WO2007032265A1 - Continuous culture apparatus for alcohol producing bacterium and method of culturing the bacterium - Google Patents

Continuous culture apparatus for alcohol producing bacterium and method of culturing the bacterium Download PDF

Info

Publication number
WO2007032265A1
WO2007032265A1 PCT/JP2006/317831 JP2006317831W WO2007032265A1 WO 2007032265 A1 WO2007032265 A1 WO 2007032265A1 JP 2006317831 W JP2006317831 W JP 2006317831W WO 2007032265 A1 WO2007032265 A1 WO 2007032265A1
Authority
WO
WIPO (PCT)
Prior art keywords
fermenter
fermentation
substrate
alcohol
supply
Prior art date
Application number
PCT/JP2006/317831
Other languages
French (fr)
Japanese (ja)
Inventor
Keishi Shimazaki
Akihiko Kouno
Ayaaki Ishizaki
Original Assignee
New Century Fermentation Research Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Century Fermentation Research Ltd. filed Critical New Century Fermentation Research Ltd.
Priority to JP2007535439A priority Critical patent/JPWO2007032265A1/en
Publication of WO2007032265A1 publication Critical patent/WO2007032265A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/065Ethanol, i.e. non-beverage with microorganisms other than yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/12Bioreactors or fermenters specially adapted for specific uses for producing fuels or solvents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/34Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of gas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a continuous culture apparatus for alcohol-producing bacteria (including anaerobic bacteria such as Zymomonas mobillis and Escherichia coli imparted with alcohol fermentation ability, excluding yeast) and a method for the same. More specifically, the present invention predicts the consumption of the substrate in the fermentation using the change in the flow rate of carbon dioxide gas as exhaust as an index when the substrate supply solution is supplied to the fermentor continuously or intermittently, and the fermenter The present invention relates to a technology for controlling the supply of the substrate solution and the bowing of the fermentation solution so that the substrate concentration becomes a constant value at a low concentration.
  • the residue concentration is controlled to be low and constant, and the substrate is supplied and the fermentation broth is extracted. If it is possible to perform a continuous fermentation, the productivity of the fermentation process will be dramatically improved. In addition, such a process can eliminate almost no analysis work for sugar concentration management, thereby eliminating unnecessary labor, greatly reducing labor costs, and eliminating night work.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-274934
  • the present invention provides accurate sugar consumption and residual amount even in low-cost but high-impurity substances such as molasses food waste and food factory effluent in continuous ethanol fermentation using anaerobic bacteria such as Zymomonas mobillis.
  • An object of the present invention is to provide a continuous culture apparatus for alcohol-producing bacteria and related technology, which can predict the sugar concentration, keep the substrate concentration of the fermentation broth constant at a low level, and reduce the substrate loss.
  • the present inventors have determined the amount of carbon dioxide flowing out of the fermenter as exhaust in continuous ethanol fermentation by anaerobic bacteria using industrial raw materials such as molasses.
  • the substrate consumption in the fermenter can be accurately grasped if the changes are accurately captured.
  • the decrease in carbon dioxide gas generation that occurs when the substrate in the fermentation broth is detected as a decrease in the flow rate of carbon dioxide gas.
  • a substrate solution is supplied to a fermenter for culturing alcohol-producing bacteria, and an amount of the fermentation solution is fermented according to the amount of substrate solution supplied.
  • the substrate liquid is drawn out from the fermenter when the flow rate of carbon dioxide discharged from the fermenter falls below a predetermined range.
  • the substrate solution is supplied and the fermentation solution is extracted while the substrate in the fermenter is almost exhausted, substrate loss due to uneaten bacteria hardly occurs.
  • the substrate concentration in the fermenter is kept at a low level. It can be continuously fermented stably for a long time.
  • the time for supplying the substrate liquid to the fermenter and the rate per time for supplying the substrate liquid to the fermenter are constant.
  • the supply amount of the substrate solution at one time is calculated based on the substrate consumption rate several hours before the start of supply, and the added substrate is consumed by the microorganisms based on the calculated substrate consumption rate. It is desirable to give the supply rate and supply time to do the rest.
  • the predetermined range is preferably determined by a threshold value of the carbon dioxide flow rate value.
  • the substrate loss due to leftovers of bacteria is almost eliminated, and the substrate concentration in the fermenter can be reduced even when inexpensive industrial raw materials containing many unknown impurities such as molasses are used as the substrate. While maintaining a low and constant level, continuous fermentation can be performed stably for a long time.
  • FIG. 1 is a block diagram of a continuous culture apparatus according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing supply control processing in an embodiment of the present invention.
  • FIG. 3 is a graph showing changes in bacterial concentration, residual sugar, carbon dioxide flow rate, and substrate supply state in one embodiment of the present invention.
  • FIG. 4 is a graph showing changes in turbidity, ethanol accumulation, carbon dioxide flow rate, and residual sugar in an embodiment of the present invention.
  • FIG. 5 is a graph showing the culture results of Comparative Example 1
  • FIG. 6 is a graph showing the culture results according to Example 5 of the present invention.
  • FIG. 7 is a graph showing the culture results according to Example 6 of the present invention.
  • This embodiment relates to a continuous ethanol fermentation method for anaerobic bacteria such as Zymomo nas mobillis that can use any assimilated fermentation resource as a substrate solution.
  • the start of continuous fermentation is By adding the substrate solution for the first time, and adding the substrate solution for a certain period of time at the feed rate determined in the early stage of fermentation.
  • the feed rate obtained in advance is determined from the relationship between the strain, medium composition, and fermentation conditions, and by measuring the bacterial concentration and sugar consumption rate through a fermentation test using batch fermentation.
  • Subsequent substrate liquids are supplied by detecting the decrease in carbon dioxide generation that occurs when the substrate in the fermenter is depleted with a mass flow sensor, etc., so that the bacteria do not enter the state of starvation.
  • the substrate concentration is always kept within a certain range of low levels.
  • Fermenter 1 cultivates anaerobic bacteria such as Zymomonas mobillis inside.
  • the fermenter 1 of this embodiment is a small tank with a volume of 3 liters and is not a pressure vessel, so it is difficult to control the internal pressure.
  • the temperature in the fermenter 1 is controlled to be a predetermined value, and the contents in the fermenter 1 are slowly stirred at a constant speed by the stirrer 2 provided in the fermenter 1.
  • the discharge pipe from the fermenter 1 is connected to a flow meter 4 via a foam trap 3 that removes foam.
  • the flow meter 4 measures the flow rate value of the carbon dioxide gas discharged from the fermenter 1, and is composed of, for example, a mass port sensor, an exhaust gas flow meter, a pressure gauge, and the like.
  • the flow rate value of carbon dioxide gas measured by the flow meter 4 is output to the interface 6 of the control unit 5.
  • other physical quantities that uniquely correspond to the flow rate value of carbon dioxide gas may be measured.
  • the control unit 5 controls the entire continuous culture apparatus shown in FIG.
  • the interface 6 of the control unit 5 includes a turbidimeter 9 (preferably a laser turbidimeter) that measures the turbidity inside the fermenter 1 in addition to the flow rate of carbon dioxide flow rate of 4 flowmeters.
  • the turbidity value and the pH value from pH meter 10 that measures the pH value inside fermenter 1 are input.
  • the CPU 7 is the core of the control unit 5 and executes the control program stored in the ROM 8.
  • This control program includes a supply control program according to the flow chart of FIG.
  • the CPU 7 outputs control signals to the substrate solution supply pump 12, neutralizing agent supply pump 14, circulation pump 15, switching valve 17, and drawing pump 18 via the interface 6 as appropriate, thereby controlling the entire continuous culture apparatus. To do.
  • the substrate solution tank 11 stores a substrate solution as shown in Examples described later.
  • Substrate solution supply pump 1 When a substrate supply signal is input to the interface 2 from the interface 6, the substrate solution is supplied from the substrate solution tank 11 into the fermenter 1 at a predetermined rate for a predetermined time. As a result, the amount of residual sugar in fermenter 1 increases.
  • the neutralizer tank 13 stores a neutralizer such as ammonia, for example.
  • a neutralizer such as ammonia
  • the CPU 7 outputs a neutralizing agent supply signal to the neutralizing agent supply pump 14 so that the pH value is always a constant value of about 4.5 to 6 (depending on conditions), and fermenter 1 Control the pH value inside.
  • the fermenter 1 is connected with a circulation pump 15 that draws out the fermented liquid in the fermenter 1 and pumps it to the crossflow filter 16 in accordance with a circulation instruction signal from the interface 6.
  • the cross flow filter 16 returns a part of the extracted fermentation broth into the fermenter 1 and connects the filtrate to one input port of the switching valve 17.
  • the fermented liquid in the fermenter 1 communicates with the other input port of the switching valve 17.
  • the switching valve 17 connects one of the other Z input ports to the output port in accordance with a switching signal from the interface 6.
  • the extraction pump 18 uses the bow I extraction instruction signal from the interface 6 !, but pumps out the filtrate Z fermentation broth from the output port of the switching valve 17 to the extraction liquid tank 19. As a result, the fermented liquid containing ethanol is taken out into the drawing liquid tank 19.
  • a centrifuge may be used instead of the cross flow filter 16, a centrifuge may be used.
  • the control unit 5 when the flow rate of carbon dioxide gas discharged from the fermenter 1 falls below a predetermined range, the control unit 5 outputs a substrate supply signal to the substrate liquid supply pump 12 (supply means) as a trigger. It is important to supply the substrate solution to the fermenter 1.
  • the circulation pump 15, the cross flow filter 16, the switching valve 17 and the extraction pump 18 correspond to extraction means for extracting the fermentation liquid from the fermentation tank 1, and the control unit 5 includes the substrate liquid supply pump 12
  • This drawing means is controlled so that this drawing means draws out from the fermenter 1 an amount of fermentation liquid that matches the supply amount of the substrate liquid supplied to the fermenter 1.
  • the CPU 7 refers to the turbidity value from the turbidimeter 9 and pulls out the filtrate from the cross flow filter 16 if the fermenter concentration in the fermenter 1 is low (the switching valve 17 is in the state shown in FIG. ), If fermenter concentration is high, from fermenter 1 (switch The valve 17 is in a state opposite to that in Fig. 1) The fermentation broth is drawn out, and the concentration of the fermentation broth in the fermenter 1 is kept constant.
  • the feed rate R1 is set to a value given by the relational expression between the bacterial cell concentration and the sugar consumption rate obtained in advance so that the substrate concentration of the fermentation broth can be maintained at a low level immediately before the withering, Store it in ROM8.
  • the concentration of bacteria is controlled by the turbidimeter 9 at a constant level. Actually, the substrate consumption becomes faster or slower than the predicted value input to the control unit. Sometimes it is preferable to finely adjust the timing of supply.
  • the CPU 7 outputs a signal to stop the substrate supply to the substrate solution supply pump 12 (step 7), and the substrate solution supply pump 12 supplies the substrate. To stop. Therefore, as shown in FIG. 3 (b), the amount of residual sugar starts to decrease again, and at time t2, the carbon dioxide flow rate again falls below the threshold value Th.
  • the flow meter 4 detects a sudden decrease in carbon dioxide generation that occurs when the substrate in the fermenter 1 depletes, It starts when Th is reached.
