WO2007032225A1 - リポソーム、リポソームの製造方法及び微小反応空間内での反応制御方法 - Google Patents

リポソーム、リポソームの製造方法及び微小反応空間内での反応制御方法 Download PDF

Info

Publication number
WO2007032225A1
WO2007032225A1 PCT/JP2006/317517 JP2006317517W WO2007032225A1 WO 2007032225 A1 WO2007032225 A1 WO 2007032225A1 JP 2006317517 W JP2006317517 W JP 2006317517W WO 2007032225 A1 WO2007032225 A1 WO 2007032225A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
emulsion
wzo
wzo emulsion
ribosome
Prior art date
Application number
PCT/JP2006/317517
Other languages
English (en)
French (fr)
Inventor
Masahiko Hase
Kenichi Yoshikawa
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Priority to JP2007535426A priority Critical patent/JPWO2007032225A1/ja
Publication of WO2007032225A1 publication Critical patent/WO2007032225A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes

Definitions

  • Ribosome method for producing ribosome and method for controlling reaction in minute reaction space
  • the present invention relates to a ribosome, a method for producing a ribosome, and a method for controlling a reaction in a minute reaction space.
  • Ribosomes are formed by lipid bilayers such as phospholipids, and have a capsule structure in which an aqueous phase is confined. Since the structure of ribosome is similar to that of biological membranes, various research materials and applications involving active ingredients (cosmetics and drug delivery systems (DDS)) are being studied (for example, Patent Documents 1 and 2). reference).
  • DDS cosmetics and drug delivery systems
  • the ribosome is usually produced by suspending phospholipids in an aqueous solution to form a multi-layer ribosome (so-called ribosome stock solution), followed by sonication.
  • wZo emulsion is made by mixing a small amount of water and lipid (which becomes the inner membrane of the ribosome) in oil.
  • an oily liquid in which outer membrane lipid (which becomes the outer membrane of ribosome) is dissolved is added to the aqueous phase to form a molecular membrane in which outer membrane lipids are lined up at the separation interface of oil and water.
  • wZo emulsion Adding wZo emulsion to the oil phase side at the separation interface, centrifuging or stirring, transferring wZo emulsion to the water phase side at the separation interface, adding outer membrane lipid to the outside of wZo emulsion, and adding ribosomes To manufacture.
  • microlab m-size reaction field
  • the particle size power of the microlab is too inconvenient.
  • the particle size of the microlab should be about 5 ⁇ m or more.
  • a ribosome having a structure similar to that of a biological membrane can be used.
  • a surfactant such as sodium dodecyl sulfate (SDS) and a reaction substrate is enclosed in the emulsion to form a reaction field.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-2824
  • Patent Document 2 JP-A-2005-162712
  • Non-patent literature l Langmuir 19 (2003) 2870-2879
  • Non-Patent Document 2 Proc Natl Acad Sci USA, (1992) December 1; 89 (23), 11547.1551
  • Non-Patent Document 3 Eur Phyd J E soft Matter (2003) Apr; 10 (4) .319-30
  • the inner membrane of the ribosome is phosphatidylserine (hereinafter referred to as “PS”) or phosphatidylethanolamine (hereinafter referred to as “PE”).
  • PS phosphatidylserine
  • PE phosphatidylethanolamine
  • PC phosphatidylcholine
  • Non-Patent Document 1 it is difficult to produce a ribosome having a particle size of 5 ⁇ m or more. This is thought to be because the ribosome has a very unstable structure, and if it becomes larger than 5 m, the ribosome breaks at the oil-water interface due to centrifugation or the like.
  • microlabs using acrylic resin glass have a problem that their surfaces inactivate or denature biological materials.
  • WZO emulsion is micro Even in the laboratory, surfactants used in emulsions inactivate and denature biological materials.
  • micrometer-sized ribosomes composed of the same lipid bilayer membrane as the cell membrane can be used, and the reaction proceeds without inactivation of biological substances inside the ribosome.
  • the ribosome since the ribosome has an unstable structure, it is easily deformed and destroyed by the influence of an external field such as osmotic pressure, making it difficult to control the reaction.
  • the lipids that can be produced as the inner membrane of the ribosome are limited, and it is difficult to control the internal environment of the microlab by changing the type of lipid.
  • Non-Patent Documents 2 and 3 for encapsulating actin in ribosomes encapsulate actin monomer in the liposome in advance, and this is used to increase the temperature (Non-patent document 2) or a polymeric agent (non- Actin filaments are formed by polymerization according to Patent Document 3).
  • This is because it is difficult to encapsulate actin filaments, which are macromolecules, in the ribosome, but as described above, lipids used as ribosomes are limited, and PS and PE cannot be used.
  • the main components of the normal inner membrane are PS and PE, which function in an environment where the cytoskeleton (here, the factor) is surrounded by the inner membrane. Therefore, when the cytoskeleton is encapsulated in the microlab, it is expected that the compatibility with the cytoskeleton is better when PS or PE is used as the lipid.
  • Non-Patent Documents 2 and 3 have a problem that the concentration of salt used for polymerization of actin filaments and buffer cannot be freely selected.
  • G-buffe often used as a buffer for actin: 2 mM Tris HC1, pH 8.2, 0.5 mM CaC12, 0.2 mM ATP, 0.2
  • ribosomes are formed when the concentration of the buffer is outside this range. (NaM3, 0.5 mM dithiothreitol) This is because ribosomes tend to be difficult to produce when the salt concentration is high, and therefore the usable salt concentration is limited.
  • an object of the present invention is to provide a micrometer-sized ribosome whose inner membrane is selected from the group of PS and PE (including these derivatives) and capable of producing only one kind, and a method for producing the same. is there.
  • Another object of the present invention is to provide a reaction control method in a micro reaction space of micrometer size.
  • the ribosome of the present invention is a particle formed of a lipid bilayer membrane, wherein the inner membrane phospholipid is composed of at least one selected from the group power of phosphatidylserine and its derivatives, and phosphatidylethanolamine and its derivatives.
  • the cytoskeleton is an actin filament.
  • the inner membrane phospholipid is composed of at least one selected from the group power of phosphatidylserine and derivatives thereof, and phosphatidylethanolamine and derivatives thereof, and is formed from a lipid bilayer membrane.
  • the cytoskeleton is actin filaments.
  • the outer membrane lipid contains phosphatidylcholine or a derivative thereof.
  • the method for controlling a reaction in a micro reaction space includes mixing at least one phospholipid, a reaction substrate, and an aqueous liquid in an oily liquid, and the reaction substrate is the phospholipid.
  • the method for controlling a reaction in a micro reaction space includes mixing at least one phospholipid, a reaction substrate, and an aqueous liquid in an oily liquid, and the reaction substrate is the phosphorous.
  • Sealed in lipid A step of forming a first WZO emulsion having a particle size of 5 m or more, and one or more phospholipids, a reactant that reacts with the reaction substrate, and an aqueous liquid in an oily liquid; The step of forming a second WZO emulsion having a particle size of 5 ⁇ m or more in which the reactant is encapsulated in the phospholipid and the first WZO emulsion and the second WZO emulsion are fused. Process.
  • one or more phospholipids, a reaction substrate, and an aqueous liquid are mixed in an oily liquid, and the reaction substrate is the above-mentioned reaction substrate.
  • the reaction can be controlled in a micro reaction space of micrometer size that is phospholipid power.
