WO2007032269A1 - Levitation movement device, ultrasonic vibrator used for the device, and method of regulating vibration characteristics of the vibrator - Google Patents

Levitation movement device, ultrasonic vibrator used for the device, and method of regulating vibration characteristics of the vibrator Download PDF

Info

Publication number
WO2007032269A1
WO2007032269A1 PCT/JP2006/317839 JP2006317839W WO2007032269A1 WO 2007032269 A1 WO2007032269 A1 WO 2007032269A1 JP 2006317839 W JP2006317839 W JP 2006317839W WO 2007032269 A1 WO2007032269 A1 WO 2007032269A1
Authority
WO
WIPO (PCT)
Prior art keywords
rising
vibration
actuator
moving apparatus
rotor
Prior art date
Application number
PCT/JP2006/317839
Other languages
French (fr)
Japanese (ja)
Inventor
Masaki Hamamoto
Teruhisa Kotani
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006165094A external-priority patent/JP4043497B2/en
Priority claimed from JP2006228147A external-priority patent/JP3989943B2/en
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2007032269A1 publication Critical patent/WO2007032269A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C33/00Ornithopters
    • B64C33/02Wings; Actuating mechanisms therefor

Definitions

  • the present invention relates to a rising and moving apparatus that uses flapping flight for movement, and particularly relates to a method of supplying energy from the actuator to a blade part.
  • the present invention also relates to an ultrasonic transducer that can be used in the rising and moving apparatus and a method for adjusting the vibration characteristics of the ultrasonic transducer.
  • a flapping robot is superior in maneuverability in comparison with conventional fixed wing aircraft and helicopters. In recent years, therefore, research aimed at the engineering realization of flapping robots has become active.
  • Non-Patent Document 1 Wmg Transmission for a Micromecnanical Flymg Insect, R.S.
  • Non-Special Terms 2 "Wing Rotation and the Aerodynamic Basis of Insect Flight", Michael H. Dickinson, Fritz-Olaf Lehmann, Sanjay P. Sane, Science, vol. 2 84, no.5422, 18 June 1999.
  • the wings for example, the wings of insects
  • a rising and moving device that performs such flapping flight (hereinafter also referred to as a “flapping and floating moving device”) is compared with a helicopter that can obtain the same levitation force.
  • a large torque is required for 180 ° reversal of direction).
  • the peak of torque required for the actuator and the peak of energy required for the drive energy source that supplies energy to the actuator become large. Therefore, the size of the actuator and the driving energy source is increased. This increases the overall weight of the rising and moving device. For this reason, there is a problem that performance such as mobility required for the rising and moving apparatus is deteriorated. In the following, the above problem will be explained concretely.
  • FIG. 43 shows a time history of torque required for an actuator to drive a blade portion of a conventional flapping flying device, and a rotating blade that generates a floating force that is the same as the flying force of the flapping flying device.
  • 2 is a graph schematically showing a time history of torque necessary for rotating a rotor blade (hereinafter referred to as a rotor) of a rising and moving apparatus (hereinafter referred to as a helicopter) having a vortex.
  • the flapping movement of the flapping and floating movement apparatus described in this section is a reciprocating motion that is repeated at a frequency of 25 Hz, and consists of two types of motion.
  • One is a reciprocating rotational motion in the front-rear direction with a constant angular velocity
  • the other is a sine wave motion in which the sign of the angular velocity is reversed when the blades are switched back and forth.
  • the line indicating the sine wave motion smoothly connects the straight lines indicating the reciprocating motion.
  • the mass of the actuator that generates a relatively large torque is larger than the mass of the actuator that generates a relatively small torque.
  • two driving energy sources having the same configuration for example, a driving energy source that can supply a relatively large power in comparison with two batteries, are compared with a driving energy source that supplies a relatively small power. do it
  • the conventional flapping rising and moving apparatus has a larger mass than the helicopter that generates the same levitating force in order to cope with the torque and power increase in a short time as shown in FIG. And need a drive energy source.
  • the acceleration generated in the rising and moving apparatus is reduced. Therefore, the mobility of the rising and moving device must be reduced.
  • the conventional rising and moving apparatus requires a very large actuator and a driving energy source in order to output a large torque and power required in a short period of time when the blade part is turned back. As a result, mobility is impaired.
  • the present invention has been made in view of the above-described problems, and its purpose is to reduce the size of the actuator and the drive energy source by reducing the large torque and power required when the blades are turned back. Therefore, it is to provide a rising and moving apparatus having high mobility.
  • Another object of the present invention is to provide an ultrasonic transducer that can be used in a rising and moving apparatus and a method for adjusting the vibration characteristics thereof.
  • a rising and moving apparatus includes a blade portion having a front edge portion attached to a main body, a reciprocating motion of the blade portion in the front-rear direction, and before the reversal of the movement direction in the reciprocating motion. And an actuator for twisting the blade portion around the front edge portion in a predetermined period thereafter.
  • the device also stores energy when the torque required for the actuator for reciprocation is less than a predetermined value, and for the actuator when the torque required for the actuator for reciprocation is greater than a specific value. Energy is provided. Energy storage and provision mechanism is provided.
  • the rising and moving apparatus may have a means for detecting torque or may not have a means for detecting torque. If the rising and moving device does not have a means for detecting torque, the energy storage and supply mechanism is not provided in the rising and moving device, and the energy is preliminarily determined according to the torque required for the actuator. The timing for accumulating energy and the timing for supplying energy are determined. In addition, the energy storage and supply mechanism, when the required torque is smaller than the predetermined value, if there are multiple periods in which the required torque is not necessarily stored, and the required torque is smaller than the predetermined value. What is necessary is just to accumulate energy in at least any one of a plurality of periods.
  • the energy storage and supply mechanism when the above-mentioned required torque is greater than a specific value, may have multiple periods when the required torque that does not necessarily provide energy is greater than the specific value. At least during this period, energy should be provided so as to reduce the peak of the required torque.
  • the reciprocating motion described above includes a motion with a constant angular velocity and a motion for reversing the motion direction, which is performed continuously following the motion and changes the angular velocity, and stores energy.
  • the mechanism accumulates the energy of the actuator in the first half of the movement for reversing the direction of movement, and gives the energy to the actuator in the second half of the movement for reversing the direction of movement.
  • the energy storage / supply mechanism has a chargeable / dischargeable battery, stores the energy of the actuator as electric power in the battery, and supplies the energy to the actuator using the electric power stored in the battery. Yo! According to this, energy can be stored and donated as needed.
  • the energy storage / donating mechanism may store the energy of the actuator by elastic deformation of the substance, and give the energy to the actuator by the restoring force of the substance. According to this, it is possible to store and supply energy without providing any special control by simply providing a material that is elastically deformed in advance at an appropriate position.
  • the structure of the energy storage and supply mechanism can be simplified as compared with the case where energy is stored and supplied using liquid or gas.
  • the energy storage and delivery mechanism stores and delivers kinetic energy by compression and expansion of the gas in a sealed container, the gas is lighter than liquids and solids. Energy storage ⁇ The weight of the donation mechanism can be reduced.
  • the energy storage and supply mechanism stores and supplies kinetic energy by the phase change of gas in a sealed container, the amount of stored energy and the amount of supply per unit volume increase. Therefore, it is possible to reduce the size of the energy storage and supply mechanism.
  • the above-described reciprocating motion includes a motion having a constant angular velocity and a motion for reversing the motion direction in which the angular velocity changes and is continuously performed. If the actuator contacts the actuator only during the reversal motion period, the time history of the required torque can be smoothed without reducing the efficiency of the reciprocating motion.
  • the above-described reciprocating motion is performed continuously with a motion having a constant angular velocity and this motion.
  • the actuator has a structure that elastically deforms the substance in each of the motion periods for reversal of the motion direction at both ends of the reciprocating motion. It is desirable that According to this, energy storage and supply can be realized only by the above-described elastically deformable substance, so that the energy storage and supply mechanism can be reduced in weight.
  • the energy storage / donating mechanism can be reduced in weight.
  • the spring constant of the substance is the maximum required torque divided by the amount of deformation of the substance when the torque reaches the maximum
  • the panel constant of the elastically deformable substance is set to an optimum value.
  • the rising and moving apparatus of the present invention includes a back-and-forth reciprocating motion rotor that causes the blade portion to reciprocate in the front-rear direction, and a torsional motion rotor for twisting the blade portion around the front edge portion.
  • the energy storage and supply mechanism may store the energy of the back-and-forth reciprocating rotor and supply the energy to the back-and-forth reciprocating rotor.
  • the peak of the torque required for the actuator for the reciprocating motion is larger than the torque required for the actuator for the torsional motion, so that energy is efficiently stored and supplied. can do.
  • a rising and moving apparatus includes a blade portion having a front edge portion attached to a main body, reciprocating the blade portion in the front-rear direction, and before reversing the movement direction in the reciprocating motion. And an actuator for twisting the blade portion around the front edge portion in a predetermined period thereafter.
  • the device is also used to drive the actuator in reciprocating motion.
  • Energy storage that provides energy when the required energy is smaller than a predetermined value, and gives energy to the actuator when the energy required for driving the actuator during reciprocation is greater than a specific value.
  • the rising and moving apparatus may have means for detecting energy, or may not have means for detecting energy.
  • an energy storage and supply mechanism is provided in the rising and moving device, so that it is required for driving the actuator.
  • the timing for storing energy and the timing for supplying energy are determined in advance.
  • the energy storage and supply mechanism does not necessarily store energy, but there are multiple periods where the required energy is smaller than the predetermined value. Any material that accumulates energy in at least one of a plurality of periods may be used.
  • the energy storage and supply mechanism does not necessarily provide energy to the actuator when the required energy is greater than a specific value. If there are multiple periods in which the required energy is greater than the specific value, It suffices to provide energy to the actuator so as to reduce the peak of the required energy during at least one of the plurality of periods.
  • the actuator is a rotor that reciprocates the blades in the front-rear direction in relation to the rising and moving apparatus of another aspect, and a first rotor that reciprocates with a relatively small amplitude; And a second mouth that reciprocates with a relatively large amplitude in a direction substantially parallel to the first rotor.
  • the apparatus further includes a control unit that controls the degree of twisting of the blades according to the difference between the phase of the first rotor and the phase of the second rotor, and the energy storage / delivery mechanism is It is desirable to store the energy of the rotor and give the energy to the first rotor.
  • the energy peak required for the actuator for the reciprocating motion of the blade shaft in the front-rear direction is the energy peak required for the actuator for the twisting motion. Because it is relatively large, the energy storage and donation mechanism can efficiently store and donate energy.
  • the actuator is a rotor that reciprocates the front edge part in the front-rear direction in relation to the rising and moving apparatus of another aspect, and is connected to the front edge part and reciprocates at a fixed amplitude.
  • the first rotor and a second port that reciprocates with a variable amplitude in a direction substantially parallel to the first rotor may be provided.
  • the rising and moving apparatus further includes a control unit that controls the degree of twist of the blade portion by controlling the difference between the phase of the first rotor and the phase of the second rotor, and the energy storage and donating mechanism It is desirable to store the energy of one rotor and give the energy to the first rotor.
  • the amplitude of the first rotor for driving the leading edge portion that requires a larger torque is fixed. Therefore, energy (torque) smoothing can be easily realized by the method described later.
  • the phase difference between the first rotor and the second rotor can be set arbitrarily, the two-degree-of-freedom control of the blade portion can be realized while achieving the above torque smoothing. In other words, it is possible to realize both various controls of the rising and moving device and smoothing of energy (torque).
  • the energy storage / donating mechanism may accumulate the kinetic energy generated by the movement of the actuator and supply the kinetic energy to the actuator. According to this, regardless of the manner in which the activator moves, the energy storage and supply mechanism can store the energy of the activator and supply it to the activator. Therefore, it is possible to realize both various controls and energy peak reduction.
  • the actuator may include a rotor, and the predetermined part of the energy storage and supply mechanism may move so as to draw an arc-shaped locus around the rotation center axis common to the rotor rotation axis. . According to this, the degree of change in the relative positional relationship between the energy storage / donating mechanism and other parts due to the rotation of the rotor can be minimized.
  • the donating mechanism includes a plate panel, and the fixed end of the plate panel is rotating the rotor. It may be positioned near the mandrel. According to this, it is possible to easily realize both the accumulation and supply of energy and the movement for drawing the locus of the arc.
  • a rising and moving apparatus is attached to a main body, and a blade portion that realizes a flapping motion by reciprocating motion, an actuator that operates the blade portion, and a flapping motion on the blade portion.
  • a controller that controls the actuator based on the plurality of types of data.
  • Each of the multiple types of data can specify the movement of the blade part in one cycle of reciprocating movement, and cause the blade part to perform a common movement in a predetermined period of one cycle of the reciprocating movement. During this period, the blades are caused to move differently from the movement specified by the other data among the multiple types of data.
  • the control unit determines that the actuator is identified by the other data among the multiple types of data from the control that causes the blade to perform the movement specified by the data of one of the multiple types of data during the predetermined period. Switch to control that causes the blades to move.
  • the period other than the predetermined period may be two specific periods in one cycle of the reciprocating motion. According to this, one blade part changes sequentially into a maximum of 4 types during one cycle of reciprocating motion. Therefore, the variation of flapping motion becomes abundant
  • the two specific periods may be shifted by 1Z2 cycles from each other. According to this, one specific period and another specific period are repeated with the largest interval. Therefore, the effect of the airflow generated by the flapping motion in one specific period on the airflow generated by the flapping motion in the other specific period is the smallest.
  • one and the other of the two specific periods include a timing at which the blade portion is positioned at one end of the reciprocating motion and a timing at which the blade portion is positioned at the other end of the reciprocating motion, respectively.
  • the position of the blade part in one specific period is farthest from the position of the blade part in another specific period. For this reason, the airflow generated due to the flapping motion in one specific period occurs in the flapping motion in the other specific period. Therefore, the effect on the airflow generated is minimized.
  • one directional component of the fluid force generated by the movement in one of the two specific periods and one directional component of the fluid force generated by the movement in the other of the two specific periods Is offset. According to this, the mode of change in the posture of the rising and moving apparatus due to the change of the flapping motion is simplified. As a result, control for bringing the rising and moving apparatus into a desired posture is facilitated.
  • control unit executes control for twisting the blade part around the front edge part at each of both ends of the reciprocating motion, and the actuator uses the front edge part for the two specific periods, respectively. It is desirable to include the timing of twisting around. According to this, the fluid force can be generated in the horizontal direction by changing the timing of twisting the blade portion.
  • the plurality of data includes data for hovering, and the flapping motion specified by the data for hovering is in the front-rear direction which is mirror-symmetrical with respect to a plane including the vertical direction and the horizontal direction on the blade axis.
  • the control unit is based on the basic data for moving the blade from the center position of the reciprocating motion in the front-rear direction to one end of the reciprocating motion in the front-rear direction and the center position of the reciprocating motion in the front-rear direction. It is desirable to include an arithmetic processing unit for converting basic data so that the blade part is moved to the other end of the reciprocating motion in the front-rear direction.
  • control unit can have a force S for causing the blade unit to perform a desired flapping motion only by having data for a period of 1/2 of one cycle of the flapping motion. Therefore, the memory capacity for storing data in the control unit can be reduced. As a result, the rising and moving apparatus can be reduced in size and weight.
  • the method for adjusting the vibration characteristics of an ultrasonic transducer adjusts the vibration properties of an ultrasonic transducer that drives a driven body by combining a plurality of types of vibration.
  • Each of the types of vibrations has a vibration node having an amplitude of substantially zero.
  • the operator who adjusts the vibration characteristics of the ultrasonic vibrator is at or near the position of at least one vibration node of the plurality of types of vibration nodes and other vibrations.
  • the physical quantity of the structure is changed at a position other than the position of the knot or its neighboring position. As a result, the characteristic of vibration having no vibration node at the position where the physical quantity is changed is adjusted.
  • the physical quantity of the structure includes at least one of mass, rigidity, shape, and internal stress, but any structure can be used as long as the vibration characteristics can be adjusted. Also good.
  • the position in the vicinity of the vibration node may be any position as long as it includes the position adjacent to the vibration node and can adjust the vibration characteristics substantially easily.
  • the position in the vicinity of the vibration node includes a peripheral region surrounding the vibration node when the vibration node is represented by a point when seen in a plan view.
  • the vibration characteristic can be adjusted by changing the physical quantity of the protruding portion. Therefore, compared with the method of adjusting the vibration characteristic by changing the physical quantity of another structure, the vibration characteristic is improved. Adjustment is easy.
  • the vibration characteristic without the vibration node at or near the position of the protruding portion may be adjusted. According to this method, the vibration characteristics can be adjusted by an extremely simple operation of grinding the protrusion.
  • the vibration characteristic having no vibration node at the position of the protruding portion or a position in the vicinity thereof may be adjusted. According to this method, it is possible to adjust the vibration characteristics without changing the shape of the protrusion.
  • the position of the protruding portion or a position in the vicinity thereof may be adjusted.
  • This method also facilitates vibration characteristics having no vibration node at the position of the protrusion or the vicinity thereof without changing the vibration characteristic having the vibration node at the position of the protrusion or the vicinity thereof. It is possible to adjust to S.
  • vibration is generated at a position where the recess is provided or a position near the position.
  • the characteristic of the vibration having no nodes may be adjusted. According to this method, the vibration characteristic having no vibration node at the position of the recess or the vicinity thereof is changed without changing the vibration characteristic having the vibration node at the position of the recess or the vicinity thereof. Easy to adjust.
  • the plurality of types of vibrations may include stretching vibrations and bending vibrations, and the vibration characteristics of any one of the stretching vibrations and the bending vibrations may be adjusted. According to this, it is possible to easily adjust the vibration characteristics of a general ultrasonic vibrator that vibrates elliptically.
  • the characteristic of flexural vibration without adjusting the characteristic of stretching vibration may be adjusted. According to this, the vibration characteristics can be easily adjusted as compared with the method of adjusting the vibration characteristics of the stretching vibration without adjusting the vibration characteristics of the bending vibration.
  • the protrusion may function as a support protrusion for supporting the ultrasonic transducer. According to this method, it is not necessary to provide a support protrusion separately from the protrusion for adjusting the vibration characteristics. Therefore, the vibration characteristics of the ultrasonic vibrator can be easily adjusted as the number of parts increases.
  • the ultrasonic transducer of the present invention drives a driven body by combining a plurality of types of vibrations.
  • Each of the types of vibrations has a vibration node whose amplitude is substantially zero.
  • a vibration characteristic adjusting unit is provided at or near the position of at least one of the vibration nodes of the plurality of types of vibration and at a position other than the position of the other vibration node or its vicinity. .
  • the vibration characteristic adjustment unit described above has a protrusion
  • the vibration characteristic adjustment unit or the vibration characteristic adjustment unit can be changed by changing at least one of the shape, rigidity, mass, and internal stress of the protrusion.
  • the mass of the vibration characteristic adjusting unit can be changed only by adding an object to the recess. Therefore, the vibration characteristic adjustment unit or the vibration characteristic adjustment unit that does not have the vibration node at the nearby position can be easily changed without changing the vibration characteristic having the vibration node at the position near the vibration characteristic adjustment unit. Adjusting power S
  • the protrusion may function as a support protrusion that supports the ultrasonic transducer.
  • the protrusion may function as a pressing protrusion for pressing the ultrasonic transducer against the driven body driven by the ultrasonic transducer.
  • the vibration characteristic adjusting portion for adjusting the vibration characteristics and the pressing protrusion for pressing the ultrasonic transducer against the driven body are made of the same component. Therefore, the vibration characteristics of the ultrasonic vibrator can be adjusted as the number of parts of the ultrasonic vibrator increases.
  • FIG. 1 is a schematic diagram of the overall configuration of a rising and moving apparatus according to an embodiment.
  • FIG. 2 is a schematic diagram of a detailed structure of the rising and moving apparatus according to the embodiment.
  • FIG. 3 is a schematic plan view of a blade portion of the rising and moving apparatus according to the embodiment. 4 is a cross-sectional view taken along line IV-IV in FIG.
  • FIG. 5 is a diagram showing a first layer of a blade portion of the rising and moving apparatus according to the embodiment.
  • FIG. 7 It is explanatory drawing which shows the 3rd layer of the blade
  • FIG. 8] is an external view of an actuator used in the rising and moving apparatus of the embodiment.
  • FIG. 10] A diagram showing a first vibration mode of the ultrasonic motor used in the rising and moving apparatus of the embodiment.
  • FIG. 12 is an explanatory diagram showing the operation of the ultrasonic motor used in the rising and moving apparatus of the embodiment.
  • FIG. 13 is an explanatory view showing the operation of the ultrasonic motor used in the rising and moving apparatus of the embodiment.
  • FIG. 14A is a schematic diagram of a preload mechanism of an ultrasonic motor used in the rising and moving apparatus of the embodiment.
  • FIG. 14B is a diagram showing another example of the upper and lower rotors.
  • FIG. 15 It is a schematic diagram of a wing drive mechanism used in the rising and moving apparatus of the embodiment.
  • FIG. 16 is a diagram showing a first component of the wing drive mechanism used in the rising and moving apparatus of the embodiment.
  • FIG. 17 is a diagram showing a second component of the wing drive mechanism used in the rising and moving apparatus of the embodiment.
  • FIG. 18 is a diagram showing a third component of the wing drive mechanism used in the rising and moving apparatus of the embodiment.
  • [Sen 19] is a diagram showing the definition of the size of the wing drive mechanism used in the rising and moving apparatus of the embodiment.
  • FIG. 20 is a diagram for explaining the drive principle of the wing drive mechanism used in the rising and moving apparatus of the embodiment.
  • “Sono 21] This is a graph showing the time history of the driving torque of the ultrasonic motor used in the rising and moving apparatus of the embodiment.
  • FIG. 22 is a diagram for explaining how to flutter when hovering the rising and moving apparatus of the embodiment.
  • Gakuen 23 This is a diagram for explaining the energy storage and provision mechanism of the rising and moving apparatus of the embodiment.
  • FIG. 24 is a graph showing the effect of the torque assist mechanism of the rising and moving apparatus of the embodiment.
  • FIG. 25 is an auxiliary diagram showing a design method of the torque assist mechanism of the rising and moving apparatus according to the embodiment.
  • FIG. 26 is a schematic view showing a second example of the torque assist mechanism of the rising and moving apparatus of the embodiment.
  • FIG. 27 is a schematic diagram showing a third example of the torque assist mechanism of the rising and moving apparatus of the embodiment.
  • FIG. 28 is a schematic diagram showing a fourth example of the torque assist mechanism of the rising and moving apparatus of the embodiment.
  • FIG. 29 is a schematic diagram showing a fifth example of the torque assist mechanism of the rising and moving apparatus of the embodiment.
  • FIG. 30 is a schematic diagram showing a sixth example of the torque assist mechanism of the rising and moving apparatus of the embodiment.
  • FIG. 31 is a schematic diagram showing a seventh example of the torque assist mechanism of the rising and moving apparatus of the embodiment.
  • FIG. 32 is a schematic diagram showing an eighth example of the torque assist mechanism of the rising and moving apparatus of the embodiment.
  • FIG. 35B is an explanatory diagram illustrating the forward movement method of the rising and moving apparatus according to the embodiment.
  • 35C It is explanatory drawing showing the retreating method of the rising and moving apparatus of embodiment.
  • [36A] is an explanatory view showing how the flapping device of the embodiment flutters when moving forward.
  • [36B] It is an explanatory view showing how the flapping device of the embodiment flutters when retreating.
  • FIG. 37A is a hardware block diagram of a control system in the rising and moving apparatus of the embodiment.
  • FIG. 38 is a diagram for explaining the duty ratio of the PWM control signal of the rising and moving apparatus of the embodiment.
  • FIG. 40 is a graph showing the duty ratio for controlling the advance switching of the rising and moving apparatus of the embodiment.
  • FIG. 41 is a graph showing a duty ratio for controlling the delayed switching of the rising and moving apparatus according to the embodiment.
  • FIG. 42 is a flowchart showing a control flow of the rising and moving apparatus of the embodiment.
  • [Gakuen 43] It is a diagram for explaining the problems of the conventional rising and moving apparatus.
  • FIG. 44 is a diagram for explaining a general method of flapping hovering.
  • FIG. 46 is a diagram for explaining the energy storage and provision mechanism of the rising and moving apparatus according to another embodiment.
  • FIG. 48 is a plan view of an ultrasonic motor according to still another embodiment.
  • FIG. 49 is a perspective view of an ultrasonic transducer of still another embodiment.
  • FIG. 50 is an exploded perspective view of an ultrasonic transducer of still another embodiment.
  • FIG. 51 is a diagram for explaining four voltage modes applied to four electrodes attached to a piezoelectric element.
  • FIG. 52 is a time chart for explaining that the phase of the signal for stretching vibration and the phase of vibration for bending vibration are shifted by 90 °.
  • FIG. 53 is a diagram showing a state in which the main plate portion of still another embodiment is deformed by stretching vibration.
  • FIG. 54 is a diagram showing an aspect in which the main plate portion of still another embodiment is deformed by bending vibration.
  • FIG. 55 is a diagram for explaining that the resonance frequency of stretching vibration and the resonance frequency of bending vibration do not match.
  • FIG. 56 is a schematic diagram showing the configuration of an ultrasonic transducer in still another embodiment.
  • FIG. 57 is a graph showing the relationship between the length of the support protrusion of another embodiment, the resonance frequency of stretching vibration and the resonance frequency of bending vibration.
  • FIG. 58 is a view for explaining how to cut the supporting protrusion according to still another embodiment.
  • FIG. 59 is a diagram showing a recess provided in the support protrusion of yet another embodiment.
  • FIG. 60 is a diagram for explaining a state in which a weight is installed on the supporting protrusion of still another embodiment.
  • FIG. 61 is a plan view of an ultrasonic motor according to still another embodiment.
  • FIG. 62 is a perspective view of an ultrasonic transducer of still another embodiment.
  • FIG. 63 is a schematic diagram showing the configuration of an ultrasonic transducer in still another embodiment.
  • FIG. 64 is a graph showing the relationship between the length of a pressing protrusion, the resonance frequency of stretching vibration, and the resonance frequency of bending vibration according to still another embodiment.
  • FIG. 65 is a view for explaining how to cut the pressing protrusion according to still another embodiment.
  • FIG. 66 is a diagram showing a state in which a weight is installed on the pressing protrusion of yet another embodiment.
  • Ascent movement device 101 body, 110 wings, 120, 130 ultrasonic motor, 140 drive mechanism, 150 control circuit, 160 position sensor, 170 communication device, 180 image sensor, 190 M, 122 low speed, 301 , 383 _h3 ⁇ 4 Ultrasonic motor base plate, 384 leaf spring, 385 fixed point, 1 ultrasonic transducer, 2 ports 1000 ultrasonic motor, 3 support protrusion, 4 support, 5 shaft, 6 main plate, 7 diaphragm, 8 piezoelectric element, 9, 10, 11, 12, 17 electrode, 14 pressing protrusion, 15 Rubber, 20 Adjusting protrusion, 50 Through-hole, 55, Concave, a Resonance frequency of stretching vibration, b Resonance frequency of bending vibration, C circular orbit, E elliptical orbit, S corner, X Position of expansion / contraction vibration node , Y Bend vibration node position, ⁇ ⁇ phase shift.
  • FIG. 1 the overall configuration of the rising and moving apparatus of the present embodiment will be described using FIG. 1 and FIG. Since this item is for explaining the overall configuration, the detailed configuration and operation of each component will be described later.
  • the rising and moving apparatus 100 includes a main body 101 and a pair of blade portions 110 provided on the main body 101.
  • One of the pair of blade portions 110 is provided on the left side portion of the main body 101, and the other of the pair of blade portions 110 is provided on the right side portion of the main body 101.
  • the rising and moving apparatus 100 causes a flow to occur in the surrounding fluid and a reaction from the surrounding fluid by the flapping motion of the blade portion 110. At this time, the rising and moving apparatus 100 receives the reaction exceeding its own weight, which is directed right above the lead, from the surrounding fluid. As a result, the rising and moving apparatus 100 generates acceleration in the upward direction that exceeds the gravitational acceleration. As a result, the rising and moving apparatus 100 is lifted.
  • the rising and moving apparatus 100 has an upper ultrasonic motor 120 and a lower ultrasonic motor 130 as the actuator of the present invention.
  • the upper ultrasonic motor 120 and the lower ultrasonic motor 130 are rotatably mounted on the main body 101.
  • the upper ultrasonic motor 120 and the lower ultrasonic motor 130 are connected to a blade driving mechanism 140 that transmits the movements of the upper ultrasonic motor 120 and the lower ultrasonic motor 130 to the blade portion 110.
  • a blade portion 110 is connected to the blade driving mechanism 140.
  • Feather 110 is driven by upper and lower ultrasonic motors 120 and 130, and a reciprocating rotational motion (hereinafter referred to as a “stroke motion”) with the vertical axis as a rotational center axis, and a front edge portion of blade portion 110.
  • a rotational movement (hereinafter referred to as “twisting movement”) is performed with the rotation center axis.
  • the blade portion 110 can perform the stroke motion and the twist motion independently.
  • the upper and lower ultrasonic motors 120 and 130 are controlled by a control circuit 150.
  • the control circuit 150 is given position information and posture information of the rising and moving apparatus 100 from a position detection sensor 160 fixed to the main body 101.
  • the rising and moving apparatus 100 has a function of transmitting information on the rising and moving apparatus 100 itself and information on the periphery thereof from the communication apparatus 170 to the external controller 200.
  • image information obtained by the image sensor 180 is transmitted to the controller 200.
  • the image information obtained by the image sensor 180 may be directly used by the control circuit 150.
  • the position and speed of the rising and moving apparatus 100 may be recognized by the control circuit 150 by performing image processing on the image information.
  • communication device 170 has a function of receiving information transmitted from external controller 200 and providing the information to control circuit 150.
  • the external controller 200 is controlled by the operator 210 and gives a motion command for the rising and moving apparatus 100.
  • the external controller 200 can acquire image information obtained by the image sensor 180 mounted on the rising and moving apparatus 100.
  • the method in which the controller 200 presents the above-described image information to the operator 210 may be any method.
  • the external controller 200 has an image display function, the image itself acquired by the image sensor 180 is visually presented to the operator 210.
  • the external controller 200 is assumed to be operated by the operator 210. This is not essential.
  • control circuit 150, the communication device 170, the image sensor 180, and the like are driven by electric power supplied from a power source 190 disposed in the main body 101.
  • the power source 190 functions as the driving energy source of the present invention.
  • the driving energy source of the present invention uses electric power.
  • the actuator for example, a two-cycle engine, a Stirling engine, or the like corresponding to the driving energy source is used.
  • the blade portion 110 has a shape as shown in FIGS. 3 to 7, has a length of 65 mm, and a width of 16 mm.
  • the blade portion 110 includes a front edge portion 1102, a blade surface portion 1103, a frame portion 1104, a branch portion 1105, and an actuator joint portion 1106.
  • the wing surface portion 1103 is a portion other than the front edge portion 1102, the frame portion 1104, the branch portion 1105, and the actuator joint portion 1106, and the elongated plate-like portions 1107, 1108, and 1109 and the aramid phenolic 1114. It is the part that becomes power.
  • Parts other than the aramid film 1114 of the blade part 110 are 20 xm thick. It consists of CFRP (Carbon Fiber Reinforced Plastic) layer. Specifically, the portions other than the aramid film 1114 of the blade portion 110 are formed by cutting out the three portions shown in FIGS. 5 to 7 from the CFRP sheet and laminating the three portions. .
  • CFRP Carbon Fiber Reinforced Plastic
  • the leading edge portion 1102 and the actuator junction portion 1106 have a three-layer structure of CFRP layers having a thickness of 20 ⁇ m. Further, the frame portion 1104, the branch portion 1105, the elongated plate-like portions 1107, 1108, and 1109 have a single layer structure of a CFRP layer. If the positive direction of the X axis shown in FIG.
  • the leading edge 1102 and the actuator joint 1106 are stacked with three C FRP layers with fiber axis orientations of -60 degrees (+120 degrees), 0 degrees (180 degrees), and +60 degrees (240 degrees) It is formed by.
  • the leading edge portion 1102 Since the main deformation of the leading edge portion 1102 is expansion and contraction parallel to the longitudinal direction of the blade portion 110, it is desirable that this direction and the fiber axis of the CFRP layer match. Further, it is considered that force is applied to the actuator joint 1106 in a plurality of directions, and the direction of these forces changes according to the flapping motion. Therefore, it has as uniform rigidity as possible in all directions As described above, it is desirable to form by laminating a large number of CFRP layers having fiber axes in different directions. The leading edge portion 1102 and the actuator joint portion 1106 are more rigid than the other portions. A method of manufacturing a blade that satisfies these requirements will be described later.
  • a wing surface portion 1103 is provided so as to be surrounded by the actuator joint portion 1106, the front edge portion 1102, the frame portion 1104, and the branch portion 1105.
  • the wing surface portion 1103 has an aramid Finolem 111 4 force and extends in the depth direction of the paper surface of FIG.
  • the actuator joint 1106 is provided at the base of the blade 110 and is joined to the actuator, and its length is 1 Omm.
  • each of the plurality of elongated plate-like portions 1107 has the same width, and the plurality of elongated plate-like portions 1107 are provided at the same pitch and in parallel with each other. Yes.
  • Each of the plurality of elongated plate-like portions 1108 has the same width, and the plurality of elongated plate-like portions 1108 are provided at the same pitch and in parallel with each other.
  • each of the plurality of elongated plate-like portions 1109 has the same width, and the plurality of elongated plate-like portions 1109 are provided at the same pitch and in parallel with each other.
  • the force S for example, the stiffness distribution
  • the stiffness distribution is intentionally changed for the plurality of elongated plate-like portions in the same layer to be the same pitch and parallel. If you want, you are not limited to the above.
  • the blade portion 110 may be used in which the pitch on the base side is smaller than that on the tip side, thereby increasing the rigidity.
  • the front edge portion 1102 has a groove structure extending along the longitudinal direction of the blade portion 110, that is, an uneven shape called corrugation. Therefore, the rigidity of the leading edge portion 1102 with respect to in-plane bending deformation including the longitudinal direction is higher than the rigidity against bending deformation with the longitudinal direction as the rotation center axis.
  • the uneven shape of the front edge portion 1102 can be easily formed by heating a sheet of a CFRP layer material called a pre-predator in a state of being in close contact with a mold corresponding to the uneven shape. Further, a large load is applied to the leading edge portion 1102.
  • the front edge 1102 is an elongated plate Since the structure is not provided with a shape part, that is, a solid structure with no gap, the rigidity is higher than that of the blade part 1103. Furthermore, since the load increases cumulatively as the front edge portion 1102 approaches the base, the base is thicker than the tip.
  • the width and height of the leading edge 1102 at the root portion is about 2 mm, and the width and height of the leading edge 1102 at the tip portion is about 1 mm.
  • the width of the front edge portion 1102 at the root portion and the width of the front edge portion 1102 at the tip portion are drawn with the same width.
  • the wing surface portion 1103 is constituted by elongated plate-like portions 1107, 1108 and 1109 of the CFRP layer, and an aramid film 1114.
  • An aramid film 1114 having the same outer shape as the blade portion 110 is sandwiched between elongated plate-like portions of the CFRP layer.
  • the heat resistance temperature of the aramid film 1114 is higher than the molding temperature of the CFRP layer, and in the CFRP layer molding process, the pre-preda and the aramid film are brought into contact with each other.
  • the raw materials including the front edge portion 1102, the frame portion 1104, the branch portion 1105, the actuator joint portion 1106, the long-field plate portion 1107, 1108, 1109 and the aramid phenolic 1114 formed by the CF RP layer are described above. It is possible to easily manufacture the wing face portion 1103 by sintering on a metal mold.
  • the elongated plate-like portions 1107, 1108, and 1109 of the wing surface portion 1103 are stacked in a state where the extending directions thereof are shifted from each other by 60 degrees. Therefore, when viewed from the direction perpendicular to the surface of the wing surface portion 1103, it appears that the elongated plate-like portions 1107, 1108, and 1109 form a regular triangular frame, that is, a truss.
  • Each of the elongated plate-like portions 1107, 1108, and 1109 has an elongated rectangular outline, and two long sides thereof extend parallel to the fiber axis.
  • the bending rigidity of each of the elongated plate-like portions 1107, 1108, and 1109 is 1Z8 of the front edge portion 1102.
  • the bending stiffness is proportional to the cross-sectional secondary moment. In other words, the bending stiffness is proportional to (width: the length of the short side of the rectangle) X (thickness cubed).
  • the thickness of each of the elongated plate-like portions 1107, 1108, and 1109 is constant, and the width of the elongated plate-like portion 1107 is the distance between the central axes of the elongated plate-like portions 1107 (hereinafter, This is 1 / a times the pitch, and the width of the elongated plate-like portion 1108 is 1 / a times the pitch of the elongated plate-like portions 1108, and the width of the elongated plate-like portion 1109 is Assume that the width is 1 / a times the pitch of the elongated plate-like portions 1109.
  • the width of each of the elongated plate-like portions 1107, 1108, and 1109 is set to be the same as that of the elongated plate-like portion 1107, each of the elongated plate-like portions 1108, and each of the elongated plate-like portions 1109.
  • the desired bending rigidity distribution is obtained.
  • a blade portion 110 is formed.
  • the number of laminated thin plate-like parts is only a natural number and cannot be continuously changed.Therefore, simply changing the number of laminated thin plate-like parts makes the distribution of the bending rigidity of the blade part discontinuous. Become. However, since the ratio between the width and the pitch of the elongated plate-like portion can be continuously changed, the desired bending rigidity can be obtained by continuously changing the bending rigidity distribution. Distribution can be obtained.
  • the ratio between the width of the elongated plate-like portion 1107 and the pitch between the elongated plate-like portions 1107, the width of the elongated plate-like portion 1108 and the elongated plate-like shape is made different from the pitch between the elongated plate-like portions 1109.
  • the bending rigidity of the wing surface portion 1103 has anisotropy. Is possible.
  • the width of the elongated plate-like portion 1108 is increased, and the width of the elongated plate-like portion 1108 is increased. What is necessary is just to make a pitch small.
  • the above-described blade portion 110 has approximately the same rigidity as the blade portion with a mass of about 1/3 that of the blade portion formed by the cutout described in this paragraph. (Specifically, the values of the mass and rigidity of the blade are listed in the ⁇ Flour mass> item below.)
  • the aramid phenolic 1114 constituting the wing surface portion 1103 is stretched between the actuator joint portion 1106, the front edge portion 1102, and the frame portion 1104. Therefore, the end portion of the aramid film 1114 is prevented from being damaged.
  • the width of the frame part 1104 is about 0.5 mm.
  • the frame portion 1104 has a shape surrounding the wing surface portion 1103, and therefore the extending direction thereof differs depending on the position. The direction of the fiber axis of the frame 1104 coincides with the extending direction thereof.
  • a branch portion 1105 connected to the front edge portion 1102 and extending obliquely from the front edge portion 1102 is provided.
  • the width of the branch 1105 is about 0.9 mm.
  • the branch portion 1105 is formed to extend in the direction of 30 ° when the direction facing the tip side of the blade portion 110 in the X-axis direction is 0 °.
  • the CFRP layer having an elongated plate-like portion different from the above-described elongated plate-like portion 1107 is used.
  • a branch 110 5 may be provided.
  • a wing surface portion 1103 having a structure in which a branch portion 1105 formed using a material different from the CFRP layer is sandwiched between the CFRP layers may be used.
  • the shape of the actuator joint 1106 is actually determined according to the compatibility with the actuator that drives the blade 110. It is assumed that the actuator joint portion 1 106 of the present embodiment has a shape shown in FIG.
  • the actuator joint 1106 is made of a CFRP layer that does not have an elongated plate-like portion, that is, has a solid structure with no gap. Used.
  • a groove structure is provided at the front end of the actuator joint 1106. The groove structure of the actuator joint 1106 and the groove structure of the leading edge 1102 are provided so as to be continuous.
  • Table 1 shows the mass of each part of the aforementioned blade 110. As shown in Table 1, the mass of the blade 110 is about 26.5 mg. The mass of the actuator joint 1106 is about 10.8 mg.
  • the mass of the blade portion of the comparative example using the method of cutting out a laminated structure in which three CFRP layers are laminated so as to form a truss shape is about 48 mg.
  • the upper ultrasonic motor 120 has an upper ultrasonic transducer 121 and an upper rotor 122 driven by the upper ultrasonic transducer 121. Further, the upper rotor 122 is provided on the rotor shaft 124 via the upper bearing 123 so as to be rotatable only around the axis of the rotor shaft 124. The rotor shaft 124 is fixed to the main body 101. In the upper rotor 122, an upper magnetization pattern 125 is written in an arc shape. The upper magnetization pattern 125 is read by the upper magnetic encoder 126. In the upper ultrasonic transducer 121, as shown in FIG. 14A, the support portion 1214 is fixed to the support shaft 127, and the traction portion 1224 is pulled by the traction rubber 129. Further, power for driving the upper ultrasonic transducer 121 is supplied via the film substrate 128.
  • the lower ultrasonic motor 130 has a mirror-symmetric structure with the upper ultrasonic motor 120 in the vertical direction. That is, in the lower ultrasonic motor 130, the lower ultrasonic transducer 131 rotates the lower rotor 132.
  • the lower rotor 132 is provided on the rotor shaft 124 so as to be rotatable only about the axis of the rotor shaft 124 with a lower bearing (not shown) interposed therebetween.
  • the lower rotor 132 has a lower magnetization pattern (not shown) written in an arc shape. The lower magnetization pattern is read by the lower magnetic encoder 136.
  • the upper and lower ultrasonic motors 120 and 130 have exactly the same configuration except that they are provided mirror-symmetrically in the vertical direction. Only the detailed structure will be described.
  • the upper ultrasonic transducer 121 includes a diaphragm 1211, a front surface piezo 1212, and a back surface piezo 1213 force.
  • the diaphragm 1211 is made of stainless steel having a thickness of 0.2 mm, and includes a rectangular portion having a width of 2 mm and a length of 9 mm, and a support portion 1214 that protrudes outward from a central portion in the longitudinal direction of the rectangular portion. .
  • the diaphragm 1211 is sandwiched between the front surface piezo 1212 and the back surface piezo 1213. It is rare.
  • the front surface piezo 1212 and the back surface piezo 1213 each have a strip shape with a width of 2 mm, a length of 8 mm, and a thickness of 0.2 mm, and are formed of a piezo sintered body that is polarized in the thickness direction.
  • a front electrode 1216 is bonded to the front surface piezo 1212, and a rear surface electrode is connected to the back surface piezo 1213.
  • the upper ultrasonic transducer 121 When a voltage is applied to the surface electrode 1216, the upper ultrasonic transducer 121 has three nodes as shown in FIG. 10, that is, a third-order flexural vibration mode is excited. Further, when a voltage is applied to the back electrode 1217, a longitudinal (stretching) vibration mode as shown in FIG. 11 is excited.
  • the resonance frequencies of the resonance modes for the two vibrations are both 250 kHz, and they coincide with each other.
  • the vertex of the diaphragm 1211 performs two kinds of elliptical motions shown in FIGS.
  • the two types of elliptical motion are elliptical motion that rotates in the forward direction and elliptical motion that rotates in the reverse direction.
  • a contact portion 1215 made of ceramic is provided at the apex of the diaphragm 1211. The contact portion 1215 rotates the upper rotor 122 around the axis of the rotor shaft 124 by frictional force according to the above-described elliptical motion. At this time, either forward rotation or reverse rotation is selected.
  • the potential applied to the front electrode 1216 is ⁇ A
  • the potential applied to the back electrode 1217 is ⁇ B
  • ⁇ A and ⁇ B are cos (2 ⁇ ft)
  • the rotation direction of the contact portion 1215 when expressed as a function of sin (2 ⁇ ft) multiplied by the amplitude is shown.
  • the potential applied to each of the front electrode 1216 and the back electrode 1217 is represented by a trigonometric function. If the phase of these potentials is shifted by ⁇ 90 °, it is represented by a rectangular wave or the like.
  • the potential to be applied may be applied to both electrodes.
  • each of the upper rotor 122 and the lower rotor 132 has a fan-shaped outline and performs a reciprocating rotary motion within a range of a predetermined rotation angle. Therefore, in order to reduce the weight, as shown in FIG. 14B, the upper rotor 122 and the lower rotor 132 having a fan-shaped frame structure with a central angle of 120 °, in which unnecessary portions are removed, are used. It is desirable. If a rotor having a fan-shaped contour is used, the occupancy ratio of the rotor rotating (rotating reciprocating motion) around the central axis can be most effectively reduced.
  • Upper rotor 1 Each of 22 and the lower rotor 132 has a frame portion along a fan-shaped outline.
  • the upper rotor 122 and the lower rotor 132 may have a hollow structure for light weight as long as necessary strength is secured.
  • each of the upper rotor 122 and the lower rotor 123 may have a structure having a frame extending along a fan-shaped outer periphery having a force radius of 120 °.
  • the upper rotor 122 and the lower rotor 132 are provided with limiters 12322a and 12322b for limiting the rotation angle ⁇ 1 of the upper roller 122, which will be described later, to the rotation angle ⁇ 2 of the lower rotor 132 within a predetermined range.
  • And limiter 12322c force S can be provided or reduced.
  • the limiter 12322b is provided on the inner peripheral surface of the lower rotor 132 having a fan-shaped frame structure
  • the limiter 12322a and the limiter 12322c are provided on the inner peripheral surface of the upper rotor 122 having a fan-shaped frame structure.
  • the limiter 12322b is positioned between the limiter 1 2322a and the limiter 12322c in the arc-shaped locus. According to this, the movement range of the limiter 12322b is limited by the limiter 12322a and the limiter 12322c. Therefore, the wing twist angle ⁇ described later is limited to a value within a certain range. Therefore, in Equation (7), which will be described later, there is physically one solution. As a result, the operation of the blade is stabilized.
  • the upper and lower rotors 122 and 132 transmit the driving force of each ultrasonic transducer to the wing portion without loss. Therefore, it is desirable that the rotational resistance of the rotor be as small as possible. Further, in order to avoid collision between the upper rotor 122 and the lower rotor 132, it is desirable that these apertures have a structure that can rotate only around the central axis. Therefore, in this embodiment, a kind of ball bearing called a pivot is used as a bearing in the contact portion between the rotor and the rotation center shaft. This prevents contact between the rotors as described above. If the loss is sufficiently smaller than the driving force of the ultrasonic vibrator, a friction type bearing such as Teflon (Registered trademark) bearings may be used.
  • Teflon Registered trademark
  • Preload is applied from the contact portion 1215 to the upper rotor 122, and as a reaction, a drag is generated from the contact portion 1215 toward the outer peripheral surface of the upper rotor 122. Therefore, friction is generated between the upper rotor 122 and the contact portion 1215. Accordingly, the upper rotor 122 receives a frictional force due to the elliptical motion of the contact portion 1215 and performs a reciprocating rotational motion.
  • the traction rubber 129 has an annular shape, and one end thereof is hooked on the traction portion 1224. The other end of the traction rubber 129 is hooked on a traction rubber pin 113 fixed to the main body reinforcing pole 112. Therefore, tension is generated in the pulling rubber 129, and the pulling portion 1224 is pulled toward the main body reinforcing pole 112. Therefore, the vibration plate 1211 is the axis of the support shaft 127 that supports the vibration plate 1211 including the pulling portion 1224. Rotate around. This rotational movement is constrained by the contact portion 1215 coming into contact with the upper rotor 122. Therefore, a preload is generated from the contact portion 1215 to the upper rotor 122.
  • the upper magnetic encoder 126 shown in FIG. 8 is provided with two detectors for the A phase and the B phase with an interval of 1Z4 of the pattern period.
  • the upper magnetic encoder 126 differs in the phase shift state between the A phase and the B phase according to the rotation direction of the upper rotor 122 as in the case of a general encoder. So, for example, if the up edge of phase A is used as a trigger for the counter and 1/0 of the level of phase B is used to determine which of up / down count is used, the upper rotor It is possible to detect the rotation angle ⁇ 1 of 122.
  • the rotation angle ⁇ 1 is calculated by the central processing unit 151.
  • the ultrasonic motor shown in FIGS. 8 to 14 is an example of a general actuator, and the actuator of the rising and moving apparatus according to the present invention is not limited to the ultrasonic motor having the above-described structure.
  • an electromagnetic motor or an internal combustion engine may be used as the actuator.
  • Any device for detecting the rotation angle may be used as long as it does not inhibit flapping flight.
  • an optical encoder may be used instead of using the magnetic encoder described above.
  • the blade drive mechanism 140 has an upper plate 141 fixed to the upper rotor 122 and a lower plate 142 fixed to the lower rotor 132. Further, an intermediate plate 144 is connected to the lower plate 142 with a first aramid hinge 143 interposed therebetween. Further, the base portion of the blade portion 110 is connected to the upper plate 141 with the second aramid hinge 145 interposed therebetween. Further, the root portion of the blade portion 110 is also connected to the intermediate plate 144 with the third aramid hinge 146 interposed therebetween. Therefore, a composite hinge in which the upper plate 141, the blade portion 110, the intermediate plate 144, and the lower plate 142 are connected by the aramid film is formed. This composite hinge is It is driven by the lower rotor 122 and the lower rotor 132.
  • FIGS. 16 to 18 show the shapes of the upper plate 141, the intermediate plate 144, and the lower plate 142.
  • the parts in the vicinity of the sides that are not connected to the hinges and rotor of each plate are bent by about 90 ° with respect to the main surface of each plate shown by hatching in FIGS. .
  • both side ends of the bent portions are cut in a direction of 45 ° with respect to the direction in which the bent portions extend.
  • Each aramid hinge has a width of 0.1 mm, and its width is very small compared to its length, so it functions as a link that can move only in one-degree-of-freedom rotation, that is, a butterfly plate (trillion)
  • the extension lines of the aramid hinges 143, 145, and 146 intersect at one point, which is located on the central axis of the shaft 124 and between the upper bearing 123 and the lower bearing 133. To position.
  • the reciprocating motion of the blade portion 110 in the front-rear direction is controlled by controlling the rotation angle of the upper ultrasonic motor 120, and the phase of the rotation angle of the upper ultrasonic motor 120 and the phase of the rotation angle of the lower ultrasonic motor 130 are By controlling the difference, the torsional motion of the blade 110 is controlled.
  • the actuator includes an upper ultrasonic motor 120 as a back-and-forth reciprocating rotor that reciprocates the front edge portion 1102 as a blade shaft in the front-rear direction (rotation angle ⁇ : rotation angle around the axis), A twisting rotor for rotating the front edge 1102 around the axis (rotation angle 13) during a predetermined period before and after reversal of the direction of motion in the reciprocating motion is provided.
  • the shaft extends along the longitudinal direction of the rising and moving apparatus 100. Further, the shaft extends along the vertical direction of the rising and moving apparatus 100. Furthermore, the X axis extends along the left-right direction of the rising and moving apparatus 100. The X axis, ⁇ axis, and ⁇ axis are perpendicular to each other. Moreover, in the saddle shaft, the rear is positive and the front is negative. On the X axis, the upper part is positive and the lower part is negative. Further, in the shaft, the side where the left blade 110 is located is positive, and the side where the right blade 110 is located is negative.
  • the rotation angle of the upper ultrasonic motor 120 is ⁇ 1
  • the rotation angle of the lower ultrasonic motor 130 is ⁇ 2
  • flapping is the rotation angle of the reciprocating motion in the front-rear direction. Stroke angle is hidden It is assumed that the twist angle, which is the rotation angle around the axis of the front edge 1102, is / 3.
  • the distance from the intersection of the extension lines of each of the aramid hinges 143, 145, and 146 to the outer end of each of the aramid hinges 143, 145, and 146 is R2, Rl, And R3. Furthermore, the distance between the end point of aramid hinge 146 and the end point of aramid hinge 145 is L1, the distance between the end point of aramid hinge 146 and the end point of aramid hinge 143 is L2, and the distance between the end point of aramid hinge 143 and the end point of aramid hinge 145 is L3.
  • the flapping stroke angle ⁇ is the rotation of the blade shaft (front edge 1102) around the axis of the rotor shaft 124. Therefore, as shown in the following equation (1), the rotation angle ⁇ of the upper ultrasonic motor 120 Equal to 1.
  • twist angle is a rotation angle around the axis of the blade axis (front edge portion 1102) of the blade portion 110, it is calculated from the cosine value of ⁇ expressed by the following equation (2).
  • is greater than ⁇ and powerful, less than 2 ⁇ .
  • L3 Ll X cos (i3— ⁇ ) soil sqrt (L2 X L2—LI X L1 X sin2 (j3— ⁇ )) (7) Note that the L3 compound sign (soil) is positive Whether it is negative or negative is easily determined by considering the actual behavior of the blade 110.
  • ⁇ 1 0 °
  • ⁇ 2 _45 °
  • R3 l 5.81 mm
  • LI 5 mm
  • L2 l l .4 mm
  • L3 l l .39 mm.
  • the rotational angles ⁇ 1 and ⁇ 2 of the upper and lower rotors 122 and 132 are calculated by the central processing unit 151 based on the information obtained by the magnetic encoder 126 as described above. A method for controlling the rotation angles ⁇ 1 and ⁇ 2 will be described later.
  • the direction of movement of the wing part 110 is reversed in the flapping flight, and therefore, the torque required for the actuator is high when the wing part 110 is turned back and forth between the up and down movements. Become. However, the torque required for the actuator is small until just before the blade 110 is turned back. Therefore, the kinetic energy of the actuator (upper and lower ultrasonic motors 120 and 130) is accumulated using some method during a period when the torque required for the actuator is small, and the actuator is given a high torque and torque. By applying the accumulated energy to the blade section 110 during the period when the actuator is required, it is possible to smooth the Tonerek time history required for the actuator.
  • a technique for smoothing the torque time history at the time of switching will be described with reference to FIGS.
  • the technique a technique is used in which the energy of the actuator is accumulated by elastically deforming a certain substance, and the energy is given to the actuator by the restoring force of the elastically deformed substance. In the following, it is given to the actuator by the energy accumulated in the elastically deforming substance.
  • Luke is referred to as an auxiliary Tonolek.
  • the rising and moving apparatus 100 As shown in FIG. 21, in the rising and moving apparatus 100 according to the present embodiment, the phenomenon in which the peak of torque becomes extremely large when the wing portion 110 is turned back is due to the driving torque of the upper ultrasonic motor 120 T1 Appears prominently. Control of the rotation angle ⁇ 1 of the upper rotor 122 and the rotation angle ⁇ 2 of the lower rotor 132 is assumed to be as shown in FIG. Further, the rising and moving apparatus 100 reciprocates the front edge portion 1102 as a blade shaft in the front-rear direction, and around the front edge portion 1102 in a predetermined period from before to after the reversal of the movement direction in the reciprocating motion. The flapping motion is to be rotated.
  • a spring 301 is provided outside the upper rotor 122.
  • the spring 301 is fixed to any part of the main body 101.
  • the spring 301 and the upper rotor 122 start contact when the rotation angle of the upper rotor 122 exceeds ⁇ -contact. The method of obtaining ⁇ -contact will be described later.
  • the torque assist mechanism corresponds to the energy storage and supply mechanism of the present invention.
  • the tonolec T1 required for driving the upper rotor 122 is a value obtained by adding the above-mentioned auxiliary torque to the conventional tonolec T1 shown by the thin solid line in FIG. 24. Therefore, the thick solid line in FIG. It becomes as shown by.
  • the deformation energy is stored in the spring 301 by the displacement of the upper rotor 122 in the first half of the switching operation with a small torque, and the stored deformation energy is stored in the second half of the switching operation by the restoring force of the spring 301.