  • the inoculum was prepared by using YM broth (Difco Laboratories, Detroit) as a medium, adjusting to the specified concentration, dispensing 10 milliliters into a test tube, and heat-sterilizing at 115 ° C for 10 minutes.
  • the main fermentation used was Brazilian molasses diluted 5.3 times with tap water and autoclaved at 120 ° C for 10 minutes. Place 2 liters of this medium in a small (3 liter) fermenter that has been sterilized in advance, add 100 milliliters of the seed fermentation solution prepared as described above, and start fermentation at a temperature of 30 ° C and stirring at lOOrpm. did. Since the pH of the fermentation broth decreased with the growth of the bacteria, pH was kept at 5.5 with 1N ammonia water while monitoring the pH online with a pH meter.
  • the bacterial concentration reached about 4 gZ Ritter in about 24 hours from the start of fermentation. Thereafter, the bacterial concentration could be controlled to 4.0 ⁇ 0.2 gZ litter using a laser turbidimeter (ASR Model LA-301 type) for a total time of 255 hours as shown in FIG.
  • ASR Model LA-301 type a laser turbidimeter
  • the residual substrate concentration in the fermentation broth was measured with a glucose Z sucrose analyzer, and the total glucose Z sucrose was 10 g / liter.
  • the set value of the substrate supply here may differ depending on the fermentation conditions such as the fermentation method and the type of substrate, the performance of the strain used, and the like.
  • the addition time of the substrate solution was set to 4 hours each time. However, as long as the activity of the bacteria is not significantly changed as described above, it is not necessary to make the addition time constant. It is desirable to take longer gradually to reduce time loss.
  • Fig. 4 the progress of the fermentation is shown in the state of turbidity control (upper), the generation of exhaust carbon dioxide by the mass flow sensor (lower), and the ethanol concentration in the fermenter and the residual sugar concentration in the fermenter are shown. Also shown. Stable continuous operation continued for 255 hours by the above-mentioned supply program. During this time, the concentration of residual sugar in the fermentation broth during the supply was maintained at about 10.0 ⁇ 5 gZ litter as the total amount of glucose Z sucrose. The average ethanol concentration of the fermentation broth was about 68 gZ liters. In a continuous continuous operation for 230 hours, 220 liters of fermentation broth containing 68 gZ of ethanol was obtained.
  • the fungus used for the seed (seed), the medium, the fermentation method, the fermentation conditions, and the apparatus used for the main fermentation are the same as in Example 1.
  • the main fermentation medium and substrate solution used were corn starch sugar broth added with CSL (corn steep liquor).
  • CSL corn steep liquor.
  • the supply rate is 950 gZh, the duration of one supply is the same 4 hours as in Example 1, and the threshold value of exhaust carbon dioxide is 0.08 liters / min as in Example 1.
  • Fermentation was stably continued for a long time, and a 180-liter fermented liquid containing 58 g of Z-liter ethanol was obtained by continuous operation for 200 hours.
  • the fungus used for the seed (seed), the medium, the fermentation method, the fermentation conditions, and the apparatus used for the main fermentation are the same as in Example 1.
  • the main fermentation medium and the substrate solution were prepared by adding molasses to cassava starch sugar solution.
  • the supply rate is 1,000 g / h
  • the duration of one supply is the same as in Example 1, 4 hours
  • the threshold value of the sample is 0.08 litter Zmin as in the first embodiment.
  • Fermentation was continued stably for a long time, and 175 L of fermentation broth containing 58 g of Z L of ethanol was obtained by continuous operation for 200 hours.
  • the fungus used for the seed (seed), the medium, the fermentation method, the fermentation conditions, and the apparatus used for the main fermentation are the same as in Example 1.
  • the main fermentation medium and the substrate liquid are model garbage saccharified liquefied liquids that are assumed to be fermented from raw garbage.
  • the supply rate is 1,200 gZh, the duration of one supply is 4 hours, the same as in Example 1, and the exhaust carbon dioxide threshold is 0.08 litter Zmin, the same as in Example 1.
  • Fermentation was continued stably for a long time, and 150 litter of fermentation broth containing 41 gZ litter of ethanol was obtained by continuous operation for 150h.
  • the substrate concentration in the fermenter is kept at a low and constant level, and it is stably continuously for a long time. It is clear that fermentation is possible, and the present invention has a remarkable IJ point compared to the prior art.
  • the medium initially charged in the fermenter is sterilized by heating and steaming and then cooled to obtain the initial medium.
  • penicillin G potassium dissolved in sterilized cold water is added to the initial medium in a final concentration of 5 — Add to 20 IUZ milliliters, add seeds and start fermentation.
  • the bacterial concentration is increased by batch culture, and the bacterial concentration is performed to increase the cell concentration to the target value.
  • the cell concentration reaches the target, dissolve penicillin G potassium in the same manner as the initial medium, and continuously add the substrate solution added to a final concentration of 5-20 IUZ milliliters.
  • cross flow filter 16 used for concentration of bacteria, penicillin G potassium was added to a final concentration of 5-20 IUZ milliliter and incubated at 30 ° C for 2 hours.
  • Cross flow filter 16 The contamination bacteria remaining in the membrane and piping details are killed.
  • ampicillin which is not limited to penicillin, and all ⁇ -ratata antibiotics effective against Durham positive bacteria.
  • the inoculum was prepared using ⁇ broth (Difco Laboratories, Detroit) as the medium, adjusted to the specified concentration, dispensed 10 milliliters into a test tube, and heat-sterilized at 115 ° C for 10 minutes. This was inoculated with Zymomonas mobilis NRRL B-14023, and used after static fermentation at 30 ° C for 18 hours.
  • Main fermentation consists of crystalline glucose 140gZ Litter, yeast extract 5gZ Litter, taste liquid (soy flake acid hydrolyzate) 0.5vol% medium adjusted to pH 5.5, 120 ° C, autoclaved for 20 minutes.
  • the 2 liters of this medium was placed in a pre-sterilized 3 liter single fermentor, and 100 milliliters of the seed fermentation solution prepared as described above was added, and fermentation was started at a temperature of 30 ° C. and stirring at lOOrpm. Fermentation solution pH decreases with bacterial growth Therefore, while monitoring the pH with a pH meter 10, the pH was maintained at 5.5 with IN ammonia water.
  • FIG. 5 is a graph showing the fermentation process in Comparative Example 1. After seeding, bacterial growth is started by batch culture, and when the cell concentration exceeds the lgZ litter, bacterial concentration by the crossflow filter is started, and the substrate is added with the substrate solution and the sterilization solution is cultured. The cell concentration was increased by extracting from the system.
  • the inoculum was prepared by using YM broth (Difco Laboratories, Detroit) as a medium, adjusting to the specified concentration, dispensing 10 milliliters into a test tube, and heat-sterilizing at 115 ° C for 10 minutes. This was inoculated with Zymomonas mobilis NRRL B-14023 and fermented by standing at 30 ° C for 18 hours.
  • the main fermentation was crystal glucose 140gZ Litter, yeast extract 5gZ Litter, taste liquid (soy flake acid hydrolyzate) 0.5 vol% medium adjusted to pH 5.5 and 120 ° C Autoclaved for 20 minutes.
  • Initial culture medium used for cultivation 'Substrate solution used for concentration of bacteria' Continuously fermented substrate solution was cooled to a final concentration of 5 IUZ
  • a penicillin G-potassium product was used so as to be a riliter.
  • the system is the same as that shown in Fig. 1 according to the first embodiment.
  • Comparative Example 1 since contamination was caused in the past culture, there is a possibility that contaminants remain inside the filter 16 or the like. For this reason, thoroughly remove the contaminating bacteria remaining before the culture.
  • the filter cartridge used for the culture that has been contaminated at the end should be thoroughly disassembled and washed after the fermentation and immersed in an alkaline solution for several days. Sterilized. After that, an attempt was made to eradicate residual contaminants by washing with penicillin. That is, every corner of the system in FIG. 1 was washed with penicillin, and as described above, the filter cartridge washed with penicillin was attached to fermenter 1 and used for bacterial concentration and circulation.
  • FIG. 6 shows the culture results. After seeding, bacterial growth is started by batch culture, and when the cell concentration exceeds the lgZ litter, concentration of the cells with the crossflow filter 16 is started, and the substrate solution is added with penicillin G potassium at a final concentration of 5 IUZ milliliters. To add substrate. Further, the sterilization solution was extracted from the culture system, and the cell concentration was increased.
  • Substrate solution for continuous fermentation was prepared with triglyceride 140gZ Litter, yeast extract (YE) 5gZ Litter, taste solution 5milliliter Z Litter adjusted to PH5.5, cooled to 120 ° C for 20 minutes, cooled and then penicillin G Potassium was added to 5 IU / milliliter.
  • FIG. 6 shows the results of continuous fermentation according to Example 5. Over the long period of 150 hours, ethanol could be continuously produced with a healthy fermentation without being violated by contamination. During all continuous operations, the bacterial concentration is maintained at 5 ⁇ 0.5 gZ liters, the amount of C02 generated is about 350 milliliters Zmin (about 15 mmolZmin), and the ethanol production rate is about 42 gZh, maintaining a high production rate. It was. The supply rate of the substrate solution and the extraction rate of the culture solution are stable as shown in Fig. 6. We were able to run continuously. The ethanol concentration of the culture was 65 ⁇ 5 gZ liters (approximately 8.2%) over the entire period. In this way, the effects of washing the penicillin in the filter 16 and penicillin-added caroten to the medium are remarkable, and it has become possible to carry out continuous ethanol fermentation for a long time without being damaged by contamination.
  • the bacteria, medium, fermentation method, and fermentation conditions used for the seeds are the same as in Example 5.
  • the sugar solution is obtained by diluting corn starch enzyme sugar liquor with water and adding it to a CSL (corn steep liquor) concentration of 5 milliliters / liter to a pH of 5.5, followed by a sugar concentration of 140 gZ And then autoclaved at 120 ° C for 20 minutes. After sterilization and cooling, when the medium was sufficiently cooled, penicillin G potassium was added to 5 IUZ milliliters and used for culture. The procedure for washing the penicillin in the cross-flow filter 16 and removing the contaminants is the same as in Example 5.
  • CSL corn steep liquor
  • FIG. 7 shows the culture results according to Example 6.
  • the system is the same as in Example 1.
  • bacterial growth is started by batch culture, and when the cell concentration exceeds the lgZ litter, concentration of the bacteria with a crossflow filter is started, and a substrate solution with penicillin G potassium added to a final concentration of 5 IUZ milliliter is supplied. Add substrate.
  • the sterilization solution was extracted from the culture system to increase the cell concentration.
  • the substrate solution for continuous fermentation is the above-mentioned corn starch enzyme sugar solution (sugar concentration 140gZ litter) — CSL (corn 'steep' liquor) 5mm liter Z liter is adjusted to PH5.5, then 120 ° C for 20 minutes auto Cooled after crepe sterilization and added with pericillin G potassium to 5 IU / milliliter.
  • ethanol could be continuously produced with a healthy fermentation throughout the entire 350 hours without being violated by contamination.
  • the bacterial concentration is maintained at 6 ⁇ 0.5 gZ liters
  • the amount of carbon dioxide generated is 500 milliliters Zmin (about 21 mMolZmin)
  • the ethanol production rate is about 58 gZh
  • a high production rate is achieved over the entire incubation time. I was able to maintain it.
  • the supply rate of the substrate solution and the extraction rate of the culture solution were stable as shown in the lower part of FIG. 7, and the continuous fermentation during the culture maintained a steady state and could be operated continuously for a long time.
  • the ethanol concentration of the culture was 65 ⁇ 5 gZ liters (approximately 8.2%) over the entire period.
  • the effects of washing the penicillin in the filter 16 and penicillin-supplemented on the medium were remarkable, and continuous ethanol fermentation could be carried out for a long time without being damaged by contamination.

