JP2011117952A - Electronic device - Google Patents

Electronic device Download PDF

Info

Publication number
JP2011117952A
JP2011117952A JP2010242339A JP2010242339A JP2011117952A JP 2011117952 A JP2011117952 A JP 2011117952A JP 2010242339 A JP2010242339 A JP 2010242339A JP 2010242339 A JP2010242339 A JP 2010242339A JP 2011117952 A JP2011117952 A JP 2011117952A
Authority
JP
Japan
Prior art keywords
infrared
lens
human body
detection element
electronic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010242339A
Other languages
Japanese (ja)
Other versions
JP5834230B2 (en
Inventor
Naoyuki Nishikawa
尚之 西川
Takahiro Sono
孝浩 園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2010242339A priority Critical patent/JP5834230B2/en
Publication of JP2011117952A publication Critical patent/JP2011117952A/en
Application granted granted Critical
Publication of JP5834230B2 publication Critical patent/JP5834230B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Power Sources (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electronic device in which its body can be thinned down while detection area of thermal infrared detection element can be wide-angled, and also its design characteristics can be prevented from being spoiled. <P>SOLUTION: The electronic device 100 includes a display with the thermal infrared detection element 1 for detecting infrared radiated from a human body H placed inside the body 101. It has the thermal infrared detection element 1 comprising a pyroelectric element which detects infrared radiated from a human body H, and an infrared lens 3 comprising an aspheric lens arranged forward the thermal infrared detection element 1 to collect infrared rays into the light-receiving surface on the thermal infrared detection element 1. The aspheric lens composing the infrared lens 3 is a semiconductor lens, which includes an infrared entrance window 103 formed by decentrally-preparing a plurality of point-like pores 103 on forward area of the infrared lens 3 in the body 101 to allow incidence of infrared rays into the infrared lens 3. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電子機器に関するものである。   The present invention relates to an electronic device.

従来から、パーソナルコンピュータ(以下、パソコンと略称する)や端末装置などの入力装置として用いるキーボード、出力装置として用いるディスプレイ、ノート型パソコン、ワードプロセッサなどの各種の電子機器において、低消費電力化を図るために、人体検知センサを搭載し、人体検知センサの出力に基づいて低消費電力モード(起動に必要な機能以外を停止するスリープモードなど)と通常動作が可能なアクティブモード(通常動作モード)とを切り換えるパワーマネージメント機能を備えた電子機器が提案されている(例えば、特許文献1,2)。   Conventionally, in order to reduce power consumption in various electronic devices such as keyboards used as input devices such as personal computers (hereinafter referred to as personal computers) and terminal devices, displays used as output devices, notebook computers, word processors, and the like. In addition, a human body detection sensor is installed, and based on the output of the human body detection sensor, a low power consumption mode (such as a sleep mode that stops functions other than those required for startup) and an active mode in which normal operation is possible (normal operation mode) Electronic devices having a switching power management function have been proposed (for example, Patent Documents 1 and 2).

ここにおいて、上記特許文献1には、この種の電子機器として、図6(a),(b)に示すように、扁平な器体(ケース)101と、器体101の前壁の開口部101aから露出する複数個の押釦ハンドル(操作キー)112と、器体101内に収納され制御回路が設けられた回路基板(図示せず)と、上記制御回路からの制御信号をコンピュータ(図示せず)に送信する送信部(図示せず)と、器体101の前壁に形成された検知孔113に臨む形で器体101内に配置された微小空気圧変化検出センサからなる人体検知センサ123(図6(c)参照)が搭載されたワイヤレス式キーボードからなる電子機器100が開示されている。ここで、上記制御回路は、各押釦ハンドル112の操作に対応して制御信号を生成して出力するように構成されるとともに各押釦ハンドル112が一定時間操作されない場合に上記制御回路および送信部をスリープモードに切り換えて消費電力を低減するようになっており、人体検知センサ123からの検出信号に基づいて、上記制御回路および上記送信部をスリープモードからアクティブモードに移行させるように構成されている。   Here, in the above-mentioned Patent Document 1, as an electronic device of this type, as shown in FIGS. 6A and 6B, a flat vessel body (case) 101 and an opening on the front wall of the vessel body 101 are disclosed. A plurality of push button handles (operation keys) 112 exposed from 101a, a circuit board (not shown) housed in the vessel 101 and provided with a control circuit, and a control signal from the control circuit (not shown) And a human body detection sensor 123 comprising a micro air pressure change detection sensor disposed in the body 101 so as to face a detection hole 113 formed in the front wall of the body 101. An electronic device 100 including a wireless keyboard on which (see FIG. 6C) is mounted is disclosed. Here, the control circuit is configured to generate and output a control signal corresponding to the operation of each push button handle 112, and when the push button handle 112 is not operated for a predetermined time, The power consumption is reduced by switching to the sleep mode, and the control circuit and the transmission unit are shifted from the sleep mode to the active mode based on a detection signal from the human body detection sensor 123. .

また、上記特許文献2には、電子機器として、図7に示すように、上面側にキーボード104が設けられた扁平な器体(本体部)101と、キーボード104を覆う位置と開放する位置との間で回動自在となるように器体101に蝶着され蓋を兼ねるディスプレイ105とを備え、所定の検知エリアE’内の人体Hの存否を検出する人体検知センサ123’をディスプレイ105における表示部105aの周辺部に設けてなるノート型パソコンからなる電子機器100が開示されている。図7に示した構成の電子機器100では、人体検知センサ123’により人体Hの不在が検知されると直ちに通常動作モードから低消費電力モードへ移行し、人体検知センサ123’により人体Hが再び検知されると自動的に低消費電力モードから通常動作モードに戻るので、低消費電力化を図れるとともに使い勝手を良くすることができる。ここにおいて、上記特許文献2では人体検知センサ123’として、赤外線もしくは超音波を送受信して検知エリアE’内の人体Hの存否を検知するようにしている。   Further, in Patent Document 2, as an electronic device, as shown in FIG. 7, a flat body (main body) 101 provided with a keyboard 104 on the upper surface side, a position covering the keyboard 104, and a position where the keyboard 104 is opened The display 105 includes a display 105 that is hinged to the body 101 so as to be rotatable between the two and serves also as a lid, and a human body detection sensor 123 ′ that detects the presence or absence of the human body H in a predetermined detection area E ′. An electronic device 100 including a notebook personal computer provided in the periphery of the display unit 105a is disclosed. In the electronic device 100 having the configuration shown in FIG. 7, when the absence of the human body H is detected by the human body detection sensor 123 ′, the normal operation mode is immediately shifted to the low power consumption mode, and the human body H is again detected by the human body detection sensor 123 ′. When detected, the mode automatically returns from the low power consumption mode to the normal operation mode, so that the power consumption can be reduced and the usability can be improved. Here, in the above-mentioned Patent Document 2, as the human body detection sensor 123 ', infrared rays or ultrasonic waves are transmitted and received to detect the presence or absence of the human body H in the detection area E'.