  • the ribosome of the present invention has an inner membrane phospholipid consisting of only one or more selected from the group power of phosphatidylserine and its derivatives, and phosphatidylethanolamine and its derivatives, and has a particle size of 5 m.
  • the above ribosome is a ribosome that encapsulates a cytoskeleton polymer in the inner membrane phospholipid.
  • an inner membrane phospholipid, a cytoskeleton, and an aqueous liquid are mixed in an oily liquid, and the cytoskeleton is bound to the inner membrane phospholipid in a fibrous form.
  • Form emulsion monolayer particles of inner membrane phospholipid.
  • the inner membrane phospholipid one comprising one or more selected from the group of PS or a derivative thereof and PE or a derivative thereof is used.
  • examples of the derivative of PS include dioleyl phosphatidylserine (DOPS). Therefore, in the present invention, the inner membrane phospholipid may be composed of, for example, PS alone or PS and PE.
  • the cytoskeleton is an intracellular filamentous structure that maintains cell morphology and causes movement inside and outside the cell.
  • the cytoskeleton can be observed with an electron microscope and is classified into three types according to its thickness.
  • Microfilament (actin filament) The outer diameter of the fiber is about 5nm. Usually, actin is the structural unit.
  • Intermediate filament contains various fibers and has an outer fiber diameter of about lOnm.
  • Microtubule A fiber with an outer diameter of about 25 nm, and is usually composed of tubulin.
  • the WZO emulsion when the WZO emulsion is prepared, the WZO emulsion is reinforced by confining the cytoskeleton in the aqueous phase inside the inner membrane phospholipid and bonding the cytoskeleton in a fibrous form.
  • a cytoskeletal polymerizing agent in order to polymerize the cytoskeleton inside the WZO emulsion and bind it in a fibrous form.
  • the polymerization agent may be mixed when preparing the WZO emulsion.
  • actin filaments when actin filaments are used as the cytoskeleton, about 2 mmol / L Mg 2+ may be added as a polymerization agent.
  • actin filaments having a length of about 10 m are obtained, and actin filaments having these unit lengths are entangled with each other, and bind to the inner membrane phospholipid to reinforce WZO emulsion.
  • ribosome when ribosome is used for DDS, it is advantageous that the drug is encapsulated in the ribosome at a high concentration, so that there is no limitation on the solute concentration as the ribosome production conditions.
  • a monolayer membrane vesicle is prepared, and after increasing the strength with a lactin filament, a bilayer membrane vesicle is then subjected to a new process. It can be freely selected (the lower limit of the concentration is 0, that is, it can be produced even with pure water, and can be higher than the conventional concentration).
  • the structure of actin filaments varies depending on the magnesium ion concentration. Therefore, the fact that the salt concentration can be freely selected means that the strength of the ribosome may be controlled by the structure of the actin filament.
  • the inner membrane phospholipid is mixed so that the concentration in the oily liquid is ImmolZL ⁇ : LOmmolZL.
  • concentration in the oily liquid is ImmolZL ⁇ : LOmmolZL.
  • the resulting monomolecular membrane particles may be too small or monomolecular membrane particles may not be formed. is there.
  • the concentration exceeds lOmmolZL, the monomolecular film particles may have a particle size of 5 m or less, or may have a lamellar shape instead of a particle shape.
  • the particle size of WZO emulsion is preferably 40 ⁇ m or less.
  • the oily liquid is not particularly limited as long as it stably disperses the inner membrane phospholipid.
  • mineral oil mineral oil
  • the aqueous liquid is not particularly limited, and an active ingredient or the like encapsulated in the finally obtained ribosome may be contained in the aqueous liquid.
  • Water pure water is preferred.
  • the particle size of the ribosome finally obtained is less than 5 ⁇ m, it becomes difficult to observe and observe the ribosome with visible light when the ribosome is captured and handled with laser tweezers.
  • the particle size of the monolayer is precisely smaller than the particle size of the ribosome by the length of the outer membrane lipid. Then, for convenience, it is regarded as being the same as the particle size of ribosome.
  • the particle size of the ribosome can be measured, for example, with an optical microscope.
  • Examples of a method for adding a lipid as an outer membrane include literature (Langmuir, 19 (2003) p. 2870-2879, and Proc. Natl. Acad. Sci "101. (2004) p. 17669-17674). Can be used.
  • lipid serving as the outer membrane for example, PC or a derivative thereof can be used.
  • a membrane stabilizer, a charge-imparting substance, and various auxiliary agents may be added.
  • This embodiment includes the following steps.
  • wZo emulsion is first formed.
  • the formation method of wZo emulsion is the same as in the above ribosome production method.
  • One or more phospholipids, a reaction substrate and an aqueous liquid are mixed in an oily liquid, and the reaction substrate is a phospholipid.
  • the phospholipid is not particularly limited, and examples thereof include PS and its derivatives, PE and its derivatives, PC (phosphatidylcholine) and its derivatives, SM (such as sphingomyelin) and its derivatives.
  • the types that can be used as the oily liquid, the phospholipid, and the aqueous liquid, and the blending ratio thereof are the same as those in the above-described method for producing ribosomes.
  • biological substances for synthesizing various proteins, DNA, etc. which are biological substances
  • a biological material can be surrounded by a phospholipid similar to the main component of the cell membrane, and a minute reaction space that is similar to the intracellular environment is created inside, so that the reaction can be performed without inactivating the biological material. Can be controlled.
  • reaction substrate any reactant that reacts with the reaction substrate may be used.
  • the reaction substrate is a protein
  • an enzyme that specifically reacts with it is a reactant.
  • a method of introducing the reactant into the wZo emulsion there is a method of inserting a micropipette into the wZo emulsion using a micromanipulator and injecting the reactant in the pipette.
  • the reactant may be enclosed in the wZo emulsion, and the reaction substrate may be introduced into the wZo emulsion from the outside.
  • This embodiment includes the following steps.
  • first WZO emulsion with a particle size of 5 m or more in which the reaction substrate is encapsulated in an oily liquid.
  • oily liquid, phospholipid, and aqueous liquid for forming the WZO emulsion and the blending ratio thereof are the same as those in the above-described method for producing ribosomes.
  • reaction substrate those described in the above embodiment 2-1 can be preferably used.
  • a first WZO emulsion with a particle size of 5 m or more is formed in an oily liquid and the reactants are encapsulated.
  • the types that can be used as oily liquids, phospholipids (PS, PE and their derivatives), and aqueous liquids to form WZO emulsions, and the blending ratios thereof are the same as in the above ribosome production method. It is the same.
  • reactant those described in the above embodiment 2-1 can be preferably used.
  • the reaction is advanced by fusing.
  • a method for fusing the two there is a method in which the two are previously separated from each other and placed in oil, and the two are held and fused by laser tweezers.
  • the mineral oil can be added to an oil sump having a glass plate as a bottom surface and a bottom surface force rising a plastic side wall, and the WZO emulsion can be put into the oil.
  • the lipid used for emulsion preparation should be 0.01-lmM solvent power.