Abstract

A continuous culture apparatus wherein in an ethanol continuous fermentation using an anaerobic bacterium, even with a substrate containing impurities in high proportion, the substrate concentration of fermented liquid is held constant at a low level, ensuring reduced substrate loss. There is provided a continuous culture apparatus comprising fermenter (1) for culturing of an alcohol producing bacterium; supply pump (12) for feeding a substrate liquid to the fermenter; flow meter (4) for detecting of the value of flow rate of carbon dioxide gas emitted from the fermenter; and control unit (5) capable of controlling the supply pump on the basis of output of the flow meter, wherein when the value of flow rate of carbon dioxide gas is below a given range, the control unit causes the supply means to supply the substrate liquid to the fermenter with the employment of the flow rate value as a trigger. The rate per time of supply of the substrate liquid to the fermenter and time of supply of the substrate liquid by the supply means are constant.

Description

明 細 書  Specification
アルコール生産細菌の連続培養装置及びその方法  Apparatus and method for continuous culture of alcohol-producing bacteria
技術分野  Technical field
[0001] 本発明は、アルコール生産細菌(Zymomonas mobillis等の嫌気性菌及びアルコー ル発酵能が付与された大腸菌を含むが、酵母は除く。)の連続培養装置及びその方 法に関する。更に詳しくは、本発明は、基質供給液を連続的もしくは断続的に発酵 槽に供給するにあたり、排気としての炭酸ガスの流量変化を指標にして発酵内の基 質の消費を予測し、発酵槽内の基質濃度が低濃度一定の値となるよう、基質液の供 給と発酵液の弓 I抜を制御する技術に関する。  [0001] The present invention relates to a continuous culture apparatus for alcohol-producing bacteria (including anaerobic bacteria such as Zymomonas mobillis and Escherichia coli imparted with alcohol fermentation ability, excluding yeast) and a method for the same. More specifically, the present invention predicts the consumption of the substrate in the fermentation using the change in the flow rate of carbon dioxide gas as exhaust as an index when the substrate supply solution is supplied to the fermentor continuously or intermittently, and the fermenter The present invention relates to a technology for controlling the supply of the substrate solution and the bowing of the fermentation solution so that the substrate concentration becomes a constant value at a low concentration.
背景技術  Background art
[0002] 発酵産業では、微生物による各種アミノ酸、有機酸、エタノール、アセトン'ブタノ一 ル、核酸関連物質等の発酵また微生物菌体そのものの生産 (例えば、酵母菌体の生 産)のために、微生物による発酵が利用される。そして、これら工業生産では、糖など の基質を主原料として、ほとんどすべて回分発酵法によって行われている。したがつ て、発酵そのもの以外に仕込み、装置の準備、種発酵、発酵が終わった後の後始末 •洗浄を繰り返さなければならず、発酵槽の正味稼働時間は非常に短ぐ生産性が 低い。  [0002] In the fermentation industry, for the fermentation of various amino acids, organic acids, ethanol, acetone'butanol, nucleic acid-related substances, etc. by microorganisms and the production of microbial cells themselves (for example, production of yeast cells), Fermentation by microorganisms is used. In these industrial productions, almost all of them are carried out by batch fermentation using a substrate such as sugar as the main raw material. Therefore, preparations other than fermentation itself, preparation of equipment, seed fermentation, and cleanup after the fermentation is completed • The washing must be repeated and the net operating time of the fermenter is very short and the productivity is low .
[0003] この問題を解決するため、発酵槽を数基直列に並べて発酵生産を行うカスケード 法が酵母を用いるエタノール発酵に用いられているが、これは抜本的な解決策とは 言えない。また回分発酵では、発酵経過の監視のために、手作業によって頻繁な糖 濃度分析などが必要で、このための人手確保も工場運転管理の負担となる。  [0003] In order to solve this problem, a cascade method in which several fermenters are arranged in series to perform fermentation production is used for ethanol fermentation using yeast, but this is not a radical solution. Batch fermentation also requires frequent manual sugar concentration analysis to monitor the progress of fermentation, and securing human resources for this is a burden for factory operation management.
[0004] ところで、すべての発酵方法にお!、て、高濃度基質による阻害を防ぎ、基質を有効 に利用し、発酵液の残糖濃度を可能な限り低く抑えて、基質ロスを少なくすることが 必要である。又、発酵を終了した液力 の生産物の分離を容易にし、廃液処理工程 のコスト負担を可能な限り小さくするために、生産物分離工程への、菌の食べ残しの 基質の流出を極小化する必要がある。  [0004] By the way, in all fermentation methods, it is necessary to prevent inhibition by high-concentration substrates, effectively use the substrate, keep the residual sugar concentration of the fermentation broth as low as possible, and reduce substrate loss. is required. In addition, in order to facilitate the separation of hydrolyzed products that have been fermented and minimize the cost burden of the waste liquid treatment process, the outflow of uneaten substrate of bacteria into the product separation process is minimized. There is a need to.
[0005] 残基質濃度を低く一定に制御して基質供給と発酵液の抜き出しを行い、長時間安 定した連続発酵を行うことが可能であれば、発酵工程の装置生産性が飛躍的に向上 する。またこのようなプロセスでは糖濃度管理のための分析作業をほとんど皆無にす ることができるので、無駄な人手を省き、労賃を大幅低減できる上、夜間作業を皆無 にすることができる。 [0005] The residue concentration is controlled to be low and constant, and the substrate is supplied and the fermentation broth is extracted. If it is possible to perform a continuous fermentation, the productivity of the fermentation process will be dramatically improved. In addition, such a process can eliminate almost no analysis work for sugar concentration management, thereby eliminating unnecessary labor, greatly reducing labor costs, and eliminating night work.
[0006] 本発明者らは、特許文献 1 (特開 2003— 274934号公報)において、 Zymomonas mobillisなど嫌気性細菌を用いるエタノール連続発酵に関する方法を提案した。この 方法は、菌の代謝にともなう発酵液の pH変化量が基質消費量とエタノール生産量に 対応すると 、う原理を用いて連続発酵を可能にするものである。  [0006] In the patent document 1 (Japanese Patent Laid-Open No. 2003-274934), the present inventors proposed a method for continuous ethanol fermentation using anaerobic bacteria such as Zymomonas mobillis. This method makes it possible to perform continuous fermentation using the principle that the amount of change in pH of the fermentation broth associated with bacterial metabolism corresponds to the amount of substrate consumed and the amount of ethanol produced.
[0007] すなわち、発酵液 pHの変化を修正するため、アルカリ(アンモニア、苛性ソーダ、そ の他)添加量の積算値に対応する一定量の基質を供給し、それに対応する発酵液を 引き抜き、発酵槽の発酵液量を一定に保ちながら連続発酵を行う。しかしながら、こ の方法をモラセスのような不明の不純物を多く含む安価な工業原料に適用しようとす ると、 pH変化量は必ずしも基質消費とは対応せず、この方法での連続発酵が困難に なる場合があることがわ力つた。  [0007] That is, in order to correct changes in the pH of the fermentation broth, a certain amount of substrate corresponding to the integrated value of the added amount of alkali (ammonia, caustic soda, etc.) is supplied, and the corresponding fermentation broth is withdrawn. Continuous fermentation is performed while keeping the amount of fermentation liquid in the tank constant. However, if this method is applied to inexpensive industrial raw materials containing many unknown impurities such as molasses, the amount of change in pH does not necessarily correspond to substrate consumption, making continuous fermentation difficult by this method. There was a case that it might become.
特許文献 1:特開 2003— 274934号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-274934
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] そこで本発明は、 Zymomonas mobillisなど嫌気性細菌を用いるエタノール連続発酵 において、モラセスゃ食品廃棄物、食品工場廃液など安価であるが不純物の多い基 質においても、正確に糖消費量と残糖濃度を予測し、発酵液の基質濃度を低いレべ ルで一定に保つことができ、基質ロスが少な 、アルコール生産細菌の連続培養装置 及びその関連技術を提供することを目的とする。 [0008] Therefore, the present invention provides accurate sugar consumption and residual amount even in low-cost but high-impurity substances such as molasses food waste and food factory effluent in continuous ethanol fermentation using anaerobic bacteria such as Zymomonas mobillis. An object of the present invention is to provide a continuous culture apparatus for alcohol-producing bacteria and related technology, which can predict the sugar concentration, keep the substrate concentration of the fermentation broth constant at a low level, and reduce the substrate loss.
課題を解決するための手段  Means for solving the problem
[0009] 本発明者らは、上記課題の解決を目指して鋭意研究の結果、モラセスなどの工業 用原料を用いる嫌気性細菌によるエタノール連続発酵において、排気として発酵槽 外に流出する炭酸ガス量の変化を正確に捉えれば発酵槽内の基質消費量を正確に 把握できるという点に着目した。さらに、発酵液中の基質が枯渴するときに生ずる炭 酸ガス発生の減少を炭酸ガス流量低下として検出し、これを指標として、制御部によ つて基質供給と発酵液の引き抜きを制御し、発酵槽の基質濃度を低い一定のレベル に保ちながら、長時間安定的に連続発酵が可能な連続培養方法を完成した。 [0009] As a result of diligent research aimed at solving the above problems, the present inventors have determined the amount of carbon dioxide flowing out of the fermenter as exhaust in continuous ethanol fermentation by anaerobic bacteria using industrial raw materials such as molasses. We focused on the fact that the substrate consumption in the fermenter can be accurately grasped if the changes are accurately captured. Furthermore, the decrease in carbon dioxide gas generation that occurs when the substrate in the fermentation broth is detected as a decrease in the flow rate of carbon dioxide gas. Thus, we have completed a continuous culture method that enables stable continuous fermentation over a long period of time while maintaining the substrate concentration in the fermenter at a low and constant level by controlling the substrate supply and withdrawal of the fermentation broth.
[0010] 第 1の発明に係るアルコール生産細菌の連続培養方法は、アルコール生産細菌を 培養する発酵槽に、基質液を供給するとともに、基質液の供給量にあわせた量の発 酵液を発酵槽カゝら引き抜く方法であって、発酵槽カゝら排出される炭酸ガス流量値が 所定範囲を下回るとき、それをトリガとして発酵槽に基質液を供給する。  [0010] In the continuous culture method for alcohol-producing bacteria according to the first invention, a substrate solution is supplied to a fermenter for culturing alcohol-producing bacteria, and an amount of the fermentation solution is fermented according to the amount of substrate solution supplied. In this method, the substrate liquid is drawn out from the fermenter when the flow rate of carbon dioxide discharged from the fermenter falls below a predetermined range.
[0011] この構成によれば、発酵槽内の基質がほとんど枯渴する状態で、基質液の供給と 発酵液の引き抜きが実施されるので、細菌の食べ残しによる基質ロスはほとんど生じ ない。また、後述する実施例により明らかなように、モラセスのような不明の不純物を 多く含む安価な工業原料を基質とする場合にお!、ても、発酵槽の基質濃度を低 ヽー 定のレベルに保ちながら、長時間安定に連続発酵できる。  [0011] According to this configuration, since the substrate solution is supplied and the fermentation solution is extracted while the substrate in the fermenter is almost exhausted, substrate loss due to uneaten bacteria hardly occurs. In addition, as will be apparent from the examples described later, even when inexpensive industrial raw materials containing many unknown impurities such as molasses are used as substrates, the substrate concentration in the fermenter is kept at a low level. It can be continuously fermented stably for a long time.
[0012] さらには、発酵槽に基質液を供給する時間と、発酵槽に基質液を供給する時間当 たりのレートとは、一定であることが望ましい。  [0012] Furthermore, it is desirable that the time for supplying the substrate liquid to the fermenter and the rate per time for supplying the substrate liquid to the fermenter are constant.
[0013] 即ち、 1回の基質液の供給量は、供給開始直前の数時間前の基質消費速度を予 め計算し、それに基づき添加された基質を微生物が食べ尽くして発酵槽内にほとん ど残らな 、ようにする供給レートと供給時間を与えるのが望ま 、。  [0013] That is, the supply amount of the substrate solution at one time is calculated based on the substrate consumption rate several hours before the start of supply, and the added substrate is consumed by the microorganisms based on the calculated substrate consumption rate. It is desirable to give the supply rate and supply time to do the rest.
[0014] 所定範囲は、炭酸ガス流量値の閾値により定められることが望ましい。  [0014] The predetermined range is preferably determined by a threshold value of the carbon dioxide flow rate value.
発明の効果  The invention's effect
[0015] 本発明によれば、細菌の食べ残しによる基質ロスはほとんどなぐしかも、モラセス のような不明の不純物を多く含む安価な工業原料を基質とする場合においても、発 酵槽の基質濃度を低い一定のレベルに保ちながら、長時間安定に連続発酵できる。 図面の簡単な説明  [0015] According to the present invention, the substrate loss due to leftovers of bacteria is almost eliminated, and the substrate concentration in the fermenter can be reduced even when inexpensive industrial raw materials containing many unknown impurities such as molasses are used as the substrate. While maintaining a low and constant level, continuous fermentation can be performed stably for a long time. Brief Description of Drawings
[0016] [図 1]本発明の一実施の形態における連続培養装置のブロック図  FIG. 1 is a block diagram of a continuous culture apparatus according to an embodiment of the present invention.
[図 2]本発明の一実施の形態における供給制御処理を示すフローチャート  FIG. 2 is a flowchart showing supply control processing in an embodiment of the present invention.
[図 3]本発明の一実施の形態における菌濃度、残糖、炭酸ガス流量値及び基質供給 状態の変化を示すグラフ  FIG. 3 is a graph showing changes in bacterial concentration, residual sugar, carbon dioxide flow rate, and substrate supply state in one embodiment of the present invention.