特開平11−288351号公報Japanese Patent Laid-Open No. 11-288351 特開平10−207584号公報JP 10-207584 A

ところで、図6に示した構成の電子機器100は、人体検知センサ123において空気圧の変化を検出するために、器体101に、当該電子機器100の使用者が容易に視認できるような比較的大きな検知孔113を設ける必要があるので、デザイン性が損なわれてしまうことがあり、しかも、検知孔113に塵や埃などの異物が入り込んで人体検知センサ203による人体検知ができなくなる恐れがあった。また、図6に示した構成の電子機器100では、スリープモードからアクティブモードに戻すのに、使用者が検知孔113に手を近づける必要があり、使い勝手がよくなかった。また、図6に示した構成の電子機器100では、オフィスなどにおいて空調機などからの空気の流れの影響で人体検知センサ123の誤検知が起こる恐れがあった。   By the way, the electronic device 100 having the configuration shown in FIG. 6 is relatively large so that the user of the electronic device 100 can easily visually recognize the body 101 in order to detect a change in air pressure by the human body detection sensor 123. Since it is necessary to provide the detection hole 113, the design may be impaired, and there is a possibility that foreign objects such as dust or dust may enter the detection hole 113 and the human body detection sensor 203 cannot detect the human body. . Further, in the electronic device 100 having the configuration illustrated in FIG. 6, it is necessary for the user to bring his / her hand close to the detection hole 113 in order to return from the sleep mode to the active mode. Further, in the electronic device 100 having the configuration shown in FIG. 6, there is a possibility that erroneous detection of the human body detection sensor 123 may occur due to the influence of air flow from an air conditioner or the like in an office or the like.

また、図7の構成の電子機器100では、人体検知センサ123’において赤外線もしくは超音波を間欠的に送信する必要があり、人体検知センサ123’での消費電力が増加してしまう。また、図7に示した構成の電子機器100では、ディスプレイ105における表示部105aの周辺部に、人体検知センサ123’を配置するためのスペースを確保する必要があるので、デザイン性が損なわれてしまう。また、人体検知センサ123’において赤外線を送受信することで人体Hの存否を検出する場合には、照明光や太陽光などの外来ノイズの影響で誤検知が起こる恐れがあり、人体検知センサ123’において超音波を送受信することで人体Hの存否を検出する場合には、外来の音のノイズの影響で誤検知が起こる恐れがあった。   Further, in the electronic device 100 having the configuration shown in FIG. 7, it is necessary to intermittently transmit infrared rays or ultrasonic waves in the human body detection sensor 123 ', and power consumption in the human body detection sensor 123' increases. Further, in the electronic device 100 having the configuration shown in FIG. 7, since it is necessary to secure a space for arranging the human body detection sensor 123 ′ around the display unit 105 a in the display 105, the design is impaired. End up. Further, in the case where the presence or absence of the human body H is detected by transmitting and receiving infrared rays in the human body detection sensor 123 ′, there is a possibility that erroneous detection may occur due to the influence of external noise such as illumination light or sunlight, and the human body detection sensor 123 ′. In the case of detecting the presence or absence of the human body H by transmitting and receiving ultrasonic waves, there is a possibility that erroneous detection may occur due to the influence of external noise.

そこで、電子機器として、人体から放射される赤外線を検出する焦電素子などの熱型赤外線検出素子を用いた人体検知センサを器体内に配置した電子機器が考えられる。この場合、器体に、熱型赤外線検出素子の受光面に赤外線を入射させるためのピンホールレンズを形成することが考えられるが、使用者がピンホールレンズを容易に視認することができるので、ピンホールレンズによりデザイン性が損なわれてしまう。一方、ピンホールレンズの穴径(内径)を小さくすると、感度が低下してしまう。   Therefore, an electronic device in which a human body detection sensor using a thermal infrared detection element such as a pyroelectric element that detects infrared rays radiated from the human body is arranged in the body can be considered. In this case, it is conceivable to form a pinhole lens for causing the infrared rays to enter the light receiving surface of the thermal infrared detection element, but the user can easily see the pinhole lens. Pinhole lens will damage the design. On the other hand, if the hole diameter (inner diameter) of the pinhole lens is reduced, the sensitivity is lowered.

これに対して、熱型赤外線検出素子の前方に、熱型赤外線検出素子の受光面に赤外線を集光する光学系としてポリエチレンレンズからなる赤外線レンズを配置することが考えられる。しかしながら、ポリエチレンは、シリコンやゲルマニウムなどの赤外線透過材料に比べて屈折率が低く、赤外線の吸収率が大きいので、バックフォーカスが短く且つ明るい赤外線レンズを形成できない。また、ポリエチレンレンズからなる赤外線レンズを熱型赤外線検出素子の受光面の前方に配置した人体検知センサでは、赤外線レンズの屈折率が低いので、検知エリアを広くするために、赤外線レンズの開口径をシリコンレンズやゲルマニウムレンズなどの半導体レンズの開口径に比べて大きくする必要があり、開口径の増大に伴うレンズ厚みの増大により、感度が低下してしまい、しかも、バックフォーカスが長くなって器体の薄型化が難しくなってしまう。また、赤外線レンズとしてポリエチレンレンズを用いた場合には、ポリエチレンレンズを器体から露出する形で配置することも考えられるが、半導体レンズを用いた場合には、半導体レンズに傷が付いて破損するのを防止するために、半導体レンズの前方に、器体とは別途にポリエチレンにより形成された保護カバーを配置することが考えられるが、器体と保護カバーとの材質や色の違いなどにより、デザイン性が損なわれてしまうことがある。   On the other hand, it is conceivable to arrange an infrared lens made of a polyethylene lens as an optical system for condensing infrared rays on the light receiving surface of the thermal infrared detection element in front of the thermal infrared detection element. However, since polyethylene has a lower refractive index and a higher infrared absorption rate than infrared transmitting materials such as silicon and germanium, it cannot form a bright infrared lens with a short back focus. Moreover, in the human body detection sensor in which an infrared lens made of a polyethylene lens is arranged in front of the light receiving surface of the thermal infrared detection element, since the refractive index of the infrared lens is low, the aperture diameter of the infrared lens is increased in order to widen the detection area. It is necessary to make it larger than the aperture diameter of a semiconductor lens such as a silicon lens or a germanium lens, and the sensitivity decreases due to the increase in the lens thickness accompanying the increase in the aperture diameter. It will be difficult to reduce the thickness. In addition, when a polyethylene lens is used as an infrared lens, it may be possible to arrange the polyethylene lens so as to be exposed from the body, but when a semiconductor lens is used, the semiconductor lens is damaged and damaged. In order to prevent this, it is conceivable to arrange a protective cover made of polyethylene separately from the container in front of the semiconductor lens, but due to differences in the material and color of the container and the protective cover, Design may be impaired.

