WO2007031627A1 - Procede de traitement d'un gaz contenant des oxydes d'azote (nox), utilisant comme piege a nox une composition a base d'oxyde de zirconium et d'oxyde de praseodyme - Google Patents

Procede de traitement d'un gaz contenant des oxydes d'azote (nox), utilisant comme piege a nox une composition a base d'oxyde de zirconium et d'oxyde de praseodyme Download PDF

Info

Publication number
WO2007031627A1
WO2007031627A1 PCT/FR2006/002069 FR2006002069W WO2007031627A1 WO 2007031627 A1 WO2007031627 A1 WO 2007031627A1 FR 2006002069 W FR2006002069 W FR 2006002069W WO 2007031627 A1 WO2007031627 A1 WO 2007031627A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
nox
composition
compound
praseodymium
Prior art date
Application number
PCT/FR2006/002069
Other languages
English (en)
Inventor
Gilbert Blanchard
Emmanuel Rohart
Yvane Lendresse
Frédéric TRONEL
Xavier Courtois
Daniel Duprez
Sanaâ ELBOUAZZAOUI
Patrice Marecot
Original Assignee
Rhodia Operations
Centre National De La Recherche Scientifique
Peugeot Citroën Automobiles SA
L'universite De Poitiers
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Operations, Centre National De La Recherche Scientifique, Peugeot Citroën Automobiles SA, L'universite De Poitiers filed Critical Rhodia Operations
Priority to EP06808095A priority Critical patent/EP1924339A1/fr
Priority to JP2008530561A priority patent/JP2009507634A/ja
Priority to CA002620088A priority patent/CA2620088A1/fr
Priority to US11/991,856 priority patent/US20090191108A1/en
Publication of WO2007031627A1 publication Critical patent/WO2007031627A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9422Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2066Praseodymium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium

