to another embodiment of the present invention. The same parts as those in FIG. 1 are denoted by the same reference numerals, and redundant description thereof will be omitted.
  • a variable capacitor Ct is connected in parallel to a circuit in which a variable transmission line Tt and a high-frequency grounding capacitor Cc are connected in series between the signal input terminal S and the ground potential section.
  • a voltage control terminal V3 is connected between the transmission line Tt and the high frequency grounding capacitor Cc.
  • the DC voltage applied to the voltage control terminal V3 is applied to the variable transmission line Tt and the variable capacitor Ct.
  • the variable transmission line Tt can be viewed as a gZ4 tip short-circuited transmission line, so the impedance is sufficiently high, and the high frequency signal is sent from the signal input terminal S to the voltage control terminal V3 side. There is no leakage. Therefore, a voltage supply circuit such as a choke coil including an RF blocking inductor component for supplying the control voltage V3 is not required, and the variable resonance circuit can be reduced in size and can be easily handled as a variable resonance circuit.
  • FIG. 4 is an equivalent circuit diagram showing a variable resonance circuit of still another embodiment of the present invention.
  • L4 and L5 include an RF blocking inductor component for supplying a control voltage.
  • Choke coil, V4 and V5 are voltage control terminals for applying control voltage
  • a direct current limiting capacitor element Cd, a variable capacitor Ct, and a gZ4 variable transmission line Tt are connected in series.
  • the voltage control terminal V4 is connected between the variable capacitor Ct and the ⁇ gZ4 variable transmission line Tt via the choke coil L4, and the choke coil L5 is connected between the DC limiting capacitor element Cd and the variable capacitor Ct.
  • the voltage control terminal V5 is connected via In FIG. 4, the gZ4 variable transmission line Tt is an open-ended type.
  • FIG. 10A A specific example of the circuit diagram shown in Figure 4 is shown in Figure 10A.
  • the ⁇ gZ4 variable transmission line Tt is a coplanar line, and a line conductor 10 and a ground conductor 12 arranged so as to sandwich it from both sides are formed on a dielectric layer 11 as a second dielectric. ing. On the dielectric layer 11, conductor portions 13a and 13b are formed on the extension lines of the line conductor 10. A chip capacitor as a variable capacitor is joined between the line conductor 10 and the conductor portion 13b. A chip capacitor as a direct current limiting capacitive element Cd is joined between the conductor portion 13b and the conductor portion 13a. The conductor portion 13a functions as the signal input terminal S.
  • the DC limiting capacitive element Cd, the variable capacitor Ct, and the gZ4 variable transmission line Tt are connected in series.
  • a choke coil L5 is joined between the conductor portion 13b and the ground conductor 12.
  • the ground conductor 12 has a function as the voltage control terminal V5.
  • a conductor portion 13 c is formed on the dielectric layer 11 so as to be spaced apart from the line conductor 10 and the ground conductor 12.
  • the conductor 13c and the line conductor 10 are connected by a choke coil L4.
  • the conductor 13c functions as the voltage control terminal V4.
  • FIG. 10B is a plan view showing a modification of FIG. 10A
  • FIG. 10C is a cross-sectional view taken along line AA of FIG. 10B.
  • FIG. 10A differs from FIG. 10B and FIG. 10C in that a thin film formation method is formed on the dielectric layer 11 in place of the chip capacitor used as the variable capacitor Ct and the direct current limiting capacitor Cd. Specifically, a conductor portion 13d is formed on an extension line of the line conductor 10, and a thin film dielectric layer 14 is formed to cover both the line conductor 10 and one end side of the conductor portion 13d. Then, an electrode layer 15 is formed on the thin film dielectric layer 14.
  • the variable capacitor Ct is formed by a configuration in which the thin film dielectric layer 14 is sandwiched between the line conductor 10 and the electrode layer 15.
  • a direct current limiting capacitive element Cd is formed by a configuration in which the thin film dielectric layer 14 is sandwiched between the electrode layer 15 and the conductor portion 13d.
  • the other end side of the conductor portion 13d is a signal input terminal S
  • a DC limiting capacitor element Cd, a variable capacitor Ct, and a gZ4 variable transmission line Tt are connected in series.
  • the choke coil L5 is connected between the electrode layer 15 and the ground conductor 12, and the choke coil L4 is connected between the line conductor 10 and the conductor portion 13c.
  • the control voltage When the control voltage is supplied from the voltage control terminal V4, the control voltage is applied from the voltage control terminal V4 via the choke coil L4 between the line conductor of the ⁇ gZ4 variable transmission line Tt and the ground conductor. At the same time, the control voltage is applied from the voltage control terminals V4 and V5 to the variable capacitor Ct via the choke coils L4 and L5. The voltage difference between the potentials of the voltage control terminals V4 and V5 is applied to the variable capacitor Ct. In FIG. 4, since the control voltage terminal V5 is grounded, a control voltage equal to the value of the voltage supplied to the control voltage terminal V4 is applied to the variable capacitor Ct.
  • FIG. 5 is an equivalent circuit diagram showing the filter device of one embodiment of the present invention.
  • FIG. 5 is an equivalent circuit diagram showing a filter device according to another embodiment of the present invention.
  • the signal input terminal S of the variable resonance circuit shown in FIG. 4 is connected to the input / output line connecting the input terminal In and the output terminal Out.
  • the ground electrode of the ⁇ gZ4 variable transmission line Tt is connected to the ground potential. Therefore, in the filter device shown in FIG. 6, a variable resonance circuit is connected between the input / output line and the ground terminal. In this way, when the variable capacitor Ct and gZ4 variable transmission line Tt are connected in series and used as a shunt for the signal, the impedance can be reduced at the resonance frequency. This can be a band rejection filter that can attenuate only the signal.
  • FIGS. 5 and 6 an example in which a variable resonance circuit is connected between the input / output line and the ground terminal has been described.
  • a bandpass filter is formed on the input / output line to form a band-pass filter. May be.
  • a variable resonance circuit shown in FIG. 6 may be provided on the input / output line.
  • the line conductor of the gZ4 variable transmission line Tt may be connected to the input / output line as a signal output terminal.
  • FIG. 7 is a block diagram showing a communication apparatus according to an embodiment of the present invention.
  • a transmitting circuit Tx and a receiving circuit Rx are connected to an antenna 140 via a duplexer 150.
  • the high-frequency signal to be transmitted is removed from the unnecessary signal by the filter 210, amplified by the power amplifier 220, and then radiated from the antenna 140 through the isolator 230 and the duplexer 150.
  • the high-frequency signal received by the antenna 140 passes through the duplexer 150, is amplified by the low-noise amplifier 160, the unnecessary signal is removed by the filter 170, and then re-amplified by the amplifier 180 and converted to a low-frequency signal by the mixer 190. Is done.
  • the filter device of the present invention is used for the! / And shift force of the duplexer 150, the finoleta 170, and the finoleta 210.
  • High! Can be a communication device.
  • the communication device having the transmission circuit Tx and the reception circuit Rx has been described with reference to FIG. 7, the communication device may have one of the transmission circuit Tx and the reception circuit Rx! /.
  • the present invention is not limited to the examples of the above-described embodiments, but is a summary of the present invention. It is possible to cover various changes without departing from the scope.
  • it may be a line conductor of a variable transmission line formed so that a plurality of annular portions 10b 1, 10b2.
  • a gZ2 open-ended transmission line may be used instead of the gZ4 short-circuited transmission line.
  • FIGS. 10A to 10C have described the example in which the second dielectric is used as the substrate, a transmission line, a variable capacitor, or the like may be formed on the substrate by a thin film formation process.
  • the change of the equivalent capacitance value of the inductor works to suppress the change of the capacitance value in the entire variable resonance circuit with respect to the change of the capacitance value of the variable capacitor due to the temperature change.
  • the change in the resonance frequency can be reduced.
  • the change in the equivalent capacitance change rate of the inductor against the change in the capacitance change rate of the variable capacitor due to the temperature change works to suppress the change in the entire variable resonance circuit. It is possible to reduce the change in the resonance frequency change rate.
  • the change in the equivalent capacitance value of the transmission line works to suppress the change in the capacitance value in the entire variable resonance circuit with respect to the change in the capacitance value of the variable capacitor due to the temperature change. It is possible to reduce the change in the resonance frequency due to.
  • the change in the equivalent capacitance change rate of the transmission line suppresses the change in the entire variable resonance circuit with respect to the change in the capacitance change rate of the variable capacitor due to the temperature change.
  • the change in the resonant frequency change rate of the circuit can be reduced. According to the present invention, since the change in the capacitance value of the variable capacitor due to the temperature change works so as to cancel the change in the equivalent capacitance value of the transmission line, the change in the resonance frequency of the variable resonance circuit due to the temperature change is further reduced. be able to.
  • the change in the equivalent capacitance change rate of the transmission line cancels the change in the entire variable resonance circuit with respect to the change in the capacitance change rate of the variable capacitor due to the temperature change.
  • the change in the resonant frequency change rate of the circuit can be further reduced.
  • the impedance of the transmission line can be adjusted by cutting a part (branch part) of the transmission line and changing the line length of the line conductor, so that the resonance frequency of the variable resonance circuit can be adjusted. Can do.
  • a desired resonance frequency can be obtained in the state (ov) without applying a control voltage to the variable capacitor and the transmission line. Therefore, the control voltage required to obtain a desired resonance frequency can be reduced, and the power consumption of the variable resonance circuit can be reduced.
  • the present invention can be regarded as a short-circuited short-circuited line having an odd multiple of the length of gZ4 in terms of high frequency, and the impedance in the high frequency band with sufficient signal input terminal strength is sufficiently high, so that a control voltage is supplied.
  • a voltage supply circuit such as a choke coil that includes an RF blocking inductor component to reduce the size of the variable resonance circuit and facilitates handling as a variable resonance circuit.
  • the DC limiting capacitor element can separate the variable capacitor and the terminal for applying the control voltage to the transmission line, and can limit the DC component to the signal input terminal.
  • the impedance increases at the resonance frequency by connecting the variable capacitor and the inductor in parallel, when the signal is used as a shunt, only a signal in the vicinity of the resonance frequency can be passed. .
  • the impedance when a variable capacitor and an inductor are connected in series, the impedance is reduced at the resonance frequency. Only the signal near the resonance frequency can be attenuated.
  • the first dielectric and the second dielectric have a high capacitance change rate with a small dielectric loss. Therefore, a variable resonance circuit that can be adapted to a wide frequency range can be obtained.
  • the temperature coefficient can be adjusted by adjusting the composition, the first dielectric and the second dielectric can be formed using the same material system.
  • the change in the resonance frequency due to the temperature change can be reduced by the temperature characteristic adjusting method for the variable resonance circuit of the present invention.
  • the equivalent capacitance value of the transmission line can be adjusted after forming the variable resonance circuit, the change in the resonance frequency due to the temperature change can be easily reduced.
  • the voltage supply circuit can be simplified, it is possible to provide a variable resonance circuit that is small and easy to handle.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Filters And Equalizers (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Non-Reversible Transmitting Devices (AREA)

Abstract

A variable resonance circuit having excellent resonance frequency and temperature characteristics of resonance frequency variation rate. The variable resonance circuit comprises a variable capacitance capacitor employing a thin film dielectric layer having a dielectric constant varying with a control voltage and a temperature coefficient X equal to variation in dielectric constant for temperature, and a transmission line obtained by forming a ground conductor and a line conductor on a dielectric layer having a dielectric constant varying with a control voltage and such a temperature coefficient Y that variation in dielectric constant for temperature has a polarity reverse to that of the temperature coefficient X. Since variation in equivalent capacitance of the transmission line serves to suppress variation in capacitance of the variable capacitance capacitor for temperature variation, variation in resonance frequency of the resonance circuit due to temperature variation can be suppressed, resulting in a variable resonance circuit excellent in temperature characteristics of resonance frequency.