本発明は上記事由に鑑みて為されたものであり、その目的は、熱型赤外線検出素子の検知エリアの広角化を図りながらも器体の薄型化を図れ、しかも、デザイン性が損なわれるのを防止できる電子機器を提供することにある。   The present invention has been made in view of the above-mentioned reasons, and its purpose is to reduce the thickness of the body while widening the angle of the detection area of the thermal infrared detection element, and to impair the design. An object of the present invention is to provide an electronic device that can prevent the above-described problem.

本発明の電子機器は、人体から放射される赤外線を検出する熱型赤外線検出素子が器体内に配置された電子機器であって、人体から放射される赤外線を検出する焦電素子からなる前記熱型赤外線検出素子と、前記熱型赤外線検出素子の前方に配置され前記熱型赤外線検出素子の受光面に赤外線を集光する非球面レンズからなる赤外線レンズとを備え、前記赤外線レンズを構成する非球面レンズが半導体レンズであり、前記器体における前記赤外線レンズの前方部位に複数の点状の微細孔を分散して設けることで形成され赤外線を前記赤外線レンズに入射させる赤外線入射窓部を有することを特徴とする。   The electronic apparatus of the present invention is an electronic apparatus in which a thermal infrared detecting element for detecting infrared rays radiated from a human body is arranged in the body, and the heat comprising the pyroelectric element for detecting infrared rays radiated from the human body. A non-spherical lens comprising an aspherical lens that is arranged in front of the thermal infrared detection element and that is arranged on the light receiving surface of the thermal infrared detection element to collect infrared rays. The spherical lens is a semiconductor lens, and has an infrared incident window portion that is formed by dispersing a plurality of dot-like fine holes at a front portion of the infrared lens in the body and that allows infrared rays to enter the infrared lens. It is characterized by.

この電子機器において、前記赤外線入射窓部は、文字もしくは図形の一部を構成することが好ましい。   In this electronic apparatus, it is preferable that the infrared light incident window part constitutes a part of a character or a figure.

本発明の電子機器においては、熱型赤外線検出素子の検知エリアの広角化を図りながらも器体の薄型化を図れ、しかも、デザイン性が損なわれるのを防止できる。   In the electronic apparatus of the present invention, the body can be made thinner while widening the detection area of the thermal infrared detection element, and the design can be prevented from being impaired.

実施形態の電子機器に関し、(a)は概略説明図、(b)は要部正面図、(c)は要部概略断面図、(d)は動作説明図である。Regarding the electronic apparatus of the embodiment, (a) is a schematic explanatory view, (b) is a main part front view, (c) is a main part schematic sectional view, and (d) is an operation explanatory view. 同上における人体検知センサの回路ブロック図である。It is a circuit block diagram of the human body detection sensor in the same as the above. 同上における人体検知センサおよびその比較例の説明図である。It is explanatory drawing of the human body detection sensor in the same as the above, and its comparative example. 同上の他の構成例の要部正面図である。It is a principal part front view of the other structural example same as the above. 同上の別の構成例の要部概略断面図である。It is a principal part schematic sectional drawing of another structural example same as the above. 従来例の電子機器に関し、(a)は概略上面図、(b)は概略側面図、(c)は人体検知センサの概略斜視図である。(A) is a schematic top view, (b) is a schematic side view, (c) is a schematic perspective view of a human body detection sensor regarding the electronic device of a prior art example. 他の従来例の電子機器の概略説明図である。It is a schematic explanatory drawing of the electronic device of another conventional example.

本実施形態では、人体から放射される赤外線を検出する熱型赤外線検出素子が器体内に配置された電子機器の一例として、図1(a)に示すように、パソコンの周辺機器(出力装置)として用いるディスプレイからなる電子機器100を例示する。なお、電子機器100は、上述のディスプレイに限定するものではなく、例えば、ノート型パソコンや端末装置、キーボードなどの入力装置、テレビ、電話機、コピー機、インターホンなどでもよい。   In the present embodiment, as an example of an electronic device in which a thermal infrared detecting element for detecting infrared rays radiated from a human body is arranged in the body, a peripheral device (output device) of a personal computer as shown in FIG. The electronic device 100 which consists of a display used as will be exemplified. Electronic device 100 is not limited to the above-described display, and may be, for example, a notebook computer, a terminal device, an input device such as a keyboard, a television, a telephone, a copy machine, an interphone, or the like.

本実施形態の電子機器100は、図1に示すように、人体Hから放射される赤外線を検出する焦電素子からなる熱型赤外線検出素子1(図2参照)と、熱型赤外線検出素子1の前方に配置され熱型赤外線検出素子1の受光面に赤外線を集光する非球面レンズからなる赤外線レンズ3とを有した人体検知センサAを備え、さらに、器体100における赤外線レンズ3の前方部位に複数の点状の微細孔102を分散して設けることで形成され赤外線を赤外線レンズ3に入射させる赤外線入射窓部103を有している。ここで、電子機器100は、正面視における左側の上部において器体101の前壁の後面側に、人体検知センサAが配設されている。なお、電子機器100は、器体101の前壁が矩形枠状に形成されており、表示部105aが露出するようになっている。また、人体検知センサAは、プリント配線板よりなる配線基板(図示せず)に実装されており、当該配線基板が器体101に保持されている。   As shown in FIG. 1, the electronic device 100 according to the present embodiment includes a thermal infrared detection element 1 (see FIG. 2) including a pyroelectric element that detects infrared rays emitted from a human body H, and a thermal infrared detection element 1. And a human body detection sensor A having an infrared lens 3 composed of an aspherical lens for condensing infrared rays on the light receiving surface of the thermal infrared detection element 1, and in front of the infrared lens 3 in the body 100. It has an infrared incident window portion 103 that is formed by dispersing a plurality of dot-like fine holes 102 at a site and allows infrared rays to enter the infrared lens 3. Here, in the electronic device 100, the human body detection sensor A is disposed on the rear side of the front wall of the container body 101 in the upper part on the left side when viewed from the front. In the electronic device 100, the front wall of the container body 101 is formed in a rectangular frame shape, and the display unit 105a is exposed. The human body detection sensor A is mounted on a wiring board (not shown) made of a printed wiring board, and the wiring board is held by the container body 101.

