WO2007032320A1 - Hot cathode discharge lamp, lamp unit and display - Google Patents

Hot cathode discharge lamp, lamp unit and display Download PDF

Info

Publication number
WO2007032320A1
WO2007032320A1 PCT/JP2006/318003 JP2006318003W WO2007032320A1 WO 2007032320 A1 WO2007032320 A1 WO 2007032320A1 JP 2006318003 W JP2006318003 W JP 2006318003W WO 2007032320 A1 WO2007032320 A1 WO 2007032320A1
Authority
WO
WIPO (PCT)
Prior art keywords
lamp
hot cathode
discharge lamp
glass bulb
krypton
Prior art date
Application number
PCT/JP2006/318003
Other languages
French (fr)
Japanese (ja)
Inventor
Shiro Iida
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2007535467A priority Critical patent/JPWO2007032320A1/en
Priority to EP06797810A priority patent/EP1936660A1/en
Publication of WO2007032320A1 publication Critical patent/WO2007032320A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/067Main electrodes for low-pressure discharge lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/067Main electrodes for low-pressure discharge lamps
    • H01J61/0672Main electrodes for low-pressure discharge lamps characterised by the construction of the electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/16Selection of substances for gas fillings; Specified operating pressure or temperature having helium, argon, neon, krypton, or xenon as the principle constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/18Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent
    • H01J61/20Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent mercury vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/305Flat vessels or containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/33Special shape of cross-section, e.g. for producing cool spot
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/70Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr
    • H01J61/72Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr having a main light-emitting filling of easily vaporisable metal vapour, e.g. mercury
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/24Means for obtaining or maintaining the desired pressure within the vessel
    • H01J61/28Means for producing, introducing, or replenishing gas or vapour during operation of the lamp