Definitions

  • the present invention relates to a method for treating a gas containing nitrogen oxides (NOx), using as a NOx trap a composition based on zirconium oxide and praseodymium oxide.
  • NOx nitrogen oxides
  • NOx traps are systems capable of partially oxidizing and then storing the nitrogen oxides present in a poor gas, then destocking and reducing the same oxides to nitrogen when the surrounding mixture is rich.
  • the known NOx traps still have some disadvantages, however.
  • An object of the invention is therefore the development of an effective NOx trap in an area of low temperatures, below 40 ° C.
  • Another object of the invention is to provide a NOx trap which, after sulphation can be regenerated or desulfated more easily, especially at temperatures below 600 ° C.
  • the invention relates to a method for treating a gas containing nitrogen oxides (NOx), which is characterized in that a NOx trap is used based on a composition based on an oxidation catalyst. NOx to NO 2 and a compound based on zirconium oxide and praseodymium oxide in a proportion of praseodymium oxide of between 5% and 50% by weight of oxide.
  • the NOx trap used in the process of the invention can be effective in a temperature range from 200 0 C to 300 0 C for example. This NOx trap can also be regenerated to a large extent at a temperature which can be as low as 550 ° C.
  • NOx nitrogen oxides is meant the type oxide N 2 O, N 2 O 3 sesquioxide, pentoxide N 2 O 5, monoxide NO and nitrogen dioxide NO 2.
  • specific surface is meant the specific surface B. AND. determined by nitrogen adsorption according to ASTM D 3663-78 established from the BRUNAUER-EMMETT-TELLER method described in the journal "The Journal of the American Chemical Society, 60, 309 (1938)".
  • the process of the invention is characterized by the use as a NOx trap of a specific composition which will be described more precisely below.
  • This NOx trap is a composition which firstly comprises a NOx oxidation catalyst to NO 2 .
  • Catalysts of this type are known, they are generally metals and may be mentioned more particularly as catalysts of this type precious metals.
  • Gold, silver, and platinum-bearing metals that is, ruthenium, rhodium, palladium, osmium, iridium, and platinum. These metals can be used alone or in combination.
  • Platinum can be used particularly alone or in combination with rhodium and / or palladium and, in the case of an association, in majority proportion relative to the other metal or other metals.
  • the amount of oxidation catalyst for example a precious metal, can be, for example, between 0.05% and 10%, preferably between
  • the NOx trap of the invention comprises, as a support for this catalyst, a compound which is based on zirconium oxide and praseodymium oxide.
  • a compound which is based on zirconium oxide and praseodymium oxide As indicated above, the proportion of praseodymium oxide in the compound is between 5% and 50%, it being understood that it is a proportion expressed by weight of praseodymium oxide P ⁇ On based on the total oxide weight of the compound. Below 5% the praseodymium oxide content is too low to observe a significant NOx trap effect. Above 50%, the thermal stability of the compound, that is to say the value of its specific surface at the temperatures at which it is used, becomes insufficient.
  • the content of praseodymium oxide may more particularly be between 10% and 40%.
  • the compound based on zirconium oxide and praseodymium oxide may further comprise cerium oxide, CeO 2 in particular.
  • the proportion of cerium oxide may be such that the Ce / Zr atomic ratio is between 10/90 and 90/10. More particularly, this ratio can be at least 1.
  • the compounds based on zirconium oxide and praseodymium oxide are known. They are described in particular in FR-A1 -2590887 which refers to a composition based on zirconium oxide and an additive which may especially be praseodymium.
  • these compounds can be prepared by precipitation methods.
  • a preparation by precipitation by addition of a basic compound such as ammonia to a solution of an acidic precursor of zirconium, for example a nitrate, chloride or zirconium sulphate, and a salt of praseodymium such as nitrate, chloride, sulfate or carbonate.
  • a basic compound such as ammonia
  • a salt of praseodymium such as nitrate, chloride, sulfate or carbonate.
  • Another useful method is to mix a praseodymium salt with a zirconium hydrate sol, the suspension thus obtained is then dried. It is also possible to impregnate the zirconium oxide with a solution of a praseodymium salt.
  • this area is at least 29 m 2 / g, after calcination at 1000 ° C. for 10 hours.
  • these specific compounds may have a specific surface area of at least 45 m 2 / g.
  • These compounds may in some cases be in the form of solid solutions of praseodymium in zirconium oxide.
  • These compounds also have a specific porosity. They contain indeed mesopores, that is to say pores whose size is between 10 nm and 500 nm and this even after calcination at high temperature. These size values are obtained by mercury porosimetry
  • the first step of the process therefore consists in preparing a liquid mixture of a zirconium compound and a praseodymium compound.
  • the mixture is generally in a liquid medium which is water preferably.
  • the compounds are preferably soluble compounds. It may be in particular zirconium salts and praseodymium. These compounds can be chosen for example from nitrates, acetates or chlorides.
  • zirconyl nitrate or zirconyl chloride.
  • Zirconyl nitrate is most commonly used.
  • a soil as the starting compound of zirconium.
  • sol any system consisting of fine solid particles of colloidal dimensions, ie dimensions of between about 1 nm and about 500 nm, based on a zirconium compound, this compound being generally an oxide and / or a hydrated oxide.
  • the zirconium can be either totally in the form of colloids, or simultaneously in the form of ions and in the form of colloids.
  • the starting mixture can be indifferently obtained either from compounds initially in the solid state which will be introduced later in a water tank for example, or even directly from solutions of these compounds and then mixture in any order of said solutions.
  • said mixture is brought into contact with a basic compound.
  • Hydroxide products can be used as base or basic compound. Mention may be made of alkali or alkaline earth hydroxides. It is also possible to use secondary, tertiary or quaternary amines. However, amines and ammonia may be preferred in that they reduce the risk of pollution by alkaline or alkaline earth cations. We can also mention urea.
  • the basic compound is generally used in the form of an aqueous solution.
  • the manner of bringing the mixture into contact with the solution, that is to say the order of introduction thereof is not critical. However, this introduction can be done by introducing the mixture into the solution of the basic compound.
  • the bringing together or the reaction between the mixture and the solution, especially the addition of the mixture in the solution of the basic compound, can be carried out at once, gradually or continuously, and it is preferably carried out with stirring. It is preferably conducted at ambient temperature (20-25 ° C.).
  • the next step (c) of the process is the step of heating the precipitate in a liquid medium.
  • This heating can be carried out directly on the reaction medium obtained after reaction with the basic compound or on a suspension obtained after separation of the precipitate from the reaction medium, optional washing and return to water of the precipitate.
  • the temperature at which the medium is heated is at least 100 ° C. and even more particularly at least 130 ° C.
  • the heating operation can be carried out by introducing the liquid medium into a closed enclosure (closed reactor of the type autoclave). Under the conditions of the temperatures given above, and in aqueous medium, it is possible to specify, by way of illustration, that the pressure in the closed reactor can vary between a value greater than 1 Bar (10 5 Pa) and 165 Bar (1, 65. 10 7 Pa), preferably between 5 Bar (5 ⁇ 10 5 Pa) and 165 bar (1.65, 10 7 Pa). It is also possible to carry out heating in an open reactor for temperatures in the region of 100 ° C.
  • the heating may be conducted either under air or under an inert gas atmosphere, preferably nitrogen in the latter case.
  • the duration of the heating can vary within wide limits, for example between 1 and 48 hours, preferably between 2 and 24 hours.
  • the rise in temperature is carried out at a speed which is not critical, and it is thus possible to reach the reaction temperature set by heating the medium for example between 30 minutes and 4 hours, these values being given for all purposes. indicative fact.
  • the precipitate obtained after the heating step and possibly a washing may be resuspended in water and then another heating of the medium thus obtained may be carried out. This other heating is done under the same conditions as those described for the first.
  • the next step (d) of the process consists in adding to the precipitate resulting from the preceding step a compound which is chosen from anionic surfactants, nonionic surfactants, polyethylene glycols, carboxylic acids and their salts and surfactants from type ethoxylates of carboxymethylated fatty alcohols.
  • the addition of the surfactant can be done in two ways. It can be added directly to the precipitate suspension from the previous heating step (c). It may also be added to the solid precipitate after separation thereof by any known means from the medium in which the heating took place.
  • the amount of surfactant used is generally between 5% and 100%, more particularly between 15% and 60%.
  • the amount of surfactant in the precipitate suspension it is possible, after separation of the precipitate from the liquid medium, to carry out a washing of the precipitate thus obtained.
  • the precipitate recovered is then calcined.