  • This embodiment is the same as the above embodiment 2-1, except that the wzo emulsion encapsulating the reaction substrate is irradiated with wavelength light or electromagnetic waves that react with the reaction substrate.
  • DOPSlmmolZL as an inner membrane phospholipid is dissolved in mineral oil (product number SP 23306-84, manufactured by Nacalai Co., Ltd.), and distilled water in an amount of 1Z100 in volume ratio to mineral oil is obtained.
  • 1 ⁇ l of actin solution per 100 1 mineral oil (lmg / ml actin and 2 mM magnet (W / o emulsion) was prepared by adding and stirring (repeating and removing the mixture several times with a pipette). Mixing and stirring were performed at room temperature. After standing for 2 hours, WZO emulsion in which actin filaments bound in a fibrous form were encapsulated in DOPS was obtained.
  • Ribosomes having a particle size of 5 to 40 m were obtained in the same manner as in Example 1, except that DOPElOmmolZL was used instead of DOPS as the inner membrane phospholipid.
  • a WZO emulsion was prepared in the same manner as in Example 1 except that the actin solution was strong, and outer membrane lipid (PC) was added thereto.
  • PC outer membrane lipid
  • ribosomes having a particle size of 5 to 40 ⁇ m consisting of only inner membrane phospholipid strength OPS or DOPE and outer membrane of PC were obtained.
  • FIG. 1 shows the suspension of Example 1. It can be seen that emulsions in which inner membrane phospholipids were dispersed as monomolecular membrane particles 2 having a particle size of about 10 m were formed.
  • a WZO emulsion (using DOPS) containing actin filaments was prepared in the same manner as in Example 1, and Structural changes were observed.
  • Actin filaments are known to have an aggregated structure in the presence of polyvalent cations such as magnesium ions.
  • the actin filaments were fluorescent red using a fluorescent substance, and the structure of the actin filaments was observed using a confocal microscope.
  • FIG. 2 shows the structure of actin filaments in monomolecular film particles.
  • the concentration of Mg 2+ is 4 mmol ZL (cation conversion), and the actin filaments 8 are uniformly distributed in the monomolecular film particles 4. Since the actin filament is a negatively charged polymer and the DOPS film is also negatively charged, it is thought that both do not aggregate due to electrostatic repulsion.
  • Fig. 3 shows the case of Mg 2+ concentration of 12 mmolZL (cation conversion). This is because the factin filament 8 is aggregated and transferred to the membrane.
  • Fig. 4 shows the case where Mg 2+ concentration is 40 mmol / L (cation conversion). It can be seen that factin filament 8 undergoes bundle transfer, resulting in less adhesion to the membrane. When Bundle transition occurs, the adhesion of thick and hard actin filaments to the DOPS film with curvature is accompanied by energy loss, which is thought to reduce adhesion to the film.
  • force Lucein AM bis [ ⁇ , ⁇ -bis (carboxymethyl) aminomethyl] fluorescene
  • an esterase enzyme that hydrolyzes strong lucein AM to produce fluorescent lucein that emits fluorescence was used as a reactant.
  • a WZO emulsion was prepared in exactly the same manner as in Example 1, except that force Lucein AM was added instead of covering the actin solution with the mineral oil.
  • the amount of force lucein AM added was adjusted so that the force lucein AM in WZO emulsion was 50 ⁇ molZL.
  • the mineral oil was placed in an oil sump with a glass plate as the bottom and a bottom side plastic side wall raised, and the wZo emulsion was introduced into this oil.
  • a micropipette tip diameter: 1 to 2 m
  • FIG. 5 shows a mode in which the pipette 12 is injected into the WZO emulsion 10.
  • the enzyme in pipette 12 reacts with the force lucein AM 1 Oa in the WZO emulsion.
  • FIG. 6 shows the state of WZO emulsion after the esterase enzyme is injected.
  • Fig. 6 (a) shows the state immediately after injection
  • Fig. 6 (b) shows the state 24 minutes after injection.
  • the emulsion 10 in Fig. 6 (b) was shining, and from this, it was confirmed by a fluorescence microscope that the chemical reaction to the fluorescent calcine progressed! As described above, for the first time in the present invention, it was possible to control the reaction without denaturing the protein in a micrometer-sized reaction field.
  • Example 4 a first WZO emulsion in which force Lucein AM was enclosed was produced.
  • a second WZO emulsion encapsulating the esterase enzyme was produced in the same manner as in Example 4 except that esterase enzyme was added instead of force lucein AM.
  • the first and second WZO emulsions were placed separately in the oil sump made of the mineral oil.
  • the laser tweezers Nd: YAG laser, Spectron SL902T, wavelength is 1064 nm
  • the first and second WZO emulsions were respectively held to fuse the two.
  • FIG. 7 shows a state in which the first WZO emulsion 20 and the second WZO emulsion 30 are placed separately on the oil sump 40.
  • FIG. 8 shows a state where the first and second WZO emulsions are fused.
  • (a) shows the first WZO emulsion 20, the second WZO emulsion 30, and laser tweezers (laser spot) 50 before fusion.
  • Fig. 8 (b) shows the fusion state.
  • Figure 8 (c) shows the state after fusion. Also in this example, it was confirmed by a fluorescence microscope that the chemical reaction to the strong lucein emitting fluorescence progressed. Therefore, for the first time in the present invention, the reaction can be controlled without denaturing the protein in a reaction field of micrometer size.
  • a biological material for synthesizing protein was used as a reaction substrate.
  • This biomaterial consists of a large number of biomaterials necessary for gene expression, such as all 20 amino acids' ribosomes.
  • a kit of “E.coli S30 Extract System for circular DN A” manufactured by Promega was used.
  • GFP synthesizing protein
  • a WZO emulsion was prepared in exactly the same manner as in Example 1, except that the above gene and amino acid were added to the mineral oil instead of adding the actin solution. Next, the gene was expressed in WZO emulsion to synthesize protein (GFP). A fluorescent microscope confirmed that a fluorescent protein (GFP) was synthesized.
  • Fig. 9 shows the state in which protein (GFP) fluoresces in WZO emulsion 10.
  • Fig. 9 is a fluorescence microscope image after leaving the emulsion at 37 degrees for 1 hour.
  • micrometer-sized reaction field used in Examples 4 to 6 is similar to the intracellular environment, it does not denature biological substances such as proteins. It is also excellent in that the reaction can be controlled. Furthermore, since the capacity of this reaction field is about 1 trillionth of that of a normal test tube, biochemical experiments in which trial and error are forced by a combination of many experiments, various blood tests, pharmaceutical manufacturing or In utility tests, etc., the amount of reagents and blood required is small, which is very useful for low-cost and examinations that do not burden patients.
  • FIG. 1 is a view showing a photomicrograph of the suspension of Example 1.
  • FIG. 2 is a view showing a micrograph of the structure of actin filaments in monomolecular film particles.
  • FIG. 3 Another view showing a micrograph of the structure of actin filaments in monolayer particles.
  • FIG. 5 is a view showing a mode in which a pipette is injected into a WZO emulsion.
  • FIG. 6 is a diagram showing the state of WZO emulsion after the esterase enzyme is injected.
  • FIG. 7 is a view showing a state in which a first W / O emulsion and a second W / O emulsion 30 are placed separately on a glass plate.
  • FIG. 8 is a diagram showing a state where the first and second WZO emulsions are fused.
  • FIG. 9 is a diagram showing a state in which protein (GFP) emits fluorescence in WZO emulsion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Preparation (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