  • the torque assist mechanism of this embodiment that is, the energy storage and supply mechanism, is used as the blade shaft. Energy is stored when the torque required to drive the leading edge 1102 is small, and is applied to the upper rotor 122 when the torque required to drive the leading edge 1102 is large.
  • the energy storage and supply mechanism accumulates the energy of the upper rotor 122 in the first half of the turning of the leading edge 1102 and gives the energy to the upper rotor 122 in the second half of the turning.
  • Tonolek T1 peak is reduced, and the torque time history is smoothed.
  • the design concept of the panel constant and the contraction amount of the spring 301 for reducing the maximum torque to T-MAX will be described.
  • the rotation angle ⁇ 1 and torque T1 can be negative values.
  • the signs of rotation angle ⁇ 1 and torque T1 are all positive values. To do.
  • the torque 301 is less than the value force T—MAX obtained by subtracting the auxiliary torque from the panel 301 from the torque T1. It is necessary to determine the spring constant.
  • the amount of contraction of the spring 301 at this time depends on the difference between the rotation angle ⁇ 1 _MAXT1 and the rotation angle ⁇ -contact, and the distance between the point where the spring 301 contacts the upper rotor 122 and the rotation center position of the upper rotor 122 R_contact The value multiplied by. Therefore, the force F_spring generated in the spring 301 at this time is expressed by the following equation (8), where k is the spring constant of the spring 301.
  • F_spring ( ⁇ 1—MAXT1— ⁇ —contact) X R_contact X k- ⁇ ⁇ (8)
  • Equation (11) is obtained. [0153] k> (T1_MAX-T_MAX) / ( ⁇ l—MAXTl— ⁇ —contact) ⁇ ⁇ ⁇ (11) Strictly speaking, the force that Equation (11) must hold at all times In the embodiment, as shown in FIG. 24, when the torque T1 is the maximum value, if the formula (11) is satisfied, the torque required for the actuator can be greatly reduced.
  • FIG. 26 is a diagram illustrating a second example of the torque assist mechanism.
  • the spring 301 in FIG. 23 is replaced by a leaf spring 311.
  • FIG. 27 is a diagram showing a third example of the torque assist mechanism.
  • Tonlek assist mechanism when the rubber block 322 fixed to the upper rotor 122 collides with the support column 321 fixed to the main body 101, the energy of the upper rotor 122 is accumulated in the rubber block 322, and the rubber block 322 Energy is imparted to the upper rotor 122 by the restoring force of.
  • Fig. 28 is a diagram showing a fourth example of the torque assist mechanism.
  • Tonlek assist mechanism each of the coil springs 332 and 333, which are housed in the hollow rotor 334 and fixed to the fulcrum 331, collide with the inner wall of the hollow rotor 334, and the energy of the upper rotor 122 is accumulated. Energy is applied to the upper rotor 122 by the restoring forces of the coil springs 332 and 333, respectively.
  • the fulcrum 331 is fixed to the main body 101.
  • Fig. 29 is a diagram showing a fifth example of the torque assist mechanism. This torque assist mechanism is obtained by replacing the coil spring 332 shown in FIG. The leaf spring 341 is fixed to the main body 101.
  • FIG. 30 is a diagram showing a sixth example of the torque assist mechanism.
  • a rubber string 351 is used in place of the coil springs 332 and 333 and the leaf spring 341.
  • One end of the rubber cord 351 is fixed to the support point 352 and the other end is fixed to the upper rotor 122.
  • the support point 352 is fixed to the main body 101.
  • FIG. 31 is a diagram showing a seventh example of the torque assist mechanism.
  • the bearing 123 is provided with a mechanism similar to the above-described Tonnelec assist mechanism, thereby achieving a light weight of the torque assist mechanism.
  • the leaf spring 362 collides with the dog 361 provided on the bearing 123, and the leaf spring 362 is elastically deformed to accumulate energy.
  • the restoring force of the leaf spring 362 gives energy to the upper rotor 122 through the dog 361.
  • the leaf spring 362 is fixed to the main body 101.
  • FIG. 32 is a diagram showing an eighth example of the torque assist mechanism.
  • the plate spring 371 force provided on the bearing 123 collides with the dog 372 fixed to the rotor shaft 124, and the plate panel 371 elastically deforms to accumulate energy.
  • energy is given to the upper rotor 122 by the restoring force of the plate panel 371.
  • the leaf spring 371 is fixed to the main body 101.
  • an elastic body such as metal or a superelastic body such as rubber is suitable.
  • the rubber cord is desirable as a member for storing energy because it has a small specific gravity and is easily reduced in weight.
  • a torque assist mechanism that stores energy in a mode other than elastic deformation may be used.
  • a torque assist mechanism that stores and releases energy by contraction and expansion of the gas sealed in the cylinder using the relationship between the volume change of the gas and the pressure may be used.
  • a torque assist mechanism may be used in which the gas sealed in the cylinder uses phase change to accumulate and supply energy.
  • an electromagnetic motor may be used, and a tonnelec auxiliary mechanism in which inductive power is stored in the power source 190 or the like may be used.
  • the amplitude of lower rotor 132 is increased at the time of advance turnover described later.
  • the torque supplied to the lower ultrasonic motor 130 is increased.
  • the rising and moving apparatus 100 automatically assumes the posture shown in FIG. 1 because the mass of the portion below the point of action of the flying force generated by the flapping motion of the blade portion 110 is large. In other words, it is not necessary to control the rotation around the X axis and the rotation around the Y axis.
  • the translational acceleration along each of the X-axis, Y-axis, and Z-axis, and the rotational acceleration around the Z-axis (hereinafter also referred to as “angular acceleration”) are changed according to the flapping method.
  • the force generated by the flapping motion changes with the movement of the blade, but here, the average force of one cycle of the flapping motion is the force generated by the flapping motion.
  • the rotation angle ⁇ 1 of the upper ultrasonic motor 120 that is, the stroke angle amplitude needs to be fixed. . Therefore, in order to control the operation of the rising and moving apparatus 100, the rotation angle ⁇ 2 of the lower ultrasonic motor 130 is changed. That is, the rising and moving apparatus 100 changes the flow of the fluid by changing the twist angle ⁇ , thereby changing the posture.
  • twist-delay cutback the way of flapping described in the above (1) shown in FIG. 33
  • leading back the way of flapping described in (2) shown in FIG. It
  • delay cutback twist-delay cutback
  • Figure 22 shows how to flapping during hovering.
  • the time history of the rotation angles ⁇ 1 and ⁇ 2 is shown together with the time history of the cross section of the blade portion 110.
  • the levitation force at this time is balanced with its own weight, and the propulsive force in the front-rear direction is zero.
  • Figure 33 shows how to move upward along the Z axis, ie flapping for ascent.
  • Fig. 34 shows how to move downward along the Z-axis, that is, how to flap for lowering.
  • the time histories of the rotation angles ⁇ 1 and ⁇ 2 are shown together with the time history of the cross section of the blade portion 110. Note that the left and right blade portions 110 perform mirror-symmetric operations with the Y-Z plane as the symmetry plane.
  • the operation shown in FIG. 33 is the preceding switching operation described in (1) above, and the operation shown in FIG. The operation is the delayed switching operation described in (2) above.
  • the acceleration in the longitudinal direction during these movements is zero as shown in Figure 35A.
  • Figures 35 and 36 show how to flutter forward
  • Figures 35C and 36 show how to flutter backward. Note that the left and right blade portions 110 perform mirror-symmetric operations with the heel plane as a symmetry plane.
  • the preceding switching operation described in (1) is performed, and the delayed switching operation described in (2) is performed in the switching including the down end.
  • step S1 the preceding switching operation described in (1) above is performed.
  • the levitation force decreases at the time of delayed turnover and the levitation force increases at the time of advance turnover. Therefore, in the translational motion in the axial direction, the above (1) and (2) It is possible to offset the levitation forces generated by the described operations. That is, the rising and moving apparatus 100 can move in the front-rear direction while maintaining altitude.
  • the left wing 110 In order to rotate in the positive direction around the heel axis, that is, to turn left, the left wing 110 operates in the manner of flapping for retreating, and the right wing 110 is operated in the manner of flapping for advancement. do it.
  • the left wing 110 In order to rotate in the negative direction around the heel axis, that is, to turn to the right, the left wing 110 operates in the manner of flapping for forward movement, and the right wing 110 is flapping for backward movement. It only has to work.
  • the levitation force due to the left and right blades 110 can be canceled out, so that the vertical axis of the ascent movement device 100 can be maintained with the altitude maintained. Around rotation is performed.
  • the right wing 110 moves up and It is only necessary that the blade part 110 operates to descend. As a result, the rising and moving apparatus 1 changes the posture so that the left wing portion 110 is positioned below the right wing portion 110, thereby
  • the tip of the levitation force vector is tilted to the right from the vertically upward state. As a result, a force for moving the rising and moving apparatus 100 to the left is generated.
  • the rising and moving apparatus 100 can freely move in the space by properly using the three types of flapping, which are different in the timing of the return, that is, the advance return, the delayed return, and the center return.
  • the method of expressing the flapping state is divided into down, up, and turn-back at each end. That isn't appropriate. It is rational to divide the flapping method into two types, with the first half of the downhill and the first half of the launch after the downhill as the front flapping motion, and the first half of the launch and the first half after the uplift as the rear flapping motion. Is.
  • the flapping method of the present invention is not limited to the flapping method of this item.
  • the angular velocities of the rotation angles ⁇ 1 and ⁇ 2 are assumed to be substantially constant except for the turn-back period. That is, as shown in FIG. 44, the reciprocating motion of the blade portion 110 includes the up and down motion with a constant angular velocity, and the continuous reversing motion with a changing angular velocity, that is, the reciprocating motion direction. It consists of a movement to reverse. The angular velocity of the turn-back motion changes continuously to the angular velocity of the launch motion and the angular velocity of the down-motion.
  • a flapping expression method in which many patterns of rotation angles ⁇ 1 and ⁇ 2 exist may be used. That is, there may be used a flapping method having a plurality of types of flapping timings for leading and delaying flapping, or a flapping method for representing flapping methods that can continuously and freely change the flapping timing.
  • the center cut-back may use a flapping expression method that alternately repeats the preceding cut-back and the delayed cut-back. With such a flapping method, it is not necessary to store the data for the center cut pattern in the memory, so the number of rotation angles ⁇ 1 and ⁇ 2 can be reduced. it can.
  • the time history of the rotation angle ⁇ shown in Fig. 22 and Figs. 33 to 36 is an example of the rotation angle ⁇ of the rising and moving apparatus 100 having the configuration shown in Figs.
  • the rotation The time history of the angle ⁇ is not limited to the time history of the rotation angle ⁇ shown in FIG. 22 and FIGS.
  • the position detection sensor 160 is fixed to the main body 101. Therefore, the position and posture measured by the position detection sensor 160 are the position and posture of the rising and moving apparatus 100 itself. As shown in FIG. 37, the position detection sensor 160 provides the measured position and attitude data to the central processing unit 151 described later.
  • the sensor for realizing such a function may be any sensor because it changes with the progress of technology and does not relate to the essence of the present invention.
  • a combination of magnetism and acceleration is 0.5. Detect changes in posture What can be done is commercially available. For example, GPS (Global Positioning System) can be used for position detection with an error of about lm.
  • UWB Ultra Wide Band
  • the control circuit 150 includes a central processing unit 151 (Central Processing Unit), a driver 152 that drives the upper and lower ultrasonic motors 120 and 130 according to a command from the central processing unit 151, and A booster circuit 153 for supplying a high voltage to the driver 152 is included.
  • a central processing unit 151 Central Processing Unit
  • driver 152 that drives the upper and lower ultrasonic motors 120 and 130 according to a command from the central processing unit 151
  • a booster circuit 153 for supplying a high voltage to the driver 152 is included.
  • a motion command is given to the control circuit 150 from the controller 200 operated by the operator 210 to the communication device 170.
  • the operation command is stored in a temporary storage device (hereinafter referred to as “RAM (Random Access Memory)”) 155.
  • RAM Random Access Memory
  • central processing unit 151 obtains flapping data from a fixed storage device (hereinafter referred to as “ROM (Read Only Memory)”). After that, the central processing unit 151 gives the flapping data to the driver 152.
  • the rising and moving apparatus 100 performs either the aforementioned translational movement in the front / rear, left / right, up / down direction, or rotation about the vertical axis.
  • the central processing unit 151 outputs a PWM (Pulse Width Modulation) signal and a rotation direction control signal to the driver 152 using the above-described motion command, information of the ROM 154 and RAMI 55.
  • PWM Pulse Width Modulation
  • the ultrasonic motors 120 and 130 operate in accordance with the motion command given by the operator 210 to the rising and moving apparatus 100 using the controller 200.
  • a flapping method corresponding to the operation command is realized. Note that the period of the reciprocating motion of the flapping is determined using the repetition timer 156.
  • the central processing unit 151 includes a repeat timer 156 as shown in FIGS. 37A and 37B.
  • the repetition timer 156 sets the value of 0.5 to 0.5 as 50H as the phase of the flapping motion. Output to the central processing unit 151 at a repetition cycle of z. However, it is assumed that the phase ⁇ of the flapping motion is counted up from ⁇ 0.5, and when the value reaches 0.5, the value of the phase ⁇ is again increased from 0.5.
  • the front flapping motion is such that the blade portion 110 is positioned forward of the center position of the reciprocating motion, and the rear flapping motion is determined such that the blade portion 110 is positioned behind the central position of the reciprocating motion. Each exercise is performed.
  • one cycle of the repeat timer 156 corresponds to twice the cycle of the flapping motion.
  • the phase ⁇ is positive, the rising and moving apparatus 100 performs the backward flapping motion, and if the phase ⁇ is negative, the rising and moving apparatus 100 performs the forward flapping motion.
  • many microcontrollers used for device control include a function called auto-reload timer, which is almost the same as the repeat timer described in this section. Therefore, it is possible to realize the repeat timer function in this section.
  • the ROM 154 stores flapping data.
  • the flapping data is the time history data of the duty ratio of the PWM control signal transmitted to the dryer 152.
  • the ultrasonic motors 120 and 130 are applied with a driving voltage having a frequency of 250 KHz and a fixed duty ratio of 50%.
  • the duty ratio of the PWM control signal transmitted to the driver 152 is the O to the sum of the O period and OFF period of the 250 kHz drive voltage with the duty ratio fixed at 50%. N period ratio.
  • the flapping data corresponding to the above-mentioned three modes of the preceding switching, the delayed switching, and the center switching is the duty ratio of the PWM control signal transmitted to the driver 152 corresponding to the flapping motion phase ⁇ . , Stored in advance in ROM154.
  • the duty ratio of the PWM control signal transmitted to the driver 152 is indicated by Dutyl ( ⁇ , MODE) and Duty2 (0, MODE).
  • Dutyl ⁇ , MODE
  • Duty2 0, MODE
  • FIGS. 39 to 41 show the values of Dutyl and Duty2 in the center switching, the leading switching, and the delayed switching when the backward switching operation is performed, respectively.
  • Dutyl and Duty2 are negative values, it means that the blade 110 is moved from the rear to the front with respect to the center position of the reciprocating motion.
  • each Duty value in a region where ⁇ is negative is calculated using a function of each Duty in a region where ⁇ is positive. Therefore, the above Duty functions are stored in the ROM 154 only in the area where ⁇ is positive. According to this, the data amount of each duty function stored in the ROM 154 can be reduced by half. Therefore, in this embodiment, only the region where ⁇ is positive is shown in each duty function.
  • the graph of Dutyl of the voltage for driving the upper rotor 122 shows the force S and the voltage for driving the lower rotor 132 which are the same graphs in any of Figs. It can be seen that the graph of Duty2 is different from that in Figs.
  • the graph of the rotation angle ⁇ 1 of the upper rotor 122 has the same force even when the flapping method (center turning, leading turning, and delayed turning) is changed.
  • the graph of the rotation angle ⁇ 2 of the lower rotor 132 differs depending on how the wings flutter (center turning, leading turning, and delayed turning). According to this, the amplitude of the upper rotor 122 is always fixed at a constant value.
  • the amplitude of the lower rotor 132 varies according to the flapping method (center turning, preceding turning, and delayed turning). I understand.
  • central processing unit 151 determines whether the current flapping is a force that is a forward flapping motion or a backward flapping motion. Thereafter, the central processing unit 151 flapping based on the data shown in Table 2 stored in the ROM 154. And the value of MODE described above is determined in accordance with the motion command stored in the RAMI 55 obtained by the communication device 170.
  • central processing unit 151 obtains the values of Dutyl and Duty2 stored in ROM 154 based on the value of phase ⁇ described above.
  • the absolute value of this value is the duty ratio of the PWM control signal transmitted to the driver 152.
  • the sign of this value is the direction of rotation of each of the upper and lower ultrasonic motors 120 and 130 transmitted to the driver 152.
  • the former is represented by a command such as ABS (Duty), and the latter is represented by a command such as SIGN (Duty).
  • ABS Duty
  • SIGN Duty
  • central processing unit 151 Based on the above-described duty ratio, central processing unit 151 outputs an ON / OFF signal for PMW control corresponding to the flapping method to driver 152, and according to whether phase ⁇ is positive or negative The rotation direction control signal is output to the driver 152.
  • the resonance frequency of diaphragm 1211 is 250 kHz, for example, if PWM control with a resonance frequency of 2.5 kHz is executed, 100-step ultrasonic motor control is performed. Is possible.
  • the driver 152 stops the rotation Z of the ultrasonic motor 120 and reverses it in the forward rotation Z in accordance with the ONZOFF of the PWM control signal and the rotation direction control signal given from the central processing unit 151.
  • the ultrasonic motor 120 has a self-position holding function, the rotation and stop operations are realized by turning on / off power supply, which will be described later, according to the ON / OFF of the PWM.
  • the difference between the phase of the potential ⁇ A applied to the back electrode 1217 and the phase of the potential ⁇ B applied to the front electrode 1216 By changing, the force S can be changed between the positive rotation and the negative rotation of the upper rotor 122.
  • the driver 152 receives the PWM signal from the central processing unit 151 and receives the potentials ⁇ A and ⁇ ⁇ And a circuit for controlling the high voltage power supplied from the booster circuit 153 and applying the potentials ⁇ ⁇ and ⁇ ⁇ to the surface electrode 1216 and the back electrode 1217 of the ultrasonic transducer 121.
  • the former can be easily realized by using a general timer circuit or a CPU (Central Processing Unit), and the latter is realized by using, for example, a half bridge circuit. It can be integrated using CMOS (Complementary Metal Oxide Semiconductor) technology and, as will be described later, can be made smaller and lighter enough to be suitable for flapping flight applications. And are commercially available. According to the experiments of the present inventors, these circuits can be contained in a small package of 3 mm X 3 mm X 0.85 mm, and the weight of the package is about 25 mg.
  • CMOS Complementary Metal Oxide Semiconductor
  • timing adjustment is performed so that each of ⁇ A and ⁇ B becomes a 250 kHz rectangular wave, so it is necessary to insert a dummy executable statement.
  • the booster circuit 153 changes the voltage (3 V) of the power source 190 to a voltage of ⁇ 15 V necessary for driving the ultrasonic motor, and applies a voltage of ⁇ 15 V to the driver 152.
  • a general DC (Direct Current) -DC converter is used as the booster circuit 153.
  • a small package of 3 mm ⁇ 3 mm ⁇ 0.85 mm is commercially available.
  • the mass of the booster circuit 15 3 is about 25 mg.
  • FIG. 37A A block diagram of the control scheme described above is shown in Figure 37A. Since the driving methods of the four ultrasonic motors are the same, only the control system of the upper ultrasonic motor 120 that drives the left blade 110 is shown in FIG. 37A, and the other control systems are omitted. ing.
  • FIG. 37B is a functional block diagram for explaining the flow of data processing in the flowchart of FIG. 42 described later.
  • the motion command force of the operator 210 transmitted from the controller 200 is transmitted to the RAMI 55 through the communication device 170 and stored in the RAMI 55.
  • Step S2 Flap status detection>
  • the central processing unit 151 recognizes the state of flapping at the current time of the rising and moving apparatus 100 based on the data of the value of the phase ⁇ transmitted from the repetition timer 156. Specifically, the central processing unit 151 determines that the rising and moving apparatus 100 moves backward when the value of the phase ⁇ is positive. If the phase ⁇ is negative, it is determined that the rising and moving apparatus 100 is performing the forward flapping motion.
  • Step S3 Determine flapping mode>
  • the central processing unit 151 selects the row component of Table 2 according to the motion command, and selects the column component of Table 2 according to the flapping state. As a result, the central processing unit 151 selects one of the flapping modes, that is, the value of MODE, from among the center switching, the leading switching, and the delayed switching.
  • the data of the selected flapping mode is stored in the RAMI 55.
  • Step S4 ⁇ Duty ratio determination>
  • the central processing unit 151 is a PWM control signal transmitted to the driver 152 from the Dutyl ( ⁇ , MODE) and Duty2 ( ⁇ , MODE) data stored in the ROM154 based on the flapping mode data described above. Select the duty ratio.
  • Step S 5 Driver drive>
  • the central processing unit 151 outputs a rotation direction control signal to the driver 152 and outputs a PWM signal having the duty ratio to the driver 152 according to whether the duty ratio of the PWM control signal is positive or negative. That is, if ABS (A) is the absolute value of A and SIGN (A) is the sign of A, the rotation direction control signal is SIGN (Duty) and the duty ratio is ABS (Duty).
  • Duty means Duty 1 ( ⁇ , MODE) and Duty2 ( ⁇ , MODE) corresponding to the upper and lower ultrasonic motors 120 and 130.
  • Step S 6 Ultrasonic motor drive>
  • the driver 152 applies a rectangular wave voltage having an amplitude of 30 V and a frequency of 250 kHz to the front electrode 1216 and the rear electrode 1217. These two square waves differ in phase by ⁇ 90 °.
  • the driver 152 applies a rectangular wave potential ci) B to the surface electrode 1216 of the ultrasonic transducer 121, and applies a rectangular wave potential ⁇ to the back electrode 1217 of the ultrasonic transducer 121. give.
  • the phase of this square wave potential ( ⁇ > ⁇ is out of phase with the phase of the square wave potential ⁇ B by ⁇ 90 °.
  • Step S7 Next flapping mode selection>
  • command is an example for description to the last, and is not limited to this.
  • a method may be used in which a speed command with a smooth force without quantization error is obtained by giving the speed command as an analog signal as a voltage value.
  • the voltage required to drive an ultrasonic motor can change as technology advances. For example, if an ultrasonic motor that can be driven at 3 V or less, which is the drive voltage of the current IC (Integration and Ircuit) and CPU (and entral Processing Unit), is realized, the boost circuit 153 Is no longer necessary.
  • the feedback control is not performed, and the method of uniquely selecting the flapping method according to the command of the controller 200 has been described.
  • the 100 control methods are not limited to the method described above.
  • feedback control in which central processing unit 151 obtains position and orientation information from position detection sensor 160 and newly creates a motion command based on the information may be used.
  • the explanation is made under the assumption that the rotational speeds of ultrasonic motors 120 and 130 are uniquely determined according to the duty ratio. Depending on load fluctuations, this assumption may not be true.
  • the duty ratio may be adjusted by referring to the values of the rotation angles ⁇ 1 and ⁇ 2 of the upper and lower ultrasonic motors 120 and 130 obtained by the signal of the upper magnetic encoder 126.
  • Selectivity means the ability to change the flapping movement independently of the flapping movement history of the past.
  • An example of a rising and moving device that lacks selectivity is the MFI (iicromechanical Flying Insect) force by Ron Fearmgb described above. This is because the blades are driven by resonance, and the flapping method can only be changed gradually over a plurality of periods.
  • control of the flapping rising and moving apparatus 100 in the present embodiment is all performed by selecting the timing of the twisting operation of the wings at both ends of the flapping motion. This is not constrained by the posture of the trunk, so that individuality is ensured.
  • the horizontal component of the acceleration of the wing part 110 is calculated. It can be controlled independently, and the direction of the horizontal component of the acceleration of the blade portion 110 in one cycle of the flapping motion can be directed either forward or backward. Therefore, the rising and moving apparatus can change the direction of the fluid force only by changing the operation of the blade 110 without changing the posture of the main body (body) 101. [0240] ⁇ continuity>>
  • the above-described twisting of the wing part 110 differs only in a specific period including the start or end point of the reciprocating motion of the wing part 110 in the flapping motion.
  • a predetermined period including the center position of the movement the movement of the blade part 110 is the same.
  • the multiple types of flapping movements perform a common action at the timing including the center position of the back and forth movement. Therefore, even if the flapping method is changed during the flapping exercise, if the flapping method changes at the same timing, a change in flapping force of 1 changes to another flapping method
  • the behavior of the blade portion 110 at is continuous. In other words, the flapping method changes smoothly.
  • the ROM 154 of the control circuit 150 has a plurality of types of data (see Table 2) for causing the blade section 110 to perform a flapping motion. Based on the type of data, the actuators (upper and lower rotors 120 and 130) are controlled. Each of the multiple types of data can identify the movement of one cycle of the reciprocating motion of the blade 110, and the multiple types of data can be used for the flapping motion common to the blade 110 during a predetermined period of one cycle of the reciprocating motion. It is what makes you. Specifically, the multiple types of data are three types of data: data for leading back, data for center back, and data for delay back, as shown in Figures 35B and 35C and Table 2.
  • the control circuit 150 causes the blade unit 110 to perform the flapping motion specified by the data of one of a plurality of types of data to the blade unit 110 during a predetermined period including the center position of the reciprocating motion of the blade unit 110.
  • the control is switched from the control for causing the blade unit 110 to perform the flapping motion specified by the other data among the plurality of types of data.
  • the two specific periods may be shifted from each other by 1Z2 cycles. According to this, one specific period and another specific period are repeated with the largest deviation in time. For this reason, the airflow generated by the flapping motion in one specific period has the least effect on the airflow generated by the flapping motion in the other specific period. This ensures “independence” in changing the flapping movement.
  • one and the other of the two specific periods include timing positioned at one end of the reciprocating motion of the blade portion 110 and timing positioned at the other end of the reciprocating motion of the blade portion 110, respectively. . That is, it is desirable that the turn-back of the blade portion 110 is performed in a period including the end portion of the reciprocating motion in the front-rear direction. According to this, the position of the blade part 110 in one specific period and the position of the blade part 110 in another specific period are the largest apart. For this reason, the air flow S caused by the flapping motion in one specific period has the smallest influence S on the air flow caused by the flapping motion in the other specific period. Therefore, “independence” in changing the flapping movement is ensured.
  • the rising and moving modes of the rising and moving apparatus stop, rise, descend, advance, retract, move to the left
  • Right-turn, left-turn, right-turn flapping to realize the mode of rising movement (combination of leading back, center turning, and delayed turning)
  • the flying movement using a very simple algorithm that only changes the data of the drive duty ratio of the upper and lower ultrasonic motors 120 and 130 corresponding to the flapping method. be able to. Therefore, simplicity is realized in the rising and moving apparatus of the present embodiment.
  • the flapping motion specified by the data for hovering among the plurality of data causes the wing portion 110 to reciprocate in the front-rear direction that is mirror-symmetrical with respect to the plane including the vertical direction and the horizontal direction.
  • the control circuit 150 includes basic data (FIGS. 39, 40, and 41) for moving the blade 110 from the center position of the reciprocating motion in the front-rear direction to one end of the reciprocating motion in the front-rear direction.
  • the control circuit 150 can cause the blade unit 110 to perform a desired flapping motion only by having data for only the period of 1Z2 of one cycle of the flapping motion. Therefore, the memory capacity for storing data in the control circuit 150 can be reduced. As a result, the rising and moving apparatus can be reduced in size and weight.
  • the communication device 170 receives information on the acceleration required for the rising and moving device 100 from the external controller 200 and provides the information to the central processing unit 151 of the control circuit 150. Further, the communication device 170 transmits the image information obtained by the image sensor 180 to the external controller 200. [0251] (Power)
  • the power source 190 as the driving energy source of the present invention may be any power source as long as it has a discharge characteristic capable of supplying the required power and has a mass that does not hinder levitation.
  • the power source 190 used by the present inventors is a lithium ion battery having a mass of 0.7 g, and according to the calculation by the present inventors, 0.6 W can be supplied for about 50 seconds.
  • the power source 190 is provided in the lower part of the main body 101. Therefore, the power source 190 is positioned below the bearing 123, which is the point of action of the fluid reaction force received by the blade portion 110, and stabilizes the posture of the rising and moving apparatus 100.
  • Other power sources include fuel cells, capacitors such as electric double layer capacitors, solar cells, and wired supply. These power supplies may be used in combination.
  • a solar battery may be provided on the surface of the blade 110, and these electric powers may be used together.
  • the main body 101 includes a bottom plate 102, an upper plate 103, a frame portion 104 connecting the bottom plate 102 and the upper plate 103, and legs 105 provided on the bottom plate 102.
  • the bottom plate 102 and the top plate 103 have a CFRP force with a thickness of 0.2 mm, and the frame portion 104 has a stainless force with a thickness of 35 zm.
  • Leg 105 is 40 ⁇ m thick and 10 mm long
  • the top plate 103 and the bottom plate 102 are also connected by a rotor shaft 124, a support shaft 127, and a main body reinforcing pole 112.
  • the image sensor 180 is a CMS (Complementary Metal Oxide Silicon) imager, and its mass is 200 mg. Image information acquired by the image sensor 180 is transmitted to the external controller 200 by the communication device 170.
  • CMS Complementary Metal Oxide Silicon
  • the levitation force produced by the blade part sentence is 1.2 gf. Therefore, the levitation force generated by the two blades is 2.4 gf.
  • the mass of each component is shown in Table 3. As shown in Table 3, the total mass of the rising and moving device 100 is 2.17 gf, and this value is the above-mentioned floating force 2.4 g, so the rising and moving device 100 can lift the force S .
  • the mechanical power required for the blade portion of the rising and moving apparatus 100 to generate a flying force of 1.2 gf is a maximum of 40 mW for both the upper and lower ultrasonic motors 120 and 130.
  • the energy conversion efficiency of each ultrasonic motor is 33%. Therefore, the maximum power required for ascent is about 120mW per ultrasonic motor, and the total power is 480mW. Since the total efficiency of driver 152 and booster circuit 153 is approximately 85%, the maximum power required to drive the four ultrasonic motors is 565 mW.
  • the power consumption of the central processing unit 151 is 5 mW.
  • the power consumption of the magnetic encoder 126 is 5 mW.
  • the power consumption of the position detection sensor 160 is 5 mW.
  • the power consumption of the image sensor 180 is 15 mW.
  • the power consumption of the communication device 170 is 5 mW.
  • the sum of these powers is a maximum of 600 mW, which is within the capacity of the power source 190. Therefore, the rising and moving apparatus 100 can only use the power supplied from the built-in power supply 190. Can be used to surface. Therefore, the rising and moving apparatus 100 can be a stand-alone mouth bot that can fly independently without receiving power supply from the outside.
  • a rising and moving apparatus according to another embodiment of the present invention will be described with reference to FIGS.
  • the rising and moving apparatus according to another embodiment has the same configuration as the rising and moving apparatus according to the above-described embodiment except for the matters described below. Note that in comparison between another embodiment and the above-described embodiment, portions denoted by the same reference numerals have the same structure and function, and thus description thereof will not be repeated.
  • FIG. 45 is a diagram showing a torque assist mechanism of the rising and moving apparatus according to another embodiment of the present invention.
  • the upper ultrasonic motor 120 is fixed to the upper ultrasonic motor base plate 383, and the upper ultrasonic motor base plate 383 is connected to the main body 101 at a fixing point 382 with a spring 381 interposed therebetween.
  • the predetermined portion of the upper ultrasonic motor base plate 383 is a plan view of the main body 101 so that the predetermined portion of the upper ultrasonic motor base plate 383 moves on an arc-shaped locus with the rotor shaft 124 schematically shown on the left side in FIG. Constrained by an arc-shaped inner wall.
  • the spring constant of the spring 381 is the same as that of the above-described embodiment.
  • the energy stored in the spring 381 varies depending on the resistance received from the fluid in the space where the rising and moving apparatus flutters. Therefore, energy is stored in the spring 381 in the first half of each turn-back at both ends of the reciprocating motion for flapping. Further, in the latter half of each turn-back of the reciprocating motion for flapping, the motion direction of the blade portion 110 is reversed, so that the energy stored in the spring 381 is supplied to the actuator 122.
  • Fig. 45 is a diagram schematically showing the energy storage and supply mechanism for the sake of simplicity of explanation.
  • the shapes of the upper ultrasonic motor base plate 383 and the spring 381 are the energy storage and supply mechanism.
  • the predetermined portion of the upper ultrasonic motor base plate 383 has an arcuate locus as described above in order to maintain a constant contact angle between the upper rotor 122 and the upper ultrasonic transducer 121.
  • the predetermined part of the upper ultrasonic motor base plate 383 is not limited to any trajectory as long as the change in contact angle between the upper rotor 122 and the upper ultrasonic transducer 121 is within the allowable range. You may move to draw.
  • the predetermined part of the upper ultrasonic motor base plate 383 may move so as to draw a linear locus. According to this, the structure of the inner wall of the main body 101 becomes a simpole.
  • the predetermined position of the upper ultrasonic motor base plate 383 is also changed. While restricting the movement of the upper ultrasonic motor base plate 383 so as to draw an arcuate trajectory, it is possible to realize energy storage of the actuator and supply of energy to the actuator. According to this, it is possible to perform both functions of restraining movement of the upper ultrasonic motor base plate 383 and storing and supplying energy with a very simple structure.
  • the upper rotor 122 and the rotor shaft 124 etc. are not shown in FIG. 47, but these are the same as the upper rotor 122 and the rotor shaft 124 shown in FIGS. 45 and 46. They are located at the same position.
  • the ultrasonic actuator (ultrasonic motor) shown in FIGS. 9 to 14 may be replaced by the following ultrasonic transducer.
  • the names and symbols given to the ultrasonic transducers of the present embodiment shown below are different from the names and symbols given to the ultrasonic actuators (ultrasonic motors) of the aforementioned embodiments.
  • the ultrasonic transducer of this embodiment is the same as the ultrasonic actuator (ultrasonic motor) of the above-described embodiment. It is assumed that the name and code are appropriately converted in such a manner as to fulfill the above function and are incorporated in the rising and moving apparatus of the above-described embodiment.
  • the ultrasonic vibrator according to the present embodiment is designed so that the resonance frequency of the stretching vibration and the resonance frequency of the bending vibration substantially coincide.
  • the resonance frequency of the stretching vibration and the resonance frequency of the bending vibration substantially match means that the resonance frequency of the stretching vibration is sufficient to obtain the driving force required for each product. If the resonance frequency of the bending vibration and the resonance frequency of the bending vibration are approximate, it means that the resonance frequency of the stretching vibration and the resonance frequency of the bending vibration need not be the same value.
  • the vibration node means a region where the amplitude is substantially zero when only the vibration is generated.
  • a stretching vibration node means a region where the amplitude of the main plate portion of the vibration plate is substantially zero when only the stretching vibration occurs
  • the bending vibration node is a bending vibration. This means a region where the amplitude of the main plate portion of the diaphragm is substantially zero when only this occurs.
  • the state in which the amplitude is substantially zero includes a state in which the ultrasonic transducer vibrates with an amplitude that is negligible for driving the driven body.
  • the ultrasonic vibrator according to the present embodiment has two types of vibrations necessary for the above-described operation even after the ultrasonic vibrator 1 that operates by combining a plurality of vibrations is assembled.
  • the vibration characteristics of one of the movements can be adjusted independently of the other vibrations.
  • FIG. 48 is a plan view of the ultrasonic motor 1000.
  • the ultrasonic motor 1000 includes an ultrasonic vibrator 1 and a rotor 2 rotated by the ultrasonic vibrator 1.
  • the rotor 2 is an example of a driven body of the present invention. Accordingly, the driven body is not limited to the rotating body, and may perform other operations.
  • the ultrasonic vibrator 1 has a diaphragm 7.
  • the diaphragm 7 has a supporting protrusion 3.
  • a through hole 50 is provided in the supporting protrusion 3.
  • the shaft 5 passes through the through hole 50.
  • the shaft 5 is fixed to the support 4 as shown in FIG.
  • the outer peripheral surface of the rotor 2 is in contact with one corner S of the four corners of the main plate 6.
  • the rotor 2 is rotatably supported by the support body 4, but a mechanism for this is not shown.
  • the ultrasonic transducer 1 is provided with electrodes 9, 10, 11, 12, 17 and a piezoelectric element 8.
  • the electrodes 9, 10, 11, 12, and 17 are electrically connected to a control device (not shown) so that a predetermined signal can be inputted.
  • the piezoelectric element 8 vibrates.
  • the vibration of the piezoelectric element 8 is transmitted to the main plate portion 6 of the diaphragm 7.
  • the diaphragm 7 vibrates so that the corner S of the main plate 6 draws an elliptical orbit E.
  • the rotor 2 in contact with the corner portion S moves along the circular path C. That is, the rotor 2 rotates around its rotation center axis.
  • FIG. 49 and FIG. 49 and 50 are a perspective view and an exploded perspective view of the ultrasonic transducer 1, respectively.
  • the ultrasonic transducer 1 has a diaphragm 7.
  • the diaphragm 7 has a support protrusion 3 fixed to the shaft 5 and a main plate 6 that is formed integrally with the support protrusion 3 and rotates the rotor 2 by vibration.
  • the main plate portion 6 is a flat plate-like member having a substantially rectangular planar shape having a width of 2 mm, a length of 9 mm, and a thickness of 0.2 mm. Further, the supporting projection 3 protrudes from the long side of the main plate 6 so as to extend along the short side direction of the main plate 6 and has a width lmm and a length 2 A flat plate-like member having a substantially rectangular planar shape of 15 mm and a thickness of 0.2 mm.
  • the supporting protrusion 3 is provided with a circular through hole 50 having a diameter of 0.6 mm.
  • the diameter of the through hole 50 is 0.6 mm, which is the same as the diameter of the shaft 5.
  • the distance from the center position of the long side of the main plate 6 to the center point of the through hole 50 is 1.0 mm.
  • Piezoelectric element 8 is attached to each of the front surface and the back surface of the main plate portion 6.
  • the piezoelectric element 8 is a flat plate member having a rectangular planar shape having a width of 2 mm, a length of 8 mm, and a width of 0.2 mm. Further, the piezoelectric element 8 is fixed to the main plate portion 6 with the electrode 17 interposed so that the long side of the piezoelectric element 8 and the long side of the main plate portion 6 are aligned.
  • the dimensions and shapes of the diaphragm 7 and the piezoelectric element 8 are not limited to the above dimensions and shapes, and may be other dimensions and shapes.
  • the material of the diaphragm 7 is not particularly limited, but is preferably a conductive material such as stainless steel.
  • the supporting protrusion 3 and the main plate 6 may be formed of separate members, but it is desirable that they are integrally formed of one member.
  • the piezoelectric element 8 may be made of any material as long as it is an element that vibrates when applied with a force voltage made of lead dinoleconium titanate (PZT).
  • PZT lead dinoleconium titanate
  • the electrodes 9, 10, 11, and 12 are flat members having the same rectangular planar shape. Electrodes 9, 10, 11 and 12 are provided in each of the four rectangular regions, assuming that one main surface of the piezoelectric element 8 is divided into four substantially rectangular regions. .
  • a substantially rectangular electrode 17 is provided on the other main surface of the piezoelectric element 8.
  • the electrode 17 is a flat plate-like member having the same rectangular planar shape as the other main surface of the piezoelectric element 8.
  • the two piezoelectric elements 8 are respectively provided on one main surface and the other main surface of the main plate portion 6 with the electrode 17 interposed therebetween. ing.
  • the two electrodes 17 are fixed to one main surface and the other main surface of the main plate portion 6 so that the long side direction thereof coincides with the long side direction of the main plate portion 6.
  • Each of the two electrodes 17 is bonded to the main plate 6 with a conductive adhesive such as silver paste.
  • the electrode 17 may not be provided between the piezoelectric element 8 and the main plate portion 6 if the piezoelectric element 8 and the main plate portion 6 are bonded by a conductive adhesive.
  • the conductive adhesive serves as the electrode 17.
  • the electrodes of the two piezoelectric elements 8 Since a signal of 0 V is always input to each of 17, if the piezoelectric element 8 and the main plate part 6 are joined by a conductive adhesive, the electrode 17 is connected between the piezoelectric element 8 and the main plate part 6. Even if not provided, the main plate portion 6 can serve as the electrode 17.
  • the attached piezoelectric element 8 and the electrodes 9, 10, 11, 12, and 17 attached thereto are arranged mirror-symmetrically in the thickness direction of the diaphragm 7. Therefore, the vibration characteristic of the piezoelectric element 8 on one main surface of the vibration plate 7 and the vibration characteristic of the piezoelectric element 8 on the other main surface of the vibration plate 7 are substantially the same. Therefore, diaphragm 7 of the present embodiment vibrates in the in-plane direction. Further, since the main plate portion 6 of the diaphragm 7 is rectangular, the corner portion S of the diaphragm 7 vibrates elliptically in the aforementioned in-plane direction.
  • the piezoelectric element 8 and the electrodes 9, 10, 11, 12, 12, and 17 attached to one main surface of the diaphragm 7 and vibration may have an asymmetric structure or may be asymmetrically arranged.
  • the signal input to the electrodes 9, 10, 11, and 12 has four modes (A), (B), (C), and (D) as shown in FIG. .
  • FIG. 51 the entire outer shape of the electrodes 9, 10, 11 and 12 in a non-vibrated state is drawn by a broken line, and the electrodes 9, 10, 11, and 11 in a state of stretching vibration or bending vibration are drawn. Each shape of 12 and 12 is drawn with a solid line.
  • the signal input to electrode 9 and electrode 11 and the signal input to electrode 10 and electrode 12 have a force that has a 90-degree deviation in the phase. And have a frequency.
  • Main plate portion 6 of ultrasonic transducer 1 described above performs vibration in combination with the stretching vibration shown in FIG. 53 and the bending vibration shown in FIG.
  • the stretching vibration shown in FIG. 53 the main plate portion 6 of the diaphragm 7 is compressed or stretched in the long side direction as shown by the white arrow.
  • the corner portion S vibrates in the long side direction.
  • the diaphragm 7 changes from one S-shape to another S-shape that is mirror-symmetrical to it.
  • the corner portion of the main plate portion 6 of the diaphragm 7 vibrates in the short side direction as indicated by the white arrow.
  • the position X of the expansion vibration node and the position Y of the bending vibration node are indicated by hatching, respectively.
  • the vibration node is the main plate 6 This is a position where the amplitude is substantially zero.
  • the shape of the electrode is not limited to a rectangle, and any shape may be used as long as the ultrasonic vibrator 1 can generate both stretching vibration and bending vibration.
  • the resonance frequency a of the stretching vibration and the resonance frequency b of the bending vibration are not substantially the same as shown in Fig. 55, that is, It is extremely difficult to reduce the deviation ⁇ ( ⁇ > when there is a deviation of ⁇ .
  • the supporting protrusion 3 is provided at the position X of the node of the stretching vibration.
  • the supporting protrusion 3 By changing at least one of the physical quantities of the structure of the supporting protrusion 3 such as shape, rigidity, mass, and internal stress, bending vibration that does not change the vibration characteristics of stretching vibration is changed. Characteristics can be changed. Therefore, it is easy to substantially match the resonance frequency a of the stretching vibration and the resonance frequency b of the bending vibration.
  • a voltage having the same frequency as that of each of the resonance frequency a of the stretching vibration and the resonance frequency b of the bending vibration is applied to the electrodes 9 and 11, and the same frequency as that of the electrodes 9 and 11, and A voltage with a phase shift of +90 degrees is applied to electrodes 10 and 12.
  • stretching vibration and bending vibration occur alternately every quarter of the AC voltage input to the electrode.
  • the corner portion S of the main plate portion 6 in contact with the rotor 2 performs elliptical vibration as indicated by reference symbol E in FIG.
  • the ultrasonic transducer 1 is located at or near the position Y of the bending vibration node shown in FIG. 54, and shown in FIG. Stretch vibration node position You may have the adjustment protrusion 20 for adjusting a vibration characteristic in positions other than Y or its vicinity.
  • the adjustment protrusion 20 may be formed as a part of the piezoelectric element 8 or the diaphragm 7 or may be formed by adding another material to the piezoelectric element 8 or the diaphragm 7.
  • the adjustment protrusion 20 is ground or heated, or some member is added to the adjustment protrusion 20, and then bent.
  • the resonance frequency a of the stretching vibration without changing the resonance frequency b of the vibration can be changed. Therefore, the phase shift between the resonance frequency a of the stretching vibration and the resonance frequency b of the bending vibration can be easily reduced.
  • the ultrasonic vibrator 1 In the ultrasonic motor 1000, in order to obtain the maximum driving efficiency, the ultrasonic vibrator 1 is assembled and assembled at a predetermined position of the ultrasonic motor 1000, and the resonance frequency a of the stretching vibration and the bending vibration are combined. It is necessary that the resonance frequency b is substantially the same. Even if the ultrasonic vibrator 1 is designed so that the resonance frequency a of the stretching vibration and the resonance frequency b of the bending vibration substantially coincide with each other, the dimensions of the piezoelectric element 8 or the diaphragm 7 As shown in Fig. 55, it is actually assembled and assembled to the ultrasonic motor 1000 due to factors such as errors in the above, errors in the alignment of the piezoelectric element 8 and the diaphragm 7, and errors in the electrode dimensions.
  • a deviation ⁇ may occur between the resonance frequency a of the stretching vibration of the ultrasonic transducer 1 and the resonance frequency b of the bending vibration.
  • the vertical axis represents the vibration amplitude F in the long side direction of the stretching vibration and the vibration amplitude F in the short side direction of the bending vibration. .
  • FIG. 57 shows the result of the simulation performed by the present inventors.
  • the length L1 of the supporting protrusion 3 and the resonance frequency a of the stretching vibration of the ultrasonic vibrator 1 and the resonance frequency b of the bending vibration are shown in FIG. It shows the relationship with change.
  • the resonance frequency b of the bending vibration of the ultrasonic transducer 1 decreases approximately linearly, but the stretching vibration The resonance frequency a is almost constant.
  • the portions indicated by hatching in FIGS. 53 and 54 correspond to the positions of the nodes of the stretching vibration and the positions Y of the bending vibration.
  • the support protrusion 3 is the expansion and contraction that occurs in the main plate 6 It is provided at the position X of the vibration node or in the vicinity thereof, and at a position away from the position Y of the bending vibration node or in the vicinity thereof. Therefore, when the length L1 of the supporting protrusion 3 is changed, the resonance frequency a of the stretching vibration does not change, but the resonance frequency b of the bending vibration changes.
  • the shape and mass thereof can be changed by grinding the supporting protrusion 3.
  • the resonance frequency b of the bending vibration can be adjusted in a state where the resonance frequency a of the stretching vibration is substantially constant.
  • it is also possible to change the resonance frequency of the stretching vibration by changing the physical properties such as the rigidity of the support protrusion 3 by heat treatment such as annealing. It is easy to adjust the resonance frequency b of the bending vibration while a is kept constant.
  • the resonance frequency b of the bending vibration of the ultrasonic vibrator 1 assembled at a predetermined position of the product is lower than the resonance frequency a of the stretching vibration, the resonance frequency a of the stretching vibration a
  • the open end of the supporting protrusion 3 is scraped and the supporting protrusion 3 is shortened to increase the resonance frequency b of the bending vibration. Match the resonance frequency a of the stretching vibration. According to this method, the vibration characteristics of the ultrasonic vibrator 1 can be easily adjusted. Further, since the supporting protrusion 3 is not ground between the through hole 50 of the shaft 5 and the main plate portion 6, the vibration of the ultrasonic vibrator 1 is maintained while the strength of the supporting protrusion 3 is maintained. It is possible to adjust the characteristics.
  • the central position force of the through hole 50 provided in the support protrusion 3 is also provided with a recess 55 at each of two positions separated by the same distance, and the support protrusion
  • the shape and mass of 3 may be changed. According to this, the resonance frequency a of the stretching vibration is It is possible to change only the resonance frequency b of the bending vibration without changing it.
  • the two recesses 55 are positioned at an equal distance from the center position of the through hole 50 so that they face each other with the center position of the through hole 50 interposed therebetween. Formed by grinding. This makes it possible to change the resonance frequency of the bending vibration by reducing the moment of inertia in the bending vibration.
  • a vibration characteristic may be adjusted again by a certain member being carried by the recessed part 55.
  • the supporting protrusion 3 is heated to about 700 degrees using a heating device (not shown) and then cooled naturally. Thereby, the rigidity of the supporting protrusion 3 is reduced. When the rigidity of the support protrusion 3 is reduced, the resonance frequency b of the bending vibration of the ultrasonic transducer 1 is reduced. In addition, if the supporting protrusion 3 is heated to about 700 degrees by the heating device and then rapidly cooled in water, the rigidity of the supporting protrusion 3 increases and the bending vibration of the ultrasonic vibrator 1 is reduced.
  • Resonance frequency b increases. It is desirable to use a device that can locally heat only the supporting protrusion 3 such as a laser as the heating device. Further, the heating temperature needs to be equal to or higher than the transformation temperature of the material of the supporting protrusion 3. When stainless steel is used as the material of the diaphragm 7, the heating temperature is preferably about 700 degrees.
  • the mass of the supporting protrusion 3 increases.
  • the moment of inertia of the support protrusion 3 in bending vibration increases. Therefore, the resonance frequency b of the bending vibration of the ultrasonic vibrator 1 can be reduced.
  • the material of the weight 13 is not limited to stainless steel, and any material may be used.
  • the adjustment protrusion 20 shown in FIG. 56 is caused to change in shape, rigidity, mass, and / or internal stress. Also thus, it is easy to change only the resonance frequency b of the stretching vibration without changing the resonance frequency a of the bending vibration.
  • the same components as those of the ultrasonic transducer of the first embodiment have the same reference numerals as those assigned to the ultrasonic transducer 1 of the first embodiment. Reference numerals are given and the description will not be repeated unless otherwise required.
  • FIG. 61 is a plan view of ultrasonic motor 1000 of the present embodiment. As shown in FIG. 61, the ultrasonic motor 1000 according to the present embodiment includes an ultrasonic transducer 1 and a rotor 2.
  • the ultrasonic transducer 1 of the present embodiment is substantially the same as the ultrasonic transducer 1 of the first embodiment described with reference to Figs. 48 to 55, but with the main plate portion 6 interposed therebetween.
  • the pressing protrusion 14 is provided so as to face the supporting protrusion 3, which is different from the ultrasonic transducer 1 of the first embodiment.
  • One end of a linear rubber 15 is bonded to the pressing protrusion 14.
  • the other end of the linear rubber 15 is fixed to a pressing mechanism provided outside (not shown).
  • the linear rubber 15 pulls the pressing protrusion 14 against the pressing mechanism by the contraction force. Accordingly, the force with which the corner portion S of the ultrasonic transducer 1 presses the outer peripheral portion of the rotor 2 can be adjusted. That is, the contact force between the ultrasonic transducer 1 and the rotor 2 is adjusted by adjusting the contraction force of the linear rubber 15.
  • FIG. 62 shows a perspective view of the ultrasonic transducer 1 of the present embodiment.
  • Ultrasonic vibration Of the constituent elements of the child 1, the shape, dimensions, arrangement, and constituent materials of the main plate portion 6, the piezoelectric element 8, the electrodes 9, 10, 11, 12, and 17 are the same as those of the embodiment. Since it is the same as that of vibrator 1, its description will not be repeated.
  • the through hole 50 and the shaft 5 are not fixed. Therefore, the shaft 5 can rotate around its axis in the through hole 50 provided in the supporting protrusion 3. More specifically, the support protrusion 3 is restricted from moving in the direction in which the shaft 5 extends, but can rotate around the rotation center axis along the direction in which the shaft 5 extends. In addition, on each of the upper side and the lower side of the supporting protrusion 3, the axial movement of the shaft 5 of the supporting protrusion 3 is prevented so that the ultrasonic vibrator 1 does not move along the axial direction of the shaft 5. There is provided a member (not shown) for restraining.
  • the pressing protrusion 14 has a substantially rectangular shape with a width of 1 mm and a length of 2.5 mm.
  • the driving method of ultrasonic transducer 1 of the present embodiment is the same as the driving method of ultrasonic transducer 1 of the first embodiment, and therefore description thereof will not be repeated.
  • the structure shown in FIG. 63 may be adopted.
  • the structure shown in FIG. 63 at least at a position near the position X of the bending vibration node shown in FIG. 53 and away from the position Y of the stretching vibration node shown in FIG.
  • the adjustment protrusion 20 is provided at the position of 1.
  • the adjustment protrusion 20 is a part of the piezoelectric element 8 or the main plate 6, the other material is the piezoelectric element 8 or the main plate 6. Even if it was added to.
  • FIG. 64 shows a simulation result performed by the inventors of the present application.
  • the length L2 of the pressing protrusion 14 of the ultrasonic vibrator 1 and the resonance frequency a of the stretching vibration of the ultrasonic vibrator 1 and The relationship with the resonance frequency b of bending vibration is shown.
  • the resonance frequency b of the bending vibration of the ultrasonic transducer 1 decreases approximately linearly, but the resonance of the stretching vibration The frequency a is almost constant.
  • the pressing protrusion 14 is provided at or near the position X of the node of the expansion / contraction vibration generated in the main plate portion 6, and at a position away from the position Y of the bending vibration or at the vicinity thereof. Therefore, changing the length L2 of the pressing projection 14 changes the resonance frequency a of the stretching vibration. It is possible to cause a change in the resonance frequency b of the bending vibration that is not generated.
  • the shape and mass of the pressing protrusion 14 are changed, so that the resonance frequency a of the stretching vibration is substantially constant.
  • the resonance frequency a of the stretching vibration and the resonance frequency b of the bending vibration can be substantially matched.
  • the resonance frequency of the bending vibration can also be adjusted by changing the physical properties of the pressing protrusion 14 such as rigidity using a technique such as annealing.
  • the shape and mass of the pressing protrusion 14 of the ultrasonic vibrator 1 are changed by grinding the tip of the pressing protrusion 14 to adjust the vibration characteristics of the ultrasonic vibrator 1. The method is specifically described.
  • the resonance frequency b of the bending vibration of the ultrasonic vibrator 1 assembled and installed at a predetermined position is lower than the resonance frequency a of the stretching vibration, the resonance frequency a of the stretching vibration and the bending vibration
  • the resonance frequency of the stretching vibration is constant and the bending vibration resonance Frequency b increases. Therefore, it is easy to substantially match the resonance frequency b of the bending vibration with the resonance frequency a of the stretching vibration.
  • the pressing protrusion 14 is heated to about 700 degrees using a heating device. After that, natural cooling is performed. Thereby, the rigidity of the pressing projection 14 is lowered. When the rigidity of the pressing projection 14 is reduced, the resonance frequency b of the bending vibration of the ultrasonic vibrator 1 is lowered.
  • the heating device it is desirable to use a device that can locally heat only the pressing projection 14, such as a laser.
  • the heating temperature of the material of the pressing protrusion 14 It must be above the transformation temperature. Therefore, when stainless steel is used as the material of the pressing protrusion 14, it is desirable that the pressing protrusion 14 is heated at a temperature of about 700 degrees.
  • the resonance frequency b of the bending vibration is lowered while the resonance frequency a of the stretching vibration is constant.
  • the material of the weight 13 is not limited to stainless steel, and may be a material other than stainless steel.
  • the resonance of the bending vibration can be obtained by changing at least one element of the shape, rigidity, and mass of the adjustment protrusion 20 shown in FIG. Only the resonance frequency a of the stretching vibration can be easily adjusted without changing the frequency b.
  • the physical quantity of the protruding portion which is a structure provided at the position of one of the plurality of types of vibration nodes or at a position near the node, includes the shape, rigidity, and The vibration characteristics are adjusted by changing at least one force of the mass.
  • the vibration characteristics are adjusted by changing at least one force of the mass.
  • the protrusion is provided so as to include the vibration node. Even if the protrusion is provided in the vicinity of the position of the vibration node, the vibration node and the protrusion are provided. If the distance to the part is smaller than the predetermined amount, it is easy to adjust the vibration characteristics as compared with the conventional method. For example, when changing the resonance frequency a of the stretching vibration without changing the resonance frequency b of the bending vibration, a peripheral shape surrounding the bending vibration vibration node expressed in terms of a plane. A protrusion may be formed on the region.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Toys (AREA)

Abstract

A levitation movement device has a blade (110) attached to a body and having a front edge. The blade (110) is reciprocated in front-rear directions by an actuator and is twisted about the front edge for a predetermined time period between before and after the direction of movement of the reciprocating motion is reversed. Further, energy storage/supply mechanism (311) provided at the levitation movement device stores energy when torque required by the actuator for the reciprocating motion is smaller than a predetermined value, and supplies energy to the actuator when torque required by the actuator for the reciprocating motion is greater than the predetermined value. The peak of torque required by the actuator for flapping motion is reduced.