  • This calcination makes it possible to develop the crystallinity of the product formed and it can also be adjusted and / or chosen according to the temperature of subsequent use reserved for the compound, and this taking into account the fact that the specific surface of the product is all lower than the calcination temperature implemented is higher.
  • Such calcination is generally carried out under air, but a calcination carried out for example under inert gas or under a controlled atmosphere (oxidizing or reducing) is obviously not excluded.
  • the calcination temperature is generally limited to a range of values between 500 ° C. and 1100 ° C., more particularly between 600 ° C. and 900 ° C.
  • EP-A1-863846 describes a process for the preparation of this type of compound in which a liquid mixture containing a zirconium compound and a cerium IV compound is prepared; this mixture is heated to a temperature above 100 0 C; the reaction medium obtained at the end of the heating is brought to a basic pH; the precipitate thus obtained is recovered; and calcining said precipitate; the praseodymium being added either to the mixture in the starting liquid medium or to the reaction mixture obtained at the end of the heating.
  • EP-A1-906244 also describes a process in which a mixture in a liquid medium containing a cerium compound, a zirconium compound and a praseodymium compound is prepared; said mixture is heated; the precipitate obtained is recovered and this precipitate is calcined, the aforementioned mixture being prepared using a solution of zirconium which is such that the amount of The base needed to reach the equivalent point in an acid-base assay of this solution satisfies the 0H7Zr molar ratio condition ⁇ 1.65.
  • the oxidation catalyst of the type described above can be introduced into the composition of the invention by any known method, for example by impregnating the compound based on oxides with an aqueous solution containing the precursor of said catalyst such as an amine platinum complex. .
  • gases that can be treated by the present invention are, for example, those from gas turbines, thermal power plant boilers or internal combustion engines. In the latter case, it may include diesel engines or gasoline engines operating in lean mixture.
  • the composition used in the process of the invention functions as a NOx trap when it is contacted with gases having a high oxygen content.
  • gas having a high oxygen content gases having an excess of oxygen relative to the amount necessary for the stoichiometric combustion of fuels and, more precisely, gases having an excess of oxygen relative to the stoichiometric value.
  • 1.
  • gases are those of engine operating in lean bum and which have an oxygen content (expressed in volume) of at least 2%, as well as those with an even higher oxygen content, for example gases.
  • engines of the diesel type ie at least 5% or more than 5%, more particularly at least 10%, this content may for example be between 5 and 20%.
  • the NOx trap can sulphate due to the presence of sulfur in the fuels used for the operation of the engine. Therefore, the trap must from time to time be desulfated. This desulfation is done in a manner known to those skilled in the art by raising the temperature of the gases to be treated and by modifying the richness of these gases beyond the richness 1 (stoichiometry). However, in the case of the present invention, this temperature may be lower than those generally used. For example, it is possible to obtain, after a treatment at 550 ° C., an elimination of at least 50% of the sulfur adsorbed by the trap.
  • compositions of the invention can be used in processes for treating gas resulting from the combustion of fuels with a high sulfur content, for example at least 350 ppm, more particularly at least 500 ppm, fuels of the type used for example in thermal power plant boilers.
  • a high sulfur content for example at least 350 ppm, more particularly at least 500 ppm, fuels of the type used for example in thermal power plant boilers.
  • NOx can be used in the form of powder but it can possibly be shaped to be in the form of granules, balls, cylinders or honeycombs of variable dimensions.
  • the composition used as a NOx trap can be combined with complementary pollution control systems, such as three-way catalysts, which are effective when the value of ⁇ is less than or equal to 1 in gases, or to hydrocarbon injection or exhaust gas recirculation systems (EGR system) for diesel engines.
  • This composition may also be used in a device comprising a coating (wash coat) based on the composition, on a substrate of the type for example metal monolith or ceramic.
  • the invention therefore also relates to a device for implementing the method as described above and which is characterized in that it comprises as a NOx trap the composition which has been described above and based on of a precious metal and a compound based on zirconium oxide and praseodymium oxide.
  • This device may be an exhaust line mounted on a motor vehicle with diesel engine or gasoline lean mixture and which includes a catalytic element which comprises this composition.
  • This example relates to the preparation of a first compound that can be included in a composition that can be used in the process of the invention.
  • This compound is based on oxides of cerium, zirconium and praseodymium in the respective proportions by mass of oxide of 55%, 15% and 30%.
  • the acid-base dosage is in a known manner. To perform it under optimum conditions, a solution can be determined which has been brought to a concentration of approximately 3.10-2 mol per liter, expressed as zirconium element. A 1N sodium hydroxide solution is added with stirring. Under these conditions, the determination of the equivalent point (change in the pH of the solution) is clear. This equivalent point is expressed by the OH / Zr molar ratio. The concentration of this mixture (expressed as oxide of the various elements) is adjusted to 80 g / l. This mixture is then heated at 100 ° C. for 4 hours.
  • the reaction medium thus obtained is boiled for 2 hours. After decantation and withdrawal, the solid product is resuspended and the medium thus obtained is treated for 1 hour at 100 ° C. The product is then filtered and then calcined for 4 hours at 800 ° C. in air. The product thus obtained has a specific surface area of 45 m 2 / g.
  • This example relates to the preparation of a second compound that can be included in a composition that can be used in the process of the invention.
  • This compound is based on 60% zirconium and 40% praseodymium, these proportions being expressed in percentages by weight of the ZrO 2 and Pr 6 Oi 1 oxides.
  • the nitrate solution is introduced in one hour into the reactor with constant stirring.
  • the solution obtained is placed in a stainless steel autoclave equipped with a stirrer.
  • the temperature of the medium is brought to 150 0 C for 2 hours with stirring.
  • the suspension thus obtained is then filtered on B ⁇ chner.
  • a precipitate containing 19% by weight of oxide is recovered. 100 g of this precipitate are taken.
  • an ammonium laurate gel was prepared under the following conditions: 250 g of lauric acid are introduced into 135 ml of ammonia (12 mol / l) and 500 ml of distilled water, and the mixture is then homogenized with using a spatula.
  • the product obtained is then heated to 86 ° C. for 2 hours in steps. It then has a specific surface area of 61 m 2 / g.
  • This example relates to the preparation of a third compound that can be included in a composition that can be used in the process of the invention.
  • This compound is based on 90% zirconium and 10% praseodymium, these proportions being expressed in percentages by weight of the ZrO 2 oxides and
  • Example 2 The procedure is the same as in Example 2 by mixing the nitrate solutions in the stoichiometric proportions required to obtain the above mixed oxide.
  • the surface after calcination is 70 m 2 / g.
  • This example relates to the preparation of a compound based on alumina and barium at 10% by weight.
  • 5 g of Puralox alumina are introduced into a beaker and then covered with water (20 ml) before addition of the barium nitrate solution (10 ml to 50 g / l).
  • the solution is evaporated in a sand bath while maintaining agitation.
  • the solid is calcined at 700 ° C. under a 10% O 2 , 10% H 2 O, N 2 mixture for 4 hours.
  • the specific surface area of the compound is 89 m 2 / g.
  • composition of (NO + NO 2 ) of the reaction mixture is analyzed continuously by chemiluminescence with a COSMA Topaze 2020 analyzer,
  • reaction stream is introduced into the catalytic reactor,
  • the amounts of NOx stored are reported in Table 1.
  • the catalyst compositions 1 to 4 of this table correspond respectively to the products obtained after impregnation with platinum, according to the process described above, of the compounds of Examples 1, 2 and 3 according to US Pat. invention and 4 comparative.
  • This example relates to the regeneration after sulfation of the catalytic compositions of Example 5.
  • the sulfation of the compositions is first carried out by treating them with a gas stream containing 60 ppm of SO 2 at a temperature of 300 ° C. for 5 hours. .
  • compositions thus sulphated are then subjected to treatment with a reducing gas stream based on H 2 , CO 2 and H 2 O at a temperature of 550 ° C.
  • the sulfur content of the sulfated compositions or after regeneration is determined by programmed temperature reduction (RTP) under a mixture containing 1% H 2 ; the composition of the gas phase is followed by chromatography with a differential detector.
  • the catalyst sample is preoxidized under oxygen before RTP.
  • the integration of the residual H 2 content at the outlet of the reactor makes it possible to determine the amount of hydrogen consumed to reduce the sulphate species.
  • compositions of the invention have sulfur removal rates of at least twice that of the comparative composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

