WO2007029636A1 - Intrusion detecting sensor - Google Patents

Intrusion detecting sensor Download PDF

Info

Publication number
WO2007029636A1
WO2007029636A1 PCT/JP2006/317437 JP2006317437W WO2007029636A1 WO 2007029636 A1 WO2007029636 A1 WO 2007029636A1 JP 2006317437 W JP2006317437 W JP 2006317437W WO 2007029636 A1 WO2007029636 A1 WO 2007029636A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
sensor
heat insulating
insulating material
intrusion detection
Prior art date
Application number
PCT/JP2006/317437
Other languages
French (fr)
Japanese (ja)
Inventor
Masatoshi Tsuji
Original Assignee
Optex Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optex Co., Ltd. filed Critical Optex Co., Ltd.
Publication of WO2007029636A1 publication Critical patent/WO2007029636A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/04Systems determining presence of a target
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/181Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using active radiation detection systems
    • G08B13/187Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using active radiation detection systems by interference of a radiation field

Definitions

  • the present invention relates to an intrusion detection sensor incorporating a microwave sensor or an infrared sensor, and particularly relates to an intrusion detection sensor suitable for outdoor installation in a cold region.
  • Intrusion detection sensors such as microwave sensors and surveillance cameras are often installed outdoors.
  • the ambient temperature can vary greatly depending on the region and season in which they are used. For example, in the winter in extremely cold regions, the ambient temperature may be well below freezing.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-94545
  • Patent Document 2 JP-A-7-107348
  • the object of the present invention is to operate normally without degrading the detection performance even under conditions where the ambient temperature is extremely low, with a simple and inexpensive configuration. Is to provide a simple intrusion detection sensor.
  • the intrusion detection sensor of the present invention transmits a microwave toward a detection area, receives a reflected wave of the microwave of the object force existing in the detection area, and the object is a detection target object.
  • the force includes a foam material such as polystyrene foam, but is not limited thereto.
  • the microwave sensor forms a detection area having the same detection sensitivity as that in a normal case. Only a small amount of heat generated by the heat generating means is radiated to the outside through the housing, and efficient heat insulation can be performed. This makes it possible to realize an intrusion detection sensor that operates properly even under conditions where the ambient temperature is extremely low while maintaining sufficient detection sensitivity in an intrusion detection sensor incorporating a microwave sensor. .
  • the intrusion detection sensor of the present invention at least a portion of the heat insulating material on a microwave path transmitted and received by the microwave sensor has a relative dielectric constant of approximately 1 and is almost equal to the microwave. You may use the material which does not affect. In this case However, any other material can be used for other parts.
  • the intrusion detection sensor having such a configuration, the degree of freedom in selecting a heat insulating material to be used in a portion other than the microwave path is expanded, so that the intrusion detection sensor can be reduced in size and cost. it can.
  • the intrusion detection sensor of the present invention receives infrared rays from the detection area and determines whether or not there is an object to be detected in the detection area based on a temperature difference from the surrounding area.
  • the intrusion detection sensor having such a configuration, only a small amount of the heat generated by the heat generating means is radiated to the outside through the housing, and efficient heat insulation can be performed. This makes it possible to realize an intrusion detection sensor that operates normally even under conditions where the ambient temperature is extremely low in an intrusion detection sensor incorporating a passive infrared sensor.
  • the intrusion detection sensor of the present invention transmits a microwave toward a detection area, receives a reflected wave of the microwave from an object existing in the detection area, and the object is A microwave sensor that determines whether or not the force is a detection target object and infrared rays from within the detection area, and the presence or absence of a detection target object in the detection area is determined based on a temperature difference from the surroundings.
  • the passive infrared sensor, the heat generating means for generating heat Surrounds the passive infrared sensor, the heat generating means for generating heat, and the microwave sensor, the passive infrared sensor and the heat generating means.
  • a heat insulating material covering almost all of the inner surface of the housing, and at least a portion of the heat insulating material on a microwave path transmitted and received by the microwave sensor has a relative dielectric constant of approximately 1.
  • a material that hardly affects the microwave is used, and a through hole that allows infrared rays to pass through is formed in a portion of the heat insulating material on the infrared path to the passive infrared sensor. It is characterized by that.
  • intrusion detection sensor having such a configuration, only a small amount of heat generated by the heat generating means is radiated to the outside through the housing, and efficient heat insulation can be performed. .
  • intrusion detection sensors with built-in microwave sensors and passive infrared sensors can achieve intrusion detection sensors that operate normally even under conditions where the ambient temperature is extremely low while maintaining sufficient detection sensitivity. Is possible.
  • the ambient temperature is extremely low while maintaining sufficient detection sensitivity.
  • an intrusion detection sensor that operates normally can be realized.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of an intrusion detection sensor according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of an intrusion detection sensor according to a second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of an intrusion detection sensor according to a third embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing a schematic configuration of an intrusion detection sensor according to a fourth embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of an intrusion detection sensor 10 according to the first embodiment of the present invention.
  • the intrusion detection sensor 10 has a box-shaped housing 2, and the microwave sensor 1 is arranged at the approximate center inside the housing 2.
  • An antenna section la for transmitting and receiving microwaves is arranged on the front side (right side in FIG. 1) of the microphone mouth wave sensor 1, and the inside of the intrusion detection sensor 10 is placed on the back side of the microwave sensor 1.
  • a heater 3 that generates heat when energized is installed in order to maintain heat.
  • the microwave sensor 1 is a type that transmits and receives microwaves of two different frequencies. Microwaves are transmitted from the antenna unit la to the detection area A1, and the transmitted microwaves are reflected when any object is present in the detection area A1. Part of the reflected microwave is received back in the direction of the antenna unit la. Then, the microwave sensor 1 detects the phase difference between the two IF signals based on the received reflected waves, and based on this phase difference, the detected object is an original detection target object such as an intruder. The presence / absence (in other words, the presence / absence of the object to be detected) and the distance to the object are detected.
  • the microwave sensor 1 is not limited to transmitting and receiving microwaves having two different frequencies.
  • it may be one that transmits / receives microwaves of three or more different frequencies, or only one that detects the presence / absence of an object to be detected using only a single frequency microwave. .
  • All the inner surfaces of the housing 2 of the intrusion detection sensor 10 have a thickness of a predetermined value or more.
  • Heat material Ml is placed in close contact.
  • the force shown in the case where a plate-like heat insulating material is attached to each surface of the inner surface of the housing 2 is not limited to this. Also, there may be a slight gap between the insulating materials.