Definitions

  • the present invention relates to a hot cathode discharge lamp, a lamp unit including the same as a light source, and a display device.
  • a cold cathode discharge lamp is mainly adopted as a light source of a backlight unit of a liquid crystal display.
  • the cold cathode discharge lamp is suitable as a light source for a backlight unit that is required to be thin because it is suitable for reducing the diameter.
  • Patent Document 1 discloses a hot cathode discharge lamp in which the cross section of the annular glass bulb is flat. By doing so, it is stated that the illuminance directly below the illumination device using the hot cathode discharge lamp as a light source can be increased, and thus the lamp efficiency can be improved.
  • Patent Document 2 in a fluorescent lamp used for a light source of a backlight unit, a technology for improving the uniformity of the brightness without lowering the brightness of the knock unit by making the cross section of the glass bulb elliptical. Is disclosed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 63-81753
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2000-10094
  • the hot cathode discharge lamp has a problem in adopting it as a light source of the backlight unit in view of the short life of the lamp.
  • the present invention has been made in view of the above-described points, and an object thereof is to provide a long-life hot cathode discharge lamp, a lamp unit, and a display device.
  • the inventor of the present invention has conducted intensive studies in order to prolong the life of a hot cathode discharge lamp used as a light source of a backlight unit which is required to be thin.
  • the diameter of the glass bulb which is an envelope of the hot cathode discharge lamp, must be increased accordingly.
  • back light units are required to be thinner, it is not desirable to increase the diameter of the glass bulb.
  • a glass bulb whose cross section perpendicular to the tube axis is a flat shape, and an electrode disposed in the glass bulb with the axis directed in the long diameter direction of the flat shape.
  • the axial length L of the electrode coil is L2 ⁇ L ⁇ L1 where L1 is the length of the long inner diameter of the flat shape of the glass bulb and L2 is the length of the short inner diameter. It is characterized by the fact that the relationship is fulfilled and it is a feature.
  • the hot cathode discharge lamp is disposed in the thickness direction of the backlight unit by arranging the short inner diameter of the glass bulb. It is possible to reduce the thickness.
  • the axis of the electrode coil is disposed in the major axis direction of the glass bulb, and the length L of the electrode coil is longer than the length L2 of the short inner diameter of the glass bulb. Therefore, the life can be extended as compared with the cross-sectional circular (diameter L2) hot cathode discharge lamp having the same thickness.
  • flat shape means that a glass tube having a circular cross section is squeezed in the vertical direction, and the inner diameter in the vertical direction is short and the inner diameter in the horizontal direction is long.
  • shape including the two flat portions facing the contour and the curved portion connecting them it also includes an elliptical shape in which all the contours are represented by a curve.
  • the inventor of the present invention conducted intensive studies to extend the life of a hot cathode discharge lamp for a backlight unit. The inventor noted that increasing the partial pressure ratio of krypton as a buffer noble gas lengthens the life.
  • the lamp output decreases when the krypton partial pressure ratio is increased, so the krypton partial pressure ratio is limited to about 15%.
  • the inventor found that the problem that the lamp output decreases as the krypton partial pressure ratio is increased occurs when the hot cathode discharge lamp is turned on in a normal temperature atmosphere, and the case of the backlight unit is It has been found that when the lamp is placed in the body and turned on in an atmosphere of about 50 ° C. to 70 ° C., there is no problem that the lamp output decreases.
  • a hot cathode fluorescent lamp disposed in a housing, and a rare gas is enclosed in the glass bulb, and the rare gas contains 20% or more of krypton as a partial pressure ratio. It is preferable to be included.
  • the hot cathode discharge lamp according to the present invention is disposed in the housing of the lamp unit, and since the atmosphere in which the lamp is disposed is higher than room temperature, krypton is enclosed as a buffer noble gas. Also the lamp output is good. In addition, when the voltage division ratio of krypton is increased, the lamp voltage is decreased, so that the starting characteristic is improved and the discharge maintenance can be facilitated.
  • the partial pressure ratio of krypton is preferably 60% or less.
  • the partial pressure ratio of krypton in the noble gas is 60. This is because it becomes difficult to dim the lamp if / 0 is exceeded.
  • Talypton has a larger atomic weight compared to argon, the mercury enclosed in the envelope diffuses as the krypton partial pressure ratio increases, so the luminous flux at lamp starting is also increased.
  • the partial pressure ratio of krypton in the rare gas is preferably 60% or less because the rising characteristics of Furthermore, since krypton is very expensive compared to argon, enclosing krypton more than necessary leads to meaningless cost increase, so the partial pressure ratio of krypton in the noble gas is 60% or less. Is preferred.
  • the partial pressure ratio of krypton in the rare gas exceeds 60%, so-called moving stripes are generated at the time of lamp lighting.
  • the partial pressure ratio of krypton is more preferably 45% or more.
  • the lamp voltage can be decreased to increase the lamp current, which is a power that can obtain a very high efficiency lamp.
  • the partial pressure ratio of krypton is more preferably 55% or less. It is because experiments have shown that the lamp efficiency decreases when the krypton partial pressure ratio exceeds 55%.
  • a lamp unit according to the present invention is characterized by including a housing and any one of the above-mentioned hot cathode discharge lamps disposed in the housing. This makes it possible to obtain a lamp unit with high efficiency and long life S.
  • a display device includes the lamp unit as a light source. This makes it possible to obtain a display device with long life and high efficiency with low power consumption.
  • Another display device is characterized by comprising a housing and any one of the above-mentioned hot cathode discharge lamps disposed in the housing.
  • FIG. 1 is a schematic perspective view showing a configuration of a liquid crystal display device with an aspect ratio of 16: 9 according to the present embodiment.
  • FIG. 2 is a schematic perspective view showing the configuration of the backlight unit according to the present embodiment.
  • FIG. 3 is a diagram showing the configuration of the hot cathode discharge lamp according to the present embodiment, and FIG. 3 (a) is a plan sectional view, and FIG. 3 (b) is a cross section taken along the A-A section. It is a cross-sectional view at the time of
  • FIG. 4 is a view for explaining the process of deforming a glass tube whose cross section perpendicular to the tube axis is circular in cross section into an elliptical shape.
  • FIG. 5 is a table showing the relationship between the partial pressure ratio of krypton in the buffer noble gas and the lamp life.
  • FIG. 6 is a schematic view showing movement stripes generated at the time of lamp light control lighting.
  • FIG. 7 is a cross-sectional view of a glass bulb according to a modification. Explanation of sign
  • FIG. 1 is a view showing a liquid crystal display device according to the present invention, in which a part is cut away so that the internal state can be seen.
  • the liquid crystal display device 1 is, for example, a liquid crystal color television, and a liquid crystal display unit 3 and a backlight unit 5 are incorporated in a housing 4.
  • the liquid crystal screen unit 3 includes, for example, a color filter substrate, a liquid crystal, a TFT substrate, a drive module, etc. (not shown), and a color image is displayed on the liquid crystal screen unit based on the image signal of the external force of the liquid crystal screen 3 Displayed on screen 6 of 3.
  • FIG. 2 is a schematic perspective view showing the configuration of the liquid crystal display knock light unit 5 with an aspect ratio of 16: 9 according to the present embodiment.
  • the backlight unit 5 includes a plurality of hot cathode discharge lamps 20, a case 10 having an opening and containing the lamps 20, and an opening of the case 10 And a front panel 16 covering the
  • the housing 10 is made of, for example, polyethylene terephthalate (PET) resin, and a metal such as silver is vapor-deposited on its inner surface 11 to form a reflective surface.
  • PET polyethylene terephthalate
  • the lamps 20 have a straight tubular shape, and in the present embodiment, the fourteen lamps 20 are disposed in a direct system in the housing 10 and electrically connected in parallel.
  • the lamp 20 is constant current controlled by a lighting circuit not shown. The configuration of the lamp 20 will be described later.
  • the opening of the case 10 is covered with a translucent front panel 16 in which the diffusion plate 13, the diffusion sheet 14 and the lens sheet 15 are laminated, and foreign matters such as dust and dirt do not get inside. , As sealed.
  • the diffuser plate 13 and the diffuser sheet 14 in the front panel 16 diffuse and diffuse the light emitted from the lamp 20, and the lens sheet 15 aligns the light in the normal direction of the sheet 15. They are configured such that the light emitted by the lamp 20 forces the light forwardly uniformly over the entire surface (light emitting surface) of the front panel 16.
  • FIG. 3 is a view showing the configuration of a hot cathode discharge lamp (hereinafter, may be simply referred to as “lamp”) 20 according to the present embodiment
  • FIG. 3 (a) is a plan sectional view Fig. 3 (b) is a cross-sectional view taken along the line A-A.
  • the lamp 20 has a straight tubular glass bulb 22 and a pair of electrodes 30 a and 30 b disposed at both ends in the glass bulb 22.
  • the glass bulb 22 is made of barium.strontium silicate glass (soft glass having a softening point of 675. C). As shown in FIG. 2 (b), the glass bulb 22 has an elliptical cross section perpendicular to the tube axis, having a long inner diameter L1 and a short inner diameter L2. As described above, since the glass bulb 22 has an oval shape, the short inner diameter of the glass bulb 22 is disposed in the thickness direction of the backlight unit 5, that is, the short inner diameter of the glass bulb 22 is the front panel 16 against By arranging them vertically, it is possible to make the backlight unit 5 thinner. Incidentally, even in the case where the short diameter of the force glass bulb 22 whose thickness is to be increased may be disposed in parallel to the front panel 16, the long life can be realized also in this case.
  • an exhaust pipe 28 is sealed at one end (left end in the drawing) of the glass bulb 22.
  • the exhaust pipe 28 is used for evacuating the inside of the glass valve 22 and for sealing a rare gas, and is sealed after the exhaust and sealing.
  • the length Li of the portion of the exhaust pipe 28 that protrudes to the outside is 10 mm.
  • this length Li is preferably 5 mm or more and 30 mm or less, more preferably 15 mm or more and 30 mm or less. If it is less than 5 mm, sealing and cutting becomes difficult. If it is 15 mm or more and 30 mm or less, the efficiency can be improved by controlling the coldest spot. If it exceeds 30 mm, the longer it becomes, it becomes easier to break, more parts do not shine, and the commercial value decreases. Moreover, even if it exceeds 30 mm, no further improvement in efficiency can be expected.
  • Electrodes 30a, 30b are of the so-called glass bead mounting type, and are pinch sealed (crush sealed) on the glass bulb 22. Electrodes 30a and 30b are triplenoidal coils, each having a 6.5-turn electrode coil 31a and 31b, and a pair of lead wires 32a, 32b, 33a and 33b for supporting the electrode coils 31a and 31b, and the leads. It becomes a force with the bead glass 34a, 34b holding the lines 32a, 32b, 33a, 33b.
  • the electrode coils 31a and 31b are made of, for example, tungsten, and oxides of strontium, calcium, and nickel are applied as an emitter.
  • the axes of the electrode coils 31a and 31b are disposed in the long inner diameter direction, and the length L of the electrode coils 31a and 31b is longer than the short inner diameter L2. It is shorter than L1.
  • a protective film 24 made of alumina is formed on the inner surface of the glass bulb 22.
  • a phosphor layer 26 is stacked on the protective film 24. As the phosphor in the phosphor layer 26, red (Y
  • a mixture of rare earth phosphors is used.
  • the glass bulb 22 In the glass bulb 22, about 5 mg of mercury 21 and argon (Ar) having a pressure of 500 Pa at normal temperature as a buffer noble gas are sealed.
  • the mercury 21 sealed in the glass bulb 22 may be sealed in the form of an amalgam such as zinc mercury, tin mercury, bismuth, indium mercury, etc. in addition to mercury alone.
  • an amalgam such as zinc mercury, tin mercury, bismuth, indium mercury, etc. in addition to mercury alone.
  • the long inside diameter L1 of the glass bulb 22 is 17 mm
  • the short inside diameter L2 is 10 mm
  • the total length L is 1010 mm
  • the inter-electrode distance Le is 950 mm, and the tube wall load We is 0. 05 (W / cm 2 ).
  • the tube wall load is a value obtained by dividing the lamp power by the inner surface area of the portion of the glass bulb 22 corresponding to the inter-electrode distance Le.
  • the tube wall load We of the lamp 20 be defined in the range of 0.205-0. 07 (W / cm 2 ).
  • the tube wall load is greater than 0.70 (W / cm 2 )
  • the luminous flux deterioration becomes severe in a short time, and a long strain life can not be obtained.
  • the tube diameter of the lamp becomes too thick if the lamp power is fixed to obtain the necessary luminous flux, and it is not suitable for use as a backlight unit. .
  • the power is reduced by fixing the shape, it will be difficult to maintain the discharge.
  • the above-described lamp 20 has characteristics of a lamp voltage of 125 V, a lamp efficiency of 811 m / W, and an average life of 39,000 hours.
  • a method of manufacturing the lamp 20 will be described. First, prepare a straight tube glass tube whose cross section perpendicular to the tube axis is circular. After the glass tube is washed and dried, alumina is applied to the inner surface of the glass bulb by a known method and dried to form a protective film. Furthermore, the phosphor suspension is applied and dried on the protective film by a known method.
  • FIG. 4 is a view for explaining the process of deforming a glass tube whose cross section perpendicular to the tube axis is circular in cross section into an elliptical shape.
  • the cross section of the glass tube is deformed from circular to elliptical at the time of firing of the phosphor, so in order to deform the glass tube, the step of separately heating the glass tube is carried out.
  • the manufacturing process can be simplified.
  • the inner diameter of the glass tube is 15 mm
  • the dimensions of the inner diameter of the glass bulb can be adjusted to various values by changing the material of the glass bulb.
  • the phosphor in the extra portion in the glass bulb 22 is peeled off to form the phosphor layer 26 shown in FIG.
  • the electrodes 30a and 30b are sealed to the glass bulb 22 by a known pinch seal, mercury 21 and buffer rare gas are added and exhausted from the exhaust pipe 28 to seal the exhaust pipe 28. You can get a lamp 20.
  • the length L of the coil of the electrode cones 31a and 31b is longer than the length L2 of the short inner diameter of the glass bulb.
  • the lamp life will be approximately proportional to the length (number of turns) of the electrode coil. Therefore, with the configuration of the lamp 20 according to the present embodiment, it is possible to achieve longer life than the cross section circular hot cathode discharge lamp having the same thickness.
  • the backlight unit 5 can be made thinner by arranging the hot cathode type discharge lamp in the thickness direction of the backlight unit 5 by arranging the short inner diameter of the glass bulb. You can make money.
  • the conventional backlight unit uses a cold cathode discharge lamp as a light source, and the lamp efficiency of the cold cathode discharge lamp is usually about 501 m / W. The efficiency as a tot was low.
  • the backlight unit according to the present embodiment uses a cold cathode discharge lamp as a light source, and the lamp efficiency of the cold cathode discharge lamp is usually about 501 m / W. The efficiency as a tot was low.
  • the backlight unit 5 uses the hot cathode discharge lamp 20 as a light source, and the lamp efficiency of the hot cathode discharge lamp 20 is about 801 mZW, so the backlight unit 5 is said to be very efficient.
  • the distance between the lamps 20 in the housing 10 of the backlight unit 5 and the distance to the liquid crystal panel is equal to the distance between the lamps 20 disposed in the housing 10 of the knock light unit 5. It is known that the brightness unevenness of the liquid crystal display can be suppressed.
  • the shape of the glass bulb 22 is elliptical, the distance from the lamp 20 to the liquid crystal panel (not shown) can be increased with respect to the length of the electrode coils 31a and 31b. .
  • the distance between the lamps 20 arranged in the housing 10 of the backlight unit 5 is increased to a size equal to the distance from the lamp 20 to the liquid crystal panel, uneven brightness is suppressed.
  • the distance between lamps of the lamps 20 disposed in the housing 10 can be increased, and the number of lamps 20 required as light sources can be reduced. As a result, the number of parts required for the backlight unit 5 can be reduced, which contributes to the low cost of the backlight unit 5.
  • the number of the lamps 20 disposed in the housing 10 of the backlight unit 5 is the same as that of the force lamp 20 described in the configuration in which 14 lamps 20 are disposed. It may be suitably changed according to the screen size etc. of the liquid crystal display.
  • the second embodiment is different from the first embodiment in the components of the buffer noble gas and the other components are the same as the first embodiment, and therefore, the description of the parts other than the components of the buffer noble gas is omitted.
  • the inventors of the present invention conducted intensive studies to extend the life of a hot cathode discharge lamp used as a light source of a backlight unit.
  • the inventor noted that mixing the krypton in addition to argon as a buffer noble gas to increase the partial pressure ratio of krypton prolongs the lamp life.
  • the lamp life is prolonged when the partial pressure ratio of krypton is increased.
  • the emitter is less likely to scatter from the electrode coil by increasing the partial pressure ratio of krypton, which has a larger atomic weight than argon, mainly when argon is mainly used. It is because Force Tari It has been conventionally known that the lamp output (total luminous flux) decreases as the amount of packed pton is increased, so the krypton partial pressure ratio is limited to about 15%.
  • the problem that the lamp output decreases as the krypton partial pressure ratio is increased occurs when the hot cathode discharge lamp is lit in a normal temperature atmosphere. It has been found that when the lamp is disposed in the casing of the backlight unit and turned on in an atmosphere of about 50 ° C. to 70 ° C., there is no problem that the lamp output decreases.
  • FIG. 5 is a table showing the relationship between the partial pressure ratio of krypton in the buffer noble gas and the lamp life.
  • “o” indicates a state in which no moving stripes are generated
  • “X” indicates a state in which no moving stripes are generated.
  • “Luminous flux rise characteristics” indicates a good state
  • “ ⁇ ” indicates a good state
  • “X” indicates a bad state.
  • the lamp life force exceeds 50000 hours when the partial pressure ratio of krypton as a buffer noble gas is 20% or more, so it is preferable that the partial pressure ratio of krypton is 20% or more. It is.
  • the voltage division ratio of krypton is increased, the lamp voltage is decreased, so that the starting characteristics are improved and the discharge maintenance becomes easy.
  • the lamp voltage decreases and the lamp current increases as the krypton voltage division ratio is increased.
  • the electrode coil 31a, 31b needs to be heated in order to release the emitter force electron applied to the electrode coil 31a, 31b.
  • the lamp current alone can sufficiently heat the electrode coil 31a, 31b I can do it. Therefore, conventionally, the filament current is separately supplied to the electrode coils 31a and 31b, and the electrode coils 3la and 31b are heated by heat generation due to the application of the filament current. That is, as the lamp current is lower, more filament current must be applied to raise the temperature of the electrode coils 31a and 31b.
  • the filament current is separately supplied in addition to the lamp power, it is desirable to increase the lamp current as much as possible and reduce the necessary filament current from the viewpoint of reducing the power consumption.
  • the present inventors have found that by increasing the partial pressure ratio of krypton, By reducing the lamp voltage and increasing the lamp current, it was found that the required filament current can be reduced and energy loss can be suppressed.
  • the partial pressure ratio of krypton is preferably 60% or less. It should be noted that although dimming becomes more difficult when the partial pressure ratio of krypton exceeds 60%, the life becomes longer as the partial pressure ratio of krypton becomes higher, so longer life and good dimming characteristics It is desirable to determine the partial pressure ratio of krypton by weighing the requirements.
  • the partial pressure ratio of Talyton in the rare gas is preferably 60% or less because the luminous flux start-up characteristic is lowered.
  • the luminous flux rise characteristics of FIG. 5 were visually confirmed.
  • the partial pressure ratio of krypton in the noble gas is 60 It is preferable that the ratio is not more than%.
  • FIG. 6 is a schematic view showing moving stripes generated at the time of lamp dimming, and is a diagram for describing the moving stripes described above.
  • the mixing ratio of krypton is 45% or more for the rare gas sealed in the glass bulb 22. This causes the lamp voltage to drop sufficiently. Because the lamp current can be increased, a very high efficiency lamp can be obtained.
  • the partial pressure ratio of krypton when the partial pressure ratio of krypton exceeds 55%, the lamp efficiency slightly decreases by experiments, so the partial pressure ratio of krypton is 55% or less. Is desirable. This is because the krypton partial pressure ratio can suppress energy loss due to a decrease in filament current as the lamp current increases up to 45%. When the krypton partial pressure ratio exceeds 55%, the lamp current itself Is too large and is consumed as heat when the electrode coils 31a and 31b are energized, which is considered to increase energy loss.
  • the present invention can provide a long-life, high-efficiency hot cathode fluorescent lamp, a lamp unit, and a liquid crystal display device.
  • the glass bulb has been described to have an elliptical cross section perpendicular to the tube axis, but it is not limited to this and has a long inner diameter and a short inner diameter.
  • Any shape may be used.
  • it may be flat, or as shown in Fig. 7 (b), it may be rectangular.
  • the long inner diameter L1 is larger than the size of the short inner diameter L2
  • the axial length of the electrode coil can be increased.
  • the length of the electrode coil can be increased relative to the length of the short inner diameter L2, so that a long-life hot cathode discharge lamp can be provided.
  • the glass bulb 22 has been described as having a linear appearance.
  • the force S is not limited to this.
  • the glass bulb 22 has a U-shaped appearance, a U-shaped appearance, etc. It may be in the form of
  • the backlight unit has been described as an example of the lamp unit, but the invention is not limited thereto.
  • a casing and the heat according to the present embodiment disposed in the casing It may be a general lighting unit provided with a cathode discharge lamp.
  • the liquid crystal display device has been described as an example of the display device.
  • the present invention is not limited to this.
  • the display device is provided in a housing and the housing
  • the sign apparatus may be provided with the hot cathode discharge lamp of the present embodiment.
  • the present invention can be widely applied to a hot cathode discharge lamp.
  • the present invention can provide a high efficiency and long life hot cathode discharge lamp, a lamp unit, and a display device, its industrial utility value is extremely high.