Description

明 細 書  Specification
可変共振回路、フィルタ装置、通信装置および可変共振回路の温度特性 調整方法  Variable resonance circuit, filter device, communication device, and temperature characteristic adjustment method for variable resonance circuit
技術分野  Technical field
[0001] 本発明は、携帯電話等の通信機器およびフィルタまたは発振器等の高周波部品に 使用される共振回路として、印加電圧によって比誘電率が変化する誘電体層を有し 、容量が変化することにより共振周波数を可変とすることができる可変容量コンデン サを用いた可変共振回路に関し、特に、共振周波数および共振周波数可変率の温 度変化による特性変化を抑制した、即ち温度特性の優れた可変共振回路に関する。 さらに本発明は、該可変共振回路を用いたフィルタ装置、通信装置、および可変共 振回路の温度特性調整方法に関する。  The present invention has a dielectric layer whose relative dielectric constant changes depending on an applied voltage as a resonance circuit used for communication equipment such as a mobile phone and high-frequency components such as a filter or an oscillator, and the capacitance changes. In particular, a variable resonance circuit using a variable capacitor whose resonance frequency can be varied by the variable resonance capacitor, in particular, a variable resonance in which a change in characteristics due to a temperature change of the resonance frequency and the resonance frequency variable rate is suppressed, that is, an excellent temperature characteristic. Regarding the circuit. Furthermore, the present invention relates to a filter device, a communication device, and a temperature characteristic adjustment method for the variable resonance circuit using the variable resonance circuit.
背景技術  Background art
[0002] 従来から、インダクタまたは伝送線路等のインダクタ成分を含むインピーダンス素子 と可変容量コンデンサとを組み合わせた可変共振回路が知られており、このような可 変共振回路は電圧制御発振器や電圧制御可変フィルタまたは不要な高調波成分お よびノイズ成分を除去するためのノッチ回路等の共振回路として用いられている。 例えば、特開 2003— 110321号公報〖こは、チタン酸ストロンチウムやチタン酸スト ロンチウムバリウム等のベロブスカイト構造の強誘電体酸ィ匕物薄膜を誘電体層に用 V、て、これを挟持する上部電極層と下部電極層との間に所定の制御電圧を印加する こと〖こよって、誘電体層の比誘電率を変化させて容量を変化させることで共振周波数 を変化させることのできる可変容量コンデンサを用いた可変共振回路が提案されて いる。  [0002] Conventionally, a variable resonance circuit in which an impedance element including an inductor component such as an inductor or a transmission line and a variable capacitor are combined is known. Such a variable resonance circuit is a voltage-controlled oscillator or a voltage-controlled variable circuit. It is used as a filter or a resonance circuit such as a notch circuit for removing unnecessary harmonic components and noise components. For example, Japanese Laid-Open Patent Publication No. 2003-110321 discloses that a ferroelectric oxide thin film having a velovskite structure such as strontium titanate or strontium barium titanate is used as a dielectric layer and sandwiched between them. By applying a predetermined control voltage between the upper electrode layer and the lower electrode layer, the resonance frequency can be changed by changing the relative dielectric constant of the dielectric layer and changing the capacitance. A variable resonance circuit using a capacitive capacitor has been proposed.
し力しながら、特開 2003— 110321号公報に提案された可変容量コンデンサの比 誘電率は温度変化によっても変化してしまう。また、可変容量コンデンサの容量可変 率は、一般に比誘電率が大きい方が大きくなることが知られている。このことから、比 誘電率の温度依存性によって容量値および容量可変率に温度特性が生じる。この ため、このような可変容量コンデンサを用いた可変共振回路の共振周波数および共 振周波数の変化率は周囲の温度に応じて異なるものとなり、所望の共振特性を安定 して得ることができないという問題点があった。例えば、この可変共振回路をフィルタ に利用した場合には、周波数選択性、通過特性および減衰特性等が周囲の温度に 応じて変化するという問題点がある。 However, the relative dielectric constant of the variable capacitor proposed in Japanese Unexamined Patent Application Publication No. 2003-110321 also changes with temperature. Further, it is known that the variable capacitance of a variable capacitor generally increases as the relative dielectric constant increases. For this reason, temperature characteristics occur in the capacitance value and the capacitance variable rate due to the temperature dependence of the dielectric constant. For this reason, the resonance frequency and the common frequency of a variable resonance circuit using such a variable capacitor are used. The rate of change of the vibration frequency differs depending on the ambient temperature, and there is a problem that a desired resonance characteristic cannot be obtained stably. For example, when this variable resonance circuit is used for a filter, there is a problem that frequency selectivity, pass characteristics, attenuation characteristics, and the like change according to the ambient temperature.
発明の開示 Disclosure of the invention
本発明は以上のような従来の技術における問題点に鑑みて案出されたものであり、 その目的は、周囲の温度変化による共振周波数および共振周波数変化率等の共振 特性の変化を抑制できるという、温度特性の優れた可変共振回路を提供するとともに 、該可変共振回路を用いたフィルタ装置、通信装置および可変共振回路の温度特 性調整方法を提供することである。  The present invention has been devised in view of the problems in the prior art as described above, and its purpose is to suppress changes in resonance characteristics such as resonance frequency and resonance frequency change rate due to changes in ambient temperature. An object of the present invention is to provide a variable resonance circuit having excellent temperature characteristics, and to provide a filter device, a communication device, and a temperature characteristic adjusting method for the variable resonance circuit using the variable resonance circuit.
本発明は、温度に対する比誘電率の変化が温度係数 Xである第 1の誘電体を用い た可変容量コンデンサと、制御電圧の印加によって比誘電率が変化し、温度に対す る比誘電率の変化が前記温度係数 Xと極性が逆である温度係数 Yである第 2の誘電 体を有するインダクタとを含むことを特徴とする可変共振回路である。  The present invention provides a variable capacitor using a first dielectric whose relative dielectric constant is a temperature coefficient X, and the relative dielectric constant is changed by application of a control voltage. A variable resonance circuit comprising: an inductor having a second dielectric whose change is a temperature coefficient Y having a polarity opposite to that of the temperature coefficient X.
また、本発明において、前記第 1の誘電体は、制御電圧の印加によって比誘電率 が変化するものであり、前記インダクタは、前記第 2の誘電体に接地導体および線路 導体を形成してなる伝送線路であることを特徴とする。すなわち、制御電圧の印加に よって比誘電率が変化し、温度に対する比誘電率の変化が温度係数 Xである第 1の 誘電体を用 、た可変容量コンデンサと、制御電圧の印加によって比誘電率が変化し 、温度に対する比誘電率の変化が前記温度係数 Xと極性が逆である温度係数 Yであ る第 2の誘電体に接地導体および線路導体を形成してなる伝送線路とを含むことを 特徴とする可変共振回路である。  In the present invention, the first dielectric has a relative permittivity that changes when a control voltage is applied, and the inductor includes a ground conductor and a line conductor formed on the second dielectric. It is a transmission line. That is, the relative permittivity changes with the application of the control voltage, and the change in the relative permittivity with respect to the temperature uses the first dielectric whose temperature coefficient is X, and the relative permittivity with the application of the control voltage. And a transmission line formed by forming a ground conductor and a line conductor on a second dielectric whose change in relative permittivity with respect to temperature is a temperature coefficient Y whose polarity is opposite to that of the temperature coefficient X. Is a variable resonance circuit characterized by
また、本発明において、前記可変容量コンデンサの容量値と前記温度係数 Xの絶 対値 (以下、 I X Iとする)との積と、前記伝送線路の等価容量値と前記温度係数 Y の絶対値 (以下、 I Y Iとする)との積とが実質的に等しいことを特徴とする。  In the present invention, the product of the capacitance value of the variable capacitor and the absolute value of the temperature coefficient X (hereinafter referred to as IXI), the equivalent capacitance value of the transmission line, and the absolute value of the temperature coefficient Y ( In the following, the product of IYI is substantially equal.
また、本発明において、前記伝送線路の前記線路導体は、少なくとも一部が前記 第 2の誘電体の表層に形成され、かつ複数の切断可能な分岐部を有して 、ることを 特徴とする。 また、本発明にお 、て、前記伝送線路は、 λ g/4 ( λ g:前記伝送線路を伝搬する 高周波信号の実効波長)の奇数倍の長さを有しており一端が高周波接地用容量を 介して接地され、他端が前記可変容量コンデンサとともに信号入力端子に接続され 、前記一端と前記高周波接地用容量との間に制御電圧が印加されることを特徴とす る。 In the present invention, the line conductor of the transmission line is characterized in that at least a part thereof is formed on a surface layer of the second dielectric and has a plurality of cutable branch portions. . In the present invention, the transmission line has a length that is an odd multiple of λg / 4 (λg: effective wavelength of a high-frequency signal propagating through the transmission line), and one end thereof is used for high-frequency grounding. The other end is connected to the signal input terminal together with the variable capacitor, and a control voltage is applied between the one end and the high-frequency grounding capacitor.
また、本発明において、前記可変容量コンデンサおよび前記伝送線路のうちの少 なくともいずれか一方に接続される直流制限容量素子をさらに含むことを特徴とする また、本発明において、前記可変容量コンデンサと前記インダクタとは並列に接続 されることを特徴とする。  The present invention further includes a direct current limiting capacitor connected to at least one of the variable capacitor and the transmission line. In the present invention, the variable capacitor and The inductor is connected in parallel.
また、本発明において、前記可変容量コンデンサと前記インダクタとは直列に接続 されることを特徴とする。  In the present invention, the variable capacitor and the inductor are connected in series.
また、本発明において、前記第 1の誘電体および前記第 2の誘電体は、チタン酸バ リウムストロンチウム力 なることを特徴とする。  In the present invention, the first dielectric and the second dielectric are barium strontium titanate forces.
また、本発明は、入力端子と出力端子とグランド端子とを有し、前記入力端子と前 記出力端子とをつなぐ入出力ライン上、または前記入出力ラインとグランド端子との 間に、上記可変共振回路を設けたことを特徴とするフィルタ装置である。  Further, the present invention includes an input terminal, an output terminal, and a ground terminal, and the above variable on the input / output line connecting the input terminal and the output terminal or between the input / output line and the ground terminal. A filter device is provided with a resonance circuit.
また、本発明の通信装置は、上記フィルタ装置を有する、受信回路および送信回 路の少なくとも一方を備えることを特徴とする通信装置である。  According to another aspect of the present invention, there is provided a communication apparatus including at least one of a reception circuit and a transmission circuit having the filter device.
また、本発明は、制御電圧によって比誘電率が変化し、温度に対する比誘電率の 変化が温度係数 Xである第 1の誘電体を用いた可変容量コンデンサと、制御電圧に よって比誘電率が変化し、温度に対する比誘電率の変化が前記温度係数 Xと極性が 逆である温度係数 Yである第 2の誘電体に接地導体および線路導体を形成してなる 伝送線路とを含む可変共振回路の温度特性調整方法であって、前記可変容量コン デンサの容量値と前記温度係数 Xの絶対値との積と、前記伝送線路の等価容量値と 前記温度係数 Yの絶対値との積が実質的に等しくなるように、前記可変容量コンデン サの容量値、前記温度係数 X、前記伝送線路の等価容量値、前記温度係数 Yのい ずれかを調整することを特徴とする可変共振回路の温度特性調整方法である。 また、本発明において、前記伝送線路の前記線路導体を、少なくとも一部が前記第Further, according to the present invention, the relative dielectric constant varies depending on the control voltage, and the relative dielectric constant varies depending on the control voltage and the variable capacitor using the first dielectric whose change in the relative dielectric constant with respect to temperature is the temperature coefficient X. A variable resonance circuit including a transmission line formed by forming a ground conductor and a line conductor on a second dielectric having a temperature coefficient Y whose polarity is opposite to that of the temperature coefficient X. The product of the capacitance value of the variable capacitor and the absolute value of the temperature coefficient X, and the product of the equivalent capacitance value of the transmission line and the absolute value of the temperature coefficient Y are substantially equal to each other. The variable resonance circuit temperature is adjusted by adjusting one of the capacitance value of the variable capacitor, the temperature coefficient X, the equivalent capacitance value of the transmission line, and the temperature coefficient Y so as to be equal to each other. This is a characteristic adjustment method. In the present invention, at least a part of the line conductor of the transmission line is the first conductor.
