WO2007029586A1 - Method for manufacturing organic electroluminescent device - Google Patents

Method for manufacturing organic electroluminescent device Download PDF

Info

Publication number
WO2007029586A1
WO2007029586A1 PCT/JP2006/317168 JP2006317168W WO2007029586A1 WO 2007029586 A1 WO2007029586 A1 WO 2007029586A1 JP 2006317168 W JP2006317168 W JP 2006317168W WO 2007029586 A1 WO2007029586 A1 WO 2007029586A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective film
organic
manufacturing
film
forming
Prior art date
Application number
PCT/JP2006/317168
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuo Genda
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to JP2007534360A priority Critical patent/JPWO2007029586A1/en
Publication of WO2007029586A1 publication Critical patent/WO2007029586A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations

Definitions

  • the present invention relates to a method for manufacturing an organic EL element in which a protective film is formed on an organic electoluminescence (EL) element.
  • An organic EL element is an element that emits light when an electric current is supplied between electrodes, in which a light-emitting layer having a thin film strength of an organic compound is sandwiched between electrodes on a substrate such as glass.
  • Organic EL elements are easily deteriorated by oxygen and moisture, and their presence shortens the product life. Therefore, as a protective film (also called a barrier film) immediately after forming the organic EL element from the viewpoint of reliability, It is desirable to cover it with a stable protective film against oxygen and water to completely block it from the outside air.
  • the protective film include a metal nitride film and an oxide film. In the case of a so-called top emission configuration in which the light emission of the organic EL element is extracted in a direction that transmits the protective film force, a protective film with high transparency is required.
  • the protective film is formed by using a thin film manufacturing method such as an electron beam method, a sputtering method, a plasma CVD method, or an ion plating method.
  • a thin film manufacturing method such as an electron beam method, a sputtering method, a plasma CVD method, or an ion plating method.
  • the protective film has a single-layer structure, so that the effect on moisture permeation in a high-temperature and high-humidity environment is insufficient, and the surface of the organic EL element is At the protrusions and steps, cracks were generated in the protective film, and the resistance to moisture and oxygen was insufficient.
  • a protective film a technique is disclosed in which a sheet-like sealing member in which a protective film is formed on an organic EL element is bonded (for example, see Patent Document 3).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-332567
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-119138
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-4063
  • the present invention has been made in view of the above problems, and an object of the present invention is an organic EL element in which the manufacturing load at the time of forming a protective film without reducing the protection resistance against moisture and oxygen is reduced. It is to provide a manufacturing method.
  • a first protective film was formed in a vacuum environment in accordance with a manufacturing method of an organic electoluminescence element that forms a protective film on an organic electroluminescence element formed on a substrate. Then, the manufacturing method of the organic electroluminescent luminescence element characterized by forming a 2nd protective film in atmospheric pressure environment.
  • a protective film is formed in advance on the resin film.
  • FIG. 1 is a schematic diagram showing a configuration of an organic EL element 10.
  • FIG. 2 is a block diagram showing a manufacturing process when forming a protective film.
  • FIG. 3 is a schematic diagram of a magnetron sputtering apparatus for forming a first protective film.
  • FIG. 4 is a schematic view of a laminating apparatus for forming a second protective film.
  • FIG. 5 is a schematic cross-sectional view of an organic EL device sealed with a glass material sealing material.
  • FIG. 1 is a schematic diagram showing a configuration of the organic EL element 10.
  • an organic EL element 10 is an element in which an anode 12, an organic layer 13, and a cathode 14 are stacked on a substrate 11.
  • the anode 12 is a transparent electrode made of a conductive material such as indium tin oxide (ITO), indium zinc oxide (IZO), gold, tin oxide, and zinc oxide having a work function of 4 eV or more and a transmittance of 40% or more. is there.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • gold gold
  • tin oxide and zinc oxide having a work function of 4 eV or more and a transmittance of 40% or more. is there.
  • the organic layer 13 is composed of a single layer or a plurality of layers containing an organic compound or complex of several nm to several ⁇ m including the light emitting layer.
  • it is typically an element composed of three layers, such as a hole transport layer in contact with the anode, a light emitting layer containing a light emitting material, and an electron transport layer in contact with the cathode, a lithium fluoride layer, an inorganic metal salt layer, Alternatively, a layer containing them may be arranged at an arbitrary position.
  • the cathode 14 is a reflective electrode made of a metal material having a work function of less than 4 eV and a reflectivity of 60% or more, such as ananolium, sodium, lithium, magnesium, silver, and calcium.
  • the substrate 11 may be a substrate for a solid substrate such as glass or quartz, or polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyether sulphone (PES), polyether as the base material.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyether sulphone
  • Imide polyether ether ketone
  • Base material for flexible substrates such as polyarylate, polyimide, polycarbonate (PC), cellulose triacetate (TAC), cellulose acetate propionate (CAP)
  • the organic EL element 10 in the present invention utilizes the excitation energy generated by the combination of electrons and holes in the organic layer 13 due to the current supplied from the outside via the anode 12 and the cathode 14 in the organic layer 13.
  • light from the organic layer 13 is extracted through the anode 12 in this case.
  • Examples of light emission that uses excitation energy include fluorescence that uses singlet excitation energy for light emission, or phosphorescence that uses triplet excitation energy for light emission.
  • phosphorescence is desirable light emission as a light source because triplet excitons contribute to light emission, so that high light emission efficiency is obtained compared to fluorescence.
  • Light emission from the light emitting layer of the organic EL element 10 is emitted through the anode 12 and the substrate 11 (bottom emission and remission), but a thin film cathode material and a highly transparent anode material are used.
  • a top emission configuration in which light is emitted from a laminated substantially transparent cathode may be used.
  • FIG. 2 is a block diagram showing a manufacturing process when forming the protective film.
  • the substrate cleaned in the cleaning step 101 is formed in an organic EL element forming step 102 in a vacuum environment.
  • the first protective film forming step 103 the first protective film is formed in the same vacuum environment.
  • the process proceeds to the second protective film forming step 104 from the vacuum environment, and the second protective film is formed under the atmospheric pressure environment.
  • the substrate on which the anode has been patterned in advance is wet-cleaned by ultrasonic waves using various cleaning liquids and rinse agents, UV irradiation, oxygen plasma cleaning under a predetermined pressure, etc. This is a step of performing dry cleaning by the method.
  • the substrate is preferably a matrix of TFT in advance.
  • the cleaned substrate is then transferred to the organic EL element forming step 102.
  • an organic EL element is formed by laminating an organic layer and a negative electrode on the anode of the substrate by vapor deposition.
  • the substrate on which the organic EL element is formed is transferred to the first protective film forming step 103, and 10-
  • the first protective film is formed so as to cover the organic EL element by a thin film fabrication method such as plasma CVD method or ion plating method.
  • the substrate on which the first protective film is formed is transferred to the second protective film forming step 104.
  • the second protective film formation process is controlled in a dry environment with a dew point temperature of 10 ° C or lower in addition to the atmospheric pressure environment of approximately tens of thousands Pa to several tens of thousands Pa from the vacuum environment described above.
  • the lower limit of the dew point temperature according to the invention is preferably -30 ° C.
  • the first protective film is already used as a protective film, sufficient protection resistance against moisture is secured in this dry environment, and the second protective film is formed by the second protective film forming step 104.
  • the environment to be formed need not be a vacuum environment.
  • the protective film forming method for forming the first protective film may be an electron beam method, a sputtering method, a plasma CVD method, or an ion plating method. Use either of them.
  • All of these methods are methods capable of forming a thin film under vacuum. By using these methods, the influence of water and oxygen is reduced on the organic EL element formed by the vacuum evaporation method.
  • the protective film can be formed in a vacuum environment (under reduced pressure).
  • the electron beam method (vacuum evaporation method) is a material for forming a thin film under vacuum.
  • the film is irradiated with an electron beam, heated and evaporated, and the evaporated material is deposited (deposited) on a substrate to form a thin film.
  • There are special features such as high deposition rate and little damage to the substrate.
  • RF gas for example, 13.56MHz
  • the thin film forming component is deposited to form a thin film.
  • the ion plating method is a method for producing a thin film by evaporating a material desired to be a thin film, ionizing the material by radio frequency (RF), and depositing it on a substrate.