Landscapes

  • Planar Illumination Modules (AREA)
  • Discharge Lamp (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

Disclosed is a hot cathode discharge lamp (20) comprising a glass bulb (22) whose cross section perpendicular to the tube axis has a flattened shape, and electrode coils (31a, 31b) arranged within the glass bulb (22) so that the axes thereof are aligned along the major diameter of the flattened shape. The length L of the electrode coils (31a, 31b) in the axis direction satisfies the following relation: L2 < L < L1, with L1 being the major inner diameter of the flattened shape of the glass bulb (22)and L2 being the minor inner diameter thereof. Also disclosed is a backlight unit (5) comprising the hot cathode discharge lamp (20) as a light source.

Description

明 細 書  Specification
熱陰極型放電ランプ、ランプユニット、および表示装置  Hot-cathode discharge lamp, lamp unit, and display device
技術分野  Technical field
[0001] 本発明は、熱陰極型放電ランプおよびこれを光源として備えるランプユニット、表示 装置に関する。 背景技術  The present invention relates to a hot cathode discharge lamp, a lamp unit including the same as a light source, and a display device. Background art
[0002] 現在、液晶ディスプレイのバックライトユニットの光源としては、冷陰極型放電ランプ が主に採用されている。冷陰極型放電ランプは、細径化に適しているので、薄型化 が要求されるバックライトユニットの光源として好適である。  At present, a cold cathode discharge lamp is mainly adopted as a light source of a backlight unit of a liquid crystal display. The cold cathode discharge lamp is suitable as a light source for a backlight unit that is required to be thin because it is suitable for reducing the diameter.
ところで、液晶ディスプレイの大型化にともなレ、、液晶ディスプレイのバックライトュニ ットの光源として用いるランプの高効率化が求められている。現在はバックライトュニ ットの光源として冷陰極型放電ランプが主に採用されているが、これらのランプよりも さらに高効率である熱陰極型放電ランプがバックライトユニットの新たな光源として注 目され始めている。  By the way, with the upsizing of the liquid crystal display, there is a demand for higher efficiency of a lamp used as a light source of a backlight unit of the liquid crystal display. At present, cold cathode discharge lamps are mainly adopted as light sources for backlight units, but hot cathode discharge lamps, which have higher efficiency than these lamps, are noted as new light sources for backlight units. I'm starting.
[0003] なお、特許文献 1には、環状ガラスバルブの横断面が扁平形状である熱陰極型放 電ランプが開示されている。こうすることにより、熱陰極型放電ランプを光源とする照 明装置の直下照度を高めることができ、もって、ランプ効率を高めることができる旨記 載されている。  [0003] Patent Document 1 discloses a hot cathode discharge lamp in which the cross section of the annular glass bulb is flat. By doing so, it is stated that the illuminance directly below the illumination device using the hot cathode discharge lamp as a light source can be increased, and thus the lamp efficiency can be improved.
また特許文献 2には、バックライトユニットの光源に用いる蛍光ランプにおいて、ガラ スバルブの横断面を楕円形にすることにより、ノ ックライトユニットの輝度を低下させる ことなく輝度の均一性を向上させる技術が開示されている。  Further, in Patent Document 2, in a fluorescent lamp used for a light source of a backlight unit, a technology for improving the uniformity of the brightness without lowering the brightness of the knock unit by making the cross section of the glass bulb elliptical. Is disclosed.
特許文献 1 :特開昭 63— 81753号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 63-81753
特許文献 2:特開 2000— 10094号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2000-10094
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0004] し力 ながら、熱陰極型放電ランプは、ランプ寿命が短ぐ寿命の点からバックライト ユニットの光源として採用するには問題がある。 本発明は、上記の点に鑑みてなされたものであり、長寿命の熱陰極型放電ランプ、 ランプユニット、および表示装置を提供することを目的としている。 However, the hot cathode discharge lamp has a problem in adopting it as a light source of the backlight unit in view of the short life of the lamp. The present invention has been made in view of the above-described points, and an object thereof is to provide a long-life hot cathode discharge lamp, a lamp unit, and a display device.
課題を解決するための手段  Means to solve the problem
[0005] 本発明者は、薄型化が要求されるバックライトユニットの光源として用いる熱陰極型 放電ランプの長寿命化をはかるために鋭意研究を重ねた。本発明者は、熱陰極型放 電ランプの寿命は、電極コイルに塗布されるェミッタの量に依存していることに着目し た。すなわち本発明者は、電極コイル単位長さ当たりに塗布されるェミッタの量が同 じであれば、電極コイルの長さに比例して寿命が延びることに注目した。しかしながら 、熱陰極型放電ランプの電極コイルの長さを大きくすると、これにともなって熱陰極型 放電ランプの外囲器であるガラスバルブの径も大きくする必要がある。ところ力 バッ クライトユニットは薄型化が求められているため、ガラスバルブの径を大きくすることは 望まれない。  The inventor of the present invention has conducted intensive studies in order to prolong the life of a hot cathode discharge lamp used as a light source of a backlight unit which is required to be thin. The inventor noted that the lifetime of the hot cathode discharge lamp depends on the amount of emitter applied to the electrode coil. That is, the inventor noted that if the amount of emitter applied per unit length of electrode coil is the same, the life is extended in proportion to the length of the electrode coil. However, when the length of the electrode coil of the hot cathode discharge lamp is increased, the diameter of the glass bulb, which is an envelope of the hot cathode discharge lamp, must be increased accordingly. However, as back light units are required to be thinner, it is not desirable to increase the diameter of the glass bulb.
[0006] そこで、本発明に係る熱陰極放電ランプは、管軸に垂直な断面が扁平形状である ガラスバルブと、扁平形状の長径方向に軸を向けて前記ガラスバルブ内に配設され る電極コイルとを備え、前記電極コイルの軸方向の長さ Lは、前記ガラスバルブの扁 平形状の長内径の長さを Ll、短内径の長さを L2としたとき、 L2< L< L1の関係を満 たしてレ、ることを特徴としてレ、る。  Therefore, in a hot cathode discharge lamp according to the present invention, a glass bulb whose cross section perpendicular to the tube axis is a flat shape, and an electrode disposed in the glass bulb with the axis directed in the long diameter direction of the flat shape. And the axial length L of the electrode coil is L2 <L <L1 where L1 is the length of the long inner diameter of the flat shape of the glass bulb and L2 is the length of the short inner diameter. It is characterized by the fact that the relationship is fulfilled and it is a feature.
発明の効果  Effect of the invention
[0007] 上記構成においては、ガラスバルブが扁平形状をしているので、熱陰極型放電ラン プをガラスバルブの短内径をバックライトユニットの厚み方向に配することによって、 ノくックライトユニットの薄型化をはかることができる。また、本発明に係る熱陰極型放 電ランプは、電極コイルの軸をガラスバルブの長径方向に配して、電極コイルの長さ Lをガラスバルブの短内径の長さ L2より長くしているので、同じ厚みを有する断面円 形(直径 L2)の熱陰極型放電ランプよりも、長寿命化をはかることができる。  In the above configuration, since the glass bulb has a flat shape, the hot cathode discharge lamp is disposed in the thickness direction of the backlight unit by arranging the short inner diameter of the glass bulb. It is possible to reduce the thickness. In the hot cathode discharge lamp according to the present invention, the axis of the electrode coil is disposed in the major axis direction of the glass bulb, and the length L of the electrode coil is longer than the length L2 of the short inner diameter of the glass bulb. Therefore, the life can be extended as compared with the cross-sectional circular (diameter L2) hot cathode discharge lamp having the same thickness.
[0008] なお、本明細書において「扁平形状」とは、断面円形のガラス管を上下方向につぶ して、上下方向の内径を短内径とし、左右方向の内径を長内径としたものであって、 輪郭に対向する 2つの平らな部分とこれらを繋ぐ曲線部分とを含む形状の他に、輪 郭のすべてが曲線で表される楕円形状をも含むものとする。 また、本発明者は、バックライトユニット用の熱陰極型放電ランプを長寿命にすべく 鋭意研究を行った。本発明者は、緩衝用希ガスとしてクリプトンの分圧比を増大する と寿命が長くなることに注目した。ところが、クリプトンの分圧比を増大すると、ランプ 出力(全光束)が低下するということが従来より知られており、そのためクリプトンの分 圧比は 15%程度とするのが限界であった。し力 ながら、本発明者は、クリプトンの 分圧比を増大するとランプ出力が低下するという問題は、熱陰極放電ランプが常温 の雰囲気中で点灯される場合に生じるものであり、バックライトユニットの筐体内に配 されて 50°C〜70°C程度の雰囲気中で点灯される場合には、このランプ出力が低下 する問題は生じないことを見出した。 In the present specification, “flat shape” means that a glass tube having a circular cross section is squeezed in the vertical direction, and the inner diameter in the vertical direction is short and the inner diameter in the horizontal direction is long. In addition to the shape including the two flat portions facing the contour and the curved portion connecting them, it also includes an elliptical shape in which all the contours are represented by a curve. In addition, the inventor of the present invention conducted intensive studies to extend the life of a hot cathode discharge lamp for a backlight unit. The inventor noted that increasing the partial pressure ratio of krypton as a buffer noble gas lengthens the life. However, it has been known that the lamp output (total luminous flux) decreases when the krypton partial pressure ratio is increased, so the krypton partial pressure ratio is limited to about 15%. However, the inventor found that the problem that the lamp output decreases as the krypton partial pressure ratio is increased occurs when the hot cathode discharge lamp is turned on in a normal temperature atmosphere, and the case of the backlight unit is It has been found that when the lamp is placed in the body and turned on in an atmosphere of about 50 ° C. to 70 ° C., there is no problem that the lamp output decreases.
[0009] そこで、筐体内に配設される熱陰極型蛍光ランプであって、前記ガラスバルブ内に は、希ガスが封入されており、前記希ガスには、クリプトンが分圧比で 20%以上含ま れていることが好ましい。  Therefore, a hot cathode fluorescent lamp disposed in a housing, and a rare gas is enclosed in the glass bulb, and the rare gas contains 20% or more of krypton as a partial pressure ratio. It is preferable to be included.
上記構成では、クリプトンが分圧比で 20%以上封入されているので、従来よりもラン プ寿命が長くなるという効果が得られる。また、本発明に係る熱陰極型放電ランプは 、ランプユニットの筐体内に配設され、ランプが配設される雰囲気が室温よりも高温で あるので、緩衝用希ガスとしてクリプトンが封入されていてもランプ出力が良好である 。また、クリプトンの分圧比が高まると、ランプ電圧が低下するので、始動特性が向上 すると共に、放電維持が容易になるというメリットも挙げられる。  In the above-described configuration, since krypton is enclosed by 20% or more in the partial pressure ratio, the effect that the lamp life is longer than the conventional one can be obtained. Further, the hot cathode discharge lamp according to the present invention is disposed in the housing of the lamp unit, and since the atmosphere in which the lamp is disposed is higher than room temperature, krypton is enclosed as a buffer noble gas. Also the lamp output is good. In addition, when the voltage division ratio of krypton is increased, the lamp voltage is decreased, so that the starting characteristic is improved and the discharge maintenance can be facilitated.