  • Insulating materials generally include foamed materials, glass fibers, acrylic materials, aluminum materials, wood, etc.
  • the insulating material Ml used in this intrusion detection sensor 10 has a relative dielectric constant ⁇ r ⁇ l. Use materials that have little effect on microwaves. Specific examples include the strength of foamed materials such as polystyrene foam. /.
  • the casing 2 does not need to have heat insulation properties, it is necessary to use a material that hardly affects the microwave.
  • the microwaves transmitted and received by the antenna part la of the microwave sensor 1 are hardly affected by the presence of the heat insulating material Ml in front of the antenna part la. Therefore, a detection area A1 having the same detection sensitivity as that in the normal case is formed.
  • the heat insulating material Ml is arranged on the inner surface of the housing 2 with almost no gap, only a small amount of the heat generated from the heater 3 is radiated to the outside through the housing 2 with less power consumption. Efficient heat insulation can be performed.
  • an intrusion detection sensor with a built-in microwave sensor can achieve an intrusion detection sensor that operates normally even under conditions where the ambient temperature is extremely low while maintaining sufficient detection sensitivity. It becomes.
  • the structure is simple, it is easy to design and manufacture, and since heat insulating materials and the like can be obtained at a low price, the intrusion detection sensor as a whole can suppress an increase in cost.
  • a temperature sensor is further incorporated, and the amount of heat generated from the heater 3 is appropriately controlled according to the detection result of the temperature sensor. It may be configured as ⁇ .
  • FIG. 2 is a sectional view showing a schematic configuration of the intrusion detection sensor 20 according to the second embodiment of the present invention.
  • the same components as those in the first embodiment described above are denoted by the same reference numerals, and differences from the first embodiment will be mainly described below.
  • the heat insulating material M2 Since there is no restriction on the presence or absence of an influence on the microwave in the heat insulating material M2, it is possible to select a material from the viewpoint of the heat insulating effect and cost. For example, if a material having a high heat insulating effect is used, the heat insulating material can be made thin, so that the intrusion detection sensor 20 as a whole can be miniaturized.
  • the microwaves transmitted and received by the antenna unit la of the microwave sensor 1 are hardly affected by the presence of the heat insulating material Ml in front of the antenna unit la. Therefore, a detection area A1 having the same detection sensitivity as that in the normal case is formed.
  • the heat insulating material Ml or the heat insulating material M 2 is arranged on the inner surface of the housing 2 with almost no gap, so that only a small amount of the heat generated from the heater 3 is radiated to the outside through the housing 2. Efficient heat insulation can be performed with less power consumption.
  • the intrusion detection sensor 20 can be reduced in size and cost.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of the intrusion detection sensor 30 according to the third embodiment of the present invention. Note that the same reference numerals are given to the same constituent members as those in the above-described embodiments, and differences from the first embodiment will be mainly described below.
  • a passive infrared sensor (hereinafter referred to as “PIR sensor”) 4 is arranged at the approximate center inside the housing 2.
  • PIR sensor passive infrared sensor
  • the PIR sensor 4 receives infrared rays from the detection area A4 by the pyroelectric element unit 4a, and detects the presence or absence of a detection target object such as a human body based on a temperature difference from the surroundings.
  • the heat insulating material Ml on the front surface of the pyroelectric element section 4a is necessary to secure an infrared optical path.
  • a minimum through hole 6 is formed, and an opening is formed in a portion corresponding to the through hole 6 in the housing 2, and the lens 5 is arranged there. Infrared rays from the human body existing in the detection area A4 are refracted by the lens 5 and reach the pyroelectric element 4a.
  • the heat insulating effect may be selected based on cost or the like.
  • the heat insulating material is disposed on the inner surface of the casing 2 with almost no gap except for the through-hole 6, the casing of the heat generated from the heater 3 is disposed. Only a small amount of radiation is emitted through the body 2 to the outside, and efficient heat insulation can be performed with low power consumption. As a result, an intrusion detection sensor with a built-in PIR sensor can be realized that operates normally even under conditions where the ambient temperature is extremely low.
  • Such a configuration is not limited to an intrusion detection sensor with a built-in PIR sensor, but is also suitable for an intrusion detection sensor with a built-in active infrared sensor (AIR sensor), for example.
  • AIR also includes an infrared light emitting element. By detecting the reflected light from objects in the infrared detection area generated by this infrared light emitting element force, the human body, etc. The presence or absence is detected.
  • FIG. 4 is a cross-sectional view showing a schematic configuration of an intrusion detection sensor 40 according to the fourth embodiment of the present invention. Note that the same reference numerals are assigned to the same constituent members as those of the above-described embodiments, and differences from the first embodiment and the third embodiment will be mainly described below.
  • the microwave sensor 1 and the PIR sensor 4 are arranged together in the center of the inside of the housing 2 (for example, the microphone mouth wave sensor on the front side of this figure).
  • PIR sensor 4 is placed adjacent to the back side. This is also called a combination sensor (or a combined sensor). By issuing a warning signal only when both the microwave sensor 1 and the PIR sensor 4 detect a detection target object such as a human body, It is intended to increase the reliability of operation by preventing false alarms as much as possible.
  • On the front side of the microwave sensor 1 (right side in Fig.
  • an antenna unit la for transmitting and receiving microwaves is arranged, and on the front side of the PIR sensor 4 (right side in Fig. 4)
  • a pyroelectric element unit 4a for receiving infrared rays from the human body is disposed.
  • a heater 3 that generates heat for keeping the inside of the intrusion detection sensor 10 is attached to the back side.
  • a heat insulating material Ml made of a material that hardly affects microwaves is disposed in close contact with the inner surface of the housing 2 and the heat insulating material Ml on the front surface of the pyroelectric element portion 4a
  • the minimum through-hole 6 required to secure the infrared optical path is formed. Further, an opening is formed in a portion of the housing 2 corresponding to the through hole 6, and the lens 5 is disposed there.
  • the microwaves transmitted / received by the antenna unit la of the microwave sensor 1 are hardly affected by the presence of the heat insulating material Ml in front of the antenna unit la. Therefore, a detection area A1 having the same detection sensitivity as that in the normal case is formed. Infrared rays from a human body or the like existing in the detection area A4 are refracted by the lens 5 and reach the pyroelectric element unit 4a. Since the heat insulating material is arranged on the inner surface of the case 2 with almost no gap except for the through holes 6, only a small amount of the heat generated from the heater 3 is radiated to the outside through the case 2 and consumes less power. Can be used for efficient heat insulation. As a result, intrusion detection sensors with built-in microwave sensors and PIR sensors can achieve intrusion detection sensors that operate normally even under conditions where the ambient temperature is extremely low while maintaining sufficient detection sensitivity. It becomes.
  • the heat insulating material Ml that hardly affects the microwaves is disposed only in the front direction of the antenna unit la, and other types of heat insulating materials M2 are disposed. Do it.
  • the present invention is suitable for a security sensor that detects an intruder into a detection area and issues an alarm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Burglar Alarm Systems (AREA)