Description

明 細 書  Specification
浮上移動装置、それに用いられ得る超音波振動子、およびその超音波振 動子の振動特性の調整方法  Levitation movement device, ultrasonic vibrator that can be used for the same, and method for adjusting vibration characteristics of the ultrasonic vibrator
技術分野  Technical field
[0001] 本発明は、移動に羽ばたき飛行を用いる浮上移動装置に関するものであり、特に、 そのァクチユエータから羽根部へのエネルギー供給の仕方に関するものである。また 、本発明は、浮上移動装置に用いられ得る超音波振動子およびその超音波振動子 の振動特性の調整方法に関するものである。  The present invention relates to a rising and moving apparatus that uses flapping flight for movement, and particularly relates to a method of supplying energy from the actuator to a blade part. The present invention also relates to an ultrasonic transducer that can be used in the rising and moving apparatus and a method for adjusting the vibration characteristics of the ultrasonic transducer.
背景技術  Background art
[0002] 羽ばたき飛行するロボットは、従来の固定翼機およびヘリコプターとの比較におい て機動性が優れている。そのため、近年、羽ばたき飛行するロボットの工学的な実現 を目指した研究が盛んになってレ、る。  [0002] A flapping robot is superior in maneuverability in comparison with conventional fixed wing aircraft and helicopters. In recent years, therefore, research aimed at the engineering realization of flapping robots has become active.
[0003] カリフオノレニァ大学ノ ークレー校の Ron Fearingらは、 Micromechanical Flying Inse ctと称する小型の羽ばたき飛行ロボットを提案し、論文" Wing Transmission for a Micromechanical Flying Insect"の中で、その構成について述べている。この羽ばた き飛行ロボットの羽ばたき方は、 Dickinsonらによる論文" Wing Rotation and the A ero dynamic Basis of Insect Flight"において開示されている。それによれば、失速 遅れの防止、回転揚力の発生、および後流捕獲の 3つの原理が利用されている。 非特許文献 1: Wmg Transmission for a Micromecnanical Flymg Insect , R.S. [0003] Ron Fearing et al. At the University of Califoronore, Norkeley proposed a small flapping flying robot called the Micromechanical Flying Insert and described its configuration in the paper "Wing Transmission for a Micromechanical Flying Insect". The way of flapping the flapping flight robot is disclosed in the paper “Wing Rotation and the Aerodynamic Basis of Insect Flight” by Dickinson et al. According to it, three principles are used: prevention of stall delay, generation of rotational lift, and wake capture. Non-Patent Document 1: Wmg Transmission for a Micromecnanical Flymg Insect, R.S.
Fearing, K.H. Chiang, M.H. Dickinson, D.L. Pick, M.Sitti, and J. Yan, I EEE Int. Conf. Robotics and Automation, April, 2000. Fearing, K.H.Chiang, M.H.Dickinson, D.L.Pick, M.Sitti, and J. Yan, I EEE Int. Conf. Robotics and Automation, April, 2000.
非特言午文献 2 : "Wing Rotation and the Aerodynamic Basis of Insect Flight", Michael H. Dickinson, Fritz-Olaf Lehmann, Sanjay P. Sane, Science, vol. 2 84, no.5422, 18 June 1999.  Non-Special Terms 2: "Wing Rotation and the Aerodynamic Basis of Insect Flight", Michael H. Dickinson, Fritz-Olaf Lehmann, Sanjay P. Sane, Science, vol. 2 84, no.5422, 18 June 1999.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 羽ばたき飛行においては、羽根部(たとえば、昆虫の wingような部分)を前後方向に おいて往復運動させるため、羽根部の運動方向を 180° 反転させることが必要であ る。そのため、そのような羽ばたき飛行を行う浮上移動装置 (以下、「羽ばたき浮上移 動装置」とも言う)は、同一の浮上力を得ることができるヘリコプターに比べて、羽根部 の切り返し (羽根部の運動方向の 180° 反転)のために大きなトルクを必要とする。そ の結果、ァクチユエータに求められるトルクのピークおよびそのァクチユエータへエネ ルギーを供給する駆動エネルギー源に求められるエネルギーのピークが大きくなつ てしまう。したがって、ァクチユエータおよび駆動エネルギー源が大型化してしまう。そ れにより、浮上移動装置全体の重量が増加する。そのため、浮上移動装置に求めら れる機動力等の性能が低下してしまうという問題がある。以下、前述の問題を具体的 に説明する。 [0004] In flapping flight, the wings (for example, the wings of insects) should be Therefore, it is necessary to reverse the direction of movement of the blades by 180 °. For this reason, a rising and moving device that performs such flapping flight (hereinafter also referred to as a “flapping and floating moving device”) is compared with a helicopter that can obtain the same levitation force. A large torque is required for 180 ° reversal of direction). As a result, the peak of torque required for the actuator and the peak of energy required for the drive energy source that supplies energy to the actuator become large. Therefore, the size of the actuator and the driving energy source is increased. This increases the overall weight of the rising and moving device. For this reason, there is a problem that performance such as mobility required for the rising and moving apparatus is deteriorated. In the following, the above problem will be explained concretely.
[0005] 図 43は、従来の羽ばたき浮上移動装置の羽根部を駆動するためにァクチユエータ に要求されるトルクの時刻歴と、当該羽ばたき浮上移動装置の浮上力と同一の浮上 力を発生させる回転翼を有する浮上移動装置 (以下、ヘリコプターと称する)の回転翼 (以下、ロータと称する)を回転させるために必要なトルクの時刻歴とを模式的に示す グラフである。本項目にて説明する羽ばたき浮上移動装置の羽ばたき方は、図 44に 示すように、周波数が 25Hzで繰り返される往復運動であり、 2種類の運動からなる。 一つは、角速度が一定の前後方向の回転往復運動であり、他の一つは、羽根部の 切り返し時に行われる角速度の符号の正と負とが反転する正弦波運動である。また、 図 44の角速度のグラフにおいて、正弦波運動を示す線は、回転往復運動を示す直 線同士を滑らかに繋いでいる。なお、後述する実施の形態の浮上移動装置は、図 43 および図 44に示すような羽ばたき方をする。  FIG. 43 shows a time history of torque required for an actuator to drive a blade portion of a conventional flapping flying device, and a rotating blade that generates a floating force that is the same as the flying force of the flapping flying device. 2 is a graph schematically showing a time history of torque necessary for rotating a rotor blade (hereinafter referred to as a rotor) of a rising and moving apparatus (hereinafter referred to as a helicopter) having a vortex. As shown in Fig. 44, the flapping movement of the flapping and floating movement apparatus described in this section is a reciprocating motion that is repeated at a frequency of 25 Hz, and consists of two types of motion. One is a reciprocating rotational motion in the front-rear direction with a constant angular velocity, and the other is a sine wave motion in which the sign of the angular velocity is reversed when the blades are switched back and forth. Also, in the graph of angular velocity in FIG. 44, the line indicating the sine wave motion smoothly connects the straight lines indicating the reciprocating motion. It should be noted that the rising and moving apparatus of the embodiment described later performs flapping as shown in FIG. 43 and FIG.
[0006] また、実際には、羽ばたき飛行時には、羽根部は前後方向における回転往復運動 の両端のそれぞれにおいて羽根部の長手方向を回転軸とする捻り運動をする。しか しながら、この羽根部の捻り運動のためにァクチユエータに要求されるトノレクは、図 43 に示される、羽根部の前後方向における往復運動に要求されるトノレクに比べて無視 できるほど小さい。したがって、説明の簡便のため、この羽根部の捻り運動のための ァクチユエータに要求されるトルクは、以下の説明では、考慮しないものとする。  [0006] In actuality, during flapping flight, the blade part performs a twisting motion with the longitudinal direction of the blade part as the rotation axis at each of both ends of the rotational reciprocation in the front-rear direction. However, the torque required for the actuator to twist the blade is negligibly small compared to the torque required for the reciprocating motion of the blade in the longitudinal direction shown in Fig. 43. Therefore, for convenience of explanation, the torque required for the actuator for the twisting motion of the blade is not considered in the following explanation.
[0007] 以上の前提に基づき、羽ばたき浮上移動装置におけるァクチユエータに要求され るトルクについて考察する。羽ばたき浮上移動装置におけるァクチユエータに要求さ れるトルクは、図 43に示されるように、往復運動の殆どの期間ではヘリコプターにお ける回転翼に要求されるトノレクと同等である。し力 ながら、羽ばたき浮上移動装置に おいては、打ち上げから打ち下ろしへ、または、打ち下ろしから打ち上げへの羽根部 の動作の変更のタイミングにァクチユエータに要求されるトルク力 ヘリコプターの回 転翼に要求されるトルクの 2倍程度である。また、このタイミングにおいては、ァクチュ エータに要求されるトノレクと同様、ァクチユエータが消費するパワーも急増する。 [0007] Based on the above assumptions, there is a demand for an actuator in a flapping flying device. Let us consider the torque. As shown in Fig. 43, the torque required for the actuator in the flapping and floating movement device is equivalent to the torque required for the rotor blade in the helicopter during most of the reciprocating motion. However, in the flapping flying device, the torque force required of the actuator at the timing of changing the movement of the blade from launch to launch or from launch to launch is required for the rotating blades of the helicopter About twice as much torque. In addition, at this timing, the power consumed by the actuator also increases rapidly in the same manner as the tonoleque required for the actuator.
[0008] 一般に、同一の構成を有する 2つのァクチユエータの対比において、相対的に大き なトルクを生じさせるァクチユエータの質量は、相対的に小さなトルクを生じさせるァク チユエータの質量に比較して大きレ、。また、同一の構成を有する 2つの駆動エネルギ 一源、たとえば、 2つの電池の対比において、相対的に大きなパワーを供給できる駆 動エネルギー源は、相対的に小さなパワーを供給する駆動エネルギー源に比較して[0008] In general, in the comparison of two actuators having the same configuration, the mass of the actuator that generates a relatively large torque is larger than the mass of the actuator that generates a relatively small torque. ,. In addition, two driving energy sources having the same configuration, for example, a driving energy source that can supply a relatively large power in comparison with two batteries, are compared with a driving energy source that supplies a relatively small power. do it
、より大きな質量を有する。 , Have a larger mass.
[0009] 要するに、従来の羽ばたき浮上移動装置は、図 43に示されるような短時間におけ るトルクおよびパワー増加に対応するため、同一の浮上力を生じさせるヘリコプター よりも質量が大きレ、ァクチユエータおよび駆動エネルギー源を必要とする。その結果 、浮上移動装置に生じる加速度が低減されてしまう。したがって、浮上移動装置の機 動力は低下せざるを得ない。  [0009] In short, the conventional flapping rising and moving apparatus has a larger mass than the helicopter that generates the same levitating force in order to cope with the torque and power increase in a short time as shown in FIG. And need a drive energy source. As a result, the acceleration generated in the rising and moving apparatus is reduced. Therefore, the mobility of the rising and moving device must be reduced.
[0010] 言い換えれば、従来の浮上移動装置は、羽根部の切り返しという短時間に要求さ れる大きなトルクおよびパワーを出力するために、非常に大きなァクチユエータおよ び駆動エネルギー源を必要とする。その結果、機動力が損なわれている。  [0010] In other words, the conventional rising and moving apparatus requires a very large actuator and a driving energy source in order to output a large torque and power required in a short period of time when the blade part is turned back. As a result, mobility is impaired.
[0011] 本発明は、上述の問題に鑑みなされたものであり、その目的は、羽根部の切り返し 時に必要とされる、大きなトノレクおよびパワーを低減することによって、ァクチユエータ および駆動エネルギー源が小型化され、高い機動力を有する浮上移動装置を提供 することである。  [0011] The present invention has been made in view of the above-described problems, and its purpose is to reduce the size of the actuator and the drive energy source by reducing the large torque and power required when the blades are turned back. Therefore, it is to provide a rising and moving apparatus having high mobility.
[0012] また、本発明の他の目的は、浮上移動装置に用いられ得る超音波振動子およびそ の振動特性の調整方法を提供することである。  Another object of the present invention is to provide an ultrasonic transducer that can be used in a rising and moving apparatus and a method for adjusting the vibration characteristics thereof.
課題を解決するための手段 [0013] 本発明の一の局面の浮上移動装置は、本体に取り付けられた前縁部を有する羽根 部と、羽根部を前後方向に往復運動させるとともに、往復運動における運動方向の 反転の前から後の所定期間において、羽根部を前縁部周りに捻るァクチユエータと を備えている。また、その装置は、往復運動のためにァクチユエータに要求されるトル クが所定値より小さい場合にエネルギーを蓄積し、往復運動のためにァクチユエータ に要求されるトルクが特定値より大きい場合にァクチユエータにエネルギーを与える エネルギー蓄積 ·供与機構を備えている。 Means for solving the problem [0013] A rising and moving apparatus according to one aspect of the present invention includes a blade portion having a front edge portion attached to a main body, a reciprocating motion of the blade portion in the front-rear direction, and before the reversal of the movement direction in the reciprocating motion. And an actuator for twisting the blade portion around the front edge portion in a predetermined period thereafter. The device also stores energy when the torque required for the actuator for reciprocation is less than a predetermined value, and for the actuator when the torque required for the actuator for reciprocation is greater than a specific value. Energy is provided. Energy storage and provision mechanism is provided.
[0014] 上記の構成によれば、往復運動のためにァクチユエータに要求されるトノレクの時刻 歴を平滑化することができる。したがって、上記要求トルクのピークが低減するため、 ァクチユエータおよび駆動エネルギー源の軽量化を図ることができる。  [0014] According to the above configuration, it is possible to smooth the Tonlek time history required for the actuator for the reciprocating motion. Therefore, since the peak of the required torque is reduced, the weight of the actuator and the drive energy source can be reduced.
[0015] なお、浮上移動装置は、トルクを検出する手段を有していても、トルクを検出する手 段を有していなくてもよい。浮上移動装置が、トルクを検出する手段を有していない 場合には、エネルギー蓄積 ·供与機構が浮上移動装置に設けられていない場合に おいてァクチユエータに要求されるトルクに応じて、予め、エネルギーを蓄積するタイ ミングとエネルギーを供与するタイミングとが決定されている。また、エネルギー蓄積 · 供与機構は、前述の要求トルクが所定値より小さい場合に、必ずエネルギーを蓄積 するものでなくてもよぐ要求トルクが所定値より小さい期間が複数ある場合には、そ の複数の期間の少なくともいずれかの期間においてエネルギーを蓄積すればよい。 また、エネルギー蓄積 ·供与機構は、前述の要求トルクが特定値より大きい場合に、 必ずエネルギーを供与するものでなくてもよぐ要求トルクが特定値より大きい期間が 複数ある場合には、その複数の期間の少なくともレ、ずれかの期間におレ、て要求トノレ クのピークを低減するようにエネルギーを供与すればょレ、。  [0015] Note that the rising and moving apparatus may have a means for detecting torque or may not have a means for detecting torque. If the rising and moving device does not have a means for detecting torque, the energy storage and supply mechanism is not provided in the rising and moving device, and the energy is preliminarily determined according to the torque required for the actuator. The timing for accumulating energy and the timing for supplying energy are determined. In addition, the energy storage and supply mechanism, when the required torque is smaller than the predetermined value, if there are multiple periods in which the required torque is not necessarily stored, and the required torque is smaller than the predetermined value. What is necessary is just to accumulate energy in at least any one of a plurality of periods. In addition, the energy storage and supply mechanism, when the above-mentioned required torque is greater than a specific value, may have multiple periods when the required torque that does not necessarily provide energy is greater than the specific value. At least during this period, energy should be provided so as to reduce the peak of the required torque.
[0016] また、前述の往復運動が、角速度が一定である運動と、この運動に連続して行われ 、角速度が変化する、運動方向の反転のための運動とからなり、エネルギー蓄積-供 与機構が、運動方向の反転のための運動の前半にァクチユエータのエネルギーを蓄 積し、運動方向の反転のための運動の後半にエネルギーをァクチユエータに与えて ちょい。 [0016] The reciprocating motion described above includes a motion with a constant angular velocity and a motion for reversing the motion direction, which is performed continuously following the motion and changes the angular velocity, and stores energy. The mechanism accumulates the energy of the actuator in the first half of the movement for reversing the direction of movement, and gives the energy to the actuator in the second half of the movement for reversing the direction of movement.
[0017] 運動方向の反転のための運動の前半においては、羽根部および羽根部の周囲の 流体の慣性力が羽根部に作用するため、前述の要求トルクが小さい。逆に、運動方 向の反転のための運動の後半においては、羽根部は前述の慣性力に逆らって運動 する必要があるため、前述の要求トルクが大きい。したがって、上述のように、運動方 向の反転のための運動の前半にァクチユエータのエネルギーを蓄積し、運動方向の 反転のための運動の後半に蓄積されたエネルギーをァクチユエータに与えれば、最 も効果的に、羽ばたき運動に必要なトノレクの時刻歴の平滑化を図ることができる。 [0017] In the first half of the movement for reversal of the movement direction, Since the inertial force of the fluid acts on the blade portion, the above-mentioned required torque is small. On the other hand, in the latter half of the movement for reversing the movement direction, the required torque is large because the blade part needs to move against the inertial force. Therefore, as described above, it is most effective if the energy of the actuator is accumulated in the first half of the movement for reversing the movement direction and the energy accumulated in the second half of the movement for reversing the movement direction is given to the actuator. In particular, it is possible to smooth the Tonlek time history required for flapping motion.
[0018] また、エネルギー蓄積 ·供与機構は、充放電可能な電池を有し、ァクチユエータの エネルギーを電池に電力として蓄積し、該電池に蓄積された電力を用いてァクチュ エータにエネルギーを与えてもよレ、。これによれば、エネルギーの蓄積および供与を 必要に応じて行なうことができる。  [0018] Further, the energy storage / supply mechanism has a chargeable / dischargeable battery, stores the energy of the actuator as electric power in the battery, and supplies the energy to the actuator using the electric power stored in the battery. Yo! According to this, energy can be stored and donated as needed.
[0019] また、エネルギー蓄積 ·供与機構は、物質の弾性変形によってァクチユエ一タのェ ネルギーを蓄積し、物質の復元力によってァクチユエータにエネルギーを与えてもよ い。これによれば、予め弾性変形する物質を適切な位置に設けるだけで、何ら特別 な制御を必要とせず、エネルギーの蓄積および供与を行なうことができる。  [0019] Further, the energy storage / donating mechanism may store the energy of the actuator by elastic deformation of the substance, and give the energy to the actuator by the restoring force of the substance. According to this, it is possible to store and supply energy without providing any special control by simply providing a material that is elastically deformed in advance at an appropriate position.
[0020] また、物質が固体であれば、液体または気体を用いてエネルギーの蓄積および供 与を行なう場合に比較して、エネルギー蓄積 ·供与機構の構造を単純化することがで きる。  [0020] If the substance is a solid, the structure of the energy storage and supply mechanism can be simplified as compared with the case where energy is stored and supplied using liquid or gas.
[0021] エネルギー蓄積'供与機構が、密閉された容器内の気体の圧縮および膨張によつ て、運動エネルギーの蓄積および供与を行なえば、気体は液体および固体に比較し て軽量であるため、エネルギー蓄積 ·供与機構の軽量化を図ることができる。  [0021] If the energy storage and delivery mechanism stores and delivers kinetic energy by compression and expansion of the gas in a sealed container, the gas is lighter than liquids and solids. Energy storage · The weight of the donation mechanism can be reduced.
[0022] また、エネルギー蓄積 ·供与機構が、密閉された容器内での気体の相変化によって 、運動エネルギーの蓄積および供与を行なえば、単位体積あたりのエネルギーの蓄 積量および供与量が増加するため、エネルギー蓄積 ·供与機構の小型化を図ること ができる。  [0022] Further, if the energy storage and supply mechanism stores and supplies kinetic energy by the phase change of gas in a sealed container, the amount of stored energy and the amount of supply per unit volume increase. Therefore, it is possible to reduce the size of the energy storage and supply mechanism.
[0023] また、前述の往復運動が、角速度が一定である運動と、この運動に連続して行われ 、角速度が変化する、運動方向の反転のための運動とからなり、物質が、運動方向の 反転のための運動の期間のみにおいて、ァクチユエータに接触するものであれば、 往復運動の効率を低下することなぐ前述の要求トルクの時刻歴の平滑化を実現す ること力 Sできる。 [0023] Further, the above-described reciprocating motion includes a motion having a constant angular velocity and a motion for reversing the motion direction in which the angular velocity changes and is continuously performed. If the actuator contacts the actuator only during the reversal motion period, the time history of the required torque can be smoothed without reducing the efficiency of the reciprocating motion. Ability to do S.
[0024] また、前述の物質がァクチユエータに設けられていれば、簡単な構造のエネルギー 蓄積 ·供与機構が実現され得る。  [0024] Further, if the aforementioned substance is provided in the actuator, an energy storage / donation mechanism having a simple structure can be realized.
[0025] また、前述の往復運動が、角速度が一定である運動と、この運動に連続して行われ[0025] Further, the above-described reciprocating motion is performed continuously with a motion having a constant angular velocity and this motion.
、角速度が変化する、運動方向の反転のための運動とからなり、ァクチユエータが、 往復運動の両端の運動方向の反転のための運動の期間のそれぞれにおいて、物質 を弾性変形させる構造を有していることが望ましい。これによれば、前述の弾性変形 する物質のみによって、エネルギーの蓄積および供与が実現され得るため、ェネル ギー蓄積 ·供与機構の軽量化を図ることができる。 The actuator has a structure that elastically deforms the substance in each of the motion periods for reversal of the motion direction at both ends of the reciprocating motion. It is desirable that According to this, energy storage and supply can be realized only by the above-described elastically deformable substance, so that the energy storage and supply mechanism can be reduced in weight.
[0026] また、前述の物質が、羽根軸の往復運動の中心位置において弛んでいる紐状の弾 性体を含んでいれば、エネルギー蓄積 ·供与機構の軽量化を図ることができる。 [0026] Further, if the above-described substance includes a string-like elastic body that is slackened at the center position of the reciprocating motion of the blade shaft, the energy storage / donating mechanism can be reduced in weight.
[0027] また、前述の物質が、要求トルクが最小値から極大値になるまでの期間において、 弾性変形すれば、往復運動の効率を低下させることなぐ前述の要求トルクの時刻歴 の平滑化を実現することができる。 [0027] Further, if the above-mentioned substance is elastically deformed in a period until the required torque reaches the maximum value, the time history of the required torque can be smoothed without reducing the efficiency of the reciprocating motion. Can be realized.
[0028] また、物質のバネ定数が、要求トルクの極大値をトルクが極大値になるときの物質の 変形量で除算したものであれば、弾性変形する物質のパネ定数を最適値に設定す ること力 Sできる。 [0028] If the spring constant of the substance is the maximum required torque divided by the amount of deformation of the substance when the torque reaches the maximum, the panel constant of the elastically deformable substance is set to an optimum value. Ability to do S.
[0029] また、本発明の浮上移動装置は、羽根部に前後方向の往復運動をさせる前後往復 運動用ロータと、羽根部を前縁部周りに捻るための捻り運動用ロータとを備えており、 エネルギー蓄積 ·供与機構が、前後往復運動用ロータのエネルギーを蓄積し、その エネルギーを前後往復運動用ロータに与えてもよい。  [0029] Further, the rising and moving apparatus of the present invention includes a back-and-forth reciprocating motion rotor that causes the blade portion to reciprocate in the front-rear direction, and a torsional motion rotor for twisting the blade portion around the front edge portion. The energy storage and supply mechanism may store the energy of the back-and-forth reciprocating rotor and supply the energy to the back-and-forth reciprocating rotor.
[0030] これによれば、往復運動のためにァクチユエータに要求されるトノレクのピークは、捻 り運動のためにァクチユエータに要求されるトルクに比較して大きいため、効率的に エネルギーを蓄積および供与することができる。  [0030] According to this, the peak of the torque required for the actuator for the reciprocating motion is larger than the torque required for the actuator for the torsional motion, so that energy is efficiently stored and supplied. can do.
[0031] 本発明の他の局面の浮上移動装置は、本体に取り付けられた前縁部を有する羽根 部と、羽根部を前後方向に往復運動させるとともに、往復運動における運動方向の 反転の前から後の所定期間において、羽根部を前縁部周りに捻るァクチユエータと を備えている。また、その装置は、往復運動においてァクチユエータの駆動のために 要求されるエネルギーが所定値より小さい場合にエネルギーを蓄積し、往復運動に おいてァクチユエータの駆動のために要求されるエネルギーが特定値より大きい場 合にァクチユエータにエネルギーを与えるエネルギー蓄積'供与機構とを備えている [0031] A rising and moving apparatus according to another aspect of the present invention includes a blade portion having a front edge portion attached to a main body, reciprocating the blade portion in the front-rear direction, and before reversing the movement direction in the reciprocating motion. And an actuator for twisting the blade portion around the front edge portion in a predetermined period thereafter. The device is also used to drive the actuator in reciprocating motion. Energy storage that provides energy when the required energy is smaller than a predetermined value, and gives energy to the actuator when the energy required for driving the actuator during reciprocation is greater than a specific value. Has
[0032] 上記の構成によれば、ァクチユエータの駆動のために要求されるエネルギーの時 刻歴を平滑化することが可能になる。したがって、ァクチユエータおよび駆動エネル ギ一源を小型化することが可能になる。 [0032] According to the above configuration, the time history of energy required for driving the actuator can be smoothed. Therefore, it is possible to reduce the size of the actuator and the drive energy source.
[0033] なお、浮上移動装置は、エネルギーを検出する手段を有していても、エネルギーを 検出する手段を有していなくてもよい。浮上移動装置が、エネルギーを検出する手段 を有していない場合には、エネルギー蓄積 ·供与機構が浮上移動装置に設けられて レヽなレ、場合にぉレ、てァクチユエータの駆動のために要求されるエネルギーに応じて 、予め、エネルギーを蓄積するタイミングとエネルギーを供与するタイミングとが決定 されている。また、エネルギー蓄積 ·供与機構は、前述の要求エネルギーが所定値よ り小さい場合に、必ずエネルギーを蓄積するものでなくてもよぐ要求エネルギーが 所定値より小さい期間が複数ある場合には、その複数の期間の少なくともいずれかの 期間においてエネルギーを蓄積するものであればよい。また、エネルギー蓄積 ·供与 機構は、前述の要求エネルギーが特定値より大きい場合に、必ずァクチユエータに エネルギーを供与するものでなくてもよぐ要求エネルギーが特定値より大きい期間 が複数ある場合には、その複数の期間の少なくともいずれかの期間において要求ェ ネルギ一のピークを低減するようにァクチユエータにエネルギーを供与するものであ ればよい。  [0033] Note that the rising and moving apparatus may have means for detecting energy, or may not have means for detecting energy. When the rising and moving device does not have a means for detecting energy, an energy storage and supply mechanism is provided in the rising and moving device, so that it is required for driving the actuator. Depending on the energy to be stored, the timing for storing energy and the timing for supplying energy are determined in advance. In addition, when the above required energy is smaller than a predetermined value, the energy storage and supply mechanism does not necessarily store energy, but there are multiple periods where the required energy is smaller than the predetermined value. Any material that accumulates energy in at least one of a plurality of periods may be used. In addition, the energy storage and supply mechanism does not necessarily provide energy to the actuator when the required energy is greater than a specific value. If there are multiple periods in which the required energy is greater than the specific value, It suffices to provide energy to the actuator so as to reduce the peak of the required energy during at least one of the plurality of periods.
[0034] また、他の局面の浮上移動装置にぉレ、ては、ァクチユエータが、羽根部を前後方 向に往復運動させるロータであって、相対的に小さな振幅で往復運動する第 1ロータ と、第 1ロータにほぼ平行な方向において相対的に大きな振幅で往復運動する第 2口 一タとを備えていてもよい。この場合、当該装置が第 1ロータの位相と第 2ロータの位 相との差によって、羽根部の捻りの程度を制御する制御部をさらに備えており、エネ ルギー蓄積 ·供与機構が、第 1ロータのエネルギーを蓄積し、エネルギーを第 1ロー タに与えることが望ましい。 [0035] これによれば、上記と同様に、羽根軸の前後方向の往復運動のためにァクチユエ ータに要求されるエネルギーのピークは、捻り運動のためにァクチユエータに要求さ れるエネルギーのピークに比較して大きいため、エネルギー蓄積 ·供与機構は、効率 的にエネルギーを蓄積および供与することができる。 [0034] In addition, the actuator is a rotor that reciprocates the blades in the front-rear direction in relation to the rising and moving apparatus of another aspect, and a first rotor that reciprocates with a relatively small amplitude; And a second mouth that reciprocates with a relatively large amplitude in a direction substantially parallel to the first rotor. In this case, the apparatus further includes a control unit that controls the degree of twisting of the blades according to the difference between the phase of the first rotor and the phase of the second rotor, and the energy storage / delivery mechanism is It is desirable to store the energy of the rotor and give the energy to the first rotor. According to this, similarly to the above, the energy peak required for the actuator for the reciprocating motion of the blade shaft in the front-rear direction is the energy peak required for the actuator for the twisting motion. Because it is relatively large, the energy storage and donation mechanism can efficiently store and donate energy.
[0036] また、他の局面の浮上移動装置にぉレ、ては、ァクチユエータが、前縁部を前後方 向に往復運動させるロータであって、前縁部に接続され、固定振幅で往復運動する 第 1ロータと、第 1ロータにほぼ平行な方向において可変振幅で往復運動する第 2口 一タとを備えていてもよい。この場合、浮上移動装置が第 1ロータの位相と第 2ロータ の位相との差の制御によって、羽根部の捻りの程度を制御する制御部をさらに備え ており、エネルギー蓄積.供与機構が、第 1ロータのエネルギーを蓄積し、エネルギ 一を第 1ロータに与えることが望ましい。  [0036] In addition, the actuator is a rotor that reciprocates the front edge part in the front-rear direction in relation to the rising and moving apparatus of another aspect, and is connected to the front edge part and reciprocates at a fixed amplitude. The first rotor and a second port that reciprocates with a variable amplitude in a direction substantially parallel to the first rotor may be provided. In this case, the rising and moving apparatus further includes a control unit that controls the degree of twist of the blade portion by controlling the difference between the phase of the first rotor and the phase of the second rotor, and the energy storage and donating mechanism It is desirable to store the energy of one rotor and give the energy to the first rotor.
[0037] 上記構成によれば、より大きなトルクを必要とする前縁部を駆動するための第 1ロー タの振幅が固定されている。そのため、後述される手法によりエネルギー(トルク)の 平滑化を容易に実現することができる。また、第 1ロータと第 2ロータとの位相差は任 意に設定され得るため、上記のトルク平滑化を達成しながら、羽根部の 2自由度制御 を実現することができる。つまり、浮上移動装置の多様な制御とエネルギー(トルク)の 平滑化の双方を実現することができる。  [0037] According to the above configuration, the amplitude of the first rotor for driving the leading edge portion that requires a larger torque is fixed. Therefore, energy (torque) smoothing can be easily realized by the method described later. In addition, since the phase difference between the first rotor and the second rotor can be set arbitrarily, the two-degree-of-freedom control of the blade portion can be realized while achieving the above torque smoothing. In other words, it is possible to realize both various controls of the rising and moving device and smoothing of energy (torque).
[0038] また、エネルギー蓄積 ·供与機構は、ァクチユエータの移動によって生じる運動エネ ルギーを蓄積し、その運動エネルギーをァクチユエータに供与するものであってもよ レ、。これによれば、ァクチユエータがどのような態様で運動しても、エネルギー蓄積' 供与機構は、ァクチユエータのエネルギーを蓄積してァクチユエータに供与すること ができる。そのため、多様な制御およびエネルギーのピークの低減の双方を実現す ること力 Sできる。  [0038] Further, the energy storage / donating mechanism may accumulate the kinetic energy generated by the movement of the actuator and supply the kinetic energy to the actuator. According to this, regardless of the manner in which the activator moves, the energy storage and supply mechanism can store the energy of the activator and supply it to the activator. Therefore, it is possible to realize both various controls and energy peak reduction.
[0039] また、ァクチユエータがロータを含み、エネルギー蓄積.供与機構の所定の部位が 、ロータの回転中心軸と共通の回転中心軸まわりに円弧状の軌跡を描くように移動し てもよレ、。これによれば、ロータの回転に起因したエネルギー蓄積 ·供与機構と他の 部位との相対的位置関係の変化の度合レ、を極力小さくすることができる。  [0039] Further, the actuator may include a rotor, and the predetermined part of the energy storage and supply mechanism may move so as to draw an arc-shaped locus around the rotation center axis common to the rotor rotation axis. . According to this, the degree of change in the relative positional relationship between the energy storage / donating mechanism and other parts due to the rotation of the rotor can be minimized.
[0040] エネルギー蓄積 ·供与機構は、板パネを含み、板パネの固定端は、ロータの回転中 心軸の近傍に位置付けられてもよい。これによれば、エネルギーの蓄積および供与と 、円弧の軌跡を描く移動との双方を簡単に実現することができる。 [0040] Energy storage · The donating mechanism includes a plate panel, and the fixed end of the plate panel is rotating the rotor. It may be positioned near the mandrel. According to this, it is possible to easily realize both the accumulation and supply of energy and the movement for drawing the locus of the arc.
[0041] 本発明の他の局面の浮上移動装置は、本体に取り付けられ、往復運動によって羽 ばたき運動を実現する羽根部と、羽根部を動作させるァクチユエータと、羽根部に羽 ばたき運動をさせるための複数種類のデータを有し、複数種類のデータに基づいて ァクチユエータを制御する制御部とを備えてレ、る。複数種類のデータのそれぞれは、 往復運動の 1周期の羽根部の運動を特定可能であり、かつ、往復運動の 1周期のう ちの所定期間において、羽根部に共通の運動をさせ、所定期間以外の期間におい ては、複数種類のデータのうちの他のデータによって特定される運動とは異なる運動 を羽根部にさせるものである。制御部は、前述の所定期間において、ァクチユエータ が複数種類のデータのうちの 1のデータによって特定される運動を羽根部にさせる制 御から、ァクチユエータが複数種類のデータのうちの他のデータによって特定される 運動を羽根部にさせる制御へ切り換える。 [0041] A rising and moving apparatus according to another aspect of the present invention is attached to a main body, and a blade portion that realizes a flapping motion by reciprocating motion, an actuator that operates the blade portion, and a flapping motion on the blade portion. And a controller that controls the actuator based on the plurality of types of data. Each of the multiple types of data can specify the movement of the blade part in one cycle of reciprocating movement, and cause the blade part to perform a common movement in a predetermined period of one cycle of the reciprocating movement. During this period, the blades are caused to move differently from the movement specified by the other data among the multiple types of data. The control unit determines that the actuator is identified by the other data among the multiple types of data from the control that causes the blade to perform the movement specified by the data of one of the multiple types of data during the predetermined period. Switch to control that causes the blades to move.
[0042] 上記の構成によれば、羽根部の運動に不連続な変化が生じることなぐ羽ばたき運 動を変更することができる。  [0042] According to the above configuration, it is possible to change the flapping motion without causing a discontinuous change in the motion of the blade portion.
[0043] また、前述の所定期間以外の期間は、往復運動の 1周期のうちの 2つの特定期間 であってもよい。これによれば、 1つの羽根部は、往復運動の 1周期の間に最大で 4 種類の状態に順次変化する。そのため、羽ばたき運動のバリエーションが豊富になる  [0043] Further, the period other than the predetermined period may be two specific periods in one cycle of the reciprocating motion. According to this, one blade part changes sequentially into a maximum of 4 types during one cycle of reciprocating motion. Therefore, the variation of flapping motion becomes abundant
[0044] また、 2つの特定期間は、互いに 1Z2周期ずれていてもよレ、。これによれば、 1の 特定期間と他の特定期間とが最も大きなインターバルをおいて繰り返される。そのた め、一方の特定期間における羽ばたき運動に起因して生じる気流が、他方の特定期 間における羽ばたき運動に起因して生じる気流に及ぼす影響が最も小さくなる。 [0044] Further, the two specific periods may be shifted by 1Z2 cycles from each other. According to this, one specific period and another specific period are repeated with the largest interval. Therefore, the effect of the airflow generated by the flapping motion in one specific period on the airflow generated by the flapping motion in the other specific period is the smallest.
[0045] また、 2つの特定期間の一方および他方は、それぞれ、羽根部が往復運動の一方 端に位置するタイミングおよび羽根部が往復運動の他方端に位置するタイミングを含 むことが望ましい。これによれば、 1の特定期間における羽根部の位置と他の特定期 間における羽根部の位置とが最も離れている。そのため、一方の特定期間における 羽ばたき運動に起因して生じる気流が、他方の特定期間における羽ばたき運動に起 因して生じる気流に及ぼす影響が最も小さくなる。 [0045] Further, it is desirable that one and the other of the two specific periods include a timing at which the blade portion is positioned at one end of the reciprocating motion and a timing at which the blade portion is positioned at the other end of the reciprocating motion, respectively. According to this, the position of the blade part in one specific period is farthest from the position of the blade part in another specific period. For this reason, the airflow generated due to the flapping motion in one specific period occurs in the flapping motion in the other specific period. Therefore, the effect on the airflow generated is minimized.
[0046] また、 2つの特定期間の一方の期間における運動により生じる流体力のうちの一の 方向成分と、 2つの特定期間の他方の期間における運動により生じる流体力のうちの 一の方向成分とが、相殺される。これによれば、羽ばたき運動の変更に起因する浮 上移動装置の姿勢の変化の態様が単純になる。そのため、浮上移動装置を所望の 姿勢にするための制御が容易になる。  [0046] In addition, one directional component of the fluid force generated by the movement in one of the two specific periods, and one directional component of the fluid force generated by the movement in the other of the two specific periods Is offset. According to this, the mode of change in the posture of the rising and moving apparatus due to the change of the flapping motion is simplified. As a result, control for bringing the rising and moving apparatus into a desired posture is facilitated.
[0047] また、制御部が、前記往復運動の両端のそれぞれにおいて、羽根部を前縁部周り に捻るための制御を実行し、 2つの特定期間が、それぞれ、ァクチユエータが羽根部 を前縁部まわりに捻るタイミングを含むことが望ましい。これによれば、羽根部の捻り のタイミングの変更によって、水平方向へ流体力を発生させることができる。  [0047] In addition, the control unit executes control for twisting the blade part around the front edge part at each of both ends of the reciprocating motion, and the actuator uses the front edge part for the two specific periods, respectively. It is desirable to include the timing of twisting around. According to this, the fluid force can be generated in the horizontal direction by changing the timing of twisting the blade portion.
[0048] また、複数のデータはホバリングのためのデータを含み、ホバリングのためのデータ によって特定される羽ばたき運動は、羽根軸に上下方向および左右方向を含む平面 に対して鏡面対称な前後方向の往復運動をさせるものであり、制御部は、前後方向 の往復運動の中心位置から前後方向の往復運動の一方端まで羽根部を移動させる ための基本データと、前後方向の往復運動の中心位置から前後方向の往復運動の 他方端まで羽根部を移動させるように、基本データを変換するための演算処理部と を含んでいることが望ましい。これによれば、制御部は、羽ばたき運動の 1周期の 1/ 2の期間のためのデータを有しているだけで、所望の羽ばたき運動を羽根部にさせる こと力 Sできる。そのため、制御部のデータの記憶のためのメモリ容量を低減することが できる。その結果、浮上移動装置を小型化かつ軽量ィ匕することができる。  [0048] Further, the plurality of data includes data for hovering, and the flapping motion specified by the data for hovering is in the front-rear direction which is mirror-symmetrical with respect to a plane including the vertical direction and the horizontal direction on the blade axis. The control unit is based on the basic data for moving the blade from the center position of the reciprocating motion in the front-rear direction to one end of the reciprocating motion in the front-rear direction and the center position of the reciprocating motion in the front-rear direction. It is desirable to include an arithmetic processing unit for converting basic data so that the blade part is moved to the other end of the reciprocating motion in the front-rear direction. According to this, the control unit can have a force S for causing the blade unit to perform a desired flapping motion only by having data for a period of 1/2 of one cycle of the flapping motion. Therefore, the memory capacity for storing data in the control unit can be reduced. As a result, the rising and moving apparatus can be reduced in size and weight.
[0049] 本発明の超音波振動子の振動特性の調整方法は、複数種類の振動を組合せて被 駆動体を駆動する超音波振動子の振動特性を調整するものである。複数種類の振 動は、それぞれ、振幅が実質的にゼロである振動の節を有している。この方法におい ては、超音波振動子の振動の特性を調整する作業者は、複数種類の振動の節のう ちの少なくとも 1つの振動の節の位置またはその近傍の位置でありかつ他の振動の 節の位置またはその近傍の位置以外の位置における構造の物理量を変化させる。 それにより、その物理量を変化させた位置に振動の節を有しない振動の特性が調整 される。 [0050] 一般に、超音波振動子を用いる製品の製造においては、圧電素子、振動板、また は電極の形状の誤差、圧電素子、振動板、および電極同士の間における貼り合わせ 誤差、ならびに超音波振動子の最終製品への組付け誤差等が生じてしまう。そのた め、被駆動体の駆動に必要な振動の共振周波数のうち、少なくとも 1つの共振周波 数が、設計値と異なる値になってしまう。その結果、被駆動体の駆動に必要な全ての 振動の共振周波数が実質的に一致しないという不具合が生じてしまう。この場合に、 上記の方法によれば、被駆動体の駆動に必要な複数種類の振動のうちの 1の振動 の特性を変化させることなぐ他の振動の特性を調整することができる。したがって、 被駆動体の駆動に必要な全ての振動の共振周波数を実質的に一致させることが、 従来の方法に比較して容易である。 [0049] The method for adjusting the vibration characteristics of an ultrasonic transducer according to the present invention adjusts the vibration properties of an ultrasonic transducer that drives a driven body by combining a plurality of types of vibration. Each of the types of vibrations has a vibration node having an amplitude of substantially zero. In this method, the operator who adjusts the vibration characteristics of the ultrasonic vibrator is at or near the position of at least one vibration node of the plurality of types of vibration nodes and other vibrations. The physical quantity of the structure is changed at a position other than the position of the knot or its neighboring position. As a result, the characteristic of vibration having no vibration node at the position where the physical quantity is changed is adjusted. [0050] In general, in the manufacture of a product using an ultrasonic vibrator, an error in the shape of a piezoelectric element, a diaphragm, or an electrode, a bonding error between the piezoelectric element, the diaphragm, and the electrode, and an ultrasonic wave An error in assembling the vibrator into the final product will occur. For this reason, at least one resonance frequency of the vibration frequencies necessary for driving the driven body is different from the design value. As a result, there arises a problem that the resonance frequencies of all vibrations necessary for driving the driven body do not substantially coincide. In this case, according to the above method, it is possible to adjust other vibration characteristics without changing the vibration characteristics of one of a plurality of types of vibrations necessary for driving the driven body. Therefore, it is easier to make the resonance frequencies of all the vibrations necessary for driving the driven body substantially coincide with each other as compared with the conventional method.
[0051] なお、構造の物理量は、質量、剛性、形状、および内部応力のうち少なくともいず れかを含んでいるが、振動特性を調整することができるものであれば、いかなるもの であってもよい。また、振動の節の近傍の位置は、振動の節に隣接する位置を含み、 振動特性の調整を実質的に容易に行ない得る位置であれば、いかなる位置であつ てもよい。たとえば、振動の節の近傍の位置は、平面的に見て振動の節が点で表現 される場合に、振動の節を囲むような周縁状の領域を含む。  [0051] It should be noted that the physical quantity of the structure includes at least one of mass, rigidity, shape, and internal stress, but any structure can be used as long as the vibration characteristics can be adjusted. Also good. Further, the position in the vicinity of the vibration node may be any position as long as it includes the position adjacent to the vibration node and can adjust the vibration characteristics substantially easily. For example, the position in the vicinity of the vibration node includes a peripheral region surrounding the vibration node when the vibration node is represented by a point when seen in a plan view.
[0052] 振動の節の位置における構造としての突出部における物理量を変化させることによ つて、物理量を変化させる位置またはその近傍に振動の節を有しなレ、振動の特性が 調整されてもよい。この方法によれば、突出部の物理量を変化させれば、振動特性を 調整することができるため、他の構造の物理量を変化させて振動特性を調整する方 法に比較して、振動特性の調整が容易である。  [0052] By changing the physical quantity in the protruding portion as the structure at the position of the vibration node, even if the vibration characteristic is adjusted without having the vibration node at or near the position where the physical quantity is changed. Good. According to this method, the vibration characteristic can be adjusted by changing the physical quantity of the protruding portion. Therefore, compared with the method of adjusting the vibration characteristic by changing the physical quantity of another structure, the vibration characteristic is improved. Adjustment is easy.
[0053] また、突出部の研削によって、突出部の位置またはその近傍に振動の節を有しな い振動の特性が調整されてもよい。この方法によれば、突出部を研削するという極め て簡単な作業で、振動特性を調整することができる。  [0053] Further, by grinding the protruding portion, the vibration characteristic without the vibration node at or near the position of the protruding portion may be adjusted. According to this method, the vibration characteristics can be adjusted by an extremely simple operation of grinding the protrusion.
[0054] また、突出部の加熱処理によって、突出部の位置またはその近傍の位置に振動の 節を有しない振動の特性が調整されてもよい。この方法によれば、突出部の形状を 変化させることなぐ振動特性を調整することができる。  [0054] Further, by the heat treatment of the protruding portion, the vibration characteristic having no vibration node at the position of the protruding portion or a position in the vicinity thereof may be adjusted. According to this method, it is possible to adjust the vibration characteristics without changing the shape of the protrusion.
[0055] また、突出部への所定部材の付加によって、突出部の位置またはその近傍の位置 に振動の節を有しない振動の特性が調整されてもよい。この方法によっても、突出部 の位置またはその近傍の位置に振動の節を有する振動の特性を変化させることなく 、突出部の位置またはその近傍の位置に振動の節を有しない振動の特性を容易に 調整すること力 Sできる。 [0055] Further, by adding a predetermined member to the protruding portion, the position of the protruding portion or a position in the vicinity thereof The vibration characteristics having no vibration node may be adjusted. This method also facilitates vibration characteristics having no vibration node at the position of the protrusion or the vicinity thereof without changing the vibration characteristic having the vibration node at the position of the protrusion or the vicinity thereof. It is possible to adjust to S.
[0056] また、複数種類の振動の節のうちの少なくとも 1つの振動の節の位置またはその近 傍の位置に凹部が設けられることによって、凹部が設けられた位置またはその近傍の 位置に振動の節を有しない振動の特性が調整されてもよい。この方法によれば、凹 部の位置またはその近傍の位置に振動の節を有する振動の特性を変化させることな く、凹部の位置またはその近傍の位置に振動の節を有しない振動の特性を容易に調 整すること力 Sできる。  [0056] Further, by providing a recess at or near the position of at least one vibration node among the plurality of types of vibration nodes, vibration is generated at a position where the recess is provided or a position near the position. The characteristic of the vibration having no nodes may be adjusted. According to this method, the vibration characteristic having no vibration node at the position of the recess or the vicinity thereof is changed without changing the vibration characteristic having the vibration node at the position of the recess or the vicinity thereof. Easy to adjust.
[0057] また、複数種類の振動は、伸縮振動と屈曲振動とを有し、伸縮振動および前記屈 曲振動のうちいずれか一方の振動特性が調整されてもよい。これによれば、楕円振 動をする一般的な超音波振動子の振動特性を容易に調整することができる。  [0057] Further, the plurality of types of vibrations may include stretching vibrations and bending vibrations, and the vibration characteristics of any one of the stretching vibrations and the bending vibrations may be adjusted. According to this, it is possible to easily adjust the vibration characteristics of a general ultrasonic vibrator that vibrates elliptically.
[0058] また、伸縮振動の特性を調整することなぐ屈曲振動の特性が調整されてもよい。こ れによれば、屈曲振動の振動特性を調整することなぐ伸縮振動の振動特性を調整 する方法に比較して、振動特性の調整が容易である。  [0058] Further, the characteristic of flexural vibration without adjusting the characteristic of stretching vibration may be adjusted. According to this, the vibration characteristics can be easily adjusted as compared with the method of adjusting the vibration characteristics of the stretching vibration without adjusting the vibration characteristics of the bending vibration.
[0059] また、突出部が当該超音波振動子を支持するための支持用突出部として機能して もよレ、。この方法によれば、振動特性の調整用の突出部とは別に、支持用突出部を 設ける必要がない。そのため、部品点数の増加なぐ超音波振動子の振動特性を容 易に調整することができる。  [0059] In addition, the protrusion may function as a support protrusion for supporting the ultrasonic transducer. According to this method, it is not necessary to provide a support protrusion separately from the protrusion for adjusting the vibration characteristics. Therefore, the vibration characteristics of the ultrasonic vibrator can be easily adjusted as the number of parts increases.
[0060] 本発明の超音波振動子は、複数種類の振動を組合せて被駆動体を駆動するもの である。複数種類の振動は、それぞれ、振幅が実質的にゼロである振動の節を有し ている。複数種類の振動の節のうちの少なくとも 1つの振動の節の位置またはその近 傍でありかつ他の振動の節の位置またはその近傍の位置以外の位置に振動特性調 整部が設けられている。  [0060] The ultrasonic transducer of the present invention drives a driven body by combining a plurality of types of vibrations. Each of the types of vibrations has a vibration node whose amplitude is substantially zero. A vibration characteristic adjusting unit is provided at or near the position of at least one of the vibration nodes of the plurality of types of vibration and at a position other than the position of the other vibration node or its vicinity. .
[0061] この構造によれば、振動特性調整部の構造の物理量を変化させることによって、振 動特性調整部またはその近傍の位置に振動の節を有する振動の特性を変化させる ことなぐ振動特性調整部またはその近傍の位置に振動の節を有しない振動に対す る振動の特性を変化させることができる。その結果、被駆動体の駆動に必要な全ての 振動の共振周波数を実質的に一致させることが、従来の構造に比較して容易になる [0061] According to this structure, by changing the physical quantity of the structure of the vibration characteristic adjusting unit, the vibration characteristic adjustment without changing the characteristic of the vibration having the vibration node at the position of the vibration characteristic adjusting unit or in the vicinity thereof. Against vibrations that do not have vibration nodes at or near The vibration characteristics can be changed. As a result, it becomes easier to make the resonance frequencies of all vibrations necessary for driving the driven body substantially the same as in the conventional structure.
[0062] 前述の振動特性調整部が突出部を有してれば、突出部の形状、剛性、質量、およ び内部応力のうち少なくともいずれ力を変化させることによって、振動特性調整部ま たはその近傍の位置に振動の節を有する振動の特性を変化させることな 振動特 性調整部またはその近傍の位置に節を有しない振動の特性を調整することができる 。したがって、振動特性の調整作業が容易になる。 [0062] If the vibration characteristic adjustment unit described above has a protrusion, the vibration characteristic adjustment unit or the vibration characteristic adjustment unit can be changed by changing at least one of the shape, rigidity, mass, and internal stress of the protrusion. Can adjust a vibration characteristic adjusting unit that does not change a vibration characteristic having a vibration node at a position in the vicinity thereof, or a vibration characteristic without a node at a position in the vicinity thereof. Therefore, the adjustment operation of the vibration characteristics becomes easy.
[0063] また、前述の振動特性調整部が凹部を有していれば、凹部に物体を付加するだけ で、振動特性調整部の質量を変化させることができる。そのため、振動特性調整部ま たはその近傍の位置に振動の節を有する振動の特性を変化させることなぐ振動特 性調整部またはその近傍の位置に振動の節を有しない振動の特性を容易に調整す ること力 Sできる。  [0063] If the above-described vibration characteristic adjusting unit has a recess, the mass of the vibration characteristic adjusting unit can be changed only by adding an object to the recess. Therefore, the vibration characteristic adjustment unit or the vibration characteristic adjustment unit that does not have the vibration node at the nearby position can be easily changed without changing the vibration characteristic having the vibration node at the position near the vibration characteristic adjustment unit. Adjusting power S
[0064] また、突出部が当該超音波振動子を支持する支持用突出部として機能してもよい。  [0064] The protrusion may function as a support protrusion that supports the ultrasonic transducer.
この構造によれば、支持用突出部とは別個に、振動特性を調整するための突出部を 設ける必要がない。そのため、部品点数の増加なぐ超音波振動子の振動特性を容 易に調整することができる。  According to this structure, it is not necessary to provide a protrusion for adjusting the vibration characteristics separately from the support protrusion. Therefore, the vibration characteristics of the ultrasonic vibrator can be easily adjusted as the number of parts increases.
[0065] また、突出部が超音波振動子によって駆動される被駆動体に対して超音波振動子 を押し付けるための押付用突出部として機能してもよい。この構造によれば、振動特 性を調整するための振動特性調整部と、被駆動体に対して超音波振動子を押し付 ける押付用突出部とが同一の部品からなる。そのため、超音波振動子の部品点数の 増加なぐ超音波振動子の振動特性の調整をすることができる。  [0065] Further, the protrusion may function as a pressing protrusion for pressing the ultrasonic transducer against the driven body driven by the ultrasonic transducer. According to this structure, the vibration characteristic adjusting portion for adjusting the vibration characteristics and the pressing protrusion for pressing the ultrasonic transducer against the driven body are made of the same component. Therefore, the vibration characteristics of the ultrasonic vibrator can be adjusted as the number of parts of the ultrasonic vibrator increases.
[0066] この発明の上記および他の目的、特徴、局面および利点は、添付の図面と関連し て理解されるこの発明に関する次の詳細な説明から明らかとなるであろう。  [0066] The above and other objects, features, aspects and advantages of the present invention will become apparent from the following detailed description of the invention which is to be understood in connection with the accompanying drawings.
図面の簡単な説明  Brief Description of Drawings
[0067] [図 1]実施の形態の浮上移動装置の全体構成の概略図である。  FIG. 1 is a schematic diagram of the overall configuration of a rising and moving apparatus according to an embodiment.
[図 2]実施の形態の浮上移動装置の詳細構造の概略図である。  FIG. 2 is a schematic diagram of a detailed structure of the rising and moving apparatus according to the embodiment.
[図 3]実施の形態の浮上移動装置の羽根部の概略平面図である。 [図 4]図 3における IV—IV線断面図である。 FIG. 3 is a schematic plan view of a blade portion of the rising and moving apparatus according to the embodiment. 4 is a cross-sectional view taken along line IV-IV in FIG.
園 5]実施の形態の浮上移動装置の羽根部の第一の層を示す図である。 FIG. 5] is a diagram showing a first layer of a blade portion of the rising and moving apparatus according to the embodiment.
園 6]実施の形態の浮上移動装置の羽根部の第二の層を示す図である。 6] It is a figure which shows the 2nd layer of the blade | wing part of the rising and moving apparatus of embodiment.
園 7]実施の形態の浮上移動装置の羽根部の第三の層を示す説明図である。 園 8]実施の形態の浮上移動装置に用いられるァクチユエータの外観図である。 園 9]実施の形態の浮上移動装置に用いられる超音波モータの概略図である。 園 10]実施の形態の浮上移動装置に用レ、られる超音波モータの第一の振動モード を示す図である。 7] It is explanatory drawing which shows the 3rd layer of the blade | wing part of the rising and moving apparatus of embodiment. FIG. 8] is an external view of an actuator used in the rising and moving apparatus of the embodiment. [9] It is a schematic view of an ultrasonic motor used in the rising and moving apparatus of the embodiment. FIG. 10] A diagram showing a first vibration mode of the ultrasonic motor used in the rising and moving apparatus of the embodiment.
園 11]実施の形態の浮上移動装置に用いられる超音波モータの第二の振動モード を示す図である。 [11] It is a diagram showing a second vibration mode of the ultrasonic motor used in the rising and moving apparatus of the embodiment.
[図 12]実施の形態の浮上移動装置に用いられる超音波モータの動作を表わす説明 図である。  FIG. 12 is an explanatory diagram showing the operation of the ultrasonic motor used in the rising and moving apparatus of the embodiment.
[図 13]実施の形態の浮上移動装置に用いられる超音波モータの動作を表わす説明 図である。  FIG. 13 is an explanatory view showing the operation of the ultrasonic motor used in the rising and moving apparatus of the embodiment.
[図 14A]実施の形態の浮上移動装置に用いられる超音波モータの予圧機構の概略 図である。  FIG. 14A is a schematic diagram of a preload mechanism of an ultrasonic motor used in the rising and moving apparatus of the embodiment.
[図 14B]上部および下部ロータの他の例を示す図である。  FIG. 14B is a diagram showing another example of the upper and lower rotors.
園 15]実施の形態の浮上移動装置に用いられる羽駆動メカニズムの概略図である。 園 16]実施の形態の浮上移動装置に用いられる羽駆動メカニズムの第一の構成部 品を示す図である。 15] It is a schematic diagram of a wing drive mechanism used in the rising and moving apparatus of the embodiment. FIG. 16 is a diagram showing a first component of the wing drive mechanism used in the rising and moving apparatus of the embodiment.
園 17]実施の形態の浮上移動装置に用レ、られる羽駆動メカニズムの第二の構成部 品を示す図である。 FIG. 17 is a diagram showing a second component of the wing drive mechanism used in the rising and moving apparatus of the embodiment.
園 18]実施の形態の浮上移動装置に用いられる羽駆動メカニズムの第三の構成部 品を示す図である。 FIG. 18 is a diagram showing a third component of the wing drive mechanism used in the rising and moving apparatus of the embodiment.
園 19]実施の形態の浮上移動装置に用いられる羽駆動メカニズムのサイズの定義を 示す図である。 [Sen 19] is a diagram showing the definition of the size of the wing drive mechanism used in the rising and moving apparatus of the embodiment.
園 20]実施の形態の浮上移動装置に用レ、られる羽駆動メカニズムの駆動原理を説 明するための図である。 園 21]実施の形態の浮上移動装置に用いられる超音波モータの駆動トルクの時刻歴 を示すグラフである。 [20] FIG. 20 is a diagram for explaining the drive principle of the wing drive mechanism used in the rising and moving apparatus of the embodiment. [Sono 21] This is a graph showing the time history of the driving torque of the ultrasonic motor used in the rising and moving apparatus of the embodiment.
園 22]実施の形態の浮上移動装置のホバリング時の羽ばたき方を説明するための図 である。 [22] FIG. 22 is a diagram for explaining how to flutter when hovering the rising and moving apparatus of the embodiment.
園 23]実施の形態の浮上移動装置のエネルギー蓄積'供与機構を説明するための 図である。 Gakuen 23] This is a diagram for explaining the energy storage and provision mechanism of the rising and moving apparatus of the embodiment.
園 24]実施の形態の浮上移動装置のトルク補助機構の効果を示すグラフである。 FIG. 24] is a graph showing the effect of the torque assist mechanism of the rising and moving apparatus of the embodiment.
[図 25]実施の形態の浮上移動装置のトルク補助機構の設計方法を表わす補助図で ある。 FIG. 25 is an auxiliary diagram showing a design method of the torque assist mechanism of the rising and moving apparatus according to the embodiment.
[図 26]実施の形態の浮上移動装置のトルク補助機構の第二の例を示す概略図であ る。  FIG. 26 is a schematic view showing a second example of the torque assist mechanism of the rising and moving apparatus of the embodiment.