[0010] ここで、前記クリプトンの分圧比は、 60%以下であることが好適である。希ガス内の クリプトンの分圧比が 60。/0を超えると、ランプを調光しづらくなるからである。また、タリ プトンは、アルゴンと比較して原子量が大きいため、クリプトンの分圧比が増大するほ ど、前記外囲器に封入されている水銀が拡散しに《なるため、ランプ始動時力もの 光束の立ち上がり特性が低下するので、希ガス内のクリプトンの分圧比は 60%以下 であることが好適である。さらに、クリプトンは、アルゴンと比較して非常に高価である ので、必要以上にクリプトンを封入することは、意味の無いコストアップにつながるの で、希ガス内のクリプトンの分圧比は 60%以下であることが好適である。カロえて、希ガ ス内のクリプトンの分圧比が 60%を超えると、ランプ調光点灯時にいわゆる移動縞が 発生してしまうからである。 [0011] また、前記クリプトンの分圧比は、 45%以上であることがより望ましい。これにより、ラ ンプ電圧が低下してランプ電流を増大させることができ、非常に高効率のランプが得 られる力 である。 Here, the partial pressure ratio of krypton is preferably 60% or less. The partial pressure ratio of krypton in the noble gas is 60. This is because it becomes difficult to dim the lamp if / 0 is exceeded. In addition, since Talypton has a larger atomic weight compared to argon, the mercury enclosed in the envelope diffuses as the krypton partial pressure ratio increases, so the luminous flux at lamp starting is also increased. The partial pressure ratio of krypton in the rare gas is preferably 60% or less because the rising characteristics of Furthermore, since krypton is very expensive compared to argon, enclosing krypton more than necessary leads to meaningless cost increase, so the partial pressure ratio of krypton in the noble gas is 60% or less. Is preferred. This is because when the partial pressure ratio of krypton in the rare gas exceeds 60%, so-called moving stripes are generated at the time of lamp lighting. Further, the partial pressure ratio of krypton is more preferably 45% or more. As a result, the lamp voltage can be decreased to increase the lamp current, which is a power that can obtain a very high efficiency lamp.
ここで、前記クリプトンの分圧比は、 55%以下であることがより望ましい。クリプトンの 分圧比が 55%を超えると、ランプ効率が低下することが実験により確認されているか らである。  Here, the partial pressure ratio of krypton is more preferably 55% or less. It is because experiments have shown that the lamp efficiency decreases when the krypton partial pressure ratio exceeds 55%.
[0012] 本発明に係るランプユニットは、筐体と、当該筐体内に配設される上記いずれかの 熱陰極型放電ランプとを備えることを特徴としている。これにより、高効率で長寿命の ランプユニットを得ること力 Sできる。  A lamp unit according to the present invention is characterized by including a housing and any one of the above-mentioned hot cathode discharge lamps disposed in the housing. This makes it possible to obtain a lamp unit with high efficiency and long life S.
本発明に係る表示装置は、上記ランプユニットを光源として備えることを特徴として いる。これにより、消費電力が低ぐ長寿命かつ高効率の表示装置を得ることができる  A display device according to the present invention includes the lamp unit as a light source. This makes it possible to obtain a display device with long life and high efficiency with low power consumption.
[0013] 本発明に係る他の表示装置は、筐体と、当該筐体内に配設される上記いずれかの 熱陰極型放電ランプとを備えることを特徴としている。これにより、消費電力が低ぐ長 寿命かつ高効率の表示装置を得ることができる。 Another display device according to the present invention is characterized by comprising a housing and any one of the above-mentioned hot cathode discharge lamps disposed in the housing. As a result, it is possible to obtain a display device with a long life and high efficiency with low power consumption.
図面の簡単な説明  Brief description of the drawings
[0014] [図 1]図 1は本実施の形態に係るアスペクト比 16 : 9の液晶表示装置の構成を示す概 略斜視図である。  FIG. 1 is a schematic perspective view showing a configuration of a liquid crystal display device with an aspect ratio of 16: 9 according to the present embodiment.
[図 2]図 2は本実施の形態に係るバックライトユニットの構成を示す概略斜視図である  [FIG. 2] FIG. 2 is a schematic perspective view showing the configuration of the backlight unit according to the present embodiment.
[図 3]図 3は、本実施の形態に係る熱陰極型放電ランプの構成を示す図であって、図 3 (a)は平面断面図、図 3 (b)は A— A断面で切断したときの横断面図である。 [FIG. 3] FIG. 3 is a diagram showing the configuration of the hot cathode discharge lamp according to the present embodiment, and FIG. 3 (a) is a plan sectional view, and FIG. 3 (b) is a cross section taken along the A-A section. It is a cross-sectional view at the time of
[図 4]図 4は、管軸に垂直な断面が円形状であるガラス管を、断面楕円形状に変形す る工程を説明する図である。  [FIG. 4] FIG. 4 is a view for explaining the process of deforming a glass tube whose cross section perpendicular to the tube axis is circular in cross section into an elliptical shape.
[図 5]図 5は、緩衝用希ガス中のクリプトンの分圧比とランプ寿命との関係を示す表で ある。  [FIG. 5] FIG. 5 is a table showing the relationship between the partial pressure ratio of krypton in the buffer noble gas and the lamp life.
[図 6]図 6は、ランプ調光点灯時に生じる移動縞を示す模式図である。  [FIG. 6] FIG. 6 is a schematic view showing movement stripes generated at the time of lamp light control lighting.
[図 7]図 7は、変形例に係るガラスバルブの断面図である。 符号の説明 [FIG. 7] FIG. 7 is a cross-sectional view of a glass bulb according to a modification. Explanation of sign
[0015] 1 ノ ッタフイトユニット  [0015] 1 knotter unit
20 熱陰極型放電ランプ  20 hot cathode discharge lamp
21 水銀  21 Mercury
22 ガラスバルブ  22 glass bulb
24 保護膜  24 protective film
26 蛍光体層  26 Phosphor layer
31a, 31b 電極コイル  31a, 31b electrode coil
L 電極コイルの長さ  Length of L electrode coil
LI ガラスバルブの長内径の長さ  Length of long inner diameter of LI glass bulb
L2 ガラスバルブの短内径の長さ  Length of short inner diameter of L2 glass bulb
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、本発明の実施の形態に係る熱陰極放電ランプ、バックライトユニット、および 液晶表示装置について、図面を参照しながら説明する。 Hereinafter, a hot cathode discharge lamp, a backlight unit, and a liquid crystal display device according to an embodiment of the present invention will be described with reference to the drawings.
<液晶表示装置の構成 >  <Configuration of Liquid Crystal Display Device>
はじめに、図 1を参照しながら本実施の形態に係る液晶表示装置の構成について 説明する。図 1は、本発明に係る液晶表示装置を示す図であり、内部の様子がわか るように、一部を切り欠いている。  First, the configuration of the liquid crystal display device according to the present embodiment will be described with reference to FIG. FIG. 1 is a view showing a liquid crystal display device according to the present invention, in which a part is cut away so that the internal state can be seen.
[0017] 液晶表示装置 1は、例えば、液晶カラーテレビであり、液晶画面ユニット 3とバックラ イトユニット 5とが筐体 4に組み込まれてなる。液晶画面ユニット 3は、例えば、カラーフ ィルタ基板、液晶、 TFT基板、駆動モジュール等(図示せず)を備え、液晶画面ュニ ット 3の外部力 の画像信号に基づいてカラー画像を液晶画面ユニット 3の画面 6に 表示する。 The liquid crystal display device 1 is, for example, a liquid crystal color television, and a liquid crystal display unit 3 and a backlight unit 5 are incorporated in a housing 4. The liquid crystal screen unit 3 includes, for example, a color filter substrate, a liquid crystal, a TFT substrate, a drive module, etc. (not shown), and a color image is displayed on the liquid crystal screen unit based on the image signal of the external force of the liquid crystal screen 3 Displayed on screen 6 of 3.
[0018] <バックライトユニットの構成 >  <Configuration of Backlight Unit>
はじめに、図 2を参照しながら本実施の形態に係るバックライトユニットの構成につ いて説明する。図 2は、本実施の形態に係るアスペクト比 16 : 9の液晶ディスプレイ用 ノ ックライトユニット 5の構成を示す概略斜視図である。同図において内部の構造を 示すために前面パネル 16の一部を切り欠レ、て示してレ、る。 [0019] 図 2に示すように、バックライトユニット 5は、複数の熱陰極型放電ランプ 20と、開口 部を有しこれらのランプ 20を収納する筐体 10と、この筐体 10の開口部を覆う前面パ ネル 16とを備える。 First, the configuration of the backlight unit according to the present embodiment will be described with reference to FIG. FIG. 2 is a schematic perspective view showing the configuration of the liquid crystal display knock light unit 5 with an aspect ratio of 16: 9 according to the present embodiment. In order to show the internal structure in the same figure, a part of the front panel 16 is cut away, and is shown. As shown in FIG. 2, the backlight unit 5 includes a plurality of hot cathode discharge lamps 20, a case 10 having an opening and containing the lamps 20, and an opening of the case 10 And a front panel 16 covering the
筐体 10は、例えば、ポリエチレンテレフタレート(PET)樹脂製であって、その内面 1 1に銀などの金属が蒸着されて反射面が形成されてレ、る。  The housing 10 is made of, for example, polyethylene terephthalate (PET) resin, and a metal such as silver is vapor-deposited on its inner surface 11 to form a reflective surface.
[0020] ランプ 20は直管状をしており、本実施の形態では、 14本のランプ 20が筐体 10内に 直下方式で配設され、電気的に並列に接続されている。ランプ 20は、図示しない点 灯回路によって定電流制御される。なお、ランプ 20の構成については後述する。 筐体 10の開口部は、拡散板 13、拡散シート 14およびレンズシート 15を積層してな る透光性の前面パネル 16で覆われており、内部にちりや埃などの異物が入り込まな レ、ように密閉されている。 The lamps 20 have a straight tubular shape, and in the present embodiment, the fourteen lamps 20 are disposed in a direct system in the housing 10 and electrically connected in parallel. The lamp 20 is constant current controlled by a lighting circuit not shown. The configuration of the lamp 20 will be described later. The opening of the case 10 is covered with a translucent front panel 16 in which the diffusion plate 13, the diffusion sheet 14 and the lens sheet 15 are laminated, and foreign matters such as dust and dirt do not get inside. , As sealed.
[0021] 前面パネル 16における拡散板 13および拡散シート 14は、ランプ 20から発せられ た光を散舌い拡散させるものであり、レンズシート 15は、当該シート 15の法線方向へ 光をそろえるものであって、これらによりランプ 20力 発せられた光が前面パネル 16 の表面 (発光面)の全体に亘り均一に前方を照射するように構成されている。 The diffuser plate 13 and the diffuser sheet 14 in the front panel 16 diffuse and diffuse the light emitted from the lamp 20, and the lens sheet 15 aligns the light in the normal direction of the sheet 15. They are configured such that the light emitted by the lamp 20 forces the light forwardly uniformly over the entire surface (light emitting surface) of the front panel 16.
<第 1の実施の形態 >  First Embodiment
[熱陰極型放電ランプの構成]  [Configuration of hot cathode discharge lamp]
つぎに、本発明の第 1の実施の形態に係る熱陰極型放電ランプについて説明する 。図 3は、本実施の形態に係る熱陰極型放電ランプ(以下、単に「ランプ」とレ、う場合も ある。)20の構成を示す図であって、図 3 (a)は平面断面図、図 3 (b)は A—A断面で 切断したときの横断面図である。  Next, a hot cathode discharge lamp according to a first embodiment of the present invention will be described. FIG. 3 is a view showing the configuration of a hot cathode discharge lamp (hereinafter, may be simply referred to as “lamp”) 20 according to the present embodiment, and FIG. 3 (a) is a plan sectional view Fig. 3 (b) is a cross-sectional view taken along the line A-A.
[0022] ランプ 20は、直管状のガラスバルブ 22と、ガラスバルブ 22内の両端に配設された 一対の電極 30a, 30bとを有してレ、る。 The lamp 20 has a straight tubular glass bulb 22 and a pair of electrodes 30 a and 30 b disposed at both ends in the glass bulb 22.