L'invention concerne un procédé de traitement d'un gaz contenant des oxydes d'azote (NOx) qui est caractérisé en ce qu'on utilise comme piège à NOx une composition à base d'un catalyseur d'oxydation des NOx en NO2 et d'un composé à base d'oxyde de zirconium et d'oxyde de praséodyme dans une proportion d'oxyde de praséodyme comprise entre 5 % et 50 % en poids d'oxyde. Ce composé peut comprendre en outre de l'oxyde de cérium. Le procédé de l'invention peut être utilisé dans le traitement de gaz d'échappement de moteur à combustion interne de type Diesel ou de type essence fonctionnant en mélange pauvre.

Description

PROCEDE DE TRAITEMENT D'UN GAZ CONTENANT DES OXYDES
D'AZOTE (NOx), UTILISANT COMME PIEGE À NOx UNE COMPOSITION À
BASE D'OXYDE DE ZIRCONIUM ET D'OXYDE DE PRASEODYME
La présente invention concerne un procédé de traitement d'un gaz contenant des oxydes d'azote (NOx), utilisant comme piège à NOx une composition à base d'oxyde de zirconium et d'oxyde de praséodyme.
On sait que les normes sur l'environnement rendent de plus en plus impérative la réduction des émissions des oxydes d'azote (NOx) des gaz d'échappement des moteurs d'automobiles et notamment des moteurs Diesel ou des moteurs essence fonctionnant en mélange pauvre (lean burn), moteurs pour lesquels les catalyseurs "trois voies" sont inadaptés.
Comme type de catalyseurs susceptibles de répondre à ce besoin, on a proposé des systèmes appelés pièges à NOx. Il s'agit de systèmes capables d'oxyder partiellement puis de stocker les oxydes d'azote présents dans un gaz pauvre puis de déstocker et de réduire en azote ces mêmes oxydes lorsque le mélange environnant est riche.
Les pièges à NOx connus ont encore toutefois certains inconvénients.
Ainsi, leur capacité de piégeage ou de stockage des NOx est optimale à des températures élevées, c'est-à-dire généralement de l'ordre de 40O0C et donc ils présentent une faible efficacité à plus basses températures. Par ailleurs, ces pièges sont sensibles à la sulfatation et il n'est possible de les régénérer
• qu'en partie seulement sauf à conduire le traitement de régénération à température élevée, par exemple à au moins 6500C. II y a par conséquent un besoin en pièges à NOx ne présentant pas ces inconvénients.
Un objet de l'invention est donc la mise au point d'un piège à NOx efficace dans une zone de températures basses, inférieures à 40O0C. Un autre objet de l'invention est de fournir un piège à NOx qui, après sulfatation, peut être régénéré ou désulfaté plus facilement, notamment à des températures inférieures à 600°C.
Dans ce but, l'invention concerne un procédé de traitement d'un gaz contenant des oxydes d'azote (NOx), qui est caractérisé en ce qu'on utilise comme piège à NOx une composition à base d'un catalyseur d'oxydation des NOx en NO2 et d'un composé à base d'oxyde de zirconium et d'oxyde de praséodyme dans une proportion d'oxyde de praséodyme comprise entre 5% et 50% en poids d'oxyde. Le piège à NOx utilisé dans le procédé de l'invention peut être efficace dans une gamme de températures allant de 2000C à 3000C par exemple. Ce piège à NOx peut par ailleurs être régénéré en grande partie à une température qui peut être aussi faible que 5500C environ. D'autres caractéristiques, détails et avantages de l'invention apparaîtront encore plus complètement à la lecture de la description qui va suivre, ainsi que des divers exemples concrets mais non limitatifs destinés à l'illustrer.
On précise pour la suite de la description que, sauf indication contraire, dans les fourchettes de valeurs qui sont données, les valeurs aux bornes sont incluses.
Par oxydes d'azote NOx on entend notamment les oxydes du type protoxyde N2O, sesquioxyde N2O3, pentoxyde N2O5, monoxyde NO et dioxyde NO2.
On entend par surface spécifique la surface spécifique B. ET. déterminée par adsorption d'azote conformément à la norme ASTM D 3663-78 établie à partir de la méthode BRUNAUER - EMMETT- TELLER décrite dans le périodique "The Journal of the American Chemical Society, 60, 309 (1938)".
Le procédé de l'invention est caractérisé par l'utilisation comme piège à NOx d'une composition spécifique qui va être décrite plus précisément ci- dessous.
Ce piège à NOx est une composition qui comprend tout d'abord un catalyseur d'oxydation des NOx en NO2. Les catalyseurs de ce type sont connus, il s'agit généralement de métaux et on peut mentionner plus particulièrement comme catalyseurs de ce type les métaux précieux. On entend par là l'or, l'argent et les métaux de la mine du platine, c'est-à-dire le ruthénium, le rhodium, le palladium, l'osmium, l'iridium et le platine. Ces métaux peuvent être utilisés seuls ou en association. Le platine peut être utilisé tout particulièrement, seul ou en association avec notamment le rhodium et/ou le palladium et, dans le cas d'une association, en proportion majoritaire par rapport à l'autre métal ou aux autres métaux.
La quantité de catalyseur d'oxydation, par exemple un métal précieux, peut être comprise par exemple entre 0,05% et 10%, de préférence entre
0,1% et 5%, cette quantité étant exprimé en masse du catalyseur d'oxydation sous forme métallique par rapport à la masse de l'ensemble du piège à NOx (catalyseur + composé à base d'oxyde de zirconium et de praséodyme).
Outre le catalyseur d'oxydation, le piège à NOx de l'invention comprend, à titre de support de ce catalyseur, un composé qui est à base d'oxyde de zirconium et d'oxyde de praséodyme. Comme indiqué plus haut, la proportion d'oxyde de praséodyme dans le composé est comprise entre 5% et 50%, étant entendu qu'il s'agit d'une proportion exprimée en poids d'oxyde de praséodyme P^On par rapport au poids total en oxyde du composé. En deçà de 5% la teneur en oxyde de praséodyme est trop faible pour observer un effet significatif de piège à NOx. Au-delà de 50%, la stabilité thermique du composé, c'est-à-dire la valeur de sa surface spécifique aux températures auxquelles il est utilisé, devient insuffisante.
La teneur en oxyde de praséodyme, exprimée comme indiqué plus haut peut être plus particulièrement comprise entre 10% et 40%. Selon une variante de l'invention, le composé à base d'oxyde de zirconium et d'oxyde de praséodyme peut comprendre en outre de l'oxyde de cérium, Ceθ2 notamment. Dans ce cas, la proportion d'oxyde de cérium peut être telle que le rapport atomique Ce/Zr est compris entre 10/90 et 90/10. Plus particulièrement, ce rapport peut être d'au moins 1. Les composés à base d'oxyde de zirconium et d'oxyde de praséodyme sont connus. Ils sont notamment décrits dans FR-A1 -2590887 qui fait état d'une composition à base d'oxyde de zirconium et d'un additif qui peut être notamment le praséodyme.
Ainsi, ces composés peuvent être préparés par des procédés de précipitation. On peut citer notamment dans ce cas une préparation par précipitation par addition d'un composé basique comme l'ammoniaque à une solution d'un précurseur acide du zirconium, par exemple un nitrate, chlorure ou sulfate de zirconium, et d'un sel de praséodyme tel qu'un nitrate, un chlorure, un sulfate ou un carbonate. Un autre procédé utilisable consiste à mélanger un sel de praséodyme avec un sol d'hydrate de zirconium, la suspension ainsi obtenue est ensuite séchée. On peut aussi effectuer une imprégnation de l'oxyde de zirconium à l'aide d'une solution d'un sel de praséodyme.
Un autre procédé plus particulier de préparation de composés à base d'oxyde de zirconium et d'oxyde de praséodyme va être décrit ci-dessous. Ce procédé permet d'obtenir des composés spécifiques dont la-surface spécifique est particulièrement élevée et stable.
Ainsi, cette surface est d'au moins 29 m2/g, après calcination à 10000C pendant 10 heures. A des températures plus basses que celles qui ont été mentionnées ci-dessus, par exemple après calcination à 9000C pendant 4 heures, ces composés spécifiques peuvent présenter une surface spécifique d'au moins 45 m2/g. Ces composés peuvent se présenter dans certains cas sous la forme de solutions solides du praséodyme dans l'oxyde de zirconium.
Ces composés présentent par ailleurs une porosité spécifique. Ils contiennent en effet des mésopores, c'est à dire des pores dont la taille est comprise entre 10 nm et 500 nm et ceci même après calcination à température élevée. Ces valeurs de taille sont obtenues par porosimétrie au mercure
(analyse faite avec un porosimètre Autopore 9410 de Micromeritic's comprenant deux postes basse pression et un poste haute pression). Ces mésopores peuvent contribuer à une part importante du volume poreux total, par exemple elles peuvent apporter au moins 30%, plus particulièrement au moins 40% du volume poreux total.
Le procédé d'obtention de ces composés spécifiques qui viennent d'être décrits comprend les étapes suivantes :
- (a) on forme un mélange comprenant des composés du zirconium et du praséodyme;
- (b) on met en présence ledit mélange avec un composé basique ce par quoi on obtient un précipité;
- (c) on chauffe en milieu liquide ledit précipité;
- (d) on ajoute au précipité obtenu à l'étape précédente un composé choisi parmi les tensioactifs anioniques, les tensioactifs non ioniques, les polyéthylène-glycols, les acides carboxyliques et leurs sels et les tensioactifs du type éthoxylats d'alcools gras carboxyméthylés;
- (e) on calcine le précipité ainsi obtenu.
La première étape du procédé consiste donc à préparer un mélange en milieu liquide d'un composé du zirconium et d'un composé du praséodyme.
Le mélange se fait généralement dans un milieu liquide qui est l'eau de préférence.
Les composés sont de préférence des composés solubles. Ce peut être notamment des sels de zirconium et du praséodyme. Ces composés peuvent être choisis par exemple parmi les nitrates, les acétates ou les chlorures.
A titre d'exemples, on peut ainsi citer le nitrate de zirconyle ou le chlorure de zirconyle. Le nitrate de zirconyle est utilisé le plus généralement.
Il est aussi possible d'utiliser un sol comme composé de départ du zirconium. Par sol on désigne tout système constitué de fines particules solides de dimensions colloïdales, c'est à dire des dimensions comprises entre environ 1nm et environ 500nm, à base d'un composé de zirconium ce composé étant généralement un oxyde et/ou un oxyde hydraté de zirconium, en suspension dans une phase liquide aqueuse, lesdites particules pouvant en outre, éventuellement, contenir des quantités résiduelles d'ions liés ou adsorbés tels que par exemple des nitrates, des acétates, des chlorures ou des ammoniums. On notera que dans un tel sol, le zirconium peut se trouver soit totalement sous la forme de colloïdes, soit simultanément sous la forme d'ions et sous la forme de colloïdes.