Abstract

An intrusion detecting sensor, in one example, is provided with a microwave sensor (1) which transmits a microwave toward a detection area, receives the reflection wave of the microwave from an object existing within the detection area and judges whether the object is a detection target object or not; a heat generating means (3) which generates heat; and a heat insulating material (M1) which surrounds the microwave sensor (1) and the heat generating means (3) and almost entirely covers an inner plane of a case (2).

Description

明 細 書  Specification
侵入検知センサ  Intrusion detection sensor
技術分野  Technical field
[0001] 本発明は、マイクロウエーブセンサや赤外線センサを内蔵した侵入検知センサに関 し、特に、寒冷地において屋外設置される場合にも好適な侵入検知センサに関する 背景技術  TECHNICAL FIELD [0001] The present invention relates to an intrusion detection sensor incorporating a microwave sensor or an infrared sensor, and particularly relates to an intrusion detection sensor suitable for outdoor installation in a cold region.
[0002] マイクロウエーブセンサなどの侵入検知センサや監視カメラなどは、屋外に設置さ れる場合も多い。これらが使用される地域や季節によっては周囲温度が大きく変わり 得るが、例えば、極寒の地域の冬期には、周囲温度が氷点下を遙かに下回ることも ある。  [0002] Intrusion detection sensors such as microwave sensors and surveillance cameras are often installed outdoors. The ambient temperature can vary greatly depending on the region and season in which they are used. For example, in the winter in extremely cold regions, the ambient temperature may be well below freezing.
[0003] これらの侵入検知センサや監視カメラなどに用いられる各種電子部品には、その機 能および性能が保証される動作温度範囲がそれぞれ定められているが、民生用の 一般部品の場合、最低温度はせ!/、ぜ 、 20°Cであることが多!、。  [0003] The various electronic components used in these intrusion detection sensors and surveillance cameras have their operating temperature ranges guaranteed for their functions and performance. The temperature is often! /, Often 20 ° C!
[0004] そのため、周囲温度がそれ以下になり得る環境下でも侵入検知センサや監視カメラ などを正常に動作させるためには、例えば、内部にヒーターなどの熱源を配置したり 、外部力も直接的若しくは間接的に熱を供給したりして、保温を行う必要がある (例え ば、特許文献 1、特許文献 2参照。 )0 [0004] Therefore, in order to operate the intrusion detection sensor, the surveillance camera, etc. normally even in an environment where the ambient temperature can be lower than that, for example, a heat source such as a heater is arranged inside, or external force is directly or and and supplies the indirect heat, it is necessary to perform thermal insulation (for example, Patent Document 1, Patent Document 2.) 0
特許文献 1:特開 2005— 94545号公報  Patent Document 1: Japanese Patent Laid-Open No. 2005-94545
特許文献 2 :特開平 7— 107348号公報  Patent Document 2: JP-A-7-107348
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力しながら、単にヒーターなどで内部を暖めても、その熱が筐体を通して外部へ 放射されやすいため、特に外気温が極端に低い場合には筐体内部の温度を十分に 上昇させられな ヽこともあった。 [0005] Even if the interior is simply warmed with a heater, etc., the heat is likely to be radiated to the outside through the housing, so the temperature inside the housing will rise sufficiently, especially when the outside air temperature is extremely low There were also things that I couldn't let you do.
[0006] 外部への熱の放射分を予め見込み、大量の熱を発生するヒーターなどを使用する ことも考えられるが、消費電力が大きくなつてしまうという問題があった。 [0007] 外部への熱の放射を減らすには、筐体内面に断熱材を配置することも考えられる。 この場合に十分な保温効果を得ようとすると、本来は筐体内面全体を隙間なく断熱 材で覆う必要がある。しかし、監視カメラであれば、撮影レンズへの光路は最低限確 保しておく必要がある。マイクロ波を用いる侵入検知センサであれば、アンテナ部前 面に何らかの障害物があると検出感度が低下してしまうので、その部分は開放してお く必要がある。そのため、実際には力なり大きな隙間が残存してしまい、十分な保温 効果を得ることは難し力つた。 [0006] Although it is conceivable to use a heater that generates a large amount of heat by predicting the amount of heat radiated to the outside in advance, there is a problem that power consumption increases. [0007] In order to reduce heat radiation to the outside, it is also conceivable to arrange a heat insulating material on the inner surface of the housing. In order to obtain a sufficient heat retention effect in this case, it is necessary to cover the entire inner surface of the housing with a heat insulating material without any gaps. However, if it is a surveillance camera, the optical path to the taking lens must be kept at a minimum. In the case of an intrusion detection sensor that uses microwaves, if there is any obstruction on the front of the antenna, the detection sensitivity will decrease, so it is necessary to leave that part open. For this reason, in practice, a large gap remained, and it was difficult to obtain a sufficient heat retention effect.
[0008] 従来技術のこのような課題に鑑み、本発明の目的は、簡単かつ安価な構成により、 周囲温度が極端に低くなるような条件下でも検知性能を低下させることなく正常に動 作可能な侵入検知センサを提供することである。  [0008] In view of such problems of the prior art, the object of the present invention is to operate normally without degrading the detection performance even under conditions where the ambient temperature is extremely low, with a simple and inexpensive configuration. Is to provide a simple intrusion detection sensor.
課題を解決するための手段  Means for solving the problem
[0009] 本発明の侵入検知センサは、検知エリアに向けてマイクロ波を送信し、この検知ェ リア内に存在する物体力 の前記マイクロ波の反射波を受信して、その物体が検知 対象物体であるか否かを判別するマイクロウエーブセンサと、熱を発生する発熱手段 と、これらのマイクロウエーブセンサおよび発熱手段を囲むとともに、筐体の内面のほ ぼすベてを覆う断熱材とを備えることを特徴とする。 [0009] The intrusion detection sensor of the present invention transmits a microwave toward a detection area, receives a reflected wave of the microwave of the object force existing in the detection area, and the object is a detection target object. A microwave sensor for determining whether or not, a heat generating means for generating heat, and a heat insulating material that surrounds the microwave sensor and the heat generating means and covers almost all of the inner surface of the housing It is characterized by that.
[0010] ここで、前記断熱材としては、比誘電率 ε r= 1であってマイクロ波に対してほとんど 影響を与えない材質を使用する。具体的には、発泡スチロールなどの発泡材が挙げ られる力 これに限るものではない。 [0010] Here, as the heat insulating material, a material having a relative permittivity ε r = 1 and hardly affecting the microwave is used. Specifically, the force includes a foam material such as polystyrene foam, but is not limited thereto.
[0011] このような構成の侵入検知センサによれば、前記マイクロウエーブセンサは通常の 場合と同様の検知感度を有する検知エリアを形成する。前記発熱手段で発生した熱 のうち前記筐体を通して外部へ放射されるのはごくわずかに留まり、効率的な保温を 行うことができる。これにより、マイクロウエーブセンサを内蔵した侵入検知センサにお いて、十分な検知感度を維持しつつ、周囲温度が極端に低くなるような条件下でも正 常に動作する侵入検知センサの実現が可能となる。 [0011] According to the intrusion detection sensor having such a configuration, the microwave sensor forms a detection area having the same detection sensitivity as that in a normal case. Only a small amount of heat generated by the heat generating means is radiated to the outside through the housing, and efficient heat insulation can be performed. This makes it possible to realize an intrusion detection sensor that operates properly even under conditions where the ambient temperature is extremely low while maintaining sufficient detection sensitivity in an intrusion detection sensor incorporating a microwave sensor. .