ガラスバルブ 22は、バリウム.ストロンチウムシリケートガラス(軟化点 675。Cの軟質 ガラス)製である。図 2 (b)に示すように、ガラスバルブ 22は、管軸に垂直な断面は、 長内径 L1と短内径 L2とを有する楕円形をしている。このように、ガラスバルブ 22が楕 円形状をしているので、ランプ 20をガラスバルブ 22の短内径をバックライトユニット 5 の厚み方向に配する、すなわち、ガラスバルブ 22の短内径を前面パネル 16に対し て垂直に配することによって、バックライトユニット 5の薄型化をはかることができる。 なお、厚みは増すこととなる力 ガラスバルブ 22の短径を前面パネル 16に対して平 行に配してもよぐこの場合においても長寿命化が実現できる。 The glass bulb 22 is made of barium.strontium silicate glass (soft glass having a softening point of 675. C). As shown in FIG. 2 (b), the glass bulb 22 has an elliptical cross section perpendicular to the tube axis, having a long inner diameter L1 and a short inner diameter L2. As described above, since the glass bulb 22 has an oval shape, the short inner diameter of the glass bulb 22 is disposed in the thickness direction of the backlight unit 5, that is, the short inner diameter of the glass bulb 22 is the front panel 16 Against By arranging them vertically, it is possible to make the backlight unit 5 thinner. Incidentally, even in the case where the short diameter of the force glass bulb 22 whose thickness is to be increased may be disposed in parallel to the front panel 16, the long life can be realized also in this case.
[0023] また、ガラスバルブ 22の一端(図中では左側端部)には、排気管 28が封着されてレ、 る。この排気管 28は、ガラスバルブ 22内を排気したり希ガスを封入するときに使用さ れ、上記排気.封入の後に封着されたものである。排気管 28をガラスバルブ 22の両 端ではなく一端に設けることにより、最冷点制御がし易くなる。つまり両端に設けると 最冷点箇所がどちらにできるか分からないためである。  Further, an exhaust pipe 28 is sealed at one end (left end in the drawing) of the glass bulb 22. The exhaust pipe 28 is used for evacuating the inside of the glass valve 22 and for sealing a rare gas, and is sealed after the exhaust and sealing. By providing the exhaust pipe 28 at one end of the glass bulb 22 instead of both ends, the cold spot control can be facilitated. In other words, it is because it does not know which cold spot part can be made if it is provided at both ends.
[0024] 排気管 28のうち外部に突出した部分の長さ Liは 10mmとしている。ここで、この長 さ Liは 5mm以上 30mm以下が好ましぐ 15mm以上 30mm以下がより好ましレ、。 5 mm未満であると封止切りが困難となってしまう。 15mm以上 30mm以下であると最 冷点箇所の制御により効率を向上することができる。 30mmを超えると長くなる分、割 れやすくなつたり、光らない部分が多くなり商品価値が低下する。また、 30mmを超え て長くしても、それ以上の効率向上は望めないためである。  The length Li of the portion of the exhaust pipe 28 that protrudes to the outside is 10 mm. Here, this length Li is preferably 5 mm or more and 30 mm or less, more preferably 15 mm or more and 30 mm or less. If it is less than 5 mm, sealing and cutting becomes difficult. If it is 15 mm or more and 30 mm or less, the efficiency can be improved by controlling the coldest spot. If it exceeds 30 mm, the longer it becomes, it becomes easier to break, more parts do not shine, and the commercial value decreases. Moreover, even if it exceeds 30 mm, no further improvement in efficiency can be expected.
[0025] 電極 30a, 30bは、いわゆるガラスビーズマウント方式のものであり、ガラスバルブ 2 2にピンチシール(圧壊封止)されている。また、電極 30a, 30bは、トリプノレコイルで 6 . 5ターンの電極コイル 31a, 31bと、この電極コイル 31a, 31bを架持する一対のリー ド線 32a, 32b, 33a, 33bと、このリード線 32a, 32b, 33a, 33bを保持するビーズガ ラス 34a, 34bと力らなる。電極コイル 31a, 31bは、例えばタングステン製であり、エミ ッタとして、ストロンチウム、カルシウム、ノ リウムの酸化物が塗布されている。  The electrodes 30a, 30b are of the so-called glass bead mounting type, and are pinch sealed (crush sealed) on the glass bulb 22. Electrodes 30a and 30b are triplenoidal coils, each having a 6.5-turn electrode coil 31a and 31b, and a pair of lead wires 32a, 32b, 33a and 33b for supporting the electrode coils 31a and 31b, and the leads. It becomes a force with the bead glass 34a, 34b holding the lines 32a, 32b, 33a, 33b. The electrode coils 31a and 31b are made of, for example, tungsten, and oxides of strontium, calcium, and nickel are applied as an emitter.
[0026] 図 3 (b)に示すように、電極コイル 31a, 31bの軸は、長内径方向に配され、電極コ ィル 31a, 31bの長さ Lは、短内径 L2より長ぐ長内径 L1より短い。  As shown in FIG. 3 (b), the axes of the electrode coils 31a and 31b are disposed in the long inner diameter direction, and the length L of the electrode coils 31a and 31b is longer than the short inner diameter L2. It is shorter than L1.
ガラスバルブ 22の内面には、アルミナからなる保護膜 24が形成されている。保護膜 24上には、蛍光体層 26が積層されている。蛍光体層 26中の蛍光体としては、赤 (Y  A protective film 24 made of alumina is formed on the inner surface of the glass bulb 22. A phosphor layer 26 is stacked on the protective film 24. As the phosphor in the phosphor layer 26, red (Y
2 2
〇: Eu)、緑(LaP〇: Ce,Tb )および青(BaMg Al O : Eu、 Mn)の各色を発光す:: Eu), green (LaP〇: Ce, Tb) and blue (BaMg Al 2 O: Eu, Mn) are emitted
3 4 3 2 16 27 3 4 3 2 16 27
る希土類蛍光体を混合したものを用いている。  A mixture of rare earth phosphors is used.
[0027] ガラスバルブ 22内には、約 5mgの水銀 21と、緩衝用希ガスとして常温における圧 力 500Paのアルゴン(Ar)が封入されてレ、る。 なお、ガラスバルブ 22内に封入する水銀 21は、水銀単体のほかに、例えば亜鉛水 銀、スズ水銀、ビスマス、インジウム水銀などのアマルガムの形態で封入してもよい。 ここで、 45インチの液晶ディスプレイ用バックライトユニットに使用する場合のランプ 20の各寸法等の仕様にっレ、て述べる。 In the glass bulb 22, about 5 mg of mercury 21 and argon (Ar) having a pressure of 500 Pa at normal temperature as a buffer noble gas are sealed. The mercury 21 sealed in the glass bulb 22 may be sealed in the form of an amalgam such as zinc mercury, tin mercury, bismuth, indium mercury, etc. in addition to mercury alone. Here, the specifications of the dimensions and the like of the lamp 20 in the case of use in a 45-inch liquid crystal display backlight unit will be described.
[0028] ガラスバルブ 22の長内径 L1は 17mm、短内径 L2は 10mm、全長 L は 1010mm  [0028] The long inside diameter L1 of the glass bulb 22 is 17 mm, the short inside diameter L2 is 10 mm, and the total length L is 1010 mm
o  o
、電極間距離 Leは 950mm、管壁負荷 Weは 0. 05 (W/cm2)である。なお、管壁負 荷は、ランプ電力を、ガラスバルブ 22のうち電極間距離 Leに相当する部分の内表面 積で除した値である。 The inter-electrode distance Le is 950 mm, and the tube wall load We is 0. 05 (W / cm 2 ). The tube wall load is a value obtained by dividing the lamp power by the inner surface area of the portion of the glass bulb 22 corresponding to the inter-electrode distance Le.
なお、長寿命のランプを得るためには、このランプ 20の管壁負荷 Weは 0. 025-0 . 07 (W/cm2)の範囲に規定することが好ましい。 In order to obtain a long-life lamp, it is preferable that the tube wall load We of the lamp 20 be defined in the range of 0.205-0. 07 (W / cm 2 ).
[0029] 管壁負荷が 0. 07 (W/cm2)より大きくなると、短時間で光束劣化が激しくなり長レヽ 寿命が得られない。また、 0. 025 (W/cm2)より小さくなると、必要な光束を得るため にランプ電力を固定したままではランプの管径が太くなり過ぎ、バックライトユニットの 使用としては適さないからである。また、形状固定で電力を低減すると、放電維持が 困難となる。 When the tube wall load is greater than 0.70 (W / cm 2 ), the luminous flux deterioration becomes severe in a short time, and a long strain life can not be obtained. Also, if it becomes smaller than 0.025 (W / cm 2 ), the tube diameter of the lamp becomes too thick if the lamp power is fixed to obtain the necessary luminous flux, and it is not suitable for use as a backlight unit. . Also, if the power is reduced by fixing the shape, it will be difficult to maintain the discharge.
[0030] 上記形態のランプ 20は、ランプ電圧 125V、ランプ効率 811m/Wで、平均寿命 39 000時間という特性を有する。  The above-described lamp 20 has characteristics of a lamp voltage of 125 V, a lamp efficiency of 811 m / W, and an average life of 39,000 hours.
[ランプの製造方法]  [Method of manufacturing lamp]
つぎに、ランプ 20の製造方法について説明する。まず、管軸に垂直な断面が円形 状をしている直管ガラス管を用意する。ガラス管を洗浄 ·乾燥させた後、公知の方法 によりガラスバルブの内面にアルミナを塗布 ·乾燥させて保護膜を形成する。さらに、 公知の方法により保護膜上に、蛍光体懸濁液を塗布して乾燥させる。  Next, a method of manufacturing the lamp 20 will be described. First, prepare a straight tube glass tube whose cross section perpendicular to the tube axis is circular. After the glass tube is washed and dried, alumina is applied to the inner surface of the glass bulb by a known method and dried to form a protective film. Furthermore, the phosphor suspension is applied and dried on the protective film by a known method.
[0031] そして、当該ガラス管を電気炉で約 600°Cで加熱して蛍光体を焼成する。焼成した のち、ガラス管の温度が下がらないように保ったまま、断面形状を変形させる。図 4は 、管軸に垂直な断面が円形状であるガラス管を、断面楕円形状に変形する工程を説 明する図である。 Then, the glass tube is heated at about 600 ° C. in an electric furnace to bake the phosphor. After firing, the cross-sectional shape is deformed while keeping the temperature of the glass tube not falling. FIG. 4 is a view for explaining the process of deforming a glass tube whose cross section perpendicular to the tube axis is circular in cross section into an elliptical shape.
図 4 (a)に示すような、ステンレス鋼からなり楕円中空の金型 25a, 25bを用意する。 図 4 (b)に示すように、ガラス管の温度を保温した状態で、ガラス管を金型 25a, 25b の間に挟むように設置する。そして、図 4 (c)のように、金型 25aの自重によりガラス管 23の断面を楕円形状に変形させる。これにより、図 4 (d)に示すような断面楕円形状 のガラスバルブ 22を得ることができる。 Prepare oval hollow molds 25a and 25b made of stainless steel as shown in Fig. 4 (a). As shown in Fig. 4 (b), with the temperature of the glass tube kept warm, the glass tube is used as a mold 25a, 25b. Place it between the two. Then, as shown in FIG. 4 (c), the cross section of the glass tube 23 is deformed into an elliptical shape by the weight of the mold 25a. Thereby, a glass bulb 22 having an elliptical cross section as shown in FIG. 4 (d) can be obtained.
[0032] 上記方法では、蛍光体の焼成時にガラス管の断面を円形から楕円形に変形させて いるので、ガラス管を変形させるために、別途ガラス管を加熱する工程を実施する場 合よりも製造工程を簡略化することできる。  In the above method, the cross section of the glass tube is deformed from circular to elliptical at the time of firing of the phosphor, so in order to deform the glass tube, the step of separately heating the glass tube is carried out. The manufacturing process can be simplified.
上記において、ガラス管の内径が 15mmのものを用いると、長内径 Ll = 17mm、 短内径 L2 = 10mmの断面楕円形状のガラスバルブを得ることができる。また、ガラス 管の内径が 20mmのものを用いると、長内径 Ll = 24mm、短内径 L2 = 16mmの断 面楕円形状のガラスバルブを得ることができる。なお、ガラスバルブの各内径の寸法 は、ガラスバルブの材質を変えることによって、様々な値に調整することができる。  In the above, when the inner diameter of the glass tube is 15 mm, it is possible to obtain a glass bulb having a cross-sectional oval shape with a long inner diameter Ll = 17 mm and a short inner diameter L2 = 10 mm. In addition, when the glass tube having an inner diameter of 20 mm is used, it is possible to obtain a cross-sectional oval glass bulb having a long inner diameter Ll = 24 mm and a short inner diameter L2 = 16 mm. The dimensions of the inner diameter of the glass bulb can be adjusted to various values by changing the material of the glass bulb.