本実施形態の電子機器100は、人体検知センサAの出力に基づいて低消費電力モード(起動に必要な機能以外を停止するスリープモードなど)と通常動作が可能なアクティブモード(通常動作モード)とを切り換えるパワーマネージメント機能を有するマイクロコンピュータなどからなる制御部(図示せず)を備えている。ここにおいて、上記制御部は、人体検知センサAにより人の不在が検知されると直ちに通常動作モードから低消費電力モードへ移行し、人体検知センサAにより人が再び検知されると自動的に低消費電力モードから通常動作モードに戻るので、低消費電力化を図れるとともに使い勝手を良くすることができる。   The electronic device 100 according to the present embodiment includes a low power consumption mode (such as a sleep mode in which functions other than those required for activation are stopped) and an active mode (normal operation mode) in which normal operation is possible based on the output of the human body detection sensor A. And a control unit (not shown) including a microcomputer having a power management function for switching between. Here, the control unit shifts from the normal operation mode to the low power consumption mode as soon as the absence of the person is detected by the human body detection sensor A, and automatically decreases when the human body detection sensor A detects the person again. Since the mode returns from the power consumption mode to the normal operation mode, the power consumption can be reduced and the usability can be improved.

人体検知センサAは、熱型赤外線検出素子1および熱型赤外線検出素子1の出力を信号処理する信号処理回路20(図2参照)が設けられた回路ブロック6と、回路ブロック6を収納するキャンパッケージからなるパッケージ140とを備えている。   The human body detection sensor A includes a circuit block 6 provided with a thermal infrared detection element 1 and a signal processing circuit 20 (see FIG. 2) that performs signal processing on the output of the thermal infrared detection element 1, and a canister that houses the circuit block 6. And a package 140 made of a package.

パッケージ140は、回路ブロック6が絶縁材料からなるスペーサ7を介して実装される金属製のステム141と、回路ブロック6を覆うようにステム141に固着(溶接)された金属製のキャップ142とを備え、回路ブロック6の適宜部位と電気的に接続される複数本(ここでは、3本)の端子ピン145がステム141を貫通する形で設けられている。ここにおいて、ステム141は、円盤状に形成され、キャップ142は、後面が開放された有底円筒状の形状に形成されており、後面がステム141により閉塞されている。なお、スペーサ7と回路ブロック6およびステム141とは接着剤により固着されている。   The package 140 includes a metal stem 141 on which the circuit block 6 is mounted via a spacer 7 made of an insulating material, and a metal cap 142 fixed (welded) to the stem 141 so as to cover the circuit block 6. And a plurality of (here, three) terminal pins 145 that are electrically connected to appropriate portions of the circuit block 6 are provided so as to penetrate the stem 141. Here, the stem 141 is formed in a disc shape, and the cap 142 is formed in a bottomed cylindrical shape whose rear surface is opened, and the rear surface is closed by the stem 141. The spacer 7 is fixed to the circuit block 6 and the stem 141 with an adhesive.

また、キャップ142において熱型赤外線検出素子1の前方に位置する前壁には、矩形状(本実施形態では、正方形状)の窓部142aが形成されており、熱型赤外線検出素子1の受光面へ赤外線を集光する光学系である上述の赤外線レンズ3が窓部142aを覆うようにキャップ142の内側から配設されている。   In addition, a rectangular (in this embodiment, square) window 142 a is formed on the front wall of the cap 142 positioned in front of the thermal infrared detection element 1, so that the thermal infrared detection element 1 receives light. The above-described infrared lens 3 which is an optical system for condensing infrared rays on the surface is disposed from the inside of the cap 142 so as to cover the window 142a.

回路ブロック6は、上述の信号処理回路が設けられるとともに、熱型赤外線検出素子1が実装されており、適宜のシールド板(図示せず)やシールド層(図示せず)が設けられている。   The circuit block 6 is provided with the above-described signal processing circuit, the thermal infrared detecting element 1 is mounted, and an appropriate shield plate (not shown) and a shield layer (not shown) are provided.

回路ブロック6は、上述の端子ピン145が挿通されるスルーホール(図示せず)が厚み方向に貫設されており、熱型赤外線検出素子1と信号処理回路20とが端子ピン145を介して電気的に接続されている。   The circuit block 6 has a through hole (not shown) through which the terminal pin 145 is inserted in the thickness direction, and the thermal infrared detection element 1 and the signal processing circuit 20 are connected via the terminal pin 145. Electrically connected.

上述の3本の端子ピン145のうち給電用の端子ピン145および信号出力用の端子ピン145は、絶縁性材料(ガラス)からなる封止部によりステム141とは電気的に絶縁され、グランド用の端子ピン145は、導電性材料からなる封止部によりステム141と電気的に接続され上述のシールド板と同電位(例えば、グランド電位)に設定される。   Of the three terminal pins 145 described above, the power supply terminal pin 145 and the signal output terminal pin 145 are electrically insulated from the stem 141 by a sealing portion made of an insulating material (glass), and are used for grounding. The terminal pin 145 is electrically connected to the stem 141 by a sealing portion made of a conductive material, and is set to the same potential as the above-described shield plate (for example, ground potential).

また、回路ブロック6には、熱型赤外線検出素子1の後述の素子エレメント12と回路ブロック6とを熱絶縁するための熱絶縁用孔67aが形成されているので、赤外線検出素子1の素子エレメント12と回路ブロック6との間に空気層が形成され、感度が高くなる。   The circuit block 6 is provided with a thermal insulation hole 67a for thermally insulating a later-described element element 12 of the thermal infrared detection element 1 and the circuit block 6, so that the element element of the infrared detection element 1 is formed. An air layer is formed between the circuit block 6 and the circuit block 6 to increase sensitivity.

上述の焦電素子からなる熱型赤外線検出素子1としては、図2中に示した等価回路で表せるクワッドタイプ素子であり、同一の焦電体基板に4つの素子エレメント(受光部)12が2×2のアレイ状に形成され、配線パターンにより適宜接続されており、2つの出力端子13を備えたものを用いている。   The thermal infrared detecting element 1 composed of the above pyroelectric elements is a quad type element that can be expressed by the equivalent circuit shown in FIG. 2, and two element elements (light receiving portions) 12 are arranged on the same pyroelectric substrate. It is formed in a × 2 array and is appropriately connected by a wiring pattern, and is provided with two output terminals 13.