2の誘電体の表層に、複数の切断可能な分岐部を有するように形成し、前記分岐部 を切断して前記伝送線路の等価容量値を調整することを特徴とするものである。 図面の簡単な説明 The dielectric layer of 2 is formed so as to have a plurality of cutable branch portions, and the branch portions are cut to adjust the equivalent capacitance value of the transmission line. Brief Description of Drawings
[0004] 本発明の目的、特色、および利点は、下記の詳細な説明と図面とからより明確にな るであろう。  [0004] Objects, features, and advantages of the present invention will become more apparent from the following detailed description and drawings.
図 1は、本発明の一実施形態の可変共振回路の実施の形態を示す等価回路図で ある。  FIG. 1 is an equivalent circuit diagram showing an embodiment of a variable resonance circuit according to an embodiment of the present invention.
図 2は、本発明の複数の切断可能な分岐部を有する可変伝送線路の線路導体の 一例を示す部分拡大平面図である。  FIG. 2 is a partially enlarged plan view showing an example of a line conductor of a variable transmission line having a plurality of cutable branch portions according to the present invention.
図 3は、本発明の他の実施形態の可変共振回路を示す等価回路図である。  FIG. 3 is an equivalent circuit diagram showing a variable resonance circuit according to another embodiment of the present invention.
図 4は、本発明のさらに他の実施形態の可変共振回路を示す等価回路図である。 図 5は、本発明の一実施形態のフィルタ装置を示す等価回路図である。 図 6は、本発明の他の実施形態のフィルタ装置を示す等価回路図である。 図 7は、本発明の一実施形態の通信装置を示すブロック図である。  FIG. 4 is an equivalent circuit diagram showing a variable resonance circuit of still another embodiment of the present invention. FIG. 5 is an equivalent circuit diagram showing the filter device of one embodiment of the present invention. FIG. 6 is an equivalent circuit diagram showing a filter device according to another embodiment of the present invention. FIG. 7 is a block diagram showing a communication apparatus according to an embodiment of the present invention.
図 8は、本発明の複数の切断可能な分岐部を有する可変伝送線路の線路導体の 他の例を示す部分拡大平面図である。  FIG. 8 is a partially enlarged plan view showing another example of the line conductor of the variable transmission line having a plurality of cutable branch portions according to the present invention.
図 9A〜図 9Cは、それぞれ本発明の伝送線路の例を示す断面図である。 図 10A〜図 10Cは、それぞれ図 4に示す可変共振回路の平面図および断面図で ある。  9A to 9C are sectional views showing examples of the transmission line of the present invention. 10A to 10C are a plan view and a cross-sectional view of the variable resonance circuit shown in FIG. 4, respectively.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0005] 以下、本発明の可変共振回路について図面を参照しつつ詳細に説明する。 Hereinafter, the variable resonance circuit of the present invention will be described in detail with reference to the drawings.
図 1は、本発明の一実施形態の可変共振回路を示す等価回路図である。 ここで、図 1において、可変容量コンデンサとして、第 1の誘電体としての薄膜誘電 体層を有するものを用い、インダクタとして、第 2の誘電体としての誘電体層に接地導 体および線路導体を形成してなる伝送線路を用いたものを例に説明する。  FIG. 1 is an equivalent circuit diagram showing a variable resonance circuit according to an embodiment of the present invention. Here, in FIG. 1, a variable capacitor having a thin film dielectric layer as a first dielectric is used, and a ground conductor and a line conductor are connected to the dielectric layer as a second dielectric as an inductor. An example using a transmission line that is formed will be described.
図 1に示す等価回路図において、符号 Ctは可変容量コンデンサであり、 Ttは伝送 線路としての λ gZ4可変伝送線路、 Ccは高周波接地用容量を形成する高周波接 地用コンデンサ、 LI, L2は制御電圧を供給するための RF阻止インダクタ成分を含 むチョークコイルであり、 Sは信号入力端子、 VI, V2は制御電圧を印加するための 電圧制御端子、 Cdは電圧制御端子 VI, V2を分離するとともに信号入力端子 Sへの 直流成分を制限するための直流制限容量素子である。ここで、 gは信号入力端子 Sから入力される高周波信号が λ gZ4可変伝送線路 Ttを伝搬する際の実効波長で ある。 In the equivalent circuit diagram shown in FIG. 1, Ct is a variable capacitor, Tt is a λ gZ4 variable transmission line as a transmission line, and Cc is a high-frequency contact that forms a high-frequency grounding capacitor. Ground capacitors, LI and L2 are choke coils containing RF blocking inductor components for supplying control voltage, S is a signal input terminal, VI and V2 are voltage control terminals for applying control voltage, and Cd is This is a DC limiting capacitor that separates the voltage control terminals VI and V2 and limits the DC component to the signal input terminal S. Here, g is an effective wavelength when a high-frequency signal input from the signal input terminal S propagates through the λ gZ4 variable transmission line Tt.
図 1において、信号入力端子 Sと接地電位との間に、直流制限容量素子 Cdと可変 容量コンデンサ Ctとが直列に接続された回路を、直流制限容量素子 Cdと λ gZ4可 変伝送線路 Ttと高周波接地用コンデンサ Ccとが直列に接続された回路に並列に接 続している。さらに、直流制限容量素子 Cdと可変容量コンデンサ Ctとの間にチョーク コイル L1を介して電圧制御端子 VIが接続され、直流制限容量素子 Cdと λ gZ4可 変伝送線路 Ttとの間にチョークコイル L2を介して電圧制御端子 V2が接続されてい る。  In FIG. 1, a circuit in which a DC limiting capacitor element Cd and a variable capacitor Ct are connected in series between the signal input terminal S and the ground potential is connected to the DC limiting capacitor element Cd and the λ gZ4 variable transmission line Tt. A high-frequency grounding capacitor Cc is connected in parallel to the circuit connected in series. Furthermore, the voltage control terminal VI is connected between the DC limiting capacitor element Cd and the variable capacitor Ct via the choke coil L1, and the choke coil L2 is connected between the DC limiting capacitor element Cd and the λ gZ4 variable transmission line Tt. The voltage control terminal V2 is connected via.
直流制限容量素子 Cdは、図 1に示す例では可変容量素子 Ct側の回路およびえ g Z4可変伝送線路 Tt側の回路にそれぞれ 1つずつ設けたが、信号入力端子 Sに可 変容量素子 Ct側の回路および λ gZ4可変伝送線路 Tt側の回路が並列に接続され る部位力 信号入力端子 S側に直流制限容量素子 Cdを 1つ設けた場合には、可変 容量素子 Ct側の回路または λ gZ4可変伝送線路 Tt側の回路のうちの一方に設け れば良い。  In the example shown in FIG. 1, one DC limiting capacitor element Cd is provided in each of the variable capacitor element Ct side circuit and the gZ4 variable transmission line Tt side circuit, but the variable input element Ct is connected to the signal input terminal S. Side circuit and λ gZ4 variable transmission line Tt side circuit connected in parallel Signal input terminal When one DC limiting capacitive element Cd is provided on the S side, the variable capacitive element Ct side circuit or λ It may be provided in one of the circuits on the gZ4 variable transmission line Tt side.
電圧制御端子 VIから制御電圧が供給されると、制御電圧は、電圧制御端子 VIか ら RF阻止チョークコイル L1を介して、可変容量コンデンサ Ctに印加される。  When a control voltage is supplied from the voltage control terminal VI, the control voltage is applied from the voltage control terminal VI to the variable capacitor Ct via the RF blocking choke coil L1.
また、電圧制御端子 V2から制御電圧が供給されると、電流は、電圧制御端子 V2 から RF阻止チョークコイル L2を介して、 λ gZ4可変伝送線路 Ttの線路導体を通り、 高周波接地用コンデンサ Ccを通りグランド (接地電位)に流れるため、 gZ4可変伝 送線路 Ttの線路導体と接地導体との間に制御電圧が印加される。  When a control voltage is supplied from the voltage control terminal V2, the current passes through the line conductor of the λ gZ4 variable transmission line Tt from the voltage control terminal V2 via the RF blocking choke coil L2, and passes through the high-frequency grounding capacitor Cc. Since it flows to the ground (ground potential), a control voltage is applied between the line conductor of the gZ4 variable transmission line Tt and the ground conductor.
また、直流制限容量素子 Cdは、直流成分が信号入力端子 S側に漏れることを阻止 するとともに、制御電圧 VI, V2間に電位差を持たせることができるため、制御電圧 V 1, V2を分離することができる。このため、制御電圧 VI, V2は、各々独立して制御す ることが可能となる。 In addition, the direct current limiting capacitive element Cd prevents the direct current component from leaking to the signal input terminal S side and can provide a potential difference between the control voltages VI and V2, so that the control voltages V1 and V2 are separated. be able to. Therefore, control voltages VI and V2 are controlled independently. It is possible to
RF阻止チョークコイル LI, L2は、信号入力端子 Sから高周波信号が直接制御電 圧端子 VI, V2に流れないよう遮断するためのものである。  The RF blocking choke coils LI and L2 are for blocking high frequency signals from the signal input terminal S from flowing directly to the control voltage terminals VI and V2.
可変容量コンデンサ Ctは、制御電圧によって比誘電率が変化し、温度に対する比 誘電率の変化が温度係数 Xである薄膜誘電体層を挟持する上部電極層および下部 電極層からなる。このような構成の可変容量コンデンサ Ctを用いることによって、薄膜 誘電体層は印加される制御電圧に応じた所定の誘電率となるため、可変容量コンデ ンサ Ctの容量値を所望の値に制御することができる。薄膜誘電体層には電圧の印加 によってその比誘電率が変化する高誘電体層であれば何を用いても良い。また、上 部電極層および下部電極層には導電性を有する層であれば何を用いても良 ヽ。例 えば、可変容量コンデンサ Ctを形成する支持基板にサファイアの R基板を用い、この 基板上に下部電極層に Pt,薄膜誘電体層に (Ba Sr )Ti O (0≤x≤l, 0<y≤l The variable capacitor Ct is composed of an upper electrode layer and a lower electrode layer sandwiching a thin film dielectric layer whose relative dielectric constant varies with the control voltage and whose variation relative to temperature is a temperature coefficient X. By using the variable capacitor Ct having such a configuration, the thin film dielectric layer has a predetermined dielectric constant corresponding to the applied control voltage, and therefore the capacitance value of the variable capacitor Ct is controlled to a desired value. be able to. Any thin dielectric layer may be used as long as it is a high dielectric layer whose dielectric constant changes with application of voltage. Any material can be used for the upper electrode layer and the lower electrode layer as long as they have conductivity. For example, a sapphire R substrate is used as the support substrate for forming the variable capacitor Ct, and Pt is used as the lower electrode layer on this substrate, and (Ba Sr) Ti O (0≤x≤l, 0 < y≤l
) ,上部電極層に PtZAu (下層 Z上層を示す。以下、同様である。)を用いた構成の 可変容量コンデンサ Ctを形成すれば、 Q値が高く高周波回路に適した素子とするこ とができる。なお、薄膜誘電体層の比誘電率の温度係数 Xは、薄膜誘電体層の組成 比,膜厚,成膜温度等を変えることにより変えることができる。また、各電極層を GAP 構成にすることで下部電極層が不要となるので、作製,集積化等が容易な素子にす ることがでさる。) If a variable capacitor Ct with a structure using PtZAu (lower layer Z upper layer is shown below) is formed in the upper electrode layer, an element having a high Q value and suitable for a high-frequency circuit can be obtained. it can. The temperature coefficient X of the relative dielectric constant of the thin film dielectric layer can be changed by changing the composition ratio, film thickness, film forming temperature, etc. of the thin film dielectric layer. In addition, since each electrode layer has a GAP configuration, the lower electrode layer is not required, so that the device can be easily fabricated, integrated, and the like.