園 27]実施の形態の浮上移動装置のトルク補助機構の第三の例を示す概略図であ る。 [27] FIG. 27 is a schematic diagram showing a third example of the torque assist mechanism of the rising and moving apparatus of the embodiment.
園 28]実施の形態の浮上移動装置のトルク補助機構の第四の例を示す概略図であ る。 [28] FIG. 28 is a schematic diagram showing a fourth example of the torque assist mechanism of the rising and moving apparatus of the embodiment.
[図 29]実施の形態の浮上移動装置のトルク補助機構の第五の例を示す概略図であ る。  FIG. 29 is a schematic diagram showing a fifth example of the torque assist mechanism of the rising and moving apparatus of the embodiment.
[図 30]実施の形態の浮上移動装置のトルク補助機構の第六の例を示す概略図であ る。  FIG. 30 is a schematic diagram showing a sixth example of the torque assist mechanism of the rising and moving apparatus of the embodiment.
園 31]実施の形態の浮上移動装置のトルク補助機構の第七の例を示す概略図であ る。 [31] FIG. 31 is a schematic diagram showing a seventh example of the torque assist mechanism of the rising and moving apparatus of the embodiment.
園 32]実施の形態の浮上移動装置のトルク補助機構の第八の例を示す概略図であ る。 FIG. 32] is a schematic diagram showing an eighth example of the torque assist mechanism of the rising and moving apparatus of the embodiment.
園 33]実施の形態の浮上移動装置の上昇時の羽ばたき方を表わす説明図である。 園 34]実施の形態の浮上移動装置の下降時の羽ばたき方を表わす説明図である。 園 35A]実施の形態の浮上移動装置の上昇 ·下降時の羽ばたき方により生じる水平 方向の力を表す説明図である。 [Gakuen 33] It is explanatory drawing showing how to flapping when the rising and moving apparatus of the embodiment rises. 37] It is an explanatory view showing how to flap when the rising and moving apparatus of the embodiment descends. FIG. 35A] is an explanatory view showing the horizontal force generated by the flapping of the rising and falling apparatus of the embodiment.
[図 35B]実施の形態の浮上移動装置の前進方法を表す説明図である。 園 35C]実施の形態の浮上移動装置の後退方法を表す説明図である。 FIG. 35B is an explanatory diagram illustrating the forward movement method of the rising and moving apparatus according to the embodiment. 35C] It is explanatory drawing showing the retreating method of the rising and moving apparatus of embodiment.
園 36A]実施の形態の浮上移動装置の前進時の羽ばたき方を表わす説明図である。 園 36B]実施の形態の浮上移動装置の後退時の羽ばたき方を表わす説明図である。 [36A] is an explanatory view showing how the flapping device of the embodiment flutters when moving forward. [36B] It is an explanatory view showing how the flapping device of the embodiment flutters when retreating.
[図 37A]実施の形態の浮上移動装置における制御システムのハードウェアブロック図 である。  FIG. 37A is a hardware block diagram of a control system in the rising and moving apparatus of the embodiment.
園 37B]実施の形態の浮上移動装置における制御システムの機能ブロック図である。 園 38]実施の形態の浮上移動装置の PWM制御信号のデューティ比を説明するた めの図である。 37B] is a functional block diagram of a control system in the rising and moving apparatus of the embodiment. [38] FIG. 38 is a diagram for explaining the duty ratio of the PWM control signal of the rising and moving apparatus of the embodiment.
園 39]実施の形態の浮上移動装置の中央切り返しの制御のためのデューティ比を示 すグラフである。 [39] This is a graph showing the duty ratio for controlling the center turning of the rising and moving apparatus of the embodiment.
園 40]実施の形態の浮上移動装置の先行切り返しの制御のためのデューティ比を示 すグラフである。 FIG. 40] is a graph showing the duty ratio for controlling the advance switching of the rising and moving apparatus of the embodiment.
[図 41]実施の形態の浮上移動装置の遅れ切り返しの制御のためのデューティ比を示 すグラフである。  FIG. 41 is a graph showing a duty ratio for controlling the delayed switching of the rising and moving apparatus according to the embodiment.
園 42]実施の形態の浮上移動装置の制御の流れを示すフローチャートである。 園 43]従来の浮上移動装置の問題点を説明するための図である。 FIG. 42] is a flowchart showing a control flow of the rising and moving apparatus of the embodiment. [Gakuen 43] It is a diagram for explaining the problems of the conventional rising and moving apparatus.
[図 44]一般的なホバリングの羽ばたき方を説明するための図である。  FIG. 44 is a diagram for explaining a general method of flapping hovering.
園 45]別実施の形態の浮上移動装置のエネルギー蓄積'供与機構を説明するため の図である。 [En] 45] This is a diagram for explaining the energy storage and provision mechanism of the rising and moving apparatus according to another embodiment.
園 46]別実施の形態の浮上移動装置のエネルギー蓄積'供与機構を説明するため の図である。 [46] FIG. 46 is a diagram for explaining the energy storage and provision mechanism of the rising and moving apparatus according to another embodiment.
園 47]別実施の形態の浮上移動装置のエネルギー蓄積'供与機構を説明するため の図である。 [Sen 47] This is a diagram for explaining the energy storage and provision mechanism of the rising and moving apparatus of another embodiment.
[図 48]さらに別の実施の形態の超音波モータの平面図である。  FIG. 48 is a plan view of an ultrasonic motor according to still another embodiment.
[図 49]さらに別の実施の形態の超音波振動子の斜視図である。  FIG. 49 is a perspective view of an ultrasonic transducer of still another embodiment.
園 50]さらに別の実施の形態の超音波振動子の分解斜視図である。 FIG. 50] is an exploded perspective view of an ultrasonic transducer of still another embodiment.
園 51]圧電素子に取り付けられた 4つの電極に印加される 4つの電圧モードを説明す るための図である。 [図 52]伸縮振動のための信号の位相と屈曲振動のための振動の位相とが 90° だけ ずれてレ、ることを説明するためのタイムチャートである。 [51] FIG. 51 is a diagram for explaining four voltage modes applied to four electrodes attached to a piezoelectric element. FIG. 52 is a time chart for explaining that the phase of the signal for stretching vibration and the phase of vibration for bending vibration are shifted by 90 °.
[図 53]さらに別の実施の形態の主板部が伸縮振動によって変形する態様を示す図 である。  FIG. 53 is a diagram showing a state in which the main plate portion of still another embodiment is deformed by stretching vibration.
[図 54]さらに別の実施の形態の主板部が屈曲振動によって変形する態様を示す図 である。  FIG. 54 is a diagram showing an aspect in which the main plate portion of still another embodiment is deformed by bending vibration.
[図 55]伸縮振動の共振周波数と屈曲振動の共振周波数とがー致しないことを説明す るための図である。  FIG. 55 is a diagram for explaining that the resonance frequency of stretching vibration and the resonance frequency of bending vibration do not match.
[図 56]さらに別の実施の形態の超音波振動子の構成を表す概略図である。  FIG. 56 is a schematic diagram showing the configuration of an ultrasonic transducer in still another embodiment.
[図 57]さらに別の実施の形態の支持用突出部の長さと、伸縮振動の共振周波数およ び屈曲振動の共振周波数との関係を示すグラフである。  FIG. 57 is a graph showing the relationship between the length of the support protrusion of another embodiment, the resonance frequency of stretching vibration and the resonance frequency of bending vibration.
[図 58]さらに別の実施の形態の支持用突出部の削り方を説明するための図である。  FIG. 58 is a view for explaining how to cut the supporting protrusion according to still another embodiment.
[図 59]さらに別の実施の形態の支持用突出部に設ける凹部を示す図である。 FIG. 59 is a diagram showing a recess provided in the support protrusion of yet another embodiment.
[図 60]さらに別の実施の形態の支持用突出部に重りが設置された状態を説明するた めの図である。 FIG. 60 is a diagram for explaining a state in which a weight is installed on the supporting protrusion of still another embodiment.
[図 61]さらに別の実施の形態の超音波モータの平面図である。  FIG. 61 is a plan view of an ultrasonic motor according to still another embodiment.
[図 62]さらに別の実施の形態の超音波振動子の斜視図である。  FIG. 62 is a perspective view of an ultrasonic transducer of still another embodiment.
[図 63]さらに別の実施の形態の超音波振動子の構成を表す概略図である。  FIG. 63 is a schematic diagram showing the configuration of an ultrasonic transducer in still another embodiment.
[図 64]さらに別の実施の形態の押付用突出部の長さと伸縮振動の共振周波数およ び屈曲振動の共振周波数との関係を示すグラフである。  FIG. 64 is a graph showing the relationship between the length of a pressing protrusion, the resonance frequency of stretching vibration, and the resonance frequency of bending vibration according to still another embodiment.
[図 65]さらに別の実施の形態の押付用突出部の削り方を説明するための図である。  FIG. 65 is a view for explaining how to cut the pressing protrusion according to still another embodiment.
[図 66]さらに別の実施の形態の押付用突出部に重りが設置された状態を示す図であ る。 FIG. 66 is a diagram showing a state in which a weight is installed on the pressing protrusion of yet another embodiment.
符号の説明 Explanation of symbols
100 浮上移動装置、 101 本体、 110 羽部、 120, 130 超音波モータ、 140 駆動メカニズム、 150 制御回路、 160 位置センサ、 170 通信装置、 180 画像セ ンサ、 190 M, 122 ロー夕、 301 ノくネ、 381 ノくネ、 382 固; ;、 383 _h¾ 超音波モータベースプレート、 384 板バネ、 385 固定点、 1 超音波振動子、 2 口 ータ、 1000 超音波モータ、 3 支持用突出部、 4 支持体、 5 シャフト、 6 主板部、 7 振動板、 8 圧電素子、 9, 10, 11 , 12, 17 電極、 14 押付用突出部、 15 ゴム 、 20 調整用突出部、 50 貫通孔、 55、凹部、 a 伸縮振動の共振周波数、 b 屈曲 振動の共振周波数、 C 円軌道、 E 楕円軌道、 S 角部、 X 伸縮振動の節の位置、 Y 屈曲振動の節の位置、 Δ φ 位相のズレ。 100 Ascent movement device, 101 body, 110 wings, 120, 130 ultrasonic motor, 140 drive mechanism, 150 control circuit, 160 position sensor, 170 communication device, 180 image sensor, 190 M, 122 low speed, 301 , 383 _h¾ Ultrasonic motor base plate, 384 leaf spring, 385 fixed point, 1 ultrasonic transducer, 2 ports 1000 ultrasonic motor, 3 support protrusion, 4 support, 5 shaft, 6 main plate, 7 diaphragm, 8 piezoelectric element, 9, 10, 11, 12, 17 electrode, 14 pressing protrusion, 15 Rubber, 20 Adjusting protrusion, 50 Through-hole, 55, Concave, a Resonance frequency of stretching vibration, b Resonance frequency of bending vibration, C circular orbit, E elliptical orbit, S corner, X Position of expansion / contraction vibration node , Y Bend vibration node position, Δ φ phase shift.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0069] 図 1〜図 42を用いて、本発明の一実施の形態の浮上移動装置を説明する。  [0069] A rising and moving apparatus according to an embodiment of the present invention will be described with reference to FIGS.
なお、本実施の形態では、左右対称の構成を有する浮上移動装置を説明する。し たがって、説明の簡略のため、左右対称である構成要素には同一参照符号が付され 、それらのうち左側のみの説明がなされる。  In the present embodiment, a rising and moving apparatus having a symmetrical configuration will be described. Therefore, for simplification of explanation, the same reference numerals are given to the symmetrical components, and only the left side of them will be explained.
[0070] (全体の構成)  [0070] (Overall configuration)
まず、図 1および図 2を用いて、本実施の形態の浮上移動装置の全体構成を説明 する。この項目は、全体構成を説明するためのものであるため、各構成要素の詳細な 構成および動作は後述される。  First, the overall configuration of the rising and moving apparatus of the present embodiment will be described using FIG. 1 and FIG. Since this item is for explaining the overall configuration, the detailed configuration and operation of each component will be described later.
[0071] 図 1に示すように、浮上移動装置 100は、本体 101と、本体 101に設けられた 1対の 羽根部 110とを備えている。一対の羽根部 110の一方は、本体 101の左側の側部に 設けられ、一対の羽根部 110の他方は、本体 101の右側の側部に設けられている。  As shown in FIG. 1, the rising and moving apparatus 100 includes a main body 101 and a pair of blade portions 110 provided on the main body 101. One of the pair of blade portions 110 is provided on the left side portion of the main body 101, and the other of the pair of blade portions 110 is provided on the right side portion of the main body 101.
[0072] 浮上移動装置 100は、羽根部 110の羽ばたき運動によって、周囲流体に流れを生 じさせるとともに、周囲流体から反作用を受ける。このとき、浮上移動装置 100は、鉛 直上方に向いた、自重を超える反作用を周囲流体から受ける。それにより、浮上移動 装置 100には重力加速度を超える鉛直上方向きの加速度が生じる。その結果、浮上 移動装置 100は浮上する。  The rising and moving apparatus 100 causes a flow to occur in the surrounding fluid and a reaction from the surrounding fluid by the flapping motion of the blade portion 110. At this time, the rising and moving apparatus 100 receives the reaction exceeding its own weight, which is directed right above the lead, from the surrounding fluid. As a result, the rising and moving apparatus 100 generates acceleration in the upward direction that exceeds the gravitational acceleration. As a result, the rising and moving apparatus 100 is lifted.
[0073] また、図 2に示すように、浮上移動装置 100は、本発明のァクチユエータとしての上 部超音波モータ 120および下部超音波モータ 130を有してレ、る。上部超音波モータ 120および下部超音波モータ 130は、本体 101に回転可能に搭載されている。上部 超音波モータ 120および下部超音波モータ 130には、上部超音波モータ 120および 下部超音波モータ 130の運動を羽根部 110へ伝達する羽根駆動メカニズム 140が 接続されている。羽根駆動メカニズム 140には羽根部 110が接続されている。羽根部 110は、上および下部超音波モータ 120および 130の駆動によって、上下方向を回 転中心軸とする往復回動運動(以後、「ストローク運動」と称する。)と、羽根部 110の 前縁部を回転中心軸とする回転運動(以後、「捻り運動」と称する。)とを行なう。つま り、羽根部 110は、ストローク運動および捻り運動のそれぞれを独立して行なうことが できる。 Further, as shown in FIG. 2, the rising and moving apparatus 100 has an upper ultrasonic motor 120 and a lower ultrasonic motor 130 as the actuator of the present invention. The upper ultrasonic motor 120 and the lower ultrasonic motor 130 are rotatably mounted on the main body 101. The upper ultrasonic motor 120 and the lower ultrasonic motor 130 are connected to a blade driving mechanism 140 that transmits the movements of the upper ultrasonic motor 120 and the lower ultrasonic motor 130 to the blade portion 110. A blade portion 110 is connected to the blade driving mechanism 140. Feather 110 is driven by upper and lower ultrasonic motors 120 and 130, and a reciprocating rotational motion (hereinafter referred to as a “stroke motion”) with the vertical axis as a rotational center axis, and a front edge portion of blade portion 110. A rotational movement (hereinafter referred to as “twisting movement”) is performed with the rotation center axis. In other words, the blade portion 110 can perform the stroke motion and the twist motion independently.
[0074] 上および下部超音波モータ 120および 130は、制御回路 150によって制御される。  [0074] The upper and lower ultrasonic motors 120 and 130 are controlled by a control circuit 150.
また、制御回路 150には、本体 101に固定された位置検出センサ 160から浮上移動 装置 100の位置情報および姿勢情報が与えられる。  The control circuit 150 is given position information and posture information of the rising and moving apparatus 100 from a position detection sensor 160 fixed to the main body 101.
[0075] また、浮上移動装置 100は、浮上移動装置 100自身の情報およびその周辺の情 報を、通信装置 170から外部のコントローラ 200へ送信する機能を有する。本実施の 形態においては、画像センサ 180よって得られた画像情報がコントローラ 200へ送信 される。なお、画像センサ 180よって得られた画像情報は制御回路 150によって直接 利用されてもよい。たとえば、画像情報を画像処理することによって、浮上移動装置 1 00の位置および速度等が制御回路 150によって認識されてもよい。  In addition, the rising and moving apparatus 100 has a function of transmitting information on the rising and moving apparatus 100 itself and information on the periphery thereof from the communication apparatus 170 to the external controller 200. In the present embodiment, image information obtained by the image sensor 180 is transmitted to the controller 200. Note that the image information obtained by the image sensor 180 may be directly used by the control circuit 150. For example, the position and speed of the rising and moving apparatus 100 may be recognized by the control circuit 150 by performing image processing on the image information.
[0076] また、通信装置 170は、図 1および図 2に示すように、外部のコントローラ 200から送 信されてきた情報を受信し、その情報を制御回路 150に与える機能を有する。本実 施の形態では、外部のコントローラ 200は、オペレータ 210により制御され、浮上移動 装置 100の運動指令を与えるものとする。一方、外部のコントローラ 200は、浮上移 動装置 100に搭載された画像センサ 180によって得られた画像情報を取得すること ができる。  Further, as shown in FIG. 1 and FIG. 2, communication device 170 has a function of receiving information transmitted from external controller 200 and providing the information to control circuit 150. In the present embodiment, the external controller 200 is controlled by the operator 210 and gives a motion command for the rising and moving apparatus 100. On the other hand, the external controller 200 can acquire image information obtained by the image sensor 180 mounted on the rising and moving apparatus 100.
[0077] なお、コントローラ 200が前述の画像情報をオペレータ 210に提示する方法は、レヽ かなるものであってもよい。たとえば、外部のコントローラ 200が画像表示機能を備え ていれば、画像センサ 180が取得した画像そのものが視覚的にオペレータ 210に提 示される。また、説明の簡便のために、外部のコントローラ 200は、オペレータ 210に よって操作されるものとした力 これは必須ではない。  It should be noted that the method in which the controller 200 presents the above-described image information to the operator 210 may be any method. For example, if the external controller 200 has an image display function, the image itself acquired by the image sensor 180 is visually presented to the operator 210. For convenience of explanation, the external controller 200 is assumed to be operated by the operator 210. This is not essential.
[0078] また、制御回路 150、通信装置 170、および画像センサ 180等は、本体 101に配さ れた電源 190から供給される電力によって駆動される。電源 190は、本発明の駆動 エネルギー源として機能するが、本発明の駆動エネルギー源は、電力を用レ、るもの 以外のもの、たとえば、化石燃料等であってもよレ、。この場合、ァクチユエータとして は例えば 2サイクルエンジンやスターリングエンジン等、上記駆動エネルギー源に対 応した物が用いられる。 In addition, the control circuit 150, the communication device 170, the image sensor 180, and the like are driven by electric power supplied from a power source 190 disposed in the main body 101. The power source 190 functions as the driving energy source of the present invention. However, the driving energy source of the present invention uses electric power. Other than, for example, fossil fuel etc. In this case, as the actuator, for example, a two-cycle engine, a Stirling engine, or the like corresponding to the driving energy source is used.
[0079] (羽根部) [0079] (feather)
羽根部 110は、図 3〜図 7に示されたような形状を有し、長さが 65mmであり、かつ 、幅が 16mmである。羽根部 110は、前縁部 1102、羽面部 1103、枠部 1104、枝部 1105、およびァクチユエータ接合部 1106を有している。なお、羽面部 1103とは、前 縁部 1102、枠部 1104、枝部 1105、およびァクチユエータ接合部 1106以外の部分 であって、細長板状部 1107、 1108、および 1109とァラミドフイノレム 1114と力らなる 部分である。  The blade portion 110 has a shape as shown in FIGS. 3 to 7, has a length of 65 mm, and a width of 16 mm. The blade portion 110 includes a front edge portion 1102, a blade surface portion 1103, a frame portion 1104, a branch portion 1105, and an actuator joint portion 1106. The wing surface portion 1103 is a portion other than the front edge portion 1102, the frame portion 1104, the branch portion 1105, and the actuator joint portion 1106, and the elongated plate-like portions 1107, 1108, and 1109 and the aramid phenolic 1114. It is the part that becomes power.
[0080] 羽根部 110のァラミドフィルム 1114以外の部分、つまり前縁部 1102、枠部 1104、 枝部 1105、ァクチユエータ接合部 1106、細長板状部 1107、 1108、 1109は、厚さ 20 x mの CFRP (Carbon Fiber Reinforced Plastic)層からなる。具体的に言えば、 羽根部 110のァラミドフィルム 1114以外の部分は、 CFRPのシートから図 5〜図 7に 示す 3つの部分が切り抜かれ、その 3つの部分が積層されることによって形成される。  [0080] Parts other than the aramid film 1114 of the blade part 110, that is, the front edge part 1102, the frame part 1104, the branch part 1105, the actuator joint part 1106, the elongated plate-like parts 1107, 1108, and 1109 are 20 xm thick. It consists of CFRP (Carbon Fiber Reinforced Plastic) layer. Specifically, the portions other than the aramid film 1114 of the blade portion 110 are formed by cutting out the three portions shown in FIGS. 5 to 7 from the CFRP sheet and laminating the three portions. .
[0081] 前縁部 1102およびァクチユエータ接合部 1106は、厚さ 20 μ mの CFRP層の 3層 積層構造を有している。また、枠部 1104、枝部 1105、細長板状部 1107、 1108、お よび 1109は CFRP層の 1層構造である。図 3に示される X軸の正の方向を 0度とする と、細長板状部 1107の繊維軸の方向は—60度(+ 120度)であり、細長板状部 110 8および枠部 1104のそれぞれの繊維軸の方向は、 0度(180度)であり、細長板状部 1109の繊維軸の方向は、 + 60度( + 240度)であり、枝部 1105の繊維軸の方向は —30度(150度)である。前縁部 1102およびァクチユエータ接合部 1106は、繊維軸 の方向が— 60度(+ 120度)、 0度(180度)、および + 60度(240度)である 3つの C FRP層が重ねられることによって形成されている。  [0081] The leading edge portion 1102 and the actuator junction portion 1106 have a three-layer structure of CFRP layers having a thickness of 20 µm. Further, the frame portion 1104, the branch portion 1105, the elongated plate-like portions 1107, 1108, and 1109 have a single layer structure of a CFRP layer. If the positive direction of the X axis shown in FIG. 3 is 0 degree, the direction of the fiber axis of the elongated plate-like portion 1107 is −60 degrees (+120 degrees), and the elongated plate-like portion 1108 and the frame portion 1104 The direction of each fiber axis is 0 degrees (180 degrees), the direction of the fiber axis of the elongated plate-like part 1109 is +60 degrees (+240 degrees), and the direction of the fiber axis of the branch part 1105 is -30 degrees (150 degrees). The leading edge 1102 and the actuator joint 1106 are stacked with three C FRP layers with fiber axis orientations of -60 degrees (+120 degrees), 0 degrees (180 degrees), and +60 degrees (240 degrees) It is formed by.
[0082] 前縁部 1102の主要な変形は、羽根部 110の長手方向に平行な伸縮であるため、 この方向と CFRP層の繊維軸とがー致していることが望ましレ、。また、ァクチユエータ 接合部 1106には複数の方向に力が加えられ、羽ばたき運動に応じてこれらの力の 方向が変化すると考えられる。したがって、あらゆる方向に極力均等な剛性を有する ように、異なる方向の繊維軸を有する多数の CFRP層を積層することによって形成さ れていることが望ましい。なお、前縁部 1102およびァクチユエータ接合部 1106は、 他の部分より剛性が高くなつている。これらの要件を満たす羽根部の製造方法は後 述される。 [0082] Since the main deformation of the leading edge portion 1102 is expansion and contraction parallel to the longitudinal direction of the blade portion 110, it is desirable that this direction and the fiber axis of the CFRP layer match. Further, it is considered that force is applied to the actuator joint 1106 in a plurality of directions, and the direction of these forces changes according to the flapping motion. Therefore, it has as uniform rigidity as possible in all directions As described above, it is desirable to form by laminating a large number of CFRP layers having fiber axes in different directions. The leading edge portion 1102 and the actuator joint portion 1106 are more rigid than the other portions. A method of manufacturing a blade that satisfies these requirements will be described later.
[0083] また、ァクチユエータ接合部 1106、前縁部 1102、枠部 1104、および枝部 1105に 囲まれるように羽面部 1103が設けられている。羽面部 1103は、ァラミドフイノレム 111 4力 なり、図 4の紙面の奥行き方向に延びている。また、ァクチユエータ接合部 110 6は、羽根部 110の根元に設けられ、ァクチユエータに接合されており、その長さは 1 Ommである。  Further, a wing surface portion 1103 is provided so as to be surrounded by the actuator joint portion 1106, the front edge portion 1102, the frame portion 1104, and the branch portion 1105. The wing surface portion 1103 has an aramid Finolem 111 4 force and extends in the depth direction of the paper surface of FIG. Further, the actuator joint 1106 is provided at the base of the blade 110 and is joined to the actuator, and its length is 1 Omm.
[0084] また、図 5〜図 7に示すように、複数の細長板状部 1107のそれぞれは同一幅であり 、複数の細長板状部 1107同士は、互いに同一ピッチでかつ平行に設けられている 。また、複数の細長板状部 1108のそれぞれは同一幅であり、複数の細長板状部 11 08同士は、互いに同一ピッチでかつ平行に設けられている。さらに、複数の細長板 状部 1109のそれぞれは同一幅であり、複数の細長板状部 1109同士は、互いに同 一ピッチでかつ平行に設けられてレ、る。  Further, as shown in FIGS. 5 to 7, each of the plurality of elongated plate-like portions 1107 has the same width, and the plurality of elongated plate-like portions 1107 are provided at the same pitch and in parallel with each other. Yes. Each of the plurality of elongated plate-like portions 1108 has the same width, and the plurality of elongated plate-like portions 1108 are provided at the same pitch and in parallel with each other. Further, each of the plurality of elongated plate-like portions 1109 has the same width, and the plurality of elongated plate-like portions 1109 are provided at the same pitch and in parallel with each other.
[0085] なお、本実施の形態では、説明の簡便のため、同一層の複数の細長板状部は、同 一ピッチかつ平行であるものとした力 S、たとえば、剛性分布を意図的に変更する場合 には、前述のものに限定されなレ、。たとえば、先端側に比較して、根元側のピッチが 小さくなつており、それにより、剛性が高められている羽根部 110が用いられてもよい  [0085] In the present embodiment, for the sake of simplicity of explanation, the force S, for example, the stiffness distribution, is intentionally changed for the plurality of elongated plate-like portions in the same layer to be the same pitch and parallel. If you want, you are not limited to the above. For example, the blade portion 110 may be used in which the pitch on the base side is smaller than that on the tip side, thereby increasing the rigidity.
[0086] <前縁部> [0086] <Front edge>
前縁部 1102は、図 4に示されるように、羽根部 110の長手方向に沿って延びる溝 構造、すなわちコルゲーシヨンと呼ばれる凹凸形状を有している。そのため、前縁部 1 102においては、長手方向を含む面内の曲げ変形に対する剛性力 長手方向を回 転中心軸とする曲げ変形に対する剛性に比較して、高くなつている。なお、この前縁 部 1102の凹凸形状は、プリプレダと呼ばれる CFRP層の原材料のシートを、この凹 凸形状に対応する金型に密着させた状態で加熱することによって容易に成形され得 る。また、前縁部 1102には荷重が大きくかかる。そのため、前縁部 1102は、細長板 状部が設けられていない構造、すなわち隙間がない密実構造であるので、羽面部 11 03より剛性が高くなつている。さらに、前縁部 1102は、根元に近づくにしたがって、 累積的に荷重が増加するため、根元が先端に比べ太くなつている。根元部分での前 縁部 1102の幅および高さは約 2mmであり、先端部分での前縁部 1102の幅および 高さは約 lmmである。ただし、図の記述精度の制約から、図 4〜図 7においては、根 元部分における前縁部 1102の幅と先端部分における前縁部 1102の幅とは同じ幅 で描かれている。 As shown in FIG. 4, the front edge portion 1102 has a groove structure extending along the longitudinal direction of the blade portion 110, that is, an uneven shape called corrugation. Therefore, the rigidity of the leading edge portion 1102 with respect to in-plane bending deformation including the longitudinal direction is higher than the rigidity against bending deformation with the longitudinal direction as the rotation center axis. The uneven shape of the front edge portion 1102 can be easily formed by heating a sheet of a CFRP layer material called a pre-predator in a state of being in close contact with a mold corresponding to the uneven shape. Further, a large load is applied to the leading edge portion 1102. Therefore, the front edge 1102 is an elongated plate Since the structure is not provided with a shape part, that is, a solid structure with no gap, the rigidity is higher than that of the blade part 1103. Furthermore, since the load increases cumulatively as the front edge portion 1102 approaches the base, the base is thicker than the tip. The width and height of the leading edge 1102 at the root portion is about 2 mm, and the width and height of the leading edge 1102 at the tip portion is about 1 mm. However, due to the limitation of the description accuracy of the figure, in FIGS. 4 to 7, the width of the front edge portion 1102 at the root portion and the width of the front edge portion 1102 at the tip portion are drawn with the same width.
[0087] <羽面部 > [0087] <Feather>
羽面部 1103は、図 4〜図 7に示されるように、 CFRP層の細長板状部 1107、 1108 および 1109、およびァラミドフィルム 1114によって構成されている。羽根部 110と同 一の外形を有するァラミドフィルム 1114が、 CFRP層の細長板状部によって挟まれ ている。  As shown in FIGS. 4 to 7, the wing surface portion 1103 is constituted by elongated plate-like portions 1107, 1108 and 1109 of the CFRP layer, and an aramid film 1114. An aramid film 1114 having the same outer shape as the blade portion 110 is sandwiched between elongated plate-like portions of the CFRP layer.
[0088] 本実施の形態においては、ァラミドフィルム 1114の耐熱温度が CFRP層の成形温 度よりも高ぐかつ CFRP層の成形工程において、プリプレダとァラミドフィルムとを接 触させておき、加圧および加熱処理を行なうことで、プリプレダに含まれる樹脂成分 によって CFRP層とァラミドフィルムとを接着させることが可能である。したがって、 CF RP層によって構成された前縁部 1102、枠部 1104、枝部 1105、ァクチユエータ接 合部 1106、糸田長板状部 1107、 1108、 1109ならびにァラミドフイノレム 1114を含む 原材料を上述の金型上で焼結することによって、簡単に羽面部 1103を製造すること が可能である。  [0088] In the present embodiment, the heat resistance temperature of the aramid film 1114 is higher than the molding temperature of the CFRP layer, and in the CFRP layer molding process, the pre-preda and the aramid film are brought into contact with each other. By performing pressure and heat treatment, it is possible to bond the CFRP layer and the aramid film with the resin component contained in the pre-preda. Therefore, the raw materials including the front edge portion 1102, the frame portion 1104, the branch portion 1105, the actuator joint portion 1106, the long-field plate portion 1107, 1108, 1109 and the aramid phenolic 1114 formed by the CF RP layer are described above. It is possible to easily manufacture the wing face portion 1103 by sintering on a metal mold.
[0089] 羽面部 1103の細長板状部 1107、 1108、および 1109は、それらが延びる方向が 互いに 60度だけずれた状態で重ねられている。そのため、羽面部 1103の表面に垂 直な方向から見ると、細長板状部 1107、 1108、および 1109によって、正三角形の 枠、すなわちトラスが形成されているように見える。また、細長板状部 1107、 1108、 および 1109のそれぞれは、細長い長方形の輪郭を有しており、そのうち 2つの長辺 は、繊維軸に平行に延びている。これは、強度が高い CFRPの長手方向と、上記トラ ス構造の各ビームの力の力かる方向とを一致させ、一軸異方性材料である CFRPの 強度特性を最大限活用するための構成である。ただし、 2つの長辺の一方の長辺の みが繊維軸に平行に延びていれば、繊維の強度をある程度有効に利用することが 可能である。なお、上記ビームが長方形ではない場合には、応力解析などの手法を 用いて、そのビームの形状に最適な繊維軸方向を決定する必要がある。 [0089] The elongated plate-like portions 1107, 1108, and 1109 of the wing surface portion 1103 are stacked in a state where the extending directions thereof are shifted from each other by 60 degrees. Therefore, when viewed from the direction perpendicular to the surface of the wing surface portion 1103, it appears that the elongated plate-like portions 1107, 1108, and 1109 form a regular triangular frame, that is, a truss. Each of the elongated plate-like portions 1107, 1108, and 1109 has an elongated rectangular outline, and two long sides thereof extend parallel to the fiber axis. This is a configuration that maximizes the strength characteristics of CFRP, which is a uniaxial anisotropic material, by aligning the longitudinal direction of CFRP, which has high strength, with the direction of the force of each beam in the above-mentioned truss structure. is there. However, one of the two long sides If the fiber extends parallel to the fiber axis, the strength of the fiber can be used to some extent effectively. If the beam is not rectangular, it is necessary to determine the optimum fiber axis direction for the shape of the beam using a technique such as stress analysis.
[0090] また、本実施の形態では、細長板状部 1107、 1108、および 1109のそれぞれの曲 げ剛性は、前縁部 1102の 1Z8であるものとする。一般に、曲げ剛性は、断面二次モ 一メントに比例する。つまり、曲げ剛性は、(幅:矩形の短辺の長さ) X (厚さの 3乗)に 比例する。 Further, in the present embodiment, it is assumed that the bending rigidity of each of the elongated plate-like portions 1107, 1108, and 1109 is 1Z8 of the front edge portion 1102. In general, the bending stiffness is proportional to the cross-sectional secondary moment. In other words, the bending stiffness is proportional to (width: the length of the short side of the rectangle) X (thickness cubed).
[0091] ここで、細長板状部 1107、 1108、および 1109のそれぞれの厚さが一定であり、細 長板状部 1107の幅が細長板状部 1107同士の中心軸間の距離(以下、これを「ピッ チ」という。)の 1/a倍であり、細長板状部 1108の幅が細長板状部 1108同士のピッ チの 1/a倍であり、かつ、細長板状部 1109の幅が細長板状部 1109同士のピッチ の 1/a倍であると仮定する。この仮定の下では、細長板状部の幅力 /a倍になれ ば、羽面部 1103の曲げ剛性も 1/a倍になる。したがって、本実施の形態において は、細長板状部 1107、 1108、および 1109のそれぞれの幅を細長板状部 1107同 士、細長板状部 1108同士、および細長板状部 1 109同士のそれぞれのピッチの 1/ 8倍にすることによって、前縁部 1102の曲げ剛性の 1/8倍の曲げ剛性を有する羽 面部 1103が実現されている。つまり、羽面部 1103の厚さ、すなわち細長板状部の 積層数を変化させることなぐ細長板状部 1107、 1108、および 1109のそれぞれの 幅のみを変更することによって、所望の曲げ剛性分布を有する羽根部 110が形成さ れている。細長板状部の積層数は、自然数にしかならず、連続的に変化し得るもの ではなレ、ため、細長板状部の積層数を変化させるだけでは、羽根部の曲げ剛性の分 布が不連続になってしまう。し力しながら、上記細長板状部の幅とピッチとの比は、連 続的に変化し得るものであるため、上記曲げ剛性分布を連続的に変更することによ つて、所望の曲げ剛性分布を得ることができる。  Here, the thickness of each of the elongated plate-like portions 1107, 1108, and 1109 is constant, and the width of the elongated plate-like portion 1107 is the distance between the central axes of the elongated plate-like portions 1107 (hereinafter, This is 1 / a times the pitch, and the width of the elongated plate-like portion 1108 is 1 / a times the pitch of the elongated plate-like portions 1108, and the width of the elongated plate-like portion 1109 is Assume that the width is 1 / a times the pitch of the elongated plate-like portions 1109. Under this assumption, if the width of the elongated plate-like part is increased by a times, the bending rigidity of the wing face part 1103 will also be increased by 1 / a. Accordingly, in the present embodiment, the width of each of the elongated plate-like portions 1107, 1108, and 1109 is set to be the same as that of the elongated plate-like portion 1107, each of the elongated plate-like portions 1108, and each of the elongated plate-like portions 1109. By setting the pitch to 1/8 times, the wing face portion 1103 having a bending stiffness 1/8 times that of the leading edge portion 1102 is realized. That is, by changing only the width of each of the elongated plate-like portions 1107, 1108, and 1109 without changing the thickness of the wing surface portion 1103, that is, the number of laminated elongated plate-like portions, the desired bending rigidity distribution is obtained. A blade portion 110 is formed. The number of laminated thin plate-like parts is only a natural number and cannot be continuously changed.Therefore, simply changing the number of laminated thin plate-like parts makes the distribution of the bending rigidity of the blade part discontinuous. Become. However, since the ratio between the width and the pitch of the elongated plate-like portion can be continuously changed, the desired bending rigidity can be obtained by continuously changing the bending rigidity distribution. Distribution can be obtained.
[0092] なお、本実施の形態の羽根部 110の構造によれば、細長板状部 1107の幅と細長 板状部 1107同士のピッチとの比、細長板状部 1108の幅と細長板状部 1108同士の ピッチとの比、および細長板状部 1109の幅と細長板状部 1109同士のピッチとの比 を互いに異ならせることによって、羽面部 1103の曲げ剛性が異方性を有するように することが可能である。たとえば、羽根部 110の長手方向を含む面内の曲げ変形に 対して高い剛性を有する羽根部 110を製造する場合には、細長板状部 1108の幅を 大きくし、細長板状部 1108同士のピッチを小さくすればよい。 Note that, according to the structure of the blade portion 110 of the present embodiment, the ratio between the width of the elongated plate-like portion 1107 and the pitch between the elongated plate-like portions 1107, the width of the elongated plate-like portion 1108 and the elongated plate-like shape. By making the ratio of the pitch between the portions 1108 and the width of the elongated plate-like portion 1109 different from the pitch between the elongated plate-like portions 1109, the bending rigidity of the wing surface portion 1103 has anisotropy. Is possible. For example, when manufacturing the blade portion 110 having high rigidity against in-plane bending deformation including the longitudinal direction of the blade portion 110, the width of the elongated plate-like portion 1108 is increased, and the width of the elongated plate-like portion 1108 is increased. What is necessary is just to make a pitch small.
[0093] 一方、 CFRP層が 3つ積層された積層構造の一部をトラスが形成されるように切り抜 く手法が用いられた場合には、各トラスの三辺に 3つの CFRP層が積層されている。 この手法により形成された羽面部の質量は、トラスが形成されていない羽面部 1103 と同一面積の 3つの CFRP層の積層構造の質量の 3Za倍(aは前述の値)となる。こ の場合、 3つの CFRP層のうちの 1つの層の繊維軸を含む面内の曲げ変形モードに おいては、その 1つの CFRP層以外の 2つの CFRP層は、樹脂程度の剛性しか有し ていないため、不要である。すなわち、前述の羽根部 110は、本段落にて説明されて レ、るような切り抜きによって形成された羽根部の約 1/3の質量で、その羽根部とほぼ 同一の剛性を有する。 (具体的には下記の <羽質量 >の項目に羽根部の質量およ び剛性の数値が記載されている。 ) [0093] On the other hand, when a method of cutting out a part of a laminated structure in which three CFRP layers are laminated so that a truss is formed, three CFRP layers are laminated on three sides of each truss. Has been. The mass of the wing surface formed by this method is 3 Za times the mass of the laminated structure of three CFRP layers having the same area as the wing surface portion 1103 where the truss is not formed (a is the value described above). In this case, in the in-plane bending deformation mode including the fiber axis of one of the three CFRP layers, the two CFRP layers other than the one CFRP layer have only the rigidity of the resin. Is not necessary. That is, the above-described blade portion 110 has approximately the same rigidity as the blade portion with a mass of about 1/3 that of the blade portion formed by the cutout described in this paragraph. (Specifically, the values of the mass and rigidity of the blade are listed in the <Flour mass> item below.)
<枠部 >  <Frame>
羽面部 1103を構成するァラミドフイノレム 1114は、図 4に示されるように、ァクチユエ ータ接合部 1106、前縁部 1102、および枠部 1104の間に張られている。そのため、 ァラミドフィルム 1114の端部の破損が防止されている。本実施の形態では、枠部 11 04の幅は約 0. 5mmである。なお、枠部 1104は、図 4に示されるように、羽面部 110 3を取り囲む形状であるため、それが延びる方向は位置によって異なる。枠部 1104 の繊維軸の方向は、それの延びる方向に一致している。  As shown in FIG. 4, the aramid phenolic 1114 constituting the wing surface portion 1103 is stretched between the actuator joint portion 1106, the front edge portion 1102, and the frame portion 1104. Therefore, the end portion of the aramid film 1114 is prevented from being damaged. In the present embodiment, the width of the frame part 1104 is about 0.5 mm. As shown in FIG. 4, the frame portion 1104 has a shape surrounding the wing surface portion 1103, and therefore the extending direction thereof differs depending on the position. The direction of the fiber axis of the frame 1104 coincides with the extending direction thereof.
[0094] <枝部> [0094] <branch>
羽根部 110が大きくなつた場合には、羽根部 110の先端部の回転半径も大きくなる 。この場合、流体に対する相対速度が大きくなるため、羽根部 110の先端部には大き な流体力が生じる。羽根部 110の先端部に生じる流体力が大きくなつても、羽根部 1 10の先端部の制御性を維持する必要がある。そのため、前縁部 1102に接続され、 前縁部 1102から斜め方向に延びる枝部 1105が設けられている。枝部 1105の幅は 約 0. 9mmである。枝部 1105は、 X軸方向の羽根部 110の先端側を向く方向を 0° とした場合に、 30° の方向に延びるように形成されている。 [0095] なお、枝部 1105と X軸との間の角度および羽面部 1103に要求される剛性によつ ては、前述の細長板状部 1107とは異なる細長板状部を有する CFRP層に枝部 110 5が設けられていてもよレ、。また、 CFRP層とは別の材料を用いて形成された枝部 11 05が CFRP層同士の間に挟み込まれた構造の羽面部 1103が用いられてもよい。 When the blade portion 110 becomes large, the turning radius of the tip portion of the blade portion 110 also increases. In this case, since the relative speed with respect to the fluid increases, a large fluid force is generated at the tip of the blade portion 110. Even if the fluid force generated at the tip of the blade 110 becomes large, the controllability of the tip of the blade 110 needs to be maintained. Therefore, a branch portion 1105 connected to the front edge portion 1102 and extending obliquely from the front edge portion 1102 is provided. The width of the branch 1105 is about 0.9 mm. The branch portion 1105 is formed to extend in the direction of 30 ° when the direction facing the tip side of the blade portion 110 in the X-axis direction is 0 °. [0095] Depending on the angle between the branch portion 1105 and the X-axis and the rigidity required for the blade surface portion 1103, the CFRP layer having an elongated plate-like portion different from the above-described elongated plate-like portion 1107 is used. A branch 110 5 may be provided. In addition, a wing surface portion 1103 having a structure in which a branch portion 1105 formed using a material different from the CFRP layer is sandwiched between the CFRP layers may be used.
[0096] <ァクチユエータ接合部 >  [0096] <actuator joint>
ァクチユエータ接合部 1106は、実際には、羽根部 110を駆動するァクチユエータと の適合性に応じて、その形状が決定される。本実施の形態のァクチユエータ接合部 1 106は、図 4に示される形状であるものとする。また、羽ばたき運動により生じる流体 力に起因する変形を防止するため、ァクチユエータ接合部 1106の材料としては、細 長板状部を有しなレ、、すなわち隙間がない密実な構造の CFRP層が用いられる。さ らに、ァクチユエータ接合部 1106の前方端には溝構造が設けられている。このァク チユエータ接合部 1106の溝構造と前縁部 1102の溝構造とは連続するように設けら れている。  The shape of the actuator joint 1106 is actually determined according to the compatibility with the actuator that drives the blade 110. It is assumed that the actuator joint portion 1 106 of the present embodiment has a shape shown in FIG. In addition, in order to prevent deformation due to fluid force generated by flapping motion, the actuator joint 1106 is made of a CFRP layer that does not have an elongated plate-like portion, that is, has a solid structure with no gap. Used. In addition, a groove structure is provided at the front end of the actuator joint 1106. The groove structure of the actuator joint 1106 and the groove structure of the leading edge 1102 are provided so as to be continuous.
[0097] <羽質量 >  [0097] <Wing mass>
CFRPの比重が 1. 6g/cm3であるものとして、表 1に前述の羽根部 110の各部位 の質量が示されている。表 1に示されるように、羽根部 110の質量は、約 26. 5mgで ある。また、ァクチユエータ接合部 1106の質量は約 10. 8mgである。 Assuming that the specific gravity of CFRP is 1.6 g / cm 3 , Table 1 shows the mass of each part of the aforementioned blade 110. As shown in Table 1, the mass of the blade 110 is about 26.5 mg. The mass of the actuator joint 1106 is about 10.8 mg.
[0098] [表 1]  [0098] [Table 1]
Figure imgf000027_0001
Figure imgf000027_0001
[0099] 一方、 CFRP層が 3つ積層された積層構造をトラス形状が形成されるように切り抜く 手法が用いられた比較例の羽根部の質量は約 48mgである。  [0099] On the other hand, the mass of the blade portion of the comparative example using the method of cutting out a laminated structure in which three CFRP layers are laminated so as to form a truss shape is about 48 mg.
[0100] (超音波モータ) 次に、図 8〜図 14Bを用いて、本発明のァクチユエータとしての上部超音波モータ 120および下部超音波モータ 130を説明する。 [0100] (Ultrasonic motor) Next, the upper ultrasonic motor 120 and the lower ultrasonic motor 130 as the actuator of the present invention will be described with reference to FIGS. 8 to 14B.
[0101] <全体構成 >  [0101] <Overall configuration>
まず、上部超音波モータ 120および下部超音波モータ 130の構成を説明する。  First, the configuration of the upper ultrasonic motor 120 and the lower ultrasonic motor 130 will be described.
[0102] 図 8に示されるように、上部超音波モータ 120は、上部超音波振動子 121と、これに よって駆動される上部ロータ 122とを有している。また、上部ロータ 122は、上部ベア リング 123を介して、ロータシャフト 124に、ロータシャフト 124の軸周りにのみ回転可 能に設けられている。ロータシャフト 124は、本体 101に固定されている。上部ロータ 122には、上部磁化パターン 125が円弧状に記されている。上部磁化パターン 125 は、上部磁気エンコーダ 126で読み取られる。上部超音波振動子 121においては、 図 14Aに示すように、支持部 1214が支持シャフト 127に固定され、牽引部 1224が 牽引ゴム 129により牽引されている。また、上部超音波振動子 121を駆動する電力は フィルム基板 128を経由して供給される。  As shown in FIG. 8, the upper ultrasonic motor 120 has an upper ultrasonic transducer 121 and an upper rotor 122 driven by the upper ultrasonic transducer 121. Further, the upper rotor 122 is provided on the rotor shaft 124 via the upper bearing 123 so as to be rotatable only around the axis of the rotor shaft 124. The rotor shaft 124 is fixed to the main body 101. In the upper rotor 122, an upper magnetization pattern 125 is written in an arc shape. The upper magnetization pattern 125 is read by the upper magnetic encoder 126. In the upper ultrasonic transducer 121, as shown in FIG. 14A, the support portion 1214 is fixed to the support shaft 127, and the traction portion 1224 is pulled by the traction rubber 129. Further, power for driving the upper ultrasonic transducer 121 is supplied via the film substrate 128.
[0103] 下部超音波モータ 130は、上部超音波モータ 120と上下方向において鏡面対称の 構造である。すなわち、下部超音波モータ 130においては、下部超音波振動子 131 が下部ロータ 132を回転させる。下部ロータ 132は、図示されない下部ベアリングが 介在した状態で、ロータシャフト 124に、ロータシャフト 124の軸周りにのみ回転可能 に設けられている。下部ロータ 132には、図示されない下部磁化パターンが円弧状 に記されている。下部磁化パターンは、下部磁気エンコーダ 136で読み取られる。  The lower ultrasonic motor 130 has a mirror-symmetric structure with the upper ultrasonic motor 120 in the vertical direction. That is, in the lower ultrasonic motor 130, the lower ultrasonic transducer 131 rotates the lower rotor 132. The lower rotor 132 is provided on the rotor shaft 124 so as to be rotatable only about the axis of the rotor shaft 124 with a lower bearing (not shown) interposed therebetween. The lower rotor 132 has a lower magnetization pattern (not shown) written in an arc shape. The lower magnetization pattern is read by the lower magnetic encoder 136.
[0104] 上部および下部超音波モータ 120および 130は、上下方向において鏡面対称に 設けられていること以外においては、全く同様の構成を有しているため、以降におい ては、上部超音波モータ 120の詳細構造のみの説明を行なう。  [0104] The upper and lower ultrasonic motors 120 and 130 have exactly the same configuration except that they are provided mirror-symmetrically in the vertical direction. Only the detailed structure will be described.
[0105] <駆動原理 >  [0105] <Driving principle>
次に、図 9〜図 14Bを用いて、上部超音波モータ 120の駆動原理を説明する。  Next, the principle of driving the upper ultrasonic motor 120 will be described with reference to FIGS. 9 to 14B.
[0106] 上部超音波振動子 121は、振動板 1211、表面ピエゾ 1212および裏面ピエゾ 121 3力らなる。振動板 1211は、厚さ 0. 2mmのステンレスで作製され、幅 2mmかつ長さ 9mmの矩形部と、矩形部の長手方向の中央部から外方に突出する支持部 1214と を有している。振動板 1211は、表面ピエゾ 1212および裏面ピエゾ 1213によって挟 まれている。表面ピエゾ 1212および裏面ピエゾ 1213は、それぞれ、幅 2mm、長さ 8 mm、および厚さ 0. 2mmの短冊形状を有し、厚み方向に分極するピエゾ焼結体から なる。 The upper ultrasonic transducer 121 includes a diaphragm 1211, a front surface piezo 1212, and a back surface piezo 1213 force. The diaphragm 1211 is made of stainless steel having a thickness of 0.2 mm, and includes a rectangular portion having a width of 2 mm and a length of 9 mm, and a support portion 1214 that protrudes outward from a central portion in the longitudinal direction of the rectangular portion. . The diaphragm 1211 is sandwiched between the front surface piezo 1212 and the back surface piezo 1213. It is rare. The front surface piezo 1212 and the back surface piezo 1213 each have a strip shape with a width of 2 mm, a length of 8 mm, and a thickness of 0.2 mm, and are formed of a piezo sintered body that is polarized in the thickness direction.
[0107] 表面ピエゾ 1212には表面電極 1216が接合され、裏面ピエゾ 1213には裏面電極  [0107] A front electrode 1216 is bonded to the front surface piezo 1212, and a rear surface electrode is connected to the back surface piezo 1213.
1217が接合される。表面電極 1216に電圧を印加すると、上部超音波振動子 121に おいて、図 10に示されるような節を 3つ有する、即ち 3次のたわみ振動モードが励起 される。また、裏面電極 1217に電圧を印加すると、図 11に示されるような、縦 (伸縮) の振動モードが励起される。本実施の形態における上部超音波振動子 121におい ては、 2つの振動についての共振モードの共振周波数は、いずれも 250kHzであり、 それらは互いに一致している。ここで、これらの共振モードの振動の位相を ± 90° 異 ならせることによって、振動板 1211の頂点は図 12および図 13に示される 2種類の楕 円運動を行なう。 2種類の楕円運動は、正方向に回転する楕円運動と、逆方向に回 転する楕円運動である。また、振動板 1211の頂点にはセラミックからなる接触部 121 5が設けられている。接触部 1215は、前述の楕円運動に応じて、摩擦力によって、 上部ロータ 122をロータシャフト 124の軸周りに回転させる。このとき、正方向の回転 および逆方向の回転のいずれかが選択される。  1217 is joined. When a voltage is applied to the surface electrode 1216, the upper ultrasonic transducer 121 has three nodes as shown in FIG. 10, that is, a third-order flexural vibration mode is excited. Further, when a voltage is applied to the back electrode 1217, a longitudinal (stretching) vibration mode as shown in FIG. 11 is excited. In the upper ultrasonic transducer 121 in the present embodiment, the resonance frequencies of the resonance modes for the two vibrations are both 250 kHz, and they coincide with each other. Here, by changing the phase of vibration of these resonance modes by ± 90 °, the vertex of the diaphragm 1211 performs two kinds of elliptical motions shown in FIGS. The two types of elliptical motion are elliptical motion that rotates in the forward direction and elliptical motion that rotates in the reverse direction. A contact portion 1215 made of ceramic is provided at the apex of the diaphragm 1211. The contact portion 1215 rotates the upper rotor 122 around the axis of the rotor shaft 124 by frictional force according to the above-described elliptical motion. At this time, either forward rotation or reverse rotation is selected.
[0108] 図 12および図 13は、表面電極 1216に与えられる電位を φ Aとし、裏面電極 1217 に与えられる電位を φ Bとして、 φ Aおよび φ Bを、それぞれ、 cos (2 π ft)および sin (2 π ft)に振幅を掛けた関数で表した場合における接触部 1215の回転方向を示し ている。なお、説明の簡便のため、表面電極 1216および裏面電極 1217のそれぞれ に与えられる電位を三角関数によって表わした力 それらの電位の位相が ± 90° ず れているのであれば、矩形波等によって表わされる電位が両電極に与えられてもよ レ、。なお、上部ロータ 122および下部ロータ 132のそれぞれは、扇型の輪郭を有し、 所定の回転角の範囲内での回転往復運動を行なう。そのため、軽量化のためには、 図 14Bに示されるように、不要な部分が削除された、その外形が中心角 120° の扇 形のフレーム構造を有する上部ロータ 122および下部ロータ 132が用いられることが 望ましい。輪郭が扇型であるロータが用いられれば、中心軸まわりに回動(回転往復 運動)するロータの占有率を最も効果的に低減することができる。なお、上部ロータ 1 22および下部ロータ 132は、それぞれ、扇型の輪郭に沿ったフレーム部を有してい る。 12 and 13 show that the potential applied to the front electrode 1216 is φA, the potential applied to the back electrode 1217 is φB, and φA and φB are cos (2π ft) and The rotation direction of the contact portion 1215 when expressed as a function of sin (2 π ft) multiplied by the amplitude is shown. For simplicity of explanation, the potential applied to each of the front electrode 1216 and the back electrode 1217 is represented by a trigonometric function. If the phase of these potentials is shifted by ± 90 °, it is represented by a rectangular wave or the like. The potential to be applied may be applied to both electrodes. Note that each of the upper rotor 122 and the lower rotor 132 has a fan-shaped outline and performs a reciprocating rotary motion within a range of a predetermined rotation angle. Therefore, in order to reduce the weight, as shown in FIG. 14B, the upper rotor 122 and the lower rotor 132 having a fan-shaped frame structure with a central angle of 120 °, in which unnecessary portions are removed, are used. It is desirable. If a rotor having a fan-shaped contour is used, the occupancy ratio of the rotor rotating (rotating reciprocating motion) around the central axis can be most effectively reduced. Upper rotor 1 Each of 22 and the lower rotor 132 has a frame portion along a fan-shaped outline.
[0109] なお、前述の各部位のサイズおよび振動板の共振周波数などの数値は、一例であ り、浮上のための要件が満足されるのであれば、前述の値に限定されなレ、。この浮上 のための要件は、後述の浮上可能性の項において述べられている。  [0109] Note that the numerical values such as the size of each part and the resonance frequency of the diaphragm described above are examples, and are not limited to the above values as long as the requirements for levitation are satisfied. The requirements for this ascent are stated in the Ascentability section below.
[0110] また、上部ロータ 122および下部ロータ 132は、図 14Bに示されるように、必要な強 度が確保される範囲内において、軽量ィ匕のための中空構造を有していてもよレ、。つ まり、上部ロータ 122および下部ロータ 123のそれぞれ力 半径 120° の扇型の外周 に沿って延びるフレームを有する構造からなっていてもよい。  [0110] Further, as shown in FIG. 14B, the upper rotor 122 and the lower rotor 132 may have a hollow structure for light weight as long as necessary strength is secured. ,. In other words, each of the upper rotor 122 and the lower rotor 123 may have a structure having a frame extending along a fan-shaped outer periphery having a force radius of 120 °.
[0111] 更に、上部ロータ 122および下部ロータ 132に、後述する上部ローラ 122の回転角 θ 1—下部ロータ 132の回転角 Θ 2を所定の範囲内の値に制限するためのリミッター 12322a,リミッター 12322b、およびリミッター 12322c力 S設けられてもレヽてもよレヽ。リ ミッタ一 12322bは、扇型のフレーム構造の下部ロータ 132の内周面に設けられ、リミ ッター 12322aおよびリミッター 12322cは、扇型のフレーム構造の上部ロータ 122の 内周面に設けられている。リミッター 12322bは、円弧状の軌跡において、リミッター 1 2322aとリミッター 12322cとの間に位置付けられてレ、る。これによれば、リミッター 12 322bの移動範囲は、リミッター 12322aおよびリミッター 12322cによって制限される 。したがって、後述する羽の捻り角 βが一定の範囲内の値に制限される。そのため、 後述する数式(7)において、解が物理的に 1つに定まる。その結果、羽根部の動作 が安定する。  Further, the upper rotor 122 and the lower rotor 132 are provided with limiters 12322a and 12322b for limiting the rotation angle θ 1 of the upper roller 122, which will be described later, to the rotation angle Θ 2 of the lower rotor 132 within a predetermined range. , And limiter 12322c force S can be provided or reduced. The limiter 12322b is provided on the inner peripheral surface of the lower rotor 132 having a fan-shaped frame structure, and the limiter 12322a and the limiter 12322c are provided on the inner peripheral surface of the upper rotor 122 having a fan-shaped frame structure. The limiter 12322b is positioned between the limiter 1 2322a and the limiter 12322c in the arc-shaped locus. According to this, the movement range of the limiter 12322b is limited by the limiter 12322a and the limiter 12322c. Therefore, the wing twist angle β described later is limited to a value within a certain range. Therefore, in Equation (7), which will be described later, there is physically one solution. As a result, the operation of the blade is stabilized.
[0112] また、上部および下部ロータ 122よび 132が各超音波振動子の駆動力をロス無く羽 根部に伝達することが望ましい。そのため、ロータの回動抵抗は極力小さいことが望 ましレ、。さらに、上部ロータ 122と下部ロータ 132との衝突を避けるために、これらの口 ータは中心軸まわりにのみ回転することができる構造を有していることが望ましい。し たがって、本実施の形態では、ロータと回転中心軸との接触部におけるベアリングと して、ピボットと呼ばれる一種のボールベアリングが用いられている。これによつて、前 述のように、ロータ同士の接触が防止されている。なお、上記ロスが超音波振動子の 駆動力に比べ十分小さいのであれば、擦動タイプのベアリング、たとえばテフロン(登 録商標)ベアリングなどが使用されてもよい。 [0112] Further, it is desirable that the upper and lower rotors 122 and 132 transmit the driving force of each ultrasonic transducer to the wing portion without loss. Therefore, it is desirable that the rotational resistance of the rotor be as small as possible. Further, in order to avoid collision between the upper rotor 122 and the lower rotor 132, it is desirable that these apertures have a structure that can rotate only around the central axis. Therefore, in this embodiment, a kind of ball bearing called a pivot is used as a bearing in the contact portion between the rotor and the rotation center shaft. This prevents contact between the rotors as described above. If the loss is sufficiently smaller than the driving force of the ultrasonic vibrator, a friction type bearing such as Teflon (Registered trademark) bearings may be used.
[0113] なお、後述される後方切り返し時において、羽根部が水平状態になると、すなわち 、後述される /3力 80° に達すると、切り返し後の β力 SOく βぐ πとなるカ または、 πぐ β < 2 πとなる力は、不定となる。前者の場合には、羽根部が裏返り、迎え角が 負となることになり、揚力が得られず、浮上移動装置は飛行することができない。この ため、前述の 2つのリミッターにより、 β力 80° に達しないように、羽根部の動作が 制限されている。さらに、本発明者らの実験によると、羽根部にかかる流体力がヒンジ を押し上げによって弾性変形させることにより、厳密に β力 S 180° に達しなくても、羽 根部が裏返る現象が観察されている。このため、前述の 2つのリミッタ一は、羽ばたき 飛行に支障をきたさない範囲内で、 力 180° よりもある程度小さい値になるように 設けられてレ、ることが望ましレ、。  [0113] It should be noted that at the time of backward turning described later, when the vane portion is in a horizontal state, that is, when the / 3 force reaches 80 ° described later, the β force SO after turning back becomes equal to π, or The force that satisfies π and β <2 π is indefinite. In the former case, the blades are turned over, the angle of attack is negative, lift is not obtained, and the rising and moving device cannot fly. For this reason, the operation of the blade is limited by the two limiters described above so that the β force does not reach 80 °. Furthermore, according to the experiments by the present inventors, a phenomenon is observed in which the blade root part is turned over even if the β force S does not reach 180 ° strictly because the fluid force applied to the blade part is elastically deformed by pushing up the hinge. Yes. For this reason, it is desirable that the above-mentioned two limiters should be set to a value that is somewhat smaller than the force 180 ° within the range that does not interfere with flapping flight.
[0114] <予圧機構 >  [0114] <Preload mechanism>
次に、図 14Aを用いて、接触部 1215から上部ロータ 122へ予圧を与える機構を説 明する。  Next, a mechanism for applying a preload from the contact portion 1215 to the upper rotor 122 will be described with reference to FIG. 14A.
[0115] 接触部 1215から上部ロータ 122へ予圧が作用しており、その反作用として、接触 部 1215から上部ロータ 122の外周面へ向かって抗力が生じている。そのため、上部 ロータ 122と接触部 1215との間には摩擦が生じている。したがって、接触部 1215の 楕円運動によって、上部ロータ 122は、摩擦力を受け、回転往復運動を行なう。  [0115] Preload is applied from the contact portion 1215 to the upper rotor 122, and as a reaction, a drag is generated from the contact portion 1215 toward the outer peripheral surface of the upper rotor 122. Therefore, friction is generated between the upper rotor 122 and the contact portion 1215. Accordingly, the upper rotor 122 receives a frictional force due to the elliptical motion of the contact portion 1215 and performs a reciprocating rotational motion.
[0116] 牽引ゴム 129は、環状であり、その一端が、牽引部 1224に引っ掛けられている。牽 引ゴム 129の他端は、本体補強ポール 112に固定されている牽引ゴムピン 113に引 つ掛けられている。したがって、牽引ゴム 129には張力が生じ、牽引部 1224が本体 補強ポール 112に向かって牽引されるため、振動板 1211は牽引部 1224を含む振 動板 1211を支持している支持シャフト 127の軸周りに回転運動する。この回転運動 は、接触部 1215が上部ロータ 122に接触することによって拘束されている。したがつ て、接触部 1215から上部ロータ 122へ向カ 予圧が生じる。  [0116] The traction rubber 129 has an annular shape, and one end thereof is hooked on the traction portion 1224. The other end of the traction rubber 129 is hooked on a traction rubber pin 113 fixed to the main body reinforcing pole 112. Therefore, tension is generated in the pulling rubber 129, and the pulling portion 1224 is pulled toward the main body reinforcing pole 112. Therefore, the vibration plate 1211 is the axis of the support shaft 127 that supports the vibration plate 1211 including the pulling portion 1224. Rotate around. This rotational movement is constrained by the contact portion 1215 coming into contact with the upper rotor 122. Therefore, a preload is generated from the contact portion 1215 to the upper rotor 122.