[図 4]本発明の一実施の形態における濁度、エタノール蓄積量、炭酸ガス流量値及 び残糖の変化を示すグラフ [図 5]比較例 1による培養結果を示すグラフ FIG. 4 is a graph showing changes in turbidity, ethanol accumulation, carbon dioxide flow rate, and residual sugar in an embodiment of the present invention. FIG. 5 is a graph showing the culture results of Comparative Example 1
[図 6]本発明の実施例 5による培養結果を示すグラフ  FIG. 6 is a graph showing the culture results according to Example 5 of the present invention.
[図 7]本発明の実施例 6による培養結果を示すグラフ  FIG. 7 is a graph showing the culture results according to Example 6 of the present invention.
符号の説明  Explanation of symbols
[0017] 1 発酵槽 [0017] 1 Fermenter
2 攪拌機  2 Stirrer
3 泡トラップ  3 Bubble trap
4 流量計  4 Flow meter
5 制御部  5 Control unit
6 インターフェイス  6 Interface
7 CPU  7 CPU
8 ROM  8 ROM
9 濁度計  9 Turbidimeter
10 pH計  10 pH meter
11 基質液槽  11 Substrate liquid tank
12 基質液供給ポンプ  12 Substrate liquid supply pump
13 中和剤槽  13 Neutralizer tank
14 中和剤供給ポンプ  14 Neutralizer supply pump
15 循環ポンプ  15 Circulation pump
16 クロスフローろ過器  16 Cross flow filter
17 切替弁  17 Switching valve
18 引抜ポンプ  18 Drawing pump
19 引抜液槽  19 Drawer tank
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下図面を参照しながら、本発明の実施の形態を説明する。まず、具体的構成の 説明に先立ち、本形態の要点をまとめると次のとおりである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, prior to the description of the specific configuration, the main points of this embodiment are summarized as follows.
[0019] 本形態は、資化可能なあらゆる発酵資源を基質液として用いることができる Zymomo nas mobillisなど嫌気性細菌のエタノール連続発酵法に関する。連続発酵の開始は、 基質液を初回添加し、発酵初期に予め求めておいた供給レートで基質液を一定時 間添加することによる。予め求めておいた供給レートは、菌株、培地組成、発酵条件 を特定し、回分発酵による発酵試験によって、菌濃度と糖消費速度を測定し、その関 係から求められる。それ以降の基質液の供給は、発酵槽内の基質が枯渴するときに 生ずる炭酸ガス発生の減少をマスフローセンサーなどで検出し、細菌が基質飢餓状 態にならないように実施され、発酵槽内の基質濃度は、常に低レベルの一定範囲内 に保たれる。 [0019] This embodiment relates to a continuous ethanol fermentation method for anaerobic bacteria such as Zymomo nas mobillis that can use any assimilated fermentation resource as a substrate solution. The start of continuous fermentation is By adding the substrate solution for the first time, and adding the substrate solution for a certain period of time at the feed rate determined in the early stage of fermentation. The feed rate obtained in advance is determined from the relationship between the strain, medium composition, and fermentation conditions, and by measuring the bacterial concentration and sugar consumption rate through a fermentation test using batch fermentation. Subsequent substrate liquids are supplied by detecting the decrease in carbon dioxide generation that occurs when the substrate in the fermenter is depleted with a mass flow sensor, etc., so that the bacteria do not enter the state of starvation. The substrate concentration is always kept within a certain range of low levels.
[0020] 以上をふまえて、次に図 1を参照しながら、本形態における連続培養装置について 説明する。発酵槽 1は、その内部で Zymomonas mobillisなど嫌気性細菌を培養する。 本形態の発酵槽 1は、容積 3リツターの小型の槽であり、圧力容器ではないため、内 圧の制御を行うのは難しく実施していない。し力 ながら、圧力容器である発酵槽を 使用することもできるし、そのときは内圧の制御もあわせて実施するのが好ましい。発 酵槽 1内の温度は、所定値になるように管理されており、発酵槽 1に設けられた攪拌 器 2により発酵槽 1内の内容物は、一定の速度でゆっくりと撹拌される。  Based on the above, the continuous culture apparatus in this embodiment will be described below with reference to FIG. Fermenter 1 cultivates anaerobic bacteria such as Zymomonas mobillis inside. The fermenter 1 of this embodiment is a small tank with a volume of 3 liters and is not a pressure vessel, so it is difficult to control the internal pressure. However, it is also possible to use a fermenter that is a pressure vessel, and in that case, it is also preferable to control the internal pressure. The temperature in the fermenter 1 is controlled to be a predetermined value, and the contents in the fermenter 1 are slowly stirred at a constant speed by the stirrer 2 provided in the fermenter 1.
[0021] 発酵槽 1からの排出管は、泡を除去する泡トラップ 3を介して流量計 4に接続される 。流量計 4は、発酵槽 1から排出される炭酸ガスの流量値を計測し、例えば、マスフ口 一センサ、排気ガス流量計、圧力計等から構成される。流量計 4が計測した炭酸ガス 流量値は、制御部 5のインターフェイス 6へ出力される。勿論、炭酸ガスの流量値に 一意に対応する他の物理量を計測してもよい。  [0021] The discharge pipe from the fermenter 1 is connected to a flow meter 4 via a foam trap 3 that removes foam. The flow meter 4 measures the flow rate value of the carbon dioxide gas discharged from the fermenter 1, and is composed of, for example, a mass port sensor, an exhaust gas flow meter, a pressure gauge, and the like. The flow rate value of carbon dioxide gas measured by the flow meter 4 is output to the interface 6 of the control unit 5. Of course, other physical quantities that uniquely correspond to the flow rate value of carbon dioxide gas may be measured.
[0022] 制御部 5は、図 1に示す連続培養装置全体を制御する。制御部 5のインターフェイ ス 6には、流量計 4力ゝらの炭酸ガス流量値の他、発酵槽 1の内部の濁度を計測する濁 度計 9 (レーザ濁度計が望ましい)からの濁度値と、発酵槽 1の内部の pH値を計測す る pH計 10からの pH値とが入力される。 CPU7は、制御部 5の中核をなし、 ROM8に 記憶されている制御プログラムを実行する。この制御プログラムには、図 2のフローチ ヤートに従う供給制御プログラムが含まれる。また、 CPU7は、適宜インターフェイス 6 を介し、基質液供給ポンプ 12、中和剤供給ポンプ 14、循環ポンプ 15、切替弁 17、 引抜ポンプ 18に制御信号を出力し、これにより連続培養装置全体を制御する。  [0022] The control unit 5 controls the entire continuous culture apparatus shown in FIG. The interface 6 of the control unit 5 includes a turbidimeter 9 (preferably a laser turbidimeter) that measures the turbidity inside the fermenter 1 in addition to the flow rate of carbon dioxide flow rate of 4 flowmeters. The turbidity value and the pH value from pH meter 10 that measures the pH value inside fermenter 1 are input. The CPU 7 is the core of the control unit 5 and executes the control program stored in the ROM 8. This control program includes a supply control program according to the flow chart of FIG. In addition, the CPU 7 outputs control signals to the substrate solution supply pump 12, neutralizing agent supply pump 14, circulation pump 15, switching valve 17, and drawing pump 18 via the interface 6 as appropriate, thereby controlling the entire continuous culture apparatus. To do.
[0023] 基質液槽 11は、後記実施例に示すような基質液を貯蔵する。基質液供給ポンプ 1 2にインターフェイス 6から基質供給信号が入力されると、所定のレートで所定の時間 、基質液槽 11から基質液が発酵槽 1内へ供給される。その結果、発酵槽 1内の残糖 量は上昇する。 [0023] The substrate solution tank 11 stores a substrate solution as shown in Examples described later. Substrate solution supply pump 1 When a substrate supply signal is input to the interface 2 from the interface 6, the substrate solution is supplied from the substrate solution tank 11 into the fermenter 1 at a predetermined rate for a predetermined time. As a result, the amount of residual sugar in fermenter 1 increases.
[0024] 中和剤槽 13は、例えばアンモニア等の中和剤を貯蔵する。発酵槽 1内で発酵が進 行すると、細菌の増殖に伴い、発酵槽 1内の pHが低下する。本形態では、 pH値が 常に 4. 5乃至 6程度の一定値 (条件により異なる)になるように、 CPU7は、中和剤供 給ポンプ 14に中和剤供給信号を出力し、発酵槽 1内の pH値を制御する。  [0024] The neutralizer tank 13 stores a neutralizer such as ammonia, for example. When fermentation proceeds in fermenter 1, the pH in fermenter 1 decreases as bacteria grow. In this embodiment, the CPU 7 outputs a neutralizing agent supply signal to the neutralizing agent supply pump 14 so that the pH value is always a constant value of about 4.5 to 6 (depending on conditions), and fermenter 1 Control the pH value inside.
[0025] 発酵槽 1には、インターフェイス 6からの循環指示信号にしたがって、クロスフローろ 過器 16に発酵槽 1内の発酵液を引き抜いて圧送する循環ポンプ 15が接続されてい る。クロスフローろ過器 16は、引き抜かれた発酵液の一部を発酵槽 1内へ戻すととも に、ろ液を切替弁 17の一方の入力ポートへ接続する。また、切替弁 17の他方の入 力ポートには、発酵槽 1内の発酵液が連通する。  [0025] The fermenter 1 is connected with a circulation pump 15 that draws out the fermented liquid in the fermenter 1 and pumps it to the crossflow filter 16 in accordance with a circulation instruction signal from the interface 6. The cross flow filter 16 returns a part of the extracted fermentation broth into the fermenter 1 and connects the filtrate to one input port of the switching valve 17. The fermented liquid in the fermenter 1 communicates with the other input port of the switching valve 17.
[0026] 切替弁 17は、インターフ イス 6からの切替信号にしたがって、一方 Z他方の入力 ポートのいずれかを出力ポートへ接続する。引抜ポンプ 18は、インターフェイス 6から の弓 I抜指示信号にしたが!、、切替弁 17の出力ポートからろ液 Z発酵液の 、ずれか を引抜液槽 19へ圧送する。これにより、引抜液槽 19には、エタノールを含む発酵液 が取り出される。なお、クロスフローろ過器 16に替えて、遠心分離器により構成しても 良い。  The switching valve 17 connects one of the other Z input ports to the output port in accordance with a switching signal from the interface 6. The extraction pump 18 uses the bow I extraction instruction signal from the interface 6 !, but pumps out the filtrate Z fermentation broth from the output port of the switching valve 17 to the extraction liquid tank 19. As a result, the fermented liquid containing ethanol is taken out into the drawing liquid tank 19. Instead of the cross flow filter 16, a centrifuge may be used.
[0027] 次に、図 2を参照しながら、制御部 5による基質液の供給制御の各プロセスを説明 する。このプロセスでは、制御部 5が、発酵槽 1から排出される炭酸ガス流量値が所 定範囲を下回ったとき、それをトリガとして基質液供給ポンプ 12 (供給手段)に基質供 給信号を出力し、基質液を発酵槽 1へ供給させる点が重要である。  Next, each process of substrate liquid supply control by the control unit 5 will be described with reference to FIG. In this process, when the flow rate of carbon dioxide gas discharged from the fermenter 1 falls below a predetermined range, the control unit 5 outputs a substrate supply signal to the substrate liquid supply pump 12 (supply means) as a trigger. It is important to supply the substrate solution to the fermenter 1.
[0028] そして、循環ポンプ 15、クロスフローろ過器 16、切替弁 17及び引抜ポンプ 18は、 発酵槽 1から発酵液を引き抜く引抜手段に相当し、制御部 5は、基質液供給ポンプ 1 2が発酵槽 1に基質液を供給する供給量にあわせた量の発酵液をこの引抜手段が発 酵槽 1から引き抜くように、この引抜手段を制御する。なお、 CPU7は、濁度計 9から の濁度値を参照し、発酵槽 1内の発酵液菌濃度が低ければクロスフローろ過器 16か らろ液を引き抜き (切替弁 17は図 1の状態)、菌濃度が高ければ発酵槽 1から (切替 弁 17は図 1とは反対の状態)発酵液を引き抜いて、発酵槽 1内の発酵液菌濃度が一 定に保たれる。 [0028] The circulation pump 15, the cross flow filter 16, the switching valve 17 and the extraction pump 18 correspond to extraction means for extracting the fermentation liquid from the fermentation tank 1, and the control unit 5 includes the substrate liquid supply pump 12 This drawing means is controlled so that this drawing means draws out from the fermenter 1 an amount of fermentation liquid that matches the supply amount of the substrate liquid supplied to the fermenter 1. The CPU 7 refers to the turbidity value from the turbidimeter 9 and pulls out the filtrate from the cross flow filter 16 if the fermenter concentration in the fermenter 1 is low (the switching valve 17 is in the state shown in FIG. ), If fermenter concentration is high, from fermenter 1 (switch The valve 17 is in a state opposite to that in Fig. 1) The fermentation broth is drawn out, and the concentration of the fermentation broth in the fermenter 1 is kept constant.
[0029] 図 2、図 3を参照しながら説明する。まず図 2のステップ 1に示すように、発酵槽 1へ の種菌及び基質液の調整'投入が行われ、ステップ 2にて、待ち時間 TO、炭酸ガス の流量値閾値 Th、供給時間 T1及び供給レート R1がセットされる。これらの所値は条 件に応じて予め設定されており、必要に応じて適宜修正される。図 3の時刻 t=tOに おいて、発酵が開始される。  [0029] A description will be given with reference to FIGS. First, as shown in Step 1 of FIG. 2, the inoculum and substrate solution are adjusted to the fermenter 1, and in Step 2, the waiting time TO, the carbon dioxide flow rate value threshold Th, the supply time T1, and the supply Rate R1 is set. These values are set in advance according to the conditions, and are corrected as necessary. Fermentation starts at time t = tO in FIG.
[0030] 供給レート R1は、発酵液の基質濃度が枯渴直前の低いレベルが維持できるように 、予め求めておいた菌体濃度と糖消費速度との関係式によって与えられる値を設定 し、 ROM8に格納しておく。  [0030] The feed rate R1 is set to a value given by the relational expression between the bacterial cell concentration and the sugar consumption rate obtained in advance so that the substrate concentration of the fermentation broth can be maintained at a low level immediately before the withering, Store it in ROM8.
[0031] 発酵開始当初は、発酵槽 1内において、菌濃度が低く(図 3 (a) )、基質は豊富に存 在する(図 3 (b) )。その後、アルコール生産細菌の特徴として、基質が残っていても 増殖は停止する。そこで、菌濃度を増力!]させるために、培養液を循環し、ろ液を引き 抜きその分の培地を補充しながら濃縮培養を行い、菌濃度を上昇させる。菌濃度が 設定値に達したら、濁度制御を開始し連続発酵に入る。  [0031] At the beginning of fermentation, the concentration of bacteria is low in the fermenter 1 (Fig. 3 (a)), and the substrate is abundant (Fig. 3 (b)). After that, as a characteristic of alcohol-producing bacteria, growth stops even if the substrate remains. Therefore, in order to increase the bacterial concentration!], The culture solution is circulated, the filtrate is drawn out, concentrated culture is performed while supplementing the corresponding medium, and the bacterial concentration is increased. When the bacterial concentration reaches the set value, turbidity control is started and continuous fermentation is started.