gZ4可変伝送線路 Ttは、図 9A〜図 9Cに示すように、誘電体層 11に接地導体 12および線路導体 10を形成して構成されるマイクロストリップ線路(図 9A)、コプレナ 一線路(図 9B)、ストリップ線路(図 9C)等である。図 9Aにおいて、誘電体層 11の一 方主面に線路導体 10が形成されており、誘電体層 11の他方主面の全面に接地導 体 12が形成されている。図 9Bにおいて、誘電体層 11の一方主面に線路導体 10が 形成され、該一方主面に、線路導体 10を挟むように間隔をあけて配置された 2つの 接地導体 12が形成されている。図 9Cにおいて、誘電体層 11の両主面全面に接地 導体 12が形成され、誘電体層 11の内部に線路導体 10が形成されている。このよう に、線路導体 10と接地導体 12との間に生じる電界の間に誘電体層 11が存在する構 成としたことで、 gZ4可変伝送線路 Ttを形成することができる。このような構成の λ gZ4可変伝送線路 Ttを用いることによって、誘電体層は印加される制御電圧に 応じた所定の誘電率となるため、 λ gZ4可変伝送線路 Ttの等価容量値を所望の値 に制御することができる。接地導体および線路導体には導電性を有する材料を用い 、誘電体層には、温度に対する比誘電率の変化が温度係数 Xと極性が逆である温度 係数 Yであり、制御電圧の印加によってその比誘電率が変化する材料を用いた構成 とする。例えば、接地導体に Pt,誘電体層に(Ba Sr )Ti O (0≤x≤l, 0<y≤l l -x y 3 As shown in FIGS. 9A to 9C, the gZ4 variable transmission line Tt includes a microstrip line (FIG. 9A) and a coplanar line (FIG. 9B) configured by forming a ground conductor 12 and a line conductor 10 on a dielectric layer 11. ) And stripline (Fig. 9C). 9A, a line conductor 10 is formed on one main surface of the dielectric layer 11, and a ground conductor 12 is formed on the entire other main surface of the dielectric layer 11. In FIG. In FIG. 9B, a line conductor 10 is formed on one main surface of the dielectric layer 11, and two ground conductors 12 are formed on the one main surface so as to be spaced from each other with the line conductor 10 interposed therebetween. . In FIG. 9C, a ground conductor 12 is formed on the entire main surfaces of the dielectric layer 11, and a line conductor 10 is formed inside the dielectric layer 11. As described above, the configuration in which the dielectric layer 11 exists between the electric field generated between the line conductor 10 and the ground conductor 12 makes it possible to form the gZ4 variable transmission line Tt. Of this configuration By using the λ gZ4 variable transmission line Tt, the dielectric layer has a predetermined dielectric constant corresponding to the applied control voltage, so that the equivalent capacitance value of the λ gZ4 variable transmission line Tt can be controlled to a desired value. it can. The ground conductor and the line conductor are made of a conductive material, and the dielectric layer has a temperature coefficient X in which the change in relative dielectric constant with respect to temperature is opposite to that of the temperature coefficient X. A configuration using a material whose relative permittivity changes is used. For example, Pt for the ground conductor and (Ba Sr) Ti O (0≤x≤l, 0 <y≤ll -xy 3 for the dielectric layer
)を用い、線路導体に PtZAuを用いた構成とすればよぐ誘電体層の比誘電率の温 度係数 Yは誘電体層の組成比、成膜温度等を変えることにより調整することができる The temperature coefficient Y of the relative permittivity of the dielectric layer can be adjusted by changing the composition ratio of the dielectric layer, the film formation temperature, etc.
。また、誘電体層を異なった組成または材料を用いた複数の層で構成しても構わな い。 . Further, the dielectric layer may be composed of a plurality of layers using different compositions or materials.
具体的には、組成比を Baリッチ、例えば (Ba Sr )Ti Oとすれば温度係数  Specifically, if the composition ratio is Ba-rich, for example (Ba Sr) Ti 2 O, the temperature coefficient
0. 85 0. 15 0. 85 3  0. 85 0. 15 0. 85 3
は正となり、組成比を Srリッチ、例えば (Ba Sr )Ti Oとすれば温度係数は負 Becomes positive, and if the composition ratio is Sr rich, for example (Ba Sr) Ti 2 O, the temperature coefficient is negative.
0. 2 0. 8 0. 85 3  0. 2 0. 8 0. 85 3
となる。 It becomes.
また、可変容量コンデンサ Ctの薄膜誘電体層及び λ gZ4可変伝送線路 Ttの誘電 体層に応力等により歪みを加えることで温度係数を制御することが出来る。つまり、キ ユリ一点を使用温度範囲未満にすると温度係数は負に、キュリー点を使用温度範囲 を超えるようにすると温度係数は正となる。  In addition, the temperature coefficient can be controlled by applying strain to the thin film dielectric layer of the variable capacitor Ct and the dielectric layer of the λgZ4 variable transmission line Tt due to stress or the like. In other words, the temperature coefficient becomes negative when one of the cues is below the operating temperature range, and the temperature coefficient becomes positive when the Curie point exceeds the operating temperature range.
また、誘電体層および薄膜誘電体層は、上述のチタン酸バリウムストロンチウムに加 え、 Bi— Zr— Nb系酸化物(BZN)、 Sr— Bi— Ta系酸化物(SBT)、 Pb— La— Ti系 酸ィ匕物(PLT)を用いることができる。  In addition to the above-mentioned barium strontium titanate, the dielectric layer and thin-film dielectric layer include Bi—Zr—Nb oxide (BZN), Sr—Bi—Ta oxide (SBT), Pb—La—. Ti-based oxide (PLT) can be used.
図 1の等価回路図において、高周波領域では可変伝送線路 Ttはえ gZ4先端短絡 型の伝送線路と見ることができ、共振周波数付近では LC並列共振回路と等価となる 。ここで可変伝送線路 Ttの等価インダクタを L,等価容量を Cとする。  In the equivalent circuit diagram of Fig. 1, it can be seen that the variable transmission line Tt is a gZ4 short-circuited transmission line in the high-frequency region, and is equivalent to an LC parallel resonant circuit near the resonance frequency. Here, the equivalent inductor of the variable transmission line Tt is L, and the equivalent capacitance is C.
温度 Tでの可変伝送線路 Ttの等価容量 Cの初期値を C1,可変容量コンデンサ Ct の容量値の初期値を Ctlとすると、共振周波数 flは、 ί1 = 1/ (2 π (L- (Cl + Ctl) ) 1/2)となる。また、電圧制御端子 VIから制御電圧(印加電圧) Vaを印加したときの 可変容量コンデンサ Ctの容量値を Ct2、電圧制御端子 V2から制御電圧 Vbを印加 したときの可変伝送線路 Ttの等価容量 Cの容量値を C2とすると、共振周波数 f2は、 ί2=1/(2π (L' (C2 + Ct2))1/2)となる。つまり、印加電圧によって可変容量コン デンサ Ctの容量値および可変伝送線路 Ttの等価容量 Cの容量値を調整することで 、可変共振回路の共振周波数を任意の値に変化させることが出来る。 When the initial value of the equivalent capacitance C of the variable transmission line Tt at temperature T is C1 and the initial value of the capacitance value of the variable capacitor Ct is Ctl, the resonance frequency fl is ί1 = 1 / (2 π (L- (Cl + Ctl)) 1/2 ). In addition, the capacitance value of the variable capacitor Ct when the control voltage (applied voltage) Va is applied from the voltage control terminal VI is Ct2, and the equivalent capacitance C of the variable transmission line Tt when the control voltage Vb is applied from the voltage control terminal V2. If the capacitance value of C2 is C2, the resonance frequency f2 is ί2 = 1 / (2π (L '(C2 + Ct2)) 1/2 ). In other words, the resonance frequency of the variable resonance circuit can be changed to an arbitrary value by adjusting the capacitance value of the variable capacitor Ct and the capacitance value of the equivalent capacitance C of the variable transmission line Tt according to the applied voltage.
このような可変容量コンデンサ Ctおよび可変伝送線路 Ttの容量および等価容量は 周囲の温度によっても変化する。  The capacitance and equivalent capacitance of such a variable capacitor Ct and variable transmission line Tt vary depending on the ambient temperature.
ここで、可変容量コンデンサ Ctの比誘電率の温度係数を Xとし、 =( e vc - e ve )/((Τ'— Τ) · ε rc) ( ε rc:温度 Τによる薄膜誘電体層の比誘電率, ε rc':温度 T' による薄膜誘電体層の比誘電率)とすると、容量値は比誘電率に比例するため、可 変容量コンデンサ Ctの温度 Τによる容量値 Ctlは、温度 T'では容量値 Ctl' =Ctl + Ctl-X- (T'-T)となる。  Where X is the temperature coefficient of the relative permittivity of the variable capacitor Ct, and = (e vc-e ve) / ((Τ'— Τ) · ε rc) (ε rc: temperature Τ of the thin film dielectric layer Relative dielectric constant, ε rc ': relative dielectric constant of the thin film dielectric layer at temperature T'), the capacitance value is proportional to the relative dielectric constant, so the capacitance value Ctl due to the temperature の of the variable capacitor Ct is the temperature At T ′, the capacitance value Ctl ′ = Ctl + Ctl−X− (T′−T).
同様に、可変伝送線路 Ttの比誘電率の温度係数を Yとし、 Υ= ( ε rt' - ε rt)/( (Τ'— Τ) · ε rt) ( ε rt:温度 Τによる誘電体層の比誘電率, ε rt':温度 T,による誘 電体層の比誘電率)とすると、温度 Τによる容量値 C1は、温度 Τ,では容量値 C1' = C1 + C1-Y- (Τ,一 Τ)となる。  Similarly, let Y be the temperature coefficient of the relative permittivity of the variable transmission line Tt, and Υ = (ε rt '-ε rt) / ((Τ'- Τ) · ε rt) (ε rt: Dielectric layer with temperature Τ ∈ rt ': dielectric constant of dielectric layer due to temperature T), the capacitance value C1 due to temperature 、 is the capacitance value C1' = C1 + C1-Y- (Τ , Ichigo).
このため、温度 Τ,での共振周波数 fl,は、 f 1, = 1Z (2 π (L · (C1, +Ctl,)) 1/2) = 1/(2π (L- (Cl + Cl-Y- (Τ,一 T) +Ctl + Ctl ·Χ· (T,一 T) ) ) 1/2)となる。こ こで、温度係数 X, Υは互いに極性 (符号)が逆であるため、本発明の可変共振回路 によれば、温度変化に対する可変容量コンデンサ Ctの容量値の変化を、可変伝送 線路 Ttの等価容量値の変化が緩和するように働くため、温度変化による可変共振回 路の共振周波数の変化を少なくすることができる。 Therefore, the resonance frequency fl at temperature Τ is f 1 = 1Z (2 π (L · (C1, + Ctl,)) 1/2 ) = 1 / (2π (L- (Cl + Cl- Y- (Τ, one T) + Ctl + Ctl · Χ · (T, one T))) 1/2 ). Here, since the polarities (signs) of the temperature coefficients X and Υ are opposite to each other, according to the variable resonance circuit of the present invention, the change in the capacitance value of the variable capacitor Ct with respect to the temperature change can be detected by the variable transmission line Tt. Since the change of the equivalent capacitance value is mitigated, the change of the resonance frequency of the variable resonance circuit due to the temperature change can be reduced.
また、制御電圧を同じ範囲で変化させても、温度が異なると容量変化率も異なる。 容量は比誘電率に比例するが、この比誘電率は温度の関数であるためである。一般 にこの比誘電率が大きくなる程容量変化率も大きくなることが知られている。例えば、 温度 T'によって、可変容量コンデンサ Ctの比誘電率が温度係数 Xにより小さくなる 場合にはゝじの容量変化率 じ /じ ニ I Ctl,一 Ct2, I /Ctl,(Ctl,:温度 T'での初期容量値, Ct2':温度 T,での制御電圧印加時の容量値, Ctl'-Ct2': 容量の変化量)も小さくなるが、可変伝送線路 Ttの比誘電率は極性が逆の温度係数 Yのために大きくなるので、等価容量 Cの容量変化率は大きくなる。したがって、温度 変化に対する可変容量コンデンサの比誘電率の変化によって容量変化率が減少す る場合でも、伝送線路の比誘電率の変化による等価容量変化率が増加するため、温 度変化による共振回路全体での共振周波数変化率の減少を少なくすることができる また、可変容量コンデンサ ctの容量値と温度係数 Xの絶対値 I X Iとの積と、伝送 線路 Ttの等価容量値と温度係数 γの絶対値 I γ Iとの積とを実質的に等しくするこ とで、温度 Τ,での共振周波数 fl ' = 1/ (2 π (L- (C1 + C1 ·Υ· (Τ'— Τ) +Ctl + C tl -X- (Τ,一 Τ) ) ) 1/2)において、 Ctl 'X+Cl 'Y=0となるため、 ί1 ' = 1/ (2 π (L • (c i + cti) ) 1/2)となり、温度 Tでの共振周波数 flと等しくなる。したがって、温度 変化による可変共振回路の共振周波数の変化を更に少なくすることができる。 Further, even if the control voltage is changed in the same range, the capacity change rate is different at different temperatures. This is because the capacitance is proportional to the relative dielectric constant, which is a function of temperature. In general, it is known that the capacity change rate increases as the relative dielectric constant increases. For example, if the relative dielectric constant of the variable capacitor Ct is reduced by the temperature coefficient X due to the temperature T ', the change rate of the capacitance is 1 I Ctl, 1 Ct2, I / Ctl, (Ctl ,: temperature Initial capacitance value at T ', Ct2': Capacitance value when control voltage is applied at temperature T, Ctl'-Ct2 ': Capacitance change amount) is also small, but the relative permittivity of variable transmission line Tt is polar Is increased due to the inverse temperature coefficient Y, the capacity change rate of the equivalent capacity C is increased. Therefore, temperature Even when the capacitance change rate decreases due to the change in the relative permittivity of the variable capacitor with respect to the change, the equivalent capacitance change rate due to the change in the relative permittivity of the transmission line increases. The decrease in frequency change rate can be reduced. Also, the product of the capacitance value of the variable capacitor ct and the absolute value IXI of the temperature coefficient X, the equivalent capacitance value of the transmission line Tt, and the absolute value of the temperature coefficient γ I γ I Is substantially equal to the resonance frequency fl '= 1 / (2 π (L- (C1 + C1 · Υ · (Τ'— Τ) + Ctl + C tl -X- (Τ 、 一 Τ))) 1/2 ) Ctl 'X + Cl' Y = 0, so ί1 '= 1 / (2 π (L • (ci + cti)) 1/2 ), Which is equal to the resonance frequency fl at temperature T. Therefore, the change in the resonance frequency of the variable resonance circuit due to the temperature change can be further reduced.