  • RF radio frequency
  • a material (target material) to be formed into a thin film is collided with plasma, ions, or the like generated by plasma discharge, so that the material is splashed (sputtering). This splashed material is deposited on a substrate to produce a thin film.
  • the sputtering method has fewer target material constraints than the plasma CVD method, ion plating method, etc., which require introduction of the raw materials necessary for thin film formation, as well as the electron beam method, etc.
  • a sputtering method is a particularly preferable method in the present invention because a thin film can be formed relatively easily even with a high melting point material.
  • FIG. 3 is a schematic diagram of a sputtering apparatus for forming the first protective film.
  • the magnetron sputtering apparatus 100 includes a vacuum chamber 20, an exhaust port 21, a target 30, and a force sword 31.
  • the vacuum tank 20 is a tank that provides a decompressed space that is blocked from outside air, and the inside of the tank is decompressed by a vacuum pump (not shown) connected to the exhaust port 21.
  • the target 30 is the same material as the constituent material of the protective film formed on the organic EL element, or the same material as the constituent material by reaction with the sputtering gas.
  • the protective film is a film containing at least one kind of metal oxide film, nitride film, metal thin film, and diamond-like carbon film, and is a thin film having a thickness of 50 nm to 50 ⁇ m.
  • the target 30 is connected to the force sword 31.
  • a voltage is applied from the power source 50 via the force sword 31, and a sputtering gas is introduced from the gas supply port 33, the target 30 has a true gas pressure.
  • plasma is generated in the space inside the target 30 to perform the shooting.
  • the magnet 32 is, for example, a Fe_Nd_B or Sm_Co based rare earth sintered magnet, a Ba based or Sr based sintered ferrite magnet, a bonded magnet such as a ferrite based magnet, a forged magnet such as an alnico based permanent magnet, or an electromagnet. And a magnetic field generating means for generating a predetermined magnetic field.
  • the magnet 32 may be arranged at a position where a predetermined magnetic field is generated in the plasma generation space. However, as shown in the figure, the arrangement of the magnet 32 on the surface opposite to the inner surface of the target 30 where the sputtering is performed has a magnetic field strength. From the viewpoint of storage efficiency in the vacuum chamber 20, this is a preferable configuration.
  • a cooling means (not shown) may be provided so as to be in contact with the magnet 32 to reduce the magnet 32 from being heated to a high temperature due to sputtering.
  • the substrate 11 is a substrate on which the target 30 is sputtered and a protective film is formed thereon.
  • the substrate 11 is a substrate for the organic EL element 10 or the like described above.
  • the substrate 11 is not limited to the substrate rotation, and the substrate 11 is fixedly supported without rotating. You may do it.
  • the power supply 50 is a power supply that applies a voltage to the target 30, and generates direct current, alternating current, or alternating current to which a direct current bias is applied depending on the conductivity of the material.
  • impedance matching with the target 30 is achieved by the matching unit 50a.
  • the matching unit is normally used as a set in an RF magnetron sputtering apparatus that applies an AC voltage when using a high frequency power source for plasma.
  • the high frequency power output from the high frequency power source for plasma is This is a device that efficiently feeds into the chamber where the air is generated.
  • FIG. 4 is a schematic diagram of a laminating apparatus for forming a second protective film.
  • the laminating apparatus 200 includes a conveying means 50, an attaching means 51, a laminating means 52, a cutting means 53, a curing means 54, a sealing film 55, and the like.
  • the transport means 50 is a transport means for forming a second protective film on the organic EL element 10 on which the first protective film is formed by the first protective film forming means, using a laminating apparatus.
  • the substrate wound in a roll may be conveyed by a roller.
  • Affixing means 51 is a means for affixing an adhesive layer for forming a second protective film on the organic EL element. In FIG. 4, it is applied to the first protective film of the organic EL element 10 with a syringe. Adhesive that is cured by ultraviolet rays is attached.
  • a thin resin film having flexibility for example, a resin film such as polyethylene terephthalate, polyethylene naphthalate, polycarbonate, ethylene polyvinyl alcohol, ethylene butyl acetate, and ETFE is used.
  • a laminated film may also be used.
  • an ultraviolet curable resin such as an epoxy-based resin, an acrylic resin, and an acrylic urethane-based resin can be used.
  • a thermosetting resin may be used.
  • the adhesive may be applied to the sealing portion using a commercially available dispenser or printing such as screen printing.
  • an adhesive sheet as disclosed in Japanese Patent Application Laid-Open No. 2004-139977 may be attached to the sealing film.
  • the laminating means 52 is a means for laminating the sealing film 55 fed out by the long roller force onto the organic EL element 10.
  • the sealing film 55 is laminated on the organic EL element 10 by pressing and heating the upper and lower rollers.
  • the cutting means 53 is a means for cutting an excess portion of the sealing film 55 laminated on the organic EL element 10.
  • the sealing film is cut along the edge of the organic EL element 10 by a cutter.
  • the cutting means is not limited to a cutter, and if a circular rotating cutter with vibration is used, cutting waste is good.
  • the curing means 54 is a means for curing the adhesive layer attached by the attaching means 51.
  • Fig. 4 shows an example in which an ultraviolet curable resin is used as the adhesive layer, which is irradiated with a UV light source and cured by photoreaction.
  • the first protective film is formed in advance, damage to the organic EL element due to moisture and oxygen is reduced in the step of forming the second protective film. Therefore, the work environment does not need to be in a vacuum environment.
  • the apparatus in the second protective film forming step for forming the second protective film is vacuumed.
  • the cost of manufacturing equipment that does not need to be reduced is reduced.
  • the process of forming the second protective film can be performed in an environment under atmospheric pressure, for example, repair work of a sheet failure that has occurred in the bonding process and maintenance work such as replacing the cutter used in the cutting process. Compared to working from a vacuum environment to an atmospheric pressure environment, work efficiency can be improved and process stop time can be shortened.
  • anode was prepared by forming an anode material ITO by an electron beam method to a thickness of 100 OA.
  • _NPD which is an organic EL device material
  • _NPD was vapor-deposited at a rate of 2 A / sec as a hole transport layer to form a thickness of 500 A.
  • Alq was deposited as a light emitting layer at a rate of 2AZ seconds to form a thickness of 600A.
  • the cathode material was formed by vapor-depositing aluminum, which is a cathode material, at a rate of 3 A / second so as to have a film thickness of 2 000 A.
  • an organic EL device 1 was produced. .
  • the produced organic EL element 1 was transported to a sputtering apparatus which is a first protective film forming step in order to form a first protective film while maintaining a vacuum environment.
  • the sputtering equipment shown in Fig. 2 was used.
  • a target is formed in a cylindrical shape
  • the distance between the upper end of the cylindrical target and the substrate of the organic EL element was 7 cm.
  • argon containing oxygen 2% by volume of the sputtering gas was a gas pressure 1. a 33 X 10- 2 Pa.
  • the power source was an AC power source with a frequency of 13.56 MHz, and the film forming rate when the input power was 100 W was 1 A / second when monitored by a crystal resonator. Under these conditions, a protective film (also referred to as a barrier film) having a thickness of 5000 A was formed on the organic EL element 1 to produce an organic EL element 1 having a first protective film.
  • a protective film also referred to as a barrier film
  • the organic EL element 1 having the first protective film is transported from the vacuum environment to the second protective film forming step in the dry air atmospheric pressure environment with a dew point temperature of 10 ° C, A protective film was formed.
  • the sealing film was heated and pressure-bonded by a roller at 100 ° C. Laminated to EL element.
  • the sealing film is a film that is made by bonding together the EVA film made by Pridestone (ethylene vinyl acetate thickness 0.4 mm) and the weather resistant resin made by Asahi Glass ETFE (aflex thickness 25 ⁇ m). It was.
  • the laminate was completed by irradiating with a UV light source until the integrated irradiation energy became 6000mjZcm 2 to produce the organic EL device 1 having the second protective film. did.
  • anode was prepared by forming an anode material ITO by an electron beam method to a thickness of 100 OA.
  • _NPD which is an organic EL element material
  • _NPD which is an organic EL element material
  • An organic EL device was fabricated by forming a cathode by depositing aluminum at a rate of 3 A / second to a thickness of 2000 A.