上述の熱型赤外線検出素子1は、4つの素子エレメント12のうち対角位置にある素子エレメント12同士は自発分極の方向が同一となるように並列接続され、互いに異なる対角に位置する素子エレメント12同士は自発分極の方向が逆方向となるように並列接続されている。要するに、図2に示した構成の熱型赤外線検出素子1は、平面視の外周形状が矩形状であり、当該矩形状の1辺に沿った方向をX方向、当該X方向に直交する方向をY方向とすると、X方向に沿って並んで形成されている素子エレメント12同士の自発分極の方向が互いに逆方向となり、かつ、Y方向に沿って並んで形成されている素子エレメント12同士の自発分極の方向が互いに逆方向となっている。しかして、自発分極の方向が逆方向になるように並列接続されている素子エレメント12同士で、環境温度の変化などによる2つ素子エレメント12でのノイズ(暗雑音など)が相殺されるので、人体検知センサAでの誤検知を防止することができる。また、出力の極性の変化順によって各素子エレメント12のどれが先に検知したかを知ることも可能となる。   In the thermal infrared detecting element 1 described above, the element elements 12 at the diagonal positions of the four element elements 12 are connected in parallel so that the directions of the spontaneous polarization are the same, and the element elements are positioned at different diagonal positions. The 12 are connected in parallel so that the direction of spontaneous polarization is opposite. In short, the thermal infrared detecting element 1 having the configuration shown in FIG. 2 has a rectangular outer peripheral shape in plan view, the direction along one side of the rectangular shape is the X direction, and the direction orthogonal to the X direction is When the Y direction is assumed, the directions of spontaneous polarization of the element elements 12 formed side by side along the X direction are opposite to each other, and the directions of the element elements 12 formed side by side along the Y direction are spontaneous. The directions of polarization are opposite to each other. Therefore, noise (dark noise, etc.) in the two element elements 12 due to changes in the environmental temperature, etc. is offset between the element elements 12 connected in parallel so that the direction of spontaneous polarization is reversed. It is possible to prevent erroneous detection by the human body detection sensor A. It is also possible to know which element element 12 has been detected first by the change order of the polarity of the output.

また、信号処理回路20は、図2に示すように、熱型赤外線検出素子1から出力される出力電流(焦電電流)を電圧信号に変換する電流電圧変換回路22と、電流電圧変換回路22により変換された電圧信号のうち所定の周波数帯域の電圧を増幅する電圧増幅回路(バンドパスアンプ)23と、電圧増幅回路23で増幅された電圧信号を適宜設定したしきい値と比較し電圧信号がしきい値を越えた場合に検知信号を出力する検知回路24と、検知回路24の検知信号を所定の人体検出信号として出力する出力回路25とを備えている。   As shown in FIG. 2, the signal processing circuit 20 includes a current-voltage conversion circuit 22 that converts an output current (pyroelectric current) output from the thermal infrared detection element 1 into a voltage signal, and a current-voltage conversion circuit 22. A voltage amplifier circuit (bandpass amplifier) 23 that amplifies a voltage in a predetermined frequency band among the voltage signals converted by the above-described method, and compares the voltage signal amplified by the voltage amplifier circuit 23 with a threshold value set as appropriate. Is provided with a detection circuit 24 that outputs a detection signal when the threshold value exceeds a threshold value, and an output circuit 25 that outputs the detection signal of the detection circuit 24 as a predetermined human body detection signal.

また、赤外線レンズ3は、熱型赤外線検出素子1の受光面へ赤外線を集光するレンズ部3aと当該レンズ部3aの周部から外方に延設されキャップ142における窓部142aの周部に固着されるフランジ部3bとを有している。   The infrared lens 3 includes a lens portion 3 a that collects infrared rays on the light receiving surface of the thermal infrared detection element 1, and extends outward from the peripheral portion of the lens portion 3 a. And a flange portion 3b to be fixed.

上述の赤外線レンズ3は、シリコンレンズからなる半導体レンズであり、レンズ部3aが、平凸型の非球面レンズの形状に形成されており、レンズ部3a以外の部位であるフランジ部3bの外周形状が矩形状(本実施形態では、正方形状)に形成されている。   The infrared lens 3 described above is a semiconductor lens made of a silicon lens, the lens portion 3a is formed in the shape of a plano-convex aspheric lens, and the outer peripheral shape of the flange portion 3b, which is a part other than the lens portion 3a. Is formed in a rectangular shape (in this embodiment, a square shape).

また、上述の人体検知センサAでは、キャップ142の窓部142aが矩形状に開口されるとともに、赤外線レンズ3のフランジ部3bに、キャップ142における窓部142aの内周面および周部に位置決めされる段差部3cが形成されており、赤外線レンズ3のフランジ部3bにおける段差部3cを上記接合材料からなる接合部68を介してキャップ142に固着してある。したがって、赤外線レンズ3と熱型赤外線検出素子1との平行度を高めることができ、赤外線レンズ3の光軸方向における赤外線レンズ3と熱型赤外線検出素子1との距離精度を高めることができるとともに、赤外線レンズ3の光軸と熱型赤外線検出素子1の受光面の光軸との合わせ精度を高めることができる。また、上述の人体検知センサAでは、赤外線レンズ3のレンズ部3aとして球面レンズよりも短焦点で薄型の非球面レンズを形成しているから、人体検知センサA全体の薄型化(小型化)を図れる。   Further, in the human body detection sensor A described above, the window 142a of the cap 142 is opened in a rectangular shape, and is positioned on the flange portion 3b of the infrared lens 3 on the inner peripheral surface and the peripheral portion of the window 142a in the cap 142. The step portion 3c is formed, and the step portion 3c in the flange portion 3b of the infrared lens 3 is fixed to the cap 142 via the joint portion 68 made of the above-mentioned joining material. Therefore, the parallelism between the infrared lens 3 and the thermal infrared detection element 1 can be increased, and the distance accuracy between the infrared lens 3 and the thermal infrared detection element 1 in the optical axis direction of the infrared lens 3 can be increased. The alignment accuracy between the optical axis of the infrared lens 3 and the optical axis of the light receiving surface of the thermal infrared detector 1 can be increased. Further, in the human body detection sensor A described above, a thin aspherical lens having a shorter focal point than the spherical lens is formed as the lens portion 3a of the infrared lens 3, so that the human body detection sensor A as a whole is made thinner (smaller). I can plan.

ところで、シリコンレンズは、ポリエチレンレンズに比べて屈折率が高く短焦点であるため(なお、シリコンの屈折率は3.42、ポリエチレンの屈折率は1.53)、図3(a)に示すシリコンレンズからなる赤外線レンズ3の開口径と同図(b)に示すポリエチレンレンズからなる赤外線レンズ3’の開口径とを同じとした場合、熱型赤外線検出素子1から同じ距離だけ離れた場所での検知エリアを広くすることができる(なお、図3(a),(b)中の一点鎖線は、熱型赤外線検出素子1の受光面の中心と赤外線レンズ3,3’の中心とを通る光軸を示し、細い実線は赤外線の進行経路を示している)。   By the way, since the silicon lens has a higher refractive index than that of the polyethylene lens and has a short focal point (note that the refractive index of silicon is 3.42 and the refractive index of polyethylene is 1.53), the silicon lens shown in FIG. When the opening diameter of the infrared lens 3 made of a lens and the opening diameter of the infrared lens 3 ′ made of a polyethylene lens shown in FIG. 5B are the same, the distance from the thermal infrared detecting element 1 is the same distance. The detection area can be widened (note that the alternate long and short dash line in FIGS. 3A and 3B indicates the light passing through the center of the light receiving surface of the thermal infrared detector 1 and the centers of the infrared lenses 3 and 3 ′. The axis shows the axis, and the thin solid line shows the path of infrared radiation).