[0033] その後、ガラスバルブ 22内の余分な箇所の蛍光体を剥ぎ取ることにより、図 3に示 す蛍光体層 26が形成される。  Thereafter, the phosphor in the extra portion in the glass bulb 22 is peeled off to form the phosphor layer 26 shown in FIG.
そして、電極 30a, 30bを公知のピンチシールによりガラスバルブ 22に封着し、水銀 21、緩衝用希ガスを入れて排気管 28より排気して、排気管 28を封止することによつ てランプ 20を得ることができる。  Then, the electrodes 30a and 30b are sealed to the glass bulb 22 by a known pinch seal, mercury 21 and buffer rare gas are added and exhausted from the exhaust pipe 28 to seal the exhaust pipe 28. You can get a lamp 20.
[0034] [本実施の形態の効果]  [Effect of this embodiment]
上記のように、電極コィノレ 31a, 31bの軸をガラスバルブ 22の長径方向に向けて、 電極コィノレ 31a, 31bコイルの長さ Lをガラスバルブの短内径の長さ L2より長くしてい る。ここで、単位長さ当たりの電極コイルに塗布されるェミッタの量が同じである場合 には、ランプ寿命は、電極コイルの長さ(ターン数)に略比例することになる。したがつ て、本実施の形態に係るランプ 20の構成とすることにより、同じ厚みを有する断面円 形の熱陰極型放電ランプよりも、長寿命化をはかることができる。  As described above, with the axes of the electrode cones 31a and 31b directed in the major axis direction of the glass bulb 22, the length L of the coil of the electrode cones 31a and 31b is longer than the length L2 of the short inner diameter of the glass bulb. Here, if the amount of emitter applied to the electrode coil per unit length is the same, the lamp life will be approximately proportional to the length (number of turns) of the electrode coil. Therefore, with the configuration of the lamp 20 according to the present embodiment, it is possible to achieve longer life than the cross section circular hot cathode discharge lamp having the same thickness.
[0035] また、ガラスバルブが扁平形状をしているので、熱陰極型放電ランプをガラスバル ブの短内径をバックライトユニット 5の厚み方向に配することによって、バックライトュニ ット 5の薄型化をはかることができる。  In addition, since the glass bulb has a flat shape, the backlight unit 5 can be made thinner by arranging the hot cathode type discharge lamp in the thickness direction of the backlight unit 5 by arranging the short inner diameter of the glass bulb. You can make money.
また、従来のバックライトユニットは、冷陰極型放電ランプを光源として用いており、 冷陰極型放電ランプのランプ効率は、通常約 501m/Wであるため、バックライトュニ ットとしての効率は低かった。それに対して、本実施の形態に係るバックライトユニットIn addition, the conventional backlight unit uses a cold cathode discharge lamp as a light source, and the lamp efficiency of the cold cathode discharge lamp is usually about 501 m / W. The efficiency as a tot was low. On the other hand, the backlight unit according to the present embodiment
5は、光源として熱陰極型放電ランプ 20を採用しており、熱陰極型放電ランプ 20のラ ンプ効率は約 801mZWであるため、バックライトユニット 5は非常に高効率であるとい んる。 5 uses the hot cathode discharge lamp 20 as a light source, and the lamp efficiency of the hot cathode discharge lamp 20 is about 801 mZW, so the backlight unit 5 is said to be very efficient.
[0036] さらに、バックライトユニット 5の筐体 10内のランプ 20力 液晶パネルまでの距離と、 ノ ックライトユニット 5の筐体 10内に配される各ランプ 20のランプ間距離を等しくする と、液晶ディスプレイの輝度むらを抑制できることが知られている。本実施の形態では 、ガラスバルブ 22の形状を楕円形にしているので、電極コイル 31a, 31bの長さに対 して、ランプ 20から液晶パネル (不図示)までの距離を大きくすることができる。これに 伴レ、、バックライトユニット 5の筐体 10内に配される各ランプ 20のランプ間距離をラン プ 20から液晶パネルまでの距離と等しい大きさまで大きくしても輝度むらが抑制され るので、筐体 10内に配されるランプ 20のランプ間距離を大きくすることができ、光源 として必要なランプ 20の本数を低減することができる。これにより、バックライトユニット 5に必要な部品点数を削減することができるので、バックライトユニット 5の低コストィ匕 に寄与することになる。  Furthermore, if the distance between the lamps 20 in the housing 10 of the backlight unit 5 and the distance to the liquid crystal panel is equal to the distance between the lamps 20 disposed in the housing 10 of the knock light unit 5. It is known that the brightness unevenness of the liquid crystal display can be suppressed. In the present embodiment, since the shape of the glass bulb 22 is elliptical, the distance from the lamp 20 to the liquid crystal panel (not shown) can be increased with respect to the length of the electrode coils 31a and 31b. . Along with this, even if the distance between the lamps 20 arranged in the housing 10 of the backlight unit 5 is increased to a size equal to the distance from the lamp 20 to the liquid crystal panel, uneven brightness is suppressed. Therefore, the distance between lamps of the lamps 20 disposed in the housing 10 can be increased, and the number of lamps 20 required as light sources can be reduced. As a result, the number of parts required for the backlight unit 5 can be reduced, which contributes to the low cost of the backlight unit 5.
[0037] なお、図 2においては、ランプ 20を 14本配設した構成について説明している力 ラ ンプ 20は、バックライトユニット 5の筐体 10内に配設されるランプ 20の本数は、液晶 表示装置の画面サイズ等に応じて適宜変更されてもよい。  In FIG. 2, the number of the lamps 20 disposed in the housing 10 of the backlight unit 5 is the same as that of the force lamp 20 described in the configuration in which 14 lamps 20 are disposed. It may be suitably changed according to the screen size etc. of the liquid crystal display.
<第 2の実施の形態 >  Second Embodiment
つぎに本発明の第 2の実施の形態に係る熱陰極型放電ランプについて説明する。 第 2の実施の形態は、第 1の実施の形態に対して、緩衝用希ガスの成分が異なり、他 は同じであるので、緩衝用希ガスの成分を除く部分についての説明は省略する。  Next, a hot cathode discharge lamp according to a second embodiment of the present invention will be described. The second embodiment is different from the first embodiment in the components of the buffer noble gas and the other components are the same as the first embodiment, and therefore, the description of the parts other than the components of the buffer noble gas is omitted.
[0038] 本発明者は、バックライトユニットの光源として用いられる熱陰極型放電ランプを長 寿命にすべく鋭意研究を重ねた。本発明者は、緩衝用希ガスとしてアルゴンに加え てクリプトンを混合し、クリプトンの分圧比を増大すると、ランプ寿命が長くなることに注 目した。なお、クリプトンの分圧比を増大するとランプ寿命が長くなるのは、通常アル ゴンを主として使うところを、アルゴンよりも原子量の大きいクリプトンの分圧比を大きく することによって、ェミッタが電極コイルから飛散しにくくなるからである。ところ力 タリ プトンの封入量を増大すると、ランプ出力 (全光束)が低下するとレ、うことが従来より知 られており、そのためクリプトンの分圧比は 15%程度とするのが限界であった。 The inventors of the present invention conducted intensive studies to extend the life of a hot cathode discharge lamp used as a light source of a backlight unit. The inventor noted that mixing the krypton in addition to argon as a buffer noble gas to increase the partial pressure ratio of krypton prolongs the lamp life. The lamp life is prolonged when the partial pressure ratio of krypton is increased. The emitter is less likely to scatter from the electrode coil by increasing the partial pressure ratio of krypton, which has a larger atomic weight than argon, mainly when argon is mainly used. It is because Force Tari It has been conventionally known that the lamp output (total luminous flux) decreases as the amount of packed pton is increased, so the krypton partial pressure ratio is limited to about 15%.
[0039] し力 ながら、本発明者の鋭意研究により、クリプトンの分圧比を増大するとランプ 出力が低下するという問題は、熱陰極型放電ランプが常温の雰囲気中で点灯される 場合に生じるものであり、バックライトユニットの筐体内に配されて 50°C〜70°C程度 の雰囲気中で点灯される場合には、ランプ出力が低下するという問題は生じないこと が見出された。 However, according to the intensive studies of the inventors of the present invention, the problem that the lamp output decreases as the krypton partial pressure ratio is increased occurs when the hot cathode discharge lamp is lit in a normal temperature atmosphere. It has been found that when the lamp is disposed in the casing of the backlight unit and turned on in an atmosphere of about 50 ° C. to 70 ° C., there is no problem that the lamp output decreases.
[0040] そこで、本発明者は、緩衝用希ガス中のクリプトンの分圧比をいくらにすればよいか の検討を行った。図 5は、緩衝用希ガス中のクリプトンの分圧比とランプ寿命との関係 を示す表である。なお、図 5の「調光 30%時の移動縞」の欄の「〇」は、移動縞が生じ ていない状態を示し、「X」は移動縞が生じていない状態を示している。また、「光束 立ち上がり特性」の欄の「〇」は良好である状態を示し、「△」は可である状態を示し、 「X」は、不良である状態を示している。  Therefore, the inventor examined how to set the partial pressure ratio of krypton in the buffer noble gas. FIG. 5 is a table showing the relationship between the partial pressure ratio of krypton in the buffer noble gas and the lamp life. In the column of “moving stripes at 30% of light control” in FIG. 5, “o” indicates a state in which no moving stripes are generated, and “X” indicates a state in which no moving stripes are generated. In the column of “Luminous flux rise characteristics”, “o” indicates a good state, “Δ” indicates a good state, and “X” indicates a bad state.
[0041] 図 5より、緩衝用希ガスとしてのクリプトンの分圧比が 20%以上であると、ランプ寿命 力 50000時間を越えることがわかるので、クリプトンの分圧比は 20%以上であること が好適である。また、クリプトンの分圧比が高まると、ランプ電圧が低下するので、 始 動特性が向上すると共に、放電維持が容易になるというメリットも挙げられる。  From FIG. 5, it can be seen that the lamp life force exceeds 50000 hours when the partial pressure ratio of krypton as a buffer noble gas is 20% or more, so it is preferable that the partial pressure ratio of krypton is 20% or more. It is. In addition, when the voltage division ratio of krypton is increased, the lamp voltage is decreased, so that the starting characteristics are improved and the discharge maintenance becomes easy.
さらに、ランプ 20は、定格電力を一定(たとえば、 20W)として、クリプトンの分圧比 を増大させるほど、ランプ電圧が低下してランプ電流は増大する。ランプ点灯時には 、電極コイル 31a, 31bに塗布されているェミッタ力 電子を放出させるために、電極 コイル 31a, 31bを昇温させる必要がある力 ランプ電流のみでは、電極コイル 31a, 31bを十分に温めることができなレ、。そこで、従来よりフィラメント電流を電極コイル 31 a, 31bに別途通電しており、フィラメント電流の通電による発熱によって電極コイル 3 la, 31bを昇温させている。すなわち、ランプ電流が低いほど、電極コイル 31a, 31b を昇温させるために、フィラメント電流をより多く流さなければならなレ、。フィラメント電 流はランプ電力に加えて、別途通電させているので、消費電力を抑えるという観点か らは、できるだけランプ電流を増大させて、必要なフィラメント電流を小さくすることが 望まれる。鋭意研究の末、本発明者は、クリプトンの分圧比を高めることによって、ラ ンプ電圧を低下させて、ランプ電流を増大させることによって、必要なフィラメント電流 を少なくして、エネルギーロスを抑制できることを見出した。 In addition, with the lamp 20 having a constant rated power (eg, 20 W), the lamp voltage decreases and the lamp current increases as the krypton voltage division ratio is increased. When the lamp is lit, the electrode coil 31a, 31b needs to be heated in order to release the emitter force electron applied to the electrode coil 31a, 31b. The lamp current alone can sufficiently heat the electrode coil 31a, 31b I can do it. Therefore, conventionally, the filament current is separately supplied to the electrode coils 31a and 31b, and the electrode coils 3la and 31b are heated by heat generation due to the application of the filament current. That is, as the lamp current is lower, more filament current must be applied to raise the temperature of the electrode coils 31a and 31b. Since the filament current is separately supplied in addition to the lamp power, it is desirable to increase the lamp current as much as possible and reduce the necessary filament current from the viewpoint of reducing the power consumption. After intensive research, the present inventors have found that by increasing the partial pressure ratio of krypton, By reducing the lamp voltage and increasing the lamp current, it was found that the required filament current can be reduced and energy loss can be suppressed.