[0032] 細菌の増殖が活発化するにつれ、細菌の濃度が上昇し、発酵槽 1内の残糖量は低 下する。また、発酵が進むと、炭酸ガスの流量値は上昇する(図 3 (c) )。この際、 CP U7は、待ち時間 TOが経過したかチェックしており(ステップ 3)、経過するまで基質供 給を行わない。  [0032] As the growth of bacteria increases, the concentration of bacteria increases and the amount of residual sugar in fermenter 1 decreases. As the fermentation progresses, the flow rate of carbon dioxide increases (Fig. 3 (c)). At this time, CPU7 checks whether the waiting time TO has elapsed (step 3) and does not supply the substrate until it has elapsed.
[0033] 図 3 (c)に示すように、時刻 tOにおける初回基質液添加終了後、待ち時間 TOを経 過すると、 CPU7は、ステップ 4にて、炭酸ガスの流量値が閾値 Thを下回ったかどう かチェックする。例えば、時刻 t=tO+TOのとき、炭酸ガスの流量値は、閾値 Thを上 回っており、このときは、 CPU7は、ステップ 8にて処理が終了すべきでないことを確 認した上で、ステップ 4へ処理を戻し、再度上記チェックを行う。  [0033] As shown in FIG. 3 (c), after the initial substrate solution addition at time tO, after the waiting time TO has elapsed, the CPU 7 determines in step 4 that the flow rate value of the carbon dioxide gas has fallen below the threshold value Th. Check for it. For example, at time t = tO + TO, the flow rate value of the carbon dioxide gas exceeds the threshold value Th. At this time, the CPU 7 confirms that the processing should not be terminated in step 8. Return to step 4 and perform the above check again.
[0034] 時刻 t=tlにおいて、発酵槽 1内の基質が枯渴すると、炭酸ガスの発生量が急に減 少し、閾値 Thを下回る。これをトリガとして、ステップ 4力もステップ 5へ処理が移る。 即ち、 CPU7は、基質供給信号をインターフェイス 6を介して基質液供給ポンプ 12へ 出力し、基質液供給ポンプ 12は、基質液槽 11から基質液を供給レート R1にしたが つて発酵槽 1へ供給し始め (ステップ 5)、所定時間 T1だけこの状態が継続する (ステ ップ 6)。その結果、図 3 (b)に示すように、殆どゼロであった発酵槽 1内の残糖量が増 カロに転じる。即ち、時刻 t=tlの時点で、基質供給を再開してやれば制限基質濃度 に近 、低 、残基質濃度で運転を継続できる。 [0034] At time t = tl, when the substrate in the fermenter 1 is depleted, the amount of carbon dioxide generated suddenly decreases and falls below the threshold Th. With this as a trigger, the process moves to step 5 for step 4 force. That is, the CPU 7 outputs a substrate supply signal to the substrate solution supply pump 12 via the interface 6, and the substrate solution supply pump 12 sets the substrate solution from the substrate solution tank 11 to the supply rate R1. Then, supply to fermenter 1 starts (step 5), and this state continues for a predetermined time T1 (step 6). As a result, as shown in FIG. 3 (b), the amount of residual sugar in the fermenter 1 that has been almost zero turns to increased calories. In other words, if the substrate supply is resumed at time t = tl, the operation can be continued at a residue concentration close to the limit substrate concentration and low.
[0035] さて、グルコースを基質とするエタノール発酵における炭酸ガス発生量と発酵との 関係式は、周知のごとく以下の理論式で与えられる。  [0035] Now, as is well known, the relational expression between carbon dioxide generation amount and fermentation in ethanol fermentation using glucose as a substrate is given by the following theoretical formula.
[0036] C H O→2C H OH + 2CO (1)  [0036] C H O → 2C H OH + 2CO (1)
6 12 6 2 5 2  6 12 6 2 5 2
すなわち、グルコース 1モルに対し 2モルのエタノールを生成するとき 2モルの炭酸 ガスを発生するので、糖が枯渴してエタノール生成が停止すれば炭酸ガスの発生は 起こらない。したがって炭酸ガス排出量の減少を指標にすることによって、基質の枯 渴を信頼性高く検出することができる。  That is, when 2 moles of ethanol is produced per 1 mole of glucose, 2 moles of carbon dioxide gas is generated. Therefore, if the sugar is depleted and ethanol production is stopped, carbon dioxide gas is not generated. Therefore, by using the decrease in carbon dioxide emission as an index, it is possible to detect substrate depletion with high reliability.
[0037] この連続発酵の発酵系で菌濃度は濁度計 9によって一定に制御されている力 実 際に供給を行って、基質消費が制御部にインプットした予測値より早くなつたり遅くな つたりする場合もあるので、供給のタイミングは微妙に調整するのが好ま 、。  [0037] In the fermentation system of this continuous fermentation, the concentration of bacteria is controlled by the turbidimeter 9 at a constant level. Actually, the substrate consumption becomes faster or slower than the predicted value input to the control unit. Sometimes it is preferable to finely adjust the timing of supply.
[0038] そして、時刻 tl力も所定時間 T1が経過したら、 CPU7は、基質液供給ポンプ 12に 基質供給を停止せよとの信号を出力し (ステップ 7)、基質液供給ポンプ 12は、基質 の供給を停止する。そのため、図 3 (b)に示すように、残糖量は、再び減少へ転じ、時 刻 t2にて、再度炭酸ガスの流量値が閾値 Thを下回る結果となる。  [0038] Then, when the predetermined time T1 elapses for the time tl force, the CPU 7 outputs a signal to stop the substrate supply to the substrate solution supply pump 12 (step 7), and the substrate solution supply pump 12 supplies the substrate. To stop. Therefore, as shown in FIG. 3 (b), the amount of residual sugar starts to decrease again, and at time t2, the carbon dioxide flow rate again falls below the threshold value Th.
[0039] 以降、時刻 t2, t3, t4' · ·において、同様の処理が繰り返される(ステップ 3〜8)。  [0039] Thereafter, similar processing is repeated at times t2, t3, t4 '(steps 3 to 8).
[0040] 力べして、第 2回以降 (時刻 tl以降)の基質供給は、発酵槽 1内の基質が枯渴すると きに生ずる炭酸ガス発生の急激な減少を流量計 4が検出し、閾値 Thに達したとき開 始される。  [0040] Substantially, in the second and subsequent times (after time tl), the flow meter 4 detects a sudden decrease in carbon dioxide generation that occurs when the substrate in the fermenter 1 depletes, It starts when Th is reached.
[0041] このようにして、微生物の発生する炭酸ガスを逐次チェックしながら糖などの基質を 枯渴させることなく基質液を連続的に添加することが可能となり、発酵槽内基質濃度 を容易に 5gZリツター以下の低レベルに抑えることが可能となる。モラセスのような不 明の不純物を多く含む安価な工業原料を基質とし pH変化量に依存したのでは連続 発酵が困難になりうる場合においても、この点は妥当するため、従来技術よりもより広 汎で材料費が低廉な発酵を行える。 実施例 [0041] In this way, it is possible to continuously add a substrate solution without depleting a substrate such as sugar while sequentially checking the carbon dioxide gas generated by microorganisms, thereby easily increasing the substrate concentration in the fermenter. It becomes possible to keep it at a low level of 5gZ or less. Even if it is difficult to continuously ferment by relying on the amount of change in pH based on inexpensive industrial raw materials that contain a lot of unknown impurities such as molasses, this point is appropriate, so it is wider than the conventional technology. Fermentation can be carried out at a low cost. Example
[0042] 以下、実施例により本発明を更に詳しく説明する。勿論、以下の実施例により本発 明が限定されるわけではな 、。  [0042] Hereinafter, the present invention will be described in more detail with reference to Examples. Of course, the present invention is not limited by the following examples.
[0043] (実施例 1) [0043] (Example 1)
種菌は、 YMブロス(Difco Laboratories, Detroit)を培地とし、規定濃度に調 整後、試験管に 10ミリリツターを分注し 115°Cで 10分間加熱滅菌したもので調製した The inoculum was prepared by using YM broth (Difco Laboratories, Detroit) as a medium, adjusting to the specified concentration, dispensing 10 milliliters into a test tube, and heat-sterilizing at 115 ° C for 10 minutes.
。これに Zymomonas mobillis NRRL B— 14023を接種し、 30°Cにて 18時間静置 発酵したものを用いた。 . This was inoculated with Zymomonas mobillis NRRL B-14023, and used after standing still at 30 ° C for 18 hours.
[0044] 主発酵は、ブラジル産モラセスを水道水で 5. 3倍に希釈し、 120°C、 10分間オート クレープ滅菌したものを用いた。この培地 2リツターを予め滅菌した小型の(容積 3リツ ター)発酵槽に入れ、先に述べたように調製した種発酵液 100ミリリツターを添加し、 温度 30°C、攪拌 lOOrpmにて発酵を開始した。菌増殖とともに発酵液 pHが低下す るので、 pH計によってオンラインで pHをモニターしながら 1Nアンモニア水によって p Hを 5. 5に保つようにした。  [0044] The main fermentation used was Brazilian molasses diluted 5.3 times with tap water and autoclaved at 120 ° C for 10 minutes. Place 2 liters of this medium in a small (3 liter) fermenter that has been sterilized in advance, add 100 milliliters of the seed fermentation solution prepared as described above, and start fermentation at a temperature of 30 ° C and stirring at lOOrpm. did. Since the pH of the fermentation broth decreased with the growth of the bacteria, pH was kept at 5.5 with 1N ammonia water while monitoring the pH online with a pH meter.
[0045] 発酵開始後 15時間で菌増殖が頭打ちとなったので、発酵液の循環濃縮を行い、 菌濃度を上昇させた。発酵槽外に設置したクロスフローろ過器(日本ポール製、 0. 4 5m , 0. lm2カートリッジ)に発酵液を循環し、ろ液を発酵槽外に抜き出して発酵開 始時と同じ培地を補充して発酵槽液量を一定に維持しながら菌濃度の上昇を図った [0045] Since the growth of the bacteria reached its peak 15 hours after the start of the fermentation, the concentration of the bacteria was increased by circulating concentration of the fermentation broth. Circulate the fermentation broth through a cross-flow filter (Nippon Pole, 0.45m, 0.1 lm 2 cartridge) installed outside the fermenter, extract the filtrate out of the fermenter, and use the same medium as at the start of fermentation. Replenishment to increase the bacterial concentration while maintaining a constant fermentor volume
[0046] このようにして、発酵開始約 24時間で菌濃度約 4gZリツターに達した。以後連続発 酵の全時間 255時間にわたりレーザー濁度計 (ASR社製 Model LA— 301型)に よって、図 4に示すように、菌濃度は 4. 0±0. 2gZリツターに制御できた。菌濃度が 一定となったところで、グルコース Zスクロース アナライザーによって発酵液中の残 基質濃度を測定したところ、グルコース Zスクロース合計として 10g/リツターであつ たので、発酵開始時と同じブラジル産モラセスを水道水で 5. 7倍に希釈し、 120°C、 10分間オートクレープ滅菌したものを基質液として 950gZhの供給レートで 4時間連 続供給した。 [0046] In this way, the bacterial concentration reached about 4 gZ Ritter in about 24 hours from the start of fermentation. Thereafter, the bacterial concentration could be controlled to 4.0 ± 0.2 gZ litter using a laser turbidimeter (ASR Model LA-301 type) for a total time of 255 hours as shown in FIG. When the bacterial concentration became constant, the residual substrate concentration in the fermentation broth was measured with a glucose Z sucrose analyzer, and the total glucose Z sucrose was 10 g / liter. Was diluted 5.7 times and autoclaved at 120 ° C for 10 minutes, and continuously supplied for 4 hours at a supply rate of 950 gZh as a substrate solution.
[0047] 4時間の供給を行った後供給を停止したところ、細菌は発酵液中に残って!/、たわず 力な基質をたちまち食べ尽くし、供給停止後約 15分で排気炭酸ガスの急激な低下 が認められた。排気炭酸ガスの発生量が設定値の 0. 08リツター Zminに達したとき 、基質が枯渴したものと判断し供給を再開した。実際炭酸ガス発生が設定下限に達 したときの残糖濃度はアナライザーによればほとんど OgZリツターである。この操作は 制御プログラムによって自動的に行われる。 [0047] When the supply was stopped after 4 hours of supply, the bacteria remained in the fermentation broth! The exhausted carbon dioxide gas suddenly declined about 15 minutes after the supply was stopped. When the amount of exhaust carbon dioxide reached the set value of 0.08 liter Zmin, it was determined that the substrate was depleted and the supply was resumed. Actually, the residual sugar concentration when the carbon dioxide generation reaches the set lower limit is almost OgZ liter according to the analyzer. This operation is performed automatically by the control program.
[0048] 以後 1, OOOgZhの供給レートで 4時間の供給を行い、一時供給を停止して排気炭 酸ガスの急激な減少を確認し、排気炭酸ガス流量が閾値に達したとき供給を再開す るプログラムを働カゝせて連続運転を行った。供給を停止した後炭酸ガス発生の急激 な減少が起こるまでの時間によって、供給中の発酵液残糖濃度を推測することがで きる。この時間の長さから、残糖濃度が高いと判断したときは供給レートを少し小さぐ 逆ならば速度を大きくして微調整を行う。 [0048] After that, supply for 4 hours at a supply rate of 1, OOOgZh, stop the temporary supply, confirm a sudden decrease in the exhaust carbon dioxide gas, and resume the supply when the exhaust carbon dioxide flow rate reaches the threshold. The program was activated and continuous operation was performed. The concentration of residual sugar in the fermentation broth during the supply can be estimated from the time until the sudden decrease in carbon dioxide generation occurs after the supply is stopped. If it is determined that the residual sugar concentration is high from this length of time, the feed rate is slightly reduced.
[0049] ただし、ここで基質供給の設定値は、発酵の方式や基質の種類などの発酵条件、 使用菌株の性能などにより異なる場合もある。又、本実施例では毎回の基質液の添 加時間を 4時間にしたが、前述のごとぐ菌の活性が大きく変らない時間内であれば 、この添カ卩時間を一定にする必要はなく時間ロスを少なくするために徐々に長く取つ た方が望ましい。 [0049] However, the set value of the substrate supply here may differ depending on the fermentation conditions such as the fermentation method and the type of substrate, the performance of the strain used, and the like. In this example, the addition time of the substrate solution was set to 4 hours each time. However, as long as the activity of the bacteria is not significantly changed as described above, it is not necessary to make the addition time constant. It is desirable to take longer gradually to reduce time loss.
[0050] 図 4において、この発酵の経過を濁度制御の状態(上段)、マスフローセンサーによ る排気炭酸ガスの発生(下段)を示し、発酵槽内エタノール濃度、発酵槽内残糖濃度 を併せて示す。上述した供給プログラムにより安定した連続運転が 255時間継続した 。この間、供給中の発酵液残糖濃度はにグルコース Zスゥロース合量として約 10. 0 ± 5gZリツターに維持された。また、発酵液の平均エタノール濃度は約 68gZリツタ 一であった。正味連続運転 230時間でエタノール 68gZリツターを含む発酵液 220リ ッターを得た。  [0050] In Fig. 4, the progress of the fermentation is shown in the state of turbidity control (upper), the generation of exhaust carbon dioxide by the mass flow sensor (lower), and the ethanol concentration in the fermenter and the residual sugar concentration in the fermenter are shown. Also shown. Stable continuous operation continued for 255 hours by the above-mentioned supply program. During this time, the concentration of residual sugar in the fermentation broth during the supply was maintained at about 10.0 ± 5 gZ litter as the total amount of glucose Z sucrose. The average ethanol concentration of the fermentation broth was about 68 gZ liters. In a continuous continuous operation for 230 hours, 220 liters of fermentation broth containing 68 gZ of ethanol was obtained.