【課題】内膜がPS及びPEの群から選ばれる1種以上のみからなるマイクロメートルサイズのリポソーム、リポソームの製造方法及び反応制御方法を提供する。 【解決手段】内膜リン脂質がホスファチジルセリン及びその誘導体、並びにホスファチジルエタノールアミン及びその誘導体の群から選ばれる1種以上のみから成り、脂質二分子膜から形成される粒径5μm以上のリポソームであって、前記内膜リン脂質内に、細胞骨格の重合体を内包する。

Description

明 細 書
リボソーム、リボソームの製造方法及び微小反応空間内での反応制御方 法
技術分野
[0001] 本発明は、リボソーム、リボソームの製造方法及び微小反応空間内での反応制御 方法に関する。
背景技術
[0002] リボソームは、リン脂質等の脂質二分子膜によって形成され、その内部に水相を閉 じ込めたカプセル構造を有する。リボソームの構造は、生体膜と類似しているため、 種々の研究材料や、有効成分を内包した応用(化粧料や薬物輸送システム (DDS) ) が検討されている (例えば、特許文献 1、 2参照)。
ここで、リボソームは、通常、リン脂質を水溶液中で懸濁させて多重層リボソーム (い わゆるリボソーム原液)を形成させた後、超音波処理を行って製造するのが通常であ る。
[0003] 一方、リボソームの内膜を WZOエマルシヨンにより作成し、このエマルシヨンの外 膜に脂質を付加するリボソームの製造方法が提案されている (例えば、非特許文献 1 参照)。この方法は次のようにして行われる。
まず、油中に少量の水と脂質 (リボソームの内膜となるもの)を混合し、 wZoェマル シヨンを作成する。次に、水相に、外膜脂質 (リボソームの外膜となるもの)を溶解した 油性液体を加え、油水の分離界面に外膜脂質が並んだ分子膜を形成させる。そして
、 wZoエマルシヨンを前記分離界面における油相側に加え、遠心分離又は攪拌し 、 wZoエマルシヨンを前記分離界面における水相側に移行させて、 wZoェマル シヨンの外側に外膜脂質を付加し、リボソームを製造する。
[0004] ところで、細胞内での生体物質の機能の研究等を行う際、細胞とほぼ同じ空間スケ ールゃ構造を持つマイクロラボ ( mサイズの反応場)の構築が望まれる。ここで、得ら れたマイクロラボを各種溶媒等へハンドリングしたり、マイクロラボ中の生体物質を可 視光観察するためには、マイクロラボの粒径力 、さ過ぎても不都合であり、レーザー ピンセットによるハンドリング等を考慮すると、マイクロラボの粒径が約 5 μ m以上ある ことが必要である。
このようなマイクロラボとしては、構造が生体膜と類似するリボソームを用いることが できるが、さらに例えば、アクリル榭脂ゃガラスでマイクロラボを作製したものがある。 又、ドデシル硫酸ナトリウム (SDS)等の界面活性剤で mサイズの WZOエマルシヨン を作製し、このエマルシヨン中に反応基質を封入して反応場とする技術がある。
[0005] 一方、リボソーム内にァクチンフィラメント (細胞骨格)を内包させる技術が報告され ている(例えば、非特許文献 2, 3参照)。
[0006] 特許文献 1 :特開 2003— 2824号公報
特許文献 2 :特開 2005— 162712号公報
非特許文献 l : Langmuir 19 (2003) 2870-2879
非特許文献 2 : Proc Natl Acad Sci USA, (1992) December 1; 89 (23),11547.1551 非特許文献 3 : Eur Phyd J E soft Matter (2003)Apr;10(4). 319-30
発明の開示
発明が解決しょうとする課題
[0007] しかしながら、従来の粒径 5 μ m以上のリボソームの製造方法の場合、リボソームの 内膜がホスファチジルセリン(以下、「PS」と表示する)、又はホスファチジルエタノー ルァミン(以下、「PE」と表示する)の 1種のみ力もなるリボソームを製造することは困 難である。これは、 PSや PEの負の自発曲率が大きいためと考えられる。そのため、 従来は、負の自発曲率が小さい脂質であるホスファチジルコリン (以下、「PC」と表示 する)と、上記 PSや PEとを混合してリボソームを製造していたが、この場合、内膜が P S又は PEの単独層であるリボソームが得られない。
[0008] 一方、上記非特許文献 1記載の技術の場合、粒径 5 μ m以上のリボソームを製造す ることが困難である。これは、リボソームが非常に不安定な構造であり、 5 m以上に 大きくなると、遠心分離等により油水界面でリボソームが壊れてしまうためと考えられ る。
[0009] 又、マイクロラボとして、アクリル榭脂ゃガラスを用いたものは、これらの表面が生体 物質を失活させたり変性させたりする問題がある。又、 WZOエマルシヨンをマイクロ ラボとする場合も、エマルシヨンに用いる界面活性剤が生体物質を失活させたり変性 させたりする。
なお、マイクロラボとして細胞膜と同じ脂質二分子膜からなるマイクロメートルサイズ のリボソームを用いることができ、リボソームの内部では生体物質が失活せずに反応 が進行する。し力しながら、リボソームは不安定な構造なため、浸透圧などの外場の 影響で容易に変形、破壊し、反応の制御が困難となる。また、リボソームの内膜として 作製できる脂質が限られており、脂質の種類を変えることによってマイクロラボの内部 環境を制御することが困難である。
又、ァクチンをリボソームに内包させる非特許文献 2, 3記載の技術は、予めリポソ ーム内にァクチンのモノマーを内包しておき、これを温度上昇 (非特許文献 2)や重 合剤(非特許文献 3)によって重合させてァクチンフィラメントを形成させている。これ は、リボソームに巨大分子であるァクチンフィラメントを内包させるのが困難なためで あるが、上記と同様にリボソームとして用いる脂質が限られ、 PSや PEを用いることが できない。通常の細胞膜内膜の主成分は PSや PEであり、細胞骨格 (ここではァクチ ン)が細胞内膜に囲まれた環境で機能している。従って、マイクロラボ内に細胞骨格 を内包させる場合、脂質としては PSや PEを用いたほうが細胞骨格との適合性が良 ヽ ことが期待される。
さらに、非特許文献 2, 3記載の技術の場合、ァクチンフィラメントの重合や緩衝液 に用いる塩の濃度が自由に選択できないという問題がある。例えば、非特許文献 2、 3には、ァクチンの緩衝液として、 G-buffe (ァクチンの緩衝液としてよく用いられている : 2 mM Tris HC1, pH8.2, 0.5 mM CaC12, 0.2 mM ATP, 0.2 mM NaN3, 0.5 mM dithi othreitol)を使用することが記載されて 、るが、緩衝液の濃度がこの範囲を外れた場 合にリボソームが形成されるかどうかは不明である。通常、リボソームは塩濃度が高く なると作製が困難になる傾向があり、そのため使用可能な塩濃度が限定されるからで ある。
将来的にリボソームを DDSに利用する場合、リボソーム内に薬を高濃度で内封させ ることになるため、リボソームの作製条件として溶質濃度に制限が無い方が有利であ る。 [0011] 従って、本発明の目的は、内膜が PS及び PEの群 (これらの誘導体を含む)から選 ばれる 1種以上のみ力もなるマイクロメートルサイズのリボソーム、及びその製造方法 を提供することにある。又、本発明の目的は、マイクロメートルサイズの微小反応空間 内での反応制御方法を提供することにある。
課題を解決するための手段
[0012] すなわち本発明のリボソームは、内膜リン脂質がホスファチジルセリン及びその誘 導体、並びにホスファチジルエタノールアミン及びその誘導体の群力 選ばれる 1種 以上のみから成り、脂質二分子膜から形成される粒径 5 m以上のリボソームであつ て、前記内膜リン脂質内に、細胞骨格の重合体を内包するリボソームである。
[0013] 前記細胞骨格がァクチンフィラメントであることが好ま 、。