Le mélange de départ peut être indifféremment obtenu soit à partir de composés initialement à l'état solide que l'on introduira par la suite dans un pied de cuve d'eau par exemple, soit encore directement à partir de solutions de ces composés puis mélange, dans un ordre quelconque, desdites solutions.
Dans la deuxième étape (b) du procédé, on met en présence ledit mélange avec un composé basique. On peut utiliser comme base ou composé basique les produits du type hydroxyde. On peut citer les hydroxydes d'alcalins ou d'alcalino-terreux. On peut aussi utiliser les aminés secondaires, tertiaires ou quaternaires. Toutefois, les aminés et l'ammoniaque peuvent être préférés dans la mesure où ils diminuent les risques de pollution par les cations alcalins ou alcalino terreux. On peut aussi mentionner l'urée.
Le composé basique est généralement utilisé sous forme d'une solution aqueuse. La manière d'effectuer la mise en présence du mélange et de la solution, c'est à dire l'ordre d'introduction de ceux-ci n'est pas critique. Toutefois, cette mise en présence peut se faire en introduisant le mélange dans la solution du composé basique.
La mise en présence ou la réaction entre le mélange et la solution, notamment l'addition du mélange dans la solution du composé basique, peut être effectuée en une seule fois, graduellement ou en continu, et elle est de préférence réalisée sous agitation. Elle est de préférence conduite à température ambiante (20-250C).
L'étape suivante (c) du procédé est l'étape de chauffage du précipité en milieu liquide.
Ce chauffage peut être réalisé directement sur le milieu réactionnel obtenu après réaction avec le composé basique ou sur une suspension obtenue après séparation du précipité du milieu réactionnel, lavage éventuel et remise dans l'eau du précipité. La température à laquelle est chauffé le milieu est d'au moins 1000C et encore plus particulièrement d'au moins 1300C. L'opération de chauffage peut être conduite en introduisant le milieu liquide dans une enceinte close (réacteur fermé du type autoclave). Dans les conditions de températures données ci-dessus, et en milieu aqueux, on peut préciser, à titre illustratif, que la pression dans le réacteur fermé peut varier entre une valeur supérieure à 1 Bar (105 Pa) et 165 Bar (1 ,65. 107 Pa), de préférence entre 5 Bar (5. 105 Pa) et 165 Bar (1 ,65. 107 Pa). On peut aussi effectuer le chauffage dans un réacteur ouvert pour les températures voisines de 1000C.
Le chauffage peut être conduit soit sous air, soit sous atmosphère de gaz inerte, de préférence l'azote dans ce dernier cas.
La durée du chauffage peut varier dans de larges limites, par exemple entre 1 et 48 heures, de préférence entre 2 et 24 heures. De même, la montée en température s'effectue à une vitesse qui n'est pas critique, et on peut ainsi atteindre la température réactionnelle fixée en chauffant le milieu par exemple entre 30 minutes et 4 heures, ces valeurs étant données à titre tout à fait indicatif.
Il est possible de faire plusieurs chauffages. Ainsi, on peut remettre en suspension dans l'eau, le précipité obtenu après l'étape de chauffage et éventuellement un lavage puis effectuer un autre chauffage du milieu ainsi obtenu. Cet autre chauffage se fait dans les mêmes conditions que celles qui ont été décrites pour le premier.
L'étape suivante (d) du procédé consiste à ajouter au précipité issu de l'étape précédente un composé qui est choisi parmi les tensioactifs anioniques, les tensioactifs non ioniques, les polyéthylène-glycols, les acides carboxyliques et leurs sels et les tensioactifs du type éthoxylats d'alcools gras carboxyméthylés.
En ce qui concerne ce composé on pourra se référer à l'enseignement de la demande WO-98/45212 et utiliser les tensioactifs décrits dans ce document.
On peut citer notamment les produits vendus sous les marques IGEPAL®, DOWANOL®, RHODAMOX® et ALKAMIDE®.
L'addition du tensio-actif peut se faire de deux manières. Il peut être ajouté directement dans la suspension de précipité issue de l'étape précédente de chauffage (c). Il peut aussi être ajouté au précipité solide après séparation de celui-ci par tout moyen connu du milieu dans lequel a eu lieu le chauffage.
La quantité de tensio-actif utilisée, exprimée en pourcentage en masse de tensio-actif par rapport à la masse du composé calculée en oxyde, est généralement comprise entre 5% et 100% plus particulièrement entre 15% et 60%. Dans le cas de l'addition du tensio-actif dans la suspension de précipité, il est possible, après séparation du précipité du milieu liquide, de procéder à un lavage du précipité ainsi obtenu.
Dans une dernière étape du procédé selon l'invention, le précipité récupéré est ensuite calciné. Cette calcination permet de développer la cristallinité du produit formé et elle peut être également ajustée et/ou choisie en fonction de la température d'utilisation ultérieure réservée au composé, et ceci en tenant compte du fait que la surface spécifique du produit est d'autant plus faible que la température de calcination mise en œuvre est plus élevée. Une telle calcination est généralement opérée sous air, mais une calcination menée par exemple sous gaz inerte ou sous atmosphère contrôlée (oxydante ou réductrice) n'est bien évidemment pas exclue.
En pratique, on limite généralement la température de calcination à un intervalle de valeurs comprises entre 5000C et 11000C plus particulièrement entre 6000C et 9000C.
En ce qui concerne les composés à base d'oxydes de zirconium, de praséodyme et d'oxyde de cérium, il s'agit aussi de composés connus qui sont décrits notamment dans les demandes de brevets EP-A1 -863846 ou EP-A1- 906244 à l'enseignement desquels on pourra se référer. Ainsi, EP-A1 -863846 décrit un procédé de préparation de ce type de composés dans lequel on prépare un mélange en milieu liquide contenant un composé du zirconium et un composé du cérium IV; on chauffe ce mélange à une température supérieure à 1000C; on amène le milieu réactionnel obtenu à l'issue du chauffage à un pH basique; on récupère le précipité ainsi obtenu; et on calcine ledit précipité; le praséodyme étant ajouté soit au mélange en milieu liquide de départ soit au mélange réactionnel obtenu à l'issue du chauffage. Selon une autre variante de procédé décrite dans le même document, on prépare un mélange en milieu liquide contenant un composé du cérium et au moins un oxychlorure de zirconium et un composé du praséodyme; on met en présence ledit mélange et un composé basique, ce par quoi on fait précipiter le mélange; on récupère le précipité ainsi obtenu; on calcine ledit précipité.
EP-A1 -906244 décrit par ailleurs un procédé dans lequel on prépare un mélange en milieu liquide contenant un composé du cérium, un composé du zirconium et un composé du praséodyme; on chauffe ledit mélange; on récupère le précipité obtenu et on calcine ce précipité, le mélange précité étant préparé en utilisant une solution de zirconium qui est telle que la quantité de base nécessaire pour atteindre le point équivalent lors d'un dosage acide-base de cette solution vérifie la condition rapport molaire 0H7Zr <1 ,65.
Le catalyseur d'oxydation du type décrit précédemment peut être introduit dans la composition de l'invention par toute méthode connue, par exemple par imprégnation du composé à base d'oxydes par une solution aqueuse contenant le précurseur dudit catalyseur comme un complexe aminé du platine.
Les gaz susceptibles d'être traités par la présente invention sont, par exemple, ceux issus de turbines à gaz, de chaudières de centrales thermiques ou encore de moteurs à combustion interne. Dans ce dernier cas, il peut s'agir notamment de moteurs Diesel ou de moteurs essence fonctionnant en mélange pauvre.
La composition utilisée dans le procédé de l'invention fonctionne comme piège à NOx quand elle est mise en contact avec des gaz qui présentent une teneur élevée en oxygène. Par gaz présentant une teneur élevée en oxygène, on entend des gaz présentant un excès d'oxygène par rapport à la quantité nécessaire pour la combustion stoechiométrique des carburants et, plus précisément, des gaz présentant un excès d'oxygène par rapport à la valeur stoechiométrique λ = 1. La valeur λ est corrélée au rapport air/carburant d'une manière connue en soi notamment dans le domaine des moteurs à combustion interne. De tels gaz sont ceux de moteur fonctionnant en mélange pauvre (lean bum) et qui présentent une teneur en oxygène (exprimée en volume) d'au moins 2% ainsi que ceux qui présentent une teneur en oxygène encore plus élevée, par exemple des gaz de moteurs du type Diesel, c'est à dire d'au moins 5% ou de plus de 5%, plus particulièrement d'au moins 10%, cette teneur pouvant par exemple se situer entre 5 et 20%.
Lors de la mise en œuvre du procédé de l'invention et tout particulièrement dans le cas du traitement de gaz d'échappement, le piège à NOx peut se sulfater du fait de la présence de soufre dans les carburants utilisés pour le fonctionnement du moteur. Par conséquent, le piège doit de temps en temps être désulfaté. Cette désulfatation se fait d'une manière connue de l'homme du métier par élévation de la température des gaz à traiter et par modification de la richesse de ces gaz au-delà de la richesse 1 (stoechiométrie). Cependant, dans le cas de la présente invention, cette température peut être moins élevée que celles utilisées généralement. Par exemple, on peut obtenir, à l'issue d'un traitement à 5500C une élimination d'au moins 50% du soufre adsorbé par le piège. Du fait de cette facilité à se désulfater, les compositions de l'invention peuvent être utilisées dans des procédés de traitement de gaz issus de la combustion de carburants à teneur élevée en soufre, par exemple d'au moins 350 ppm, plus particulièrement d'au moins 500 ppm, carburants du type de ceux utilisés par exemple dans des chaudières de centrales thermiques. Pour la mise en œuvre du procédé, la composition constituant le piège à