Ctl 'X+Cl 'Y=0とするためには、可変容量コンデンサ Ctの初期容量値 Ctl, 温度係数 X,可変伝送線路 Ttの初期等価容量値 C1,温度係数 Yの少なくとも 1つを 調整する。  To make Ctl 'X + Cl' Y = 0, adjust at least one of the initial capacitance value Ctl, temperature coefficient X of the variable capacitor Ct, the initial equivalent capacitance value C1 of the variable transmission line Tt, and the temperature coefficient Y. .
ここで、図 1に示す例では、可変容量コンデンサ Ctとえ gZ4可変伝送線路 Ttとを 並列に接続した例について説明した力 直列に接続してもよい。両者を並列に接続 すれば、共振周波数でインピーダンスが大きくなるため、信号に対してシャントとして 用いると、共振周波数の近傍の信号のみ通過させることができる。また、両者を直列 に接続すれば、共振周波数でインピーダンスが小さくなるため、信号に対してシャント として用いると、共振周波数の近傍の信号のみ減衰させることができる。  Here, in the example illustrated in FIG. 1, the force capacitor described in the example in which the variable capacitor Ct and the gZ4 variable transmission line Tt are connected in parallel may be connected in series. If both are connected in parallel, the impedance will increase at the resonance frequency, so that if the signal is used as a shunt, only signals near the resonance frequency can be passed. In addition, if both are connected in series, the impedance is reduced at the resonance frequency. Therefore, if the signal is used as a shunt, only the signal near the resonance frequency can be attenuated.
ここで、可変伝送線路 Ttを構成する線路導体は、少なくとも一部が誘電体層の表 層に形成されているとともに、複数の切断可能な分岐部を有するものであることが好 ましい。  Here, it is preferable that at least a part of the line conductor constituting the variable transmission line Tt is formed on the surface layer of the dielectric layer and has a plurality of severable branch portions.
ここで、可変容量コンデンサとしてはチップコンデンサタイプを用いてもよいし、薄膜 形成法で薄膜誘電体層とそれを挟む 1対の電極を積層して形成してもよい。また、ィ ンダクタとしてはチップコイルを用いてもょ 、。  Here, a chip capacitor type may be used as the variable capacitor, or a thin film dielectric layer and a pair of electrodes sandwiching the thin film dielectric layer may be formed by a thin film forming method. You can also use a tip coil as the inductor.
図 2は、本発明の可変共振回路を構成する、複数の切断可能な分岐部を有する可 変伝送線路の線路導体の一例を示す部分拡大平面図である。図 2において、線路 導体 10は、幹部 10aと幹部 10aから張り出す環状部 10bとからなり、環状部 10bを区 切り細分ィ匕するように架橋部 B, Cを有する。ここで、幹部 10aと環状部 10bとが重な る部位の一部 A,架橋部 B, Cを分岐部とする。なお、分岐部 Aは、これを除去すると 環状部 10bを開口させることができるものである。図 2では、分岐部 A〜Cを分かり易 くするために、他の線路導体 10とは異なるハッチングを付している。 FIG. 2 is a partially enlarged plan view showing an example of a line conductor of a variable transmission line that has a plurality of severable branch portions that constitute the variable resonance circuit of the present invention. In FIG. 2, the line conductor 10 includes a trunk portion 10a and an annular portion 10b protruding from the trunk portion 10a. It has bridging parts B and C so that it can be cut into pieces. Here, a part A of the portion where the trunk portion 10a and the annular portion 10b overlap, and the bridging portions B and C are defined as branch portions. In addition, the branch part A can open the annular part 10b if it is removed. In FIG. 2, the hatching different from the other line conductors 10 is given for easy understanding of the branch portions A to C.
線路導体 10において、初期状態では幹部 10aに流れる高周波信号は最短距離で ある A部を通ることになる。ここで、線路導体 10の A部をレーザー等を用いて除去す ることで、高周波信号は幹部 10aから環状部 10bに入り B部を通り幹部 10aに戻ること になる。したがって A部を通る場合に比べ線路導体 10の線路長が長くなるため、初 期状態の共振周波数より共振周波数を低く調整することが出来る。また、 A部に加え て B部を除去すると高周波信号は幹部 10aから環状部 10bに入り C部を通り幹部 10a に戻ることになるため B部を通る場合に比べ線路長が長くなるため、共振周波数を更 に低く調整することが出来る。さらに、 A部、 B部に加えて C部を除去すると高周波信 号は幹部 10aから環状部 10bを通り幹部 10aに戻るため、線路長は最も長くなり、共 振周波数を更に低く調整することが出来る。つまり、分岐部を切断することで共振周 波数の調整が可能となる。  In the line conductor 10, in the initial state, the high frequency signal flowing through the trunk portion 10a passes through the portion A which is the shortest distance. Here, by removing the A portion of the line conductor 10 using a laser or the like, the high-frequency signal enters the annular portion 10b from the trunk portion 10a and returns to the trunk portion 10a through the B portion. Therefore, since the line length of the line conductor 10 is longer than when passing through part A, the resonance frequency can be adjusted to be lower than the resonance frequency in the initial state. Also, if part B is removed in addition to part A, the high-frequency signal enters the annular part 10b from the trunk part 10a and returns to the trunk part 10a through the part C. The frequency can be adjusted even lower. Furthermore, if C part is removed in addition to A part and B part, the high-frequency signal returns from trunk part 10a to annular part 10b and returns to trunk part 10a, so that the line length becomes the longest and the resonance frequency can be adjusted to be lower. I can do it. In other words, the resonance frequency can be adjusted by cutting the branch portion.
この線路導体 10は、例えば可変共振回路を実装した状態でも外部からレーザ等で 除去しやすくするために、少なくとも一部が誘電体層の表層に形成されて 、ることが 望ましい。  It is desirable that at least a part of the line conductor 10 is formed on the surface layer of the dielectric layer so that the line conductor 10 can be easily removed from the outside by a laser or the like even when the variable resonance circuit is mounted.
このような分岐部 A〜Cを有する線路導体 10を用いることで、広い周波数範囲で共 振周波数を調整することができる。例えば、可変容量コンデンサ Ctおよび可変伝送 線路 Ttに比誘電率が最大となる制御電圧を印加した状態で、所望の共振周波数可 変範囲のうち最大となる値を得るように、初期状態での共振周波数を可変伝送線路 Ttの線路導体 10の長さを調整することで設定すれば、印加電圧による可変容量コン デンサ Ctの容量値および伝送線路 Ttの等価容量値の容量可変率を最大限まで広 げることができる。このような容量可変率を最大限まで広げた可変容量コンデンサ Ct および可変伝送線路 Ttを用いて所望の周波数で共振させることができるので、広 ヽ 周波数範囲で共振周波数を調整することができる。  By using the line conductor 10 having such branch portions A to C, the resonance frequency can be adjusted in a wide frequency range. For example, when a control voltage that maximizes the relative permittivity is applied to the variable capacitor Ct and the variable transmission line Tt, the resonance in the initial state is obtained so as to obtain the maximum value in the desired resonance frequency variable range. If the frequency is set by adjusting the length of the line conductor 10 of the variable transmission line Tt, the capacitance variable rate of the variable capacitance capacitor Ct and the equivalent capacitance value of the transmission line Tt by the applied voltage is maximized. I can make it. Since it is possible to resonate at a desired frequency using the variable capacitor Ct and the variable transmission line Tt having such a variable capacity variable rate as much as possible, the resonance frequency can be adjusted in a wide frequency range.
また、初期状態において上述のように可変伝送線路 Ttの長さを変えることで、可変 容量コンデンサ ctおよび伝送線路 Ttに制御電圧を印加しな 、状態 (OV)で所望の 共振周波数を得ることができるように調整すれば、所望の共振周波数を得るために 必要な制御電圧を少なくすることができ、可変共振回路の消費電力を低くすることが できる。 Also, by changing the length of the variable transmission line Tt as described above in the initial state, If the control voltage is not applied to the capacitance capacitor ct and the transmission line Tt, the control voltage required to obtain the desired resonance frequency is reduced by adjusting the state (OV) so that the desired resonance frequency can be obtained. Therefore, the power consumption of the variable resonance circuit can be reduced.
さらに、可変伝送線路 Ttの長さを変えることで、可変伝送線路 Ttの等価容量値を 調整することができるので、温度変化による共振周波数変化をより少なくすることがで きる。また、可変共振回路を形成後に伝送線路 Ttの等価容量値を調整することがで きるので、容易に温度変化による共振周波数の変化を少なくすることができる。 次に、本発明の他の実施形態の可変共振回路について説明する。図 3は本発明の 他の実施形態の可変共振回路を示す等価回路図である。なお、図 1と同様の個所に は同じ符号を付してあり、それらについては重複する説明は省略する。  Furthermore, since the equivalent capacitance value of the variable transmission line Tt can be adjusted by changing the length of the variable transmission line Tt, the resonance frequency change due to the temperature change can be further reduced. In addition, since the equivalent capacitance value of the transmission line Tt can be adjusted after forming the variable resonance circuit, the change in the resonance frequency due to the temperature change can be easily reduced. Next, a variable resonance circuit according to another embodiment of the present invention will be described. FIG. 3 is an equivalent circuit diagram showing a variable resonance circuit according to another embodiment of the present invention. The same parts as those in FIG. 1 are denoted by the same reference numerals, and redundant description thereof will be omitted.
図 3において、信号入力端子 Sと接地電位部との間に、可変容量コンデンサ Ctが、 可変伝送線路 Ttと高周波接地用コンデンサ Ccとが直列に接続された回路に並列接 続されており、可変伝送線路 Ttと高周波接地用コンデンサ Ccとの間に電圧制御端 子 V3が接続されている。電圧制御端子 V3に印加される直流電圧は、可変伝送線路 Ttおよび可変容量コンデンサ Ctに印加される。また、高周波領域では可変伝送線 路 Ttはえ gZ4先端短絡型の伝送線路と見ることができるため、十分に高いインピー ダンスになっており、高周波信号が信号入力端子 Sから電圧制御端子 V3側へ漏れ ることはない。したがって、制御電圧 V3を供給するための RF阻止インダクタ成分を 含むチョークコイル等の電圧供給回路が不要となり、可変共振回路の小型化が図れ るとともに、可変共振回路として取り扱いが容易となる。  In FIG. 3, a variable capacitor Ct is connected in parallel to a circuit in which a variable transmission line Tt and a high-frequency grounding capacitor Cc are connected in series between the signal input terminal S and the ground potential section. A voltage control terminal V3 is connected between the transmission line Tt and the high frequency grounding capacitor Cc. The DC voltage applied to the voltage control terminal V3 is applied to the variable transmission line Tt and the variable capacitor Ct. Also, in the high frequency range, the variable transmission line Tt can be viewed as a gZ4 tip short-circuited transmission line, so the impedance is sufficiently high, and the high frequency signal is sent from the signal input terminal S to the voltage control terminal V3 side. There is no leakage. Therefore, a voltage supply circuit such as a choke coil including an RF blocking inductor component for supplying the control voltage V3 is not required, and the variable resonance circuit can be reduced in size and can be easily handled as a variable resonance circuit.