[0117] なお、前述の本体補強ポール 112を、その長軸周りに回転させることによって、前 述の予圧の大きさを調整することが可能である。また、予圧機構は、上部ロータ 122 を駆動するための摩擦力を得るために設けられているものであるため、前述の予圧 が得られ、かつ、浮上移動装置 100の浮上特性が損なわれないのであれば、図 14A に示す構造に限定されない。 [0117] It is possible to adjust the magnitude of the above-mentioned preload by rotating the main body reinforcing pole 112 around its long axis. Further, since the preload mechanism is provided to obtain a frictional force for driving the upper rotor 122, the preload mechanism described above is used. 14 and the rising characteristics of the rising and moving apparatus 100 are not impaired, the structure is not limited to that shown in FIG. 14A.
[0118] <回転角検出 >  [0118] <Rotation angle detection>
図 8に示す上部磁気エンコーダ 126には、パターン周期の 1Z4の間隔を置いて A 相および B相のための 2つの検出部が設けられている。この上部磁気エンコーダ 126 は、一般的なエンコーダと同様に、上部ロータ 122の回転方向に応じて A相および B 相の位相のずれの状態が異なる。そのため、たとえば、 A相のアップエッジがカウンタ のトリガとして利用され、 B相のレベルの 1/0がアップカウント/ダウンカウントのうち のいずれを使用するかを決定するために用いられれば、上部ロータ 122の回転角 Θ 1を検出することが可能である。この回転角 θ 1の算出は、中央演算装置 151におい て行なわれる。  The upper magnetic encoder 126 shown in FIG. 8 is provided with two detectors for the A phase and the B phase with an interval of 1Z4 of the pattern period. The upper magnetic encoder 126 differs in the phase shift state between the A phase and the B phase according to the rotation direction of the upper rotor 122 as in the case of a general encoder. So, for example, if the up edge of phase A is used as a trigger for the counter and 1/0 of the level of phase B is used to determine which of up / down count is used, the upper rotor It is possible to detect the rotation angle Θ 1 of 122. The rotation angle θ 1 is calculated by the central processing unit 151.
[0119] <補足>  [0119] <Supplement>
なお、図 8〜図 14において示された超音波モータは、一般的なァクチユエ一タのー 例であり、本発明における浮上移動装置のァクチユエータは、前述のような構造の超 音波モータに限定されない。たとえば、ァクチユエータとして、電磁モータまたは内燃 機関が用レ、られてもよい。また、回転角検出のための装置は、羽ばたき飛行を阻害 するものでなければ、いかなるものであってもよい。たとえば、前述の磁気エンコーダ を用いる手法の替わりに、光学式エンコーダを用いる手法が採用されてもょレ、。  The ultrasonic motor shown in FIGS. 8 to 14 is an example of a general actuator, and the actuator of the rising and moving apparatus according to the present invention is not limited to the ultrasonic motor having the above-described structure. . For example, an electromagnetic motor or an internal combustion engine may be used as the actuator. Any device for detecting the rotation angle may be used as long as it does not inhibit flapping flight. For example, instead of using the magnetic encoder described above, an optical encoder may be used.
[0120] (羽駆動メカニズム)  [0120] (Wing drive mechanism)
次に、図 15〜図 18を用いて羽根駆動メカニズムについて説明する。  Next, the blade drive mechanism will be described with reference to FIGS.
[0121] 羽根駆動メカニズム 140は、図 15に示されるように、上部ロータ 122に固定された 上部プレート 141と、下部ロータ 132に固定された下部プレート 142とを有している。 さらに、下部プレート 142には第 1ァラミドヒンジ 143が介在した状態で中間プレート 1 44が接続されている。さらに、上部プレート 141には、第 2ァラミドヒンジ 145が介在し た状態で、羽根部 110の根元部が接続されている。さらに、羽根部 110の根元部は、 第 3ァラミドヒンジ 146が介在した状態で、中間プレート 144にも接続されている。した がって、上部プレート 141、羽根部 110、中間プレート 144、および下部プレート 142 がァラミドフィルムで接続された複合ヒンジが構成されている。この複合ヒンジは、上 部ロータ 122および下部ロータ 132によって駆動される。 As shown in FIG. 15, the blade drive mechanism 140 has an upper plate 141 fixed to the upper rotor 122 and a lower plate 142 fixed to the lower rotor 132. Further, an intermediate plate 144 is connected to the lower plate 142 with a first aramid hinge 143 interposed therebetween. Further, the base portion of the blade portion 110 is connected to the upper plate 141 with the second aramid hinge 145 interposed therebetween. Further, the root portion of the blade portion 110 is also connected to the intermediate plate 144 with the third aramid hinge 146 interposed therebetween. Therefore, a composite hinge in which the upper plate 141, the blade portion 110, the intermediate plate 144, and the lower plate 142 are connected by the aramid film is formed. This composite hinge is It is driven by the lower rotor 122 and the lower rotor 132.
[0122] 図 16〜図 18には、上部プレート 141、中間プレート 144、および下部プレート 142 の形状が示されている。なお、各プレートのヒンジおよびロータに接続されない辺の 近傍の部分は、補強のため、図 16〜図 18のハッチングで示される部位力 各プレー トの主表面に対して約 90° 折り曲げられている。さらに、この折り曲げ部同士の干渉 を避けるため、折り曲げ部の両側端のそれぞれは、折り曲げ部が延びる方向に対し て 45° の方向においてカットされている。  FIGS. 16 to 18 show the shapes of the upper plate 141, the intermediate plate 144, and the lower plate 142. In addition, for the purpose of reinforcement, the parts in the vicinity of the sides that are not connected to the hinges and rotor of each plate are bent by about 90 ° with respect to the main surface of each plate shown by hatching in FIGS. . Further, in order to avoid interference between the bent portions, both side ends of the bent portions are cut in a direction of 45 ° with respect to the direction in which the bent portions extend.
[0123] 各ァラミドヒンジは、幅 0. 1mmであり、長さに比べてその幅が非常に小さいため、 擬似的に 1自由度の回転のみ運動可能なリンク、すなわち蝶板(兆番)として機能す る。また、ァラミドヒンジ 143、 145、および 146のそれぞれの延長線は 1点で交わり、 その 1点はシャフト 124の中心軸上に位置し、かつ、上部ベアリング 123と下部べァリ ング 133との間に位置する。この構成により、上部超音波モータ 120の回転角の制御 によって羽根部 110の前後方向の往復運動が制御され、上部超音波モータ 120の 回転角の位相と下部超音波モータ 130の回転角の位相との差の制御によって、羽根 部 110のねじり運動が制御される。  [0123] Each aramid hinge has a width of 0.1 mm, and its width is very small compared to its length, so it functions as a link that can move only in one-degree-of-freedom rotation, that is, a butterfly plate (trillion) The Also, the extension lines of the aramid hinges 143, 145, and 146 intersect at one point, which is located on the central axis of the shaft 124 and between the upper bearing 123 and the lower bearing 133. To position. With this configuration, the reciprocating motion of the blade portion 110 in the front-rear direction is controlled by controlling the rotation angle of the upper ultrasonic motor 120, and the phase of the rotation angle of the upper ultrasonic motor 120 and the phase of the rotation angle of the lower ultrasonic motor 130 are By controlling the difference, the torsional motion of the blade 110 is controlled.
[0124] つまり、ァクチユエータは、羽根軸としての前縁部 1102を前後方向に往復運動(回 転角 α: Ζ軸周りの回転角)させる前後往復運動用ロータとしての上部超音波モータ 120と、往復運動における運動方向の反転の前から後の所定期間において、前縁部 1102を軸周りに回転(回転角 13 )させる捻り運動用ロータとを備えてレ、る。  That is, the actuator includes an upper ultrasonic motor 120 as a back-and-forth reciprocating rotor that reciprocates the front edge portion 1102 as a blade shaft in the front-rear direction (rotation angle α: rotation angle around the axis), A twisting rotor for rotating the front edge 1102 around the axis (rotation angle 13) during a predetermined period before and after reversal of the direction of motion in the reciprocating motion is provided.
[0125] 前述の羽ばたき方を、図 19および図 20を用いて、より具体的に説明する。図 19お よび図 20においては、浮上移動装置 100の前後方向に沿って Υ軸が延びている。ま た、浮上移動装置 100の上下方向に沿って Ζ軸が延びている。さらに、浮上移動装 置 100の左右方向に沿って X軸が延びている。 X軸、 Υ軸、および Ζ軸は、互いに直 交する。また、 Υ軸においては、後方が正であり、前方が負である。また、 X軸におい ては、上方が正であり、下方が負である。さらに、 Ζ軸においては、左の羽根部 110の 位置する側が正であり、右の羽根部 110が位置する側が負である。また、図 20に示 すように、上部超音波モータ 120の回転角が θ 1であり、下部超音波モータ 130の回 転角が Θ 2であり、前後方向の往復運動の回転角である羽ばたきストローク角がひで あり、前縁部 1102の軸周りの回転角である捻り角が /3であるものとする。 [0125] The manner of flapping described above will be described more specifically with reference to FIG. 19 and FIG. In FIGS. 19 and 20, the shaft extends along the longitudinal direction of the rising and moving apparatus 100. Further, the shaft extends along the vertical direction of the rising and moving apparatus 100. Furthermore, the X axis extends along the left-right direction of the rising and moving apparatus 100. The X axis, Υ axis, and Ζ axis are perpendicular to each other. Moreover, in the saddle shaft, the rear is positive and the front is negative. On the X axis, the upper part is positive and the lower part is negative. Further, in the shaft, the side where the left blade 110 is located is positive, and the side where the right blade 110 is located is negative. In addition, as shown in FIG. 20, the rotation angle of the upper ultrasonic motor 120 is θ 1, the rotation angle of the lower ultrasonic motor 130 is Θ 2, and flapping is the rotation angle of the reciprocating motion in the front-rear direction. Stroke angle is hidden It is assumed that the twist angle, which is the rotation angle around the axis of the front edge 1102, is / 3.
[0126] また、前述の各ァラミドヒンジ 143、 145、および 146のそれぞれの延長線の交点か ら各ァラミドヒンジ 143、 145、および 146のそれぞれの外側端までの距離は、それぞ れ、 R2、 Rl、および R3であるものとする。さらに、ァラミドヒンジ 146の端点とァラミドヒ ンジ 145の端点の距離が L1であり、ァラミドヒンジ 146の端点とァラミドヒンジ 143の 端点の距離が L2であり、ァラミドヒンジ 143の端点とァラミドヒンジ 145の端点と間の 距離が L3であるものとする。口一タシャフト 124に対する羽根部 110の位置を表わす 角度の組み合わせ(α, β ) ΐ 上および下部超音波モータの回転角 θ 1および Θ 2 を用いて、以下のように表わされる。 [0126] In addition, the distance from the intersection of the extension lines of each of the aramid hinges 143, 145, and 146 to the outer end of each of the aramid hinges 143, 145, and 146 is R2, Rl, And R3. Furthermore, the distance between the end point of aramid hinge 146 and the end point of aramid hinge 145 is L1, the distance between the end point of aramid hinge 146 and the end point of aramid hinge 143 is L2, and the distance between the end point of aramid hinge 143 and the end point of aramid hinge 145 is L3. Suppose that A combination of angles (α, β) representing the position of the blade 110 with respect to the mouth shaft 124 シ ャ フ ト Using the rotation angles θ 1 and Θ 2 of the upper and lower ultrasonic motors,
[0127] 羽ばたきストローク角 αは、羽根軸(前縁部 1102)のロータシャフト 124の軸周りの 回転であるため、次の式(1)に示すように、上部超音波モータ 120の回転角 θ 1に等 しい。 [0127] The flapping stroke angle α is the rotation of the blade shaft (front edge 1102) around the axis of the rotor shaft 124. Therefore, as shown in the following equation (1), the rotation angle θ of the upper ultrasonic motor 120 Equal to 1.
[0128] α = θ 1···(1)  [0128] α = θ 1 (1)
また、捻り角(回転角 )は、羽根部 110の羽根軸(前縁部 1102)の軸周りの回転 角であるため、次の式(2)によって示される βの余弦値から算出される。  Further, since the twist angle (rotation angle) is a rotation angle around the axis of the blade axis (front edge portion 1102) of the blade portion 110, it is calculated from the cosine value of β expressed by the following equation (2).
[0129] οοβίπ - i3) = -cos(i3) = [LlXLl + L3XL3-L2XL2]/(2XLlXL3) ··[0129] οοβίπ-i3) = -cos (i3) = [LlXLl + L3XL3-L2XL2] / (2XLlXL3) ···
•(2) • (2)
ただし、 L3に関しては、次の式(3)が成り立つ。  However, for L3, the following equation (3) holds.
[0130] L3 = sqrt (Rl X Rl +R2 X R2-2 X Rl XR2 X cos ( θ 1_ Θ 2)) ··· (3) [0130] L3 = sqrt (Rl X Rl + R2 X R2-2 X Rl XR2 X cos (θ 1_ Θ 2)) (3)
ここで、 sqrt ()は 0内の値の正の平方根である。  Where sqrt () is the positive square root of the value in 0.
[0131] なお、図 19および図 20から明らかなように、 βは、 πより大きく、力つ、 2πより小さ レ、。Note that, as is clear from FIGS. 19 and 20, β is greater than π and powerful, less than 2π.
Figure imgf000034_0001
Figure imgf000034_0001
したがって、 /3力 つの値に決定される。  Therefore, it is determined by the value of / 3 power.
[0133] 上記の式(1)〜(4)から、所望の羽根部 110の位置(ひ, /3)を得るための回転角 θ 1および Θ 2は、次の式(5)および(6)によって表わされることが分かる。 From the above formulas (1) to (4), the rotation angles θ 1 and Θ 2 for obtaining the desired position (hi, / 3) of the blade portion 110 are expressed by the following formulas (5) and (6 ).
[0134] Θ 1= α ··· (5) [0134] Θ 1 = α (5)
cos( θ 1- Θ 2) = [R1XR1+R2XR2-L3XL3]/2XR1XR2--- (6) ただし、 L3に関しては、次の式(7)が成立する。 cos (θ 1- Θ 2) = [R1XR1 + R2XR2-L3XL3] / 2XR1XR2 --- (6) However, for L3, the following equation (7) holds.
[0135] L3 = Ll X cos ( i3— π )土 sqrt (L2 X L2— LI X L1 X sin2 ( j3— π ) ) · · · (7) なお、 L3の複号(土)が、正であるか、または、負であるかは、実際の羽根部 110の 挙動を考慮することによって、容易に決定される。 [0135] L3 = Ll X cos (i3—π) soil sqrt (L2 X L2—LI X L1 X sin2 (j3—π)) (7) Note that the L3 compound sign (soil) is positive Whether it is negative or negative is easily determined by considering the actual behavior of the blade 110.
[0136] 図 19および図 20に示される本実施の形態の浮上移動装置の状態は、羽根部 110 の主表面が鉛直な方向に延びる平面と平行である状態、すなわち、捻り角 β = 270 0 である状態である。このとき、 Θ 1 = 0° 、 Θ 2= _45° Rl =R2 = 15mm、 R3 = l 5. 81mm, LI = 5mm, L2 = l l . 4mm、および: L3 = l l . 39mmである。 The rising and moving apparatus according to the present embodiment shown in FIGS. 19 and 20 is in a state where the main surface of blade part 110 is parallel to a plane extending in the vertical direction, that is, twist angle β = 270 0. This is the state. At this time, Θ1 = 0 °, Θ2 = _45 ° Rl = R2 = 15 mm, R3 = l 5.81 mm, LI = 5 mm, L2 = l l .4 mm, and: L3 = l l .39 mm.
[0137] 上部および下部ロータ 122および 132の回転角 θ 1および Θ 2は、前述のように、 磁気エンコーダ 126よって得られた情報に基づいて中央演算装置 151によって算出 される。なお、回転角 θ 1および Θ 2の制御方法は後述される。 The rotational angles θ 1 and Θ 2 of the upper and lower rotors 122 and 132 are calculated by the central processing unit 151 based on the information obtained by the magnetic encoder 126 as described above. A method for controlling the rotation angles θ 1 and Θ 2 will be described later.
[0138] 上記のようにして、羽根部 110の羽ばたき運動が実現される。 [0138] As described above, the flapping motion of the blade portion 110 is realized.
(トルク補助機構)  (Torque assist mechanism)
次に、図 21〜図 32を用いて、トルク補助機構について説明する。  Next, the torque assist mechanism will be described with reference to FIGS.
[0139] <原理 > [0139] <Principle>
図 43に示されるように、羽ばたき飛行においては羽根部 110の運動方向が反転す るため、打ち上げと打ち下ろしとの間に行なわれる羽根部 110の切り返しにおいては 、ァクチユエータに要求されるトノレクは高くなる。し力 ながら、羽根部 110の切り返し の直前まではァクチユエータに要求されるトルクは小さレ、。そこで、ァクチユエータに 要求されるトルクが小さな期間に、何らかの方法を用いて、ァクチユエータ(上部およ び下部超音波モータ 120および 130)の運動エネルギーを蓄積しておき、ァクチユエ ータに高レ、トルクが要求される期間に、蓄積されたエネルギーを羽根部 110に与える ことで、ァクチユエータに要求されるトノレクの時刻歴を平滑化することができる。  As shown in Fig. 43, the direction of movement of the wing part 110 is reversed in the flapping flight, and therefore, the torque required for the actuator is high when the wing part 110 is turned back and forth between the up and down movements. Become. However, the torque required for the actuator is small until just before the blade 110 is turned back. Therefore, the kinetic energy of the actuator (upper and lower ultrasonic motors 120 and 130) is accumulated using some method during a period when the torque required for the actuator is small, and the actuator is given a high torque and torque. By applying the accumulated energy to the blade section 110 during the period when the actuator is required, it is possible to smooth the Tonerek time history required for the actuator.
[0140] 次に、図 21〜図 25を用いて、切り返し時のトルクの時刻歴を平滑化する手法を説 明する。本実施の形態においては、その手法として、ある物質を弾性変形させること によってァクチユエータのエネルギーを蓄積し、その弾性変形した物質の復元力によ つてァクチユエータにエネルギーを与える手法が用いられる。なお、以後においては 、弾性変形する物質に蓄積されたエネルギーによってァクチユエータに与えられるト ルクを補助トノレクと称する。 [0140] Next, a method for smoothing the torque time history at the time of switching will be described with reference to FIGS. In the present embodiment, as the technique, a technique is used in which the energy of the actuator is accumulated by elastically deforming a certain substance, and the energy is given to the actuator by the restoring force of the elastically deformed substance. In the following, it is given to the actuator by the energy accumulated in the elastically deforming substance. Luke is referred to as an auxiliary Tonolek.
[0141] 図 21に示されるように、本実施の形態における浮上移動装置 100においては、羽 根部 110の切り返し時にトルクのピークが極端に大きくなる現象は、上部超音波モー タ 120の駆動トノレク T1に顕著に現れる。なお、上部ロータ 122の回転角 θ 1および下 部ロータ 132の回転角 Θ 2の制御は、図 22に示されるものであるとする。また、浮上 移動装置 100は、羽根軸としての前縁部 1102を、前後方向に往復運動させるととも に、その往復運動における運動方向の反転の前から後の所定期間において、前縁 部 1102周りに回転させる羽ばたき運動を行なうものとする。  As shown in FIG. 21, in the rising and moving apparatus 100 according to the present embodiment, the phenomenon in which the peak of torque becomes extremely large when the wing portion 110 is turned back is due to the driving torque of the upper ultrasonic motor 120 T1 Appears prominently. Control of the rotation angle θ 1 of the upper rotor 122 and the rotation angle Θ 2 of the lower rotor 132 is assumed to be as shown in FIG. Further, the rising and moving apparatus 100 reciprocates the front edge portion 1102 as a blade shaft in the front-rear direction, and around the front edge portion 1102 in a predetermined period from before to after the reversal of the movement direction in the reciprocating motion. The flapping motion is to be rotated.
[0142] 上部超音波モータ 120の打ち上げ動作と上部超音波モータ 120の打ち下ろし動作 とは前後対称である。そのため、今後は上部超音波モータ 120の打ち上げ動作後の 切り返し時のトノレクを補助する手順のみ説明する。  [0142] The launching operation of the upper ultrasonic motor 120 and the lowering operation of the upper ultrasonic motor 120 are symmetric in the front-rear direction. Therefore, in the future, only the procedure for assisting tonolec at the time of switching after the launch operation of the upper ultrasonic motor 120 will be described.
[0143] 図 23に示されるように、上部ロータ 122の外側にバネ 301が設けられている。バネ 3 01は、本体 101のいずれかの部分に固定されている。バネ 301と上部ロータ 122と は、上部ロータ 122の回転角が Θ— contactを超えた時点で接触を開始する。なお 、 Θ— contactの求め方については後述する。  As shown in FIG. 23, a spring 301 is provided outside the upper rotor 122. The spring 301 is fixed to any part of the main body 101. The spring 301 and the upper rotor 122 start contact when the rotation angle of the upper rotor 122 exceeds Θ-contact. The method of obtaining Θ-contact will be described later.
[0144] 上部ロータ 122がバネ 301に接触した時点でバネ 301は収縮を始めるので、上部 ロータ 122にはバネ 301が伸張する方向に復元力が作用する。この復元力の大きさ はバネ 301の収縮した長さに比例するため、図 24において破線で示されるようなトノレ クが生じる。ここでは、前述の図 24に破線で示されるトルクがトノレク補助機構による補 助トノレクと称される。なお、トルク補助機構は、本発明のエネルギー蓄積 ·供与機構に 対応する。  Since the spring 301 starts to contract when the upper rotor 122 contacts the spring 301, a restoring force acts on the upper rotor 122 in the direction in which the spring 301 extends. Since the magnitude of the restoring force is proportional to the contracted length of the spring 301, a torsion as shown by a broken line in FIG. 24 occurs. Here, the torque indicated by the broken line in FIG. 24 described above is referred to as an auxiliary torque by the torque assist mechanism. The torque assist mechanism corresponds to the energy storage and supply mechanism of the present invention.
[0145] 上部ロータ 122を駆動するために要求されるトノレク T1は、図 24に細実線で示され る従来のトノレク T1に、前述の補助トルクを加算した値となるため、図 24に太実線で示 されるようになる。  [0145] The tonolec T1 required for driving the upper rotor 122 is a value obtained by adding the above-mentioned auxiliary torque to the conventional tonolec T1 shown by the thin solid line in FIG. 24. Therefore, the thick solid line in FIG. It becomes as shown by.
[0146] 以上のように、トルクの小さい切り返し動作の前半の上部ロータ 122の変位によって 、バネ 301に変形エネルギーが蓄えられ、バネ 301の復元力によって、蓄えられた変 形エネルギーが切り返し動作の後半に上部ロータ 122に与えられる。すなわち、本実 施の形態のトルク補助機構、すなわち、エネルギー蓄積 ·供与機構は、羽根軸として の前縁部 1102を駆動するために要求されるトルクが小さい場合にエネルギーを蓄積 し、前縁部 1102に駆動するために要求されるトノレクが大きい場合に上部ロータ 122 に与える。言い換えれば、エネルギー蓄積 ·供与機構は、前縁部 1102の切り返しの 前半に上部ロータ 122のエネルギーを蓄積し、切り返しの後半にエネルギーを上部 ロータ 122に与える。それにより、前述のトノレク T1のピークが低減され、トルクの時刻 歴が平滑化される。 [0146] As described above, the deformation energy is stored in the spring 301 by the displacement of the upper rotor 122 in the first half of the switching operation with a small torque, and the stored deformation energy is stored in the second half of the switching operation by the restoring force of the spring 301. To the upper rotor 122. In other words, the torque assist mechanism of this embodiment, that is, the energy storage and supply mechanism, is used as the blade shaft. Energy is stored when the torque required to drive the leading edge 1102 is small, and is applied to the upper rotor 122 when the torque required to drive the leading edge 1102 is large. In other words, the energy storage and supply mechanism accumulates the energy of the upper rotor 122 in the first half of the turning of the leading edge 1102 and gives the energy to the upper rotor 122 in the second half of the turning. As a result, the above-mentioned Tonolek T1 peak is reduced, and the torque time history is smoothed.
[0147] <設計手法 >  [0147] <Design method>
次に、図 24および図 25を用いて、最大トノレクを T— MAXに低減させるためのバネ 301のパネ定数および収縮量の設計思想を説明する。なお、回転角 θ 1およびトノレ ク T1は負の値になり得る力 説明の簡便のため、本項目の説明では、回転角 Θ 1お よびトルク T1の符号は、すべて正の値であるものとする。  Next, with reference to FIG. 24 and FIG. 25, the design concept of the panel constant and the contraction amount of the spring 301 for reducing the maximum torque to T-MAX will be described. Note that the rotation angle θ 1 and torque T1 can be negative values. For simplicity of explanation, in this section, the signs of rotation angle Θ 1 and torque T1 are all positive values. To do.
[0148] まず、図 25に示されるように、切り返し動作の後半において本来のトノレク T1が T— MAXと等しくなる時刻 tlを求める。この時刻 tlが、補助トルクが必要とされる最終の 時刻であるため、この際の回転角 θ 1が前述の回転角 Θ—contactとなる。  First, as shown in FIG. 25, a time tl at which the original tonnelec T1 becomes equal to T−MAX in the latter half of the switching operation is obtained. Since this time tl is the final time when the auxiliary torque is required, the rotation angle θ 1 at this time becomes the rotation angle Θ−contact described above.
[0149] さらに、トルク T1が極大値 Tl— MAXになる回転角 θ 1— MAXT1のときに、トルク T1からパネ 301による補助トルクを減算した値力 T— MAXより小さくなるように、バ ネ 301のバネ定数を定める必要がある。この際のバネ 301の収縮量は、回転角 θ 1 _MAXT1と回転角 Θ—contactとの差に、バネ 301が上部ロータ 122に接触する 点と上部ロータ 122の回転中心位置との間の距離 R_contactを乗じた値である。し たがって、この時点でバネ 301に発生している力 F_springは、バネ 301のバネ定数 を kとして、次の式(8)で表わされる。  [0149] Further, when the rotation angle θ 1— MAXT1 at which the torque T1 becomes the maximum value Tl—MAX, the torque 301 is less than the value force T—MAX obtained by subtracting the auxiliary torque from the panel 301 from the torque T1. It is necessary to determine the spring constant. The amount of contraction of the spring 301 at this time depends on the difference between the rotation angle θ 1 _MAXT1 and the rotation angle Θ-contact, and the distance between the point where the spring 301 contacts the upper rotor 122 and the rotation center position of the upper rotor 122 R_contact The value multiplied by. Therefore, the force F_spring generated in the spring 301 at this time is expressed by the following equation (8), where k is the spring constant of the spring 301.
[0150] F_spring= ( Θ 1—MAXT1— Θ—contact) X R_contact X k- · · (8)  [0150] F_spring = (Θ 1—MAXT1— Θ—contact) X R_contact X k- · · (8)
この際に与えられる補助トルク T_springは、次の式(9)で表わされる。  The auxiliary torque T_spring given at this time is expressed by the following equation (9).
[0151] T_spring = F_spring/R_contact = ( Θ l—MAXTl— Θ—contact) X k- - •(9)  [0151] T_spring = F_spring / R_contact = (Θ l—MAXTl— Θ—contact) X k--• (9)
また、次の式(10)が成立する。  Further, the following equation (10) is established.
[0152] T_MAX+T_spring >Tl_MAX- · · (10) [0152] T_MAX + T_spring> Tl_MAX- · · (10)
したがって、次の式(11)が得られる。 [0153] k > (T1_MAX-T_MAX) / ( Θ l—MAXTl— Θ—contact) · · · (11) 厳密には、すべての時刻において、式(11)が成立する必要がある力 本実施の形 態においては、図 24に示すように、トルク T1の最大値である場合において、式(11) が成立すれば、ァクチユエータに要求されるトルクを大きく低下させることができる。 Therefore, the following equation (11) is obtained. [0153] k> (T1_MAX-T_MAX) / (Θl—MAXTl—Θ—contact) · · · (11) Strictly speaking, the force that Equation (11) must hold at all times In the embodiment, as shown in FIG. 24, when the torque T1 is the maximum value, if the formula (11) is satisfied, the torque required for the actuator can be greatly reduced.
[0154] 本実施の形態においては、 R_contact = 4mmであり、 k= 160、 Θ _contact = 30. 5° であれば、トルク T1のピークが 17gf ' cmから lOgf ' cmへ低下する。  In this embodiment, if R_contact = 4 mm, k = 160, and Θ_contact = 30.5 °, the peak of torque T1 decreases from 17 gf ′ cm to lOgf ′ cm.
[0155] <構成例>  [0155] <Configuration example>
図 26は、トルク補助機構の第二の例を示す図である。このトルク補助機構は、図 23 のバネ 301が板バネ 311によって置き換えられている。  FIG. 26 is a diagram illustrating a second example of the torque assist mechanism. In this torque assist mechanism, the spring 301 in FIG. 23 is replaced by a leaf spring 311.
[0156] 図 27は、トルク補助機構の第三の例を示す図である。このトノレク補助機構によれば 、本体 101に固定された支柱 321に、上部ロータ 122に固定されたゴムブロック 322 が衝突することによって、上部ロータ 122のエネルギーがゴムブロック 322に蓄積され 、ゴムブロック 322の復元力によってエネルギーが上部ロータ 122に与えられる。  FIG. 27 is a diagram showing a third example of the torque assist mechanism. According to this Tonlek assist mechanism, when the rubber block 322 fixed to the upper rotor 122 collides with the support column 321 fixed to the main body 101, the energy of the upper rotor 122 is accumulated in the rubber block 322, and the rubber block 322 Energy is imparted to the upper rotor 122 by the restoring force of.
[0157] 図 28は、トルク補助機構の第四の例を示す図である。このトノレク補助機構によれば 、中空のロータ 334に内装され、支点 331に固定されたコイルバネ 332および 333の それぞれが、中空のロータ 334の内壁に衝突し、上部ロータ 122のエネルギーが蓄 積され、コイルバネ 332および 333のそれぞれの復元力によって上部ロータ 122にェ ネルギ一が与えられる。なお、支点 331は、本体 101に固定されている。  [0157] Fig. 28 is a diagram showing a fourth example of the torque assist mechanism. According to this Tonlek assist mechanism, each of the coil springs 332 and 333, which are housed in the hollow rotor 334 and fixed to the fulcrum 331, collide with the inner wall of the hollow rotor 334, and the energy of the upper rotor 122 is accumulated. Energy is applied to the upper rotor 122 by the restoring forces of the coil springs 332 and 333, respectively. The fulcrum 331 is fixed to the main body 101.
[0158] 図 29は、トルク補助機構の第五の例を示す図である。このトルク補助機構は、図 28 に示すコイルバネ 332が板バネ 341に置き換えられたものである。なお、板バネ 341 は本体 101に固定されている。  [0158] Fig. 29 is a diagram showing a fifth example of the torque assist mechanism. This torque assist mechanism is obtained by replacing the coil spring 332 shown in FIG. The leaf spring 341 is fixed to the main body 101.
図 30は、トルク補助機構の第六の例を示す図である。図 30に示すトルク補助機構 は、コイルバネ 332および 333および板バネ 341の代わりに、ゴム紐 351が用いられ ている。ゴム紐 351は、その一端が支持点 352に固定され、その他端が上部ロータ 1 22に固定されている。また、ゴム紐 351は、上部ロータ 120の回転角 Θ 1 = 0° の場 合には、弛んでいる。これによれば、ゴム紐 351は、上部ロータ 122が回転往復運動 を開始すると、回転角 6 _contactの位置から伸張してエネルギーを蓄積する。また 、伸張したゴム紐 351が縮むときのゴム紐 351の復元力によって、上部ロータ 122に エネルギーが与えられる。なお、支持点 352は、本体 101に固定されている。 FIG. 30 is a diagram showing a sixth example of the torque assist mechanism. In the torque assist mechanism shown in FIG. 30, a rubber string 351 is used in place of the coil springs 332 and 333 and the leaf spring 341. One end of the rubber cord 351 is fixed to the support point 352 and the other end is fixed to the upper rotor 122. Further, the rubber cord 351 is slack when the rotation angle Θ 1 = 0 ° of the upper rotor 120. According to this, when the upper rotor 122 starts rotational reciprocating motion, the rubber cord 351 extends from the position of the rotational angle 6_contact and accumulates energy. In addition, the restoring force of the rubber cord 351 when the stretched rubber cord 351 contracts causes the upper rotor 122 to Energy is given. The support point 352 is fixed to the main body 101.
[0159] 図 31は、トルク補助機構の第七の例を示す図である。上部ロータ 122ではなぐベ ァリング 123に前述のトノレク補助機構と同様の機構が設けられており、それによつて、 トルク補助機構の軽量ィ匕が図られている。このトルク補助機構によれば、ベアリング 1 23に設けられたドグ 361に板バネ 362が衝突し、板バネ 362が弾性変形してェネル ギーを蓄積する。板バネ 362の復元力によってドグ 361を通じて上部ロータ 122にェ ネルギ一が与えられる。なお、板バネ 362は本体 101に固定されている。  FIG. 31 is a diagram showing a seventh example of the torque assist mechanism. In the upper rotor 122, the bearing 123 is provided with a mechanism similar to the above-described Tonnelec assist mechanism, thereby achieving a light weight of the torque assist mechanism. According to this torque assist mechanism, the leaf spring 362 collides with the dog 361 provided on the bearing 123, and the leaf spring 362 is elastically deformed to accumulate energy. The restoring force of the leaf spring 362 gives energy to the upper rotor 122 through the dog 361. The leaf spring 362 is fixed to the main body 101.
[0160] 図 32はトルク補助機構の第八の例を示す図である。このトノレク補助機構によれば、 ベアリング 123に設けられた板バネ 371力 ロータシャフト 124に固定されたドグ 372 に衝突し、板パネ 371が弾性変形してエネルギーを蓄積する。また、板パネ 371の復 元力によって上部ロータ 122にエネルギーが与えられる。なお、板バネ 371は本体 1 01に固定されている。  FIG. 32 is a diagram showing an eighth example of the torque assist mechanism. According to this Tonlek assist mechanism, the plate spring 371 force provided on the bearing 123 collides with the dog 372 fixed to the rotor shaft 124, and the plate panel 371 elastically deforms to accumulate energy. In addition, energy is given to the upper rotor 122 by the restoring force of the plate panel 371. The leaf spring 371 is fixed to the main body 101.
[0161] <材料および手法の選択 >  [0161] <Selection of materials and methods>
弾性変形してエネルギーを蓄える部材としては、金属などの弾性体またはゴムなど の超弾性体が適している。特に、ゴム紐は、比重が小さくかつ軽量化され易いもので あるため、エネルギーを蓄える部材として望ましい。  As a member that elastically deforms and stores energy, an elastic body such as metal or a superelastic body such as rubber is suitable. In particular, the rubber cord is desirable as a member for storing energy because it has a small specific gravity and is easily reduced in weight.
[0162] また、弾性変形以外の態様でエネルギーを蓄えるトルク補助機構が用いられてもよ レ、。たとえば、気体の体積変化と圧力との関係を利用して、シリンダ内に封入された 気体の収縮および伸張によって、エネルギーの蓄積および放出を行なうトルク補助 機構が用いられてもよい。さらに、シリンダに封入された気体が相変化を利用して、ェ ネルギ一の蓄積および供与を行なうトルク補助機構が用いられてもよい。  [0162] A torque assist mechanism that stores energy in a mode other than elastic deformation may be used. For example, a torque assist mechanism that stores and releases energy by contraction and expansion of the gas sealed in the cylinder using the relationship between the volume change of the gas and the pressure may be used. Further, a torque assist mechanism may be used in which the gas sealed in the cylinder uses phase change to accumulate and supply energy.
[0163] また、超音波モータ 120の替わりに、電磁モータが用いられ、誘導電力が電源 190 等に蓄えられるトノレク補助機構が用レ、られてもよい。  [0163] Further, instead of the ultrasonic motor 120, an electromagnetic motor may be used, and a tonnelec auxiliary mechanism in which inductive power is stored in the power source 190 or the like may be used.
[0164] <補足 >  [0164] <Supplement>
本項目においては、打ち上げ動作後の切り返しの際のトノレクの時刻歴を平滑化す る手法が説明されているが、打ち下ろし動作後の切り返しの際のトノレクの時刻歴を平 滑化する手法も、前述の手法と同様である。また、上部超音波モータ 120のトルク補 助機構の説明のみがなされたが、下部超音波モータ 130のトノレク補助機構にも、上 部超音波モータ 120のトルク補助機構と同様の構成を適用することが可能である。 In this item, the method of smoothing the time history of Tonolek at the time of switching after the launch operation is explained, but the method of smoothing the time history of Tonolek at the time of switching after the down motion is also described. This is the same as the method described above. Also, only the torque assist mechanism of the upper ultrasonic motor 120 has been described, but the upper torque assist mechanism of the lower ultrasonic motor 130 has also been improved. A configuration similar to the torque assist mechanism of the ultrasonic motor 120 can be applied.
[0165] 特に、本実施の形態においては、後述する先行切り返しの時に、下部ロータ 132の 振幅が大きくなる。この先行切り返しの時には、下部超音波モータ 130に供給される トルクが大きくなる。そのため、先行切り返しの羽ばたき方のときに下部ロータ 132に 前述の手法を適用することが望ましい。また、前述の手法を適用するためには、先行 切り返し時に下部ロータ 132が大きな振幅で往復運動することを阻害しないように、ト ルク補助機構としての弾性体の位置を考慮する必要がある。 [0165] In particular, in the present embodiment, the amplitude of lower rotor 132 is increased at the time of advance turnover described later. At the time of this advance switching, the torque supplied to the lower ultrasonic motor 130 is increased. For this reason, it is desirable to apply the above-described method to the lower rotor 132 in the case of the flapping of the leading turn. In addition, in order to apply the above-described method, it is necessary to consider the position of the elastic body as the torque assist mechanism so as not to hinder the lower rotor 132 from reciprocating with a large amplitude at the time of preceding switching.
[0166] (羽ばたき方の変更による浮上移動装置の動作制御) [0166] (Operation control of rising and moving device by changing flapping method)
<動作の基本 >  <Basic operation>
本実施の形態における浮上移動装置 100は、羽根部 110の羽ばたき運動が生み 出す浮上力の作用点より下側の部分の質量が大きいため、 自動的に、図 1に示され る姿勢になる。すなわち、 X軸周りの回転および Y軸周りの回転を制御する必要はな レ、。一方、 X軸、 Y軸、および Z軸のそれぞれに沿った並進加速度、ならびに Z軸周り の回転加速度(以下、「角加速度」とも言う)は、羽ばたき方によって変更される。尚、 羽ばたき運動により生じる力は羽根部の運動に伴って変化するが、ここでは、羽ばた き運動の 1周期平均の力を羽ばたき運動により生じる力とする。  The rising and moving apparatus 100 according to the present embodiment automatically assumes the posture shown in FIG. 1 because the mass of the portion below the point of action of the flying force generated by the flapping motion of the blade portion 110 is large. In other words, it is not necessary to control the rotation around the X axis and the rotation around the Y axis. On the other hand, the translational acceleration along each of the X-axis, Y-axis, and Z-axis, and the rotational acceleration around the Z-axis (hereinafter also referred to as “angular acceleration”) are changed according to the flapping method. The force generated by the flapping motion changes with the movement of the blade, but here, the average force of one cycle of the flapping motion is the force generated by the flapping motion.
[0167] (コントロールパラメータ) [0167] (Control parameter)
本実施の形態における浮上移動装置 100においては、トルク補助機構が適正に機 能するためには、上部超音波モータ 120の回転角 θ 1すなわちストローク角ひの振 幅は固定されている必要がある。そこで、浮上移動装置 100の動作を制御するため に、下部超音波モータ 130の回転角 Θ 2が変更される。すなわち、浮上移動装置 10 0は、捻り角 βの変更によって、流体の流れを変化させ、それにより、姿勢を変化させ る。  In the rising and moving apparatus 100 according to the present embodiment, in order for the torque assist mechanism to function properly, the rotation angle θ 1 of the upper ultrasonic motor 120, that is, the stroke angle amplitude needs to be fixed. . Therefore, in order to control the operation of the rising and moving apparatus 100, the rotation angle Θ2 of the lower ultrasonic motor 130 is changed. That is, the rising and moving apparatus 100 changes the flow of the fluid by changing the twist angle β, thereby changing the posture.
[0168] 具体的には、羽ばたき運動のストロークの両端のそれぞれにおいて羽根部 110の 捻り運動のタイミングを変化させる。  [0168] Specifically, the timing of the twisting motion of the blade portion 110 is changed at each of both ends of the flapping motion stroke.
[0169] (上下方向における浮上力の変化) [0169] (Change in levitation force in the vertical direction)
先述の非特許文献 2において、 Dickinsonらによって明らかにされているように、図 3 In the aforementioned non-patent document 2, as shown by Dickinson et al.
3に示すように、(1)羽ばたき運動の切り返し動作の中間のタイミングよりも先、すなわ ち切り返しの前半に羽根部 110を捻る(捻り先行切り返し)と、浮上力は増加し、一方 、図 34に示すように、 (2)羽ばたき運動の切り返し動作の中間のタイミングよりも後、 すなわち切り返しの後半に羽根部 110を捻る(捻り遅れ切り返し)と、浮上力は減少す る、という現象が起きる。 As shown in Fig. 3, (1) ahead of the middle timing of flapping motion, If the blade part 110 is twisted in the first half of turning back (twisted-up turning back), the levitation force increases. On the other hand, as shown in FIG. 34, (2) after the intermediate timing of the flapping motion, that is, turning back. If the blade part 110 is twisted in the latter half of the period (twisting delay turning back), the levitation force decreases.
[0170] (上下方向における浮上力が変化するときの前後方向における推進力の相殺) さらに本発明者らは、図 33に示す前述の(1)の動作によれば、切り返し動作前の 羽進行方向に沿った抗力が増大し、図 34に示す前述の(2)の動作によれば、その 抗力が減少することを見出した。打ち上げ時に生じる前後方向の抗力と、打ち下ろし 時に生じる前後方向の抗力とは、互いに逆向きである。そのため、打ち上げ動作と打 ち下ろし動作とが前後方向に垂直な平面に対して鏡面対称であれば、それらの動作 による抗カは相殺され、推進力はゼロとなる。このため、浮上移動装置は、上下方向 のみにおける移動を行うことができる。  [0170] (Cancellation of propulsive force in the front-rear direction when the levitation force in the up-down direction changes) Furthermore, according to the operation (1) shown in FIG. It was found that the drag along the direction increased, and that the drag decreased according to the operation (2) shown in FIG. The fore-and-aft drag generated during launch and the fore-and-aft drag generated during downhill are opposite to each other. Therefore, if the launching and lowering operations are mirror-symmetric with respect to a plane perpendicular to the front-rear direction, the drag due to these operations will be canceled out and the propulsive force will be zero. For this reason, the rising and moving apparatus can move only in the vertical direction.
[0171] (前後方向における推進力の変化)  [0171] (Change in propulsive force in the longitudinal direction)
逆に、打ち上げ時の切り返しと打ち下ろし時の切り返しとにおいて、図 33に示す前 述の(1)の動作と図 34に示す前述の(2)の動作とが異なれば、その 2つ動作による 前後方向の抗カ同士の間に差異が生じ、前方または後方のいずれかに推進力が生 じる。より具体的には、図 35Aに示されるように、打ち下ろしの後半では、遅れ切り返 しによつて、前方への加速度が得られ、また、打ち上げの後半では、先行切り返しに よって、前方への加速度が得られる。一方、同様に、図 35Aに示されるように、打ち 下ろしの後半では、先行切り返しによって、後方への加速度が得られ、また、打ち上 げの後半では、遅れ切り返しによって、後方への加速度が得られる。  Conversely, if the operation of (1) shown in Fig. 33 and the operation of (2) shown in Fig. 34 differ between the turning-up at the time of launch and the turning-down at the time of launch, the two operations are the same. There will be a difference between the front and rear forces, and propulsion will be generated either forward or backward. More specifically, as shown in FIG. 35A, in the second half of the downhill, the forward acceleration is obtained by the delayed turn-back, and in the second half of the launch, the forward turn-back is performed in the forward direction. Can be obtained. On the other hand, similarly, as shown in FIG. 35A, in the latter half of the down stroke, the backward acceleration is obtained by the preceding turn-back, and in the latter half of the launch, the backward acceleration is obtained by the delayed turn-back. It is done.
[0172] (前後方向における推進力が変化するときの上下方向における浮上力の変化の相 殺)  [0172] (Massification of change in levitation force in vertical direction when propulsive force in the longitudinal direction changes)
尚、前方への加速度が得られる動作および後方への加速度が得られる動作のいず れが実行されるときにおいても、上方への加速度の変化と下方向への加速度の変化 とを相殺することは可能である。このため、水平方向における加速度のみを得ることが 可能である。  It should be noted that the change in the acceleration in the upward direction and the change in the acceleration in the downward direction must be canceled out when either the operation that obtains the acceleration in the forward direction or the operation that obtains the acceleration in the backward direction is executed. Is possible. For this reason, it is possible to obtain only the acceleration in the horizontal direction.
[0173] (空間の 3次元移動) 以上の説明のように、左および右の羽根部 110のそれぞれのストローク角ひ、すな わち θ 1の振幅が固定されていても、 Θ 2の時刻歴のみを変更し、打ち上げにおける 羽根部 110の切り返しのタイミングと打ち下ろしにおける切り返しのタイミングとを異な らせることにより、羽根部 110に上下方向および前後方向における加速度を生じさせ ることができる。また、左の羽根部 110に生じる加速度と右の羽根部 110に生じる加 速度とを異ならせることによって、浮上移動装置 100の姿勢を左または右に傾けるこ と、ならびに、浮上移動装置 100が左方向または右方向へ旋回することが可能にな る。 [0173] (3D space movement) As described above, even if the stroke angle of each of the left and right blade portions 110, that is, the amplitude of θ 1 is fixed, only the time history of Θ 2 is changed, and the blade portion at launch is changed. By making the timing of turning back 110 different from the timing of turning back down, it is possible to cause the blade portion 110 to generate acceleration in the vertical direction and the front-rear direction. In addition, by making the acceleration generated in the left blade 110 different from the acceleration generated in the right blade 110, the levitation moving device 100 can be tilted to the left or right, and the levitation moving device 100 can be moved to the left. It is possible to turn right or left.
[0174] 《制御の詳細〉〉  [0174] <Details of control >>
以下、図 33に示す前述の(1)に記載の羽ばたき方を捻り先行切り返し (以下、単に 、「先行切り返し」という。)と言い、図 34に示す前述の(2)に記載の羽ばたき方を捻り 遅れ切り返し (以下、単に、「遅れ切り返し」という。)と言い、図 22に示すホバリング時 の羽ばたき方を中央切り返しと言うものとする。  Hereinafter, the way of flapping described in the above (1) shown in FIG. 33 is referred to as twisted leading back (hereinafter simply referred to as “leading back”), and the way of flapping described in (2) shown in FIG. It is called twist-delay cutback (hereinafter simply referred to as “delay cutback”), and the flapping method during hovering shown in FIG. 22 is called center cutback.
[0175] また、ホバリング、 Z軸方向における並進運動、および Y軸方向における並進運動 は、それぞれ、左右対称である。したがって、羽根部の動作も、左右対称である。そ のため、左右対称な動作のうちの左の羽根部 110の動作についてのみの説明がなさ れるものとする。  [0175] The hovering, the translational motion in the Z-axis direction, and the translational motion in the Y-axis direction are respectively left-right symmetric. Therefore, the operation of the blade is also symmetrical. For this reason, only the operation of the left blade portion 110 among the symmetrical operations will be described.
[0176] <ホバリング >  [0176] <Hovering>
図 22には、ホバリング時の羽ばたき方が示されている。図 22においては、回転角 θ 1および Θ 2の時刻歴カ 羽根部 110の断面の時刻歴とともに示されている。このと きの浮上力は自重と釣り合っており、前後方向への推進力はゼロである。  Figure 22 shows how to flapping during hovering. In FIG. 22, the time history of the rotation angles θ 1 and Θ 2 is shown together with the time history of the cross section of the blade portion 110. The levitation force at this time is balanced with its own weight, and the propulsive force in the front-rear direction is zero.
[0177] <Z軸方向の並進制御 >  [0177] <Translation control in the Z-axis direction>
図 33には、 Z軸に沿った上方への移動、すなわち上昇のための羽ばたき方が示さ れている。図 34には、 Z軸に沿った下方への移動、すなわち下降のための羽ばたき 方が示されている。図 33および図 34においては、回転角 θ 1および Θ 2の時刻歴が 、羽根部 110の断面の時刻歴とともに示されている。なお、左右の羽根部 110は、 Y Z平面を対称面とする鏡面対称の動作を行なう。  Figure 33 shows how to move upward along the Z axis, ie flapping for ascent. Fig. 34 shows how to move downward along the Z-axis, that is, how to flap for lowering. 33 and FIG. 34, the time histories of the rotation angles θ 1 and Θ 2 are shown together with the time history of the cross section of the blade portion 110. Note that the left and right blade portions 110 perform mirror-symmetric operations with the Y-Z plane as the symmetry plane.
[0178] 図 33に示す動作は、前述の(1)に記載の先行切り返し動作であり、図 34に示す動 作は、前述の(2)に記載の遅れ切り返し動作である。これらの動作の際の前後方向 における加速度は、図 35Aに示されるとおりゼロである。 The operation shown in FIG. 33 is the preceding switching operation described in (1) above, and the operation shown in FIG. The operation is the delayed switching operation described in (2) above. The acceleration in the longitudinal direction during these movements is zero as shown in Figure 35A.
[0179] <Y軸方向の並進制御 >  [0179] <Y axis translation control>
図 35Βおよび図 36Αには、前方へ移動するための羽ばたき方が示され、図 35Cお よび図 36Βには、後方へ移動するための羽ばたき方が示されている。なお、左右の 羽根部 110は、 ΥΖ平面を対称面として、鏡面対称の動作を行なう。  Figures 35 and 36 show how to flutter forward, and Figures 35C and 36 show how to flutter backward. Note that the left and right blade portions 110 perform mirror-symmetric operations with the heel plane as a symmetry plane.
[0180] 前方への移動の際には、打ち上げ終端を含む期間での切り返しにおいて、前述の  [0180] When moving forward, in the turn-back in the period including the launch end,
(1)に記載の先行切り返し動作が行なわれ、打ち下ろし終端を含む期間での切り返 しにおレ、て、前述の(2)に記載の遅れ切り返し動作が行なわれる。  The preceding switching operation described in (1) is performed, and the delayed switching operation described in (2) is performed in the switching including the down end.
[0181] 後方への移動の際には、打ち上げの終端を含む期間での切り返しにおいて、前述 の(2)に記載の遅れ切り返し動作が行なわれ、打ち下ろしの終端を含む期間での切 り返しにおいて、前述の(1)に記載の先行切り返し動作が行なわれる。  [0181] When moving backwards, the delay switching operation described in (2) above is performed in the switching in the period including the end of the launch, and the switching in the period including the end of the downing is performed. In step S1, the preceding switching operation described in (1) above is performed.
[0182] なお、前述の通り、遅れ切り返しの際に浮上力は減少し、先行切り返しの際に浮上 力は増加するため、 Υ軸方向の並進運動において、前述の(1)および(2)に記載の 動作により生じる浮上力同士を相殺することは可能である。すなわち、浮上移動装置 100は、高度を保ったまま、前後方向へ移動することが可能である。  [0182] As described above, the levitation force decreases at the time of delayed turnover and the levitation force increases at the time of advance turnover. Therefore, in the translational motion in the axial direction, the above (1) and (2) It is possible to offset the levitation forces generated by the described operations. That is, the rising and moving apparatus 100 can move in the front-rear direction while maintaining altitude.
[0183] <Ζ軸周り回転制御 >  [0183] <Rotation control around shaft axis>
Ζ軸周りに正方向の回転、すなわち左への旋回を行なうためには、左の羽根部 110 が後退のための羽ばたき方で動作し、右の羽根部 110が前進のための羽ばたき方で 動作すればよい。  In order to rotate in the positive direction around the heel axis, that is, to turn left, the left wing 110 operates in the manner of flapping for retreating, and the right wing 110 is operated in the manner of flapping for advancement. do it.
[0184] Ζ軸周りに負方向の回転、すなわち右への旋回を行なうためには、左の羽根部 110 が前進のための羽ばたき方で動作し、右の羽根部 110が後退のための羽ばたき方で 動作すればよい。  [0184] In order to rotate in the negative direction around the heel axis, that is, to turn to the right, the left wing 110 operates in the manner of flapping for forward movement, and the right wing 110 is flapping for backward movement. It only has to work.
[0185] いずれの場合においても、上述のように、左および右の羽根部 110による浮上力同 士は相殺され得るものであるため、高度が維持された状態で、浮上移動装置 100の Ζ軸周りの回転が行なわれる。  [0185] In any case, as described above, the levitation force due to the left and right blades 110 can be canceled out, so that the vertical axis of the ascent movement device 100 can be maintained with the altitude maintained. Around rotation is performed.
[0186] <Χ軸方向の並進制御 >  [0186] <Translation control in the axial direction>
左方への移動を行なうためには、右の羽根部 110が上昇のための動作をし、左の 羽根部 110が下降のための動作をすればよい。これにより、浮上移動装置 1は、左の 羽根部 110が右の羽根部 110よりも下側に位置するように姿勢を変更し、それによりTo move to the left, the right wing 110 moves up and It is only necessary that the blade part 110 operates to descend. As a result, the rising and moving apparatus 1 changes the posture so that the left wing portion 110 is positioned below the right wing portion 110, thereby
、浮上力のベクトルの先端が鉛直上方向きの状態から右側に傾く。これにより、浮上 移動装置 100を左方へ移動させる力が生じる。 The tip of the levitation force vector is tilted to the right from the vertically upward state. As a result, a force for moving the rising and moving apparatus 100 to the left is generated.
[0187] なお、このとき、浮上力の低下が起こることがあり得るため、 X軸方向の並進制御と Z 軸方向の上方への移動のための制御とを併せて行なうことが望ましい。  [0187] At this time, since the levitation force may be reduced, it is desirable to perform both the translation control in the X-axis direction and the control for the upward movement in the Z-axis direction.
[0188] <制御の変更方法 >  [0188] <How to change control>
以上により、切り返しのタイミングが異なる 3種類の羽ばたき方、すなわち、先行切り 返し、遅れ切り返し、および中央切り返しを使い分けることで、浮上移動装置 100は 空間を自在に移動することができる。  As described above, the rising and moving apparatus 100 can freely move in the space by properly using the three types of flapping, which are different in the timing of the return, that is, the advance return, the delayed return, and the center return.
[0189] なお、切り返しのタイミングが異なる 3種類の羽ばたき方は、いずれも、羽根部 110 の前後方向の往復運動の終端の前から後にかけての所定期間内に行なわれる。そ のため、羽ばたき運動のストロークの中心の前から後にかけての所定期間、すなわち ストローク角 α =0° の前から後にかけての所定期間内においては、回転角 Θ 1およ び Θ 2の値は、その速度および加速度を含めて同一である。したがって、上記のよう に、回転角 θ 1および Θ 2が共通している期間内に羽ばたき方の変更を行なうのであ れば、羽根部 110の動作を何ら補間することなぐ機械的に次の羽ばたき方を選択 するだけで、羽根部 110の動作に不連続性を生じさせることなぐある羽ばたき方から 他の羽ばたき方へ円滑に遷移することが可能である。 [0189] Note that all three types of flapping methods with different turn-back timings are performed within a predetermined period from before to after the end of the reciprocating motion of the blade portion 110 in the front-rear direction. For this reason, the rotation angles Θ 1 and Θ 2 have values of a predetermined period from before to after the center of the flapping stroke, that is, within a predetermined period from before to after the stroke angle α = 0 °. , Including its speed and acceleration. Therefore, as described above, if the flapping method is changed within a period in which the rotation angles θ 1 and Θ 2 are common, the next flapping is mechanically performed without any interpolation of the operation of the vane portion 110. It is possible to make a smooth transition from one flapping method to another flapping method that does not cause discontinuity in the operation of the wing part 110 by simply selecting one.
[0190] <制御の選択 >  [0190] <Control selection>
上記のように、 Θ 1 = 0° の位相において羽ばたき方の変更を行なうのであれば、 羽ばたき方の状態を示す表現方法として、打ち下ろし、打ち上げ、およびそれぞれの 終端での切り返し、という区分を行なうことは適切ではなレ、。打ち下ろし後半および打 ち下ろし後の切り返しおよび打ち上げの前半を前方羽ばたき運動とし、打ち上げ後 半および打ち上げ後の切り返しおよび打ち下ろしの前半を後方羽ばたき運動として、 羽ばたき方を二つに区分することが合理的である。  As described above, if the flapping method is changed in the phase of Θ 1 = 0 °, the method of expressing the flapping state is divided into down, up, and turn-back at each end. That isn't appropriate. It is rational to divide the flapping method into two types, with the first half of the downhill and the first half of the launch after the downhill as the front flapping motion, and the first half of the launch and the first half after the uplift as the rear flapping motion. Is.
[0191] すなわち、左および右の羽根部 110における前方羽ばたき運動および後方羽ばた き運動において、それぞれ、中央切り返し、先行切り返し、および遅れ切り返しの選 択を行なうことによって、最も簡便に、羽ばたき方の制御を行なうことができる。前述の 説明に基づいた浮上移動装置の羽ばたき方に対応した選択肢力 表 2に示されてい る。 [0191] That is, in the forward and backward flapping motions in the left and right blade portions 110, selection of center switching, leading switching, and delayed switching is performed, respectively. By making the selection, it is possible to control the manner of flapping most simply. Table 2 shows the options for the flapping movement of the rising and moving device based on the above explanation.
[表 2] [Table 2]
Figure imgf000045_0001
<補足事項〉
Figure imgf000045_0001
<Supplementary information>
なお、本項目においては、最も簡便に位置制御を実現する手法の一例が記載され ているが、本発明の羽ばたき方は本項目の羽ばたき方に限定されるものではない。 たとえば、本実施の形態においては、回転角 θ 1および Θ 2の角速度は、切り返しの 期間を除いて略一定であるものとされている。つまり、羽根部 110の往復運動は、図 44に示すように、角速度が一定である打ち上げおよび打ち下ろしの運動と、これに 連続する、角速度が変化する切り返しの運動、すなわち往復運動の運動方向を反転 させるための運動とからなるものである。切り返しの運動の角速度は、打ち上げの運 動の角速度および打ち下ろしの運動の角速度のそれぞれに連続するように変化する 。この切り返しの運動としては、例えば 1変数の三角関数等が挙げられる。し力 なが ら、回転角 θ 1および Θ 2の角速度を変化させることによって、周囲流体から受ける反 作用を変化させて、浮上移動装置 100を移動させる手法が用いられてもよい。 In this item, an example of a method for realizing the simplest position control is described, but the flapping method of the present invention is not limited to the flapping method of this item. For example, in the present embodiment, the angular velocities of the rotation angles θ 1 and Θ 2 are assumed to be substantially constant except for the turn-back period. That is, as shown in FIG. 44, the reciprocating motion of the blade portion 110 includes the up and down motion with a constant angular velocity, and the continuous reversing motion with a changing angular velocity, that is, the reciprocating motion direction. It consists of a movement to reverse. The angular velocity of the turn-back motion changes continuously to the angular velocity of the launch motion and the angular velocity of the down-motion. An example of this reversal motion is a one-variable trigonometric function. Shiga Naga Therefore, a method of moving the rising and moving apparatus 100 by changing the reaction received from the surrounding fluid by changing the angular velocities of the rotation angles θ 1 and Θ 2 may be used.
[0194] また、本項目においては、説明の簡便のため、 3種類の羽根部 110の切り返しのパ ターンの組み合わせによって、すべての羽ばたき方が表現される手法が用いられて いる力 この手法は、羽ばたき方の表現の一例であり、本発明の羽ばたき方は、前述 の手法によって表現される羽ばたき方に限定されない。  [0194] Also, in this item, for simplicity of explanation, a method is used in which all the flapping methods are expressed by combining the three types of blade 110 turning patterns. This is an example of how to flapping, and the flapping method of the present invention is not limited to the flapping method expressed by the above-described method.
[0195] たとえば、回転角 θ 1および Θ 2のパターンが多数存在する羽ばたき方の表現手法 が用いられてもよい。すなわち、先行切り返しおよび遅れ切り返しのタイミングが複数 種類ある羽ばたき方、または、切り返しのタイミングを連続的に自由に変更できる羽ば たき方の表現手法が用いられてもよい。逆に、中央切り返しは、先行切り返しと遅れ 切り返しとを交互に繰り返す羽ばたき方の表現手法が用いられてもよい。このような羽 ばたき方の表現手法であれば、中央切り返しのパターンのためのデータをメモリに記 憶しておく必要が無いため、回転角 θ 1および Θ 2のパターン数を低減させることが できる。  [0195] For example, a flapping expression method in which many patterns of rotation angles θ 1 and Θ 2 exist may be used. That is, there may be used a flapping method having a plurality of types of flapping timings for leading and delaying flapping, or a flapping method for representing flapping methods that can continuously and freely change the flapping timing. Conversely, the center cut-back may use a flapping expression method that alternately repeats the preceding cut-back and the delayed cut-back. With such a flapping method, it is not necessary to store the data for the center cut pattern in the memory, so the number of rotation angles θ 1 and Θ 2 can be reduced. it can.
[0196] また、図 22および図 33〜図 36に示される回転角 Θの時刻歴は、図 19および図 20 に表わされる構成を有する浮上移動装置 100の回転角 Θの一例である。実際には、 羽根部 110を駆動するメカニズムに応じて、そのメカニズムを制御する各種パラメ一 タが、前述の羽根部 110の先行切り返しおよび遅れ切り返しを実現するように設定さ れるのであれば、回転角 Θの時刻歴は、図 22および図 33〜図 36に示される回転角 Θの時刻歴に限定されない。  [0196] The time history of the rotation angle Θ shown in Fig. 22 and Figs. 33 to 36 is an example of the rotation angle Θ of the rising and moving apparatus 100 having the configuration shown in Figs. In practice, depending on the mechanism that drives the blade 110, if the various parameters that control the mechanism are set to realize the preceding and delayed switching of the blade 110, the rotation The time history of the angle Θ is not limited to the time history of the rotation angle Θ shown in FIG. 22 and FIGS.
[0197] (位置検出センサ)  [0197] (Position detection sensor)