[0012] また、本発明の侵入検知センサにおいて、前記断熱材のうち少なくとも前記マイクロ ウェーブセンサが送受信するマイクロ波の経路上の部位に、比誘電率がほぼ 1であ つてマイクロ波に対してほとんど影響を与えない材質を使用してもよい。この場合に は、その他の部位にはどのような材質の断熱材を使用しても力まわない。 [0012] In addition, in the intrusion detection sensor of the present invention, at least a portion of the heat insulating material on a microwave path transmitted and received by the microwave sensor has a relative dielectric constant of approximately 1 and is almost equal to the microwave. You may use the material which does not affect. In this case However, any other material can be used for other parts.
[0013] このような構成の侵入検知センサによれば、マイクロ波の経路上以外の部位に使用 する断熱材の選択の自由度が広がるので、侵入検知センサの小型化やコストダウン を図ることができる。  [0013] According to the intrusion detection sensor having such a configuration, the degree of freedom in selecting a heat insulating material to be used in a portion other than the microwave path is expanded, so that the intrusion detection sensor can be reduced in size and cost. it can.
[0014] あるいは、本発明の侵入検知センサは、検知エリア内からの赤外線を受け、周囲と の温度差に基づいてこの検知エリア内の検知対象物体の存在の有無を判別する受 動型赤外線センサと、熱を発生する発熱手段と、これらの受動型赤外線センサおよ び発熱手段を囲むとともに、筐体の内面のほぼすベてを覆う断熱材とを備え、この断 熱材のうち前記受動型赤外線センサへの赤外線の経路上の部位には、赤外線を通 過させる貫通穴が形成されて ヽることを特徴としてもょ ヽ。  [0014] Alternatively, the intrusion detection sensor of the present invention receives infrared rays from the detection area and determines whether or not there is an object to be detected in the detection area based on a temperature difference from the surrounding area. A heat generating means for generating heat, and a heat insulating material that surrounds the passive infrared sensor and the heat generating means and covers almost all of the inner surface of the housing. It is a feature that a through-hole through which infrared rays pass is formed in the part of the infrared ray path to the type infrared sensor.
[0015] このような構成の侵入検知センサによれば、前記発熱手段で発生した熱のうち前記 筐体を通して外部へ放射されるのは少量に留まり、効率的な保温を行うことができる 。これにより、受動型赤外線センサを内蔵した侵入検知センサにおいて、周囲温度が 極端に低くなるような条件下でも正常に動作する侵入検知センサの実現が可能とな る。  [0015] According to the intrusion detection sensor having such a configuration, only a small amount of the heat generated by the heat generating means is radiated to the outside through the housing, and efficient heat insulation can be performed. This makes it possible to realize an intrusion detection sensor that operates normally even under conditions where the ambient temperature is extremely low in an intrusion detection sensor incorporating a passive infrared sensor.
[0016] あるいは、本発明の侵入検知センサは、検知エリアに向けてマイクロ波を送信し、こ の検知エリア内に存在する物体からの前記マイクロ波の反射波を受信して、その物 体が検知対象物体である力否かを判別するマイクロウエーブセンサと、前記検知エリ ァ内からの赤外線を受け、周囲との温度差に基づいて前記検知エリア内の検知対象 物体の存在の有無を判別する受動型赤外線センサと、熱を発生する発熱手段と、こ れらのマイクロウエーブセンサ、受動型赤外線センサおよび発熱手段を囲むとともに [0016] Alternatively, the intrusion detection sensor of the present invention transmits a microwave toward a detection area, receives a reflected wave of the microwave from an object existing in the detection area, and the object is A microwave sensor that determines whether or not the force is a detection target object and infrared rays from within the detection area, and the presence or absence of a detection target object in the detection area is determined based on a temperature difference from the surroundings. Surrounds the passive infrared sensor, the heat generating means for generating heat, and the microwave sensor, the passive infrared sensor and the heat generating means.
、筐体の内面のほぼすベてを覆う断熱材とを備え、前記断熱材のうち少なくとも前記 マイクロウエーブセンサが送受信するマイクロ波の経路上の部位には、比誘電率が ほぼ 1であってマイクロ波に対してほとんど影響を与えない材質を使用するとともに、 前記断熱材のうち前記受動型赤外線センサへの赤外線の経路上の部位には、赤外 線を通過させる貫通穴が形成されて ヽることを特徴としてもょ ヽ。 And a heat insulating material covering almost all of the inner surface of the housing, and at least a portion of the heat insulating material on a microwave path transmitted and received by the microwave sensor has a relative dielectric constant of approximately 1. A material that hardly affects the microwave is used, and a through hole that allows infrared rays to pass through is formed in a portion of the heat insulating material on the infrared path to the passive infrared sensor. It is characterized by that.
[0017] このような構成の侵入検知センサによれば、前記発熱手段で発生した熱のうち前記 筐体を通して外部へ放射されるのは少量に留まり、効率的な保温を行うことができる 。これにより、マイクロウエーブセンサおよび受動型赤外線センサを内蔵した侵入検 知センサにおいて、十分な検知感度を維持しつつ、周囲温度が極端に低くなるような 条件下でも正常に動作する侵入検知センサの実現が可能となる。 [0017] According to the intrusion detection sensor having such a configuration, only a small amount of heat generated by the heat generating means is radiated to the outside through the housing, and efficient heat insulation can be performed. . As a result, intrusion detection sensors with built-in microwave sensors and passive infrared sensors can achieve intrusion detection sensors that operate normally even under conditions where the ambient temperature is extremely low while maintaining sufficient detection sensitivity. Is possible.
発明の効果  The invention's effect
[0018] 本発明の侵入検知センサによれば、マイクロウエーブセンサや受動型赤外線セン サを内蔵した侵入検知センサにおいて、十分な検知感度を維持しつつ、周囲温度が 極端に低くなるような条件下でも正常に動作する侵入検知センサの実現が可能とな る。  [0018] According to the intrusion detection sensor of the present invention, in the intrusion detection sensor incorporating a microwave sensor or a passive infrared sensor, the ambient temperature is extremely low while maintaining sufficient detection sensitivity. However, an intrusion detection sensor that operates normally can be realized.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]図 1は本発明の第 1実施形態に係る侵入検知センサの概略構成を示す断面図 である。  FIG. 1 is a cross-sectional view showing a schematic configuration of an intrusion detection sensor according to a first embodiment of the present invention.
[図 2]図 2は本発明の第 2実施形態に係る侵入検知センサの概略構成を示す断面図 である。  FIG. 2 is a cross-sectional view showing a schematic configuration of an intrusion detection sensor according to a second embodiment of the present invention.
[図 3]図 3は本発明の第 3実施形態に係る侵入検知センサの概略構成を示す断面図 である。  FIG. 3 is a cross-sectional view showing a schematic configuration of an intrusion detection sensor according to a third embodiment of the present invention.
[図 4]図 4は本発明の第 4実施形態に係る侵入検知センサの概略構成を示す断面図 である。  FIG. 4 is a cross-sectional view showing a schematic configuration of an intrusion detection sensor according to a fourth embodiment of the present invention.
符号の説明  Explanation of symbols
[0020] 10 侵入検知センサ (第 1実施形態) [0020] 10 Intrusion detection sensor (first embodiment)
20 侵入検知センサ (第 2実施形態)  20 Intrusion detection sensor (second embodiment)