  • the fabricated organic EL element is covered with a glass material sealing material 15 so that the organic EL material is shielded from the outside air in an atmosphere of dry nitrogen.
  • a comparative sample was prepared by adhering the sealing material to the substrate with an adhesive 16 of UV curable resin and sealing it.
  • Each of the sealed organic EL device samples thus produced was driven at a constant current of 2.5 mA / cm 2 to evaluate each sample.
  • the organic EL device 11 of the present invention immediately after fabrication has the same external extraction efficiency and drive voltage as compared with the organic EL device 12 of the comparative example, and is organic when forming the protective film. Show less damage to the EL element.
  • the external extraction efficiency was measured by using a spectral radiance meter CS-1000 (manufactured by Konica Minolta) to measure the light emission when each sample was driven at a constant current of 2.5 mA / cm 2 to emit light. For each, the external extraction efficiency (%) was calculated and compared. As for the driving voltage, we compared the voltages when driving at a constant current of 2.5 mA / cm2.

Abstract

Disclosed is a method for manufacturing an organic EL device wherein production load during formation of a protective film is decreased without lowering the protective resistance to moisture or oxygen. Specifically disclosed is a method for manufacturing an organic electroluminescent device wherein a protective film is formed over an organic electroluminescent device which is formed on a substrate. In this method, the step for forming the protective film is composed of a step (103) for forming a first protective film in a vacuum environment, and a step (104) for forming a second protective film in an atmospheric pressure environment.

Description

明 細 書  Specification
有機エレクト口ルミネッセンス素子の製造方法  Method of manufacturing organic electoluminescence device
技術分野  Technical field
[0001] 本発明は、有機エレクト口ルミネッセンス (EL)素子上に保護膜を形成する有機 EL 素子の製造方法に関する。  The present invention relates to a method for manufacturing an organic EL element in which a protective film is formed on an organic electoluminescence (EL) element.
背景技術  Background art
[0002] 近年、 自発光素子として有機 EL素子が注目されてレ、る。有機 EL素子は、ガラス等 の基板上に有機化合物の薄膜力 なる発光層を電極で挟持した構成で、電極間に 電流を供給することにより発光する素子である。  In recent years, organic EL elements have attracted attention as self-luminous elements. An organic EL element is an element that emits light when an electric current is supplied between electrodes, in which a light-emitting layer having a thin film strength of an organic compound is sandwiched between electrodes on a substrate such as glass.
[0003] 有機 EL素子は、酸素や水分によって劣化しやすくこれらの存在は製品寿命を縮め るため、信頼性の観点から有機 EL素子を形成した直後に、保護膜 (バリア膜ともいう )として、その上を、安定な、酸素や水に対する保護膜で覆い、外気と完全に遮断す ることが望ましい。保護膜としては金属の窒化膜や酸化膜等が挙げられ、有機 EL素 子の発光を保護膜力 透過する方向に取り出す所謂トップェミッション構成の場合に は透明度の高い保護膜が要求される。  [0003] Organic EL elements are easily deteriorated by oxygen and moisture, and their presence shortens the product life. Therefore, as a protective film (also called a barrier film) immediately after forming the organic EL element from the viewpoint of reliability, It is desirable to cover it with a stable protective film against oxygen and water to completely block it from the outside air. Examples of the protective film include a metal nitride film and an oxide film. In the case of a so-called top emission configuration in which the light emission of the organic EL element is extracted in a direction that transmits the protective film force, a protective film with high transparency is required.
[0004] 一方、保護膜は、電子ビーム法、スパッタリング法、プラズマ CVD法、イオンプレー ティング法等の薄膜作製法を用いて形成される。これらの薄膜作製方法は、真空環 境下において、高融点材料でも比較的容易に膜形成可能である。  On the other hand, the protective film is formed by using a thin film manufacturing method such as an electron beam method, a sputtering method, a plasma CVD method, or an ion plating method. These thin film forming methods can form a film relatively easily even in a high-melting-point material under a vacuum environment.
[0005] 従来の保護膜製膜技術として、対向ターゲット式のスパッタ装置を用いる技術が開 示されている(例えば、特許文献 1参照。)。しかし、これら従来の薄膜製膜法では、 保護膜が単層の構成であるため、高温高湿環境下における水分の透過に対して、効 果が不十分なことや、有機 EL素子の表面の突起等や段差において、保護膜にクラッ クが発生しやすぐ水分や酸素に対する耐性が不十分であった。  [0005] As a conventional protective film forming technique, a technique using a facing target type sputtering apparatus has been disclosed (for example, refer to Patent Document 1). However, in these conventional thin film deposition methods, the protective film has a single-layer structure, so that the effect on moisture permeation in a high-temperature and high-humidity environment is insufficient, and the surface of the organic EL element is At the protrusions and steps, cracks were generated in the protective film, and the resistance to moisture and oxygen was insufficient.
[0006] そこで、熱硬化性樹脂を挟んだ複数の無機保護膜を積層して保護膜とする技術が 開示されている (例えば、特許文献 2参照。)。保護膜を積層することにより水分や酸 素にたいする耐性が向上するとともに、熱硬化性樹脂により段差によるクラックの発生 を低減させている。 [0007] しかしながら、この保護膜構成では、製造工程において複数層の保護膜を真空環 境下で製膜しなければならず、単層の保護膜の製膜工程に比べて製造装置のコスト が上昇することが課題となっていた。 [0006] Thus, a technique is disclosed in which a plurality of inorganic protective films sandwiching a thermosetting resin are laminated to form a protective film (see, for example, Patent Document 2). Lamination of the protective film improves resistance to moisture and oxygen, and the thermosetting resin reduces the occurrence of cracks due to steps. [0007] However, with this protective film configuration, a plurality of protective films must be formed in a vacuum environment in the manufacturing process, and the cost of the manufacturing apparatus is lower than that of a single-layer protective film forming process. Rising was an issue.
[0008] 一方、保護膜として、有機 EL素子上に保護膜が形成されたシート状の封止部材を 張り合わせる技術が開示されている(例えば、特許文献 3参照。)。  [0008] On the other hand, as a protective film, a technique is disclosed in which a sheet-like sealing member in which a protective film is formed on an organic EL element is bonded (for example, see Patent Document 3).
[0009] し力 ながら、有機 EL素子をバキューム吸引により保持する技術や、シリンジによる 樹脂材料の塗布技術の作業環境を真空環境下で実現するのは困難である。このた め、大気圧環境での封止作業前の有機 EL素子の水分や酸素による劣化が問題とな つていた。  [0009] However, it is difficult to realize the working environment of the technique for holding the organic EL element by vacuum suction and the technique for applying the resin material by the syringe in a vacuum environment. For this reason, deterioration due to moisture and oxygen of the organic EL element before sealing in an atmospheric pressure environment has become a problem.
特許文献 1 :特開 2002— 332567号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2002-332567
特許文献 2:特開 2004— 119138号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2004-119138
特許文献 3:特開 2005— 4063号公報  Patent Document 3: Japanese Patent Laid-Open No. 2005-4063
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] 本発明は、上記課題を鑑みてなされたものであり、本発明の目的は、水分や酸素 に対する保護耐性を低下させることなぐ保護膜形成時の製造負荷を低減させた有 機 EL素子の製造方法を提供することである。 [0010] The present invention has been made in view of the above problems, and an object of the present invention is an organic EL element in which the manufacturing load at the time of forming a protective film without reducing the protection resistance against moisture and oxygen is reduced. It is to provide a manufacturing method.
課題を解決するための手段  Means for solving the problem
[0011] 本発明の上記目的は、下記構成により達成された。 The above object of the present invention has been achieved by the following constitution.
[0012] 1.基板上に形成した有機エレクト口ルミネッセンス素子上に保護膜を形成する有機 エレクト口ルミネッセンス素子の製造方法にぉレ、て、第一の保護膜を真空環境下にお いて形成した後、第二の保護膜を大気圧環境下で形成することを特徴とする有機ェ レクト口ルミネッセンス素子の製造方法。  [0012] 1. A first protective film was formed in a vacuum environment in accordance with a manufacturing method of an organic electoluminescence element that forms a protective film on an organic electroluminescence element formed on a substrate. Then, the manufacturing method of the organic electroluminescent luminescence element characterized by forming a 2nd protective film in atmospheric pressure environment.