次に、本発明のさらに他の実施形態の可変共振回路について説明する。図 4は本 発明のさらに他の実施形態の可変共振回路を示す等価回路図である。なお、図 1と 同様の個所には同じ符号を付してあり、それらについては重複する説明は省略する 図 4において、 L4, L5は、制御電圧を供給するための RF阻止インダクタ成分を含 むチョークコイルであり、 V4, V5は制御電圧を印加するための電圧制御端子である 図 4において、信号入力端子 Sに、直流制限容量素子 Cd,可変容量コンデンサ Ct , gZ4可変伝送線路 Ttが直列に接続されている。さらに、可変容量コンデンサ Ct と λ gZ4可変伝送線路 Ttとの間にチョークコイル L4を介して電圧制御端子 V4が接 続され、直流制限容量素子 Cdと可変容量コンデンサ Ctとの間にチョークコイル L5を 介して電圧制御端子 V5が接続されている。なお、図 4においては、 gZ4可変伝送 線路 Ttは先端開放型となって 、る。 Next, a variable resonance circuit according to still another embodiment of the present invention will be described. FIG. 4 is an equivalent circuit diagram showing a variable resonance circuit of still another embodiment of the present invention. The same parts as those in FIG. 1 are denoted by the same reference numerals, and redundant description thereof is omitted. In FIG. 4, L4 and L5 include an RF blocking inductor component for supplying a control voltage. Choke coil, V4 and V5 are voltage control terminals for applying control voltage In FIG. 4, to the signal input terminal S, a direct current limiting capacitor element Cd, a variable capacitor Ct, and a gZ4 variable transmission line Tt are connected in series. Furthermore, the voltage control terminal V4 is connected between the variable capacitor Ct and the λ gZ4 variable transmission line Tt via the choke coil L4, and the choke coil L5 is connected between the DC limiting capacitor element Cd and the variable capacitor Ct. The voltage control terminal V5 is connected via In FIG. 4, the gZ4 variable transmission line Tt is an open-ended type.
図 4に示す回路図を具体ィ匕した例を図 10Aに示す。  A specific example of the circuit diagram shown in Figure 4 is shown in Figure 10A.
なお、図 9A〜図 9Cに示す図面と同様の箇所には同様の符号を付す。  In addition, the same code | symbol is attached | subjected to the location similar to drawing shown to FIG. 9A-FIG. 9C.
λ gZ4可変伝送線路 Ttはコプレーナ線路となっており、第 2の誘電体である誘電 体層 11上に、線路導体 10と、それを両側から挟むように配置された接地導体 12とが 形成されている。この誘電体層 11上に、線路導体 10の延長線上に導体部 13a, 13 bが形成されている。線路導体 10と導体部 13bとの間には可変容量コンデンサ と してのチップコンデンサが接合される。導体部 13bと導体部 13aとの間には直流制限 容量素子 Cdとしてのチップコンデンサが接合される。そして導体部 13aが信号入力 端子 Sとしての機能を有する。これによつて、直流制限容量素子 Cd,可変容量コンデ ンサ Ct, gZ4可変伝送線路 Ttが直列に接続されたものとなる。また、導体部 13b と接地導体 12との間にチョークコイル L5が接合される。これによつて、接地導体 12が 電圧制御端子 V5としての機能を有するものとなる。さらに、誘電体層 11上には、線 路導体 10および接地導体 12と離間して配置された導体部 13cが形成されている。こ の導体部 13cと線路導体 10とがチョークコイル L4により接続されている。そして導体 部 13cが電圧制御端子 V4としての機能を有するものとなる。このような構成とすること で、図 4に示す共振回路を具体ィ匕することができる。  The λ gZ4 variable transmission line Tt is a coplanar line, and a line conductor 10 and a ground conductor 12 arranged so as to sandwich it from both sides are formed on a dielectric layer 11 as a second dielectric. ing. On the dielectric layer 11, conductor portions 13a and 13b are formed on the extension lines of the line conductor 10. A chip capacitor as a variable capacitor is joined between the line conductor 10 and the conductor portion 13b. A chip capacitor as a direct current limiting capacitive element Cd is joined between the conductor portion 13b and the conductor portion 13a. The conductor portion 13a functions as the signal input terminal S. As a result, the DC limiting capacitive element Cd, the variable capacitor Ct, and the gZ4 variable transmission line Tt are connected in series. A choke coil L5 is joined between the conductor portion 13b and the ground conductor 12. As a result, the ground conductor 12 has a function as the voltage control terminal V5. Furthermore, a conductor portion 13 c is formed on the dielectric layer 11 so as to be spaced apart from the line conductor 10 and the ground conductor 12. The conductor 13c and the line conductor 10 are connected by a choke coil L4. The conductor 13c functions as the voltage control terminal V4. By adopting such a configuration, the resonance circuit shown in FIG. 4 can be made concrete.
図 10Bは図 10Aの変形例を示す平面図であり、図 10Cは図 10Bの A— A線断面 図である。  FIG. 10B is a plan view showing a modification of FIG. 10A, and FIG. 10C is a cross-sectional view taken along line AA of FIG. 10B.
図 10Aと図 10Bおよび図 10Cとは、可変容量コンデンサ Ct及び直流制限容量素 子 Cdとして用いたチップコンデンサに代えて、誘電体層 11上に薄膜形成方法で作り こんだ点で異なる。具体的には、線路導体 10の延長線上に導体部 13dを形成し、線 路導体 10と導体部 13dの一端側とのそれぞれ一部を共に覆う薄膜誘電体層 14を形 成し、この薄膜誘電体層 14の上に電極層 15を形成する。これにより、線路導体 10と 電極層 15とで薄膜誘電体層 14を挟む構成により可変容量コンデンサ Ctを形成する 。また、電極層 15と導体部 13dとで薄膜誘電体層 14を挟む構成により直流制限容量 素子 Cdを形成する。ここで、導体部 13dの他端側を信号入力端子 Sとすると、直流制 限容量素子 Cd,可変容量コンデンサ Ct, gZ4可変伝送線路 Ttが直列に接続さ れたものとなる。さらに、電極層 15と接地導体 12との間にチョークコイル L5が、線路 導体 10と導体部 13cとの間にチョークコイル L4がそれぞれ接続される。このような構 成とすることで、図 4に示す共振回路を具体化することができる。 FIG. 10A differs from FIG. 10B and FIG. 10C in that a thin film formation method is formed on the dielectric layer 11 in place of the chip capacitor used as the variable capacitor Ct and the direct current limiting capacitor Cd. Specifically, a conductor portion 13d is formed on an extension line of the line conductor 10, and a thin film dielectric layer 14 is formed to cover both the line conductor 10 and one end side of the conductor portion 13d. Then, an electrode layer 15 is formed on the thin film dielectric layer 14. Thus, the variable capacitor Ct is formed by a configuration in which the thin film dielectric layer 14 is sandwiched between the line conductor 10 and the electrode layer 15. In addition, a direct current limiting capacitive element Cd is formed by a configuration in which the thin film dielectric layer 14 is sandwiched between the electrode layer 15 and the conductor portion 13d. Here, if the other end side of the conductor portion 13d is a signal input terminal S, a DC limiting capacitor element Cd, a variable capacitor Ct, and a gZ4 variable transmission line Tt are connected in series. Further, the choke coil L5 is connected between the electrode layer 15 and the ground conductor 12, and the choke coil L4 is connected between the line conductor 10 and the conductor portion 13c. With such a configuration, the resonant circuit shown in FIG. 4 can be realized.
電圧制御端子 V4から制御電圧が供給されると、制御電圧は、電圧制御端子 V4か らチョークコイル L4を介して、 λ gZ4可変伝送線路 Ttの線路導体と接地導体と間に 印加される。また、同時に制御電圧は、電圧制御端子 V4, V5からチョークコイル L4 , L5を介して、可変容量コンデンサ Ctに印加される。可変容量コンデンサ Ctには、 電圧制御端子 V4, V5の電位の差分の電圧が印加されることになる。図 4において、 制御電圧端子 V5は接地して ヽるため、制御電圧端子 V4に供給される電圧の値に 等しい制御電圧が可変容量コンデンサ Ctに印加されることになる。  When the control voltage is supplied from the voltage control terminal V4, the control voltage is applied from the voltage control terminal V4 via the choke coil L4 between the line conductor of the λgZ4 variable transmission line Tt and the ground conductor. At the same time, the control voltage is applied from the voltage control terminals V4 and V5 to the variable capacitor Ct via the choke coils L4 and L5. The voltage difference between the potentials of the voltage control terminals V4 and V5 is applied to the variable capacitor Ct. In FIG. 4, since the control voltage terminal V5 is grounded, a control voltage equal to the value of the voltage supplied to the control voltage terminal V4 is applied to the variable capacitor Ct.
ここで図 4に示すように、可変容量コンデンサ と λ gZ4可変伝送線路 Ttとを直列 に接続すれば、共振周波数でインピーダンスを小さくすることができるため、信号に 対してシャントとして用いると、共振周波数の近傍の信号のみ減衰させることができる 次に、本発明の可変共振回路を用いてフィルタを形成した例について説明する。 図 5は、本発明の一実施形態のフィルタ装置を示す等価回路図である。  As shown in Fig. 4, if a variable capacitor and a λ gZ4 variable transmission line Tt are connected in series, the impedance can be reduced at the resonance frequency, so if used as a shunt for the signal, the resonance frequency Next, an example in which a filter is formed using the variable resonance circuit of the present invention will be described. FIG. 5 is an equivalent circuit diagram showing the filter device of one embodiment of the present invention.
図 5において、入力端子 Inと出力端子 Outとをつなぐ入出力ラインに、図 1に示す 可変共振回路の信号入力端子 Sが接続されて 、る。図 1に示す可変共振回路は接 地電位に接続されている。このため、図 5に示すフィルタ装置は、入出力ラインとダラ ンド端子との間に可変共振回路が接続されている。このように、可変容量コンデンサ Ctとえ gZ4可変伝送線路 Ttとを並列に接続し、信号に対して、シャントとして用いる と、共振周波数でインピーダンスを大きくすることができるため、共振周波数の近傍の 信号のみを通過させることができるバンドパスフィルタとすることができる。 図 6は、本発明の他の実施形態のフィルタ装置を示す等価回路図である。 In FIG. 5, the signal input terminal S of the variable resonance circuit shown in FIG. 1 is connected to the input / output line connecting the input terminal In and the output terminal Out. The variable resonance circuit shown in Fig. 1 is connected to ground potential. For this reason, in the filter device shown in FIG. 5, a variable resonance circuit is connected between the input / output line and the dotted terminal. In this way, if the variable capacitor Ct and the gZ4 variable transmission line Tt are connected in parallel and used as a shunt for the signal, the impedance can be increased at the resonance frequency, so a signal in the vicinity of the resonance frequency can be obtained. It is possible to make a band pass filter that can only pass through. FIG. 6 is an equivalent circuit diagram showing a filter device according to another embodiment of the present invention.
図 6において、入力端子 Inと出力端子 Outとをつなぐ入出力ラインに、図 4に示す 可変共振回路の信号入力端子 Sが接続されている。図 4に示す可変共振回路は、 λ gZ4可変伝送線路 Ttの接地電極は、接地電位に接続されている。このため、図 6に 示すフィルタ装置は、入出力ラインとグランド端子との間に可変共振回路が接続され ている。このように、可変容量コンデンサ Ctとえ gZ4可変伝送線路 Ttとを直列に接 続し、信号に対して、シャントとして用いると、共振周波数でインピーダンスを小さくす ることができるため、共振周波数の近傍の信号のみを減衰させることが出来るバンド 阻止フィルタとすることができる。  In FIG. 6, the signal input terminal S of the variable resonance circuit shown in FIG. 4 is connected to the input / output line connecting the input terminal In and the output terminal Out. In the variable resonance circuit shown in FIG. 4, the ground electrode of the λgZ4 variable transmission line Tt is connected to the ground potential. Therefore, in the filter device shown in FIG. 6, a variable resonance circuit is connected between the input / output line and the ground terminal. In this way, when the variable capacitor Ct and gZ4 variable transmission line Tt are connected in series and used as a shunt for the signal, the impedance can be reduced at the resonance frequency. This can be a band rejection filter that can attenuate only the signal.
図 5および図 6では、入出力ラインとグランド端子との間に可変共振回路を接続した 例について説明したが、入出力ライン上に共振回路を設けてバンドパスフィルタゃバ ンド阻止フィルタを形成してもよい。例えば、入出力ライン上に図 6に示す可変共振 回路を設けてもよい。この場合には、信号入力端子 Sに加えて、 gZ4可変伝送線 路 Ttの線路導体を信号出力端子として入出力ラインに接続すればよい。  In FIGS. 5 and 6, an example in which a variable resonance circuit is connected between the input / output line and the ground terminal has been described. However, a bandpass filter is formed on the input / output line to form a band-pass filter. May be. For example, a variable resonance circuit shown in FIG. 6 may be provided on the input / output line. In this case, in addition to the signal input terminal S, the line conductor of the gZ4 variable transmission line Tt may be connected to the input / output line as a signal output terminal.
次に、本発明のフィルタ装置を用いて通信装置を形成した例について説明する。 図 7は、本発明の一実施形態の通信装置を示すブロック図である。  Next, an example in which a communication device is formed using the filter device of the present invention will be described. FIG. 7 is a block diagram showing a communication apparatus according to an embodiment of the present invention.