30 侵入検知センサ (第 3実施形態)  30 Intrusion detection sensor (Third embodiment)
40 侵入検知センサ (第 4実施形態)  40 Intrusion detection sensor (4th embodiment)
1 マイクロウエーブセンサ  1 Microwave sensor
la アンテナ部  la Antenna section
2 筐体  2 Enclosure
3 ヒーター  3 Heater
4 PIRセンサ  4 PIR sensor
4a 焦電素子部 6 貫通穴 4a Pyroelectric element 6 Through hole
A1 検知エリア  A1 detection area
A4 検知エリア  A4 detection area
Ml 断熱材(発泡スチロール)  Ml Insulation (Styrofoam)
M2 断熱材  M2 insulation
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下、本発明の実施形態を、図面を参照して説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0022] <第 1実施形態 >  [0022] <First embodiment>
図 1は、本発明の第 1実施形態に係る侵入検知センサ 10の概略構成を示す断面 図である。この図 1に示すように、この侵入検知センサ 10は箱形の筐体 2を有してお り、この筐体 2内部のほぼ中央にマイクロウエーブセンサ 1が配置されている。このマ イク口ウェーブセンサ 1の前面側(図 1中では右側)には、マイクロ波を送受信するァ ンテナ部 laが配置され、マイクロウエーブセンサ 1の背面側には、侵入検知センサ 1 0内部を保温するために通電によって熱を発生するヒーター 3が取り付けられて 、る。  FIG. 1 is a cross-sectional view showing a schematic configuration of an intrusion detection sensor 10 according to the first embodiment of the present invention. As shown in FIG. 1, the intrusion detection sensor 10 has a box-shaped housing 2, and the microwave sensor 1 is arranged at the approximate center inside the housing 2. An antenna section la for transmitting and receiving microwaves is arranged on the front side (right side in FIG. 1) of the microphone mouth wave sensor 1, and the inside of the intrusion detection sensor 10 is placed on the back side of the microwave sensor 1. A heater 3 that generates heat when energized is installed in order to maintain heat.
[0023] マイクロウエーブセンサ 1は、 2つの異なる周波数のマイクロ波を送受信するタイプ のものとする。検知エリア A1内に対してアンテナ部 laからマイクロ波が送信され、送 信されたマイクロ波は、検知エリア A1内に何らかの物体が存在すると反射される。反 射されたマイクロ波の一部はアンテナ部 laの方向に戻って受信される。そして、マイ クロウェーブセンサ 1は、受信したそれぞれの反射波に基づく 2つの IF信号の位相差 を検出し、この位相差に基づいて、検知した物体が侵入者などの本来の検知対象物 体であるか否力 (換言すると、検知対象物体の存在の有無)およびその物体までの距 離を検知する。  [0023] The microwave sensor 1 is a type that transmits and receives microwaves of two different frequencies. Microwaves are transmitted from the antenna unit la to the detection area A1, and the transmitted microwaves are reflected when any object is present in the detection area A1. Part of the reflected microwave is received back in the direction of the antenna unit la. Then, the microwave sensor 1 detects the phase difference between the two IF signals based on the received reflected waves, and based on this phase difference, the detected object is an original detection target object such as an intruder. The presence / absence (in other words, the presence / absence of the object to be detected) and the distance to the object are detected.
[0024] ただし、このマイクロウエーブセンサ 1は 2つの異なる周波数のマイクロ波を送受信 するものには限らない。例えば、 3つ以上の異なる周波数のマイクロ波を送受信する ものであってもよ 、し、単一の周波数のマイクロ波のみを用いて検知対象物体の存 在の有無のみを検知するものでもよ 、。  However, the microwave sensor 1 is not limited to transmitting and receiving microwaves having two different frequencies. For example, it may be one that transmits / receives microwaves of three or more different frequencies, or only one that detects the presence / absence of an object to be detected using only a single frequency microwave. .
[0025] 侵入検知センサ 10の筐体 2の内面にはすべて、所定値またはそれ以上の厚さの断 熱材 Mlが密着して配置されている。図 1では、筐体 2内面の各面に板状の断熱材を それぞれ貼り付けた場合を示している力 このようなものに限るわけではない。また、 断熱材間にわずかな隙間があってもかまわない。 [0025] All the inner surfaces of the housing 2 of the intrusion detection sensor 10 have a thickness of a predetermined value or more. Heat material Ml is placed in close contact. In FIG. 1, the force shown in the case where a plate-like heat insulating material is attached to each surface of the inner surface of the housing 2 is not limited to this. Also, there may be a slight gap between the insulating materials.
[0026] 断熱材としては、一般に発泡材、グラスファイバー、アクリル材、アルミ材、木材など が挙げられるが、この侵入検知センサ 10に使用する断熱材 Mlとしては、比誘電率 ε r^ lであってマイクロ波に対してほとんど影響を与えない材質を使用する。具体例 としては発泡スチロールなどの発泡材が挙げられる力 これに限るものではな!/、。  [0026] Insulating materials generally include foamed materials, glass fibers, acrylic materials, aluminum materials, wood, etc. The insulating material Ml used in this intrusion detection sensor 10 has a relative dielectric constant ε r ^ l. Use materials that have little effect on microwaves. Specific examples include the strength of foamed materials such as polystyrene foam. /.
[0027] なお、筐体 2については断熱性を有する必要はないが、マイクロ波に対してほとん ど影響を与えな 、材質を用いる必要がある。  [0027] Although the casing 2 does not need to have heat insulation properties, it is necessary to use a material that hardly affects the microwave.
[0028] 以上で説明した第 1実施形態の構成によれば、マイクロウエーブセンサ 1のアンテ ナ部 laで送受信されるマイクロ波は、アンテナ部 laの前面にある断熱材 Mlの存在 による影響をほとんど受けないため、通常の場合と同様の検知感度を有する検知エリ ァ A1が形成される。一方、筐体 2内面にはほぼ隙間なく断熱材 Mlが配置されてい るので、ヒーター 3から発生した熱のうち筐体 2を通して外部へ放射されるのはごくわ ずかに留まり、少ない消費電力で効率的な保温を行うことができる。これにより、マイ クロウェーブセンサを内蔵した侵入検知センサにお 、て、十分な検知感度を維持し つつ、周囲温度が極端に低くなるような条件下でも正常に動作する侵入検知センサ の実現が可能となる。また、構成が簡単なので設計および製造などが容易であるとと もに、断熱材なども安価で入手できるので侵入検知センサ全体としてもコスト上昇を 抑制可能である。  [0028] According to the configuration of the first embodiment described above, the microwaves transmitted and received by the antenna part la of the microwave sensor 1 are hardly affected by the presence of the heat insulating material Ml in front of the antenna part la. Therefore, a detection area A1 having the same detection sensitivity as that in the normal case is formed. On the other hand, since the heat insulating material Ml is arranged on the inner surface of the housing 2 with almost no gap, only a small amount of the heat generated from the heater 3 is radiated to the outside through the housing 2 with less power consumption. Efficient heat insulation can be performed. As a result, an intrusion detection sensor with a built-in microwave sensor can achieve an intrusion detection sensor that operates normally even under conditions where the ambient temperature is extremely low while maintaining sufficient detection sensitivity. It becomes. In addition, since the structure is simple, it is easy to design and manufacture, and since heat insulating materials and the like can be obtained at a low price, the intrusion detection sensor as a whole can suppress an increase in cost.
[0029] なお、周囲温度によらずに常に最適な保温を行うためには、さらに温度センサを内 蔵させ、その温度センサの検知結果に応じてヒーター 3から発生させる熱量を適切に 制御するように構成してもよ ヽ。  [0029] It should be noted that, in order to always maintain the optimum temperature regardless of the ambient temperature, a temperature sensor is further incorporated, and the amount of heat generated from the heater 3 is appropriately controlled according to the detection result of the temperature sensor. It may be configured as ヽ.