[0051] (実施例 2)  [0051] (Example 2)
シード (種)に用いた菌、培地、発酵法、発酵条件、及び主発酵に用いた装置は、 実施例 1と同一である。  The fungus used for the seed (seed), the medium, the fermentation method, the fermentation conditions, and the apparatus used for the main fermentation are the same as in Example 1.
[0052] 主発酵培地及び基質液はコーンスターチ糖ィ匕液に CSL (コーン'スティープ 'リカー )を添加したものを用いた。 [0053] コーンスターチ 200gZリツターを水に懸濁しスラリーとした後、攪拌しながら ρΗを 6 . 0に調整し、 Termamyl 120L (Novo) 0. 5 リツター Zg starchをカ卩え water bath上で 90°C, lh液化処理を行う。これを冷却後 pHを 4. 5に調整し、 Dextrozym e (Novo) 0. 6 /zリツター Zg starchをカ卩ぇ恒温槽内で 60°C, 24h糖化処理を行つ た。その結果グルコース濃度 178gZリツターの糖液を得た。 [0052] The main fermentation medium and substrate solution used were corn starch sugar broth added with CSL (corn steep liquor). [0053] After suspending cornstarch 200gZ litter in water and making a slurry, adjust ρΗ to 6.0 with stirring, and add Termamyl 120L (Novo) 0.5 litter Zg starch to 90 ° C on the water bath. , lh liquefaction treatment. After cooling, the pH was adjusted to 4.5, and Dextrozyme (Novo) 0.6 / z litter Zg starch was subjected to saccharification treatment at 60 ° C for 24 hours in a thermostatic bath. As a result, a sugar solution having a glucose concentration of 178 gZ Ritter was obtained.
[0054] これを水にてグルコース濃度 130gZリツターとなるよう希釈し、予め遠心分離によつ て固形分を除いた CSL (サンエイ糖化 KK) 5gZリツターを加え、 pH調整後オートク レーブ滅菌処理したものを培地 ·基質液として用いた。  [0054] This was diluted with water to a glucose concentration of 130 gZ litter, CSL (Seiei saccharification KK) 5 gZ litter from which solid content had been removed by centrifugation was added in advance, and after autoclaving after pH adjustment Was used as a medium / substrate solution.
[0055] 発酵の手順及び制御プログラムは実施例 1と全く同じである。  [0055] The fermentation procedure and control program are exactly the same as in Example 1.
[0056] 供給レートは 950gZh、 1回の供給継続時間は実施例 1と同じ 4h、排気炭酸ガス の閾値は実施例 1と同じ 0. 08リツター/ minである。  [0056] The supply rate is 950 gZh, the duration of one supply is the same 4 hours as in Example 1, and the threshold value of exhaust carbon dioxide is 0.08 liters / min as in Example 1.
[0057] 発酵は安定して長時間継続し、 200hの連続運転で 58gZリツターのエタノールを 含む発酵液 180リツターを得た。  [0057] Fermentation was stably continued for a long time, and a 180-liter fermented liquid containing 58 g of Z-liter ethanol was obtained by continuous operation for 200 hours.
[0058] (実施例 3)  [Example 3]
シード (種)に用いた菌、培地、発酵法、発酵条件、及び主発酵に用いた装置は、 実施例 1と同一である。  The fungus used for the seed (seed), the medium, the fermentation method, the fermentation conditions, and the apparatus used for the main fermentation are the same as in Example 1.
[0059] 主発酵培地及び基質液はキヤッサバデンプン糖ィ匕液にモラセスを添加したものを 用いた。  [0059] The main fermentation medium and the substrate solution were prepared by adding molasses to cassava starch sugar solution.
[0060] キヤッサバデンプン (タイ国産) 200gZリツターを水に懸濁しスラリーとした後、攪拌 しながら ρΗを 6. 0に調整し、 Termamyl 120L (Novo) 0. 5 リツター Zg starch をカロえ water bath上で 90°C, lh液化処理を行う。これを冷却後 pHを 4. 5に調整 し、 Dextrozyme (Novo) 0. 6 リツター Zg starchをカ卩え恒温槽内で 60°C, 24h 糖ィ匕処理を行った。その結果グルコース濃度 175gZリツターの糖液を得た。これを 水にてダルコース濃度 130g/リツターとなるよう希釈し、実施例 1において用 、たモ ラセス 5. 7.倍希釈液を 1 : 1に混合し、 pH調整後オートクレープ滅菌処理したものを 培地 ·基質液として用いた。  [0060] Cassava starch (Thailand) 200gZ Ritter suspended in water to make slurry, adjust ρΗ to 6.0 with stirring, Termamyl 120L (Novo) 0.5 Ritter Zg starch and water bath Perform 90 ° C, lh liquefaction treatment above. After cooling this, the pH was adjusted to 4.5, and Dextrozyme (Novo) 0.6 Litter Zg starch was added, and the mixture was treated with sugar at 60 ° C for 24 hours. As a result, a sugar solution having a glucose concentration of 175 gZ Ritter was obtained. This was diluted with water to a dulcose concentration of 130 g / liter, and used in Example 1. 5. 7-fold diluted solution was mixed 1: 1, and after autoclaving after pH adjustment. Medium · Used as a substrate solution.
[0061] 発酵の手順及び制御プログラムは実施例 1と全く同じである。 [0061] The fermentation procedure and control program are exactly the same as in Example 1.
[0062] 供給レートは 1, 000g/h, 1回の供給継続時間は実施例 1と同じ 4h、排気炭酸ガ スの閾値は実施例 1と同じ 0. 08リツター Zminである。 [0062] The supply rate is 1,000 g / h, the duration of one supply is the same as in Example 1, 4 hours, and the exhaust carbon dioxide The threshold value of the sample is 0.08 litter Zmin as in the first embodiment.
[0063] 発酵は安定して長時間継続し、 200hの連続運転で 58gZリツターのエタノールを 含む発酵液 175リツターを得た。 [0063] Fermentation was continued stably for a long time, and 175 L of fermentation broth containing 58 g of Z L of ethanol was obtained by continuous operation for 200 hours.
[0064] (実施例 4) [0064] (Example 4)
シード (種)に用いた菌、培地、発酵法、発酵条件、及び主発酵に用いた装置は、 実施例 1と同一である。  The fungus used for the seed (seed), the medium, the fermentation method, the fermentation conditions, and the apparatus used for the main fermentation are the same as in Example 1.
[0065] 主発酵培地及び基質液は生ゴミを原料とする発酵想定したモデル生ゴミ糖化液で ある。  [0065] The main fermentation medium and the substrate liquid are model garbage saccharified liquefied liquids that are assumed to be fermented from raw garbage.
[0066] ご飯(白米) 250g、キャベツ 59g、ゆでたにんじん 50g、バナナ(可食部) 50g、サシ ミ 50g、を適量の水をカ卩えてジューサーミキサーで粉砕ジュース化した後、全量 1リツ ターの水を加えて希釈する。攪拌しながら pHを 4. 5〖こ調整し、 Dextrozyme (Novo ) 0. 6 リッター Zg starchをカ卩ぇ恒温槽内で 60°C, 24h糖ィ匕処理を行った。糖ィ匕 後のグルコース濃度 85g/リツターの糖液を得た。これをそのままオートクレープ滅菌 処理して、培地'基質液として用いた。  [0066] Rice (white rice) 250g, cabbage 59g, boiled carrot 50g, banana (edible part) 50g, sashimi 50g, squeezed into a juicer mixer and crushed juice into a total amount of 1 liter Dilute with water. While stirring, the pH was adjusted to 4.5 mm, and Dextrozyme (Novo) 0.6 liter Zg starch was subjected to sugar treatment at 60 ° C. for 24 hours in a thermostatic bath. A sugar solution having a glucose concentration of 85 g / liter after sugar was obtained. This was autoclaved as it was and used as a medium'substrate solution.
[0067] 発酵の手順及び制御プログラムは実施例 1と全く同じである。  [0067] The fermentation procedure and control program are exactly the same as in Example 1.
[0068] 供給レートは 1, 200gZh、 1回の供給継続時間は実施例 1と同じ 4h、排気炭酸ガ スの閾値は実施例 1と同じ 0. 08リツター Zminである。  [0068] The supply rate is 1,200 gZh, the duration of one supply is 4 hours, the same as in Example 1, and the exhaust carbon dioxide threshold is 0.08 litter Zmin, the same as in Example 1.
[0069] 発酵は安定して長時間継続し、 150hの連続運転で 41gZリツターのエタノールを 含む発酵液 150リツターを得た。  [0069] Fermentation was continued stably for a long time, and 150 litter of fermentation broth containing 41 gZ litter of ethanol was obtained by continuous operation for 150h.
[0070] 以上の実施例により、モラセスのような不明の不純物を多く含む安価な工業原料を 基質とする場合においても、発酵槽の基質濃度を低い一定のレベルに保ちながら、 長時間安定に連続発酵できる点は明らかであり、本発明は従来技術に比べ顕著な 禾 IJ点がある。  [0070] According to the above embodiment, even when an inexpensive industrial raw material containing a large amount of unknown impurities such as molasses is used as a substrate, the substrate concentration in the fermenter is kept at a low and constant level, and it is stably continuously for a long time. It is clear that fermentation is possible, and the present invention has a remarkable IJ point compared to the prior art.
[0071] 以下、 βラタタム系抗生物質に関する比較例 1及び実施例 5、 6を説明する。実施 例 5、 6に共通する事項は次のとおりである。  [0071] Hereinafter, Comparative Example 1 and Examples 5 and 6 relating to β-ratata antibiotics will be described. Items common to Examples 5 and 6 are as follows.
[0072] Zymomonas mobilisを用いるエタノール発酵を連続させエタノール生産を行うにあた り、最初に発酵槽に仕込む培地を加熱蒸気殺菌した後冷却し、初発培地とする。ま た、滅菌した冷水にペニシリン Gカリウムを溶解させたものを、初発培地に最終濃度 5 — 20IUZミリリツターになるように添加し、種菌(シード)を加えて発酵開始する。 [0072] In ethanol production by continuous ethanol fermentation using Zymomonas mobilis, the medium initially charged in the fermenter is sterilized by heating and steaming and then cooled to obtain the initial medium. In addition, penicillin G potassium dissolved in sterilized cold water is added to the initial medium in a final concentration of 5 — Add to 20 IUZ milliliters, add seeds and start fermentation.
[0073] 実施例 1と同様に、回分培養で菌濃度を上昇させ、菌濃縮を行って細胞濃度を目 標値まで上昇させる。細胞濃度が目標に達したら初発培地同様の手順でペニシリン Gカリウムを溶解し、最終濃度 5— 20IUZミリリツターになるように添加した基質液を 連続的に添加して連続発酵を行う。 [0073] As in Example 1, the bacterial concentration is increased by batch culture, and the bacterial concentration is performed to increase the cell concentration to the target value. When the cell concentration reaches the target, dissolve penicillin G potassium in the same manner as the initial medium, and continuously add the substrate solution added to a final concentration of 5-20 IUZ milliliters.
[0074] また、菌濃縮に用いるクロスフローろ過器 16についても、ペニシリン Gカリウムを最 終濃度 5— 20IUZミリリツターとなるように添加して温度 30°Cで 2時間インキュベート し、クロスフローろ過器 16の膜内や配管細部に残存するコンタミ菌を死滅させる。 [0074] Also, for cross flow filter 16 used for concentration of bacteria, penicillin G potassium was added to a final concentration of 5-20 IUZ milliliter and incubated at 30 ° C for 2 hours. Cross flow filter 16 The contamination bacteria remaining in the membrane and piping details are killed.
[0075] これらの点力 実施例 1から 4までと、実施例 5, 6との相違点である。以下、実施例 5 、 6〖こより詳細〖こ説明するよう〖こ、これらの処置により、 Zymomonas mobilis〖こよるエタノ ール連続発酵は、 350時間の長期に亘り全くコンタミ菌の侵入 ·増殖を受けることなく 、常時最大速度でエタノールを発酵生産できた。もちろんこの方法は Zymomonas mo bilisに限らずアルコール発酵能の付与された遺伝子組み換え大腸菌を用いる発酵 においても有効である。 [0075] These points are the differences between Examples 1 to 4 and Examples 5 and 6. As described below in more detail than in Examples 5 and 6, these treatments allow ethanol continuous fermentation by Zymomonas mobilis to undergo complete contamination and growth of contaminant bacteria over a long period of 350 hours. Without this, ethanol could always be produced by fermentation at the maximum speed. Of course, this method is effective not only in Zymomonas mo bilis but also in fermentation using genetically modified E. coli to which alcoholic fermentation ability is imparted.
[0076] ここで、抗生物質は、ペニシリンに限定されるものではなぐアンピシリンを初めダラ ム陽性細菌に有効な全ての βラタタム系抗生物質を用いても同様の効果を得ること が出来る。  [0076] Here, the same effect can be obtained by using ampicillin, which is not limited to penicillin, and all β-ratata antibiotics effective against Durham positive bacteria.
[0077] 次に、実施例 5、 6に先立ち、比較例 1を説明する。  [0077] Next, prior to Examples 5 and 6, Comparative Example 1 will be described.
[0078] (比較例 1)  [0078] (Comparative Example 1)
種菌は ΥΜブロス(Difco Laboratories, Detroit)を培地とし、規定濃度に調整 後、試験管に 10ミリリツターを分注し 115°Cで 10分間加熱滅菌したもので調製した。 これに Zymomonas mobilis NRRL B— 14023を接種し、 30°Cにて 18時間静置発 酵したものを用いた。  The inoculum was prepared using ΥΜ broth (Difco Laboratories, Detroit) as the medium, adjusted to the specified concentration, dispensed 10 milliliters into a test tube, and heat-sterilized at 115 ° C for 10 minutes. This was inoculated with Zymomonas mobilis NRRL B-14023, and used after static fermentation at 30 ° C for 18 hours.
[0079] 主発酵は、結晶ブドウ糖 140gZリツター,酵母エキス 5gZリツター,味液 (大豆フレ ーク酸加水分解液) 0. 5vol%力らなる組成の培地を、 pH5. 5に調整し、 120°C、 20 分間オートクレープ滅菌したものを用いた。この培地 2リツターを予め滅菌した 3リツタ 一容小型発酵槽に入れ、先に述べたように調製した種発酵液 100ミリリツターを添カロ し、温度 30°C、攪拌 lOOrpmにて発酵を開始した。菌増殖とともに発酵液 pHが低下 するので、 pH計 10によって pHをモニターしながら INアンモニア水によって pHを 5. 5に保つようにした。 [0079] Main fermentation consists of crystalline glucose 140gZ Litter, yeast extract 5gZ Litter, taste liquid (soy flake acid hydrolyzate) 0.5vol% medium adjusted to pH 5.5, 120 ° C, autoclaved for 20 minutes. The 2 liters of this medium was placed in a pre-sterilized 3 liter single fermentor, and 100 milliliters of the seed fermentation solution prepared as described above was added, and fermentation was started at a temperature of 30 ° C. and stirring at lOOrpm. Fermentation solution pH decreases with bacterial growth Therefore, while monitoring the pH with a pH meter 10, the pH was maintained at 5.5 with IN ammonia water.