[0042] ところで、クリプトンの分圧比が 60%を超えると、ランプを調光することが少々困難 になることが判明したので、クリプトンの分圧比は 60%以下であることが好適であると いえる。なお、クリプトンの分圧比が 60%を超えると調光することが少々困難になるも のの、クリプトンの分圧比が高くなるのにつれて寿命が長くなるので、長寿命化と良好 な調光特性の要請を比較考量してクリプトンの分圧比を決定することが望ましい。  By the way, it turned out that when the partial pressure ratio of krypton exceeds 60%, it becomes difficult to dim the lamp a little, so it can be said that the partial pressure ratio of krypton is preferably 60% or less. . It should be noted that although dimming becomes more difficult when the partial pressure ratio of krypton exceeds 60%, the life becomes longer as the partial pressure ratio of krypton becomes higher, so longer life and good dimming characteristics It is desirable to determine the partial pressure ratio of krypton by weighing the requirements.
[0043] また、クリプトンは、アルゴンと比較して原子量が大きいため、クリプトンの分圧比が 増大するほど、ガラスバルブ 22に封入されている水銀が拡散しに《なるため、ラン プ始動時からの光束の立ち上がり特性が低下するので、この点からも希ガス内のタリ プトンの分圧比は 60%以下であることが好適である。なお、図 5の光束立ち上がり特 性は目視により確認した。  In addition, since krypton has a larger atomic weight than argon, the mercury enclosed in the glass bulb 22 becomes more diffused as the krypton partial pressure ratio increases, so the lamp has been exposed since lamp startup. From this point of view also, the partial pressure ratio of Talyton in the rare gas is preferably 60% or less because the luminous flux start-up characteristic is lowered. The luminous flux rise characteristics of FIG. 5 were visually confirmed.
[0044] さらに、クリプトンは、アルゴンと比較して非常に高価であるので、必要以上にクリプ トンを封入することは、意味の無いコストアップにつながるので、希ガス内のクリプトン の分圧比は 60%以下であることが好適である。  [0044] Furthermore, since krypton is very expensive compared to argon, it is unnecessary to enclose cryptone, which leads to a meaningless cost increase, so the partial pressure ratio of krypton in the noble gas is 60 It is preferable that the ratio is not more than%.
カロえて、希ガス内のクリプトンの分圧比が 60%を超えると、ランプ調光点灯時にい わゆる移動縞が発生してしまう。図 6は、ランプ調光点灯時に生じる移動縞を示す模 式図であって、上述の移動縞を説明するための図である。  If the partial pressure ratio of krypton in the rare gas exceeds 60%, so-called movement stripes will occur when the lamp is lit. FIG. 6 is a schematic view showing moving stripes generated at the time of lamp dimming, and is a diagram for describing the moving stripes described above.
[0045] 移動縞とは、ランプ 20を点灯すると、ランプ 20の一部あるいは全体に明るい部分と 暗い部分が交互に表れて縞模様となり、これがランプ 20のいずれか一方の管端部方 向へ移動する現象をいう。 図 6に示した例では、縞模様が紙面右側から左方向へ 移動してレ、る様子を示してレ、る。  With moving stripes, when the lamp 20 is turned on, bright parts and dark parts appear alternately in a part or the whole of the lamp 20 to form a stripe pattern, which is directed toward one of the tube ends of the lamp 20. It refers to the phenomenon of movement. In the example shown in FIG. 6, the stripe pattern moves from the right side to the left side of the paper and shows how to move.
移動縞の発生原因は、現段階では明らかにはなっていないが、調光をしたり、タリ プトンの分圧比を高めると移動縞が発生することが確認されている。本発明者の鋭意 研究により、クリプトンの分圧比が 60%を超えると移動縞の発生が顕著になることが 明らかにされた。  The cause of the generation of moving stripes has not been clarified at this stage, but it has been confirmed that moving stripes are generated when dimming is performed or the partial pressure ratio of talipton is increased. The inventors of the present invention have intensively studied that when the krypton partial pressure ratio exceeds 60%, the generation of moving stripes becomes remarkable.
[0046] 上記において特に、ガラスバルブ 22内に封入される希ガスには、クリプトンの混合 比は、 45%以上であることがより望ましい。これにより、ランプ電圧が十分に低下して ランプ電流を増大させることができるので、非常に高効率のランプが得られるからであ る。 Particularly in the above, it is more preferable that the mixing ratio of krypton is 45% or more for the rare gas sealed in the glass bulb 22. This causes the lamp voltage to drop sufficiently. Because the lamp current can be increased, a very high efficiency lamp can be obtained.
また、図 5に示しているように、クリプトンの分圧比が 55%を超えると、ランプ効率が やや低下することが実験により確認されているので、クリプトンの分圧比は、 55%以 下であることが望ましい。これは、クリプトンの分圧比が 45%までは、ランプ電流の増 大にともなって、フィラメント電流の低下によるエネルギーロスを抑制することができる 力 クリプトンの分圧比が 55%を超えると、ランプ電流自体が大きくなりすぎて、電極 コイル 31a, 31bに通電された場合に熱として消費されてしまい、かえってエネルギー ロスが増大するからであると考えられる。  In addition, as shown in Fig. 5, when the partial pressure ratio of krypton exceeds 55%, the lamp efficiency slightly decreases by experiments, so the partial pressure ratio of krypton is 55% or less. Is desirable. This is because the krypton partial pressure ratio can suppress energy loss due to a decrease in filament current as the lamp current increases up to 45%. When the krypton partial pressure ratio exceeds 55%, the lamp current itself Is too large and is consumed as heat when the electrode coils 31a and 31b are energized, which is considered to increase energy loss.
[0047] また、緩衝用希ガスとしてアルゴン 50%、クリプトン 50%が封入された熱陰極型放 電ランプを光源とするバックライトユニットを作成して試験を実施したところ、ランプ出 力低下の問題は確認されなかった。また、光源として熱陰極型放電ランプを用いてい るので、高効率のバックライトユニットを得ることができる。  In addition, when a backlight unit using as a light source a hot cathode type discharge lamp in which 50% of argon and 50% of krypton are enclosed as a buffer noble gas is prepared and tested, there is a problem of decrease in lamp output. Was not confirmed. In addition, since a hot cathode discharge lamp is used as a light source, a highly efficient backlight unit can be obtained.
以上説明したように、本発明は、長寿命で高効率の熱陰極型蛍光ランプ、ランプュ ニット、液晶表示装置を提供することができる。  As described above, the present invention can provide a long-life, high-efficiency hot cathode fluorescent lamp, a lamp unit, and a liquid crystal display device.
[0048] <変形例 >  <Modification>
以上、本発明を実施の形態に基づいて説明してきたが、本発明の内容が、上記の 実施の形態に示された具体例に限定されないことは勿論であり、例えば、以下のよう な変形例を考えることができる。  Although the present invention has been described above based on the embodiment, it goes without saying that the content of the present invention is not limited to the specific example shown in the above embodiment, and, for example, the following modifications Can be considered.
(1)上記においては、ガラスバルブは、図 3 (b)に示すように、管軸に垂直な断面が 楕円形のものについて説明したが、これに限定されず、長内径と短内径を有する形 状のものであればどのような形状であってもよレ、。例えば図 7 (a)に示すように、扁平 形状をしていてもよいし、図 7 (b)に示すように、長方形状をしていてもよレ、。これらの 場合も短内径 L2の大きさに対して長内径 L1が大きいので、電極コイルの軸方向の 長さを大きくすることができる。これにより、短内径 L2の長さに対して、電極コイルの 長さを大きくすることができるので、長寿命の熱陰極型放電ランプを提供することがで きる。また、ガラスバルブ 22を、短内径 L2が液晶パネル面に対して垂直になるように 配設することによって、装置の薄型化をはかることができる。 [0049] (2)上記においては、ガラスバルブ 22は、外観視直線状のものについて説明した 力 Sこれに限定されず、たとえば、ガラスバルブ 22は、外観視 U字状、コ字状等その他 の形状をしていてもよい。 (1) In the above, as shown in FIG. 3 (b), the glass bulb has been described to have an elliptical cross section perpendicular to the tube axis, but it is not limited to this and has a long inner diameter and a short inner diameter. Any shape may be used. For example, as shown in Fig. 7 (a), it may be flat, or as shown in Fig. 7 (b), it may be rectangular. Also in these cases, since the long inner diameter L1 is larger than the size of the short inner diameter L2, the axial length of the electrode coil can be increased. Thus, the length of the electrode coil can be increased relative to the length of the short inner diameter L2, so that a long-life hot cathode discharge lamp can be provided. In addition, by arranging the glass bulb 22 so that the short inner diameter L2 is perpendicular to the liquid crystal panel surface, it is possible to make the device thinner. (2) In the above, the glass bulb 22 has been described as having a linear appearance. The force S is not limited to this. For example, the glass bulb 22 has a U-shaped appearance, a U-shaped appearance, etc. It may be in the form of
(3)上記においては、緩衝用希ガスとして、アルゴン、クリプトンを封入したものにつ いて説明したが、これらに加えて、ネオンやキセノンを封入してもよレ、。キセノンは原 子量が大きため、電極コイルに塗布されているェミッタの飛散を抑制するので、キセノ ンを封入することにより、さらなる長寿命化がはかられる。  (3) In the above, although argon and krypton were enclosed as the buffer noble gas, neon and xenon may be enclosed in addition to these. Since xenon has a large amount of atoms, it suppresses the scattering of the emitter coated on the electrode coil, and by enclosing xenon, the life can be further extended.
[0050] (4)上記においては、ガラスバルブ 22の内面に保護膜 26が形成されたものについ て説明したが、保護膜 26が形成されていなくてもよい。  (4) In the above, the case where the protective film 26 is formed on the inner surface of the glass bulb 22 has been described, but the protective film 26 may not be formed.
(5)上記においては、ランプユニットとして、バックライトユニットを例に挙げて説明し たが、これに限定されず、たとえば、筐体と、当該筐体内に配設される本実施形態に 係る熱陰極型放電ランプとを備える一般照明ユニットであってもよい。  (5) In the above, the backlight unit has been described as an example of the lamp unit, but the invention is not limited thereto. For example, a casing and the heat according to the present embodiment disposed in the casing It may be a general lighting unit provided with a cathode discharge lamp.
[0051] (6)上記においては、表示装置として液晶表示装置を例に挙げて説明したが、これ に限定されず、表示装置としては、たとえば、筐体と、当該筐体内に配設される本実 施の形態の熱陰極型放電ランプとを備える看板装置であってもよい。  (6) In the above, the liquid crystal display device has been described as an example of the display device. However, the present invention is not limited to this. For example, the display device is provided in a housing and the housing The sign apparatus may be provided with the hot cathode discharge lamp of the present embodiment.
産業上の利用可能性  Industrial applicability
[0052] 本発明は熱陰極型放電ランプに広く適用することができる。また、本発明は、高効 率で長寿命な熱陰極型放電ランプ、ランプユニット、および表示装置を提供すること ができるので、その産業的利用価値は極めて高レ、。 The present invention can be widely applied to a hot cathode discharge lamp. In addition, since the present invention can provide a high efficiency and long life hot cathode discharge lamp, a lamp unit, and a display device, its industrial utility value is extremely high.