ここで、赤外線レンズ3,3’の焦点距離(バックフォーカス)をf〔mm〕、開口径をD〔mm〕とすれば、赤外線レンズ3,3’のFナンバー(F値)は、F=f/Dで求められるが、シリコンレンズからなる赤外線レンズ3は、ポリエチレンレンズからなる赤外線レンズ3’に比べて、Fナンバーが小さい明るいレンズとすることができる。なお、本実施形態では、シリコンレンズからなる赤外線レンズ3を用いているので、例えば、レンズ厚みを0.3mmとしながらも、焦点距離fが1mm、開口径が3mmで、F値が0.33の明るいレンズとすることができる。ただし、これらの数値は一例であり、特に限定するものではない。   Here, if the focal length (back focus) of the infrared lenses 3 and 3 ′ is f [mm] and the aperture diameter is D [mm], the F number (F value) of the infrared lenses 3 and 3 ′ is F = Although calculated | required by f / D, the infrared lens 3 which consists of a silicon lens can be used as a bright lens with a small F number compared with infrared lens 3 'which consists of a polyethylene lens. In this embodiment, since the infrared lens 3 made of a silicon lens is used, for example, while the lens thickness is 0.3 mm, the focal length f is 1 mm, the aperture diameter is 3 mm, and the F value is 0.33. Can be a bright lens. However, these numerical values are examples and are not particularly limited.

ところで、本実施形態の電子機器100は、上述のように、器体101における赤外線レンズ3の前方部位に複数の点状の微細孔102を分散して設けることで形成され赤外線を赤外線レンズ3に入射させる赤外線入射窓部103を有している。ここにおいて、点状の微細孔102は、赤外線レンズ3の有効口径(以下、開口径と称する)よりも内径が十分に小さな孔であり、当該電子機器100を使用する際に目視(肉眼)により孔であると視認できないように内径を設定してある。本実施形態では、赤外線レンズ3のレンズ部3aの直径が開口径となり、レンズ部3aの開口径を3mmに設定し、微細孔102の寸法に関しては、例えば、内径を0.1mm〜0.3mm程度の範囲で設定し、長さを0.1mm〜0.5mm程度の範囲で設定すればよい。微細孔102の内径の最小値(最小径)は、熱型赤外線検出素子1での検出対象の赤外線の波長以上であることが望ましい。人体検知センサAの場合、熱型赤外線検出素子1での検出対象の赤外線の中心波長は10μm程度であるため、微細孔102の最小径は10μmであることが望ましい。一方、微細孔102の内径の最大値(最大径)は、電子機器100を通常使用する状態で微細孔102が目立ちにくい径である。ここにおいて、30cm程度離れたところから意識せずに眺めた場合に目立ちにくい孔の内径が0.3mm程度であるので、通常は30cm程度離れたところから眺めて使用するような電子機器100の場合の微細孔102の最大径は、0.3mm程度である。   By the way, as described above, the electronic device 100 according to the present embodiment is formed by dispersing a plurality of dot-like microscopic holes 102 in the front portion of the infrared lens 3 in the body 101, and forming infrared rays into the infrared lens 3. It has an infrared incident window 103 for incidence. Here, the dot-like fine hole 102 is a hole whose inner diameter is sufficiently smaller than an effective diameter (hereinafter referred to as an opening diameter) of the infrared lens 3, and is visually (when visually observed) when the electronic device 100 is used. The inner diameter is set so that it cannot be visually recognized as a hole. In the present embodiment, the diameter of the lens portion 3a of the infrared lens 3 is the opening diameter, the opening diameter of the lens portion 3a is set to 3 mm, and the inner diameter is set to 0.1 mm to 0.3 mm, for example. The length may be set within a range of about 0.1 mm to 0.5 mm. It is desirable that the minimum value (minimum diameter) of the inner diameter of the fine hole 102 is equal to or greater than the wavelength of the infrared ray to be detected by the thermal infrared detection element 1. In the case of the human body detection sensor A, since the center wavelength of the infrared ray to be detected by the thermal infrared detecting element 1 is about 10 μm, it is desirable that the minimum diameter of the fine hole 102 is 10 μm. On the other hand, the maximum value (maximum diameter) of the inner diameter of the fine hole 102 is a diameter in which the fine hole 102 is not noticeable in a state where the electronic device 100 is normally used. Here, since the inner diameter of the hole, which is not noticeable when viewed from a distance of about 30 cm unconsciously, is about 0.3 mm, the electronic device 100 that is normally viewed from a distance of about 30 cm is used. The maximum diameter of the fine hole 102 is about 0.3 mm.

また、上述の微細孔102は、赤外線レンズ3の中心と熱型赤外線検出素子1の受光面の中心とを結ぶ直線(光軸方向)に沿って形成してある。   The fine holes 102 are formed along a straight line (in the optical axis direction) connecting the center of the infrared lens 3 and the center of the light receiving surface of the thermal infrared detector 1.

本実施形態における赤外線入射窓部103は、器体101に対して、単位格子が正方形の仮想的な2次元正方格子の各格子点に対応する各部位に点状の微細孔(円孔)102を形成してあるが、単位格子は正方形に限らず、例えば正三角形でもよく、この場合には単位格子が正三角形の仮想的な2次元三角格子の各格子点に対応する部位に微細孔102を形成すればよい。   In the infrared incident window 103 in the present embodiment, with respect to the container body 101, dot-like fine holes (circular holes) 102 are formed at portions corresponding to lattice points of a virtual two-dimensional square lattice having a square unit lattice. However, the unit cell is not limited to a square, and may be, for example, an equilateral triangle. In this case, the unit cell is a micropore 102 at a portion corresponding to each lattice point of a virtual two-dimensional triangular lattice having an equilateral triangle. May be formed.