[0014] 本発明のリボソームの製造方法は、内膜リン脂質がホスファチジルセリン及びその 誘導体、並びにホスファチジルエタノールアミン及びその誘導体の群力 選ばれる 1 種以上のみから成り、脂質二分子膜から形成される粒径 5 μ m以上のリボソームを製 造する方法であって、油性液体中に、前記内膜リン脂質と、細胞骨格と、水性液体と を混合し、前記内膜リン脂質内に前記細胞骨格が繊維状に結合した WZOエマルシ ヨンを形成する工程と、水相に、外膜脂質を溶解した油性液体を加え、油水の分離 界面に前記脂質が並んだ分子膜を形成させる工程と、前記 WZOエマルシヨンを前 記分離界面における油相側に加え、遠心分離又は攪拌し、前記 WZOエマルシヨン を前記分離界面における水相側に移行させて、前記 WZOエマルシヨンの外側に前 記外膜脂質を付加する工程とを有する。
[0015] 前記細胞骨格がァクチンフィラメントであることが好ましぐ前記外膜となる脂質がホ スファチジルコリン又はその誘導体を含むことが好ましい。
[0016] 本発明の微小反応空間内での反応制御方法は、油性液体中に、 1種以上のリン脂 質と、反応基質と、水性液体とを混合し、前記、反応基質が前記リン脂質内に封入さ れた粒径 5 μ m以上の WZOエマルシヨンを形成する工程と、前記 WZOエマルショ ン内に、前記反応基質と反応する反応剤を導入する工程とを有する。
[0017] 又、本発明の微小反応空間内での反応制御方法は、油性液体中に、 1種以上のリ ン脂質と、反応基質と、水性液体とを混合し、前記反応基質が前記リン脂質内に封 入された粒径 5 m以上の第 1の WZOエマルシヨンを形成する工程と、油性液体中 に、 1種以上のリン脂質と、前記反応基質と反応する反応剤と、水性液体とを混合し、 前記反応剤が前記リン脂質内に封入された粒径 5 μ m以上の第 2の WZOエマルシ ョンを形成する工程と、前記第 1の WZOエマルシヨンと前記第 2の WZOエマルショ ンとを融合させる工程とを有する。
[0018] 又、本発明の微小反応空間内での反応制御方法は、油性液体中に、 1種以上のリ ン脂質と、反応基質と、水性液体とを混合し、前記、反応基質が前記リン脂質内に封 入された粒径 5 μ m以上の WZOエマルシヨンを形成する工程と、前記 WZOェマル シヨンに、前記反応基質と反応する波長光又は電磁波を照射する工程とを有する。 発明の効果
[0019] 本発明によれば、内膜が PS及び PEの群 (これらの誘導体を含む)から選ばれる 1 種以上力もなるマイクロメートルサイズのリボソームを製造することができる。又、本発 明によれば、リン脂質力 なるマイクロメートルサイズの微小反応空間内で反応を制 御することができる。
発明を実施するための最良の形態
[0020] 以下、本発明の実施形態について説明する。
[0021] 1.本発明のリボソーム
本発明のリボソームは、内膜リン脂質がホスファチジルセリン及びその誘導体、並び にホスファチジルエタノールアミン及びその誘導体の群力 選ばれる 1種以上のみか ら成り、脂質二分子膜から形成される粒径 5 m以上のリボソームであって、前記内 膜リン脂質内に、細胞骨格の重合体を内包するリボソームである。
このようにすると、リボソームの内膜が PS及び Z又は PEであるため、内包される細 胞骨格との適合性が向上することが期待できる。
[0022] 2.本発明に係るリボソームの製造方法
〈混合工程 (WZOエマルシヨンの作製)〉
本発明のリボソームの製造方法においては、まず、油性液体中に、内膜リン脂質と 、細胞骨格と、水性液体とを混合し、内膜リン脂質内に細胞骨格が繊維状に結合し た WZOエマルシヨン(内膜リン脂質の単分子膜粒子)を形成する。 内膜リン脂質としては、 PS又はその誘導体、及び PE又はその誘導体の群から選ば れる 1種以上から成るものを用いる。ここで、 PSの誘導体としては、ジォレイルホスフ ァチジルセリン (DOPS)等が挙げられる。従って、本発明において、内膜リン脂質は 、例えば PS単独でもよぐ PSと PE力 成っていてもよい。
[0023] 細胞骨格は細胞の形態を維持し、細胞内外の運動を生じさせるための細胞内の線 維状構造である。細胞骨格は、電子顕微鏡で観察することができ、その太さによって 3種に分類される。 1)マイクロフィラメント (ァクチンフィラメント):繊維外径が 5nm程度 のものであり、通常、ァクチンを構成単位とする。 2)中間フィラメント:多種の線維が含 まれ、繊維外径が lOnm程度のものである。 3)微小管:繊維外径が 25nm程度のも のであり、通常、チューブリンを構成単位とする。
本発明においては、 WZOエマルシヨンを作成する際に、内膜リン脂質の内部の水 相に細胞骨格を閉じ込め、細胞骨格を繊維状に結合させることによって、 WZOエマ ルシヨンを強化する。
[0024] なお、 WZOエマルシヨン内部で細胞骨格を重合させて繊維状に結合させるため、 細胞骨格の重合剤を添加することが好ましい。重合剤は、 WZOエマルシヨンを作成 する際に混合すればよい。例えば、細胞骨格としてァクチンフィラメントを用いる場合 、重合剤として 2mmol/L程度の Mg2+を添加すればよい。この場合、長さ 10 m程 度のァクチンフィラメントが得られ、これらの単位長さを持つァクチンフィラメントが相 互に絡み合 、、内膜リン脂質と結合して WZOエマルシヨンを強化する。
[0025] ここで、リボソームを DDSに利用する場合、リボソーム内に薬を高濃度で内封させる ことになるため、リボソームの作製条件として溶質濃度に制限が無い方が有利である そして、本発明の製造方法においては、まず、 1分子膜小胞を作製し、それをァク チンフィラメントで強度を増した後、 2分子膜小胞を作製すると 、う新規の過程を経る ため、塩濃度を自由に選択できる (濃度の下限は 0、つまり純水でも作製することがで き、従来より高濃度とすることもできる)。
この理由は、最初の 1分子膜小胞の形成段階では、表面張力の影響が支配的であ り、塩濃度を特に限定しなくともよいためと考えられる。一方、従来のように、 2分子膜 小胞を一度に形成する場合、その形成過程において塩濃度の影響が大きくなり、濃 度条件が限定されると考えられる。
さらに、後述するように、マグネシウムイオン濃度によってァクチンフィラメントの構造 が多様に変化することが判明している。従って、塩濃度を自由に選択できるということ は、ァクチンフィラメントの構造によってリボソームの強度を制御できる可能性があると いうことを意味する。
[0026] 粒径 5 μ m以上の WZOエマルシヨンを形成させるため、内膜リン脂質と、油性液体 と、水性液体とを、通常、以下の混合比率で混合することが好ましい。
1)内膜リン脂質の油性液体中の濃度が ImmolZL〜: LOmmolZLであるように配 合する。ここで、内膜リン脂質として 2種以上を用いる場合は、それらの合計濃度を上 記範囲とする。
2)水性液体と油性液体の配合割合を、体積比で (水性液体 Z油性液体) =1Z10 00〜: LZ10となるようにする。
[0027] ここで、内膜リン脂質の油性液体中の濃度が ImmolZL未満であると、得られた単 分子膜粒子の粒径が小さくなりすぎるか、単分子膜粒子が形成されな ヽ場合がある。 一方、濃度が lOmmolZLを超えると単分子膜粒子の粒径が 5 m以下となる力、又 は粒子状とならずにラメラ状等になる場合がある。なお、通常、 WZOエマルシヨンの 粒径は 40 μ m以下とすることが好ましい。
又、(水性液体 Z油性液体)で表される比が 1Z1000未満であると、油性液体の割 合が多くなり過ぎ、良好な WZOエマルシヨン(内膜リン脂質の単分子膜粒子)を形成 し難い場合がある。一方、上記比が 1Z10を超えると水性液体の割合が多くなり過ぎ
、やはり良好な wZoエマルシヨンを形成し難 、場合がある。
[0028] 油性液体は、内膜リン脂質を安定に分散させるものであれば特に制限されないが、 例えば、鉱物油(ミネラルオイル)を用いることができる。水性液体は特に制限されず 、又、最終的に得られるリボソームに内包する有効成分等を水性液体に含有させても よいが、単分子膜粒子(リボソーム)の粒径を制御し易いことから、水 (純水)が好まし い。
[0029] くリボソームの作製 (外膜脂質の付加)〉 次に、上記単分子膜粒子の表面に、外膜となる脂質を付加し、内膜と外膜の脂質 二分子膜から形成される粒径 5 μ m以上のリボソームを作製する。