NOx peut être utilisée sous forme de poudre mais elle peut éventuellement être mise en forme pour se présenter sous forme de granulés, billes, cylindres ou nids d'abeille de dimensions variables.
Dans la mise en oeuvre du procédé de l'invention, la composition utilisée comme piège à NOx peut être associée à des systèmes complémentaires de dépollution, comme des catalyseurs trois voies, qui sont efficaces lorsque la valeur de λ est inférieure ou égale à 1 dans les gaz, ou encore à des systèmes à injection d'hydrocarbures ou à recyclage des gaz d'échappement (système EGR) pour les Diesels. Cette composition peut aussi être utilisée dans un dispositif comprenant un revêtement (wash coat) à base de la composition, sur un substrat du type par exemple monolithe métallique ou en céramique.
L'invention concerne donc aussi un dispositif pour la mise en œuvre du procédé tel qu'il a été décrit pjus haut et qui est caractérisé en ce qu'il comprend en tant que piège à NOx la composition qui a été décrite précédemment et à base d'un métal précieux et d'un composé à base d'oxyde de zirconium et d'oxyde de praséodyme. Ce dispositif peut être une ligne d'échappement montée sur un véhicule automobile à moteur Diesel ou essence à mélange pauvre et qui inclut un élément catalytique qui comporte cette composition.
Des exemples vont maintenant être donnés.
EXEMPLE 1
Cet exemple concerne la préparation d'un premier composé pouvant rentrer dans une composition utilisable dans le procédé de l'invention. Ce composé est à base d'oxydes de cérium, de zirconium et de praséodyme dans les proportions respectives en masse d'oxyde de 55%, 15% et 30%.
Dans les proportions stoechiométriques requises pour l'obtention de l'oxyde mixte ci-dessus, on mélange une solution de nitrate cérique, une solution de nitrate de praséodyme et une solution de nitrate de zirconium. Cette solution de zirconium a été obtenue par attaque d'un carbonate de Zr à l'aide d'acide nitrique concentré. Cette solution est telle que la quantité de base nécessaire pour atteindre le point équivalent lors d'un dosage acide-base de cette solution vérifie la condition rapport molaire OH /Zr= 1 ,14.
Le dosage acide-base se fait d'une manière connue. Pour l'effectuer dans des conditions optimales, on peut doser une solution qui a été amenée à une concentration d'environ 3.10-2 mole par litre exprimée en élément zirconium. On y ajoute sous agitation une solution de soude 1N. Dans ces conditions, la détermination du point équivalent (changement du pH de la solution) se fait d'une manière nette. On exprime ce point équivalent par le rapport molaire OH /Zr. La concentration de ce mélange (exprimée en oxyde des différents éléments) est ajustée à 80 g/l. Ce mélange est ensuite porté à 1000C pendant 4 heures.
Une solution d'ammoniaque est ensuite ajoutée au milieu réactionnel de telle sorte que le pH soit supérieur à 8,5. Le milieu réactionnel ainsi obtenu est porté à ébullition pendant 2 heures. Après décantation puis soutirage, on remet en suspension le produit solide et le milieu ainsi obtenu est traité pendant 1 heure à 1000C. Le produit est ensuite filtré puis calciné 4 heures à 8000C sous air. Le produit ainsi obtenu présente une surface spécifique de 45 m2/g.
EXEMPLE 2
Cet exemple concerne la préparation d'un second composé pouvant rentrer dans une composition utilisable dans le procédé de l'invention. Ce composé est à base de 60% de zirconium et de 40% de praséodyme, ces proportions étant exprimées en pourcentages massiques des oxydes ZrO2 et Pr6Oi1.
Dans un bêcher agité, on introduit 500 ml de nitrate de zirconium (120 g/l) et 80 ml de nitrate de praséodyme (500 g/l). On complète ensuite avec de l'eau distillée de façon à obtenir 1 litre d'une solution de nitrates.
Dans un réacteur agité, on introduit 224 ml d'une solution d'ammoniaque (12 mol/l) et on complète ensuite avec de l'eau distillée de façon à obtenir un volume total de 1 litre.
La solution de nitrates est introduite en une heure dans le réacteur sous agitation constante.
La solution obtenue est placée dans un autoclave en acier inoxydable équipé d'un mobile d'agitation. La température du milieu est portée à 1500C pendant 2 heures sous agitation.
La suspension ainsi obtenue est alors filtrée sur Bϋchner. On récupère un précipité contenant 19 % en masse d'oxyde. On prélève 100 g de ce précipité.
Parallèlement, on a préparé un gel de laurate d'ammonium dans les conditions suivantes : on introduit 250 g d'acide laurique dans 135 ml d'ammoniaque (12 mol/l) et 500 ml d'eau distillée, puis on homogénéise à l'aide d'une spatule.
22,7 g de ce gel sont ajoutés à 100 g du précipité puis l'ensemble est malaxé jusqu'à obtention d'une pâte homogène.
Le produit obtenu est ensuite porté à 86O0C pendant 2 heures en palier. Il présente alors une surface spécifique de 61 m2/g.
EXEMPLE 3
Cet exemple concerne la préparation d'un troisième composé pouvant rentrer dans une composition utilisable dans le procédé de l'invention. Ce composé est à base de 90% de zirconium et de 10% de praséodyme, ces proportions étant exprimées en pourcentages massiques des oxydes ZrO2 et
Pr6Oi1.
On procède de la même manière que dans l'exemple 2 en mélangeant les solutions de nitrates dans les proportions stoechiométriques requises pour l'obtention de l'oxyde mixte ci-dessus. La surface après calcination est de 70 m2/g.
EXEMPLE 4 COMPARATIF
Cet exemple concerne la préparation d'un composé à base d'alumine et de baryum à 10% en masse. 5 g d'alumine Puralox sont introduits dans un bêcher puis recouverts d'eau (20 mL) avant addition de la solution de nitrate de baryum (10 mL à 50 g/L). La solution est évaporée au bain de sable tout en maintenant une agitation. Après séchage une nuit à 120°C, le solide est calciné à 7000C sous un mélange 10% O2, 10% H2O, N2 pendant 4 heures. A l'issue de ce traitement la surface spécifique du composé est de 89 m2/g.
EXEMPLE 5
Cet exemple donne les résultats de mesure de la capacité de stockage des NOx pour des compositions catalytiques à 1% de platine préparées à partir des composés des exemples précédents et de la manière qui suit.
5 g de composé selon l'un des exemples ci-dessus sont introduits dans un bêcher puis recouverts d'acétone (20 mL) avant l'addition d'acétylacétonate de platine dissous dans l'acétone (10 mL à 5 g/L). Après évaporation au bain de sable, la composition catalytique ainsi obtenue est séchée une nuit à l'étuve à 1200C, puis calcinée à 5000C sous air pendant 4 heures et vieillie à 700°C sous un mélange 10% O2, 10% H2O, N2 pendant 4 heures.
La mesure de la capacité de stockage des NOx est réalisée dans les conditions suivantes :
- la composition catalytique tel que préparée ci-dessus est introduite dans un réacteur puis est prétraitée sous flux oxydant 10% O2 + 5% N2 dans l'azote pendant 30 minutes à la température de 2000C, ensuite le réacteur est isolé,
- le flux réactionnel est ensuite introduit dans le test catalytique. La composition du flux réactionnel est : 10% O2 + 5% H2O + 600 ppm NO dans l'azote,
- la composition en (NO + NO2) du mélange réactionnel est analysée en continu par chimiluminescence avec un analyseur COSMA Topaze 2020,
- après stabilisation de l'analyse (NO + NO2), le flux réactionnel est introduit dans le réacteur catalytique,
- la composition en (NO + NO2) en sortie du réacteur est déterminée en continu par chimiluminescence,
- l'intégration de la teneur en (NO+NO2) pendant les 100 secondes qui ont suivi l'arrivée du flux réactionnel sur la composition catalytique permet de calculer la quantité de NOx stockée par cette composition. Les résultats sont exprimés par la quantité de NOx stockée à 2000C en μmole par gramme de composition catalytique,
- les mesures sont ensuite réalisées sur d'autres échantillons de compositions catalytique aux températures de 3000C, 3500C et 4000C.
Les quantités de NOx stockées sont reportées dans le tableau 1. Les compositions catalytiques 1 à 4 de ce tableau correspondent respectivement aux produits obtenus après imprégnation par le platine, selon le procédé décrit plus haut, des composés des exemples 1 , 2 et 3 selon l'invention et 4 comparatif.
Tableau 1
Figure imgf000013_0001
On voit à partir des résultats du tableau 1 que les compositions de l'invention présentent un maximum d'efficacité dans la zone de température comprise entre 2000C et 3500C alors que ce maximum se situe plutôt vers 4000C pour la composition comparative.
EXEMPLE 6
Cet exemple concerne la régénération après sulfatation des compositions catalytiques de l'exemple 5. On procède tout d'abord à la sulfatation des compositions en les traitant par un flux gazeux contenant 60 ppm de SO2 à une température de 3000C pendant 5 heures.
Pour régénérer les compositions ainsi sulfatées on les soumet ensuite à un traitement par un flux gazeux réducteur à base de H2, CO2 et H2O à une température de 5500C.
La teneur en soufre des compositions sulfatées ou après régénération est déterminée par réduction à température programmée (RTP) sous un mélange contenant 1% de H2; la composition de la phase gaz est suivie par chromatographie avec un détecteur différentiel. L'échantillon de catalyseur est préoxydé sous oxygène avant la RTP. L'intégration de la teneur résiduelle en H2 en sortie du réacteur permet de déterminer la quantité d'hydrogène consommé pour réduire les espèces sulfates.
En prenant en compte la stcechiométrie de la réduction des sulfates :
M-SO4 + 4H2 → M-S + 4H2O • ou M-SO4 + 4H2 → M-O + 4H2S et la consommation d'hydrogène, on calcule la teneur en S adsorbé lors de la sulfatation et la teneur en soufre après le traitement de régénération.
On donne dans le tableau 2 qui suit pour chaque composition après imprégnation des exemples le taux de soufre adsorbé après le traitement de sulfatation (1), le taux de soufre adsorbé après le traitement de régénération (2) et le pourcentage d'élimination du soufre donné par le rapport [(1) - (2)]/(1). Tableau 2
Figure imgf000015_0001
On voit que les compositions de l'invention présentent des taux d'élimination du soufre d'au moins du double de celui de la composition comparative.
On donne en outre dans le tableau 3 qui suit les capacités de stockage des NOx des produits des différents exemples après le traitement de régénération. Le protocole de mesure de la capacité de stockage des NOx à 3000C est identique à celui décrit à l'exemple 5.
Tableau 3
Figure imgf000015_0002