ところで、ポリエチレンレンズからなる赤外線レンズ3’を用いる場合、検知エリアの拡大を図るために赤外線レンズ3’の開口径の拡大を図ると、赤外線レンズ3’の厚みが増えて器体101の薄型化が制限されるとともに、微細孔102の数が増えて見栄えが悪くなってしまう懸念があり、しかも、ポリエチレンはシリコンやゲルマニウムに比べて赤外線の吸収率が高いので、人体検知センサAの感度が低下してしまう。   By the way, when the infrared lens 3 ′ made of a polyethylene lens is used, if the aperture diameter of the infrared lens 3 ′ is increased in order to increase the detection area, the thickness of the infrared lens 3 ′ increases and the body 101 becomes thinner. In addition, there is a concern that the number of the micropores 102 may increase and the appearance may deteriorate, and polyethylene has a higher infrared absorption rate than silicon and germanium, and thus the sensitivity of the human body detection sensor A is reduced. Resulting in.

これに対して、本実施形態では、熱型赤外線検出素子1へ赤外線を集光する光学系として、シリコンレンズからなる赤外線レンズ3を用いているので、微細孔102の数を少なくでき、デザイン性が損なわれるのを防止することができる。ここにおいて、微細孔102を設けることで像全体が暗くなるが、結像状態は変化しない。   On the other hand, in the present embodiment, since the infrared lens 3 made of a silicon lens is used as the optical system for condensing infrared rays on the thermal infrared detection element 1, the number of the fine holes 102 can be reduced, and the design property is improved. Can be prevented from being damaged. Here, the entire image is darkened by providing the fine holes 102, but the image formation state does not change.

以上説明した本実施形態の電子機器100では、赤外線レンズ3を構成する非球面レンズが半導体レンズであり、器体101における赤外線レンズ3の前方部位に複数の点状の微細孔102を分散して設けることで形成され赤外線を赤外線レンズ3に入射させる赤外線入射窓部103を有するので、熱型赤外線検出素子1の検知エリアの広角化(つまり、像倍率の増大)を図りながらも器体101の薄型化を図れ、しかも、デザイン性が損なわれるのを防止できる。   In the electronic apparatus 100 according to the present embodiment described above, the aspherical lens constituting the infrared lens 3 is a semiconductor lens, and a plurality of dot-like microscopic holes 102 are dispersed in the front portion of the infrared lens 3 in the body 101. Since it has the infrared incident window part 103 which inject | emits and forms infrared rays inject into the infrared lens 3, providing the wide angle (that is, increase of image magnification) of the detection area of the thermal-type infrared detection element 1, it is a thing of the body 101 The thickness can be reduced, and the design can be prevented from being damaged.

また、本実施形態では、器体101の構成要素である前壁を含む前カバーが金属部材を(例えば、Al部材など)用いて形成されており、微細孔102を周知の金属加工技術により容易に寸法精度良く形成することができる。ここで、上記金属部材として、少なくとも赤外線レンズ3側とは反対の表面側(前面側)に陽極酸化皮膜が形成されたものを用いれば、表面に光沢がある場合に比べて、微細孔102がより目立ちにくくなる。   In this embodiment, the front cover including the front wall, which is a constituent element of the container body 101, is formed using a metal member (for example, an Al member), and the fine holes 102 can be easily formed by a known metal processing technique. Can be formed with high dimensional accuracy. Here, if the metal member having an anodized film formed on at least the surface side (front side) opposite to the infrared lens 3 side is used, the fine holes 102 are formed as compared with the case where the surface is glossy. Less noticeable.

ただし、陽極酸化皮膜を形成した場合には、封孔処理を施して耐汚染性、耐食性を改善することが好ましく、例えば、陽極酸化処理後、更に塗装を施して耐食性を向上させた陽極酸化塗装複合膜とすることが好ましい。また、器体101の材料は金属に限らず、樹脂でもよい。   However, when an anodized film is formed, it is preferable to improve the anti-contamination and corrosion resistance by performing a sealing treatment. For example, after anodizing, the coating is further applied to improve the corrosion resistance. A composite membrane is preferred. Further, the material of the container body 101 is not limited to metal, and may be resin.

ところで、図4に示すように、文字(図示例では、「P」)を微細孔102の集合体により表すようにし、赤外線入射窓部103が、当該文字の一部を構成するようにすれば、器体101に文字を設ける場合に、文字とは別途に赤外線入射窓部103を設ける場合に比べて、デザイン性を向上させることが可能となる。ここで、赤外線入射窓部103は、文字の一部を構成する場合に限らず、微細孔102の集合体により表す図形の一部を構成するようにしてもよい。   By the way, as shown in FIG. 4, if a character (“P” in the illustrated example) is represented by an aggregate of fine holes 102, the infrared incident window 103 forms a part of the character. When the character is provided on the container 101, the design can be improved as compared with the case where the infrared incident window 103 is provided separately from the character. Here, the infrared incident window portion 103 is not limited to constituting a part of a character, and may constitute a part of a figure represented by an aggregate of the fine holes 102.

ところで、上述の電子機器100において、熱型赤外線検出素子1を、表面実装型のパッケージに収納するようにすれば、熱型赤外線検出素子1がキャンパッケージからなるパッケージ140に収納されている場合に比べて、器体101のより一層の薄型化が可能となる。   By the way, in the above-described electronic device 100, if the thermal infrared detection element 1 is accommodated in a surface-mount type package, the thermal infrared detection element 1 is accommodated in a package 140 made of a can package. In comparison, the vessel body 101 can be further reduced in thickness.

ところで、電子機器100が、オフィスなどで使用されるディスプレイの場合、図5に示すように、熱型赤外線検出素子1の受光面の斜め下方に赤外線レンズ3を配置し、微細孔102を赤外線レンズ3の中心と熱型赤外線検出素子1の受光面の中心とを結ぶ直線(光軸方向)に沿って形成すれば、使用者以外の人を検知する可能性を低減できる。   By the way, when the electronic device 100 is a display used in an office or the like, as shown in FIG. 5, the infrared lens 3 is disposed obliquely below the light receiving surface of the thermal infrared detection element 1, and the fine holes 102 are formed in the infrared lens. If it forms along the straight line (optical axis direction) which connects the center of 3 and the center of the light-receiving surface of the thermal type infrared detection element 1, possibility of detecting persons other than a user can be reduced.

なお、上記実施形態において説明した図2の熱型赤外線検出素子1を構成する焦電素子は、焦電体基板を用いて形成したものであるが、これに限らず、例えば、マイクロマシニング技術および焦電体薄膜の形成技術などを利用して形成したチップでもよい。   The pyroelectric element constituting the thermal infrared detecting element 1 of FIG. 2 described in the above embodiment is formed using a pyroelectric substrate, but is not limited to this, for example, micromachining technology and A chip formed using a pyroelectric thin film forming technique may be used.