ここで、最終的に得られるリボソームの粒径が 5 μ m未満であると、リボソームをレー ザ一ピンセットで捕捉、ハンドリングするや、リボソームを可視光観察することが困難と なる。
なお、最終的に得られるリボソームの粒径を 5 μ m以上とするため、正確には上記 単分子膜粒子の粒径は、外膜脂質の長さだけリボソームの粒径より小さいが、上記 説明では、便宜上、リボソームの粒径と同様とみなす。
[0030] リボソームの粒径は、例えば光学顕微鏡により測定することができる。
[0031] 外膜となる脂質を付加する方法としては、例えば文献 (Langmuir, 19(2003)p.2870- 2879、及び Proc. Natl. Acad. Sci" 101. (2004) p.17669 - 17674)に記載された方法 を用いることができる。
具体的には、 1)水相に、外膜脂質を溶解した油性液体を加え、油水の分離界面に 前記脂質が並んだ分子膜を形成させる。通常、油相が水相より上側になる。
2)次に上記 WZOエマルシヨンを、上記 1)の分離界面における油相側に注ぐ。こ れを遠心分離又は攪拌すると、 WZOエマルシヨンが分離界面を通過して水相側に 移行する。この通過の際に WZOエマルシヨンの外側に、分子膜として並んだ外膜脂 質が付加される。
[0032] 外膜となる脂質としては、例えば、 PC又はその誘導体を用いることができる。上記リ ポソームを安定させるため、膜安定化剤、電荷付与物質、各種助剤を添加してもよい
[0033] 3.本発明に係る微小反応空間内での反応制御方法
3- 1. WZOエマルシヨンに反応剤を導入する実施態様
この実施態様は、以下の工程を含む。
く w/oエマルシヨンの作製〉
本発明の反応制御方法においては、まず wZoエマルシヨンを形成する。 wZoェ マルシヨンの形成方法は、上記リボソームの製造方法の場合と同様であり、油性液体 中に、 1種以上のリン脂質と、反応基質と、水性液体とを混合し、反応基質がリン脂質 内に封入された粒径 5 m以上の WZOエマルシヨンを形成する。リン脂質としては 特に制限はないが、例えば、 PS及びその誘導体、 PE及びその誘導体、 PC (ホスファ チジルコリン)及びその誘導体、 SM (スフインゴミエリンなど)及びその誘導体が挙げら れる。
油性液体、リン脂質、及び水性液体として用いることのできる種類や、これらの配合 割合は、上記リボソームの製造方法の場合と同様である。
反応基質としては、生体物質である各種タンパク質や DNA等を合成するための生 体物質を好適に用いることができる。生体物質は周囲の環境に非常に左右されやす ぐ従来のマイクロメートルサイズの微小空間では、生体物質の反応を制御することは 困難である。本発明によれば、細胞膜の主成分と同様なリン脂質で生体物質を囲む ことができ、内部が細胞内環境に類似した微小反応空間を作製して、生体物質が失 活せずに反応を制御することができる。
[0034] 次に、この WZOエマルシヨン内に、反応基質と反応する反応剤を導入する。
反応剤としては、反応基質と反応するものであればよい。例えば反応基質がタンパ ク質の場合、それと特異的に反応する酵素が反応剤となる。
wZoエマルシヨン内に反応剤を導入する方法としては、マイクロマニピュレータに よって wZoエマルシヨン内にマイクロピペットを挿入し、ピペット内の反応剤を注入 する方法が挙げられる。
なお、この実施態様において、反応剤を wZoエマルシヨン内に封入し、この wZ oエマルシヨンに外部から反応基質を導入してもよ 、。
[0035] 3-2.複数の WZOエマルシヨンを融合する実施態様
この実施態様は、以下の工程を含む。
〈第 1の W/Oエマルションの作製〉
油性液体中に、反応基質が封入された粒径 5 m以上の第 1の WZOエマルシヨン を形成する。 WZOエマルシヨンを形成するための油性液体、リン脂質、及び水性液 体として用いることのできる種類や、これらの配合割合は、上記リボソームの製造方法 の場合と同様である。
反応基質としては、上記 2—1の実施態様で説明したものを好適に用いることができ る。
〈第 2の W/Oエマルシヨンの作製〉
油性液体中に、反応剤が封入された粒径 5 m以上の第 1の WZOエマルシヨンを 形成する。 WZOエマルシヨンを形成するための油性液体、リン脂質 (PS、 PE及びそ れらの誘導体)、並びに水性液体として用いることのできる種類や、これらの配合割 合は、上記リボソームの製造方法の場合と同様である。
反応剤としては、上記 2— 1の実施態様で説明したものを好適に用いることができる
[0036] この実施態様は、反応基質が封入された WZOエマルシヨンに反応剤を導入する 代わりに、反応基質が封入された第 1の WZOエマルシヨンと、反応剤が封入された 第 2の WZOエマルシヨンとを融合させ、反応を進行させる点に特徴がある。両者を 融合させる方法としては、予め、両者を離間して油中に配置し、レーザーピンセットに より両者を把持して融合させる方法が挙げられる。この場合、例えば、ガラスプレート を底面とし、底面力もプラスチックの側壁を立上げた油溜めに上記鉱物油を加え、こ の油中に上記 WZOエマルシヨンを投入することができる。上記鉱物油にはエマルシ ヨン作製に用いた脂質を 0.01〜lmM溶力しておくとよ 、。
[0037] 3-3. WZOエマルシヨンに波長光又は電磁波を照射する実施態様
この実施態様は、反応基質が封入された wzoエマルシヨンに、反応基質と反応す る波長光又は電磁波を照射すること以外は、上記 2— 1の実施態様と同様であるので 説明を省略する。
[0038] く実施例〉
以下に、実施例によって本発明を更に具体的に説明する力 本発明は以下の実施 例に限定されるものではない。
〈リボソームの製造方法にっ 、ての実施例〉
実施例 1
[0039] 内膜リン脂質として DOPSlmmolZLを鉱物油(ナカライ社製、製品番号 SP 23306 -84)に溶かし、鉱物油に対して体積比で 1Z100の量の蒸留水をカ卩えるとともに、さ らに鉱物油 100 1に対し 1 μ 1のァクチン溶液(lmg/mlァクチン、及び 2mMのマグネ シゥムイオン)を加えて攪拌し (ピペットで数回、混合液の出し入れを繰り返す) w/o エマルシヨンを作製した。混合及び攪拌は常温で行った。 2時間放置することで、繊 維状に結合したァクチンフィラメントが DOPSに内包された WZOエマルシヨンが得ら れた。 WZOエマルシヨンの粒径が 5〜40 μ mであることが光学顕微鏡で確認された 次に、外膜脂質 (PC) ImmolZLを溶力した鉱物油 2mLを、水 3mLの上からカロえ、 約 90分放置した。油水が二相分離し、油水分離界面に外膜脂質が 1分子膜として並 んだ。なお、分離界面の上側が油相で下側が水相であった。
上記 WZOエマルシヨン lmLをこの油水分離界面における油相に注ぎ、液全体を 遠心分離した(120gの液を 5〜10分)。エマルシヨンが油水界面を通過する時に外膜 脂質が付加され、リボソームが得られた。
実施例 2
[0040] 内膜リン脂質として DOPSの代わりに、 DOPElOmmolZLを用いたこと以外は、 実施例 1とまったく同様にして、粒径が 5〜40 mのリボソームを得た。
[0041] 〈比較例 1〉
ァクチン溶液をカ卩えな力つたこと以外は、実施例 1とまったく同様にして WZOエマ ルシヨンを作製し、これに外膜脂質 (PC)を付加した。上記油水分離界面における油 相に WZOエマルシヨンを注ぎ、液を遠心分離したところ、エマルシヨンが破壊され、 粒径 5 μ m以上のリボソームが得られなかった。
[0042] 以上から明らかなように、各実施例の場合、内膜リン脂質力 ¾OPS又は DOPEの みから成り、外膜が PCである粒径 5〜40 μ mのリボソームが得られた。
図 1は、実施例 1の懸濁液を示す。内膜リン脂質が粒径約 10 mの単分子膜粒子 2として分散したエマルシヨンが形成されたことがわかる。