[0013] 2.前記第一の保護膜の形成は、電子ビーム法、スパッタリング法、プラズマ CVD 法、イオンプレーティング法のレ、ずれかを用いることを特徴とする前記 1に記載の有 機エレクト口ルミネッセンス素子の製造方法。  [0013] 2. The organic electo according to 1 above, wherein the first protective film is formed by using an electron beam method, a sputtering method, a plasma CVD method, or an ion plating method. A method for manufacturing an oral luminescence element.
[0014] 3.前記第一の保護膜は、窒化酸化シリコンまたは窒化シリコンのいずれかであるこ とを特徴とする前記 1または 2に記載の有機エレクト口ルミネッセンス素子の製造方法 [0015] 4.前記第二の保護膜の形成は、大気圧環境下、露点温度が一 10°C以下の環境 下で実施することを特徴とする前記:!〜 3のいずれか 1項に記載の有機エレクト口ルミ ネッセンス素子の製造方法。 [0014] 3. The method of manufacturing an organic electoluminescence device according to the above 1 or 2, wherein the first protective film is either silicon nitride oxide or silicon nitride. [0015] 4. The formation of the second protective film is carried out under an atmospheric pressure environment and an environment with a dew point temperature of 10 ° C or lower. The manufacturing method of the organic electoluminous element of description.
[0016] 5.前記第二の保護膜は、樹脂フィルムであることを特徴とする前記 1〜4のいずれ 力 1項に記載の有機エレクト口ルミネッセンス素子の製造方法。 [0016] 5. The method for producing an organic-electric-luminescence device according to any one of 1 to 4, wherein the second protective film is a resin film.
[0017] 6.前記樹脂フィルムには、予め保護膜が形成されていることを特徴とする前記 1〜[0017] 6. A protective film is formed in advance on the resin film.
5のいずれか 1項に記載の有機エレクト口ルミネッセンス素子の製造方法。 6. The method for producing an organic electoluminescence device according to any one of 5 above.
[0018] 7.前記第一の保護膜と、前記第二の保護膜との間に、中間層を、大気圧環境下で 設けることを特徴とする前記 1〜6のいずれ力 1項に記載の有機エレクト口ルミネッセ ンス素子の製造方法。 [0018] 7. The force described in any one of 1 to 6 above, wherein an intermediate layer is provided between the first protective film and the second protective film under an atmospheric pressure environment. Manufacturing method of organic electroluminescence device.
発明の効果  The invention's effect
[0019] 本発明により、水分や酸素対する保護耐性を低下させること無ぐ保護膜形成時の 製造負荷を低減させた有機 EL素子の製造方法を提供することが出来た。  [0019] According to the present invention, it is possible to provide a method for manufacturing an organic EL element in which the manufacturing load at the time of forming a protective film is reduced without reducing the protection resistance against moisture and oxygen.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]有機 EL素子 10の構成を示す模式図である。  FIG. 1 is a schematic diagram showing a configuration of an organic EL element 10.
[図 2]保護膜形成時の製造プロセスを示すブロック図である。  FIG. 2 is a block diagram showing a manufacturing process when forming a protective film.
[図 3]第一の保護膜を形成するマグネトロンスパッタ装置の模式図である。  FIG. 3 is a schematic diagram of a magnetron sputtering apparatus for forming a first protective film.
[図 4]第二の保護膜を形成するラミネート装置の模式図である。  FIG. 4 is a schematic view of a laminating apparatus for forming a second protective film.
[図 5]ガラス料の封止材を用い封止された有機 EL素子の断面模式図である。  FIG. 5 is a schematic cross-sectional view of an organic EL device sealed with a glass material sealing material.
符号の説明  Explanation of symbols
[0021] 10 有機 EL素子 [0021] 10 Organic EL device
11 基板  11 Board
12 陽極  12 Anode
13 有機層  13 Organic layer
14 陰極  14 Cathode
20 真空槽  20 Vacuum chamber
21 排気口 30 ターゲット 21 Exhaust vent 30 targets
31 力ソード  31 Power Sword
32 マグネット  32 Magnet
50 電源  50 power supply
50a マッチングユニット  50a matching unit
51 貼り付け手段  51 Pasting means
52 ラミネート手段  52 Laminating means
53 断裁手段  53 Cutting means
54 硬化手段  54 Curing means
55 封止フィルム  55 Sealing film
60 搬送手段  60 Transport means
100 マグネトロンスパッタ装置  100 magnetron sputtering equipment
200 ラミネート装置  200 Laminating equipment
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下、本発明を実施するための最良の形態について詳細に説明する。 Hereinafter, the best mode for carrying out the present invention will be described in detail.
[0023] 本発明の実施の形態を示す一例について、以下、図面に基づいて説明する。 [0023] An example showing an embodiment of the present invention will be described below with reference to the drawings.
[0024] まず、有機 EL素子について以下に説明する。 First, the organic EL element will be described below.
[0025] 図 1は、有機 EL素子 10の構成を示す模式図である。 FIG. 1 is a schematic diagram showing a configuration of the organic EL element 10.
[0026] 図において、有機 EL素子 10は、基板 11上に、陽極 12、有機層 13、陰極 14を積 層した素子である。  In the figure, an organic EL element 10 is an element in which an anode 12, an organic layer 13, and a cathode 14 are stacked on a substrate 11.
[0027] 陽極 12は、インジウムチンオキサイド(ITO)、インジウムジンクオキサイド(IZO)、金 、酸化スズ、酸化亜鉛等の仕事関数が 4eV以上で透過率が 40%以上の導電材料に よる透明電極である。  [0027] The anode 12 is a transparent electrode made of a conductive material such as indium tin oxide (ITO), indium zinc oxide (IZO), gold, tin oxide, and zinc oxide having a work function of 4 eV or more and a transmittance of 40% or more. is there.
[0028] 有機層 13は、発光層を含む数 nm〜数 μ mの有機化合物または錯体を含有する 単層または、複数の層からなる。例えば、代表的には、陽極と接する正孔輸送層、発 光材料を含有する発光層、陰極と接する電子輸送層の 3層等からなる素子で、フッ 化リチウム層や無機金属塩の層、またはそれらを含有する層などが任意の位置に配 置されていてもよい。 [0029] 陰極 14は、ァノレミニゥム、ナトリウム、リチウム、マグネシウム、銀、カルシウム等の仕 事関数が 4eV未満で、反射率が 60%以上の金属材料からなる反射電極である。 The organic layer 13 is composed of a single layer or a plurality of layers containing an organic compound or complex of several nm to several μm including the light emitting layer. For example, it is typically an element composed of three layers, such as a hole transport layer in contact with the anode, a light emitting layer containing a light emitting material, and an electron transport layer in contact with the cathode, a lithium fluoride layer, an inorganic metal salt layer, Alternatively, a layer containing them may be arranged at an arbitrary position. [0029] The cathode 14 is a reflective electrode made of a metal material having a work function of less than 4 eV and a reflectivity of 60% or more, such as ananolium, sodium, lithium, magnesium, silver, and calcium.
[0030] 基板 11は、基材としては、ガラス、石英等のソリッド基板用の基材、あるいは、ポリエ チレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホ ン(PES)、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフエ二レンスルフイド [0030] The substrate 11 may be a substrate for a solid substrate such as glass or quartz, or polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyether sulphone (PES), polyether as the base material. Imide, polyether ether ketone, polyphenylene sulfide
、ポリアリレート、ポリイミド、ポリカーボネート(PC)、セルローストリアセテート(TAC) 、セルロースアセテートプロピオネート(CAP)等のフレキシブル基板用の基材である , Base material for flexible substrates such as polyarylate, polyimide, polycarbonate (PC), cellulose triacetate (TAC), cellulose acetate propionate (CAP)
[0031] 本発明における有機 EL素子 10は、陽極 12、陰極 14を介して、外部から供給され た電流により、有機層 13において電子および正孔が結合し、結合により生じた励起 エネルギーを利用した発光を行う素子で、有機層 13からの光は、この場合、陽極 12 を通して取り出される。励起エネルギーを利用する発光としては、一重項励起工ネル ギーを発光に利用する蛍光、あるいは、三重項励起エネルギーを発光に利用する燐 光が挙げられる。 [0031] The organic EL element 10 in the present invention utilizes the excitation energy generated by the combination of electrons and holes in the organic layer 13 due to the current supplied from the outside via the anode 12 and the cathode 14 in the organic layer 13. In the device that emits light, light from the organic layer 13 is extracted through the anode 12 in this case. Examples of light emission that uses excitation energy include fluorescence that uses singlet excitation energy for light emission, or phosphorescence that uses triplet excitation energy for light emission.