[0030] <第 2実施形態 >  [0030] <Second Embodiment>
図 2は、本発明の第 2実施形態に係る侵入検知センサ 20の概略構成を示す断面 図である。なお、上述の第 1実施形態と同じ構成部材には同じ参照符号を付すことと し、以下では主に第 1実施形態との相違点について説明する。  FIG. 2 is a sectional view showing a schematic configuration of the intrusion detection sensor 20 according to the second embodiment of the present invention. The same components as those in the first embodiment described above are denoted by the same reference numerals, and differences from the first embodiment will be mainly described below.
[0031] 図 2に示すように、この侵入検知センサ 20では、筐体 2の内面に 2種類の断熱材 M 1および断熱材 M2を使い分けて密着配置している。具体的には、アンテナ部 laの 前面方向にのみ第 1実施形態と同様にマイクロ波にほとんど影響を与えない断熱材 M 1を配置し、それ以外には異なる種類の断熱材 M2を配置して 、る。 [0031] As shown in Fig. 2, in this intrusion detection sensor 20, two types of heat insulating material M are provided on the inner surface of the housing 2. 1 and heat insulating material M2 are used in close contact. Specifically, the heat insulating material M 1 that hardly affects the microwave is disposed only in the front direction of the antenna portion la as in the first embodiment, and other types of heat insulating materials M 2 are disposed other than that. RU
[0032] この断熱材 M2にはマイクロ波に対する影響の有無などの制約はないため、断熱効 果ゃコストなどの観点から材質を選択することが可能になる。例えば、断熱効果の高 い材質を使えば、その断熱材を薄くすることができるので、侵入検知センサ 20全体と しての小型化を図ることができる。  [0032] Since there is no restriction on the presence or absence of an influence on the microwave in the heat insulating material M2, it is possible to select a material from the viewpoint of the heat insulating effect and cost. For example, if a material having a high heat insulating effect is used, the heat insulating material can be made thin, so that the intrusion detection sensor 20 as a whole can be miniaturized.
[0033] 以上で説明した第 2実施形態の構成によれば、マイクロウエーブセンサ 1のアンテ ナ部 laで送受信されるマイクロ波は、アンテナ部 laの前面にある断熱材 Mlの存在 による影響をほとんど受けないため、通常の場合と同様の検知感度を有する検知エリ ァ A1が形成される。一方、筐体 2内面にはほぼ隙間なく断熱材 Mlまたは断熱材 M 2が配置されて 、るので、ヒーター 3から発生した熱のうち筐体 2を通して外部へ放射 されるのはごくわずかに留まり、少ない消費電力で効率的な保温を行うことができる。 これにより、マイクロウエーブセンサを内蔵した侵入検知センサにおいて、十分な検 知感度を維持しつつ、周囲温度が極端に低くなるような条件下でも正常に動作する 侵入検知センサの実現が可能となる。さらに、アンテナ部 laの前面以外の断熱材の 選択の自由度が広がるので、侵入検知センサ 20の小型化やコストダウンを図ることが できる。  [0033] According to the configuration of the second embodiment described above, the microwaves transmitted and received by the antenna unit la of the microwave sensor 1 are hardly affected by the presence of the heat insulating material Ml in front of the antenna unit la. Therefore, a detection area A1 having the same detection sensitivity as that in the normal case is formed. On the other hand, the heat insulating material Ml or the heat insulating material M 2 is arranged on the inner surface of the housing 2 with almost no gap, so that only a small amount of the heat generated from the heater 3 is radiated to the outside through the housing 2. Efficient heat insulation can be performed with less power consumption. This makes it possible to realize an intrusion detection sensor that operates normally even under conditions where the ambient temperature becomes extremely low while maintaining sufficient detection sensitivity in the intrusion detection sensor incorporating the microwave sensor. Furthermore, since the degree of freedom in selecting a heat insulating material other than the front surface of the antenna portion la is increased, the intrusion detection sensor 20 can be reduced in size and cost.
[0034] <第 3実施形態 >  [0034] <Third embodiment>
図 3は、本発明の第 3実施形態に係る侵入検知センサ 30の概略構成を示す断面 図である。なお、上述の各実施形態と同じ構成部材には同じ参照符号を付すこととし 、以下では主に第 1実施形態との相違点について説明する。  FIG. 3 is a cross-sectional view showing a schematic configuration of the intrusion detection sensor 30 according to the third embodiment of the present invention. Note that the same reference numerals are given to the same constituent members as those in the above-described embodiments, and differences from the first embodiment will be mainly described below.
[0035] 図 3に示すように、この侵入検知センサ 30では、筐体 2内部のほぼ中央に受動型赤 外線センサ(以下では「PIRセンサ」と記す) 4が配置され、この PIRセンサ 4の前面側 (図 3中では右側)には、人体などからの赤外線を受光する焦電素子部 4aが配置さ れている。 PIRセンサ 4は、この焦電素子部 4aによって検知エリア A4内からの赤外線 を受け、周囲との温度差に基づいて人体などの検知対象物体の有無を検知する。  As shown in FIG. 3, in the intrusion detection sensor 30, a passive infrared sensor (hereinafter referred to as “PIR sensor”) 4 is arranged at the approximate center inside the housing 2. On the front side (right side in FIG. 3), a pyroelectric element 4a that receives infrared rays from a human body or the like is arranged. The PIR sensor 4 receives infrared rays from the detection area A4 by the pyroelectric element unit 4a, and detects the presence or absence of a detection target object such as a human body based on a temperature difference from the surroundings.
[0036] 焦電素子部 4aの前面にある断熱材 Mlには、赤外線の光路を確保するための必 要最小限の貫通穴 6が形成されており、筐体 2における貫通穴 6に対応する部分に は開口部が形成されてそこにレンズ 5が配置されている。検知エリア A4内部に存在 する人体などからの赤外線は、このレンズ 5で屈折させられて焦電素子部 4aに到達 する。 [0036] The heat insulating material Ml on the front surface of the pyroelectric element section 4a is necessary to secure an infrared optical path. A minimum through hole 6 is formed, and an opening is formed in a portion corresponding to the through hole 6 in the housing 2, and the lens 5 is arranged there. Infrared rays from the human body existing in the detection area A4 are refracted by the lens 5 and reach the pyroelectric element 4a.
[0037] なお、この侵入検知センサ 30では、断熱材の材質に特に制約はないので、断熱効 果ゃコストなどを基準として選択してもよ 、。  [0037] In the intrusion detection sensor 30, there is no particular restriction on the material of the heat insulating material, so the heat insulating effect may be selected based on cost or the like.
[0038] 以上で説明した第 3実施形態の構成によれば、筐体 2内面には貫通穴 6を除いて ほぼ隙間なく断熱材が配置されているので、ヒーター 3から発生した熱のうち筐体 2を 通して外部へ放射されるのは少量に留まり、少ない消費電力で効率的な保温を行う ことができる。これにより、 PIRセンサを内蔵した侵入検知センサにおいて、周囲温度 が極端に低くなるような条件下でも正常に動作する侵入検知センサの実現が可能と なる。  [0038] According to the configuration of the third embodiment described above, since the heat insulating material is disposed on the inner surface of the casing 2 with almost no gap except for the through-hole 6, the casing of the heat generated from the heater 3 is disposed. Only a small amount of radiation is emitted through the body 2 to the outside, and efficient heat insulation can be performed with low power consumption. As a result, an intrusion detection sensor with a built-in PIR sensor can be realized that operates normally even under conditions where the ambient temperature is extremely low.