Claims

請求の範囲 The scope of the claims
[1] 管軸に垂直な断面が扁平形状であるガラスバルブと、  [1] A glass bulb having a flat cross section perpendicular to the tube axis,
扁平形状の長内径方向に軸を向けて前記ガラスバルブ内に配設される電極コイル とを備え、  And an electrode coil disposed in the glass bulb so that the axis is directed in the direction of the long inner diameter of the flat shape,
前記電極コイルの軸方向の長さ Lは、前記ガラスバルブの扁平形状の長内径の長 さを Ll、短内径の長さを L2としたとき、 L2< L< L1の関係を満たしていること を特徴とする請求項 1記載の熱陰極型放電ランプ。  The axial length L of the electrode coil satisfies the relationship of L2 <L <L1 when the length of the long inner diameter of the flat shape of the glass bulb is L1 and the length of the short inner diameter is L2. The hot cathode discharge lamp according to claim 1, characterized in that
[2] 筐体内に配設される熱陰極型蛍光ランプであって、 [2] A hot cathode fluorescent lamp disposed in a housing, comprising:
前記ガラスバルブ内には、希ガスが封入されており、  A noble gas is enclosed in the glass bulb,
前記希ガスには、クリプトンが分圧比で 20%以上含まれてレ、ること  The rare gas contains 20% or more of krypton at a partial pressure ratio.
を特徴とする請求項 1記載の熱陰極型放電ランプ。  The hot cathode discharge lamp according to claim 1, characterized in that
[3] 前記クリプトンの分圧比は、 60%以下であることを特徴とする請求項 2記載の熱陰 極型放電ランプ。 3. The heat negative discharge lamp according to claim 2, wherein the partial pressure ratio of the krypton is 60% or less.
[4] 前記希クリプトンの分圧比は、 45%以上であることを特徴とする請求項 2または請 求項 3記載の熱陰極型放電ランプ。  [4] The hot cathode discharge lamp according to claim 2 or claim 3, wherein a partial pressure ratio of the diluted krypton is 45% or more.
[5] 前記希クリプトンの分圧比は、 55%以下であることを特徴とする請求項 2から請求 項 4のいずれか 1項記載の熱陰極型放電ランプ。 [5] The hot cathode discharge lamp according to any one of claims 2 to 4, wherein a partial pressure ratio of the diluted krypton is 55% or less.
[6] 筐体と、 [6] case,
当該筐体内に配設される請求項 1から請求項 5のいずれ力 4項に記載の熱陰極型 放電ランプと  The hot cathode type discharge lamp according to any one of claims 1 to 5, which is disposed in the case and any one of the following.
を備えることを特徴とするランプユニット。  A lamp unit comprising:
[7] 請求項 6記載のランプユニットを光源として備えることを特徴とする表示装置。 [7] A display device comprising the lamp unit according to claim 6 as a light source.
[8] 筐体と、 [8] case,
当該筐体内に配設される請求項 1から請求項 5のいずれ力 1項に記載の熱陰極型 放電ランプと  The hot cathode type discharge lamp according to any one of claims 1 to 5, which is disposed in the housing.
を備えることを特徴とする表示装置。  A display device comprising:
PCT/JP2006/318003 2005-09-13 2006-09-11 Hot cathode discharge lamp, lamp unit and display WO2007032320A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007535467A JPWO2007032320A1 (en) 2005-09-13 2006-09-11 Hot cathode discharge lamp, lamp unit, and display device
EP06797810A EP1936660A1 (en) 2005-09-13 2006-09-11 Hot cathode discharge lamp, lamp unit and display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-265793 2005-09-13
JP2005265793 2005-09-13

Publications (1)

Publication Number Publication Date
WO2007032320A1 true WO2007032320A1 (en) 2007-03-22

Family

ID=37864913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318003 WO2007032320A1 (en) 2005-09-13 2006-09-11 Hot cathode discharge lamp, lamp unit and display

Country Status (6)

Country Link
EP (1) EP1936660A1 (en)
JP (1) JPWO2007032320A1 (en)
KR (1) KR20080044264A (en)
CN (1) CN101263576A (en)
TW (1) TW200729275A (en)
WO (1) WO2007032320A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090881A1 (en) * 2008-01-18 2009-07-23 Panasonic Corporation Backlight and illuminating device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104062U (en) * 1980-01-10 1981-08-14
JPS60107250A (en) * 1983-11-15 1985-06-12 Fujitsu Ltd Surface light source
JPS60130046A (en) * 1983-12-16 1985-07-11 Stanley Electric Co Ltd Fluorescent lamp
JPS60236450A (en) * 1985-04-19 1985-11-25 Hitachi Ltd Fluorescent lamp
JPS6381753A (en) 1986-09-26 1988-04-12 Hitachi Ltd Circular fluorescent lamp
JPS6363954U (en) * 1986-10-16 1988-04-27
JPS63207090A (en) * 1987-02-23 1988-08-26 浜井電球工業株式会社 Transparent electrode type flat fluorescent lamp
JPH01163955A (en) * 1987-12-18 1989-06-28 Sanyo Electric Co Ltd Flat fluorescent lamp
JPH04292846A (en) * 1991-03-20 1992-10-16 Toshiba Lighting & Technol Corp Low pressure discharge lamp
JP2000010094A (en) 1998-06-19 2000-01-14 Nec Corp Backlight device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104062U (en) * 1980-01-10 1981-08-14
JPS60107250A (en) * 1983-11-15 1985-06-12 Fujitsu Ltd Surface light source
JPS60130046A (en) * 1983-12-16 1985-07-11 Stanley Electric Co Ltd Fluorescent lamp
JPS60236450A (en) * 1985-04-19 1985-11-25 Hitachi Ltd Fluorescent lamp
JPS6381753A (en) 1986-09-26 1988-04-12 Hitachi Ltd Circular fluorescent lamp
JPS6363954U (en) * 1986-10-16 1988-04-27
JPS63207090A (en) * 1987-02-23 1988-08-26 浜井電球工業株式会社 Transparent electrode type flat fluorescent lamp
JPH01163955A (en) * 1987-12-18 1989-06-28 Sanyo Electric Co Ltd Flat fluorescent lamp
JPH04292846A (en) * 1991-03-20 1992-10-16 Toshiba Lighting & Technol Corp Low pressure discharge lamp
JP2000010094A (en) 1998-06-19 2000-01-14 Nec Corp Backlight device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090881A1 (en) * 2008-01-18 2009-07-23 Panasonic Corporation Backlight and illuminating device

Also Published As

Publication number Publication date
EP1936660A1 (en) 2008-06-25
TW200729275A (en) 2007-08-01
KR20080044264A (en) 2008-05-20
CN101263576A (en) 2008-09-10
JPWO2007032320A1 (en) 2009-03-19

Similar Documents

Publication Publication Date Title
US7275971B2 (en) Arc tube, Discharge lamp, and production method of such arc tube, which enables brighter illuminance
JPWO2003083896A1 (en) Method of manufacturing a compact fluorescent-ballasted fluorescent lamp, a fluorescent lamp, and a helical glass tube
KR100372959B1 (en) Metal Halide Cargo Gas Discharge Lamp for Projection
WO2007032319A1 (en) Hot cathode discharge lamp, lamp unit and display apparatus
WO2007032320A1 (en) Hot cathode discharge lamp, lamp unit and display
JPH0336272B2 (en)
JP4280660B2 (en) Lighting device
KR20100014238A (en) Backlight comprising hot cathode fluorescent lamp and liquid crystal display device
JP3981362B2 (en) Cold cathode fluorescent lamp and backlight unit
JP2008292581A (en) Backlight for direct type liquid crystal display
JP3914217B2 (en) Cold cathode fluorescent lamp and backlight unit
JP2008171710A (en) Backlight device
JP2003187750A (en) Fluorescent lamp and illuminator
JP2008066164A (en) Regeneration method of lighting device, liquid crystal display device, and fluorescent lamp, and heating device
JP2005332813A (en) Backlight unit, and liquid crystal display apparatus including it
JP2720385B2 (en) Liquid crystal display
JP2008270071A (en) Direct backlight for liquid crystal display
JP2001345065A (en) Ring-shaped fluorescent lamp and lighting fixture
JP2008204795A (en) Backlight equipped with thermionic cathode fluorescent tube
JP2005251437A (en) Backlight unit
JPWO2008139711A1 (en) Long-life hot-cathode fluorescent lamp, backlight or illumination device including the hot-cathode fluorescent lamp, and starting method thereof
JP2004146385A (en) Fluorescent lamp and lighting device
JPH08273591A (en) Cold-cathode discharge lamp, lighting device thereof, and lighting system, backlight, and liquid-crystal display device using same
JP2004146359A (en) Fluorescent lamp and lighting device
JP2008262821A (en) Backlight equipped with hot cathode fluorescent lamp

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680033637.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007535467

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020087005538

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006797810

Country of ref document: EP