[0032] 特に、燐光は、三重項励起子が発光に寄与するため、蛍光にくらべて高い発光効 率が得られるので、光源として望ましい発光である。  [0032] In particular, phosphorescence is desirable light emission as a light source because triplet excitons contribute to light emission, so that high light emission efficiency is obtained compared to fluorescence.
[0033] 有機 EL素子 10の発光層からの発光は、陽極 12、基板 11を透過して射出される( ボトムェミッションとレ、う)が、薄膜の陰極材料と透過率の高い陽極材料を積層した実 質的に透明な陰極から光を射出するトップェミッションの構成にしても良い。 Light emission from the light emitting layer of the organic EL element 10 is emitted through the anode 12 and the substrate 11 (bottom emission and remission), but a thin film cathode material and a highly transparent anode material are used. A top emission configuration in which light is emitted from a laminated substantially transparent cathode may be used.
[0034] 次に、これら有機 EL素子に保護膜を形成するときの製造プロセスについて説明す る。 Next, a manufacturing process for forming a protective film on these organic EL elements will be described.
[0035] 図 2は、保護膜形成時の製造プロセスを示すブロック図である。  FIG. 2 is a block diagram showing a manufacturing process when forming the protective film.
[0036] 本発明の有機 EL素子の製造方法においては、洗浄工程 101において洗浄された 基板を、有機 EL素子形成工程 102において、真空環境下、有機 EL素子を形成し、 有機 EL素子形成後に、第一の保護膜形成工程 103において、同じく真空環境下、 第一の保護膜を製膜する。その後、真空環境下から、第二の保護膜形成工程 104に 移し、大気圧環境下において、第二の保護膜を形成する。 [0036] In the method of manufacturing an organic EL element of the present invention, the substrate cleaned in the cleaning step 101 is formed in an organic EL element forming step 102 in a vacuum environment. After the organic EL element is formed, In the first protective film forming step 103, the first protective film is formed in the same vacuum environment. Thereafter, the process proceeds to the second protective film forming step 104 from the vacuum environment, and the second protective film is formed under the atmospheric pressure environment.
[0037] それぞれの製造プロセスの詳細を以下に説明する。 [0038] 洗浄工程 101は、あらかじめ陽極がパターニングされた基板を、各種洗浄液、リン ス剤を用いて超音波等による湿式洗浄する、また、 UV照射、所定の圧力下での酸 素プラズマ洗浄等による乾式洗浄を行う工程である。基板は、 TFTが予めマトリクス 良い。 [0037] Details of each manufacturing process will be described below. [0038] In the cleaning step 101, the substrate on which the anode has been patterned in advance is wet-cleaned by ultrasonic waves using various cleaning liquids and rinse agents, UV irradiation, oxygen plasma cleaning under a predetermined pressure, etc. This is a step of performing dry cleaning by the method. The substrate is preferably a matrix of TFT in advance.
[0039] 洗浄された基板は、次に、有機 EL素子形成工程 102に搬送される。ここで、 10— 3P a以下の圧力である真空環境下において、蒸着法により基板の陽極上に有機層、陰 極が積層されて有機 EL素子が形成される。 [0039] The cleaned substrate is then transferred to the organic EL element forming step 102. Here, in a vacuum environment at a pressure of 10 −3 Pa or lower, an organic EL element is formed by laminating an organic layer and a negative electrode on the anode of the substrate by vapor deposition.
[0040] 有機 EL素子が形成された基板は、第一の保護膜形成工程 103に搬送されて、 10—[0040] The substrate on which the organic EL element is formed is transferred to the first protective film forming step 103, and 10-
Pa以下の圧力である真空環境下において、周知の電子ビーム法、スパッタリング法 Well-known electron beam method and sputtering method in a vacuum environment at a pressure of Pa or less
、プラズマ CVD法、イオンプレーティング法等の薄膜作製法により有機 EL素子を覆 うように第一の保護膜が形成される。 Then, the first protective film is formed so as to cover the organic EL element by a thin film fabrication method such as plasma CVD method or ion plating method.
[0041] 第一の保護膜が形成された基板は、第二の保護膜形成工程 104に搬送される。第 二の保護膜形成工程は、前記の真空環境下から、概ね数万 Pa〜十数万 Paの大気 圧環境に加えて、露点温度 10°C以下の乾燥した環境に管理されており、本発明 に係る露点温度の下限としては、 - 30°Cが好ましレ、。 [0041] The substrate on which the first protective film is formed is transferred to the second protective film forming step 104. The second protective film formation process is controlled in a dry environment with a dew point temperature of 10 ° C or lower in addition to the atmospheric pressure environment of approximately tens of thousands Pa to several tens of thousands Pa from the vacuum environment described above. The lower limit of the dew point temperature according to the invention is preferably -30 ° C.
[0042] 既に、第一の保護膜を保護膜とするため、この乾燥環境下では水分にたいして十 分な保護耐性が確保されており、第二の保護膜形成工程 104により第二の保護膜を 形成する環境を、真空環境とする必要がない。 [0042] Since the first protective film is already used as a protective film, sufficient protection resistance against moisture is secured in this dry environment, and the second protective film is formed by the second protective film forming step 104. The environment to be formed need not be a vacuum environment.
[0043] 次に、本発明の有機 EL製造方法における保護形成装置について以下に説明する Next, the protection forming apparatus in the organic EL manufacturing method of the present invention will be described below.
[0044] 本発明の第一の保護膜形成工程において、第一の保護膜を成膜させる保護膜形 成方法としては、電子ビーム法、スパッタリング法、プラズマ CVD法、イオンプレーテ イング法のレ、ずれかを用いる。 [0044] In the first protective film forming step of the present invention, the protective film forming method for forming the first protective film may be an electron beam method, a sputtering method, a plasma CVD method, or an ion plating method. Use either of them.
[0045] これらの方法は、いずれも真空下での薄膜形成が可能な方法であり、これらの方法 を用いれば、真空蒸着法により形成した有機 EL素子上に、水や酸素の影響が少な レ、真空環境下 (減圧環境下)で保護膜の形成が行える。 [0045] All of these methods are methods capable of forming a thin film under vacuum. By using these methods, the influence of water and oxygen is reduced on the organic EL element formed by the vacuum evaporation method. The protective film can be formed in a vacuum environment (under reduced pressure).
[0046] 例えば、電子ビーム法 (真空蒸着法)は、真空下において、薄膜を形成したい材料 に電子ビームを照射し、加熱蒸発させ、この蒸発させた材料を、基板上に付着 (堆積 )させ、薄膜を作製する方法である。成膜速度が速ぐ基板へのダメージが少ないな どの特 ί敷がある。 [0046] For example, the electron beam method (vacuum evaporation method) is a material for forming a thin film under vacuum. The film is irradiated with an electron beam, heated and evaporated, and the evaporated material is deposited (deposited) on a substrate to form a thin film. There are special features such as high deposition rate and little damage to the substrate.
[0047] プラズマ CVD法は、 RF高周波(例えば、 13. 56MHz)により、一定の真空環境に 導入されたガス原料を励起して、プラズマを発生させ、基板上に原料分子の反応、 分解により精製した薄膜形成成分を堆積させ薄膜形成を行う方法である。  [0047] In the plasma CVD method, RF gas (for example, 13.56MHz) is used to excite a gas material introduced into a certain vacuum environment to generate plasma, which is purified by reaction and decomposition of the material molecules on the substrate. The thin film forming component is deposited to form a thin film.
[0048] イオンプレーティング法は、薄膜にしたい材料を蒸発させた後、高周波 (RF)により イオン化させて基板上に堆積させ、薄膜を作製する方法である。  [0048] The ion plating method is a method for producing a thin film by evaporating a material desired to be a thin film, ionizing the material by radio frequency (RF), and depositing it on a substrate.