図 7において、アンテナ 140に送信回路 Txと受信回路 Rxが分波器 150を介して接 続されている。送信される高周波信号は、フィルタ 210によりその不要信号が除去さ れ、パワーアンプ 220で増幅された後、アイソレータ 230と分波器 150を通り、アンテ ナ 140から放射される。また、アンテナ 140で受信された高周波信号は、分波器 150 を通りローノイズアンプ 160で増幅されフィルタ 170でその不要信号を除去された後 、アンプ 180で再増幅されミキサ 190で低周波信号に変換される。  In FIG. 7, a transmitting circuit Tx and a receiving circuit Rx are connected to an antenna 140 via a duplexer 150. The high-frequency signal to be transmitted is removed from the unnecessary signal by the filter 210, amplified by the power amplifier 220, and then radiated from the antenna 140 through the isolator 230 and the duplexer 150. The high-frequency signal received by the antenna 140 passes through the duplexer 150, is amplified by the low-noise amplifier 160, the unnecessary signal is removed by the filter 170, and then re-amplified by the amplifier 180 and converted to a low-frequency signal by the mixer 190. Is done.
図 7にお!/、て、分波器 150、フイノレタ 170およびフイノレタ 210の!/、ずれ力に、本発明 のフィルタ装置を用いれば、温度変化によるフィルタ特性の変動が少ないため、信頼 性の高!、通信装置とすることができる。  In Fig. 7, the filter device of the present invention is used for the! / And shift force of the duplexer 150, the finoleta 170, and the finoleta 210. High! Can be a communication device.
なお、図 7では送信回路 Txと受信回路 Rxとを有する通信装置について説明したが 、送信回路 Txまたは受信回路 Rxの 、ずれか一方を有する通信装置としてもよ!/、。 なお、本発明は以上の実施の形態の例に限定されるものではなぐ本発明の要旨 を逸脱しない範囲で種々の変更をカ卩えることは何ら差し支えない。例えば、図 8に示 すように幹部 10aから複数の環状部 10b 1, 10b2- · ·が張り出すように形成された可 変伝送線路の線路導体としても構わない。また、 gZ4先端短絡型の伝送線路の 代わりにえ gZ2先端開放型の伝送線路を用いても構わない。また、 gZ4先端開 放型の伝送線路の代わりに λ gZ2先端短絡型の伝送線路を用いても構わな ヽ。さ らに、図 10A〜図 10Cでは第 2の誘電体を基板として用いた例について説明したが 、基板上に、伝送線路、可変容量コンデンサ等を薄膜形成プロセスにより形成しても よい。 Note that although the communication device having the transmission circuit Tx and the reception circuit Rx has been described with reference to FIG. 7, the communication device may have one of the transmission circuit Tx and the reception circuit Rx! /. It should be noted that the present invention is not limited to the examples of the above-described embodiments, but is a summary of the present invention. It is possible to cover various changes without departing from the scope. For example, as shown in FIG. 8, it may be a line conductor of a variable transmission line formed so that a plurality of annular portions 10b 1, 10b2. In addition, a gZ2 open-ended transmission line may be used instead of the gZ4 short-circuited transmission line. Also, a λ gZ2 tip short-circuited transmission line may be used instead of the gZ4 tip-opened transmission line. Further, although FIGS. 10A to 10C have described the example in which the second dielectric is used as the substrate, a transmission line, a variable capacitor, or the like may be formed on the substrate by a thin film formation process.
本発明は、その精神または主要な特徴力 逸脱することなぐ他のいろいろな形態 で実施できる。したがって、前述の実施形態はあらゆる点で単なる例示に過ぎず、本 発明の範囲は特許請求の範囲に示すものであって、明細書本文には何ら拘束され ない。さらに、特許請求の範囲に属する変形や変更は全て本発明の範囲内のもので ある。  The present invention can be implemented in various other forms without departing from the spirit or main characteristic power thereof. Therefore, the above-described embodiment is merely an example in all respects, and the scope of the present invention is shown in the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the scope of claims are within the scope of the present invention.
産業上の利用可能性 Industrial applicability
本発明によれば、温度変化による可変容量コンデンサの容量値の変化に対して、 インダクタの等価容量値の変化が可変共振回路全体での容量値の変化を抑制する ように働くため、温度変化による共振周波数の変化を少なくすることができる。  According to the present invention, the change of the equivalent capacitance value of the inductor works to suppress the change of the capacitance value in the entire variable resonance circuit with respect to the change of the capacitance value of the variable capacitor due to the temperature change. The change in the resonance frequency can be reduced.
また、同様に、温度変化による可変容量コンデンサの容量変化率の変化に対して インダクタの等価容量変化率の変化が可変共振回路全体での変化を抑制するように 働くため、温度変化による可変共振回路の共振周波数変化率の変化を少なくするこ とがでさる。  Similarly, the change in the equivalent capacitance change rate of the inductor against the change in the capacitance change rate of the variable capacitor due to the temperature change works to suppress the change in the entire variable resonance circuit. It is possible to reduce the change in the resonance frequency change rate.
本発明によれば、温度変化による可変容量コンデンサの容量値の変化に対して、 伝送線路の等価容量値の変化が可変共振回路全体での容量値の変化を抑制する ように働くため、温度変化による共振周波数の変化を少なくすることができる。  According to the present invention, the change in the equivalent capacitance value of the transmission line works to suppress the change in the capacitance value in the entire variable resonance circuit with respect to the change in the capacitance value of the variable capacitor due to the temperature change. It is possible to reduce the change in the resonance frequency due to.
また、同様に、温度変化による可変容量コンデンサの容量変化率の変化に対して 伝送線路の等価容量変化率の変化が可変共振回路全体での変化を抑制するように 働くため、温度変化による可変共振回路の共振周波数変化率の変化を少なくするこ とがでさる。 本発明によれば、温度変化による可変容量コンデンサの容量値の変化を、伝送線 路の等価容量値の変化が打ち消すように働くため、温度変化による可変共振回路の 共振周波数の変化を更に少なくすることができる。 Similarly, the change in the equivalent capacitance change rate of the transmission line suppresses the change in the entire variable resonance circuit with respect to the change in the capacitance change rate of the variable capacitor due to the temperature change. The change in the resonant frequency change rate of the circuit can be reduced. According to the present invention, since the change in the capacitance value of the variable capacitor due to the temperature change works so as to cancel the change in the equivalent capacitance value of the transmission line, the change in the resonance frequency of the variable resonance circuit due to the temperature change is further reduced. be able to.
また、同様に温度変化による可変容量コンデンサの容量変化率の変化に対して伝 送線路の等価容量変化率の変化が可変共振回路全体での変化を打ち消すように働 くため、温度変化による可変共振回路の共振周波数変化率の変化を更に少なくする ことができる。  Similarly, the change in the equivalent capacitance change rate of the transmission line cancels the change in the entire variable resonance circuit with respect to the change in the capacitance change rate of the variable capacitor due to the temperature change. The change in the resonant frequency change rate of the circuit can be further reduced.
本発明によれば、伝送線路の一部 (分岐部)を切断して線路導体の線路長を変え ることで伝送線路のインピーダンスを調整することができるので、可変共振回路の共 振周波数の調整をすることができる。  According to the present invention, the impedance of the transmission line can be adjusted by cutting a part (branch part) of the transmission line and changing the line length of the line conductor, so that the resonance frequency of the variable resonance circuit can be adjusted. Can do.
また、初期状態において上述のように可変伝送線路の長さを変えることで、可変容 量コンデンサおよび伝送線路に制御電圧を印加しな 、状態 (ov)で所望の共振周 波数を得ることができるように調整できるので、所望の共振周波数を得るために必要 な制御電圧を少なくすることができ、可変共振回路の消費電力を低くすることができ る。  In addition, by changing the length of the variable transmission line in the initial state as described above, a desired resonance frequency can be obtained in the state (ov) without applying a control voltage to the variable capacitor and the transmission line. Therefore, the control voltage required to obtain a desired resonance frequency can be reduced, and the power consumption of the variable resonance circuit can be reduced.
本発明によれば、高周波的にはえ gZ4の奇数倍の長さの先端短絡線路とみること ができ、信号入力端子力も見た高周波帯でのインピーダンスが充分に高くなるため、 制御電圧を供給するための RF阻止インダクタ成分を含むチョークコイル等の電圧供 給回路が不要となり、可変共振回路の小型化が図れるとともに、可変共振回路として 取り扱いが容易となる。  According to the present invention, it can be regarded as a short-circuited short-circuited line having an odd multiple of the length of gZ4 in terms of high frequency, and the impedance in the high frequency band with sufficient signal input terminal strength is sufficiently high, so that a control voltage is supplied. This eliminates the need for a voltage supply circuit such as a choke coil that includes an RF blocking inductor component to reduce the size of the variable resonance circuit and facilitates handling as a variable resonance circuit.
本発明によれば、直流制限容量素子によって、可変容量コンデンサおよび伝送線 路に制御電圧を印加するための端子を分離するとともに、信号入力端子への直流成 分を制限することができる。  According to the present invention, the DC limiting capacitor element can separate the variable capacitor and the terminal for applying the control voltage to the transmission line, and can limit the DC component to the signal input terminal.
本発明によれば、可変容量コンデンサとインダクタとを並列に接続することによって 、共振周波数でインピーダンスが大きくなるため、信号に対してシャントとして用いると 、共振周波数の近傍の信号のみ通過させることができる。  According to the present invention, since the impedance increases at the resonance frequency by connecting the variable capacitor and the inductor in parallel, when the signal is used as a shunt, only a signal in the vicinity of the resonance frequency can be passed. .
本発明によれば、可変容量コンデンサとインダクタとを直列に接続することによって 、共振周波数でインピーダンスが小さくなるため、信号に対してシャントとして用いると 、共振周波数の近傍の信号のみ減衰させることができる。 According to the present invention, when a variable capacitor and an inductor are connected in series, the impedance is reduced at the resonance frequency. Only the signal near the resonance frequency can be attenuated.
本発明によれば、第 1の誘電体および第 2の誘電体は、誘電損失が少なぐ容量変 化率が高いものとなる。このため、広い周波数範囲に適応可能な可変共振回路とす ることができる。また、組成を調整することにより、温度係数を調整することができるの で、同一材料系で第 1の誘電体および第 2の誘電体を形成することができる。  According to the present invention, the first dielectric and the second dielectric have a high capacitance change rate with a small dielectric loss. Therefore, a variable resonance circuit that can be adapted to a wide frequency range can be obtained. In addition, since the temperature coefficient can be adjusted by adjusting the composition, the first dielectric and the second dielectric can be formed using the same material system.
本発明によれば、温度変化による特性変化の少な 、フィルタ装置とすることができ る。  According to the present invention, it is possible to provide a filter device with little characteristic change due to temperature change.
本発明によれば、温度変化によるフィルタ特性変化の少ない通信装置とすることが できる。  According to the present invention, it is possible to provide a communication device with little filter characteristic change due to temperature change.
本発明によれば、本発明の可変共振回路の温度特性調整方法によって、温度変 化による共振周波数の変化を少なくすることができる。  According to the present invention, the change in the resonance frequency due to the temperature change can be reduced by the temperature characteristic adjusting method for the variable resonance circuit of the present invention.
本発明によれば、可変共振回路を形成後に伝送線路の等価容量値を調整すること ができるので、容易に温度変化による共振周波数の変化を少なくすることができる。 以上により、本発明によれば、共振周波数および共振周波数可変率の温度特性に 優れた可変共振回路を提供することができる。また、電圧供給回路を簡略化できるた め、小型で取り扱いが容易な可変共振回路を提供することができる。  According to the present invention, since the equivalent capacitance value of the transmission line can be adjusted after forming the variable resonance circuit, the change in the resonance frequency due to the temperature change can be easily reduced. As described above, according to the present invention, it is possible to provide a variable resonance circuit excellent in temperature characteristics of the resonance frequency and the resonance frequency variable rate. In addition, since the voltage supply circuit can be simplified, it is possible to provide a variable resonance circuit that is small and easy to handle.