位置検出センサ 160は、本体 101に固定されている。そのため、位置検出センサ 1 60によって計測された位置および姿勢は、浮上移動装置 100の位置および姿勢そ のものとなる。位置検出センサ 160は、図 37に示すように、計測された位置および姿 勢のデータを後述する中央演算装置 151に与える。このような機能を実現するため のセンサは、技術の進展により変化するものであり、本発明の本質に関わるものでは ないため、いかなるものであってもよい。また、前述の姿勢を検出するためのセンサの 一例としては、磁気と加速度との組み合せで、 0. 5。 程度の姿勢の変化を検出する ことができるものが市販されている。たとえば、 GPS (Global Positioning System)に よって lm程度の誤差で位置検出を行うことができる。また、近年、 UWB(Ultra Wide Band)のような、通信に用いる電波を利用して距離計測を行う技術も開発されている The position detection sensor 160 is fixed to the main body 101. Therefore, the position and posture measured by the position detection sensor 160 are the position and posture of the rising and moving apparatus 100 itself. As shown in FIG. 37, the position detection sensor 160 provides the measured position and attitude data to the central processing unit 151 described later. The sensor for realizing such a function may be any sensor because it changes with the progress of technology and does not relate to the essence of the present invention. As an example of the sensor for detecting the above-mentioned attitude, a combination of magnetism and acceleration is 0.5. Detect changes in posture What can be done is commercially available. For example, GPS (Global Positioning System) can be used for position detection with an error of about lm. In recent years, technologies such as UWB (Ultra Wide Band) have been developed to measure distances using radio waves used for communication.
[0198] (制御回路) [0198] (Control circuit)
制御回路 150は、図 37Aおよび図 37Bに示すように、中央演算装置 151 (Central Processing Unit)、中央演算装置 151の指令により上および下部超音波モータ 12 0および 130を駆動するドライバ 152、ならびに、ドライバ 152に高電圧を供給する昇 圧回路 153等を有している。  As shown in FIGS. 37A and 37B, the control circuit 150 includes a central processing unit 151 (Central Processing Unit), a driver 152 that drives the upper and lower ultrasonic motors 120 and 130 according to a command from the central processing unit 151, and A booster circuit 153 for supplying a high voltage to the driver 152 is included.
[0199] <制御回路の動作 > [0199] <Control circuit operation>
制御回路 150には、オペレータ 210が操作するコントローラ 200から通信装置 170 へ運動指令が与えられる。運転指令は、一時記憶装置(以後、「RAM (Random Acc ess Memory)」と言う。) 155に格納される。中央演算装置 151は、 RAM155に記憶 された運動指令に基づいて、羽ばたき方のデータを固定記憶装置(以後、「ROM (R ead Only Memory)」と言う。 ) 154力ら得る。その後、中央演算装置 151は、その羽 ばたき方のデータをドライバ 152に与える。それにより、浮上移動装置 100は、前述 の前後左右上下方向の並進移動または鉛直を回転軸とする回転のいずれ力を行な う。  A motion command is given to the control circuit 150 from the controller 200 operated by the operator 210 to the communication device 170. The operation command is stored in a temporary storage device (hereinafter referred to as “RAM (Random Access Memory)”) 155. Based on the motion command stored in RAM 155, central processing unit 151 obtains flapping data from a fixed storage device (hereinafter referred to as “ROM (Read Only Memory)”). After that, the central processing unit 151 gives the flapping data to the driver 152. As a result, the rising and moving apparatus 100 performs either the aforementioned translational movement in the front / rear, left / right, up / down direction, or rotation about the vertical axis.
[0200] <中央演算装置 >  [0200] <Central processing unit>
中央演算装置 151は、前述の運動指令、 ROM154および RAMI 55の情報を用 いて、ドライバ 152に PWM (Pulse Width Modulation)信号および回転方向制御信 号を出力する。これにより、オペレータ 210がコントローラ 200を用いて浮上移動装置 100へ与えた運動指令に応じて超音波モータ 120おび 130が動作する。その結果、 運転指令に対応する羽ばたき方が実現される。なお、羽ばたきの往復運動の周期は 、反復タイマ 156を用いて決定される。  The central processing unit 151 outputs a PWM (Pulse Width Modulation) signal and a rotation direction control signal to the driver 152 using the above-described motion command, information of the ROM 154 and RAMI 55. As a result, the ultrasonic motors 120 and 130 operate in accordance with the motion command given by the operator 210 to the rising and moving apparatus 100 using the controller 200. As a result, a flapping method corresponding to the operation command is realized. Note that the period of the reciprocating motion of the flapping is determined using the repetition timer 156.
[0201] <反復タイマ >  [0201] <Repetition timer>
中央演算装置 151は、図 37Aおよび図 37Bに示すように、反復タイマ 156を内蔵し てレヽる。反復タイマ 156は、习习ばたき運動の位相ゆとして、 0. 5〜0. 5の値を 50H zの繰り返し周期で、中央演算装置 151に出力する。ただし、羽ばたき運動の位相 φ 、 -0. 5からカウントアップされ、 0. 5になると、再度、位相 φの値が一0. 5から力 ゥントアップされるものとする。この反復タイマ 156の 1周期に対応して、羽根部 110が 往復運動の中央位置よりも前方に位置する前方羽ばたき運動、および、羽根部 110 が往復運動の中央位置よりも後方に位置する後方羽ばたき運動のそれぞれが行な われる。すなわち、反復タイマ 156の 1周期が羽ばたき運動の周期の 2倍に対応する 。本実施の形態においては、位相 φが正であれば、浮上移動装置 100は後方羽ば たき運動を行なレ、、位相 Φが負であれば浮上移動装置 100は前方羽ばたき運動を 行なうものとする。近年、機器制御に用いられているマイクロコントローラの多くには、 本項で説明されている反復タイマとほぼ同様の、オートリロードタイマと呼ばれる機能 が含まれており、これを用いることで、最も簡便に本項の反復タイマの機能を実現す ること力 Sできる。 The central processing unit 151 includes a repeat timer 156 as shown in FIGS. 37A and 37B. The repetition timer 156 sets the value of 0.5 to 0.5 as 50H as the phase of the flapping motion. Output to the central processing unit 151 at a repetition cycle of z. However, it is assumed that the phase φ of the flapping motion is counted up from −0.5, and when the value reaches 0.5, the value of the phase φ is again increased from 0.5. Corresponding to one cycle of the repetitive timer 156, the front flapping motion is such that the blade portion 110 is positioned forward of the center position of the reciprocating motion, and the rear flapping motion is determined such that the blade portion 110 is positioned behind the central position of the reciprocating motion. Each exercise is performed. That is, one cycle of the repeat timer 156 corresponds to twice the cycle of the flapping motion. In the present embodiment, if the phase φ is positive, the rising and moving apparatus 100 performs the backward flapping motion, and if the phase Φ is negative, the rising and moving apparatus 100 performs the forward flapping motion. To do. In recent years, many microcontrollers used for device control include a function called auto-reload timer, which is almost the same as the repeat timer described in this section. Therefore, it is possible to realize the repeat timer function in this section.
[0202] < ROMに格納された羽ばたき方のデータ >  [0202] <Flapping data stored in ROM>
ROM154は、羽ばたき方のデータを格納している。羽ばたき方のデータは、ドライ ノく 152へ送信される PWM制御信号のデューティ比の時刻歴のデータである。なお、 超音波モータ 120および 130には、周波数が 250KHzでありデューティ比が 50%に 固定された駆動電圧が印加される。一方、図 38に示すように、ドライバ 152へ送信さ れる PWM制御信号のデューティ比とは、デューティ比が 50%に固定された 250KH zの駆動電圧の〇N期間と OFF期間との和に対する〇N期間の比率である。  The ROM 154 stores flapping data. The flapping data is the time history data of the duty ratio of the PWM control signal transmitted to the dryer 152. The ultrasonic motors 120 and 130 are applied with a driving voltage having a frequency of 250 KHz and a fixed duty ratio of 50%. On the other hand, as shown in FIG. 38, the duty ratio of the PWM control signal transmitted to the driver 152 is the O to the sum of the O period and OFF period of the 250 kHz drive voltage with the duty ratio fixed at 50%. N period ratio.
[0203] すなわち、前述の先行切り返し、遅れ切り返し、および中央切り返しの 3つのモード に対応する羽ばたき方のデータは、羽ばたき運動の位相 φに対応したドライバ 152 へ送信される PWM制御信号のデューティ比として、 ROM154に予め格納されてい る。なお、ドライバ 152へ送信される PWM制御信号のデューティ比は、 Dutyl ( φ、 MODE)および Duty2 ( 0、 MODE)で示される。ただし、表 2に示すように、—0. 5 ≤ φ < 0. 5において、 MODE= lが先行切り返しであり、 MODE = 0が中央切り返 しであり、 M〇DE= _ 1が遅れ切り返しであるものとする。  [0203] That is, the flapping data corresponding to the above-mentioned three modes of the preceding switching, the delayed switching, and the center switching is the duty ratio of the PWM control signal transmitted to the driver 152 corresponding to the flapping motion phase φ. , Stored in advance in ROM154. Note that the duty ratio of the PWM control signal transmitted to the driver 152 is indicated by Dutyl (φ, MODE) and Duty2 (0, MODE). However, as shown in Table 2, when —0.5 ≤ φ <0.5, MODE = l is the leading switch, MODE = 0 is the center switch, and M〇DE = _ 1 is the delayed switch. Suppose that
[0204] 図 39〜図 41には、それぞれ、後方での切り返し動作行なう場合の、中央切り返し、 先行切り返し、および遅れ切り返しにおける Dutylおよび Duty2の値が示されてい る。ただし、 Dutylおよび Duty2が負の値であれば、羽根部 110は、往復運動の中 央位置を基準にして、後方から前方へ移動する動作が行なわれてレ、ることを意味す る。なお、本実施の形態においては、各 Dutyの関数は、羽ばたき動作が前後方向 に対して垂直な面に関して対称であるため、 Dutyl (- φ ) = - 1 X Dutyl (0. 5 +[0204] FIGS. 39 to 41 show the values of Dutyl and Duty2 in the center switching, the leading switching, and the delayed switching when the backward switching operation is performed, respectively. The However, if Dutyl and Duty2 are negative values, it means that the blade 110 is moved from the rear to the front with respect to the center position of the reciprocating motion. In the present embodiment, each Duty function is symmetrical with respect to a plane perpendicular to the front-rear direction, so that Dutyl (-φ) =-1 X Dutyl (0.5 +
Φ )と表現され得る。 Φ)).
[0205] すなわち、符号変換のみによって、 φが負の領域での各 Duty値は、 φが正の領域 での各 Dutyの関数を用いて算出される。そのため、上記の各 Dutyの関数は、 φが 正である領域のみ、 ROM154に格納されてレ、る。これによれば、 ROM154に格納さ れている各 Duty関数のデータ量を半分に減らすことができる。よって、本実施の形 態においては、各 Duty関数のうち φが正の領域のみが示される。  That is, only by code conversion, each Duty value in a region where φ is negative is calculated using a function of each Duty in a region where φ is positive. Therefore, the above Duty functions are stored in the ROM 154 only in the area where φ is positive. According to this, the data amount of each duty function stored in the ROM 154 can be reduced by half. Therefore, in this embodiment, only the region where φ is positive is shown in each duty function.
[0206] なお、右の羽根部 110と左の羽根部 110とは Z軸に対して鏡面対称であるため、前 述の座標系の X軸の方向の正と負とを反転させた左手系の座標が採用されれば、右 の羽根部 110の制御においても前述と同様の Dutylおよび Duty2を用いることがで きる。  [0206] Since the right wing 110 and the left wing 110 are mirror-symmetric with respect to the Z axis, the left-handed system in which the positive and negative in the X-axis direction of the coordinate system described above are reversed is used. If these coordinates are adopted, the same Dutyl and Duty 2 as described above can be used in the control of the right blade 110.
[0207] また、上部ロータ 122を駆動するための電圧の Dutylのグラフは、図 39〜図 41の いずれにおいても同一のグラフになっている力 S、下部ロータ 132を駆動するための電 圧の Duty2のグラフは、図 39〜図 41において異なったグラフになっていることが分 力る。また、図 22、図 33、および図 34から分かるように、上部ロータ 122の回転角 Θ 1のグラフは、羽ばたき方(中央切り返し、先行切り返し、および遅れ切り返し)が変更 されても同一である力 下部ロータ 132の回転角 Θ 2のグラフは、羽ばたき方(中央切 り返し、先行切り返し、および遅れ切り返し)に応じて異なっている。これによれば、上 部ロータ 122の振幅は常に一定値に固定されている力 下部ロータ 132の振幅は羽 ばたき方(中央切り返し、先行切り返し、および遅れ切り返し)に応じて異なっているこ とが分かる。  [0207] In addition, the graph of Dutyl of the voltage for driving the upper rotor 122 shows the force S and the voltage for driving the lower rotor 132 which are the same graphs in any of Figs. It can be seen that the graph of Duty2 is different from that in Figs. In addition, as can be seen from FIGS. 22, 33, and 34, the graph of the rotation angle Θ 1 of the upper rotor 122 has the same force even when the flapping method (center turning, leading turning, and delayed turning) is changed. The graph of the rotation angle Θ 2 of the lower rotor 132 differs depending on how the wings flutter (center turning, leading turning, and delayed turning). According to this, the amplitude of the upper rotor 122 is always fixed at a constant value. The amplitude of the lower rotor 132 varies according to the flapping method (center turning, preceding turning, and delayed turning). I understand.
[0208] く中央演算装置の動作 >  [0208] Operation of central processing unit>
中央演算装置 151は、位相 φの符号に基づいて、現在の羽ばたき方が前方羽ば たき運動である力、または、後方羽ばたき運動であるかを判断する。その後、中央演 算装置 151は、 ROM154に格納されている表 2に示すデータに基づいて、羽ばたき 方の状態を判断するとともに、通信装置 170によって得られた RAMI 55に格納され てレ、る運動指令に応じて、前述の MODEの値を判断する。 Based on the sign of phase φ, central processing unit 151 determines whether the current flapping is a force that is a forward flapping motion or a backward flapping motion. Thereafter, the central processing unit 151 flapping based on the data shown in Table 2 stored in the ROM 154. And the value of MODE described above is determined in accordance with the motion command stored in the RAMI 55 obtained by the communication device 170.
[0209] さらに、中央演算装置 151は、前述の位相 φの値に基づいて、 ROM154に格納さ れた Dutylおよび Duty2の値を得る。この値の絶対値が、ドライバ 152へ送信される PWM制御信号のデューティ比である。また、この値の符号が、ドライバ 152へ送信さ れる、上部および下部超音波モータ 120および 130のそれぞれの回転方向である。 前者は、例えば ABS (Duty)というコマンドで表現され、後者は、例えば SIGN (Dut y)というコマンドで表現される。これらのコマンドは、マイクロコントローラに内蔵されて いる。これらのコマンドを用いた演算は、一般的なマイクロコントローラにおいて容易 に実行されるものである。  [0209] Further, central processing unit 151 obtains the values of Dutyl and Duty2 stored in ROM 154 based on the value of phase φ described above. The absolute value of this value is the duty ratio of the PWM control signal transmitted to the driver 152. The sign of this value is the direction of rotation of each of the upper and lower ultrasonic motors 120 and 130 transmitted to the driver 152. The former is represented by a command such as ABS (Duty), and the latter is represented by a command such as SIGN (Duty). These commands are built into the microcontroller. Arithmetic using these commands is easily performed in a general microcontroller.
[0210] 中央演算装置 151は、前述のデューティ比に基づいて、羽ばたき方に対応する P WM制御のための ON/OFF信号をドライバ 152に出力するとともに、位相 φの正ま たは負に応じた回転方向制御信号をドライバ 152に出力する。  [0210] Based on the above-described duty ratio, central processing unit 151 outputs an ON / OFF signal for PMW control corresponding to the flapping method to driver 152, and according to whether phase φ is positive or negative The rotation direction control signal is output to the driver 152.
[0211] 本実施の形態では、振動板 1211の共振周波数が 250kHzであるため、たとえば、 共振周波数が 2. 5kHzである PWM制御が実行されれば、 100段階の超音波モータ の制御を行なうことが可能である。  [0211] In the present embodiment, since the resonance frequency of diaphragm 1211 is 250 kHz, for example, if PWM control with a resonance frequency of 2.5 kHz is executed, 100-step ultrasonic motor control is performed. Is possible.
[0212] <ドライバの動作 >  [0212] <Driver operation>
ドライバ 152は、中央演算装置 151から与えられた PWM制御信号の ONZOFF および回転方向制御信号に応じて、超音波モータ 120を回転 Z停止、および、正転 Z反転させる。  The driver 152 stops the rotation Z of the ultrasonic motor 120 and reverses it in the forward rotation Z in accordance with the ONZOFF of the PWM control signal and the rotation direction control signal given from the central processing unit 151.
[0213] 超音波モータ 120は自己位置保持機能を有するため、回転および停止の動作は、 PWMの ON/OFFに応じて後述の電力供給を ON/OFFすることによって、実現さ れる。  [0213] Since the ultrasonic motor 120 has a self-position holding function, the rotation and stop operations are realized by turning on / off power supply, which will be described later, according to the ON / OFF of the PWM.
[0214] また、図 9および図 13に示されるように、超音波振動子 121において、裏面電極 12 17に与えられる電位 φ Aの位相と表面電極 1216に与えられる電位 φ Bの位相との 差を変更することによって、上部ロータ 122の正回転と負回転との間の変更を行なう こと力 Sできる。  Further, as shown in FIG. 9 and FIG. 13, in the ultrasonic transducer 121, the difference between the phase of the potential φA applied to the back electrode 1217 and the phase of the potential φB applied to the front electrode 1216 By changing, the force S can be changed between the positive rotation and the negative rotation of the upper rotor 122.
[0215] ドライバ 152は、中央演算装置 151から PWM信号を受けて、電位 φ Aおよび φ Β のデータを作成する回路と、昇圧回路 153から供給される高圧電力を制御して、超 音波振動子 121の表面電極 1216および裏面電極 1217に電位 φ Αおよび φ Βを与 える回路と力 なる。前者は、一般的なタイマ回路や CPU (Central Processing Unit )を用いて容易に実現され得るものであり、後者は、たとえば、ハーフブリッジ回路を 用いて実現される。これは、 CMOS (Complementary Metal Oxide Semiconductor) 技術を用いて集積化され得るものであり、後述されるように、羽ばたき飛行という用途 に十分に適したものになり得るほど小型化および軽量化され得るものであり、市販さ れているものである。本発明者らの実験によれば、これらの回路は、 3mm X 3mm X 0. 85mmの小型パッケージに収められ得るものであり、そのパッケージの質量は約 2 5mgでめ [0215] The driver 152 receives the PWM signal from the central processing unit 151 and receives the potentials φ A and φ Β And a circuit for controlling the high voltage power supplied from the booster circuit 153 and applying the potentials φ Α and φ に to the surface electrode 1216 and the back electrode 1217 of the ultrasonic transducer 121. The former can be easily realized by using a general timer circuit or a CPU (Central Processing Unit), and the latter is realized by using, for example, a half bridge circuit. It can be integrated using CMOS (Complementary Metal Oxide Semiconductor) technology and, as will be described later, can be made smaller and lighter enough to be suitable for flapping flight applications. And are commercially available. According to the experiments of the present inventors, these circuits can be contained in a small package of 3 mm X 3 mm X 0.85 mm, and the weight of the package is about 25 mg.
一般的に、前者のプログラムは以下のように表される。  Generally, the former program is expressed as follows.
: Label  : Label
if (PWM = ON) then  if (PWM = ON) then
if (回転方向 =正方向) then  if (rotation direction = positive direction) then
φ Α= 1  φ Α = 1
φ Β= 1  φ Β = 1
φ Α= 0  φ Α = 0
φ Β = 0  φ Β = 0
end if  end if
if (回転方向 =逆方向) then if (rotation direction = reverse direction) then
Β= 1  Β = 1
φ Α= 1  φ Α = 1
φ Β = 0  φ Β = 0
φ Α= 0  φ Α = 0
end if  end if
end if  end if
goto Label  goto label
但し、これらは簡易に前者回路の動作を表現するための一例であり、実際のプログ ラムにおいては、 φ Aおよび φ Bのそれぞれが 250kHzの矩形波となるようなタイミン グ調整が行われるため、ダミーの実行文の揷入等が必要になる。 However, these are examples for simply expressing the operation of the former circuit. In the ram, timing adjustment is performed so that each of φ A and φ B becomes a 250 kHz rectangular wave, so it is necessary to insert a dummy executable statement.
[0217] <昇圧回路 >  [0217] <Boost circuit>
昇圧回路 153は、電源 190の電圧(3V)を、超音波モータの駆動のために必要な ± 15Vの電圧に変更して、 ± 15Vの電圧をドライバ 152に印加する。昇圧回路 153 としては、一般的な DC(Direct Current)—DCコンバータが用いられ、その一例とし て、 3mm X 3mm X 0. 85mmとレ、う小型パッケージが市販されている。昇圧回路 15 3の質量は約 25mgである。  The booster circuit 153 changes the voltage (3 V) of the power source 190 to a voltage of ± 15 V necessary for driving the ultrasonic motor, and applies a voltage of ± 15 V to the driver 152. As the booster circuit 153, a general DC (Direct Current) -DC converter is used. As an example, a small package of 3 mm × 3 mm × 0.85 mm is commercially available. The mass of the booster circuit 15 3 is about 25 mg.
[0218] くブロック図 >  [0218] Block diagram>
前述の制御の体系のブロック図が図 37Aに示されている。なお、 4つの超音波モー タの駆動方法は同一であるため、図 37Aには左の羽根部 110を駆動する上部超音 波モータ 120の制御体系のみが示され、他の制御体系は省略されている。また、図 3 7Bは、後述する図 42のフローチャートにおけるデータ処理の流れを説明するための 機能ブロック図である。  A block diagram of the control scheme described above is shown in Figure 37A. Since the driving methods of the four ultrasonic motors are the same, only the control system of the upper ultrasonic motor 120 that drives the left blade 110 is shown in FIG. 37A, and the other control systems are omitted. ing. FIG. 37B is a functional block diagram for explaining the flow of data processing in the flowchart of FIG. 42 described later.
[0219] <制御フローチャート >  [0219] <Control flowchart>
次に、図 42を用いて、浮上移動装置の制御のためのフローチャートの一例を説明 する。なお、このフローチャートは、一例であり、浮上移動装置 100のアプリケーション によって変更され得るものである。  Next, an example of a flowchart for controlling the rising and moving apparatus will be described with reference to FIG. This flowchart is an example, and can be changed by the application of the rising and moving apparatus 100.
[0220] なお、以下のフローチャートにおいて、反復タイマ 156は前述のオートリロードタイ マを用いて恒常的に動作しており、ステップ S1においては、 φ =0である状態から処 理が開始されるものとする。このとき、 α =0° であるものとする。  [0220] In the following flowchart, repetition timer 156 operates constantly using the above-described auto-reload timer, and in step S1, processing is started from a state where φ = 0. And At this time, α = 0 °.
[0221] ステップ Sl <浮上移動装置動作決定 >  Step 0 Sl
コントローラ 200から送信されたオペレータ 210の運動指令力 通信装置 170を通 じて RAMI 55へ伝送され、 RAMI 55内に格納される。  The motion command force of the operator 210 transmitted from the controller 200 is transmitted to the RAMI 55 through the communication device 170 and stored in the RAMI 55.
[0222] ステップ S2<羽ばたき状況検出 >  [0222] Step S2 <Flap status detection>
中央演算装置 151は、反復タイマ 156から送信されてきた位相 φの値のデータに 基づいて、浮上移動装置 100の現時刻での羽ばたき方の状態を認識する。具体的 には、中央演算装置 151は、位相 φの値が正であれば、浮上移動装置 100が後方 羽ばたき運動を行なっていると判断し、位相 φが負であれば、浮上移動装置 100が 前方羽ばたき運動を行なっていると判断する。 The central processing unit 151 recognizes the state of flapping at the current time of the rising and moving apparatus 100 based on the data of the value of the phase φ transmitted from the repetition timer 156. Specifically, the central processing unit 151 determines that the rising and moving apparatus 100 moves backward when the value of the phase φ is positive. If the phase φ is negative, it is determined that the rising and moving apparatus 100 is performing the forward flapping motion.
[0223] ステップ S3 <羽ばたきモード決定 >  [0223] Step S3 <Determine flapping mode>
中央演算装置 151は、上記運動指令に応じて表 2の行成分を選択し、また、上記 羽ばたき方の状態に応じて表 2の列成分を選択する。それにより、中央演算装置 15 1は、中央切り返し、先行切り返し、および遅れ切り返しの中からいずれか 1の羽ばた きモード、すなわち MODEの値を選択する。選択された羽ばたきモードのデータは、 RAMI 55に格糸内される。  The central processing unit 151 selects the row component of Table 2 according to the motion command, and selects the column component of Table 2 according to the flapping state. As a result, the central processing unit 151 selects one of the flapping modes, that is, the value of MODE, from among the center switching, the leading switching, and the delayed switching. The data of the selected flapping mode is stored in the RAMI 55.
[0224] ステップ S4<デューティ比決定 >  [0224] Step S4 <Duty ratio determination>
中央演算装置 151は、前述の羽ばたきモードのデータに基づいて、 ROM154に 格納された Dutyl ( φ、 MODE)および Duty2 ( φ、 MODE)のデータの中からドラ ィバ 152へ送信される PWM制御信号のデューティ比を選択する。  The central processing unit 151 is a PWM control signal transmitted to the driver 152 from the Dutyl (φ, MODE) and Duty2 (φ, MODE) data stored in the ROM154 based on the flapping mode data described above. Select the duty ratio.
[0225] ステップ S 5 <ドライバ駆動 >  [0225] Step S 5 <Driver drive>
中央演算装置 151は、上記 PWM制御信号のデューティ比の正または負に応じて 、回転方向制御信号をドライバ 152に出力するとともに、そのデューティ比の PWM信 号をドライバ 152に出力する。すなわち、 ABS (A)を Aの絶対値とし、 SIGN (A)を A の符号とすると、回転方向制御信号は SIGN (Duty)であり、デューティ比は ABS (D uty)である。なお、ここで、 Dutyは、上部および下部超音波モータ 120および 130 に対応してレ、る Duty 1 ( φ、 MODE)および Duty2 ( φ、 MODE)を意味する。  The central processing unit 151 outputs a rotation direction control signal to the driver 152 and outputs a PWM signal having the duty ratio to the driver 152 according to whether the duty ratio of the PWM control signal is positive or negative. That is, if ABS (A) is the absolute value of A and SIGN (A) is the sign of A, the rotation direction control signal is SIGN (Duty) and the duty ratio is ABS (Duty). Here, Duty means Duty 1 (φ, MODE) and Duty2 (φ, MODE) corresponding to the upper and lower ultrasonic motors 120 and 130.
[0226] ステップ S 6 <超音波モータ駆動 >  [0226] Step S 6 <Ultrasonic motor drive>
ドライバ 152は、上記回転方向制御信号に応じて、振幅が 30Vであり、かつ、周波 数が 250kHzである矩形波の電圧を表面電極 1216および裏面電極 1217に印加す る。これらの 2つの矩形波は、 ± 90° 位相が異なっている。具体的には、ドライバ 15 2は、超音波振動子 121の表面電極 1216に矩形波の電位 ci) Bを与え、また、超音 波振動子 121の裏面電極 1217に矩形波の電位 φ Αを与える。この矩形波の電位 (ί> Αの位相と矩形波の電位 φ Bの位相とが ± 90° ずれている。  In response to the rotation direction control signal, the driver 152 applies a rectangular wave voltage having an amplitude of 30 V and a frequency of 250 kHz to the front electrode 1216 and the rear electrode 1217. These two square waves differ in phase by ± 90 °. Specifically, the driver 152 applies a rectangular wave potential ci) B to the surface electrode 1216 of the ultrasonic transducer 121, and applies a rectangular wave potential φΑ to the back electrode 1217 of the ultrasonic transducer 121. give. The phase of this square wave potential (ί> と is out of phase with the phase of the square wave potential φ B by ± 90 °.
[0227] ステップ S7 <次回羽ばたきモード選択 >  [0227] Step S7 <Next flapping mode selection>
Φ =0またはゆ =ー0. 5の場合には、羽ばたき方の状態が変更されたことを意味 するため、再びステップ S Iの処理が実行され、運動指令の変更も含め、羽ばたきモ ードが更新される。 φ = 0または φ = _ 0. 5以外の場合には、羽ばたきモードは更新 されず、ステップ S4の処理が実行され、新たな位相 φが設定される。 If Φ = 0 or Yu = -0.5, it means that the flapping state has changed. Therefore, the processing of step SI is executed again, and the flapping mode is updated including the change of the motion command. In cases other than φ = 0 or φ = _ 0.5, the flapping mode is not updated, the process of step S4 is executed, and a new phase φ is set.
[0228] <補足 > [0228] <Supplement>
なお、上記指令の形態はあくまで説明のための一例であり、これに限定されない。 たとえば、速度指令が電圧値としてアナログ信号で与えられることにより、量子化誤差 のない滑ら力な速度指令が得られる手法が用いられてもよい。また、超音波モータの 駆動に必要な電圧は、技術の進歩によって変化し得るものである。たとえば、現行の 王 ΤΤΙ I'ransistor Transistor Logic)— IC (Integration し ircuit)や CPU (し entral Processing Unit)の駆動電圧である 3V以下で駆動し得る超音波モータが実現され れば、昇圧回路 153は不要となる。  In addition, the form of the said instruction | command is an example for description to the last, and is not limited to this. For example, a method may be used in which a speed command with a smooth force without quantization error is obtained by giving the speed command as an analog signal as a voltage value. In addition, the voltage required to drive an ultrasonic motor can change as technology advances. For example, if an ultrasonic motor that can be driven at 3 V or less, which is the drive voltage of the current IC (Integration and Ircuit) and CPU (and entral Processing Unit), is realized, the boost circuit 153 Is no longer necessary.
[0229] また、本実施の形態では、説明の簡便のため、フィードバック制御を行なわず、単 にコントローラ 200の指令によって羽ばたき方が一義的に選択される手法の説明が なされたが、浮上移動装置 100の制御手法は、前述の手法に限定されない。  [0229] Also, in the present embodiment, for simplicity of explanation, the feedback control is not performed, and the method of uniquely selecting the flapping method according to the command of the controller 200 has been described. The 100 control methods are not limited to the method described above.
[0230] たとえば、中央演算装置 151が位置検出センサ 160から位置および姿勢の情報を 得て、その情報に基づいて運動指令を新たに作成するフィードバック制御が用いら れてもよい。  [0230] For example, feedback control in which central processing unit 151 obtains position and orientation information from position detection sensor 160 and newly creates a motion command based on the information may be used.
[0231] さらに、本実施の形態では、説明の簡便のため、デューティ比に応じて超音波モー タ 120および 130の回転速度が一義的に決定されるという仮定の下に説明がなされ ているが、負荷の変動などによってはこの仮定が成り立たない場合も考えられる。こ の場合には、上部磁気エンコーダ 126の信号によって得られる上および下部超音波 モータ 120および 130の回転角 θ 1および Θ 2の値を参照して、デューティ比が調整 されてもよレ、。  Furthermore, in the present embodiment, for the sake of simplicity of explanation, the explanation is made under the assumption that the rotational speeds of ultrasonic motors 120 and 130 are uniquely determined according to the duty ratio. Depending on load fluctuations, this assumption may not be true. In this case, the duty ratio may be adjusted by referring to the values of the rotation angles θ 1 and Θ 2 of the upper and lower ultrasonic motors 120 and 130 obtained by the signal of the upper magnetic encoder 126.
[0232] なお、前述の浮上移動装置の制御においては、理想的には、高い機動力を得るた めの羽ばたき運動の制御に必要な演算時間が短いことが望ましい。また、浮上移動 装置は軽量であることが望ましい。このため、前述の羽ばたき運動を制御するァルゴ リズムも極力単純であることが望ましい。これらのことを考慮すると、高い機動力を有 する羽ばたき浮上移動装置に求められる要件は、単独性、連続性、選択性、独立性 、および単純性である。 [0232] Note that, in the above-described control of the rising and moving apparatus, ideally, it is desirable that the computation time required for controlling the flapping motion for obtaining high mobility is short. The rising and moving device should be lightweight. For this reason, it is desirable that the algorithm for controlling the flapping motion is as simple as possible. Considering these, the requirements for a flapping flying device with high mobility are the singleness, continuity, selectivity and independence. , And simplicity.
[0233] 単独性とは、流体力発生機構が設置されている胴体の姿勢に関わらず、当該流体 力発生機構が単独で流体力の方向を変更することができることを意味する。単独性 の欠如している浮上移動装置の例として、ロータが胴体に固定されているヘリコプタ 一が挙げられる。  [0233] Independence means that the fluid force generation mechanism can independently change the direction of the fluid force regardless of the posture of the body on which the fluid force generation mechanism is installed. An example of a rising and moving device lacking in isolation is a helicopter with a rotor fixed to the fuselage.
[0234] 連続性とは、羽ばたき運動の変更が、胴体に大きな加速度を生じさせずに、連続的 に行われることを意味する。  [0234] Continuity means that the flapping movement changes continuously without causing significant acceleration in the torso.
[0235] 選択性とは、羽ばたき運動の変更力 過去の羽ばたき運動の履歴に関わらず、独 立して行われることを意味する。選択性が欠如している浮上移動装置の例として、先 述の Ron Fearmgbによる MFI ( iicromechanical Flying Insect)力挙げられる。こ れは共振によって羽根部を駆動しているため、羽ばたき方を複数周期に渡って徐々 に変更することしかできない。  [0235] Selectivity means the ability to change the flapping movement independently of the flapping movement history of the past. An example of a rising and moving device that lacks selectivity is the MFI (iicromechanical Flying Insect) force by Ron Fearmgb described above. This is because the blades are driven by resonance, and the flapping method can only be changed gradually over a plurality of periods.
[0236] 独立性とは、流体力発生機構が生み出す流体力が、羽ばたき運動の変更の履歴 に影響されないことを意味する。独立性が欠如する具体的な場面として、以前の羽ば たき運動により生じた気流の影響を受ける現象などが挙げられる。  [0236] Independence means that the fluid force generated by the fluid force generation mechanism is not affected by the history of changes in flapping motion. A specific scene lacking independence is the phenomenon of being affected by airflow generated by the previous flapping movement.
[0237] 単純性とは、羽ばたき運動の変更を実現するためのアルゴリズムが極力単純である ことを意味する。  [0237] Simplicity means that the algorithm for realizing the flapping motion change is as simple as possible.
[0238] (高機動力要件の検討)  [0238] (Examination of high mobility requirements)
< <単独性 > >  <<Singleness>>
本実施の形態における羽ばたき浮上移動装置 100の制御は、表 2に示されるように 、全て、羽ばたき運動の両端における羽根部の捻り動作のタイミングの選択によって 行われる。これは、胴体の姿勢に拘束されないため、単独性が確保される。  As shown in Table 2, the control of the flapping rising and moving apparatus 100 in the present embodiment is all performed by selecting the timing of the twisting operation of the wings at both ends of the flapping motion. This is not constrained by the posture of the trunk, so that individuality is ensured.
[0239] より具体的には、図 35A、図 35B、および図 35Cに示される先行切り返しおよび遅 れ切り返しのうちの一方の羽ばたき方が選択されると、羽根部 110の加速度の水平 方向成分を独立して制御することが可能で、羽ばたき運動の 1周期における羽根部 1 10の加速度の水平方向成分の方向を前方および後方のいずれかに向けることがで きる。したがって、浮上移動装置は、本体部 (胴体) 101の姿勢を変化させることなぐ 羽根部 110の動作のみの変更によって、流体力の方向を変更することが可能である [0240] < <連続性 > > [0239] More specifically, when one of the leading flapping and the flapping flapping shown in Fig. 35A, Fig. 35B, and Fig. 35C is selected, the horizontal component of the acceleration of the wing part 110 is calculated. It can be controlled independently, and the direction of the horizontal component of the acceleration of the blade portion 110 in one cycle of the flapping motion can be directed either forward or backward. Therefore, the rising and moving apparatus can change the direction of the fluid force only by changing the operation of the blade 110 without changing the posture of the main body (body) 101. [0240] <<continuity>>
前述の羽根部 110の捻り、すなわち切り返しの動作は、羽ばたき運動における羽根 部 110の往復運動の始点または終点を含む特定期間においてのみ異なり、いずれ の羽ばたき方にぉレ、ても、羽ばたき運動の往復運動の中心位置を含む所定期間に おいては、羽根部 110の運動は同一である。つまり、複数種類の羽ばたき運動は、往 復運動の中心位置を含むタイミングにおいて、共通の動作をする。このため、羽ばた き運動中に羽ばたき方の変更がなされても、その羽ばたき方の変更が共通の動作を するタイミングにおいてなされるのであれば、 1の羽ばたき方力 他の羽ばたき方への 変化における羽根部 110の挙動は、連続的なものである。つまり、羽ばたき方の変更 はスムーズに行われる。  The above-described twisting of the wing part 110, that is, the turning-back operation, differs only in a specific period including the start or end point of the reciprocating motion of the wing part 110 in the flapping motion. In a predetermined period including the center position of the movement, the movement of the blade part 110 is the same. In other words, the multiple types of flapping movements perform a common action at the timing including the center position of the back and forth movement. Therefore, even if the flapping method is changed during the flapping exercise, if the flapping method changes at the same timing, a change in flapping force of 1 changes to another flapping method The behavior of the blade portion 110 at is continuous. In other words, the flapping method changes smoothly.
[0241] より具体的には、本実施の形態の浮上移動装置は、制御回路 150の ROM154が 、羽根部 110に羽ばたき運動をさせるための複数種類のデータ(表 2参照)を有し、 複数種類のデータに基づいてァクチユエータ(上部および下部ロータ 120および 13 0)を制御する。複数種類のデータのそれぞれは、羽根部 110の往復運動の 1周期の 動作を特定可能であり、複数種類のデータは、往復運動の 1周期の所定期間におい て、羽根部 110に共通の羽ばたき運動をさせるものである。具体的には、複数種類の データは、先行切り返しのためのデータ、中央切り返しのためのデータ、および遅れ 切り返しのためのデータ力 なる 3種類のデータであり、図 35Bおよび図 35Cならび に表 2によって表わされている羽ばたき方 (停空、上昇、下降、前進、後退、右移動、 左移動、右旋回、および左旋回)をさせるためのデータである。制御回路 150は、羽 根部 110の往復運動の中心位置を含む所定期間において、ァクチユエータ(ロータ 1 20, 130)が複数種類のデータのうちの 1のデータによって特定される羽ばたき運動 を羽根部 110にさせる制御からァクチユエータが複数種類のデータのうちの他のデ ータによって特定される羽ばたき運動を羽根部 110にさせる制御へ切り換える。  [0241] More specifically, in the rising and moving apparatus of the present embodiment, the ROM 154 of the control circuit 150 has a plurality of types of data (see Table 2) for causing the blade section 110 to perform a flapping motion. Based on the type of data, the actuators (upper and lower rotors 120 and 130) are controlled. Each of the multiple types of data can identify the movement of one cycle of the reciprocating motion of the blade 110, and the multiple types of data can be used for the flapping motion common to the blade 110 during a predetermined period of one cycle of the reciprocating motion. It is what makes you. Specifically, the multiple types of data are three types of data: data for leading back, data for center back, and data for delay back, as shown in Figures 35B and 35C and Table 2. Is the data for flapping (stopping, ascending, descending, advancing, retreating, moving to the right, moving to the left, turning to the right, and turning to the left). The control circuit 150 causes the blade unit 110 to perform the flapping motion specified by the data of one of a plurality of types of data to the blade unit 110 during a predetermined period including the center position of the reciprocating motion of the blade unit 110. The control is switched from the control for causing the blade unit 110 to perform the flapping motion specified by the other data among the plurality of types of data.
[0242] 上記の構成によれば、羽根部の運動に不連続な変化が生じることなぐ羽ばたき運 動の態様を変更することができる。そのため、羽ばたき運動の「連続性」が実現される [0243] また、羽根部は、 1のデータによって特定される羽ばたき運動においては、往復運 動の一周期のうちの 2つの特定期間のそれぞれにおいて行われる他のデータによつ て特定される羽ばたき運動とは異なる軌跡を描くことが望ましい。これによれば、羽根 部 110は、往復運動の 1周期の間に最大で 4種類の状態に順次変化する。そのため 、羽ばたき運動のバリエーションが豊富になる。 [0242] According to the above configuration, it is possible to change the mode of flapping motion in which discontinuous changes occur in the motion of the blade portion. Therefore, “continuity” of flapping motion is realized. [0243] Further, in the flapping motion specified by the data of 1, the flapping portion flapping specified by other data performed in each of two specific periods in one cycle of the reciprocating motion. It is desirable to draw a different trajectory from the movement. According to this, the blade part 110 is sequentially changed into four types at maximum during one cycle of the reciprocating motion. Therefore, the variation of flapping movement becomes abundant.
[0244] < <独立性 > >  [0244] <<Independence>>
また、 2つの特定期間は、互いに 1Z2周期ずれていてもよい。これによれば、 1の 特定期間と他の特定期間とが時間的に最も大きくずれて繰り返される。そのため、一 方の特定期間における羽ばたき運動に起因して生じる気流が、他の特定期間におけ る羽ばたき運動に起因して生じる気流に及ぼす影響が最も小さくなる。そのため、羽 ばたき運動の変更における「独立性」が確保される。  Also, the two specific periods may be shifted from each other by 1Z2 cycles. According to this, one specific period and another specific period are repeated with the largest deviation in time. For this reason, the airflow generated by the flapping motion in one specific period has the least effect on the airflow generated by the flapping motion in the other specific period. This ensures “independence” in changing the flapping movement.
[0245] また、 2つの特定期間の一方および他方は、それぞれ、羽根部 110の往復運動の 一方端に位置するタイミングおよび羽根部 110の往復運動の他方端に位置するタイ ミングを含むことが望ましい。つまり、羽根部 110の切り返しは、前後方向の往復運動 の端部を含む期間において行なわれることが望ましい。これによれば、 1の特定期間 における羽根部 110の位置と他の特定期間における羽根部 110の位置とが最も大き く離れている。そのため、一方の特定期間における羽ばたき運動に起因して生じる気 流が、他方の特定期間における羽ばたき運動に起因して生じる気流に及ぼす影響 力 S最も小さくなる。そのため、羽ばたき運動の変更における「独立性」が確保される。  [0245] Also, it is desirable that one and the other of the two specific periods include timing positioned at one end of the reciprocating motion of the blade portion 110 and timing positioned at the other end of the reciprocating motion of the blade portion 110, respectively. . That is, it is desirable that the turn-back of the blade portion 110 is performed in a period including the end portion of the reciprocating motion in the front-rear direction. According to this, the position of the blade part 110 in one specific period and the position of the blade part 110 in another specific period are the largest apart. For this reason, the air flow S caused by the flapping motion in one specific period has the smallest influence S on the air flow caused by the flapping motion in the other specific period. Therefore, “independence” in changing the flapping movement is ensured.
[0246] すなわち、本実施の形態の浮上移動装置においては、羽ばたき運動の両端のそれ ぞれを含む特定期間においてのみ羽根部 110の動作が異なる複数種類の羽ばたき 運動が行われる。そのため、以前の羽ばたき運動によって生じた流体の挙動が現在 の羽ばたき運動に与える影響は極力低減されている。これにより、独立性が実現され ている。  That is, in the rising and moving apparatus of the present embodiment, a plurality of types of flapping motions in which the motion of the blade portion 110 is different only during a specific period including each of both ends of the flapping motion. Therefore, the influence of the fluid behavior generated by the previous flapping motion on the current flapping motion has been reduced as much as possible. This achieves independence.
[0247] < <単純性 > >  [0247] <<Simpleness>>
また、 2つの特定期間の一方の期間における羽ばたき運動により生じる流体力のう ちの一の方向成分と、 2つの特定期間の他方の期間における羽ばたき運動により生 じる流体力のうちの一の方向成分と力 相殺される。これによれば、羽ばたき運動の 変更に起因する浮上移動装置の姿勢の変化の態様が単純になる。そのため、浮上 移動装置を所望の姿勢にするための制御が容易になる。したがって、羽ばたき運動 の変更における「単純性」が確保される。 One direction component of the fluid force generated by the flapping motion in one of the two specific periods and one direction component of the fluid force generated by the flapping motion in the other of the two specific periods The power is offset. According to this, the flapping movement The mode of change in the attitude of the rising and moving apparatus due to the change is simplified. As a result, control for bringing the rising and moving apparatus into a desired posture is facilitated. Therefore, “simpleness” in changing the flapping movement is ensured.
[0248] より具体的には、本実施の形態の浮上移動装置においては、表 2に示されるように 、浮上移動装置の浮上移動の態様 (停空、上昇、下降、前進、後退、左移動、右移 動、左旋回、右旋回)と、浮上移動の態様を実現するための羽ばたき方 (先行切り返 し、中央切り返し、および遅れ切り返しの組み合わせ)とが一対一に対応している。そ のため、羽ばたき方に対応する上部および下部超音波モータ 120および 130のそれ ぞれの駆動デューティ比のデータが変更されるだけの極めて単純なアルゴリズムによ つて、浮上移動態様の変更を実現することができる。したがって、本実施の形態の浮 上移動装置においては単純性が実現されている。  [0248] More specifically, in the rising and moving apparatus of the present embodiment, as shown in Table 2, the rising and moving modes of the rising and moving apparatus (stop, rise, descend, advance, retract, move to the left) , Right-turn, left-turn, right-turn) and flapping to realize the mode of rising movement (combination of leading back, center turning, and delayed turning) has a one-to-one correspondence. Therefore, it is possible to change the flying movement using a very simple algorithm that only changes the data of the drive duty ratio of the upper and lower ultrasonic motors 120 and 130 corresponding to the flapping method. be able to. Therefore, simplicity is realized in the rising and moving apparatus of the present embodiment.
[0249] 更に、複数のデータのうちのホバリングのためのデータによって特定される羽ばたき 運動は、羽根部 110に上下方向および左右方向を含む平面に対して鏡面対称な前 後方向の往復運動をさせるものであり、制御回路 150は、前後方向の往復運動の中 心位置から前後方向の往復運動の一方端まで羽根部 110を移動させるための基本 データ(図 39、図 40、および図 41)と、前後方向の往復運動の中心位置から前後方 向の往復運動の他方端まで羽根部 110を移動させるように、基本データを変換する ためのアルゴリズムまたは演算機能部、即ち(Dutyl (- φ ) = - 1 X Dutyl (0. 5 + Φ ) )という演算式とを含んでいることが望ましい。これによれば、制御回路 150は、羽 ばたき運動の 1周期の 1Z2の期間のみのためのデータを有しているだけで、所望の 羽ばたき運動を羽根部 110にさせることができる。そのため、制御回路 150のデータ の記憶のためのメモリ容量を低減することができる。その結果、浮上移動装置を小型 化かつ軽量ィ匕することができる。  [0249] Further, the flapping motion specified by the data for hovering among the plurality of data causes the wing portion 110 to reciprocate in the front-rear direction that is mirror-symmetrical with respect to the plane including the vertical direction and the horizontal direction. The control circuit 150 includes basic data (FIGS. 39, 40, and 41) for moving the blade 110 from the center position of the reciprocating motion in the front-rear direction to one end of the reciprocating motion in the front-rear direction. In order to move the blade 110 from the center position of the reciprocating motion in the front-rear direction to the other end of the reciprocating motion in the front-rear direction, an algorithm or calculation function unit for converting basic data, that is, (Dutyl (-φ) = -1 X Dutyl (0.5 + Φ)) is desirable. According to this, the control circuit 150 can cause the blade unit 110 to perform a desired flapping motion only by having data for only the period of 1Z2 of one cycle of the flapping motion. Therefore, the memory capacity for storing data in the control circuit 150 can be reduced. As a result, the rising and moving apparatus can be reduced in size and weight.
[0250] (通信装置)  [0250] (Communication equipment)
通信装置 170は、外部のコントローラ 200から、浮上移動装置 100に必要とされる 加速度の情報を受信し、その情報を制御回路 150の中央演算装置 151に与える。ま た、通信装置 170は、画像センサ 180よって得られた画像情報を、外部のコントロー ラ 200に送信する。 [0251] (電源) The communication device 170 receives information on the acceleration required for the rising and moving device 100 from the external controller 200 and provides the information to the central processing unit 151 of the control circuit 150. Further, the communication device 170 transmits the image information obtained by the image sensor 180 to the external controller 200. [0251] (Power)
本発明の駆動エネルギー源としての電源 190は、必要とされる電力を供給できる放 電特性を有し、かつ、浮上を妨げない質量を有するものであれば、いかなるものであ つてもよい。  The power source 190 as the driving energy source of the present invention may be any power source as long as it has a discharge characteristic capable of supplying the required power and has a mass that does not hinder levitation.
[0252] 本発明者らが用いた電源 190は、質量 0. 7gのリチウムイオン電池で、本発明者ら の計算によれば、約 50秒にわたり 0. 6Wを供給することができる。電源 190は、本体 101の下部に設けられている。そのため、電源 190は、羽根部 110が受ける流体反 力の作用点であるベアリング 123より下側に位置し、浮上移動装置 100の姿勢を自 律的に安定させている。  [0252] The power source 190 used by the present inventors is a lithium ion battery having a mass of 0.7 g, and according to the calculation by the present inventors, 0.6 W can be supplied for about 50 seconds. The power source 190 is provided in the lower part of the main body 101. Therefore, the power source 190 is positioned below the bearing 123, which is the point of action of the fluid reaction force received by the blade portion 110, and stabilizes the posture of the rising and moving apparatus 100.
[0253] この他の電源としては、燃料電池、電気二重層コンデンサなどのキャパシタ、太陽 電池、および有線による供給、等が挙げられる。また、これらの電源が併用されてもよ い。たとえば、リチウムイオン電池の他に、羽根部 110の表面に太陽電池が設けられ 、これらの電力が併せて用いられてもよい。  [0253] Other power sources include fuel cells, capacitors such as electric double layer capacitors, solar cells, and wired supply. These power supplies may be used in combination. For example, in addition to the lithium ion battery, a solar battery may be provided on the surface of the blade 110, and these electric powers may be used together.
[0254] (本体)  [0254] (Main unit)
本体 101は、底部プレート 102、上部プレート 103、底部プレート 102と上部プレー ト 103とを連結するフレーム部 104、および、底部プレート 102に設けられた脚 105か らなる。  The main body 101 includes a bottom plate 102, an upper plate 103, a frame portion 104 connecting the bottom plate 102 and the upper plate 103, and legs 105 provided on the bottom plate 102.
[0255] 底部プレート 102および上部プレート 103は、厚さ 0. 2mmの CFRP力 なり、フレ ーム部 104は厚さ 35 z mのステンレス力 なる。脚 105は、肉厚 40 μ m、長さ 10mm [0255] The bottom plate 102 and the top plate 103 have a CFRP force with a thickness of 0.2 mm, and the frame portion 104 has a stainless force with a thickness of 35 zm. Leg 105 is 40 μm thick and 10 mm long
、かつ直径 0. 5mmの CFRPの中空パイプからなる。 And CFRP hollow pipe with a diameter of 0.5mm.
[0256] また、上部プレート 103および底部プレート 102は、ロータシャフト 124、支持シャフ ト 127、および本体補強ポール 112によっても連結されている。 [0256] The top plate 103 and the bottom plate 102 are also connected by a rotor shaft 124, a support shaft 127, and a main body reinforcing pole 112.
[0257] (画像センサ) [0257] (Image sensor)
画像センサ 180は、 CM〇S(Complementary Metal Oxide Silicon)イメージャから なり、その質量は 200mgである。画像センサ 180によって取得された画像情報は、 通信装置 170によって外部のコントローラ 200に送信される。  The image sensor 180 is a CMS (Complementary Metal Oxide Silicon) imager, and its mass is 200 mg. Image information acquired by the image sensor 180 is transmitted to the external controller 200 by the communication device 170.
[0258] (浮上の可否) [0258] (Availability of levitation)
<質量 > 本発明者らの計算によれば、羽根部 文が生み出す浮上力は 1. 2gfである。よつ て、羽根部 2枚が生み出す浮上力は 2. 4gfである。また、各構成要素の質量が表 3 に示されている。表 3に示されるように、浮上移動装置 100の総質量は 2. 17gfであり 、この値は、前述の浮上力 2. 4gはりも小さいため、浮上移動装置 100は、浮上する こと力 Sできる。 <Mass> According to the calculations by the present inventors, the levitation force produced by the blade part sentence is 1.2 gf. Therefore, the levitation force generated by the two blades is 2.4 gf. The mass of each component is shown in Table 3. As shown in Table 3, the total mass of the rising and moving device 100 is 2.17 gf, and this value is the above-mentioned floating force 2.4 g, so the rising and moving device 100 can lift the force S .
[表 3]  [Table 3]
Figure imgf000060_0001
Figure imgf000060_0001
[0260] <消費電力 >  [0260] <Power consumption>
本発明者らの計算によれば、浮上移動装置 100の羽根部が 1. 2gfの浮上力を生 ずるに要求される機械的パワーは上および下部超音波モータ 120および 130共に 最大 40mWである。各超音波モータのエネルギー変換効率は 33%である。したがつ て、浮上のために要求される最大電力は超音波モータ 1つにっき約 120mWであり、 それらの電力の合計は 480mWである。ドライバ 152および昇圧回路 153の総合効 率は約 85%であるため、 4つの超音波モータの駆動のために必要な電力は最大 56 5mWである。  According to the calculation by the present inventors, the mechanical power required for the blade portion of the rising and moving apparatus 100 to generate a flying force of 1.2 gf is a maximum of 40 mW for both the upper and lower ultrasonic motors 120 and 130. The energy conversion efficiency of each ultrasonic motor is 33%. Therefore, the maximum power required for ascent is about 120mW per ultrasonic motor, and the total power is 480mW. Since the total efficiency of driver 152 and booster circuit 153 is approximately 85%, the maximum power required to drive the four ultrasonic motors is 565 mW.
[0261] 中央演算装置 151の消費電力は 5mWである。磁気エンコーダ 126の消費電力は 5mWである。位置検出センサ 160の消費電力は 5mWである。画像センサ 180の消 費電力は 15mWである。通信装置 170の消費電力は 5mWである。  [0261] The power consumption of the central processing unit 151 is 5 mW. The power consumption of the magnetic encoder 126 is 5 mW. The power consumption of the position detection sensor 160 is 5 mW. The power consumption of the image sensor 180 is 15 mW. The power consumption of the communication device 170 is 5 mW.
[0262] これらの電力の総計は、最大 600mWであり、電源 190の能力の範囲内の値である 。したがって、浮上移動装置 100は、内蔵された電源 190から供給された電力のみを 用いて浮上することができる。したがって、浮上移動装置 100は、外部から電力の供 給を受けることなぐ独立して羽ばたき飛行することができるスタンドアロンタイプの口 ボットになり得るものである。 [0262] The sum of these powers is a maximum of 600 mW, which is within the capacity of the power source 190. Therefore, the rising and moving apparatus 100 can only use the power supplied from the built-in power supply 190. Can be used to surface. Therefore, the rising and moving apparatus 100 can be a stand-alone mouth bot that can fly independently without receiving power supply from the outside.
[0263] <別実施の形態 >  [0263] <Another embodiment>
図 45〜図 47を用いて、本発明の別実施の形態の浮上移動装置を説明する。別実 施の形態の浮上移動装置は、以下に説明する事項以外に関しては、上述の実施の 形態の浮上移動装置と同様の構成を有している。なお、別実施の形態と上述の実施 の形態との比較において、同一の参照符号が付されている部位は、同一の構造およ び機能を有するため、その説明は繰り返さない。  A rising and moving apparatus according to another embodiment of the present invention will be described with reference to FIGS. The rising and moving apparatus according to another embodiment has the same configuration as the rising and moving apparatus according to the above-described embodiment except for the matters described below. Note that in comparison between another embodiment and the above-described embodiment, portions denoted by the same reference numerals have the same structure and function, and thus description thereof will not be repeated.
[0264] <構成および動作原理 > [0264] <Configuration and principle of operation>
図 45は、本発明の別実施の形態の浮上移動装置のトルク補助機構を示す図であ る。  FIG. 45 is a diagram showing a torque assist mechanism of the rising and moving apparatus according to another embodiment of the present invention.
[0265] 上部超音波モータ 120は上部超音波モータベースプレート 383に固定されており、 上部超音波モータベースプレート 383は、バネ 381が介在した状態で、固定点 382 において本体 101に接続されている。また、上部超音波モータベースプレート 383の 所定の部位は、図 45において左側に模式的に示されるロータシャフト 124を回転中 心軸として円弧状の軌跡上を移動するように、本体 101の平面視において円弧状の 内壁によって拘束されている。なお、バネ 381のバネ定数は、前述の実施の形態と同 様のバネ定数である。  The upper ultrasonic motor 120 is fixed to the upper ultrasonic motor base plate 383, and the upper ultrasonic motor base plate 383 is connected to the main body 101 at a fixing point 382 with a spring 381 interposed therebetween. Further, the predetermined portion of the upper ultrasonic motor base plate 383 is a plan view of the main body 101 so that the predetermined portion of the upper ultrasonic motor base plate 383 moves on an arc-shaped locus with the rotor shaft 124 schematically shown on the left side in FIG. Constrained by an arc-shaped inner wall. Note that the spring constant of the spring 381 is the same as that of the above-described embodiment.
[0266] バネ 381に蓄えられるエネルギーは、浮上移動装置が羽ばたく空間内の流体から 受ける抗カに応じて変化する。そのため、羽ばたきのための往復運動の両端のそれ ぞれの切り返しの前半でエネルギーがバネ 381に蓄えられる。また、羽ばたきのため の往復運動の両端のそれぞれの切り返しの後半においては、羽根部 110の運動方 向が逆になるため、バネ 381に蓄えられたエネルギーがァクチユエータ 122に供与さ れる。  [0266] The energy stored in the spring 381 varies depending on the resistance received from the fluid in the space where the rising and moving apparatus flutters. Therefore, energy is stored in the spring 381 in the first half of each turn-back at both ends of the reciprocating motion for flapping. Further, in the latter half of each turn-back of the reciprocating motion for flapping, the motion direction of the blade portion 110 is reversed, so that the energy stored in the spring 381 is supplied to the actuator 122.
[0267] このような構成によれば、羽ばたきのためのストローク角ひの振幅の大小によらず、 常に羽ばたき運動の両端でエネルギーの蓄積および供与が実現される。そのため、 特別な工夫を行うことなぐ上部および下部超音波モータ 120および 130の回転運 動がバネ 381によって補助される。 [0267] According to such a configuration, energy accumulation and supply are always realized at both ends of the flapping motion regardless of the amplitude of the stroke angle for flapping. For this reason, the upper and lower ultrasonic motors 120 and 130 can be rotated without special measures. Movement is assisted by spring 381.
[0268] なお、図 45は、説明の簡便のため、エネルギー蓄積 ·供与機構を模式的に描いた 図であり、上部超音波モータベースプレート 383およびバネ 381等の形状は、ェネル ギー蓄積 ·供与機構の機能を果たすことができるのであれば、いかなるものであって もよレ、。また、上部超音波モータベースプレート 383の所定の部位は、上部ロータ 12 2と上部超音波振動子 121との接触角を一定に維持するために、上述のような円弧 状の軌跡を描くものとした。し力 ながら、上部超音波モータベースプレート 383の所 定の部位は、上部ロータ 122と上部超音波振動子 121との接触角の変化の値が許 容範囲内の値であるのであれば、いかなる軌跡を描くように移動してもよい。たとえば 、図 46に示されるように、上部超音波モータベースプレート 383の所定の部位は、直 線状の軌跡を描くように移動してもよい。これによれば、本体 101の内壁の構造がシ ンプノレになる。 [0268] Fig. 45 is a diagram schematically showing the energy storage and supply mechanism for the sake of simplicity of explanation. The shapes of the upper ultrasonic motor base plate 383 and the spring 381 are the energy storage and supply mechanism. As long as it can fulfill the functions of In addition, the predetermined portion of the upper ultrasonic motor base plate 383 has an arcuate locus as described above in order to maintain a constant contact angle between the upper rotor 122 and the upper ultrasonic transducer 121. . However, the predetermined part of the upper ultrasonic motor base plate 383 is not limited to any trajectory as long as the change in contact angle between the upper rotor 122 and the upper ultrasonic transducer 121 is within the allowable range. You may move to draw. For example, as shown in FIG. 46, the predetermined part of the upper ultrasonic motor base plate 383 may move so as to draw a linear locus. According to this, the structure of the inner wall of the main body 101 becomes a simpole.
[0269] また、図 47に示されるように、ロータシャフト 124の中心点付近に固定端 385を有 する板バネ 384を用いることによつても、上部超音波モータベースプレート 383の所 定の位置が円弧状の軌跡を描くように、上部超音波モータベースプレート 383の移 動を拘束しながら、ァクチユエータのエネルギー蓄積およびァクチユエータへのエネ ルギ一の供与を実現することができる。これによれば、極めてシンプノレな構造で、上 部超音波モータベースプレート 383の移動の拘束およびエネルギーの蓄積および供 与の双方の機能を果たすことができる。なお、描画の簡便のため、図 47においては、 上部ロータ 122およびロータシャフト 124等は描かれていなレ、が、それらは、図 45お よび図 46に示される上部ロータ 122およびロータシャフト 124と同一の位置に設けら れている。  In addition, as shown in FIG. 47, by using a leaf spring 384 having a fixed end 385 near the center point of the rotor shaft 124, the predetermined position of the upper ultrasonic motor base plate 383 is also changed. While restricting the movement of the upper ultrasonic motor base plate 383 so as to draw an arcuate trajectory, it is possible to realize energy storage of the actuator and supply of energy to the actuator. According to this, it is possible to perform both functions of restraining movement of the upper ultrasonic motor base plate 383 and storing and supplying energy with a very simple structure. For convenience of drawing, the upper rotor 122 and the rotor shaft 124 etc. are not shown in FIG. 47, but these are the same as the upper rotor 122 and the rotor shaft 124 shown in FIGS. 45 and 46. They are located at the same position.
[0270] (さらに別の実施の形態)  [0270] (Another embodiment)
前述の図 9〜図 14に示した超音波ァクチユエータ(超音波モータ)は、次の超音波 振動子によって置き換えられてもよい。以下に示す本実施の形態の超音波振動子に 付された名称および符号と前述の実施の形態の超音波ァクチユエータ(超音波モー タ)に付された名称および符号とが異なっている。し力 ながら、本実施の形態の超 音波振動子は、前述の実施の形態の超音波ァクチユエータ(超音波モータ)と同一 の機能を果たすような態様で、適宜名称および符号が変換されて、前述の実施の形 態の浮上移動装置に組み込まれるものとする。 The ultrasonic actuator (ultrasonic motor) shown in FIGS. 9 to 14 may be replaced by the following ultrasonic transducer. The names and symbols given to the ultrasonic transducers of the present embodiment shown below are different from the names and symbols given to the ultrasonic actuators (ultrasonic motors) of the aforementioned embodiments. However, the ultrasonic transducer of this embodiment is the same as the ultrasonic actuator (ultrasonic motor) of the above-described embodiment. It is assumed that the name and code are appropriately converted in such a manner as to fulfill the above function and are incorporated in the rising and moving apparatus of the above-described embodiment.