[0049] また、スパッタリング法は、薄膜にしたい材料 (ターゲット材料)にプラズマ放電により 発生させたプラズマ、イオン等を衝突させることで、材料がはね飛ばされ (スパッタリン グ)。このはね飛ばされた材料を基板上に堆積させ、薄膜を作製する方法である。  [0049] In addition, in the sputtering method, a material (target material) to be formed into a thin film is collided with plasma, ions, or the like generated by plasma discharge, so that the material is splashed (sputtering). This splashed material is deposited on a substrate to produce a thin film.
[0050] 薄膜形成に必要な原料をガス成分として導入する必要のあるプラズマ CVD法、ィ オンプレーティング法等に比べ、また、電子ビーム法等に比べても、スパッタリング法 はターゲット材料の制約が少なぐ高融点材料でも比較的容易に薄膜形成できること から、これらのうち、本発明においては、スパッタリング法が特に好ましい方法である。  [0050] The sputtering method has fewer target material constraints than the plasma CVD method, ion plating method, etc., which require introduction of the raw materials necessary for thin film formation, as well as the electron beam method, etc. Of these, a sputtering method is a particularly preferable method in the present invention because a thin film can be formed relatively easily even with a high melting point material.
[0051] 以下、第一の保護膜形成工程 103として、マグネトロンスパッタ装置について説明 する。  Hereinafter, a magnetron sputtering apparatus will be described as the first protective film forming step 103.
[0052] 図 3は、第一の保護膜を形成するスパッタ装置の模式図である。  FIG. 3 is a schematic diagram of a sputtering apparatus for forming the first protective film.
[0053] マグネトロンスパッタ装置 100は、真空槽 20、排気口 21、ターゲット 30、力ソード 31 [0053] The magnetron sputtering apparatus 100 includes a vacuum chamber 20, an exhaust port 21, a target 30, and a force sword 31.
、マグネッ卜 32、基板 11、電源 500、マッチングュニッ卜 510等力 なる。 , Magnet 32, Substrate 11, Power supply 500, Matching unit 510, etc.
[0054] 真空槽 20は、外気と遮断された減圧空間を提供する槽で、排気口 21に接続され た図示しない真空ポンプにより槽内が減圧される。 The vacuum tank 20 is a tank that provides a decompressed space that is blocked from outside air, and the inside of the tank is decompressed by a vacuum pump (not shown) connected to the exhaust port 21.
[0055] ターゲット 30は、有機 EL素子に形成させる保護膜の構成材料と同一材料、あるい は、スパッタガスとの反応により構成材料と同一となる材料である。保護膜は、金属の 酸化膜、窒化膜、金属薄膜、ダイヤモンドライクカーボン膜を少なくとも 1種以上含ん でレ、る膜で、厚みは 50nm以上 50 μ m以下の薄膜である。 [0055] The target 30 is the same material as the constituent material of the protective film formed on the organic EL element, or the same material as the constituent material by reaction with the sputtering gas. The protective film is a film containing at least one kind of metal oxide film, nitride film, metal thin film, and diamond-like carbon film, and is a thin film having a thickness of 50 nm to 50 μm.
[0056] ターゲット 30は、力ソード 31と接続されており、電源 50から力ソード 31を介して電圧 が印加されて、ガス供給ポート 33からスパッタガスが導入されると、所定ガス圧の真 空或いは減圧環境下において、ターゲット 30の内部の空間にプラズマが発生してス ノ ッタリングが行われる。 [0056] The target 30 is connected to the force sword 31. When a voltage is applied from the power source 50 via the force sword 31, and a sputtering gas is introduced from the gas supply port 33, the target 30 has a true gas pressure. In an empty or depressurized environment, plasma is generated in the space inside the target 30 to perform the shooting.
[0057] マグネット 32は、例えば、 Fe_Nd_Bや Sm_Co系の希土類焼結磁石、 Ba系や S r系のフヱライト焼結磁石、フヱライト系等のボンド磁石、アルニコ系等の铸造磁石など 永久磁石や、電磁石など所定の磁界を発生する磁界発生手段である。マグネット 32 は、プラズマ発生空間で所定の磁界を発生する位置に配置すればよいが、図示した ようにスパッタリングが行われるターゲット 30の内側の面と反対側の面に配置する構 成が、磁界強度と真空槽 20の中での収納効率との観点から好ましい構成である。  [0057] The magnet 32 is, for example, a Fe_Nd_B or Sm_Co based rare earth sintered magnet, a Ba based or Sr based sintered ferrite magnet, a bonded magnet such as a ferrite based magnet, a forged magnet such as an alnico based permanent magnet, or an electromagnet. And a magnetic field generating means for generating a predetermined magnetic field. The magnet 32 may be arranged at a position where a predetermined magnetic field is generated in the plasma generation space. However, as shown in the figure, the arrangement of the magnet 32 on the surface opposite to the inner surface of the target 30 where the sputtering is performed has a magnetic field strength. From the viewpoint of storage efficiency in the vacuum chamber 20, this is a preferable configuration.
[0058] また、マグネット 32に接するように図示しない冷却手段を設けてスパッタリングにより マグネット 32が高温になり磁力が低下するのを低減させても良い。  [0058] Further, a cooling means (not shown) may be provided so as to be in contact with the magnet 32 to reduce the magnet 32 from being heated to a high temperature due to sputtering.
[0059] 基板 11は、ターゲット 30がスパッタリングされて保護膜がこの上に製膜される基板 で、前述した有機 EL素子 10等の基板である。保護膜の膜厚分布の均一性向上のた めに回転支持部材 42によりスパッタリング中は基板 11を回転させるのが好ましいが、 基板回転に限定するものでは無ぐ基板 11を回転せずに固定支持しても良い。  The substrate 11 is a substrate on which the target 30 is sputtered and a protective film is formed thereon. The substrate 11 is a substrate for the organic EL element 10 or the like described above. In order to improve the uniformity of the protective film thickness distribution, it is preferable to rotate the substrate 11 during sputtering by the rotation support member 42. However, the substrate 11 is not limited to the substrate rotation, and the substrate 11 is fixedly supported without rotating. You may do it.
[0060] 電源 50は、ターゲット 30に電圧を印加する電源で、材料の導電性により直流、交 流、あるいは直流バイアスを印加させた交流を発生させる。交流の電圧を印加すると きは、マッチングユニット 50aによりターゲット 30とのインピーダンス整合をとつている。  [0060] The power supply 50 is a power supply that applies a voltage to the target 30, and generates direct current, alternating current, or alternating current to which a direct current bias is applied depending on the conductivity of the material. When an AC voltage is applied, impedance matching with the target 30 is achieved by the matching unit 50a.
[0061] マッチングユニットは通常、交流電圧を印加する RFマグネトロンスパッタ装置にお いて、プラズマ用高周波電源をもちいるときセットで使用されており、プラズマ用高周 波電源から出力する高周波電力を、プラズマを発生させる場所であるチャンバ一に 効率よく送り込むための機器である。  [0061] The matching unit is normally used as a set in an RF magnetron sputtering apparatus that applies an AC voltage when using a high frequency power source for plasma. The high frequency power output from the high frequency power source for plasma is This is a device that efficiently feeds into the chamber where the air is generated.
[0062] 次に、第二の保護膜形成工程 104の装置について以下に説明する。  Next, the apparatus in the second protective film forming step 104 will be described below.
[0063] 図 4は、第二の保護膜を形成するラミネート装置の模式図である。  FIG. 4 is a schematic diagram of a laminating apparatus for forming a second protective film.
[0064] ラミネート装置 200は、搬送手段 50、貼り付け手段 51、ラミネート手段 52、断裁手 段 53、硬化手段 54、封止フィルム 55等からなる。  [0064] The laminating apparatus 200 includes a conveying means 50, an attaching means 51, a laminating means 52, a cutting means 53, a curing means 54, a sealing film 55, and the like.
[0065] 搬送手段 50は、第一の保護膜形成手段により第一の保護膜が形成された有機 EL 素子 10をラミネート装置により第二の保護膜を形成するための搬送手段である。ここ では、枚葉の有機 EL素子をコンベアにより搬送している力 S、フィルム状の連続した口 一ルに卷かれた基板はローラにより搬送しても良い。 The transport means 50 is a transport means for forming a second protective film on the organic EL element 10 on which the first protective film is formed by the first protective film forming means, using a laminating apparatus. Here, the force S that conveys a sheet of organic EL elements by a conveyor S, a continuous film-like mouth The substrate wound in a roll may be conveyed by a roller.