[0043] 一方、ァクチン溶液をカ卩えな力つた比較例 1の場合、粒径 5 μ m以上のリボソームが 得られな力つた。これは、 wZoエマルシヨンの内部(水相)に細胞骨格が繊維状に 結合せず、エマルシヨンの強度が向上しなかったために遠心分離でエマルシヨンが 破壊されたと考えられる。
実施例 3 [0044] く DOPSの WZOエマルシヨン内での高分子の構造変化〉
上記した DOPS単分子膜粒子の内部がマイクロメートルサイズの反応場として利用 できることを示すため、実施例 1と同様な方法でァクチンフィラメントを内包する WZO エマルシヨン (DOPSを使用)を作製し、ァクチンの構造変化を観察した。ァクチンフィ ラメントは、マグネシウムイオン等の多価カチオンの存在下で凝集構造をとることが知 られている。
なお、蛍光物質を用いてァクチンフィラメントを赤く蛍光させ、共焦点顕微鏡を用い てァクチンフィラメントの構造を観察した。
[0045] 図 2は、単分子膜粒子内のァクチンフィラメントの構造を示す。図 2において、 Mg2+ を濃度は 4mmolZL (カチオン換算)であり、ァクチンフィラメント 8は単分子膜粒子 4 内に一様に分布した。ァクチンフィラメントは負に帯電した高分子であり、 DOPS膜も 負電荷を帯びているため、静電反発により、両者が凝集しないと考えられる。
図 3は、 Mg2+を濃度 12mmolZL (カチオン換算)とした場合を示す。ァクチンフイラ メント 8が膜へ凝集転移して 、ることがゎカゝる。
図 4は、 Mg2+を濃度 40mmol/L (カチオン換算)とした場合を示す。ァクチンフイラ メント 8が Bundle転移を起こし、膜への付着が少なくなつていることがわかる。 Bundle 転移すると、曲率を持つ DOPS膜にァクチンフィラメントの太く硬 、bundleが付着する ことはエネルギー損失を伴うため、膜への付着が減少したと考えられる。
なお、単分子膜粒子として DOPSの代わりに DOPEを用いた場合も、同様にァクチ ンフィラメントの構造変化を観察することができた。
く微小反応空間内での反応制御方法についての実施例〉
実施例 4
[0046] 反応基質として力ルセイン AM (ビス [Ν,Ν-ビス(カルボキシメチル)アミノメチル]フル オレセン)を用いた。又、反応剤として、力ルセイン AMを加水分解して蛍光を発する 力ルセインを生成させるエステラーゼ酵素を用いた。
鉱物油に対しァクチン溶液をカ卩える代わりに、力ルセイン AMを加えたこと以外は、 実施例 1と全く同様にして WZOエマルシヨンを作製した。なお、 WZOエマルシヨン 中の力ルセイン AMが 50 μ molZLとなるように、力ルセイン AMの添力卩量を調整した。 ガラスプレートを底面とし、底面力 プラスチックの側壁を立上げた油溜めに上記鉱 物油をカ卩え、この油中に上記 wZoエマルシヨンを投入した。次に、マイクロマ-ピュ レータ(Narishige社製のマイクロインジェクタ IM- 300)を用い、上記 W/Oエマルショ ン内にマイクロピペット (先端直径 1〜2 m)を挿入し、ピペット内のエステラーゼ酵 素(2. 5mg/ml)を注入した。
図 5は、 WZOエマルシヨン 10にピペット 12を注入する態様を示す。この図におい て、ピぺット 12内の酵素が WZOエマルション内の力ルセイン AM 1 Oaと反応する。
[0047] 又、エステラーゼ酵素を注入した後の WZOエマルシヨンの状態を図 6に示す。この 図において、図 6 (a)は注入直後の状態を示し、図 6 (b)は注入してから 24分後の状 態を示す。図 6 (b)のエマルシヨン 10は光っており、これより、蛍光を発するカルセィ ンへの化学反応が進行して!/、ることを蛍光顕微鏡で確認することができた。以上のよ うに、本発明で初めて、マイクロメートルサイズの反応場においてタンパク質を変性さ せずに反応を制御することができた。
実施例 5
[0048] 反応基質及び反応剤として、実施例 4と全く同様のものを用いた。
まず、実施例 4と全く同様にして、力ルセイン AMが封入された第 1の WZOェマル シヨンを作製した。又、力ルセイン AMの代わりにエステラーゼ酵素を添加したこと以 外は実施例 4と全く同様にして、エステラーゼ酵素が封入された第 2の WZOェマル シヨンを作製した。
[0049] 上記第 1及び第 2の WZOエマルシヨンを、それぞれ上記鉱物油からなる油溜めに 離間して載置した。次に、レーザーピンセット(Nd:YAGレーザー、 Spectronの SL902T 、波長は 1064nm)を用い、第 1及び第 2の WZOエマルシヨンをそれぞれ把持し、両 者を融合した。
図 7は、第 1の WZOエマルシヨン 20、第 2の WZOエマルシヨン 30を油溜め 40上 に離間して載置した状態を示す。
[0050] 第 1及び第 2の WZOエマルシヨンが融合した状態を図 8に示す。この図において、 図 8 (a)は融合前の第 1の WZOエマルシヨン 20、第 2の WZOエマルシヨン 30、及 びレーザーピンセット (レーザースポット) 50を示す。図 8 (b)は融合中の状態を示し、 図 8 (c)は融合後の状態を示す。この実施例においても、蛍光を発する力ルセインへ の化学反応が進行して 、ることを蛍光顕微鏡による確認することができた。従って、 本発明で初めて、マイクロメートルサイズの反応場にぉ 、てタンパク質を変性させず に反応を制御することができた。
実施例 6
[0051] 反応基質として、タンパク質 (GFP)を合成するための生体物質を用いた。この生体 物質は、内容物は全 20種アミノ酸 'リボソームなど遺伝子発現に必要な多数の生体 物質からなる。実験では、 Promega社製の「E.coli S30 Extract System for circular DN A」のキットを用いた。
反応剤として、タンパク質(GFP)を合成する遺伝子(Promegaの E.coli S30 Extract S ystem for circular DNA) 用 ヽた。
鉱物油に対しァクチン溶液を加える代わりに、上記遺伝子及びアミノ酸を加えたこと 以外は、実施例 1と全く同様にして WZOエマルシヨンを作製した。次に、 WZOエマ ルシヨン内で遺伝子を発現させ、タンパク質 (GFP)を合成させた。蛍光を発するタン パク質 (GFP)が合成されたことを蛍光顕微鏡により確かめた。 WZOエマルシヨン 10 内でタンパク質 (GFP)が蛍光を発する状態を図 9に示す。図 9は、エマルシヨンを 37 度で 1時間放置後の蛍光顕微鏡像である。
[0052] 以上のように、実施例 4〜6で用いたマイクロメートルサイズの反応場 (WZOェマル シヨン)は細胞内環境に類似しているため、タンパク質を代表とする生体物質を変性 させず、また反応を制御できる点でも優れている。さらに、この反応場の容量は、通常 の試験管の約 1兆分の 1であることから、多数の実験の組み合わせによって試行錯誤 を強いられる生化学実験や、各種の血液検査、製薬の製造又は効用の試験などに おいて、必要とする試薬や血液等の量が少なくて済み、低コストや患者に負担をかけ ない検査などに非常に有用である。
図面の簡単な説明
[0053] [図 1]実施例 1の懸濁液の顕微鏡写真を示す図である。
[図 2]単分子膜粒子内のァクチンフィラメントの構造の顕微鏡写真を示す図である。
[図 3]単分子膜粒子内のァクチンフィラメントの構造の顕微鏡写真を示す別の図であ る。
圆 4]単分子膜粒子内のァクチンフィラメントの構造の顕微鏡写真を示すさらに別の 図である。
[図 5]WZOエマルシヨンにピペットを注入する態様を示す図である。
[図 6]エステラーゼ酵素を注入した後の WZOエマルシヨンの状態を示す図である。
[図 7]第 1の W/Oエマルシヨン、第 2の W/Oエマルシヨン 30をガラスプレート上に離 間して載置した状態を示す図である。
圆 8]第 1及び第 2の WZOエマルシヨンが融合した状態を示す図である。
[図 9]WZOエマルシヨン内でタンパク質 (GFP)が蛍光を発する状態を示す図である 符号の説明
2、 4、 10、 20、 WZOエマルシヨン(単分子膜粒子)
ァクチンフィラメント