Claims

請求の範囲 The scope of the claims
[1] 温度に対する比誘電率の変化が温度係数 Xである第 1の誘電体を用いた可変容量 コンデンサと、制御電圧の印加によって比誘電率が変化し、温度に対する比誘電率 の変化が前記温度係数 Xと極性が逆である温度係数 Yである第 2の誘電体を有する インダクタとを含むことを特徴とする可変共振回路。  [1] The relative permittivity changes with the application of a control capacitor and the variable capacitor using the first dielectric whose change in relative permittivity with temperature is the temperature coefficient X, and the change in relative permittivity with respect to temperature A variable resonance circuit comprising: an inductor having a second dielectric material having a temperature coefficient X and a temperature coefficient Y having a polarity opposite to that of the temperature coefficient X.
[2] 前記第 1の誘電体は、制御電圧の印加によって比誘電率が変化するものであり、 前記インダクタは、前記第 2の誘電体に接地導体および線路導体を形成してなる伝 送線路であることを特徴とする可変共振回路。  [2] The first dielectric has a relative dielectric constant that changes when a control voltage is applied, and the inductor has a transmission line formed by forming a ground conductor and a line conductor on the second dielectric. A variable resonance circuit characterized by the above.
[3] 前記可変容量コンデンサの容量値と前記温度係数 Xの絶対値との積と、前記伝送 線路の等価容量値と前記温度係数 Yの絶対値との積とが実質的に等しいことを特徴 とする請求項 2記載の可変共振回路。 [3] The product of the capacitance value of the variable capacitor and the absolute value of the temperature coefficient X is substantially equal to the product of the equivalent capacitance value of the transmission line and the absolute value of the temperature coefficient Y. The variable resonance circuit according to claim 2.
[4] 前記伝送線路の前記線路導体は、少なくとも一部が前記第 2の誘電体の表層に形 成され、かつ複数の切断可能な分岐部を有して 、ることを特徴とする請求項 2または[4] The line conductor of the transmission line is characterized in that at least a part thereof is formed on a surface layer of the second dielectric and has a plurality of severable branch portions. 2 or
3記載の可変共振回路。 3. The variable resonance circuit according to 3.
[5] 前記伝送線路は、 λ g/4 ( λ g:前記伝送線路を伝搬する高周波信号の実効波長[5] The transmission line is λ g / 4 (λ g: effective wavelength of the high-frequency signal propagating through the transmission line.
)の奇数倍の長さを有しており一端が高周波接地用容量を介して接地され、他端が 前記可変容量コンデンサとともに信号入力端子に接続され、前記一端と前記高周波 接地用容量との間に制御電圧が印加されることを特徴とする請求項 2〜4のいずれか に記載の可変共振回路。 ), One end is grounded via a high frequency grounding capacitor, the other end is connected to the signal input terminal together with the variable capacitor, and between the one end and the high frequency grounding capacitor. 5. The variable resonance circuit according to claim 2, wherein a control voltage is applied to.
[6] 前記可変容量コンデンサおよび前記伝送線路のうちの少なくともいずれか一方に 接続される直流制限容量素子をさらに含むことを特徴とする請求項 2〜5のいずれか に記載の可変共振回路。 6. The variable resonance circuit according to claim 2, further comprising a direct current limiting capacitive element connected to at least one of the variable capacitor and the transmission line.
[7] 前記可変容量コンデンサと前記インダクタとは並列に接続されることを特徴とする請 求項 1〜6のいずれかに記載の可変共振回路。 [7] The variable resonance circuit according to any one of [1] to [6], wherein the variable capacitor and the inductor are connected in parallel.
[8] 前記可変容量コンデンサと前記インダクタとは直列に接続されることを特徴とする請 求項 1〜7のいずれかに記載の可変共振回路。 [8] The variable resonance circuit according to any one of [1] to [7], wherein the variable capacitor and the inductor are connected in series.
[9] 前記第 1の誘電体および前記第 2の誘電体は、チタン酸バリウムストロンチウムから なることを特徴とする請求項 1〜8のいずれかに記載の可変共振回路。 [9] The variable resonance circuit according to any one of [1] to [8], wherein the first dielectric and the second dielectric are made of barium strontium titanate.
[10] 入力端子と出力端子とグランド端子とを有し、前記入力端子と前記出力端子とをつ なぐ入出力ライン上、または前記入出力ラインとグランド端子との間に、請求項 1〜9 のいずれかに記載の可変共振回路を設けたことを特徴とするフィルタ装置。 [10] The input terminal, the output terminal, and the ground terminal, on an input / output line connecting the input terminal and the output terminal, or between the input / output line and the ground terminal. A filter device comprising the variable resonance circuit according to any one of the above.
[11] 請求項 10に記載のフィルタ装置を有する、受信回路および送信回路の少なくとも 一方を備えることを特徴とする通信装置。  11. A communication device comprising the filter device according to claim 10, comprising at least one of a reception circuit and a transmission circuit.
[12] 制御電圧によって比誘電率が変化し、温度に対する比誘電率の変化が温度係数 X である第 1の誘電体を用 、た可変容量コンデンサと、  [12] A variable capacitance capacitor using a first dielectric whose relative dielectric constant changes according to the control voltage and whose change in relative dielectric constant with respect to temperature is a temperature coefficient X;
制御電圧によって比誘電率が変化し、温度に対する比誘電率の変化が前記温度 係数 Xと極性が逆である温度係数 Yである第 2の誘電体に接地導体および線路導体 を形成してなる伝送線路とを含む可変共振回路の温度特性調整方法であって、 前記可変容量コンデンサの容量値と前記温度係数 Xの絶対値との積と、前記伝送 線路の等価容量値と前記温度係数 Yの絶対値との積が実質的に等しくなるように、 前記可変容量コンデンサの容量値、前記温度係数 X、前記伝送線路の等価容量値 、前記温度係数 Yの ヽずれかを調整することを特徴とする可変共振回路の温度特性 調整方法。  The transmission is made by forming a grounding conductor and a line conductor on the second dielectric whose relative dielectric constant changes with the control voltage, and whose relative dielectric constant changes with respect to temperature. A temperature characteristic adjusting method for a variable resonance circuit including a line, comprising: a product of a capacitance value of the variable capacitor and an absolute value of the temperature coefficient X; and an absolute value of an equivalent capacitance value of the transmission line and the temperature coefficient Y. Adjusting the capacitance value of the variable capacitor, the temperature coefficient X, the equivalent capacitance value of the transmission line, or the temperature coefficient Y so that the product with the value is substantially equal. Method for adjusting temperature characteristics of variable resonance circuit.
[13] 前記伝送線路の前記線路導体を、少なくとも一部が前記第 2の誘電体の表層に、 複数の切断可能な分岐部を有するように形成し、前記分岐部を切断して前記伝送線 路の等価容量値を調整することを特徴とする請求項 12記載の可変共振回路の温度 特性調整方法。  [13] The transmission line is formed such that at least a part of the line conductor of the transmission line has a plurality of cutable branch portions on a surface layer of the second dielectric, and the branch portions are cut to form the transmission line. 13. The method of adjusting a temperature characteristic of a variable resonance circuit according to claim 12, wherein an equivalent capacitance value of the path is adjusted.
PCT/JP2006/318306 2005-09-14 2006-09-14 Variable resonance circuit, filter, communication apparatus and method for regulating temperature characteristics of variable resonance circuit WO2007032452A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007535547A JP4855407B2 (en) 2005-09-14 2006-09-14 Variable resonance circuit, filter device, communication device, and temperature characteristic adjustment method for variable resonance circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005266282 2005-09-14
JP2005-266282 2005-09-14

Publications (2)

Publication Number Publication Date
WO2007032452A1 true WO2007032452A1 (en) 2007-03-22
WO2007032452A9 WO2007032452A9 (en) 2007-05-18

Family

ID=37865036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318306 WO2007032452A1 (en) 2005-09-14 2006-09-14 Variable resonance circuit, filter, communication apparatus and method for regulating temperature characteristics of variable resonance circuit

Country Status (2)

Country Link
JP (1) JP4855407B2 (en)
WO (1) WO2007032452A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878921A (en) * 1994-08-31 1996-03-22 Kyocera Corp Laminated resonance circuit board
JP2002050911A (en) * 2000-07-31 2002-02-15 Kyocera Corp Stripline resonator
JP2003110321A (en) * 2001-09-28 2003-04-11 Kyocera Corp Variable resonance circuit
JP2003110320A (en) * 2001-09-27 2003-04-11 Kyocera Corp Resonance circuit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09186536A (en) * 1995-12-28 1997-07-15 Fujitsu Ltd Power amplifier circuit
JPH10335903A (en) * 1997-05-28 1998-12-18 Sharp Corp Voltage-controlled passband variable filter, voltage-controlled resonance frequency variable resonator, and high-frequency circuit module using them
SE517440C2 (en) * 2000-06-20 2002-06-04 Ericsson Telefon Ab L M Electrically tunable device and a method related thereto
JP2003163504A (en) * 2001-11-28 2003-06-06 Kyocera Corp Variable bandpass filter and duplexer using variable bandpass filter
JP2004303843A (en) * 2003-03-31 2004-10-28 Tdk Corp Multilayered substrate and electronic component
JP2005347849A (en) * 2004-05-31 2005-12-15 Furukawa Electric Co Ltd:The Phase shifter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878921A (en) * 1994-08-31 1996-03-22 Kyocera Corp Laminated resonance circuit board
JP2002050911A (en) * 2000-07-31 2002-02-15 Kyocera Corp Stripline resonator
JP2003110320A (en) * 2001-09-27 2003-04-11 Kyocera Corp Resonance circuit
JP2003110321A (en) * 2001-09-28 2003-04-11 Kyocera Corp Variable resonance circuit

Also Published As

Publication number Publication date
JP4855407B2 (en) 2012-01-18
JPWO2007032452A1 (en) 2009-03-19
WO2007032452A9 (en) 2007-05-18

Similar Documents

Publication Publication Date Title
US7675388B2 (en) Switchable tunable acoustic resonator using BST material
US7145415B2 (en) Electrically tunable filters with dielectric varactors
JP4691163B2 (en) Frequency variable acoustic thin film resonator, filter, and communication device using the same
US6909344B2 (en) Band switchable filter
JP4077322B2 (en) Tunable ferroelectric filter
US9985606B2 (en) Acoustic wave filter, duplexer, and module
US20150341016A1 (en) Filter and duplexer
US8981872B2 (en) Antenna duplexer with high GPS suppression
CN107306120A (en) Tunable resonator element, filter circuit and method
US8228138B2 (en) Filter element, duplexer and electronic device having piezoelectric thin-film resonators stacked vertically
US11621699B2 (en) Acoustic wave filter device and composite filter device
US6590475B2 (en) Filter, antenna duplexer, and communication apparatus incorporating the same
US6411176B1 (en) Voltage-controlled duplexer and communication apparatus
WO2010004534A1 (en) Bulk acoustic wave resonator using acoustic reflector layers as inductive or capacitive circuit element
CN101138129A (en) Delay line
JP4855407B2 (en) Variable resonance circuit, filter device, communication device, and temperature characteristic adjustment method for variable resonance circuit
US6545565B1 (en) Filter, antenna sharing device, and communication device
JP2020088531A (en) Band pass filter
WO2010035611A1 (en) Branching filter, and wireless communication mudule and wireless communication device using same
Reinhardt et al. Acoustic technologies for advanced RF architectures
EP1369989B1 (en) Voltage-controlled oscillator, high-frequency module, and communication apparatus
US20120161862A1 (en) Filter circuit
US20210044271A1 (en) Multiplexer
JP2006237239A (en) Capacitance variable circuit and communication system
US20070007850A1 (en) Apparatus and method capable of a high fundamental acoustic resonance frequency and a wide resonance-free frequency range

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2007535547

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 06810150

Country of ref document: EP

Kind code of ref document: A1