[0080] 図 5は、比較例 1における発酵過程を示すグラフである。シード後、回分培養によつ て菌増殖が開始され、細胞濃度が lgZリツターを超えた時点でクロスフローろ過器に よる菌濃縮を開始し、基質液によって基質を追加すると共に除菌液の培養系からの 抜き出しを行い、細胞濃度の上昇を行った。  FIG. 5 is a graph showing the fermentation process in Comparative Example 1. After seeding, bacterial growth is started by batch culture, and when the cell concentration exceeds the lgZ litter, bacterial concentration by the crossflow filter is started, and the substrate is added with the substrate solution and the sterilization solution is cultured. The cell concentration was increased by extracting from the system.
[0081] 培養開始約 40時間で細胞濃度が約 5gZリツターの目標値に達したので、図 1のシ ステムを用いて連続発酵モードに入った。図 5に示されているように、培養開始後 80 時間(連続発酵に入って 40時間)までは、菌濃度はほぼ 6gZリツターを維持し、エタ ノール濃度も漸減ではあるものの 60gZリツター以上を維持できており、炭酸ガス発 生量も減少傾向にはあるものの 250ミリリツター Zmin (約 1 OmmolZmin)程度であ り、エタノール生産速度は約 30gZh程度を維持できている。  [0081] Since the cell concentration reached the target value of about 5 gZ litter at about 40 hours from the start of the culture, continuous fermentation mode was entered using the system of FIG. As shown in Fig. 5, until 80 hours after the start of culture (40 hours after continuous fermentation), the bacterial concentration was maintained at approximately 6 gZ litter, and the ethanol concentration was gradually decreased but maintained above 60 gZ litter. Although the amount of carbon dioxide generated is also decreasing, it is about 250 milliliters Zmin (about 1 OmmolZmin), and the ethanol production rate is maintained at about 30 gZh.
[0082] し力しながら、連続発酵開始 40時間目以降、急激に炭酸ガスの発生速度が低下し 、エタノール濃度も急落し、アンモニア消費速度が急上昇する異常発酵となっている 。培養 120時間目に至り、発酵は全く制御不可能となったために、培養を打ち切った 。これは培養 40時間(連続発酵開始とほとんど同時に)乳酸菌がコンタミし、これが 8 0時間目以降急激に増殖したためであると考えられる。因みに、実際培養 100時間 目の培養液を寒天プレート培地で培養したところ、多数の乳酸菌のコロニーが確認さ れた。  [0082] However, after 40 hours from the start of continuous fermentation, the generation rate of carbon dioxide gas suddenly decreases, the ethanol concentration also decreases sharply, and the ammonia consumption rate rapidly increases. At 120 hours of culture, the fermentation was completely uncontrollable, so the culture was discontinued. This is probably because lactic acid bacteria were contaminated for 40 hours of culture (almost simultaneously with the start of continuous fermentation), which grew rapidly after 80 hours. Incidentally, when the culture solution after 100 hours of actual culture was cultured on an agar plate medium, a large number of colonies of lactic acid bacteria were confirmed.
[0083] (実施例 5)  [0083] (Example 5)
種菌は YMブロス(Difco Laboratories, Detroit)を培地とし、規定濃度に調整 後、試験管に 10ミリリツターを分注し、 115°Cで 10分間加熱滅菌したもので調製した 。これに Zymomonas mobilis NRRL B— 14023を接種し、 30°Cにて 18時間静置 発酵したものを用いた。  The inoculum was prepared by using YM broth (Difco Laboratories, Detroit) as a medium, adjusting to the specified concentration, dispensing 10 milliliters into a test tube, and heat-sterilizing at 115 ° C for 10 minutes. This was inoculated with Zymomonas mobilis NRRL B-14023 and fermented by standing at 30 ° C for 18 hours.
[0084] 主発酵は、結晶ブドウ糖 140gZリツター,酵母エキス 5gZリツター,味液 (大豆フレ ーク酸加水分解液) 0. 5vol%力もなる組成の培地を pH5. 5.に調整し、 120°C、 20 分間オートクレープ滅菌したものである。培養に用いた初発培地 '菌の濃縮に用いた 基質液'連続発酵基質液はすべて熱殺菌したものを冷却しそこに最終濃度 5IUZミ リリツターになるようにペニシリン Gカリウムをカ卩えたものを用いた。 [0084] The main fermentation was crystal glucose 140gZ Litter, yeast extract 5gZ Litter, taste liquid (soy flake acid hydrolyzate) 0.5 vol% medium adjusted to pH 5.5 and 120 ° C Autoclaved for 20 minutes. Initial culture medium used for cultivation 'Substrate solution used for concentration of bacteria' Continuously fermented substrate solution was cooled to a final concentration of 5 IUZ A penicillin G-potassium product was used so as to be a riliter.
[0085] この培地 2リツターを予め滅菌した 3リツタ一容小型発酵槽に入れ、先に述べたよう に調製した種発酵液 100ミリリツターを添加し、温度 30°C、攪拌 lOOrpmにて発酵を 開始した。菌増殖とともに発酵液 pHが低下するので pH計 10によって pHをモニター しながら 1Nアンモニア水によって pHを 5. 5に保つようにした。 [0085] Place 2 liters of this medium into a 3 liter small fermentor that has been sterilized in advance, add 100 milliliters of the seed fermentation solution prepared as described above, and start fermentation at a temperature of 30 ° C and stirring at lOOrpm. did. Since the pH of the fermentation broth decreased with the growth of the bacteria, the pH was kept at 5.5 with 1N ammonia water while monitoring the pH with a pH meter 10.
[0086] システムは、実施例 1に係る図 1に示したものと同じである。比較例 1でのべたように 過去の培養においてコンタミネーシヨンの被害が発生したので、ろ過器 16の内部等 にコンタミ菌が残留している可能性がある。このため、培養に先立ち残存するコンタミ 菌を徹底的に駆除すベぐ先にコンタミした培養に用いたフィルターカートリッジを、 発酵終了後完全に分解洗浄し、アルカリ液に数日浸漬し、徹底的に滅菌した。しかる 後、ペニシリン洗浄によって残存コンタミ菌の撲滅を試みた。すなわち、図 1のシステ ムの隅々まで、ペニシリンにより洗浄し、また上述のように、ペニシリン洗浄したフィル ターカートリッジを、発酵槽 1に取り付け、菌濃縮循環に使用した。 [0086] The system is the same as that shown in Fig. 1 according to the first embodiment. As described in Comparative Example 1, since contamination was caused in the past culture, there is a possibility that contaminants remain inside the filter 16 or the like. For this reason, thoroughly remove the contaminating bacteria remaining before the culture. The filter cartridge used for the culture that has been contaminated at the end should be thoroughly disassembled and washed after the fermentation and immersed in an alkaline solution for several days. Sterilized. After that, an attempt was made to eradicate residual contaminants by washing with penicillin. That is, every corner of the system in FIG. 1 was washed with penicillin, and as described above, the filter cartridge washed with penicillin was attached to fermenter 1 and used for bacterial concentration and circulation.
[0087] 図 6は、培養結果を示す。シード後、回分培養によって菌増殖が開始され、細胞濃 度が lgZリツターを超えた時点でクロスフローろ過器 16による菌濃縮を開始し、ぺ- シリン Gカリウムを最終濃度 5IUZミリリツターを添加した基質液を供給して基質を追 加する。また、除菌液の培養系からの抜き出しを行い、細胞濃度の上昇を行った。  FIG. 6 shows the culture results. After seeding, bacterial growth is started by batch culture, and when the cell concentration exceeds the lgZ litter, concentration of the cells with the crossflow filter 16 is started, and the substrate solution is added with penicillin G potassium at a final concentration of 5 IUZ milliliters. To add substrate. Further, the sterilization solution was extracted from the culture system, and the cell concentration was increased.
[0088] 培養開始約 30時間で細胞濃度が約 5gZリツターの目標値に達したので、図 1のシ ステムを用 、て連続発酵モードに入つた。  [0088] Since the cell concentration reached the target value of about 5 gZ litter at about 30 hours from the start of culture, the system of Fig. 1 was used to enter the continuous fermentation mode.
[0089] 連続発酵の基質液は、三温糖 140gZリツター,酵母エキス (YE) 5gZリツター,味 液 5ミリリツター Zリツターを PH5. 5に調整後 120°C20分オートクレープ滅菌後冷却 し、ペニシリン Gカリウムを 5IU/ミリリツターになるように添加したものとした。  [0089] Substrate solution for continuous fermentation was prepared with triglyceride 140gZ Litter, yeast extract (YE) 5gZ Litter, taste solution 5milliliter Z Litter adjusted to PH5.5, cooled to 120 ° C for 20 minutes, cooled and then penicillin G Potassium was added to 5 IU / milliliter.
[0090] 図 6は、実施例 5による連続発酵の結果を示す。 150時間の長期にわたり全くコンタ ミネーシヨンに犯されることなく終始健全な発酵でエタノールを連続生産できた。全て の連続運転期間中菌濃度は 5 ±0. 5gZリツターに維持され、 C02発生量は 350ミリ リツター Zmin (約 15mmolZmin)程度、エタノール生産速度は約 42gZh程度であ り、高い生産速度を維持できた。基質液の供給速度と培養液の引き抜き速度は、図 6 に示すように安定しており、培養中変化なぐ連続発酵が定常状態を維持し長時間 連続運転できた。培養液のエタノール濃度は、全期間に亘り 65±5gZリツター (約 8 . 2%)であった。このようにろ過器 16のペニシリン洗浄と培地へのペニシリン添カロの 効果は顕著であり、エタノール連続発酵を長時間にわたりコンタミネーシヨンの被害を 受けず実施することが可能となった。 FIG. 6 shows the results of continuous fermentation according to Example 5. Over the long period of 150 hours, ethanol could be continuously produced with a healthy fermentation without being violated by contamination. During all continuous operations, the bacterial concentration is maintained at 5 ± 0.5 gZ liters, the amount of C02 generated is about 350 milliliters Zmin (about 15 mmolZmin), and the ethanol production rate is about 42 gZh, maintaining a high production rate. It was. The supply rate of the substrate solution and the extraction rate of the culture solution are stable as shown in Fig. 6. We were able to run continuously. The ethanol concentration of the culture was 65 ± 5 gZ liters (approximately 8.2%) over the entire period. In this way, the effects of washing the penicillin in the filter 16 and penicillin-added caroten to the medium are remarkable, and it has become possible to carry out continuous ethanol fermentation for a long time without being damaged by contamination.
[0091] (実施例 6)  [Example 6]
シード (種)に用いた菌、培地、発酵法、発酵条件は実施例 5と同一である。  The bacteria, medium, fermentation method, and fermentation conditions used for the seeds are the same as in Example 5.
[0092] 初発培地 '菌濃縮時基質液 ·連続発酵基質液は同一組成、同じ調整法によった。  [0092] Initial medium 'Substrate solution when concentrating bacteria · Continuous fermentation substrate solution had the same composition and the same adjustment method.
すなわち、糖液はコーンスターチ酵素糖ィ匕液を水で希釈し、これに CSL (コーン'ス ティープ 'リカー) 5ミリリツター/リツターの濃度に添加して、 pH5. 5とした後、糖濃度 140gZリツターに最終調整し、 120°C20分オートクレープ滅菌した。殺菌後冷却し、 培地が十分冷えたところでペニシリン Gカリウムを 5IUZミリリツターになるように添カロ して培養に用いた。クロスフローろ過器 16のペニシリン洗浄'コンタミ菌除去の要領は 、実施例 5と同一である。  In other words, the sugar solution is obtained by diluting corn starch enzyme sugar liquor with water and adding it to a CSL (corn steep liquor) concentration of 5 milliliters / liter to a pH of 5.5, followed by a sugar concentration of 140 gZ And then autoclaved at 120 ° C for 20 minutes. After sterilization and cooling, when the medium was sufficiently cooled, penicillin G potassium was added to 5 IUZ milliliters and used for culture. The procedure for washing the penicillin in the cross-flow filter 16 and removing the contaminants is the same as in Example 5.
[0093] 図 7は、実施例 6による培養結果を示す。システムは、実施例 1と同一である。シード 後、回分培養によって菌増殖が開始され、細胞濃度が lgZリツターを超えた時点で クロスフローろ過器による菌濃縮を開始し、ペニシリン Gカリウムを最終濃度 5IUZミリ リツターを添加した基質液を供給して基質を追加する。また、除菌液の培養系からの 抜き出しを行い、細胞濃度を上昇させた。  FIG. 7 shows the culture results according to Example 6. The system is the same as in Example 1. After seeding, bacterial growth is started by batch culture, and when the cell concentration exceeds the lgZ litter, concentration of the bacteria with a crossflow filter is started, and a substrate solution with penicillin G potassium added to a final concentration of 5 IUZ milliliter is supplied. Add substrate. In addition, the sterilization solution was extracted from the culture system to increase the cell concentration.
[0094] 培養開始約 27時間で細胞濃度が約 6gZリツターの目標値に達したので、図 1のシ ステムを用いて連続発酵モードに入った。連続発酵の基質液は、前述のコーンスタ ーチ酵素糖ィ匕液 (糖濃度 140gZリツター)— CSL (コーン'スティープ 'リカー) 5ミリリ ッター Zリツターを PH5. 5に調整後、 120°C20分オートクレープ滅菌後冷却し、ぺ -シリン Gカリウムを 5IU/ミリリツターになるように添加したものである。  [0094] Since the cell concentration reached the target value of about 6 gZ litter at about 27 hours from the start of culture, the continuous fermentation mode was entered using the system of Fig. 1. The substrate solution for continuous fermentation is the above-mentioned corn starch enzyme sugar solution (sugar concentration 140gZ litter) — CSL (corn 'steep' liquor) 5mm liter Z liter is adjusted to PH5.5, then 120 ° C for 20 minutes auto Cooled after crepe sterilization and added with pericillin G potassium to 5 IU / milliliter.
[0095] 図 7に示すように、全 350時間の長期にわたり全くコンタミネーシヨンに犯されること なく終始健全な発酵でエタノールを連続生産できた。全ての連続運転期間中菌濃度 は 6±0. 5gZリツターに維持され、炭酸ガス発生量は 500ミリリツター Zmin (約 21m molZmin)、エタノール生産速度は約 58gZhであり、高い生産速度を全培養時間 にわたつて維持できた。 基質液の供給速度と培養液の引き抜き速度は、図 7下段に示すように安定しており 、培養中変化なぐ連続発酵が定常状態を維持し長時間連続運転できた。培養液の エタノール濃度は、全期間に亘り 65± 5gZリツター (約 8. 2%)であった。このように ろ過器 16のペニシリン洗浄と培地へのペニシリン添カ卩の効果は顕著で、エタノール 連続発酵を長時間にわたりコンタミネーシヨンの被害を受けず実施できた。 [0095] As shown in Fig. 7, ethanol could be continuously produced with a healthy fermentation throughout the entire 350 hours without being violated by contamination. During all continuous operations, the bacterial concentration is maintained at 6 ± 0.5 gZ liters, the amount of carbon dioxide generated is 500 milliliters Zmin (about 21 mMolZmin), the ethanol production rate is about 58 gZh, and a high production rate is achieved over the entire incubation time. I was able to maintain it. The supply rate of the substrate solution and the extraction rate of the culture solution were stable as shown in the lower part of FIG. 7, and the continuous fermentation during the culture maintained a steady state and could be operated continuously for a long time. The ethanol concentration of the culture was 65 ± 5 gZ liters (approximately 8.2%) over the entire period. Thus, the effects of washing the penicillin in the filter 16 and penicillin-supplemented on the medium were remarkable, and continuous ethanol fermentation could be carried out for a long time without being damaged by contamination.