[0066] 貼り付け手段 51は、有機 EL素子に第二の保護膜を形成するための接着層を貼り 付ける手段で、図 4において、有機 EL素子 10の第一の保護膜にシリンジにより塗布 して紫外線で硬化する接着剤を貼り付けている。 [0066] Affixing means 51 is a means for affixing an adhesive layer for forming a second protective film on the organic EL element. In FIG. 4, it is applied to the first protective film of the organic EL element 10 with a syringe. Adhesive that is cured by ultraviolet rays is attached.
[0067] 封止フィルムとしては、可撓性を有する薄い樹脂フィルム、例えばポリエチレンテレ フタレート、ポリエチレンナフタレート、ポリカーボネート、エチレンポリビニノレアノレコー ノレ、エチレンビュルアセテート、 ETFE等の樹脂フィルムが用いられる。また積層フィ ルムでもよい。 [0067] As the sealing film, a thin resin film having flexibility, for example, a resin film such as polyethylene terephthalate, polyethylene naphthalate, polycarbonate, ethylene polyvinyl alcohol, ethylene butyl acetate, and ETFE is used. A laminated film may also be used.
[0068] また、接着剤としては、例えば、エポキシ系、アクリル系、アクリルウレタン系等の紫 外線硬化樹脂を用いることができる。また、熱硬化性樹脂を用いてもよい。封止部分 への接着剤の塗布は、市販のディスペンサーを使ってもよいし、スクリーン印刷のよう に印刷してもよい。  [0068] Further, as the adhesive, for example, an ultraviolet curable resin such as an epoxy-based resin, an acrylic resin, and an acrylic urethane-based resin can be used. Further, a thermosetting resin may be used. The adhesive may be applied to the sealing portion using a commercially available dispenser or printing such as screen printing.
[0069] また、これに限らず、特開 2004— 139977号公報に開示されているような接着シー トを封止フィルムに貼り付けても良い。  [0069] Not limited to this, an adhesive sheet as disclosed in Japanese Patent Application Laid-Open No. 2004-139977 may be attached to the sealing film.
[0070] ラミネート手段 52は、長尺ローラ力 繰り出される封止フィルム 55を有機 EL素子 10 にラミネートする手段である。図において、上下ローラの加圧、加熱により封止フィル ム 55が有機 EL素子 10にラミネートされる。 The laminating means 52 is a means for laminating the sealing film 55 fed out by the long roller force onto the organic EL element 10. In the figure, the sealing film 55 is laminated on the organic EL element 10 by pressing and heating the upper and lower rollers.
[0071] 断裁手段 53は、有機 EL素子 10にラミネートされた封止フィルム 55の余分な箇所を 断裁する手段である。図においては、カッターによって、有機 EL素子 10の端部に沿 つて封止フィルムを断裁している。断裁手段は、カッターに限らず、振動を加えた円 形の回転カッターを利用すると切断カスが少なく良い。 The cutting means 53 is a means for cutting an excess portion of the sealing film 55 laminated on the organic EL element 10. In the figure, the sealing film is cut along the edge of the organic EL element 10 by a cutter. The cutting means is not limited to a cutter, and if a circular rotating cutter with vibration is used, cutting waste is good.
[0072] 硬化手段 54は、貼り付け手段 51により貼り付けられた接着層を硬化させる手段で ある。図 4においては、接着層として紫外線硬化樹脂を用いた例であり、 UV光源を 照射し、光反応により硬化させている。 The curing means 54 is a means for curing the adhesive layer attached by the attaching means 51. Fig. 4 shows an example in which an ultraviolet curable resin is used as the adhesive layer, which is irradiated with a UV light source and cured by photoreaction.
[0073] 本発明の製造方法では、予め第一の保護膜が予め製膜されているため、第二の保 護膜を形成する工程においては、水分や酸素により有機 EL素子に与えるダメージが 低減されているため作業環境を真空環境下にする必要がない。 [0073] In the manufacturing method of the present invention, since the first protective film is formed in advance, damage to the organic EL element due to moisture and oxygen is reduced in the step of forming the second protective film. Therefore, the work environment does not need to be in a vacuum environment.
[0074] したがって、第二の保護膜を形成する第二の保護膜形成工程における装置を真空 対応にする必要がなぐ製造装置のコストが低減する。また、第二の保護膜を形成す る工程は、例えば、張り合わせ工程で発生したシヮ故障の復帰作業や、裁断工程で 用いるカツタの交換等のメンテ作業を大気圧下環境下で行えるため、真空環境下か ら大気圧環境に戻して作業を行う場合と比べると、作業効率の向上や工程停止時間 の短縮が計れる。 Accordingly, the apparatus in the second protective film forming step for forming the second protective film is vacuumed. The cost of manufacturing equipment that does not need to be reduced is reduced. In addition, the process of forming the second protective film can be performed in an environment under atmospheric pressure, for example, repair work of a sheet failure that has occurred in the bonding process and maintenance work such as replacing the cutter used in the cutting process. Compared to working from a vacuum environment to an atmospheric pressure environment, work efficiency can be improved and process stop time can be shortened.
実施例  Example
[0075] 次に、本発明を更に具体的に説明するが、本発明はこれらに限定されない。  [0075] Next, the present invention will be described more specifically, but the present invention is not limited thereto.
[0076] 以下、具体的な保護膜の形成条件を述べる。 Hereinafter, specific conditions for forming the protective film will be described.
[0077] 実施例 1 [0077] Example 1
まず、有機 EL素子の作製方法の一例として、陽極/正孔輸送層/発光層/陰極 力 なる有機 EL素子の作製について説明する。  First, as an example of a method for producing an organic EL element, production of an organic EL element having an anode / hole transport layer / light emitting layer / cathode force will be described.
[0078] 《有機 EL素子 1の作製》:本発明 [0078] << Production of Organic EL Element 1 >>: Present Invention
洗浄したガラス 100mm角の基板を真空度 10— 5Paの圧力である真空環境下に維持 された蒸着真空槽に設置する。蒸着真空槽において、陽極用物質である ITOを 100 OAの膜厚になるように電子ビーム法により形成して陽極を作製した。次に、この上に 有機 EL素子材料であるひ _NPDを正孔輸送層として 2 A/秒の速度で蒸着して 5 00Aの厚さで形成した。次に Alqを発光層として 2AZ秒の速度で蒸着して 600A の厚さで形成した。これらの層を形成後、その上に陰極用物質であるアルミニウムを 2 000Aの膜厚になるように、 3A/秒の速度で蒸着して陰極を形成して、有機 EL素 子 1を作製した。 Installing a substrate of washed glass 100mm angle deposition vacuum chamber maintained under a vacuum environment at a pressure of vacuum degree of 10- 5 Pa. In the vapor deposition vacuum chamber, an anode was prepared by forming an anode material ITO by an electron beam method to a thickness of 100 OA. Next, _NPD, which is an organic EL device material, was vapor-deposited at a rate of 2 A / sec as a hole transport layer to form a thickness of 500 A. Next, Alq was deposited as a light emitting layer at a rate of 2AZ seconds to form a thickness of 600A. After forming these layers, the cathode material was formed by vapor-depositing aluminum, which is a cathode material, at a rate of 3 A / second so as to have a film thickness of 2 000 A. Thus, an organic EL device 1 was produced. .
[0079] [化 1] [0079] [Chemical 1]
Figure imgf000012_0001
[0080] 次いで、作製した有機 EL素子 1を、真空環境を維持したまま第一の保護膜を形成 するために第一の保護膜形成工程であるスパッタ装置に搬送した。スパッタ装置とし ては図 2に示したものを用いた。
Figure imgf000012_0001
[0080] Next, the produced organic EL element 1 was transported to a sputtering apparatus which is a first protective film forming step in order to form a first protective film while maintaining a vacuum environment. The sputtering equipment shown in Fig. 2 was used.