[0039] また、このような構成は PIRセンサを内蔵した侵入検知センサに限らず、例えば、能 動型赤外線センサ (AIRセンサ)を内蔵した侵入検知センサにも好適である。なお、 AIRとは、赤外線受光素子に加えて赤外線発光素子も内蔵しており、この赤外線発 光素子力 発せられた赤外線の検知エリア内の物体による反射光を検知することに より、人体などの有無を検知するものである。  [0039] Such a configuration is not limited to an intrusion detection sensor with a built-in PIR sensor, but is also suitable for an intrusion detection sensor with a built-in active infrared sensor (AIR sensor), for example. In addition to the infrared light receiving element, AIR also includes an infrared light emitting element. By detecting the reflected light from objects in the infrared detection area generated by this infrared light emitting element force, the human body, etc. The presence or absence is detected.
[0040] <第 4実施形態 >  [0040] <Fourth embodiment>
図 4は、本発明の第 4実施形態に係る侵入検知センサ 40の概略構成を示す断面 図である。なお、上述の各実施形態と同じ構成部材には同じ参照符号を付すこととし 、以下では主に第 1実施形態および第 3実施形態との相違点について説明する。  FIG. 4 is a cross-sectional view showing a schematic configuration of an intrusion detection sensor 40 according to the fourth embodiment of the present invention. Note that the same reference numerals are assigned to the same constituent members as those of the above-described embodiments, and differences from the first embodiment and the third embodiment will be mainly described below.
[0041] 図 4に示すように、この侵入検知センサ 40では、筐体 2内部のほぼ中央にマイクロ ウェーブセンサ 1および PIRセンサ 4が併せて配置(例えば、この図の手前側にマイク 口ウェーブセンサ 1、奥の側に PIRセンサ 4が隣接して配置)されている。これは、コン ビネーシヨンセンサ(あるいは複合型センサ)とも言われるもので、マイクロウエーブセ ンサ 1および PIRセンサ 4がともに人体などの検知対象物体を検知した場合に限って 警告信号を発することで、誤報などを極力防止して動作の信頼性を高めるものである [0042] このマイクロウエーブセンサ 1の前面側(図 4中では右側)には、マイクロ波を送受信 するアンテナ部 laが配置されるとともに、 PIRセンサ 4の前面側(図 4中では右側)に は、人体などからの赤外線を受光する焦電素子部 4aが配置されている。これらの背 面側には、侵入検知センサ 10内部を保温するための熱を発生するヒーター 3が取り 付けられている。 [0041] As shown in FIG. 4, in this intrusion detection sensor 40, the microwave sensor 1 and the PIR sensor 4 are arranged together in the center of the inside of the housing 2 (for example, the microphone mouth wave sensor on the front side of this figure). 1. PIR sensor 4 is placed adjacent to the back side. This is also called a combination sensor (or a combined sensor). By issuing a warning signal only when both the microwave sensor 1 and the PIR sensor 4 detect a detection target object such as a human body, It is intended to increase the reliability of operation by preventing false alarms as much as possible. [0042] On the front side of the microwave sensor 1 (right side in Fig. 4), an antenna unit la for transmitting and receiving microwaves is arranged, and on the front side of the PIR sensor 4 (right side in Fig. 4) A pyroelectric element unit 4a for receiving infrared rays from the human body is disposed. A heater 3 that generates heat for keeping the inside of the intrusion detection sensor 10 is attached to the back side.
[0043] 筐体 2内面には、マイクロ波に対してほとんど影響を与えない材質の断熱材 Mlを 密着して配置するとともに、この焦電素子部 4aの前面にある断熱材 Mlには、第 3実 施形態と同様に赤外線の光路を確保するための必要最小限の貫通穴 6が形成され ている。さらに、筐体 2における貫通穴 6に対応する部分には開口部が形成されてそ こにレンズ 5が配置されている。  [0043] A heat insulating material Ml made of a material that hardly affects microwaves is disposed in close contact with the inner surface of the housing 2 and the heat insulating material Ml on the front surface of the pyroelectric element portion 4a As in the case of the third embodiment, the minimum through-hole 6 required to secure the infrared optical path is formed. Further, an opening is formed in a portion of the housing 2 corresponding to the through hole 6, and the lens 5 is disposed there.
[0044] 以上で説明した第 4実施形態の構成によれば、マイクロウエーブセンサ 1のアンテ ナ部 laで送受信されるマイクロ波は、アンテナ部 laの前面にある断熱材 Mlの存在 による影響をほとんど受けないため、通常の場合と同様の検知感度を有する検知エリ ァ A1が形成される。また、検知エリア A4内部に存在する人体などからの赤外線は、 レンズ 5で屈折させられて焦電素子部 4aに到達する。筐体 2内面には貫通穴 6を除 いてほぼ隙間なく断熱材が配置されているので、ヒーター 3から発生した熱のうち筐 体 2を通して外部へ放射されるのは少量に留まり、少ない消費電力で効率的な保温 を行うことができる。これにより、マイクロウエーブセンサおよび PIRセンサを内蔵した 侵入検知センサにおいて、十分な検知感度を維持しつつ、周囲温度が極端に低くな るような条件下でも正常に動作する侵入検知センサの実現が可能となる。  [0044] According to the configuration of the fourth embodiment described above, the microwaves transmitted / received by the antenna unit la of the microwave sensor 1 are hardly affected by the presence of the heat insulating material Ml in front of the antenna unit la. Therefore, a detection area A1 having the same detection sensitivity as that in the normal case is formed. Infrared rays from a human body or the like existing in the detection area A4 are refracted by the lens 5 and reach the pyroelectric element unit 4a. Since the heat insulating material is arranged on the inner surface of the case 2 with almost no gap except for the through holes 6, only a small amount of the heat generated from the heater 3 is radiated to the outside through the case 2 and consumes less power. Can be used for efficient heat insulation. As a result, intrusion detection sensors with built-in microwave sensors and PIR sensors can achieve intrusion detection sensors that operate normally even under conditions where the ambient temperature is extremely low while maintaining sufficient detection sensitivity. It becomes.
[0045] なお、第 2実施形態と同様に、アンテナ部 laの前面方向にのみマイクロ波にほとん ど影響を与えない断熱材 Mlを配置し、それ以外には異なる種類の断熱材 M2を配 置してちょい。  [0045] As in the second embodiment, the heat insulating material Ml that hardly affects the microwaves is disposed only in the front direction of the antenna unit la, and other types of heat insulating materials M2 are disposed. Do it.
[0046] 本発明は、その主旨または主要な特徴力も逸脱することなぐ他のいろいろな形で 実施することができる。そのため、上述の実施形態はあらゆる点で単なる例示にすぎ ず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すも のであって、明細書本文にはなんら拘束されない。さらに、特許請求の範囲の均等 範囲に属する変形や変更は、全て本発明の範囲内のものである。 [0047] なお、この出願は、日本で 2005年 9月 9日に出願された特願 2005— 262194号 に基づく優先権を請求する。その内容はこれに言及することにより、本出願に組み込 まれるものである。また、本明細書に引用された文献は、これに言及することにより、 その全部が具体的に組み込まれるものである。 [0046] The present invention can be implemented in various other forms without departing from the gist or main characteristic power thereof. Therefore, the above-described embodiment is merely an example in all respects and should not be interpreted in a limited manner. The scope of the present invention is indicated by the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention. [0047] This application claims priority based on Japanese Patent Application No. 2005-262194 filed on September 9, 2005 in Japan. The contents of which are hereby incorporated by reference into this application. In addition, all references cited in this specification are specifically incorporated by reference.
産業上の利用可能性  Industrial applicability
[0048] 本発明は、検知エリア内への侵入者などを検出して警報を発する防犯センサなど に好適である。 The present invention is suitable for a security sensor that detects an intruder into a detection area and issues an alarm.