Claims

請求の範囲
[1] 内膜リン脂質がホスファチジルセリン及びその誘導体、並びにホスファチジルェタノ ールァミン及びその誘導体の群力 選ばれる 1種以上のみ力 成り、脂質二分子膜 から形成される粒径 5 μ m以上のリボソームであって、
前記内膜リン脂質内に、細胞骨格の重合体を内包するリボソーム。
[2] 前記細胞骨格がァクチンフィラメントである請求項 1に記載のリボソーム。
[3] 内膜リン脂質がホスファチジルセリン及びその誘導体、並びにホスファチジルェタノ ールァミン及びその誘導体の群力 選ばれる 1種以上のみ力 成り、脂質二分子膜 から形成される粒径 5 μ m以上のリボソームを製造する方法であって、
油性液体中に、前記内膜リン脂質と、細胞骨格と、水性液体とを混合し、前記内膜 リン脂質内に前記細胞骨格が繊維状に結合した WZOエマルシヨンを形成する工程 と、
水相に、外膜脂質を溶解した油性液体を加え、油水の分離界面に前記脂質が並 んだ分子膜を形成させる工程と、
前記 WZOエマルシヨンを前記分離界面における油相側に加え、遠心分離又は攪 拌し、前記 WZOエマルシヨンを前記分離界面における水相側に移行させて、前記 WZOエマルシヨンの外側に前記外膜脂質を付加する工程とを有するリボソームの 製造方法。
[4] 前記細胞骨格がァクチンフィラメントである請求項 3に記載のリボソームの製造方法
[5] 前記外膜となる脂質がホスファチジルコリン又はその誘導体を含む請求項 3又は 4 に記載のリボソームの製造方法。
[6] 油性液体中に、 1種以上のリン脂質と、反応基質と、水性液体とを混合し、前記反 応基質が前記リン脂質内に封入された粒径 5 μ m以上の WZOエマルシヨンを形成 する工程と、
前記 WZOエマルシヨン内に、前記反応基質と反応する反応剤を導入する工程と を有する微小反応空間内での反応制御方法。
[7] 油性液体中に、 1種以上のリン脂質と、反応基質と反応する反応剤と、水性液体と を混合し、前記反応剤が前記リン脂質内に封入された粒径 5 m以上の WZOエマ ルシヨンを形成する工程と、
前記 WZOエマルシヨン内に、前記反応基質を導入する工程とを有する微小反応 空間内での反応制御方法。
[8] 油性液体中に、 1種以上のリン脂質と、反応基質と、水性液体とを混合し、前記反 応基質が前記リン脂質内に封入された粒径 5 μ m以上の第 1の WZOエマルシヨンを 形成する工程と、
油性液体中に、 1種以上のリン脂質と、前記反応基質と反応する反応剤と、水性液 体とを混合し、前記反応剤が前記リン脂質内に封入された粒径 5 μ m以上の第 2の WZOエマルシヨンを形成する工程と、
前記第 1の WZOエマルシヨンと前記第 2の WZOエマルシヨンとを融合させる工程 とを有する微小反応空間内での反応制御方法。
[9] 油性液体中に、 1種以上のリン脂質と、反応基質と、水性液体とを混合し、前記、反 応基質が前記リン脂質内に封入された粒径 5 μ m以上の WZOエマルシヨンを形成 する工程と、
前記 WZOエマルシヨンに、前記反応基質と反応する波長光又は電磁波を照射す る工程とを有する微小反応空間内での反応制御方法。
PCT/JP2006/317517 2005-09-15 2006-09-05 リポソーム、リポソームの製造方法及び微小反応空間内での反応制御方法 WO2007032225A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007535426A JPWO2007032225A1 (ja) 2005-09-15 2006-09-05 リポソーム、リポソームの製造方法及び微小反応空間内での反応制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005268501 2005-09-15
JP2005-268501 2005-09-15

Publications (1)

Publication Number Publication Date
WO2007032225A1 true WO2007032225A1 (ja) 2007-03-22

Family

ID=37864824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317517 WO2007032225A1 (ja) 2005-09-15 2006-09-05 リポソーム、リポソームの製造方法及び微小反応空間内での反応制御方法

Country Status (2)

Country Link
JP (1) JPWO2007032225A1 (ja)
WO (1) WO2007032225A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008140081A1 (ja) * 2007-05-14 2008-11-20 Konica Minolta Holdings, Inc. リポソームおよびリポソームの製造方法
WO2022025133A1 (ja) * 2020-07-31 2022-02-03 森下仁丹株式会社 マイクロカプセルの製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441279A (en) * 1977-08-05 1979-04-02 Battelle Memorial Institute Manufacture of liposome solution or suspension in aqueous medium
JP2000271475A (ja) * 1999-03-23 2000-10-03 Shinji Katsura 油中水滴エマルジョンの微小操作による微小化学反応制御法
JP2002503945A (ja) * 1995-04-19 2002-02-05 バースタイン テクノロジーズ,インコーポレーテッド 新規治療用結合分子複合体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441279A (en) * 1977-08-05 1979-04-02 Battelle Memorial Institute Manufacture of liposome solution or suspension in aqueous medium
JP2002503945A (ja) * 1995-04-19 2002-02-05 バースタイン テクノロジーズ,インコーポレーテッド 新規治療用結合分子複合体
JP2000271475A (ja) * 1999-03-23 2000-10-03 Shinji Katsura 油中水滴エマルジョンの微小操作による微小化学反応制御法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MIYATA H. ET AL.: "Morphological changes in liposomes caused by polymerization of encapsulated actin and spontaneous formation of actin bundles", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 89, December 1992 (1992-12-01), pages 11547 - 11551, XP003003269 *
NOIREAUX V. ET AL.: "A vesicle bioreactor as a step toward an artificial cell assembly", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 101, December 2004 (2004-12-01), pages 17669 - 17674, XP003003270 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008140081A1 (ja) * 2007-05-14 2008-11-20 Konica Minolta Holdings, Inc. リポソームおよびリポソームの製造方法
EP2153820A1 (en) * 2007-05-14 2010-02-17 Konica Minolta Holdings, Inc. Liposome and method for producing liposome
EP2153820A4 (en) * 2007-05-14 2013-12-25 Konica Minolta Holdings Inc LIPOSOME AND METHOD FOR PREPARING THE SAME
JP5532921B2 (ja) * 2007-05-14 2014-06-25 コニカミノルタ株式会社 リポソーム
JP2014159460A (ja) * 2007-05-14 2014-09-04 Konica Minolta Inc リポソームの製造方法
US9980908B2 (en) 2007-05-14 2018-05-29 Konica Minolta, Inc. Liposome and method for producing liposome
EP3494964A1 (en) * 2007-05-14 2019-06-12 Konica Minolta Holdings, Inc. Liposome and method for producing liposome
WO2022025133A1 (ja) * 2020-07-31 2022-02-03 森下仁丹株式会社 マイクロカプセルの製造方法
JPWO2022025133A1 (ja) * 2020-07-31 2022-02-03

Also Published As

Publication number Publication date
JPWO2007032225A1 (ja) 2009-03-19

Similar Documents

Publication Publication Date Title
Pir Cakmak et al. Lipid vesicle-coated complex coacervates
US20230048266A1 (en) Multisomes: Encapsulated Droplet Networks
Kamiya et al. Giant liposome formation toward the synthesis of well-defined artificial cells
Skrzypek et al. Methods of reconstitution to investigate membrane protein function
Peyret et al. Liposomes in polymersomes: Multicompartment system with temperature-triggered release
Lu et al. Vesicle-based artificial cells: materials, construction methods and applications
Helfrich et al. Aqueous phase separation in giant vesicles
Nishimura et al. Population analysis of structural properties of giant liposomes by flow cytometry
Peyret et al. Preparation and properties of asymmetric synthetic membranes based on lipid and polymer self-assembly
Majumder et al. Encapsulation of complex solutions using droplet microfluidics towards the synthesis of artificial cells
JP4009733B1 (ja) ベシクルの製造方法、この製造方法によって得られるベシクル、ベシクルの製造に用いられる凍結粒子の製造方法
Ganar et al. Actinosomes: condensate-templated containers for engineering synthetic cells
Yanagisawa et al. Characteristic behavior of crowding macromolecules confined in cell-sized droplets
Jiménez et al. Giant vesicles: a powerful tool to reconstruct bacterial division assemblies in cell‐like compartments
Zubaite et al. Dynamic reconfiguration of subcompartment architectures in artificial cells
US20240226840A1 (en) Layered particles and processes thereof
Rubio-Sánchez et al. DNA-origami line-actants control domain organization and fission in synthetic membranes
Nair et al. Advances in giant unilamellar vesicle preparation techniques and applications
Luisi et al. Vesicle behavior: in search of explanations
Li et al. Cellulose abetted assembly and temporally decoupled loading of cargo into vesicles synthesized from functionally diverse lamellar phase forming amphiphiles
Hadorn et al. Specific and reversible DNA-directed self-assembly of modular vesicle-droplet hybrid materials
Qi et al. Facile and programmable capillary-induced assembly of prototissues via hanging drop arrays
WO2007032225A1 (ja) リポソーム、リポソームの製造方法及び微小反応空間内での反応制御方法
Hayase et al. Large-scale preparation of giant vesicles by squeezing a lipid-coated marshmallow-like silicone gel in a buffer
Mazur et al. Locomotion of micromotors due to liposome disintegration

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007535426

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06797423

Country of ref document: EP

Kind code of ref document: A1