Claims

請求の範囲 The scope of the claims
[1] アルコール生産細菌を培養する発酵槽と、  [1] a fermentor for culturing alcohol-producing bacteria;
前記発酵槽に基質液を供給する供給手段と、  Supply means for supplying a substrate solution to the fermenter;
前記発酵槽から排出される炭酸ガス流量値又はその関数値を検出する計測器と、 前記計測器の出力に基づいて前記供給手段を制御する制御部とを備え、 前記制御部は、前記発酵槽から排出される炭酸ガス流量値が所定範囲を下回った ことを示すとき、それをトリガとして前記供給手段に基質液を前記発酵槽へ供給させ ることを特徴とするアルコール生産細菌の連続培養装置。  A measuring device that detects a flow rate value of carbon dioxide discharged from the fermenter or a function value thereof, and a control unit that controls the supply unit based on an output of the measuring device, the control unit comprising the fermenter A continuous culture apparatus for alcohol-producing bacteria, characterized in that when the flow rate value of carbon dioxide discharged from the water falls below a predetermined range, the feeding means is used as a trigger to feed the substrate solution to the fermenter.
[2] 前記供給手段が前記発酵槽に基質液を供給する時間と、前記供給手段が前記発酵 槽に基質液を供給する時間当たりのレートとは、一定である請求の範囲第 1項記載 のアルコール生産細菌の連続培養装置。  [2] The time according to claim 1, wherein the time for supplying the substrate liquid to the fermenter by the supplying means and the rate per time for supplying the substrate liquid to the fermentor by the supplying means are constant. Continuous culture equipment for alcohol-producing bacteria.
[3] 前記所定範囲は、炭酸ガス流量値の閾値により定められる請求の範囲第 1項記載の アルコール生産細菌の連続培養装置。  [3] The continuous culture apparatus for alcohol-producing bacteria according to claim 1, wherein the predetermined range is determined by a threshold value of a carbon dioxide flow rate value.
[4] 前記発酵槽カも発酵液を引き抜く引抜手段をさらに備え、  [4] The fermenter is further provided with a drawing means for drawing out the fermentation broth,
前記制御部は、前記供給手段が前記発酵槽に基質液を供給する供給量にあわせ た量の発酵液を前記引抜手段が前記発酵槽から引き抜くように、前記引抜手段を制 御する請求の範囲第 1項記載のアルコール生産細菌の連続培養装置。  The control unit controls the extraction unit such that the extraction unit extracts an amount of the fermentation liquid in accordance with the supply amount of the substrate liquid supplied to the fermenter by the supply unit from the fermentation tank. 2. A continuous culture apparatus for alcohol-producing bacteria according to item 1.
[5] アルコール生産細菌を培養する発酵槽に、基質液を供給するとともに、前記基質液 の供給量にあわせた量の発酵液を前記発酵槽力 引き抜くアルコール生産細菌の 連続培養方法であって、 [5] A continuous culture method for alcohol-producing bacteria, in which a substrate liquid is supplied to a fermentor for culturing alcohol-producing bacteria, and an amount of the fermentation liquid in accordance with the amount of the substrate liquid supplied is withdrawn from the fermenter.
前記発酵槽カゝら排出される炭酸ガス流量値が所定範囲を下回るとき、それをトリガ として前記発酵槽に基質液を供給することを特徴とするアルコール生産細菌の連続 培養方法。  When the flow rate of carbon dioxide discharged from the fermenter falls below a predetermined range, a substrate liquid is supplied to the fermenter using the flow rate as a trigger.
[6] 前記発酵槽に基質液を供給する時間と、前記発酵槽に基質液を供給する時間当た りのレートとは、一定である請求の範囲第 5項記載のアルコール生産細菌の連続培 養方法。  [6] The continuous culture of alcohol-producing bacteria according to claim 5, wherein the time for supplying the substrate liquid to the fermenter and the rate per time for supplying the substrate liquid to the fermenter are constant. Nourishing method.
[7] 前記所定範囲は、炭酸ガス流量値の閾値により定められる請求の範囲第 5項記載の アルコール生産細菌の連続培養方法。 7. The method for continuously culturing alcohol-producing bacteria according to claim 5, wherein the predetermined range is determined by a threshold value of a carbon dioxide flow rate value.
[8] βラタタム系抗生物質を添加するステップをさらに含む請求の範囲第 5項記載のアル コール生産細菌の連続培養方法。 [8] The continuous culture method for alcohol-producing bacteria according to claim 5, further comprising the step of adding a β-ratata antibiotic.
[9] 前記 βラタタム系抗生物質は、ペニシリンである請求の範囲第 8項記載のアルコール 生産細菌の連続培養方法。 [9] The method for continuously culturing alcohol-producing bacteria according to claim 8, wherein the β-ratata antibiotic is penicillin.
[10] 前記 βラタタム系抗生物質は、前記発酵槽を含む連続培養装置の全部又は一部を 洗浄する際に添加される請求の範囲第 8項記載のアルコール生産細菌の連続培養 方法。 10. The method for continuously culturing alcohol-producing bacteria according to claim 8, wherein the β-ratata antibiotic is added when all or part of the continuous culture apparatus including the fermenter is washed.
[11] 前記 βラタタム系抗生物質は、前記発酵槽を含む連続培養装置の運転中に添加さ れる請求の範囲第 8項記載のアルコール生産細菌の連続培養方法。  11. The method for continuously culturing alcohol-producing bacteria according to claim 8, wherein the β-ratata antibiotic is added during operation of a continuous culture apparatus including the fermenter.
PCT/JP2006/317831 2005-09-15 2006-09-08 Continuous culture apparatus for alcohol producing bacterium and method of culturing the bacterium WO2007032265A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007535439A JPWO2007032265A1 (en) 2005-09-15 2006-09-08 Apparatus and method for continuous culture of alcohol-producing bacteria

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005269031 2005-09-15
JP2005-269031 2005-09-15

Publications (1)

Publication Number Publication Date
WO2007032265A1 true WO2007032265A1 (en) 2007-03-22

Family

ID=37864859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317831 WO2007032265A1 (en) 2005-09-15 2006-09-08 Continuous culture apparatus for alcohol producing bacterium and method of culturing the bacterium

Country Status (3)

Country Link
JP (1) JPWO2007032265A1 (en)
CN (1) CN101268179A (en)
WO (1) WO2007032265A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011092041A (en) * 2009-10-28 2011-05-12 Kansai Chemical Engineering Co Ltd Apparatus for continuously culturing and fermenting ethanol-producing microorganism
ITTV20120212A1 (en) * 2012-11-09 2014-05-10 NoForm Srl IMPROVED FERMENTER
JPWO2012090556A1 (en) * 2010-12-27 2014-06-05 東レ株式会社 Process for producing chemicals by continuous fermentation
WO2014140703A1 (en) * 2013-03-15 2014-09-18 University Of Saskatchewan Advanced process control for fermentation
WO2016152697A1 (en) * 2015-03-20 2016-09-29 積水化学工業株式会社 Culturing method for microorganism, and culture device
JPWO2016133134A1 (en) * 2015-02-17 2018-01-11 味の素株式会社 Organic compound or microorganism production system and production method
FR3128226A1 (en) * 2021-10-20 2023-04-21 IFP Energies Nouvelles Process for the production of alcohols by fermentation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101974409B (en) * 2010-11-27 2013-05-01 福州大北农生物技术有限公司 Bacterial culture fermentation tank device and fermentation technology thereof
WO2021011484A1 (en) * 2019-07-12 2021-01-21 Buckman Laboratories International, Inc. System and method for optimization of the fermentation process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0689A (en) * 1992-06-17 1994-01-11 Shinenerugii Sangyo Gijutsu Sogo Kaihatsu Kiko Production of alcohol by repeated batch fermentation method
JPH07177876A (en) * 1993-12-22 1995-07-18 Yakult Honsha Co Ltd Culture controlling method
JP2003274934A (en) * 2002-03-26 2003-09-30 Shinseiki Hakko Kenkyusho:Kk Method for continuously culturing anaerobe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0689A (en) * 1992-06-17 1994-01-11 Shinenerugii Sangyo Gijutsu Sogo Kaihatsu Kiko Production of alcohol by repeated batch fermentation method
JPH07177876A (en) * 1993-12-22 1995-07-18 Yakult Honsha Co Ltd Culture controlling method
JP2003274934A (en) * 2002-03-26 2003-09-30 Shinseiki Hakko Kenkyusho:Kk Method for continuously culturing anaerobe

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011092041A (en) * 2009-10-28 2011-05-12 Kansai Chemical Engineering Co Ltd Apparatus for continuously culturing and fermenting ethanol-producing microorganism
JPWO2012090556A1 (en) * 2010-12-27 2014-06-05 東レ株式会社 Process for producing chemicals by continuous fermentation
ITTV20120212A1 (en) * 2012-11-09 2014-05-10 NoForm Srl IMPROVED FERMENTER
EP2730643A1 (en) * 2012-11-09 2014-05-14 Noform S.r.l. Fermenter
WO2014140703A1 (en) * 2013-03-15 2014-09-18 University Of Saskatchewan Advanced process control for fermentation
JPWO2016133134A1 (en) * 2015-02-17 2018-01-11 味の素株式会社 Organic compound or microorganism production system and production method
US10808267B2 (en) 2015-02-17 2020-10-20 Ajinomoto Co., Inc. Production system and method of production for organic compound or microorganism
WO2016152697A1 (en) * 2015-03-20 2016-09-29 積水化学工業株式会社 Culturing method for microorganism, and culture device
JPWO2016152697A1 (en) * 2015-03-20 2018-01-18 積水化学工業株式会社 Microbial culture method and culture apparatus
FR3128226A1 (en) * 2021-10-20 2023-04-21 IFP Energies Nouvelles Process for the production of alcohols by fermentation
WO2023066697A1 (en) * 2021-10-20 2023-04-27 IFP Energies Nouvelles Process for producing alcohols by fermentation

Also Published As

Publication number Publication date
JPWO2007032265A1 (en) 2009-03-19
CN101268179A (en) 2008-09-17

Similar Documents

Publication Publication Date Title
WO2007032265A1 (en) Continuous culture apparatus for alcohol producing bacterium and method of culturing the bacterium
CN201459102U (en) Fermentation device of liquid fruit vinegar
US5981260A (en) Process for the production of cell mass and/or fermentation products under sterile conditions
O'Connor-Cox et al. Improved ethanol yields through supplementation with excess assimilable nitrogen
CN201850276U (en) Micro-filtration membrane coupling high-density culture device for lactic acid bacteria
JP2011092041A (en) Apparatus for continuously culturing and fermenting ethanol-producing microorganism
JP5176022B2 (en) Method for producing high-concentration alcohol
CN101705253A (en) Method for treating xylose mother solution
CN100395326C (en) Microbial culture system and microbial culture method using same
BR102015001772B1 (en) process for ethanol production through fermentation
US8062872B2 (en) Methods and compositions for optimizing fermentation
JP3958089B2 (en) Continuous culture of anaerobic bacteria
CN203625373U (en) Batch culture tank
RU78192U1 (en) INSTALLATION FOR CONTINUOUS PRODUCTION OF ALCOHOL-CONTAINING LIQUID
CN102051386A (en) Method for producing organic acid at high production rate through fermentation of intermittent backflow cells
JP5249106B2 (en) Method for continuous fermentation production of ethanol
CN103497977A (en) Method for preparing citric acid by fermentation
Yarovenko Theory and practice of continuous cultivation of microorganisms in industrial alcoholic processes
Ingledew Continuous fermentation in the fuel alcohol industry: how does the technology affect yeast
JP5545927B2 (en) Method for producing rice-derived highly fermentable sugar solution
CN101407829A (en) Method for preparing ethanol from molasses
CN201142921Y (en) Installation for fermenting pickling vegetable
Nigam et al. Optimization of dilution rate for the production of value added product and simultaneous reduction of organic load from pineapple cannery waste
KR101483790B1 (en) Anaerobic Continuous Culture Method of Organism and Apparatus Therefor
CN101240296A (en) Process for preparing ethanol by using beet as raw material

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680034108.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007535439

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06797686

Country of ref document: EP

Kind code of ref document: A1

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: PI0616822

Country of ref document: BR

Kind code of ref document: A2

Free format text: PEDIDO RETIRADO POR NAO ATENDIMENTO A EXIGENCIA FORMULADA NA RPI 2095 DE 01/03/2011.