[0271] なお、本実施の形態にける超音波振動子は、伸縮振動の共振周波数と屈曲振動 の共振周波数とが実質的に一致するように設計される。  [0271] Note that the ultrasonic vibrator according to the present embodiment is designed so that the resonance frequency of the stretching vibration and the resonance frequency of the bending vibration substantially coincide.
[0272] 「伸縮振動の共振周波数と屈曲振動の共振周波数とが実質的に一致する」とは、 個々の製品のために要求される駆動力を得ることができる程度に、伸縮振動の共振 周波数と屈曲振動の共振周波数とが近似していれば、伸縮振動の共振周波数と屈 曲振動の共振周波数とが完全に同一の値である必要はないという意味である。  [0272] "The resonance frequency of the stretching vibration and the resonance frequency of the bending vibration substantially match" means that the resonance frequency of the stretching vibration is sufficient to obtain the driving force required for each product. If the resonance frequency of the bending vibration and the resonance frequency of the bending vibration are approximate, it means that the resonance frequency of the stretching vibration and the resonance frequency of the bending vibration need not be the same value.
[0273] 以下、図 48〜図 66を用いて、本発明の実施の形態の超音波振動子の調整方法 およびそれに用いられる超音波振動子が説明される。なお、本明細書においては、 振動の節とは、その振動のみが生じているときに、その振幅が実質的にゼロである領 域を意味する。たとえば、伸縮振動の節とは、伸縮振動のみが生じているときに、振 動板の主板部の振幅が実質的にゼロであるような領域を意味し、屈曲振動の節とは 、屈曲振動のみが生じているときに、振動板の主板部の振幅が実質的にゼロである ような領域を意味する。振幅が実質的にゼロである状態は、被駆動体の駆動にとって 無視できる程度の振幅で超音波振動子が振動している状態を含む。  Hereinafter, with reference to FIGS. 48 to 66, the adjustment method of the ultrasonic transducer according to the embodiment of the present invention and the ultrasonic transducer used therefor will be described. In this specification, the vibration node means a region where the amplitude is substantially zero when only the vibration is generated. For example, a stretching vibration node means a region where the amplitude of the main plate portion of the vibration plate is substantially zero when only the stretching vibration occurs, and the bending vibration node is a bending vibration. This means a region where the amplitude of the main plate portion of the diaphragm is substantially zero when only this occurs. The state in which the amplitude is substantially zero includes a state in which the ultrasonic transducer vibrates with an amplitude that is negligible for driving the driven body.
[0274] 以下、図 48〜図 60を用いて、本発明の実施の形態 1の超音波振動子の振動特性 の調整方法およびそれに用いられる超音波振動子が説明される。  [0274] Hereinafter, with reference to FIG. 48 to FIG. 60, a method for adjusting the vibration characteristics of the ultrasonic transducer of Embodiment 1 of the present invention and the ultrasonic transducer used therefor will be described.
[0275] 本実施の形態の超音波振動子は、複数の振動を組合せからなる動作をする超音 波振動子 1が組み立てられた後においても、前述の動作のために必要な 2種類の振 動のうちの 1つの振動の特性を他の振動から独立して調整することが可能なものであ る。  [0275] The ultrasonic vibrator according to the present embodiment has two types of vibrations necessary for the above-described operation even after the ultrasonic vibrator 1 that operates by combining a plurality of vibrations is assembled. The vibration characteristics of one of the movements can be adjusted independently of the other vibrations.
[0276] <全体構成 >  [0276] <Overall configuration>
まず、図 48を用いて、本発明の実施の形態の超音波モータ 1000が説明される。 図 48は、超音波モータ 1000の平面図である。図 48に示されるように、超音波モータ 1000は、超音波振動子 1およびそれによつて回転させられるロータ 2からなつている 。ロータ 2は本発明の被駆動体の一例である。したがって、被駆動体は、回転するも のに限定されず、他の動作をするものであってもよい。 [0277] 超音波振動子 1は、振動板 7を有している。振動板 7は、支持用突出部 3を有してい る。貫通孔 50が支持用突出部 3に設けられている。シャフト 5が貫通孔 50を貫通して いる。また、シャフト 5は、図 49に示されるように、支持体 4に固定されている。主板部 6の 4つの角部のうちの 1の角部 Sにロータ 2の外周面が当接している。ロータ 2は、支 持体 4に回転可能に支持されているが、そのための機構は図示されていない。 First, the ultrasonic motor 1000 according to the embodiment of the present invention will be described with reference to FIG. FIG. 48 is a plan view of the ultrasonic motor 1000. As shown in FIG. 48, the ultrasonic motor 1000 includes an ultrasonic vibrator 1 and a rotor 2 rotated by the ultrasonic vibrator 1. The rotor 2 is an example of a driven body of the present invention. Accordingly, the driven body is not limited to the rotating body, and may perform other operations. The ultrasonic vibrator 1 has a diaphragm 7. The diaphragm 7 has a supporting protrusion 3. A through hole 50 is provided in the supporting protrusion 3. The shaft 5 passes through the through hole 50. The shaft 5 is fixed to the support 4 as shown in FIG. The outer peripheral surface of the rotor 2 is in contact with one corner S of the four corners of the main plate 6. The rotor 2 is rotatably supported by the support body 4, but a mechanism for this is not shown.
[0278] また、超音波振動子 1には、電極 9, 10, 11 , 12, 17および圧電素子 8が設けられ ている。電極 9, 10, 11, 12,および 17は、所定の信号が入力され得るように、制御 装置(図示せず)に電気的に接続されている。  In addition, the ultrasonic transducer 1 is provided with electrodes 9, 10, 11, 12, 17 and a piezoelectric element 8. The electrodes 9, 10, 11, 12, and 17 are electrically connected to a control device (not shown) so that a predetermined signal can be inputted.
[0279] また、本実施の形態の超音波振動子 1は、電極 9, 10, 11, 12, 17に信号が入力 されると、圧電素子 8が振動する。圧電素子 8の振動は、振動板 7の主板部 6に伝達 される。その結果、主板部 6の角部 Sが楕円軌道 Eを描くように、振動板 7が振動する 。その結果、角部 Sに接触しているロータ 2が円軌道 Cに沿って移動する。すなわち、 ロータ 2がその回転中心軸周りに回転する。  [0279] In addition, in the ultrasonic transducer 1 of the present embodiment, when a signal is input to the electrodes 9, 10, 11, 12, 17, the piezoelectric element 8 vibrates. The vibration of the piezoelectric element 8 is transmitted to the main plate portion 6 of the diaphragm 7. As a result, the diaphragm 7 vibrates so that the corner S of the main plate 6 draws an elliptical orbit E. As a result, the rotor 2 in contact with the corner portion S moves along the circular path C. That is, the rotor 2 rotates around its rotation center axis.
[0280] <超音波振動子 >  [0280] <Ultrasonic transducer>
次に、図 49および図 50を用いて、超音波振動子 1の構造がより詳細に説明される 。図 49および図 50は、それぞれ、超音波振動子 1の斜視図および分解斜視図であ る。  Next, the structure of the ultrasonic transducer 1 will be described in more detail with reference to FIG. 49 and FIG. 49 and 50 are a perspective view and an exploded perspective view of the ultrasonic transducer 1, respectively.
[0281] 図 49および図 50に示されるように、超音波振動子 1は振動板 7を有している。振動 板 7は、シャフト 5に固定された支持用突出部 3と、支持用突出部 3と一体的に形成さ れ、振動によってロータ 2を回転させる主板部 6とを有している。  As shown in FIGS. 49 and 50, the ultrasonic transducer 1 has a diaphragm 7. The diaphragm 7 has a support protrusion 3 fixed to the shaft 5 and a main plate 6 that is formed integrally with the support protrusion 3 and rotates the rotor 2 by vibration.
[0282] 主板部 6は、幅 2mm、長さ 9mm、かつ厚さ 0. 2mmの実質的に長方形の平面形状 を有する平板状部材である。また、支持用突出部 3は、主板部 6の長辺の中央位置 力 主板部 6の短辺方向に沿って延びるように、主板部 6の長辺から突出しており、 幅 lmm、長さ 2. 15mmかつ厚さ 0. 2mmの実質的に長方形の平面形状を有する平 板状部材である。  [0282] The main plate portion 6 is a flat plate-like member having a substantially rectangular planar shape having a width of 2 mm, a length of 9 mm, and a thickness of 0.2 mm. Further, the supporting projection 3 protrudes from the long side of the main plate 6 so as to extend along the short side direction of the main plate 6 and has a width lmm and a length 2 A flat plate-like member having a substantially rectangular planar shape of 15 mm and a thickness of 0.2 mm.
[0283] 支持用突出部 3には、直径 0. 6mmの円形の貫通孔 50が設けられている。貫通孔 50の直径は、 0. 6mmであり、シャフト 5の直径と同一である。貫通孔 50が、主板部 6 の長辺の中央位置から貫通孔 50の中心点までの距離が 1. 0mmである。圧電素子 8は主板部 6の表面および裏面のそれぞれに取り付けられている。圧電素子 8は、幅 2mm、長さ 8mm、かつ幅 0. 2mmの長方形の平面形状を有する平板状部材である 。また、圧電素子 8の長辺と主板部 6の長辺とがー致するように、圧電素子 8は主板部 6に対して電極 17が介在した状態で固定されている。 [0283] The supporting protrusion 3 is provided with a circular through hole 50 having a diameter of 0.6 mm. The diameter of the through hole 50 is 0.6 mm, which is the same as the diameter of the shaft 5. The distance from the center position of the long side of the main plate 6 to the center point of the through hole 50 is 1.0 mm. Piezoelectric element 8 is attached to each of the front surface and the back surface of the main plate portion 6. The piezoelectric element 8 is a flat plate member having a rectangular planar shape having a width of 2 mm, a length of 8 mm, and a width of 0.2 mm. Further, the piezoelectric element 8 is fixed to the main plate portion 6 with the electrode 17 interposed so that the long side of the piezoelectric element 8 and the long side of the main plate portion 6 are aligned.
[0284] なお、振動板 7および圧電素子 8のそれぞれの寸法および形状は、上述の寸法お よび形状に限定されず、他の寸法および形状であってもよい。また、振動板 7の材料 は、特に限定されないが、ステンレス等の導電性を有する材料であることが望ましい。 また、支持用突出部 3と主板部 6とは、別個の部材からなつていてもよいが、それらが 1つの部材で一体的に形成されていることが望ましい。  [0284] The dimensions and shapes of the diaphragm 7 and the piezoelectric element 8 are not limited to the above dimensions and shapes, and may be other dimensions and shapes. The material of the diaphragm 7 is not particularly limited, but is preferably a conductive material such as stainless steel. Further, the supporting protrusion 3 and the main plate 6 may be formed of separate members, but it is desirable that they are integrally formed of one member.
[0285] 圧電素子 8は、チタン酸ジノレコニゥム酸鉛(PZT)かならなっている力 電圧が印加 されて振動する素子であれば、いかなる材料からなっていてもよい。圧電素子 8の一 方の主表面上には、電極 9, 10, 11,および 12が取り付けられている。電極 9, 10, 11,および 12は、互いに同一の長方形の平面形状を有する平板状部材である。電 極 9, 10, 11 ,および 12は、圧電素子 8の一方の主表面が実質的に同一の 4つの長 方形の領域に分割されたとすると、 4つの長方形の領域のそれぞれに設けられてい る。また、圧電素子 8の他方の主表面上には、実質的に長方形の電極 17が設けられ ている。電極 17は、圧電素子 8の他方の主表面と同一の長方形の平面形状を有する 平板状部材である。  [0285] The piezoelectric element 8 may be made of any material as long as it is an element that vibrates when applied with a force voltage made of lead dinoleconium titanate (PZT). On one main surface of the piezoelectric element 8, electrodes 9, 10, 11, and 12 are attached. The electrodes 9, 10, 11, and 12 are flat members having the same rectangular planar shape. Electrodes 9, 10, 11 and 12 are provided in each of the four rectangular regions, assuming that one main surface of the piezoelectric element 8 is divided into four substantially rectangular regions. . A substantially rectangular electrode 17 is provided on the other main surface of the piezoelectric element 8. The electrode 17 is a flat plate-like member having the same rectangular planar shape as the other main surface of the piezoelectric element 8.
[0286] 本実施の形態の超音波振動子 1においては、 2つの圧電素子 8は、それぞれ、主板 部 6の一方の主表面および他方の主表面上に、電極 17が介在した状態で設けられ ている。  [0286] In the ultrasonic transducer 1 of the present embodiment, the two piezoelectric elements 8 are respectively provided on one main surface and the other main surface of the main plate portion 6 with the electrode 17 interposed therebetween. ing.
[0287] 2つの電極 17は、それぞれ、その長辺方向が主板部 6の長辺方向とがー致するよう に、主板部 6の一方および他方の主表面に固定されている。 2つの電極 17は、それ ぞれ、銀ペーストなどの導電性接着剤によって主板部 6に接着されている。  [0287] The two electrodes 17 are fixed to one main surface and the other main surface of the main plate portion 6 so that the long side direction thereof coincides with the long side direction of the main plate portion 6. Each of the two electrodes 17 is bonded to the main plate 6 with a conductive adhesive such as silver paste.
[0288] なお、圧電素子 8と主板部 6とが導電性接着剤によって接着されるのであれば、電 極 17が圧電素子 8と主板部 6との間に設けられていなくてもよい。この場合、導電性 接着剤が電極 17の役割を果たす。特に、本実施の形態の超音波振動子のように、 主板部 6がステンレスなどの導電性材料からなる場合には、 2つの圧電素子 8の電極 17には、それぞれ、常に 0Vの信号が入力されているため、圧電素子 8と主板部 6と が導電性接着剤によって接合されていれば、電極 17が圧電素子 8と主板部 6との間 に設けられていなくても、主板部 6が電極 17の役割を果たすことができる。 [0288] Note that the electrode 17 may not be provided between the piezoelectric element 8 and the main plate portion 6 if the piezoelectric element 8 and the main plate portion 6 are bonded by a conductive adhesive. In this case, the conductive adhesive serves as the electrode 17. In particular, when the main plate portion 6 is made of a conductive material such as stainless steel like the ultrasonic vibrator of the present embodiment, the electrodes of the two piezoelectric elements 8 Since a signal of 0 V is always input to each of 17, if the piezoelectric element 8 and the main plate part 6 are joined by a conductive adhesive, the electrode 17 is connected between the piezoelectric element 8 and the main plate part 6. Even if not provided, the main plate portion 6 can serve as the electrode 17.
[0289] また、振動板 7の一方の主表面に取り付けられている圧電素子 8およびそれに取り 付けられている電極 9, 10, 11, 12,および 17と、振動板 7の他方の主表面に取り付 けられている圧電素子 8およびそれに取り付けられている電極 9, 10, 11 , 12,およ び 17とは、振動板 7の厚さ方向において鏡面対称に配置されている。したがって、振 動板 7の一方の主表面上の圧電素子 8の振動特性と、振動板 7の他方の主表面上の 圧電素子 8の振動特性とは実質的に同一である。したがって、本実施の形態の振動 板 7は、その面内方向において振動する。また、振動板 7の主板部 6は長方形である ため、前述の面内方向において、振動板 7の角部 Sは楕円振動する。  [0289] Further, the piezoelectric element 8 attached to one main surface of the diaphragm 7 and the electrodes 9, 10, 11, 12, and 17 attached thereto, and the other main surface of the diaphragm 7 The attached piezoelectric element 8 and the electrodes 9, 10, 11, 12, and 17 attached thereto are arranged mirror-symmetrically in the thickness direction of the diaphragm 7. Therefore, the vibration characteristic of the piezoelectric element 8 on one main surface of the vibration plate 7 and the vibration characteristic of the piezoelectric element 8 on the other main surface of the vibration plate 7 are substantially the same. Therefore, diaphragm 7 of the present embodiment vibrates in the in-plane direction. Further, since the main plate portion 6 of the diaphragm 7 is rectangular, the corner portion S of the diaphragm 7 vibrates elliptically in the aforementioned in-plane direction.
[0290] なお、本発明の目的を達成することができるのであれば、振動板 7の一方の主表面 に取り付けられている圧電素子 8および電極 9, 10, 11 , 12,および 17と、振動板 7 の他方の主表面に取り付けられている圧電素子 8および電極 9, 10, 11 , 12,およ び 17とは、非対称な構造を有し、または、非対称に配置されていてもよい。  [0290] If the object of the present invention can be achieved, the piezoelectric element 8 and the electrodes 9, 10, 11, 12, 12, and 17 attached to one main surface of the diaphragm 7 and vibration The piezoelectric element 8 and the electrodes 9, 10, 11, 12, and 17 attached to the other main surface of the plate 7 may have an asymmetric structure or may be asymmetrically arranged.
[0291] 次に、図 51〜図 54を用いて、本実施の形態の超音波振動子 1の駆動方法が説明 される。  [0291] Next, a method for driving the ultrasonic transducer 1 of the present embodiment will be described with reference to FIGS.
[0292] 超音波振動子 1が駆動されるときには、所定の信号が、外部に設けられた制御装置  [0292] When the ultrasonic transducer 1 is driven, a predetermined signal is supplied to the control device provided outside.
(図示せず)から電極 9, 10, 11, 12,および 17へ入力される。なお、振動板 7の一 方の主表面側に位置付けられた電極 9, 10, 11, 12,および 17に入力される信号( 印加電圧)と、振動板 7の他方の主表面側に位置付けられた電極 9, 10, 11 , 12,お よび 17に入力される信号(印加電圧)とは、主板部 6に関して鏡面対称である。ただ し、本発明の目的を達成することができるのであれば、振動板 7の一方の主表面側に 位置付けられた電極 9, 10, 11, 12,および 17に入力される信号(印加電圧)と、振 動板 7の他方の主表面側に位置付けられた電極 9, 10, 11 , 12,および 17に入力さ れる信号(印加電圧)とは、非対称であってもよい。  (Not shown) is input to electrodes 9, 10, 11, 12, and 17. The signal (applied voltage) input to the electrodes 9, 10, 11, 12, and 17 positioned on one main surface side of the diaphragm 7 and the other main surface side of the diaphragm 7 are positioned. The signals (applied voltages) input to the electrodes 9, 10, 11, 12, and 17 are mirror-symmetric with respect to the main plate portion 6. However, if the object of the present invention can be achieved, signals (applied voltages) input to the electrodes 9, 10, 11, 12, and 17 positioned on one main surface side of the diaphragm 7 The signal (applied voltage) input to the electrodes 9, 10, 11, 12, and 17 positioned on the other main surface side of the vibration plate 7 may be asymmetric.
[0293] 図 50に示されるように、電極 9と電極 12とは、結線されており、同一の信号(φ 1)が 入力される。電極 10と電極 11とは、結線されており、同一の信号(φ 2)が入力される 。したがって、電極 9, 10, 11 ,および 12に入力される信号は、図 51に示されるよう に、 4つのモード (A) , (B) , (C),および(D)を有している。なお、図 51には、振動し ていない状態の電極 9, 10, 11 ,および 12の全体の外形が破線で描かれ、伸縮振 動または屈曲振動している状態の電極 9, 10, 11,および 12のそれぞれの形状が実 線で描かれている。また、図 52に示されるように、電極 9および電極 11に入力される 信号と電極 10および電極 12に入力される信号とは、その位相において 90度のズレ を有している力 同一の振幅および周波数を有している。 As shown in FIG. 50, electrode 9 and electrode 12 are connected, and the same signal (φ 1) is input. Electrode 10 and electrode 11 are connected, and the same signal (φ 2) is input . Therefore, the signal input to the electrodes 9, 10, 11, and 12 has four modes (A), (B), (C), and (D) as shown in FIG. . In FIG. 51, the entire outer shape of the electrodes 9, 10, 11 and 12 in a non-vibrated state is drawn by a broken line, and the electrodes 9, 10, 11, and 11 in a state of stretching vibration or bending vibration are drawn. Each shape of 12 and 12 is drawn with a solid line. In addition, as shown in FIG. 52, the signal input to electrode 9 and electrode 11 and the signal input to electrode 10 and electrode 12 have a force that has a 90-degree deviation in the phase. And have a frequency.
[0294] 上述の超音波振動子 1の主板部 6は、図 53に示される伸縮振動および図 7に示さ れる屈曲振動との組合せの振動を行なう。図 53に示される伸縮振動によれば、振動 板 7の主板部 6は、白抜き矢印で示されるように、長辺方向において圧縮されたり伸 張されたりする。それにより、角部 Sは、長辺方向に振動する。一方、図 54に示される 屈曲振動によれば、振動板 7は、一の S字形状からそれに鏡面対称な他の S字形状 へ変化する。それにより、振動板 7の主板部 6の角部は、白抜き矢印で示すように、短 辺方向において振動する。  [0294] Main plate portion 6 of ultrasonic transducer 1 described above performs vibration in combination with the stretching vibration shown in FIG. 53 and the bending vibration shown in FIG. According to the stretching vibration shown in FIG. 53, the main plate portion 6 of the diaphragm 7 is compressed or stretched in the long side direction as shown by the white arrow. Thereby, the corner portion S vibrates in the long side direction. On the other hand, according to the bending vibration shown in FIG. 54, the diaphragm 7 changes from one S-shape to another S-shape that is mirror-symmetrical to it. As a result, the corner portion of the main plate portion 6 of the diaphragm 7 vibrates in the short side direction as indicated by the white arrow.
[0295] なお、主板部 6が伸縮振動する場合には、図 51から分かるように、長辺方向の振幅 が短辺方向の振幅に対して極めて大きいため、角部 Sは実質的に長辺方向に振動 すると言える力 主板部 6が屈曲振動する場合には、長辺方向の振幅と短辺方向の 振幅との差があまり大きくないため、角部 Sは、実際には、電極形状に応じて斜め方 向に振動する。  [0295] When the main plate 6 vibrates and contracts, as can be seen from FIG. 51, the amplitude in the long side direction is extremely large relative to the amplitude in the short side direction. The force that can be said to vibrate in the direction When the main plate 6 vibrates, the difference between the amplitude in the long side direction and the amplitude in the short side direction is not so large. Vibrate diagonally.
[0296] 伸縮振動の共振周波数と同一の周波数で変化する電圧力 電極 9, 10, 11,およ び 12のそれぞれに同一の位相で印加されると、主板部 6は、図 53に矢印で示される 方向において、伸縮振動を行なう。また、屈曲振動の共振周波数と同一の周波数で 変化する電圧(正)が、電極 9および 11のそれぞれに同一の位相で印加され、電極 9 および 11とは逆位相の電圧 (負)が、電極 10および 12のそれぞれに印加されると、 主板部 6は、図 54に矢印で示されるように、屈曲振動を行なう。なお、 2つの電極 17 のそれぞれには、常に、基準電位(0V)が与えられている。  [0296] Voltage force changing at the same frequency as the resonance frequency of the stretching vibration When applied in the same phase to each of the electrodes 9, 10, 11, and 12, the main plate 6 is shown by an arrow in FIG. Performs stretching vibration in the direction indicated. In addition, a voltage (positive) that changes at the same frequency as the resonance frequency of the bending vibration is applied to each of the electrodes 9 and 11 in the same phase, and a voltage (negative) that is opposite in phase to the electrodes 9 and 11 When applied to each of 10 and 12, the main plate portion 6 performs bending vibration as indicated by arrows in FIG. A reference potential (0 V) is always applied to each of the two electrodes 17.
[0297] なお、図 53および図 54においては、それぞれ、伸縮振動の節の位置 Xおよび屈曲 振動の節の位置 Yがハッチングによって示されている。振動の節とは、主板部 6のうち の実質的に振幅がゼロである位置である。また、電極の形状は、長方形に限定され ず、超音波振動子 1が伸縮振動および屈曲振動の双方を生じさせることができる形 状であれば、いかなる形状であってもよい。 In FIGS. 53 and 54, the position X of the expansion vibration node and the position Y of the bending vibration node are indicated by hatching, respectively. The vibration node is the main plate 6 This is a position where the amplitude is substantially zero. Further, the shape of the electrode is not limited to a rectangle, and any shape may be used as long as the ultrasonic vibrator 1 can generate both stretching vibration and bending vibration.
[0298] また、従来の超音波振動子 1によれば、伸縮振動の共振周波数 aと屈曲振動の共 振周波数 bとが、図 55に示されるように、実質的に同一ではない、すなわち、 Δ φだ けずれている場合に、そのズレ Δ (ί>を低減することが極めて困難であった。それは、 伸縮振動の共振周波数 aおよび屈曲振動の共振周波数 bの調整において、それらの 一方を他方から独立して変化させることができな力つたためである。  [0298] Further, according to the conventional ultrasonic vibrator 1, the resonance frequency a of the stretching vibration and the resonance frequency b of the bending vibration are not substantially the same as shown in Fig. 55, that is, It is extremely difficult to reduce the deviation Δ (ί> when there is a deviation of Δφ. In adjusting the resonance frequency a of the stretching vibration and the resonance frequency b of the bending vibration, it is difficult to reduce one of them. This is because the force cannot be changed independently of the other.
[0299] し力しながら、本実施の形態の超音波振動子 1の構造によれば、次のような理由に より、ズレ Δ φを低減することが容易である。上述の超音波振動子 1の構造によれば 、図 53に示されるように、支持用突出部 3が伸縮振動の節の位置 Xに設けられている 。支持用突出部 3の構造の物理量、たとえば、形状、剛性、質量、および内部応力の うちの少なくともいず力 1つを変化させれば、伸縮振動の振動特性を変化させることな ぐ屈曲振動の特性を変化させることができる。したがって、伸縮振動の共振周波数 a と屈曲振動の共振周波数 bとを実質的に一致させることが容易である。  [0299] However, according to the structure of the ultrasonic transducer 1 of the present embodiment, it is easy to reduce the deviation Δφ for the following reason. According to the structure of the ultrasonic vibrator 1 described above, as shown in FIG. 53, the supporting protrusion 3 is provided at the position X of the node of the stretching vibration. By changing at least one of the physical quantities of the structure of the supporting protrusion 3 such as shape, rigidity, mass, and internal stress, bending vibration that does not change the vibration characteristics of stretching vibration is changed. Characteristics can be changed. Therefore, it is easy to substantially match the resonance frequency a of the stretching vibration and the resonance frequency b of the bending vibration.
[0300] 伸縮振動の共振周波数 aおよび屈曲振動の共振周波数 bのそれぞれと同一の周波 数で同一位相の電圧が電極 9および 11に印加され、電極 9および 11と同一の周波 数であってかつ位相が + 90度だけずれた電圧が電極 10および 12に印加される。そ れにより、伸縮振動と屈曲振動とが、電極に入力された交流電圧の 1周期の 4分の 1 ごとに交互に生じる。その結果、ロータ 2に接触している主板部 6の角部 Sが、図 48に 参照符号 Eで示されるように、楕円振動を行なう。  [0300] A voltage having the same frequency as that of each of the resonance frequency a of the stretching vibration and the resonance frequency b of the bending vibration is applied to the electrodes 9 and 11, and the same frequency as that of the electrodes 9 and 11, and A voltage with a phase shift of +90 degrees is applied to electrodes 10 and 12. As a result, stretching vibration and bending vibration occur alternately every quarter of the AC voltage input to the electrode. As a result, the corner portion S of the main plate portion 6 in contact with the rotor 2 performs elliptical vibration as indicated by reference symbol E in FIG.
[0301] また、電極 10および 12に電極 9および 11と同一周波数であってかつ位相が— 90 度だけずれた電圧が印加されると、図 48に参照符号 Eで示された方向とは逆方向の 楕円振動が生じる。また、ある一方向にロータ 2が回転している状態で、電極 9, 11お よび電極 10, 12に入力されている信号のうちいずれか一方の位相力 S180度だけ変 化すれば、超音波振動子 1の角部 Sに当接しているロータ 2の回転方向が反転する。  [0301] When a voltage having the same frequency as that of electrodes 9 and 11 and a phase shifted by -90 degrees is applied to electrodes 10 and 12, the direction indicated by reference symbol E in FIG. Directional elliptical vibration occurs. In addition, when the rotor 2 is rotating in a certain direction and the phase force of one of the signals input to the electrodes 9 and 11 and the electrodes 10 and 12 is changed by S180 degrees, the ultrasonic wave The rotation direction of the rotor 2 in contact with the corner S of the vibrator 1 is reversed.
[0302] なお、超音波振動子 1は、図 56に示されるように、図 54に示された屈曲振動の節の 位置 Yまたはその近傍の位置であって、かつ、図 53に示された伸縮振動の節の位置 Yまたはその近傍以外の位置に、振動特性を調整するための調整用突出部 20を有 していてもよい。ただし、調整用突出部 20は、圧電素子 8または振動板 7の一部とし て形成されていてもよいとともに、圧電素子 8または振動板 7に対する他の材料の付 加によって形成されてもよい。 [0302] As shown in FIG. 56, the ultrasonic transducer 1 is located at or near the position Y of the bending vibration node shown in FIG. 54, and shown in FIG. Stretch vibration node position You may have the adjustment protrusion 20 for adjusting a vibration characteristic in positions other than Y or its vicinity. However, the adjustment protrusion 20 may be formed as a part of the piezoelectric element 8 or the diaphragm 7 or may be formed by adding another material to the piezoelectric element 8 or the diaphragm 7.
[0303] 図 56に示される構造を有する超音波振動子 1によれば、調整用突出部 20を研削ま たは加熱したり、調整用突出部 20に何らかの部材を付加したりして、屈曲振動の共 振周波数 bを変化させることなぐ伸縮振動の共振周波数 aを変化させることができる 。したがって、伸縮振動の共振周波数 aと屈曲振動の共振周波数 bとの位相のズレを 容易に低減することができる。  [0303] According to the ultrasonic vibrator 1 having the structure shown in Fig. 56, the adjustment protrusion 20 is ground or heated, or some member is added to the adjustment protrusion 20, and then bent. The resonance frequency a of the stretching vibration without changing the resonance frequency b of the vibration can be changed. Therefore, the phase shift between the resonance frequency a of the stretching vibration and the resonance frequency b of the bending vibration can be easily reduced.
[0304] <超音波振動子の振動特性調整方法 >  [0304] <Method for adjusting vibration characteristics of ultrasonic transducer>
超音波モータ 1000において、最大の駆動効率を得るためには、超音波振動子 1が 組み立てられて、超音波モータ 1000の所定の位置に組み付けられた状態で、伸縮 振動の共振周波数 aと屈曲振動の共振周波数 bとが実質的に一致していることが必 要である。し力しながら、伸縮振動の共振周波数 aと屈曲振動の共振周波数 bとが実 質的に一致するように設計された超音波振動子 1であっても、圧電素子 8または振動 板 7の寸法における誤差、圧電素子 8と振動板 7の位置合せにおける誤差、および電 極の寸法における誤差等の要因のために、図 55に示されるように、実際に組み立て られ、超音波モータ 1000に組み付けられた超音波振動子 1の伸縮振動の共振周波 数 aと屈曲振動の共振周波数 bとの間に、ズレ Δ φが生じることがある。なお、図 55に おいて、横軸は周波数 f ( = 1/T)を示し、縦軸は、伸縮振動の長辺方向の振動の 振幅および屈曲振動の短辺方向の振動の振幅 Fを示す。  In the ultrasonic motor 1000, in order to obtain the maximum driving efficiency, the ultrasonic vibrator 1 is assembled and assembled at a predetermined position of the ultrasonic motor 1000, and the resonance frequency a of the stretching vibration and the bending vibration are combined. It is necessary that the resonance frequency b is substantially the same. Even if the ultrasonic vibrator 1 is designed so that the resonance frequency a of the stretching vibration and the resonance frequency b of the bending vibration substantially coincide with each other, the dimensions of the piezoelectric element 8 or the diaphragm 7 As shown in Fig. 55, it is actually assembled and assembled to the ultrasonic motor 1000 due to factors such as errors in the above, errors in the alignment of the piezoelectric element 8 and the diaphragm 7, and errors in the electrode dimensions. In addition, a deviation Δφ may occur between the resonance frequency a of the stretching vibration of the ultrasonic transducer 1 and the resonance frequency b of the bending vibration. In FIG. 55, the horizontal axis represents the frequency f (= 1 / T), and the vertical axis represents the vibration amplitude F in the long side direction of the stretching vibration and the vibration amplitude F in the short side direction of the bending vibration. .
[0305] 図 57は、本発明者の行なったシミュレーションの結果であって、支持用突出部 3の 長さ L1と超音波振動子 1の伸縮振動の共振周波数 aおよび屈曲振動の共振周波数 bの変化との関係を示している。図 57に示されるように、支持用突出部 3の長さ L1が 増加するにつれて、超音波振動子 1の屈曲振動の共振周波数 bは、近似的には直線 的に減少するが、伸縮振動の共振周波数 aは、ほぼ一定である。  FIG. 57 shows the result of the simulation performed by the present inventors. The length L1 of the supporting protrusion 3 and the resonance frequency a of the stretching vibration of the ultrasonic vibrator 1 and the resonance frequency b of the bending vibration are shown in FIG. It shows the relationship with change. As shown in FIG. 57, as the length L1 of the supporting protrusion 3 increases, the resonance frequency b of the bending vibration of the ultrasonic transducer 1 decreases approximately linearly, but the stretching vibration The resonance frequency a is almost constant.
[0306] 図 53および図 54にハッチングによって示された部分は、伸縮振動の節の位置 お よび屈曲振動の節の位置 Yに相当する。支持用突出部 3は、主板部 6に生じる伸縮 振動の節の位置 Xまたはその近傍の位置に設けられており、かつ、屈曲振動の節の 位置 Yまたはその近傍からは離れた位置に設けられている。したがって、支持用突出 部 3の長さ L1を変化させると、伸縮振動の共振周波数 aは変化しないが、屈曲振動 の共振周波数 bは変化する。 [0306] The portions indicated by hatching in FIGS. 53 and 54 correspond to the positions of the nodes of the stretching vibration and the positions Y of the bending vibration. The support protrusion 3 is the expansion and contraction that occurs in the main plate 6 It is provided at the position X of the vibration node or in the vicinity thereof, and at a position away from the position Y of the bending vibration node or in the vicinity thereof. Therefore, when the length L1 of the supporting protrusion 3 is changed, the resonance frequency a of the stretching vibration does not change, but the resonance frequency b of the bending vibration changes.
[0307] 超音波振動子 1が超音波モータ 1000の所定の位置に取り付けられた後に、支持 用突出部 3を研削することによって、その形状および質量を変化させることができる。 それにより、伸縮振動の共振周波数 aがほぼ一定である状態で屈曲振動の共振周波 数 bのみを調整することができる。その結果、伸縮振動の共振周波数 aと屈曲振動の 共振周波数 bとを実質的に一致させることが容易になる。また、支持用突出部 3の形 状および質量を変化させる代わりに、焼きなまし等などの加熱処理によって支持用突 出部 3の剛性等の物性を変化させることによつても、伸縮振動の共振周波数 aを一定 に維持した状態で、屈曲振動の共振周波数 bの調整することが容易である。  [0307] After the ultrasonic vibrator 1 is attached to a predetermined position of the ultrasonic motor 1000, the shape and mass thereof can be changed by grinding the supporting protrusion 3. Thereby, only the resonance frequency b of the bending vibration can be adjusted in a state where the resonance frequency a of the stretching vibration is substantially constant. As a result, it becomes easy to substantially match the resonance frequency a of the stretching vibration and the resonance frequency b of the bending vibration. In addition, instead of changing the shape and mass of the support protrusion 3, it is also possible to change the resonance frequency of the stretching vibration by changing the physical properties such as the rigidity of the support protrusion 3 by heat treatment such as annealing. It is easy to adjust the resonance frequency b of the bending vibration while a is kept constant.
[0308] 次に、支持用突出部 3の開放端を削ることによって、つまり、支持用突出部 3の形状 および質量を変化させることによって、超音波振動子 1の振動特性を調整する方法 が具体的に説明される。  [0308] Next, there is a specific method for adjusting the vibration characteristics of the ultrasonic transducer 1 by cutting the open end of the support protrusion 3, that is, by changing the shape and mass of the support protrusion 3. Explained.
[0309] 組み立てが行なわれ、製品の所定の位置に組み付けられた超音波振動子 1の屈 曲振動の共振周波数 bが伸縮振動の共振周波数 aよりも低い場合には、伸縮振動の 共振周波数 aと屈曲振動の共振周波数 bとを実質的に一致させるために、屈曲振動 の共振周波数 bを伸縮振動の共振周波数 aまで増加させることが必要である。  [0309] When the resonance frequency b of the bending vibration of the ultrasonic vibrator 1 assembled at a predetermined position of the product is lower than the resonance frequency a of the stretching vibration, the resonance frequency a of the stretching vibration a In order to substantially match the resonance frequency b of the bending vibration with the resonance frequency b of the bending vibration, it is necessary to increase the resonance frequency b of the bending vibration to the resonance frequency a of the stretching vibration.
[0310] 本実施の形態においては、図 58に示されるように、支持用突出部 3の開放端を削り 、支持用突出部 3を短くすることによって、屈曲振動の共振周波数 bを増加させて伸 縮振動の共振周波数 aに一致させる。この方法によれば、超音波振動子 1の振動特 性を容易に調整することが可能である。また、シャフト 5の貫通孔 50と主板部 6との間 において支持用突出部 3は研削されていないため、支持用突出部 3の強度が維持さ れた状態で、超音波振動子 1の振動特性を調整することが可能である。  In the present embodiment, as shown in FIG. 58, the open end of the supporting protrusion 3 is scraped and the supporting protrusion 3 is shortened to increase the resonance frequency b of the bending vibration. Match the resonance frequency a of the stretching vibration. According to this method, the vibration characteristics of the ultrasonic vibrator 1 can be easily adjusted. Further, since the supporting protrusion 3 is not ground between the through hole 50 of the shaft 5 and the main plate portion 6, the vibration of the ultrasonic vibrator 1 is maintained while the strength of the supporting protrusion 3 is maintained. It is possible to adjust the characteristics.
[0311] また、図 49に示されるように、支持用突出部 3に設けられた貫通孔 50の中心位置 力も同一の距離だけ離れた 2つの位置のそれぞれに凹部 55を設け、支持用突出部 3の形状および質量を変化させてもよい。これによれば、伸縮振動の共振周波数 aを 変化させることなぐ屈曲振動の共振周波数 bのみを変化させることができる。 [0311] Further, as shown in FIG. 49, the central position force of the through hole 50 provided in the support protrusion 3 is also provided with a recess 55 at each of two positions separated by the same distance, and the support protrusion The shape and mass of 3 may be changed. According to this, the resonance frequency a of the stretching vibration is It is possible to change only the resonance frequency b of the bending vibration without changing it.
[0312] また、図 55に示されたように、 2つの凹部 55が、貫通孔 50の中心位置が介在した 状態で互いに対向するように、貫通孔 50の中心位置から等しい距離の位置に、研削 によって形成される。これにより、屈曲振動における慣性モーメントを小さくすることに よって、屈曲振動の共振周波数を変化させることが可能になる。なお、研削によって 凹部 55が大きくなり過ぎた場合には、凹部 55に何らかの部材が坦め込まれることに よって、振動特性が再び調整されてもよい。 [0312] Also, as shown in FIG. 55, the two recesses 55 are positioned at an equal distance from the center position of the through hole 50 so that they face each other with the center position of the through hole 50 interposed therebetween. Formed by grinding. This makes it possible to change the resonance frequency of the bending vibration by reducing the moment of inertia in the bending vibration. In addition, when the recessed part 55 becomes too large by grinding, a vibration characteristic may be adjusted again by a certain member being carried by the recessed part 55. FIG.
[0313] 次に、支持用突出部 3を加熱処理して、支持用突出部 3の剛性を変化させることに よって、超音波振動子 1の振動特性を調整する方法が説明される。加熱装置(図示 せず)を用いて支持用突出部 3が 700度程度まで加熱された後、自然に冷却される。 それにより、支持用突出部 3の剛性が低減される。支持用突出部 3の剛性が低減され ると、超音波振動子 1の屈曲振動の共振周波数 bが低減される。また、支持用突出部 3が、加熱装置によって 700度程度まで加熱された後、水中で急激に冷却されると、 支持用突出部 3の剛性が増加し、超音波振動子 1の屈曲振動の共振周波数 bが増 加する。加熱装置として、レーザなどの支持用突出部 3のみを局所的に加熱すること ができる装置が用いられることが望ましい。また、加熱温度は支持用突出部 3の材料 の変態温度以上であることが必要である。振動板 7の材料としてステンレスが用いら れる場合には、加熱温度は 700度程度であることが望ましい。 [0313] Next, a method for adjusting the vibration characteristics of the ultrasonic transducer 1 by changing the rigidity of the support protrusion 3 by heat-treating the support protrusion 3 will be described. The supporting protrusion 3 is heated to about 700 degrees using a heating device (not shown) and then cooled naturally. Thereby, the rigidity of the supporting protrusion 3 is reduced. When the rigidity of the support protrusion 3 is reduced, the resonance frequency b of the bending vibration of the ultrasonic transducer 1 is reduced. In addition, if the supporting protrusion 3 is heated to about 700 degrees by the heating device and then rapidly cooled in water, the rigidity of the supporting protrusion 3 increases and the bending vibration of the ultrasonic vibrator 1 is reduced. Resonance frequency b increases. It is desirable to use a device that can locally heat only the supporting protrusion 3 such as a laser as the heating device. Further, the heating temperature needs to be equal to or higher than the transformation temperature of the material of the supporting protrusion 3. When stainless steel is used as the material of the diaphragm 7, the heating temperature is preferably about 700 degrees.
[0314] 次に、支持用突出部 3に重り 13を搭載する、すなわち、支持用突出部 3に所定の 質量を有する材料を付加して、超音波振動子 1の振動特性を調整する方法が説明さ れる。 [0314] Next, there is a method in which the weight 13 is mounted on the support protrusion 3, that is, a material having a predetermined mass is added to the support protrusion 3 to adjust the vibration characteristics of the ultrasonic transducer 1. Explained.
[0315] 図 60に示されるように、支持用突出部 3にステンレスの重り 13が接着されると、支持 用突出部 3の質量が増加する。支持用突出部 3の質量が増加すると、屈曲振動にお ける支持用突出部 3の慣性モーメントが増加する。したがって、超音波振動子 1の屈 曲振動の共振周波数 bを低減させることができる。ただし、重り 13の材質は、ステンレ スに限定されず、いかなる材質であってもよい。  [0315] As shown in FIG. 60, when the stainless steel weight 13 is bonded to the supporting protrusion 3, the mass of the supporting protrusion 3 increases. As the mass of the support protrusion 3 increases, the moment of inertia of the support protrusion 3 in bending vibration increases. Therefore, the resonance frequency b of the bending vibration of the ultrasonic vibrator 1 can be reduced. However, the material of the weight 13 is not limited to stainless steel, and any material may be used.
[0316] 上述の支持用突出部 3と同様に、図 56に示された調整用突出部 20の形状、剛性、 質量、および内部応力のうちの少なくともいずれかに変化を生じさせることによつても 、屈曲振動の共振周波数 aを変化させずに、伸縮振動の共振周波数 bのみを変化さ せることが容易になる。 [0316] Similar to the above-described support protrusion 3, the adjustment protrusion 20 shown in FIG. 56 is caused to change in shape, rigidity, mass, and / or internal stress. Also Thus, it is easy to change only the resonance frequency b of the stretching vibration without changing the resonance frequency a of the bending vibration.
[0317] (実施の形態の他の例の超音波振動子) [0317] (Another example of the ultrasonic transducer of the embodiment)
<全体構成 >  <Overall configuration>
本実施の形態の超音波振動子においては、実施の形態 1の超音波振動子の構成 要素と同一の構成要素には実施の形態 1の超音波振動子 1に付された参照符号と 同一の参照番号が付され、特に必要がない限り、その説明は繰り返さない。  In the ultrasonic transducer of the present embodiment, the same components as those of the ultrasonic transducer of the first embodiment have the same reference numerals as those assigned to the ultrasonic transducer 1 of the first embodiment. Reference numerals are given and the description will not be repeated unless otherwise required.
[0318] 本実施の形態においても、超音波振動子 1が組み立てられた後においても、超音 波振動子 1の振動特性が容易に調整され得る。  [0318] Also in the present embodiment, even after the ultrasonic transducer 1 is assembled, the vibration characteristics of the ultrasonic transducer 1 can be easily adjusted.
[0319] 図 61は、本実施の形態の超音波モータ 1000の平面図である。図 61に示されるよ うに、本実施の形態の超音波モータ 1000は、超音波振動子 1とロータ 2とからなって いる。  FIG. 61 is a plan view of ultrasonic motor 1000 of the present embodiment. As shown in FIG. 61, the ultrasonic motor 1000 according to the present embodiment includes an ultrasonic transducer 1 and a rotor 2.
[0320] 本実施の形態の超音波振動子 1は、図 48〜図 55を用いて説明された実施の形態 1の超音波振動子 1とほぼ同様であるが、主板部 6が介在する状態で、支持用突出 部 3に対向するように押付用突出部 14が設けられていることが、実施の形態 1の超音 波振動子 1とは異なっている。押付用突出部 14には線状のゴム 15の一端が接着さ れている。線状のゴム 15の他端は、図示されていない外部に設けられた押付用機構 に固定されている。線状のゴム 15は、その収縮力によって、押付用機構に対して、押 付用突出部 14を引っ張る。それによつて、超音波振動子 1の角部 Sがロータ 2の外周 部を押す力を調整することができるようになつている。つまり、線状のゴム 15の収縮力 の調整によって、超音波振動子 1とロータ 2との当接力が調整される。  [0320] The ultrasonic transducer 1 of the present embodiment is substantially the same as the ultrasonic transducer 1 of the first embodiment described with reference to Figs. 48 to 55, but with the main plate portion 6 interposed therebetween. Thus, the pressing protrusion 14 is provided so as to face the supporting protrusion 3, which is different from the ultrasonic transducer 1 of the first embodiment. One end of a linear rubber 15 is bonded to the pressing protrusion 14. The other end of the linear rubber 15 is fixed to a pressing mechanism provided outside (not shown). The linear rubber 15 pulls the pressing protrusion 14 against the pressing mechanism by the contraction force. Accordingly, the force with which the corner portion S of the ultrasonic transducer 1 presses the outer peripheral portion of the rotor 2 can be adjusted. That is, the contact force between the ultrasonic transducer 1 and the rotor 2 is adjusted by adjusting the contraction force of the linear rubber 15.
[0321] 本実施の形態の超音波モータ 2においても、実施の形態 1の超音波モータ 1000と 同様に、後述する超音波振動子 1に設けられた電極 9, 10, 11 , 12,および 17に信 号が入力される。それにより、ロータ 2の外周面に当接している主板部 6の角部 Sが、 図 61に示される楕円軌道 Eを描いて移動する。その結果、ロータ 2が円軌道 Cに沿つ てその回転中心軸まわりに回転する。  [0321] Also in the ultrasonic motor 2 of the present embodiment, as in the ultrasonic motor 1000 of the first embodiment, electrodes 9, 10, 11, 12, and 17 provided on the ultrasonic transducer 1 described later are provided. The signal is input to. Thereby, the corner portion S of the main plate portion 6 that is in contact with the outer peripheral surface of the rotor 2 moves while drawing an elliptical orbit E shown in FIG. As a result, the rotor 2 rotates around the center axis of rotation along the circular path C.
[0322] <超音波振動子 >  [0322] <Ultrasonic transducer>
図 62には、本実施の形態の超音波振動子 1の斜視図が示されている。超音波振動 子 1の構成要素のうち、主板部 6、圧電素子 8、電極 9, 10, 11, 12,および 17のそ れぞれの形状、寸法、配置、および構成材料は、実施の形態の超音波振動子 1のそ れと同一であるため、その説明は繰り返さない。 FIG. 62 shows a perspective view of the ultrasonic transducer 1 of the present embodiment. Ultrasonic vibration Of the constituent elements of the child 1, the shape, dimensions, arrangement, and constituent materials of the main plate portion 6, the piezoelectric element 8, the electrodes 9, 10, 11, 12, and 17 are the same as those of the embodiment. Since it is the same as that of vibrator 1, its description will not be repeated.
[0323] ただし、本実施の形態においては、貫通孔 50とシャフト 5とは固定されていなレ、。そ のため、シャフト 5が支持用突出部 3に設けられた貫通孔 50内においてその軸まわり に回転し得る。より具体的には、支持用突出部 3は、シャフト 5が延びる方向の移動は 拘束されているが、シャフト 5が延びる方向に沿った回転中心軸まわりに回転すること ができる。なお、支持用突出部 3の上側および下側のそれぞれには、超音波振動子 1がシャフト 5の軸方向に沿って移動しないように、支持用突出部 3のシャフト 5の軸方 向の移動を拘束する部材(図示せず)が設けられている。なお、押付用突出部 14は、 幅 lmmかつ長さ 2. 5mmの略長方形状を有している。  [0323] However, in the present embodiment, the through hole 50 and the shaft 5 are not fixed. Therefore, the shaft 5 can rotate around its axis in the through hole 50 provided in the supporting protrusion 3. More specifically, the support protrusion 3 is restricted from moving in the direction in which the shaft 5 extends, but can rotate around the rotation center axis along the direction in which the shaft 5 extends. In addition, on each of the upper side and the lower side of the supporting protrusion 3, the axial movement of the shaft 5 of the supporting protrusion 3 is prevented so that the ultrasonic vibrator 1 does not move along the axial direction of the shaft 5. There is provided a member (not shown) for restraining. The pressing protrusion 14 has a substantially rectangular shape with a width of 1 mm and a length of 2.5 mm.
[0324] また、本実施の形態の超音波振動子 1の駆動方法は、実施の形態 1の超音波振動 子 1の駆動方法と同一であるため、その説明は繰り返さない。  [0324] In addition, the driving method of ultrasonic transducer 1 of the present embodiment is the same as the driving method of ultrasonic transducer 1 of the first embodiment, and therefore description thereof will not be repeated.
[0325] また、超音波振動子 1の構造として、図 63に示された構造が採用されてもよい。図 6 3に示される構造においては、図 53に示された屈曲振動の節の位置 Xの近傍であつ て、かつ図 54に示された伸縮振動の節の位置 Yからは離れた位置の少なくとも 1の 位置に調整用突出部 20が設けられている、なお、調整用突出部 20は、圧電素子 8 または主板部 6の一部であっても、他の材料が圧電素子 8または主板部 6に付加され たものであってもよレ、。  [0325] Further, as the structure of the ultrasonic transducer 1, the structure shown in FIG. 63 may be adopted. In the structure shown in FIG. 63, at least at a position near the position X of the bending vibration node shown in FIG. 53 and away from the position Y of the stretching vibration node shown in FIG. The adjustment protrusion 20 is provided at the position of 1. However, even if the adjustment protrusion 20 is a part of the piezoelectric element 8 or the main plate 6, the other material is the piezoelectric element 8 or the main plate 6. Even if it was added to.
[0326] <超音波振動子の振動特性調整方法 >  [0326] <Method for adjusting vibration characteristics of ultrasonic transducer>
図 64は、本願の発明者らが行なったシミュレーション結果を示しており、超音波振 動子 1の押付用突出部 14の長さ L2と超音波振動子 1の伸縮振動の共振周波数 aお よび屈曲振動の共振周波数 bとの関係を示している。図 64に示されるように、押付用 突出部 14の長さ L2を増加させるにつれて、超音波振動子 1の屈曲振動の共振周波 数 bが近似的に直線的に減少するが、伸縮振動の共振周波数 aはほぼ一定である。  FIG. 64 shows a simulation result performed by the inventors of the present application. The length L2 of the pressing protrusion 14 of the ultrasonic vibrator 1 and the resonance frequency a of the stretching vibration of the ultrasonic vibrator 1 and The relationship with the resonance frequency b of bending vibration is shown. As shown in Fig. 64, as the length L2 of the pressing projection 14 is increased, the resonance frequency b of the bending vibration of the ultrasonic transducer 1 decreases approximately linearly, but the resonance of the stretching vibration The frequency a is almost constant.
[0327] 押付用突出部 14は、主板部 6に生じる伸縮振動の節の位置 Xまたはその近傍であ り、屈曲振動の節の位置 Yまたはその近傍から離れた位置に設けられている。したが つて、押付用突出部 14の長さ L2を変化させると、伸縮振動の共振周波数 aに変化を 生じさせることなぐ屈曲振動の共振周波数 bに変化を生じさせることができる。 [0327] The pressing protrusion 14 is provided at or near the position X of the node of the expansion / contraction vibration generated in the main plate portion 6, and at a position away from the position Y of the bending vibration or at the vicinity thereof. Therefore, changing the length L2 of the pressing projection 14 changes the resonance frequency a of the stretching vibration. It is possible to cause a change in the resonance frequency b of the bending vibration that is not generated.
[0328] 超音波振動子 1を超音波モータ 1000の所定の位置に取り付けた後に、押付用突 出部 14の形状および質量を変化させることにより、伸縮振動の共振周波数 aがほぼ 一定の状態で、屈曲振動の共振周波数 bのみを調整して、伸縮振動の共振周波数 a と屈曲振動の共振周波数 bとを実質的に一致させることができる。 [0328] After the ultrasonic vibrator 1 is mounted at a predetermined position of the ultrasonic motor 1000, the shape and mass of the pressing protrusion 14 are changed, so that the resonance frequency a of the stretching vibration is substantially constant. By adjusting only the resonance frequency b of the bending vibration, the resonance frequency a of the stretching vibration and the resonance frequency b of the bending vibration can be substantially matched.
[0329] また、焼きなましなどの手法を用いて剛性などの押付用突出部 14の物性を変化さ せることによつても屈曲振動の共振周波数を調整することが可能である。 [0329] The resonance frequency of the bending vibration can also be adjusted by changing the physical properties of the pressing protrusion 14 such as rigidity using a technique such as annealing.
[0330] 次に、押付用突出部 14の先端を研削することによって、超音波振動子 1の押付用 突出部 14の形状および質量を変化させて、超音波振動子 1の振動特性を調整する 方法が具体的に説明される。 Next, the shape and mass of the pressing protrusion 14 of the ultrasonic vibrator 1 are changed by grinding the tip of the pressing protrusion 14 to adjust the vibration characteristics of the ultrasonic vibrator 1. The method is specifically described.
[0331] 組み立てされ、所定の位置に設置された超音波振動子 1の屈曲振動の共振周波 数 bが伸縮振動の共振周波数 aよりも低い場合には、伸縮振動の共振周波数 aと屈曲 振動の共振周波数 bとを略一致させるために、屈曲振動の共振周波数 bのみを伸縮 振動の共振周波数 aと略一致するように増加させる必要がある。図 65に示されるよう に、押付用突出部 14の長さ L2が押付用突出部 14がその先端の研削によって短くな れば、伸縮振動の共振周波数 aが一定の状態で、屈曲振動の共振周波数 bが増加 する。したがって、屈曲振動の共振周波数 bと伸縮振動の共振周波数 aとを実質的に 一致させることは容易である。  [0331] When the resonance frequency b of the bending vibration of the ultrasonic vibrator 1 assembled and installed at a predetermined position is lower than the resonance frequency a of the stretching vibration, the resonance frequency a of the stretching vibration and the bending vibration In order to substantially match the resonance frequency b, it is necessary to increase only the resonance frequency b of the bending vibration so as to substantially match the resonance frequency a of the stretching vibration. As shown in Fig. 65, if the length L2 of the pressing projection 14 is shortened by grinding the tip of the pressing projection 14, the resonance frequency of the stretching vibration is constant and the bending vibration resonance Frequency b increases. Therefore, it is easy to substantially match the resonance frequency b of the bending vibration with the resonance frequency a of the stretching vibration.
[0332] 次に、押付用突出部 14に加熱処理を施して、超音波振動子 1の押付用突出部 14 の剛性を変化させて、超音波振動子 1の振動特性を調整する方法が説明される。  [0332] Next, a method for adjusting the vibration characteristics of the ultrasonic transducer 1 by applying heat treatment to the pressing projection 14 to change the rigidity of the pressing projection 14 of the ultrasonic transducer 1 will be described. Is done.
[0333] 加熱装置を用いて押付用突出部 14が 700度程度まで加熱される。その後、 自然冷 却が行なわれる。それにより、押付用突出部 14の剛性が低下する。押付用突出部 1 4の剛性が低減されると、超音波振動子 1の屈曲振動の共振周波数 bが低下する。  [0333] The pressing protrusion 14 is heated to about 700 degrees using a heating device. After that, natural cooling is performed. Thereby, the rigidity of the pressing projection 14 is lowered. When the rigidity of the pressing projection 14 is reduced, the resonance frequency b of the bending vibration of the ultrasonic vibrator 1 is lowered.
[0334] また、押付用突出部 14は、加熱装置を用いて 700度程度まで加熱された後、水に 入れて急激に冷却されると、押付用突出部 14の剛性が増加し、超音波振動子 1の屈 曲振動の共振周波数 bが増加する。  [0334] In addition, when the pressing protrusion 14 is heated to about 700 degrees using a heating device and then rapidly cooled in water, the rigidity of the pressing protrusion 14 increases, and the ultrasonic wave The resonance frequency b of the bending vibration of vibrator 1 increases.
[0335] 加熱装置として、レーザなど、押付用突出部 14のみが局所的に加熱することができ る装置が用いられることが望ましい。また、加熱温度は、押付用突出部 14の材料の 変態温度以上であることが必要である。そのため、押付用突出部 14の材料としてス テンレスが用いられる場合には、 700度程度の温度で押付用突出部 14が加熱される ことが望ましい。 [0335] As the heating device, it is desirable to use a device that can locally heat only the pressing projection 14, such as a laser. The heating temperature of the material of the pressing protrusion 14 It must be above the transformation temperature. Therefore, when stainless steel is used as the material of the pressing protrusion 14, it is desirable that the pressing protrusion 14 is heated at a temperature of about 700 degrees.
[0336] 次に、押付用突出部 14に重り 13が搭載されると、超音波振動子 1の押付用突出部 14の質量を変化させて、超音波振動子 1の振動特性を調整する方法が説明される。  [0336] Next, when the weight 13 is mounted on the pressing protrusion 14, the mass of the pressing protrusion 14 of the ultrasonic transducer 1 is changed to adjust the vibration characteristics of the ultrasonic transducer 1. Is explained.
[0337] 図 66に示されるように、押付用突出部 14にステンレスの重り 13が接着されると、伸 縮振動の共振周波数 aが一定の状態で、屈曲振動の共振周波数 bが低下する。なお 、重り 13の材料は、ステンレスに限定されず、ステンレス以外の他の材料であっても よい。  As shown in FIG. 66, when the stainless steel weight 13 is bonded to the pressing protrusion 14, the resonance frequency b of the bending vibration is lowered while the resonance frequency a of the stretching vibration is constant. Note that the material of the weight 13 is not limited to stainless steel, and may be a material other than stainless steel.
[0338] また、支持用突出部 3と同様に、図 63に示された調整用突出部 20の形状、剛性、 および質量のうち少なくともいずれ力 1つの要素を変化させることにより、屈曲振動の 共振周波数 bを変化させずに、伸縮振動の共振周波数 aのみを容易に調整すること ができる。  [0338] Similarly to the support protrusion 3, the resonance of the bending vibration can be obtained by changing at least one element of the shape, rigidity, and mass of the adjustment protrusion 20 shown in FIG. Only the resonance frequency a of the stretching vibration can be easily adjusted without changing the frequency b.
[0339] 上記の実施の形態においては、複数種類の振動の節のうちの 1の節の位置または その近傍の位置に設けられた構造物である突出部の物理量として、形状、剛性、お よび質量のうちの少なくともいずれ力 1つを変化させることにより、振動特性の調整が 行なわれている。し力しながら、振動の節の位置またはその近傍に設けられた構造の 形状、剛性、および質量の代わりに、振動の節の位置またはその近傍の位置の構造 の内部応力を変化させることにより、前述と同様の振動特性の調整を行なうことが可 能である。内部応力を変化させる方法としては、振動の節の位置またはその近傍の 位置の構造が誘電体を含んでおり、外部からその誘電体へ電界を印加する方法が 考えられる。  [0339] In the above-described embodiment, the physical quantity of the protruding portion, which is a structure provided at the position of one of the plurality of types of vibration nodes or at a position near the node, includes the shape, rigidity, and The vibration characteristics are adjusted by changing at least one force of the mass. By changing the internal stress of the structure at or near the position of the vibration node instead of the shape, rigidity and mass of the structure provided at or near the position of the vibration node, It is possible to adjust the vibration characteristics as described above. As a method of changing the internal stress, a structure in which the structure at the position of the vibration node or in the vicinity thereof includes a dielectric, and an electric field can be applied to the dielectric from the outside.
[0340] また、上記各実施の形態においては、振動の節を含むように突出部が設けられて いる力 振動の節の位置の近傍に突出部が設けられていても、振動の節と突出部と の間の距離が所定量より小さければ振動特性を調整することは、従来の方法に比較 すれば、容易である。たとえば、屈曲振動の共振周波数 bを変化させずに、伸縮振動 の共振周波数 aを変化させる場合には、平面的に見て点で表現される屈曲振動の振 動の節を囲むような周縁状の領域上に突出部が形成されていてもよい。たとえば、屈 曲振動の振動の節としての点を囲むパイプ状の突出部が調整用突出部 20の代わり に設けられていても、上記と同様に、振動特性を容易に調整することが可能である。 この発明を詳細に説明し示してきた力 これは例示のためのみであって、限定ととつ てはならず、発明の範囲は添付の請求の範囲によってのみ限定されることが明らか に理角率されるであろう。 [0340] Further, in each of the above embodiments, the protrusion is provided so as to include the vibration node. Even if the protrusion is provided in the vicinity of the position of the vibration node, the vibration node and the protrusion are provided. If the distance to the part is smaller than the predetermined amount, it is easy to adjust the vibration characteristics as compared with the conventional method. For example, when changing the resonance frequency a of the stretching vibration without changing the resonance frequency b of the bending vibration, a peripheral shape surrounding the bending vibration vibration node expressed in terms of a plane. A protrusion may be formed on the region. For example, crooked Even if a pipe-like protruding portion surrounding the point as a vibration node of the bending vibration is provided instead of the adjusting protruding portion 20, the vibration characteristics can be easily adjusted in the same manner as described above. The power which has described and illustrated the invention in detail This is for illustrative purposes only, and not as a limitation, and it is clear that the scope of the invention is limited only by the appended claims. Will be led.