Claims

請求の範囲 The scope of the claims
[1] 検知エリアに向けてマイクロ波を送信し、この検知エリア内に存在する物体からの前 記マイクロ波の反射波を受信して、その物体が検知対象物体である力否かを判別す るマイクロウエーブセンサと、  [1] A microwave is transmitted to the detection area, and the reflected wave of the microwave from the object existing in the detection area is received to determine whether or not the object is a detection target object. A microwave sensor,
熱を発生する発熱手段と、  Heating means for generating heat;
これらのマイクロウエーブセンサおよび発熱手段を囲むとともに、筐体の内面のほ ぼすベてを覆う断熱材と  A heat insulating material that surrounds these microwave sensors and heating means and covers almost all of the inner surface of the housing
を備えることを特徴とする侵入検知センサ。  An intrusion detection sensor comprising:
[2] 請求項 1に記載の侵入検知センサにおいて、  [2] In the intrusion detection sensor according to claim 1,
前記断熱材は、比誘電率がほぼ 1であってマイクロ波に対してほとんど影響を与え な 、材質であることを特徴とする侵入検知センサ。  An intrusion detection sensor characterized in that the heat insulating material is a material having a relative dielectric constant of approximately 1 and hardly affecting microwaves.
[3] 請求項 2に記載の侵入検知センサにおいて、 [3] In the intrusion detection sensor according to claim 2,
前記断熱材は、発泡スチロールであることを特徴とする侵入検知センサ。  The insulative detection sensor, wherein the heat insulating material is a polystyrene foam.
[4] 請求項 1に記載の侵入検知センサにおいて、 [4] In the intrusion detection sensor according to claim 1,
前記断熱材のうち少なくとも前記マイクロウエーブセンサが送受信するマイクロ波の 経路上の部位には、比誘電率がほぼ 1であってマイクロ波に対してほとんど影響を与 えな 、材質を使用することを特徴とする侵入検知センサ。  At least a portion of the heat insulating material on the microwave path transmitted and received by the microwave sensor is made of a material having a relative dielectric constant of about 1 and hardly affecting the microwave. Intrusion detection sensor.
[5] 請求項 4に記載の侵入検知センサにおいて、 [5] In the intrusion detection sensor according to claim 4,
前記断熱材のうち少なくとも前記マイクロウエーブセンサが送受信するマイクロ波の 経路上の部位には、発泡スチロールを使用することを特徴とする侵入検知センサ。  An intrusion detection sensor using foamed polystyrene in at least a portion of the heat insulating material on a microwave path transmitted and received by the microwave sensor.
[6] 検知エリア内力もの赤外線を受け、周囲との温度差に基づいてこの検知エリア内の 検知対象物体の存在の有無を判別する受動型赤外線センサと、 [6] A passive infrared sensor that receives an infrared ray from within the detection area and determines the presence or absence of an object to be detected in the detection area based on a temperature difference from the surroundings.
熱を発生する発熱手段と、  Heating means for generating heat;
これらの受動型赤外線センサおよび発熱手段を囲むとともに、筐体の内面のほぼ すべてを覆う断熱材と  Insulation that surrounds these passive infrared sensors and heating means, and covers almost all of the inner surface of the housing
を備え、  With
この断熱材のうち前記受動型赤外線センサへの赤外線の経路上の部位には、赤 外線を通過させる貫通穴が形成されていることを特徴とする侵入検知センサ。 検知エリアに向けてマイクロ波を送信し、この検知エリア内に存在する物体からの前 記マイクロ波の反射波を受信して、その物体が検知対象物体である力否かを判別す るマイクロウエーブセンサと、 An intrusion detection sensor characterized in that a through hole through which an infrared ray passes is formed in a portion of the heat insulating material on the infrared path to the passive infrared sensor. Microwave that transmits microwaves toward the detection area, receives the reflected waves of the microwaves from the objects existing in the detection area, and determines whether the object is a detection target object A sensor,
前記検知エリア内からの赤外線を受け、周囲との温度差に基づいて前記検知エリ ァ内の検知対象物体の存在の有無を判別する受動型赤外線センサと、  A passive infrared sensor that receives infrared rays from the detection area and determines the presence / absence of an object to be detected in the detection area based on a temperature difference from the surroundings;
熱を発生する発熱手段と、  Heating means for generating heat;
これらのマイクロウエーブセンサ、受動型赤外線センサおよび発熱手段を囲むとと もに、筐体の内面のほぼすベてを覆う断熱材と  Surrounding these microwave sensors, passive infrared sensors, and heating means, and a heat insulating material covering almost all of the inner surface of the housing
を備え、 With
前記断熱材のうち少なくとも前記マイクロウエーブセンサが送受信するマイクロ波の 経路上の部位には、比誘電率がほぼ 1であってマイクロ波に対してほとんど影響を与 えない材質を使用するとともに、  At least a portion of the heat insulating material on the microwave path transmitted and received by the microwave sensor uses a material having a relative dielectric constant of approximately 1 and hardly affecting the microwave.
前記断熱材のうち前記受動型赤外線センサへの赤外線の経路上の部位には、赤 外線を通過させる貫通穴が形成されていることを特徴とする侵入検知センサ。  A penetration hole through which an infrared ray passes is formed in a part on the infrared path to the passive infrared sensor in the heat insulating material.
PCT/JP2006/317437 2005-09-09 2006-09-04 Intrusion detecting sensor WO2007029636A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005262194A JP2007071829A (en) 2005-09-09 2005-09-09 Crime prevention sensor
JP2005-262194 2005-09-09

Publications (1)

Publication Number Publication Date
WO2007029636A1 true WO2007029636A1 (en) 2007-03-15

Family

ID=37835754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317437 WO2007029636A1 (en) 2005-09-09 2006-09-04 Intrusion detecting sensor

Country Status (2)

Country Link
JP (1) JP2007071829A (en)
WO (1) WO2007029636A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203072A (en) * 1986-03-03 1987-09-07 Agency Of Ind Science & Technol Infrared sensor
JPS6339689U (en) * 1986-09-01 1988-03-15
JPH0260284U (en) * 1988-05-19 1990-05-02
JPH07202561A (en) * 1994-01-07 1995-08-04 Nippon Telegr & Teleph Corp <Ntt> Reflection mirror antenna
JPH07283566A (en) * 1994-04-14 1995-10-27 Nec Corp Device for expanding operating temperature range of electronic apparatus
JPH08122146A (en) * 1994-10-25 1996-05-17 Nippon Arefu:Kk Detecting element
JP2005274406A (en) * 2004-03-25 2005-10-06 Toto Ltd Object detector, and equipments for kitchens and sanitary spaces provided with object detector
JP2005308689A (en) * 2004-04-26 2005-11-04 Denso Corp Physical quantity sensor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203072A (en) * 1986-03-03 1987-09-07 Agency Of Ind Science & Technol Infrared sensor
JPS6339689U (en) * 1986-09-01 1988-03-15
JPH0260284U (en) * 1988-05-19 1990-05-02
JPH07202561A (en) * 1994-01-07 1995-08-04 Nippon Telegr & Teleph Corp <Ntt> Reflection mirror antenna
JPH07283566A (en) * 1994-04-14 1995-10-27 Nec Corp Device for expanding operating temperature range of electronic apparatus
JPH08122146A (en) * 1994-10-25 1996-05-17 Nippon Arefu:Kk Detecting element
JP2005274406A (en) * 2004-03-25 2005-10-06 Toto Ltd Object detector, and equipments for kitchens and sanitary spaces provided with object detector
JP2005308689A (en) * 2004-04-26 2005-11-04 Denso Corp Physical quantity sensor

Also Published As

Publication number Publication date
JP2007071829A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
EP2642822B1 (en) Infrared ray detecting apparatus and heating cooker having the same
US6441368B1 (en) Infrared/visible energy protection for millimeter wave bolometer antenna method and apparatus
US6335680B1 (en) Vehicle surroundings monitoring device
US7259658B2 (en) Passive infrared sensor and obstacle detection system used in the same
JP2005276656A (en) Tamper switch structure and crime-prevention sensor equipped therewith
EP3249623B1 (en) Intrusion detecting sensor and method
JP5360950B2 (en) lighting equipment
US20170088044A1 (en) Vehicle Occupant Safety System
KR20130016545A (en) Smart system using a infraed sensor and the method
WO2007029636A1 (en) Intrusion detecting sensor
KR20110082810A (en) Apparatus for security using plane fever passive infrared senser
CN114287170A (en) Domestic microwave device with microwave dome
US20080055079A1 (en) Alarm system with air pressure detector
JP2011117952A (en) Electronic device
WO2011097836A1 (en) Intrusion alarm device and method, safety guard alarm system and open-close system
US10122090B2 (en) Anntena configurations for wireless devices
US4843244A (en) Security sensors
GB2604854A (en) Passive infra red intruder detector
JP5895235B2 (en) machine
JP7511185B2 (en) Storage device and sensor unit
WO2022190775A1 (en) Heat insulating container and temperature management system
US9134181B2 (en) Flame detector
KR102594136B1 (en) Motion sensor and monitoring apparatus having the same
JP2006090720A (en) Crime prevention sensor system for windowpane
JP2005177223A (en) Toilet device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 06797362

Country of ref document: EP

Kind code of ref document: A1