Claims

REVENDICATIONS
1- Procédé de traitement d'un gaz contenant des oxydes d'azote (NOx), caractérisé en ce qu'on utilise comme piège à NOx une composition à base d'un catalyseur d'oxydation des NOx en NO2 et d'un composé à base d'oxyde de zirconium et d'oxyde de praséodyme dans une proportion d'oxyde de praséodyme comprise entre 5% et 50% en poids d'oxyde.
2- Procédé selon la revendication 1 , caractérisé en ce qu'on utilise une composition dans laquelle le composé précité comprend de l'oxyde de praséodyme dans une proportion comprise entre 10% et 40% en poids d'oxyde.
3- Procédé selon la revendication 1 ou 2, caractérisé en ce qu'on utilise une composition dans laquelle le composé précité comprend en outre de l'oxyde de cérium.
4- Procédé selon la revendication 3, caractérisé en ce qu'on utilise une composition dans laquelle le composé précité comprend de l'oxyde de cérium dans un rapport atomique Ce/Zr compris entre 10/90 et 90/10.
5- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on utilise une composition dans laquelle le catalyseur d'oxydation précité est un métal précieux.
6- Procédé selon la revendication 5, caractérisé en ce qu'on utilise une composition dans laquelle le métal précieux est le platine.
7- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on traite un gaz d'échappement de moteur à combustion interne, notamment de type Diesel ou de type essence fonctionnant en mélange pauvre.
8- Procédé selon l'une des revendications 1 à 6, caractérisé en ce qu'on traite un gaz issu de la combustion de carburants à teneur en soufre d'au moins 350 ppm, plus particulièrement d'au moins 500 ppm. 9- Dispositif pour la mise en œuvre d'un procédé selon l'une des revendications précédentes, caractérisé en ce qu'il comprend en tant que piège à NOx une composition à base d'un métal précieux et d'un composé à base d'oxyde de zirconium et d'oxyde de praséodyme dans une proportion d'oxyde de praséodyme comprise entre 5 et 50% en poids d'oxyde.
10- Dispositif selon la revendication 9, caractérisé en ce que la composition précitée est comprise dans un élément catalytique inclus dans une ligne d'échappement d'un véhicule automobile à moteur Diesel ou essence à mélange pauvre.
PCT/FR2006/002069 2005-09-12 2006-09-08 Procede de traitement d'un gaz contenant des oxydes d'azote (nox), utilisant comme piege a nox une composition a base d'oxyde de zirconium et d'oxyde de praseodyme WO2007031627A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06808095A EP1924339A1 (fr) 2005-09-12 2006-09-08 Procede de traitement d'un gaz contenant des oxydes d'azote (nox), utilisant comme piege a nox une composition a base d'oxyde de zirconium et d'oxyde de praseodyme
JP2008530561A JP2009507634A (ja) 2005-09-12 2006-09-08 酸化ジルコニウム及び酸化プラセオジムをベースとする組成物をNOxトラップとして使用する窒素酸化物(NOx)含有ガス処理方法
CA002620088A CA2620088A1 (fr) 2005-09-12 2006-09-08 Composition a base d'oxydes de xiroconium, de praseodyme, de lanthane oule neodyme, procede de preparation et utlisation dans un systeme catalytique
US11/991,856 US20090191108A1 (en) 2005-09-12 2006-09-08 Zirconium/Praseodymium Oxide NOx Traps and Prufication of Gases Containing Nitrogen Oxides (NOx) Therewith

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0509275 2005-09-12
FR0509275A FR2890577B1 (fr) 2005-09-12 2005-09-12 Procede de traitement d'un gaz contenant des oxydes d'azote (nox), utilisant comme piege a nox une composition a base d'oxyde de zirconium et d'oxyde de praseodyme

Publications (1)

Publication Number Publication Date
WO2007031627A1 true WO2007031627A1 (fr) 2007-03-22

Family

ID=36481452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/002069 WO2007031627A1 (fr) 2005-09-12 2006-09-08 Procede de traitement d'un gaz contenant des oxydes d'azote (nox), utilisant comme piege a nox une composition a base d'oxyde de zirconium et d'oxyde de praseodyme

Country Status (8)

Country Link
US (1) US20090191108A1 (fr)
EP (1) EP1924339A1 (fr)
JP (1) JP2009507634A (fr)
KR (1) KR20080066920A (fr)
CN (1) CN101309741A (fr)
CA (1) CA2620088A1 (fr)
FR (1) FR2890577B1 (fr)
WO (1) WO2007031627A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001215A3 (fr) * 2008-06-30 2010-02-25 Toyota Jidosha Kaubushiki Kaisha Catalyseur de purification d’un gaz d’échappement
US10500562B2 (en) * 2018-04-05 2019-12-10 Magnesium Elektron Ltd. Zirconia-based compositions for use in passive NOx adsorber devices

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2931700B1 (fr) * 2008-05-27 2011-02-11 Peugeot Citroen Automobiles Sa Traitement de gaz d'echappement.
FR2936718B1 (fr) * 2008-10-03 2010-11-19 Rhodia Operations Procede de decomposition du n2o utilisant un catalyseur a base d'un oxyde de cerium et de lanthane.
FR2942151B1 (fr) * 2009-02-13 2011-08-05 Peugeot Citroen Automobiles Sa Catalyseur pour le vaporeformage d'hydrocarbures
JP4893876B2 (ja) 2010-03-15 2012-03-07 トヨタ自動車株式会社 内燃機関の排気浄化装置
CA2755977C (fr) 2010-03-15 2014-01-21 Toyota Jidosha Kabushiki Kaisha Dispositif d'epuration des gaz d'echappement pour moteur a combustion interne
JP5196027B2 (ja) 2010-04-01 2013-05-15 トヨタ自動車株式会社 内燃機関の排気浄化装置
FR2962350B1 (fr) * 2010-07-07 2014-01-24 Peugeot Citroen Automobiles Sa Composition catalytique pour le vapo-reformage d'hydrocarbures
ES2707591T3 (es) 2010-07-28 2019-04-04 Toyota Motor Co Ltd Aparato de purificación de escape para motor de combustión interna
US8679410B2 (en) 2010-08-30 2014-03-25 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
EP2460990B8 (fr) 2010-08-30 2016-12-07 Toyota Jidosha Kabushiki Kaisha Dispositif d'epuration de gaz d'echappement pour moteur a combustion interne
ES2600959T3 (es) * 2010-09-02 2017-02-13 Toyota Jidosha Kabushiki Kaisha Método de purificación de NOx de un sistema de purificación de gases de escape de un motor de combustión interna
EP2472078B1 (fr) 2010-10-04 2018-05-16 Toyota Jidosha Kabushiki Kaisha Systeme de purification de gaz d'echappement pour moteur a combustion interne
ES2584605T3 (es) 2010-10-04 2016-09-28 Toyota Jidosha Kabushiki Kaisha Método para purificación de gases de escape en sistema de purificación de gases de escape de motor de combustión interna
EP2617959B1 (fr) 2010-10-18 2019-03-20 Toyota Jidosha Kabushiki Kaisha Procédé de purification des nox d'un système de purification de gaz d'échappement d'un moteur à combustion interne
WO2012077240A1 (fr) 2010-12-06 2012-06-14 トヨタ自動車株式会社 Dispositif de purification de gaz d'échappement destiné à un moteur à combustion interne
US9108154B2 (en) 2010-12-20 2015-08-18 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
US8943811B2 (en) * 2010-12-22 2015-02-03 GM Global Technology Operations LLC Perovskite-based catalysts, catalyst combinations and methods of making and using the same
BRPI1014480B1 (pt) 2010-12-24 2022-02-22 Toyota Jidosha Kabushiki Kaisha Sistema de purificação do escapamento de motor de combustão interna
WO2012098688A1 (fr) * 2011-01-17 2012-07-26 トヨタ自動車株式会社 Dispositif de purification d'échappement pour moteur à combustion interne
JP5131392B2 (ja) 2011-02-07 2013-01-30 トヨタ自動車株式会社 内燃機関の排気浄化装置
CN103348102B (zh) 2011-02-10 2016-01-20 丰田自动车株式会社 内燃机的排气净化装置
JP5152417B2 (ja) 2011-03-17 2013-02-27 トヨタ自動車株式会社 内燃機関の排気浄化装置
EP2532852B1 (fr) 2011-04-15 2016-08-24 Toyota Jidosha Kabushiki Kaisha Procédé de purification d'échappement pour moteur à combustion interne
EP2581575B1 (fr) * 2011-08-25 2017-05-24 Toyota Jidosha Kabushiki Kaisha Sytème de purification des gaz d'échappement d'un moteur à combustion interne
WO2013031028A1 (fr) * 2011-08-29 2013-03-07 トヨタ自動車株式会社 Système d'épuration des gaz d'échappement pour moteur à combustion interne
JP5354104B1 (ja) 2011-11-07 2013-11-27 トヨタ自動車株式会社 内燃機関の排気浄化装置
US9097157B2 (en) 2011-11-09 2015-08-04 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
EP2623738B1 (fr) 2011-11-30 2019-08-21 Toyota Jidosha Kabushiki Kaisha Procédé de purification des nox d'un système de purification de gaz d'échappement d'un moteur à combustion interne
EP2626528B1 (fr) 2011-11-30 2016-10-26 Toyota Jidosha Kabushiki Kaisha Dispositif de purification des gaz d'échappement pour un moteur à combustion interne
ES2629482T3 (es) 2012-02-07 2017-08-10 Toyota Jidosha Kabushiki Kaisha Dispositivo de purificación de gases de escape para motor de combustión interna
WO2017004414A1 (fr) * 2015-07-01 2017-01-05 Basf Corporation Catalyseurs d'élimination d'oxyde nitreux pour systèmes d'échappement
US20170095801A1 (en) * 2015-10-01 2017-04-06 Clean Diesel Technologies, Inc. Thermally Stable Zero-PGM Three Way Catalyst with High Oxygen Storage Capacity