E 検知エリア
H 人体
1 熱型赤外線検出素子
3 赤外線レンズ
100 電子機器
101 器体
102 微細孔
103 赤外線入射窓部
E Detection Area H Human Body 1 Thermal Infrared Detector 3 Infrared Lens 100 Electronic Equipment 101 Body 102 Micro Hole 103 Infrared Incidence Window

Claims (2)

人体から放射される赤外線を検出する熱型赤外線検出素子が器体内に配置された電子機器であって、人体から放射される赤外線を検出する焦電素子からなる前記熱型赤外線検出素子と、前記熱型赤外線検出素子の前方に配置され前記熱型赤外線検出素子の受光面に赤外線を集光する非球面レンズからなる赤外線レンズとを備え、前記赤外線レンズを構成する非球面レンズが半導体レンズであり、前記器体における前記赤外線レンズの前方部位に複数の点状の微細孔を分散して設けることで形成され赤外線を前記赤外線レンズに入射させる赤外線入射窓部を有することを特徴とする電子機器。   A thermal infrared detection element for detecting infrared rays emitted from the human body is an electronic device disposed in the body, the thermal infrared detection element comprising a pyroelectric element for detecting infrared rays emitted from the human body, and An infrared lens composed of an aspheric lens arranged in front of the thermal infrared detection element and condensing infrared rays on a light receiving surface of the thermal infrared detection element, and the aspheric lens constituting the infrared lens is a semiconductor lens An electronic apparatus comprising: an infrared incident window portion that is formed by dispersing a plurality of dot-like fine holes in a front portion of the infrared lens in the vessel body and that allows infrared rays to enter the infrared lens. 前記赤外線入射窓部は、文字もしくは図形の一部を構成することを特徴とする請求項1記載の電子機器。   The electronic device according to claim 1, wherein the infrared incident window part constitutes a part of a character or a figure.
JP2010242339A 2009-10-29 2010-10-28 Electronics Expired - Fee Related JP5834230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010242339A JP5834230B2 (en) 2009-10-29 2010-10-28 Electronics

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009249296 2009-10-29
JP2009249296 2009-10-29
JP2010242339A JP5834230B2 (en) 2009-10-29 2010-10-28 Electronics

Publications (2)

Publication Number Publication Date
JP2011117952A true JP2011117952A (en) 2011-06-16
JP5834230B2 JP5834230B2 (en) 2015-12-16

Family

ID=44283430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010242339A Expired - Fee Related JP5834230B2 (en) 2009-10-29 2010-10-28 Electronics

Country Status (1)

Country Link
JP (1) JP5834230B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102854769A (en) * 2011-06-27 2013-01-02 富士施乐株式会社 Operation device, human detecting device and controlling device
JP2013083527A (en) * 2011-10-07 2013-05-09 Panasonic Corp Instrument
JP2014089164A (en) * 2012-10-31 2014-05-15 Asahi Kasei Electronics Co Ltd Infrared detector, and display unit and personal computer having the same
JP2014182022A (en) * 2013-03-19 2014-09-29 Asahi Kasei Electronics Co Ltd Infrared-ray detection device and display provided with the same, and personal computer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843967U (en) * 1971-09-27 1973-06-08
JPS5756770A (en) * 1980-09-22 1982-04-05 Hitachi Ltd Human body detector
JP2006044106A (en) * 2004-08-05 2006-02-16 Munekata Co Ltd Displaying method of logo on synthetic resin molding with fine hole aggregate face, video equipment, acoustic equipment, and punching board with logo displayed by the method
JP2007292721A (en) * 2005-11-25 2007-11-08 Matsushita Electric Works Ltd Semiconductor lens, infrared detector using it, and method of manufacturing semiconductor lens
JP2008128913A (en) * 2006-11-22 2008-06-05 Matsushita Electric Works Ltd Infrared detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843967U (en) * 1971-09-27 1973-06-08
JPS5756770A (en) * 1980-09-22 1982-04-05 Hitachi Ltd Human body detector
JP2006044106A (en) * 2004-08-05 2006-02-16 Munekata Co Ltd Displaying method of logo on synthetic resin molding with fine hole aggregate face, video equipment, acoustic equipment, and punching board with logo displayed by the method
JP2007292721A (en) * 2005-11-25 2007-11-08 Matsushita Electric Works Ltd Semiconductor lens, infrared detector using it, and method of manufacturing semiconductor lens
JP2008128913A (en) * 2006-11-22 2008-06-05 Matsushita Electric Works Ltd Infrared detector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102854769A (en) * 2011-06-27 2013-01-02 富士施乐株式会社 Operation device, human detecting device and controlling device
JP2013033191A (en) * 2011-06-27 2013-02-14 Fuji Xerox Co Ltd Image forming apparatus, and human detector and controller therefor
US8768196B2 (en) 2011-06-27 2014-07-01 Fuji Xerox Co., Ltd. Operation device, human detecting device and controlling device
JP2013083527A (en) * 2011-10-07 2013-05-09 Panasonic Corp Instrument
JP2014089164A (en) * 2012-10-31 2014-05-15 Asahi Kasei Electronics Co Ltd Infrared detector, and display unit and personal computer having the same
JP2014182022A (en) * 2013-03-19 2014-09-29 Asahi Kasei Electronics Co Ltd Infrared-ray detection device and display provided with the same, and personal computer

Also Published As

Publication number Publication date
JP5834230B2 (en) 2015-12-16

Similar Documents

Publication Publication Date Title
CN109791612B (en) Fingerprint identification device and electronic equipment
EP2974046B1 (en) Portable device with temperature sensing
US8981302B2 (en) Infrared sensors for electronic devices
KR102507742B1 (en) Electronic device with display
TWI480598B (en) Optical detection device and apparatus using the same
CN111401243A (en) Optical sensor module and electronic device thereof
CN109299631A (en) A kind of screen and terminal
EP2938979B1 (en) Mems infrared sensor including a plasmonic lens
JP5834230B2 (en) Electronics
CN108664854A (en) Fingerprint imaging module and electronic equipment
US9423303B2 (en) MEMS infrared sensor including a plasmonic lens
JP2007101513A (en) Infrared sensor
CN207317943U (en) Pyroelectric infrared sensor device
KR20140042633A (en) Infrared sensor module
US20130006578A1 (en) Device and Method for Detecting Light Reflection and Electronic Device Using the Same
WO2022193840A1 (en) Electronic device and temperature measurement method for electronic device
WO2018101001A1 (en) Infrared sensor
CN108509821A (en) Fingerprint imaging module and electronic equipment
JP5895235B2 (en) machine
CN109684983B (en) Fingerprint monitoring device and electronic equipment
CN104051488A (en) Optical sensor
US20220342163A1 (en) Optical components for electronic devices
US20090102648A1 (en) Motion detector
JP2018004490A (en) Infrared ray detection device
EP4006598A1 (en) Optical components for electronic devices

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150605

LAPS Cancellation because of no payment of annual fees