Claims

請求の範囲 The scope of the claims
[1] 本体に取り付けられた前縁部を有する羽根部と、  [1] a wing having a leading edge attached to the body;
前記羽根部を前後方向に往復運動させるとともに、前記往復運動における運動方 向の反転の前から後の所定期間において、前記羽根部を前記前縁部周りに捻るァク チュエータと、  An actuator that reciprocates the blade portion in the front-rear direction and twists the blade portion around the front edge portion in a predetermined period before and after reversal of the movement direction in the reciprocating motion;
前記往復運動のために前記ァクチユエータに要求されるトルクが所定値より小さレヽ 場合にエネルギーを蓄積し、前記往復運動のために前記ァクチユエータに要求され るトルクが特定値より大きい場合に前記ァクチユエータにエネルギーを与えるェネル ギー蓄積 ·供与機構とを備えた、浮上移動装置。  Energy is stored when the torque required for the actuator for the reciprocating motion is less than a predetermined value, and energy is stored in the actuator when the torque required for the actuator for the reciprocating motion is greater than a specific value. An energy storage and supply mechanism that provides a floating movement device.
[2] 前記往復運動は、角速度が一定である運動と、この運動に連続して行われ、角速 度が変化する、前記運動方向の反転のための運動とからなり、 [2] The reciprocating motion includes a motion having a constant angular velocity and a motion for reversing the motion direction, which is performed continuously with the motion and changes the angular velocity.
前記エネルギー蓄積 ·供与機構は、前記運動方向の反転のための運動の前半に 前記ァクチユエータのエネルギーを蓄積し、前記運動方向の反転のための運動の後 半にエネルギーを前記ァクチユエータに与える、請求項 1に記載の浮上移動装置。  The energy storage / donating mechanism stores energy of the actuator in the first half of the movement for reversing the movement direction, and gives energy to the actuator in the second half of the movement for reversing the movement direction. The rising and moving apparatus according to 1.
[3] 前記エネルギー蓄積 ·供与機構は、充放電可能な電池を有し、前記ァクチユエータ のエネルギーを前記電池に電力として蓄積し、該電池に蓄積された電力を用いて前 記ァクチユエータにエネルギーを与える、請求項 1に記載の浮上移動装置。  [3] The energy storage and supply mechanism has a chargeable / dischargeable battery, stores the energy of the actuator as power in the battery, and supplies the energy to the actuator using the power stored in the battery. The rising and moving apparatus according to claim 1.
[4] 前記エネルギー蓄積 ·供与機構は、物質の弾性変形によって前記ァクチユエータ のエネルギーを蓄積し、前記物質の復元力によって前記ァクチユエータにエネルギ 一を与える、請求項 1に記載の浮上移動装置。 4. The rising and moving apparatus according to claim 1, wherein the energy storage / donating mechanism stores the energy of the actuator by elastic deformation of a substance and gives the energy to the actuator by a restoring force of the substance.
[5] 前記物質は固体である、請求項 4に記載の浮上移動装置。 [5] The rising and moving apparatus according to claim 4, wherein the substance is a solid.
[6] 前記エネルギー蓄積'供与機構は、密閉された容器内の気体の圧縮および膨張に よって、前記運動エネルギーの蓄積および供与を行なう、請求項 1に記載の浮上移 動装置。  6. The levitating and moving apparatus according to claim 1, wherein the energy storage and supply mechanism stores and supplies the kinetic energy by compression and expansion of a gas in a sealed container.
[7] 前記エネルギー蓄積'供与機構は、密閉された容器内での気体の相変化によって 、前記運動エネルギーの蓄積および供与を行なう、請求項 1に記載の浮上移動装置  7. The rising and moving apparatus according to claim 1, wherein the energy storage and supply mechanism stores and supplies the kinetic energy by a phase change of a gas in a sealed container.
[8] 前記往復運動は、角速度が一定である運動と、この運動に連続して行われ、角速 度が変化する、前記運動方向の反転のための運動とからなり、 [8] The reciprocating motion is performed continuously with the motion having a constant angular velocity and the angular velocity. A degree of movement, and a movement for reversing the movement direction,
前記物質は、前記運動方向の反転のための運動の期間のみにおいて、前記ァク チユエータに接触する、請求項 4に記載の浮上移動装置。  5. The rising and moving apparatus according to claim 4, wherein the substance contacts the actuator only during a movement period for reversing the movement direction.
[9] 前記物質は、前記ァクチユエータに設けられている、請求項 4に記載の浮上移動装 置。 [9] The rising and moving apparatus according to claim 4, wherein the substance is provided in the actuator.
[10] 前記往復運動は、角速度が一定である運動と、この運動に連続して行われ、角速 度が変化する前記運動方向の反転のための運動とからなり、  [10] The reciprocating motion is composed of a motion with a constant angular velocity and a motion for reversing the motion direction that is performed continuously and changes the angular velocity,
前記ァクチユエータは、前記往復運動の両端の前記運動方向の反転のための運 動の期間のそれぞれにおいて、前記物質を弾性変形させる構造を有している、請求 項 4に記載の浮上移動装置。  5. The rising and moving apparatus according to claim 4, wherein the actuator has a structure that elastically deforms the substance in each of the movement periods for reversing the movement direction at both ends of the reciprocating movement.
[11] 前記物質は、前記羽根部の往復運動の中心位置において弛んでいる紐状の弾性 体を含む、請求項 10に記載の浮上移動装置。 11. The rising and moving apparatus according to claim 10, wherein the substance includes a string-like elastic body that is slackened at a center position of the reciprocating motion of the blade portion.
[12] 前記物質は、前記トルクが最小値から極大値になるまでの期間において、弾性変 形する、請求項 5に記載の浮上移動装置。 12. The rising and moving apparatus according to claim 5, wherein the substance is elastically deformed in a period until the torque reaches a maximum value from a minimum value.
[13] 前記物質のバネ定数は、前記トルクの極大値を前記トルクが極大値になるときの前 記物質の変形量で除算したものである、請求項 5に記載の浮上移動装置。 13. The rising and moving apparatus according to claim 5, wherein the spring constant of the substance is obtained by dividing the maximum value of the torque by the amount of deformation of the substance when the torque reaches the maximum value.
[14] 前記ァクチユエータは、前記羽根部に前記前後方向の往復運動をさせる前後往復 運動用ロータと、前記羽根部を前記前縁部周りに捻るための捻り運動用ロータとを含 み、 [14] The actuator includes a rotor for back-and-forth reciprocating motion that causes the blade portion to reciprocate in the front-rear direction, and a rotor for twisting motion for twisting the blade portion around the front edge portion.
前記エネルギー蓄積'供与機構は、前記前後往復運動用ロータのエネルギーを蓄 積し、該エネルギーを前記前後往復運動用ロータに与える、請求項 1に記載の浮上 移動装置。  2. The rising and moving apparatus according to claim 1, wherein the energy storage and supply mechanism accumulates energy of the back-and-forth reciprocating rotor and supplies the energy to the back-and-forth reciprocating rotor.
[15] 本体に取り付けられた前縁部を有する羽根部と、  [15] a wing having a leading edge attached to the body;
前記羽根部を前後方向に往復運動させるとともに、前記往復運動における運動方 向の反転の前力 後の所定期間において、前記羽根部を前記前縁部周りに捻るァク チユエータと、  An actuator that reciprocates the blade portion in the front-rear direction and twists the blade portion around the front edge portion in a predetermined period after the forward force of reversal of the movement direction in the reciprocating motion;
前記往復運動において前記ァクチユエータの駆動のために要求されるエネルギー が所定値より小さい場合にエネルギーを蓄積し、前記往復運動において前記ァクチ ユエータの駆動のために要求されるエネルギーが特定値より大きい場合に前記ァク チユエータにエネルギーを与えるエネルギー蓄積'供与機構とを備えた、浮上移動 装置。 Energy is accumulated when the energy required for driving the actuator in the reciprocating motion is smaller than a predetermined value, and the A rising and moving apparatus comprising: an energy storing and providing mechanism for supplying energy to the actuator when energy required for driving the actuator is greater than a specific value.
[16] 前記ァクチユエータは、前記羽根部を前後方向に往復運動させるロータであって、 相対的に小さな振幅で往復運動する第 1ロータと、前記第 1ロータにほぼ平行な方向 において相対的に大きな振幅で往復運動する第 2ロータとを含み、  [16] The actuator is a rotor that reciprocates the blade portion in the front-rear direction, and is relatively large in a direction substantially parallel to the first rotor and a first rotor that reciprocates with a relatively small amplitude. A second rotor that reciprocates with amplitude,
当該浮上移動装置は、前記第 1ロータの位相と前記第 2ロータの位相との差の制御 によって、前記羽根部の捻りの程度を制御する制御部をさらに備え、  The rising and moving apparatus further includes a control unit that controls the degree of twist of the blade portion by controlling the difference between the phase of the first rotor and the phase of the second rotor,
前記エネルギー蓄積'供与機構は、前記第 1ロータのエネルギーを蓄積し、該エネ ルギーを前記第 1ロータに与える、請求項 15に記載の浮上移動装置。  16. The rising and moving apparatus according to claim 15, wherein the energy storage and supply mechanism stores energy of the first rotor and supplies the energy to the first rotor.
[17] 前記ァクチユエータは、前記前縁部を前後方向に往復運動させるロータであって、 前記前縁部に接続され、固定振幅で往復運動する第 1ロータと、前記第 1ロータにほ ぼ平行な方向において可変振幅で往復運動する第 2ロータとを含み、 [17] The actuator is a rotor that reciprocates the front edge portion in the front-rear direction, the first rotor connected to the front edge portion and reciprocating at a fixed amplitude, and substantially parallel to the first rotor. A second rotor that reciprocates with variable amplitude in a different direction,
当該浮上移動装置は、前記第 1ロータの位相と前記第 2ロータの位相との差の制御 によって、前記羽根部の捻りの程度を制御する制御部をさらに備え、  The rising and moving apparatus further includes a control unit that controls the degree of twist of the blade portion by controlling the difference between the phase of the first rotor and the phase of the second rotor,
前記エネルギー蓄積'供与機構は、前記第 1ロータのエネルギーを蓄積し、該エネ ルギーを前記第 1ロータに与える、請求項 15に記載の浮上移動装置。  16. The rising and moving apparatus according to claim 15, wherein the energy storage and supply mechanism stores energy of the first rotor and supplies the energy to the first rotor.
[18] 前記エネルギー蓄積 ·供与機構は、前記ァクチユエータの移動によって生じる運動 エネルギーを蓄積し、該運動エネルギーを前記ァクチユエータに供与する、請求項 1 に記載の浮上移動装置。 18. The rising and moving apparatus according to claim 1, wherein the energy storage / donating mechanism accumulates kinetic energy generated by the movement of the actuator and supplies the kinetic energy to the actuator.
[19] 前記ァクチユエータは、ロータを含み、 [19] The actuator includes a rotor,
前記エネルギー蓄積 ·供与機構の所定の部位は、前記ロータの回転中心軸と共通 の回転中心軸まわりに円弧状の軌跡を描くように移動する、請求項 18に記載の浮上 移動装置。  19. The rising and moving apparatus according to claim 18, wherein the predetermined part of the energy storage / donating mechanism moves so as to draw an arc-shaped locus around a rotation center axis common to the rotation center axis of the rotor.
[20] 前記エネルギー蓄積 ·供与機構は、板パネを含み、  [20] The energy storage and donating mechanism includes a panel board,
前記板パネの固定端は、前記ロータの回転中心軸の近傍に位置付けられている、 請求項 19に記載の記載の浮上移動装置。  20. The rising and moving apparatus according to claim 19, wherein the fixed end of the plate panel is positioned in the vicinity of the rotation center axis of the rotor.
[21] 本体に取り付けられ、往復運動によって羽ばたき運動を実現する羽根部と、 前記羽根部を動作させるァクチユエータと、 [21] A wing part attached to the main body and realizing flapping movement by reciprocating movement; An actuator for operating the blade,
前記羽根部に羽ばたき運動をさせるための複数種類のデータを有し、該複数種類 のデータに基づいて前記ァクチユエータを制御する制御部とを備え、  A controller having a plurality of types of data for causing the blade to flutter, and a controller for controlling the actuator based on the plurality of types of data;
前記複数種類のデータのそれぞれは、前記往復運動の 1周期の前記羽根部の運 動を特定可能であり、かつ、前記往復運動の 1周期のうちの所定期間において、前 記羽根部に共通の運動をさせ、前記所定期間以外の期間においては、前記複数種 類のデータのうちの他のデータによって特定される運動とは異なる運動を前記羽根 部にさせるものであり、  Each of the plurality of types of data can specify the movement of the blade portion in one cycle of the reciprocating motion, and is common to the blade portion in a predetermined period of the one cycle of the reciprocating motion. In a period other than the predetermined period, causing the blade part to perform a movement different from the movement specified by the other data of the plurality of types of data.
前記制御部は、前記所定期間において、前記ァクチユエータが前記複数種類のデ ータのうちの 1のデータによって特定される運動を前記羽根部にさせる制御から前記 ァクチユエータが前記複数種類のデータのうちの他のデータによって特定される運 動を前記羽根部にさせる制御へ切り換える、浮上移動装置。  The control unit controls the actuator to cause the blade unit to perform a movement specified by one data of the plurality of types of data during the predetermined period. A rising and moving apparatus for switching to a control for causing the blade section to perform movement specified by other data.
[22] 前記所定期間以外の期間は、前記往復運動の 1周期のうちの 2つの特定期間であ る、請求項 21に記載の浮上移動装置。  [22] The rising and moving apparatus according to claim 21, wherein the periods other than the predetermined period are two specific periods in one cycle of the reciprocating motion.
[23] 前記 2つの特定期間は、互いに 1/2周期ずれている、請求項 22に記載の浮上移 動装置。 [23] The rising and moving apparatus according to claim 22, wherein the two specific periods are shifted from each other by a half period.
[24] 前記 2つの特定期間の一方および他方は、それぞれ、前記羽根部が前記往復運 動の一方端に位置するタイミングおよび前記羽根部が前記往復運動の他方端に位 置するタイミングを含む、請求項 23記載の浮上移動装置。  [24] One and the other of the two specific periods include a timing at which the blade portion is positioned at one end of the reciprocating motion and a timing at which the blade portion is positioned at the other end of the reciprocating motion, respectively. 24. The rising and moving apparatus according to claim 23.
[25] 前記 2つの特定期間の一方の期間における運動により生じる流体力のうちの一の 方向成分と、前記 2つの特定期間の他方の期間における運動により生じる流体力の うちの一の方向成分とが、相殺される、請求項 22に記載の浮上移動装置。  [25] One directional component of the fluid force generated by the movement in one of the two specific periods, and one directional component of the fluid force generated by the movement in the other of the two specific periods 23. The rising and moving apparatus according to claim 22, wherein
[26] 前記制御部は、前記往復運動の両端のそれぞれにおいて、前記羽根部を前縁部 周りに捻るための制御を実行し、  [26] The control unit performs control for twisting the blade part around the front edge part at each of both ends of the reciprocating motion,
前記 2つの特定期間は、それぞれ、前記ァクチユエータが前記羽根部を前記前縁 部まわりに捻るタイミングを含む、請求項 22記載の浮上移動装置。  23. The rising and moving apparatus according to claim 22, wherein each of the two specific periods includes a timing at which the actuator twists the blade portion around the front edge portion.
[27] 前記複数のデータはホバリングのためのデータを含み、  [27] The plurality of data includes data for hovering,
前記ホバリングのためのデータによって特定される羽ばたき運動は、前記羽根部に 上下方向および左右方向を含む平面に対して鏡面対称な前後方向の往復運動をさ せるものであり、 The flapping motion specified by the data for hovering is This is a reciprocating motion in the front-rear direction that is mirror-symmetrical with respect to the plane including the vertical and horizontal directions
前記制御部は、  The controller is
前記前後方向の往復運動の中心位置から前記前後方向の往復運動の一方端ま で前記羽根部を移動させるための基本データと、  Basic data for moving the blade portion from a center position of the reciprocating motion in the front-rear direction to one end of the reciprocating motion in the front-rear direction;
前記前後方向の往復運動の中心位置から前記前後方向の往復運動の他方端ま で前記羽根部を移動させるように、前記基本データを変換するための演算処理部と を含む、請求項 21に記載の浮上移動装置。  An arithmetic processing unit for converting the basic data so as to move the blade portion from the center position of the reciprocating motion in the front-rear direction to the other end of the reciprocating motion in the front-rear direction. Levitation moving device.
[28] 複数種類の振動を組合せて被駆動体を駆動する超音波振動子の振動特性の調整 方法であって、 [28] A method for adjusting the vibration characteristics of an ultrasonic vibrator that drives a driven body by combining a plurality of types of vibrations,
前記複数種類の振動は、それぞれ、振幅が実質的にゼロである振動の節を有し、 前記複数種類の振動の節のうちの少なくとも 1つの振動の節の位置またはその近 傍の位置でありかつ他の振動の節の位置またはその近傍の位置以外の位置におけ る構造の物理量を変化させることにより、該物理量を変化させる位置に振動の節を有 しない振動の特性を調整する、超音波振動子の調整方法。  Each of the plurality of types of vibrations has a vibration node having an amplitude of substantially zero, and is a position of at least one vibration node of the plurality of types of vibration nodes or a position in the vicinity thereof. In addition, by changing the physical quantity of the structure at a position other than or near the position of another vibration node, the characteristics of the vibration having no vibration node at the position where the physical quantity is changed are adjusted. How to adjust the vibrator.
[29] 前記振動の節の位置における構造は突出部であり、 [29] The structure at the position of the vibration node is a protrusion,
該突出部における物理量を変化させることによって、該物理量を変化させる位置に 振動の節を有しない振動の特性を調整する、請求項 28に記載の超音波振動子の調 整方法。  29. The method of adjusting an ultrasonic transducer according to claim 28, wherein the characteristic of vibration having no vibration node at a position where the physical quantity is changed is adjusted by changing the physical quantity in the protrusion.
[30] 前記突出部の研削によって、該突出部の位置またはその近傍の位置に振動の節 を有しない振動の特性を調整する、請求項 29に記載の超音波振動子の調整方法。  30. The method of adjusting an ultrasonic transducer according to claim 29, wherein the characteristic of vibration having no vibration node at the position of the protrusion or in the vicinity thereof is adjusted by grinding the protrusion.
[31] 前記突出部の加熱処理によって、該突出部の位置またはその近傍の位置に振動 の節を有しない振動の特性を調整する、請求項 29に記載の超音波振動子の調整方 法。  31. The method of adjusting an ultrasonic transducer according to claim 29, wherein the characteristic of vibration having no vibration node at the position of the protrusion or in the vicinity thereof is adjusted by the heat treatment of the protrusion.
[32] 前記突出部への所定部材の付カ卩によって、該突出部の位置またはその近傍の位 置に振動の節を有しない振動の特性を調整する、請求項 29に記載の超音波振動子 の調整方法。  [32] The ultrasonic vibration according to claim 29, wherein a vibration characteristic having no vibration node at a position of the protrusion or a position near the protrusion is adjusted by attaching a predetermined member to the protrusion. How to adjust the child.
[33] 前記複数種類の振動の節のうちの少なくとも 1つの振動の節の位置またはその近 傍の位置に凹部を設けることによって、該凹部が設けられた位置またはその近傍の 位置に振動の節を有しない振動の特性を調整する、請求項 28に記載の超音波振動 子の調整方法。 [33] The position of or near at least one of the plurality of types of vibration nodes 30. The method of adjusting an ultrasonic vibrator according to claim 28, wherein a vibration characteristic having no vibration node is adjusted at a position where the concave portion is provided or a position near the concave portion by providing a concave portion at a side position.
[34] 前記複数種類の振動は、伸縮振動と屈曲振動とを有し、  [34] The plurality of types of vibrations include stretching vibrations and bending vibrations,
前記伸縮振動および前記屈曲振動のうちいずれか一方の振動特性を調整する、 請求項 28に記載の超音波振動子の調整方法。  30. The method of adjusting an ultrasonic transducer according to claim 28, wherein a vibration characteristic of any one of the stretching vibration and the bending vibration is adjusted.
[35] 前記伸縮振動の特性を調整することなぐ前記屈曲振動の特性を調整する、請求 項 34に記載の超音波振動子の調整方法。 35. The method for adjusting an ultrasonic transducer according to claim 34, wherein the bending vibration characteristic is adjusted without adjusting the stretching vibration characteristic.
[36] 前記突出部が当該超音波振動子を支持するための支持用突出部として機能する、 請求項 29に記載の超音波振動子の調整方法。 36. The method of adjusting an ultrasonic transducer according to claim 29, wherein the protruding portion functions as a supporting protruding portion for supporting the ultrasonic transducer.
[37] 複数種類の振動を組合せて被駆動体を駆動する超音波振動子であって、 [37] An ultrasonic vibrator that drives a driven body by combining a plurality of types of vibrations,
前記複数種類の振動は、それぞれ、振幅が実質的にゼロである振動の節を有し、 前記複数種類の振動の節のうちの少なくとも 1つの振動の節の位置またはその近 傍でありかつ他の振動の節の位置またはその近傍の位置以外の位置に振動特性調 整部が設けられた、超音波振動子。  Each of the plurality of types of vibrations has a vibration node having an amplitude of substantially zero, and is at or near the position of at least one vibration node of the plurality of types of vibration nodes. An ultrasonic transducer in which a vibration characteristic adjusting unit is provided at a position other than the position of the vibration node or a position in the vicinity thereof.
[38] 前記振動特性調整部が突出部を有する、請求項 37に記載の超音波振動子。 38. The ultrasonic transducer according to claim 37, wherein the vibration characteristic adjustment unit has a protrusion.
[39] 前記振動特性調整部が凹部を有する、請求項 37に記載の超音波振動子。 39. The ultrasonic transducer according to claim 37, wherein the vibration characteristic adjusting unit has a recess.
[40] 前記突出部が当該超音波振動子を支持する支持用突出部として機能する、請求 項 38に記載の超音波振動子。 40. The ultrasonic transducer according to claim 38, wherein the protruding portion functions as a supporting protruding portion that supports the ultrasonic transducer.
[41] 前記突出部が、当該超音波振動子によって駆動される被駆動体に対して超音波振 動子を押し付けるための押付用突出部として機能する、請求項 38に記載の超音波 振動子。 The ultrasonic transducer according to claim 38, wherein the protrusion functions as a pressing protrusion for pressing the ultrasonic vibrator against a driven body driven by the ultrasonic vibrator. .
PCT/JP2006/317839 2005-09-15 2006-09-08 Levitation movement device, ultrasonic vibrator used for the device, and method of regulating vibration characteristics of the vibrator WO2007032269A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005268555 2005-09-15
JP2005-268555 2005-09-15
JP2006165094A JP4043497B2 (en) 2006-06-14 2006-06-14 Method for adjusting vibration characteristics of ultrasonic vibrator and ultrasonic vibrator used therefor
JP2006-165094 2006-06-14
JP2006228147A JP3989943B2 (en) 2005-09-15 2006-08-24 Flapping levitation moving device
JP2006-228147 2006-08-24

Publications (1)

Publication Number Publication Date
WO2007032269A1 true WO2007032269A1 (en) 2007-03-22

Family

ID=37864863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317839 WO2007032269A1 (en) 2005-09-15 2006-09-08 Levitation movement device, ultrasonic vibrator used for the device, and method of regulating vibration characteristics of the vibrator

Country Status (1)

Country Link
WO (1) WO2007032269A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH290176A (en) * 1951-03-19 1953-04-15 Boissonnas Jean Aircraft.
JPS5141151A (en) * 1975-07-17 1976-04-06 Tatsuji Urabe SEIDOTOSHIDOTONOAIDANIMOKETA CHIKURYOKUSOCHI
DE3815283A1 (en) * 1988-05-05 1989-11-16 Rinnau Hans Joachim Flapping wing inertia control
JPH06312629A (en) * 1993-04-28 1994-11-08 Washi Kosan Kk Auxiliary drive device in restart or re-acceleration of vehicle
JP2002528021A (en) * 1998-10-01 2002-08-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Piezo drive
JP2004159403A (en) * 2002-11-05 2004-06-03 Seiko Epson Corp Piezoelectric actuator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH290176A (en) * 1951-03-19 1953-04-15 Boissonnas Jean Aircraft.
JPS5141151A (en) * 1975-07-17 1976-04-06 Tatsuji Urabe SEIDOTOSHIDOTONOAIDANIMOKETA CHIKURYOKUSOCHI
DE3815283A1 (en) * 1988-05-05 1989-11-16 Rinnau Hans Joachim Flapping wing inertia control
JPH06312629A (en) * 1993-04-28 1994-11-08 Washi Kosan Kk Auxiliary drive device in restart or re-acceleration of vehicle
JP2002528021A (en) * 1998-10-01 2002-08-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Piezo drive
JP2004159403A (en) * 2002-11-05 2004-06-03 Seiko Epson Corp Piezoelectric actuator

Similar Documents

Publication Publication Date Title
Farrell Helbling et al. A review of propulsion, power, and control architectures for insect-scale flapping-wing vehicles
Zhao et al. Fast-moving piezoelectric micro-robotic fish with double caudal fins
JP3989943B2 (en) Flapping levitation moving device
Cen et al. Bio-inspired aquatic robotics by untethered piezohydroelastic actuation
Watson et al. Piezoelectric ultrasonic micro/milli-scale actuators
Yan et al. Towards flapping wing control for a micromechanical flying insect
Fearing et al. Wing transmission for a micromechanical flying insect
Bena et al. SMARTI: A 60-mg steerable robot driven by high-frequency shape-memory alloy actuation
CN114619424B (en) Transmission mechanism of micro crawling robot and micro crawling robot
JP4675346B2 (en) Flapping levitation moving device
Vo et al. Large-scale piezoelectric-based systems for more electric aircraft applications
Kudva et al. DARPA/AFRL/NASA Smart Wing program: final overview
Bhushan et al. Design of an electromagnetic actuator for an insect-scale spinning-wing robot
Mukherjee et al. Non-linear dynamic analysis of a piezoelectrically actuated flapping wing
Sahai et al. A flapping-wing micro air vehicle with interchangeable parts for system integration studies
JP2009006762A (en) Flapping device
JP2011073673A (en) Flapping type floating moving device
WO2007032269A1 (en) Levitation movement device, ultrasonic vibrator used for the device, and method of regulating vibration characteristics of the vibrator
JP4722019B2 (en) Ascent movement device
Mazeika et al. Disc type piezoelectric motor with two coaxial rotors
JP2009067086A (en) Flapping robot system
Avadhanula Design, fabrication and control of the micromechanical flying insect
JP4637801B2 (en) Ascent movement device
JP4078191B2 (en) Flapping levitation moving device
CN116443221B (en) Single-drive robot fish and plane motion control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06797693

Country of ref document: EP

Kind code of ref document: A1