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0863846A1 (fr) * 1995-07-03 1998-09-16 Rhodia Chimie Composition a base d'oxyde de zirconium et d'oxyde de cerium, procede de preparation et utilisation
EP0906244A1 (fr) * 1996-05-15 1999-04-07 Rhodia Chimie Composition a base d'oxyde de cerium et d'oxyde de zirconium, procede de preparation et utilisation en catalyse
FR2793163A1 (fr) * 1999-05-07 2000-11-10 Ecia Equip Composants Ind Auto Composition d'epuration avec traitement des nox des gaz d'echappement d'un moteur a combustion interne
WO2002022255A1 (fr) * 2000-09-18 2002-03-21 Valtion Teknillinen Tutkimuskeskus Catalyseur et procede de reduction catalytique d'oxydes d'azote
US20020182134A1 (en) * 2001-01-26 2002-12-05 Engelhard Corporation SOX tolerant NOX trap catalysts and methods of making and using the same
EP1317953A1 (fr) * 2001-11-30 2003-06-11 OMG AG & Co. KG Catalyseur pour la réduction des oxydes d'azote dans le gaz d'échappement de moteurs à mélange pauvre
EP1424121A1 (fr) * 2001-07-30 2004-06-02 Valtion Teknillinen Tutkimuskeskus Procede de reduction catalytique d'oxydes d'azote et catalyseur utilise dans ce procede

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6641789B1 (en) * 1998-06-11 2003-11-04 University Of Dundee Device and method for decomposing nitrogen oxides
GB9921376D0 (en) * 1999-09-10 1999-11-10 Johnson Matthey Plc Improving catalyst performance
FI20010973A (fi) * 2001-05-09 2002-11-10 Valtion Teknillinen Katalysaattori ja menetelmä typpioksidien katalyyttiseksi pelkistämiseksi
FR2852596B1 (fr) * 2003-03-18 2007-02-23 Rhodia Elect & Catalysis Composition a base d'oxydes de cerium et de zirconium a surface specifique stable entre 900 c et 1000 c, son procede de preparation et son utilisation comme catalyseur
JP4757027B2 (ja) * 2003-11-11 2011-08-24 本田技研工業株式会社 窒素酸化物素酸化物を接触還元するための触媒
US7111591B2 (en) * 2003-12-10 2006-09-26 Afton Chemical Corporation Method of improving the operation of combustion particulate filters

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0863846A1 (fr) * 1995-07-03 1998-09-16 Rhodia Chimie Composition a base d'oxyde de zirconium et d'oxyde de cerium, procede de preparation et utilisation
EP0906244A1 (fr) * 1996-05-15 1999-04-07 Rhodia Chimie Composition a base d'oxyde de cerium et d'oxyde de zirconium, procede de preparation et utilisation en catalyse
FR2793163A1 (fr) * 1999-05-07 2000-11-10 Ecia Equip Composants Ind Auto Composition d'epuration avec traitement des nox des gaz d'echappement d'un moteur a combustion interne
WO2002022255A1 (fr) * 2000-09-18 2002-03-21 Valtion Teknillinen Tutkimuskeskus Catalyseur et procede de reduction catalytique d'oxydes d'azote
US20020182134A1 (en) * 2001-01-26 2002-12-05 Engelhard Corporation SOX tolerant NOX trap catalysts and methods of making and using the same
EP1424121A1 (fr) * 2001-07-30 2004-06-02 Valtion Teknillinen Tutkimuskeskus Procede de reduction catalytique d'oxydes d'azote et catalyseur utilise dans ce procede
EP1317953A1 (fr) * 2001-11-30 2003-06-11 OMG AG & Co. KG Catalyseur pour la réduction des oxydes d'azote dans le gaz d'échappement de moteurs à mélange pauvre
US20030125202A1 (en) * 2001-11-30 2003-07-03 Omg Ag & Co.Kg Catalyst for lowering the amount of nitrogen oxides in the exhaust gas from lean burn engines

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001215A3 (fr) * 2008-06-30 2010-02-25 Toyota Jidosha Kaubushiki Kaisha Catalyseur de purification d’un gaz d’échappement
US8551908B2 (en) 2008-06-30 2013-10-08 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification catalyst
US10500562B2 (en) * 2018-04-05 2019-12-10 Magnesium Elektron Ltd. Zirconia-based compositions for use in passive NOx adsorber devices

Also Published As

Publication number Publication date
US20090191108A1 (en) 2009-07-30
EP1924339A1 (fr) 2008-05-28
JP2009507634A (ja) 2009-02-26
KR20080066920A (ko) 2008-07-17
CN101309741A (zh) 2008-11-19
CA2620088A1 (fr) 2007-03-22
FR2890577A1 (fr) 2007-03-16
FR2890577B1 (fr) 2009-02-27

Similar Documents

Publication Publication Date Title
WO2007031627A1 (fr) Procede de traitement d&#39;un gaz contenant des oxydes d&#39;azote (nox), utilisant comme piege a nox une composition a base d&#39;oxyde de zirconium et d&#39;oxyde de praseodyme
EP2566617B1 (fr) Composition a base d&#39;oxydes de zirconium, de cerium et d&#39;au moins une autre terre rare, a porosite specifique, procede de preparation et utilisation en catalyse
CA2652137C (fr) Composition a base d&#39;oxydes de zirconium, de cerium, de lanthane et d&#39;yttrium, de gadolinium ou de samarium, a surface specifique et reductibilite elevees, procede de preparation et utilisation comme catalyseur
CA2651938C (fr) Compositions a base d&#39;alumine, cerium et baryum ou/et strontium utilisees notamment pour le piegeage d&#39;oxydes d&#39;azote (nox)
CA2645588C (fr) Composition a base d&#39;oxyde de zirconium et d&#39;oxyde de cerium a reductibilite elevee et a surface specifique stable, procede de preparation et utilisation dans le traitement des gaz d&#39;echappement
CA2536276C (fr) Composition a base d&#39;oxyde de cerium et d&#39;oxyde de zirconium a reductibilite et surface elevees, procedes de preparation et utilisation comme catalyseur
CA2642237C (fr) Composition a base d&#39;oxydes de zirconium, de cerium, d&#39;yttrium, de lanthane et d&#39;une autre terre rare, procede de preparation et utilisation en catalyse
CA2725431C (fr) Composition a base d&#39;oxydes de zirconium, de cerium et d&#39;yttrium, a reductibilite elevee, procedes de preparation et utilisation en catalyse
CA2766212C (fr) Composition a base d&#39;oxyde de cerium et d&#39;oxyde de zirconium de porosite specifique, procede de preparation et utilisation en catalyse
CA2519197C (fr) Composition a base d&#39;oxydes de cerium et de zirconium a surface specifique stable entre 900·c et 1000·c, son procede de preparation et son utilisation comme catalyseur
EP2646370B1 (fr) Composition a base d&#39;oxyde de zirconium et d&#39;au moins un oxyde d&#39;une terre rare autre que le cerium, a porosite specifique, son procede de preparation et son utilisation en catalyse
EP2590737A1 (fr) Composition a base d&#39;oxydes de cerium, de niobium et, eventuellement, de zirconium et son utilisation en catalyse
CA2611126C (fr) Procede de traitement de gaz pour l&#39;oxydation catalytique du monoxyde de carbone et des hydrocarbures utilisant une composition a base d&#39;un metal et d&#39;une zircone comprenant de lasilice

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680033398.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006808095

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2620088

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2008530561

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087008780

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2006808095

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11991856

Country of ref document: US