[0081] ターゲット材料として窒化珪素(Si N )を用いて、円筒形状にターゲットを形成し、  [0081] Using silicon nitride (Si N) as a target material, a target is formed in a cylindrical shape,
3 4  3 4
円筒形状のターゲットの上端と、有機 EL素子の基板との距離を 7cmとした。スパッタ ガスに酸素 2体積%を含むアルゴンを用いて、ガス圧力を 1. 33 X 10— 2Paとした。 The distance between the upper end of the cylindrical target and the substrate of the organic EL element was 7 cm. Using argon containing oxygen 2% by volume of the sputtering gas was a gas pressure 1. a 33 X 10- 2 Pa.
[0082] 電源は、周波数 13. 56MHzの交流電源で投入電力が 100Wのときの製膜レート を水晶振動子によりモニターすると 1A/秒であった。この条件で有機 EL素子 1上に 5000 Aの厚さの保護膜 (バリア膜ともいう)を形成して、第一の保護膜を有する有機 EL素子 1を作製した。 [0082] The power source was an AC power source with a frequency of 13.56 MHz, and the film forming rate when the input power was 100 W was 1 A / second when monitored by a crystal resonator. Under these conditions, a protective film (also referred to as a barrier film) having a thickness of 5000 A was formed on the organic EL element 1 to produce an organic EL element 1 having a first protective film.
[0083] 次に、第一の保護膜を有する有機 EL素子 1を真空環境下から露点温度 10°Cの ドライエアの大気圧環境下にある第二の保護膜形成工程に搬送し、第二の保護膜を 形成した。  [0083] Next, the organic EL element 1 having the first protective film is transported from the vacuum environment to the second protective film forming step in the dry air atmospheric pressure environment with a dew point temperature of 10 ° C, A protective film was formed.
[0084] 第二の保護膜形成工程のラミネート装置により、有機 EL素子上に紫外線硬化樹脂 としてナガセケムテック製 5516XNRを塗布した後、封止フィルムを 100°Cのローラに より加熱、圧着して EL素子にラミネートした。封止フィルムは、プリヂストン製 EVA (ェ チレンビニルアセテート厚さ 0· 4mm)のフィルムと、旭硝子製 ETFE (ァフレックス厚 さ 25 μ m)の耐候性樹脂とを貼り合わせて一体化したフィルムを用いた。  [0084] After applying 5516XNR made by Nagase Chemtech as an ultraviolet curable resin on the organic EL element by the laminating apparatus in the second protective film forming step, the sealing film was heated and pressure-bonded by a roller at 100 ° C. Laminated to EL element. The sealing film is a film that is made by bonding together the EVA film made by Pridestone (ethylene vinyl acetate thickness 0.4 mm) and the weather resistant resin made by Asahi Glass ETFE (aflex thickness 25 μm). It was.
[0085] その後、不要部分の封止フィルムを裁断した後、 UV光源により積算照射エネルギ 一が 6000mjZcm2になるまで照射してラミネートを完了し、第二の保護膜を有する 有機 EL素子 1を作製した。 [0085] After that, after cutting off the unnecessary portion of the sealing film, the laminate was completed by irradiating with a UV light source until the integrated irradiation energy became 6000mjZcm 2 to produce the organic EL device 1 having the second protective film. did.
[0086] 《有機 EL素子 1一 2の作製》:比較例  [0086] << Preparation of organic EL elements 1-12, >>: Comparative example
洗浄したガラス 100mm角の基板を真空度 10— 5Paの圧力である真空環境下に維持 された蒸着真空槽に設置する。蒸着真空槽において、陽極用物質である ITOを 100 OAの膜厚になるように電子ビーム法により形成して陽極を作製した。 Installing a substrate of washed glass 100mm angle deposition vacuum chamber maintained under a vacuum environment at a pressure of vacuum degree of 10- 5 Pa. In the vapor deposition vacuum chamber, an anode was prepared by forming an anode material ITO by an electron beam method to a thickness of 100 OA.
[0087] 次に、この上に有機 EL素子材料であるひ _NPDを正孔輸送層として 2AZ秒の 速度で蒸着して 500Aの厚さで形成した。次に Alqを発光層として  [0087] Next, _NPD, which is an organic EL element material, was vapor-deposited at a rate of 2 AZ seconds as a hole transporting layer to form a thickness of 500A. Next, using Alq as the light-emitting layer
3 2AZ秒の速度 で蒸着して 600Aの厚さで形成した。これらの層を形成後、その上に陰極用物質で あるアルミニウムを 2000 Aの膜厚になるように、 3 A/秒の速度で蒸着して陰極を形 成して、有機 EL素子を作製した。 3 Vapor deposited at a rate of 2AZ seconds to form a thickness of 600A. After these layers are formed, a cathode material is formed thereon. An organic EL device was fabricated by forming a cathode by depositing aluminum at a rate of 3 A / second to a thickness of 2000 A.
[0088] 作製した有機 EL素子を、図 5の断面模式図で示すように、乾燥窒素の雰囲気下に おいて、有機 EL材料が外気と遮断するようにガラス材料の封止材 15で覆レ、、 UV硬 化樹脂の接着剤 16によって封止材を基板に接着して封止して比較サンプルを作製 した。 [0088] As shown in the schematic cross-sectional view of FIG. 5, the fabricated organic EL element is covered with a glass material sealing material 15 so that the organic EL material is shielded from the outside air in an atmosphere of dry nitrogen. A comparative sample was prepared by adhering the sealing material to the substrate with an adhesive 16 of UV curable resin and sealing it.
[0089] 《評価結果》  [0089] << Evaluation results >>
作製した封止された各有機 EL素子サンプルを、それぞれ 2. 5mA/cm2の定電流 で駆動し、各サンプルの評価をおこなった。 Each of the sealed organic EL device samples thus produced was driven at a constant current of 2.5 mA / cm 2 to evaluate each sample.
[0090] 作製直後の、本発明の有機 EL素子 1 1は、比較例である有機 EL素子 1 2と比 較して、外部取り出し効率、駆動電圧ともに同等であり、保護膜の製膜時に有機 EL 素子へのダメージが少なレ、事を示してレ、る。  [0090] The organic EL device 11 of the present invention immediately after fabrication has the same external extraction efficiency and drive voltage as compared with the organic EL device 12 of the comparative example, and is organic when forming the protective film. Show less damage to the EL element.
[0091] 尚、外部取り出し効率は、それぞれのサンプルを 2. 5mA/cm2の定電流で駆動し 発光させたときの発光を分光放射輝度計 CS— 1000 (コニカミノルタ製)を用い測定 し、それぞれについて、外部取り出し効率(%)を算出し比較した。また、駆動電圧に ついても、 2. 5mA/ cm2の定電流で駆動したときの電圧を比較した。 [0091] The external extraction efficiency was measured by using a spectral radiance meter CS-1000 (manufactured by Konica Minolta) to measure the light emission when each sample was driven at a constant current of 2.5 mA / cm 2 to emit light. For each, the external extraction efficiency (%) was calculated and compared. As for the driving voltage, we compared the voltages when driving at a constant current of 2.5 mA / cm2.
[0092] また、更に、作製した封止された各素子について、 60°C、 90%RHの高温高湿条 件において 500hrの保存した後、 2. 5mA/cm2の一定電流で駆動させ、前記同様 に外部取り出し効率、駆動電圧を、また、 2mm X 2mm四方の範囲において目視で 確認できる非発光点(ダークスポット)の数を各サンプノレ間で比較した力 本発明の 有機 EL素子 1は、比較例の有機 EL素子 1 - 2 (ガラスにより封止した有機 EL素子)と 比較しても、外部取り出し効率、駆動電圧、ダークスポットともに同等の保存特性が確 認された。 [0092] Further, for each of the fabricated sealed elements, after being stored for 500 hours at a high temperature and high humidity of 60 ° C and 90% RH, it was driven at a constant current of 2.5 mA / cm 2 , As described above, the external extraction efficiency, the driving voltage, and the power of comparing the number of non-light-emitting points (dark spots) that can be visually confirmed in the range of 2 mm × 2 mm square between each sampnole are as follows. Compared with the organic EL device 1-2 of the comparative example (organic EL device sealed with glass), the same storage characteristics were confirmed for the external extraction efficiency, drive voltage, and dark spot.

Claims

請求の範囲 The scope of the claims
[1] 基板上に形成した有機エレクト口ルミネッセンス素子上に保護膜を形成する有機エレ タトロルミネッセンス素子の製造方法において、第一の保護膜を真空環境下におい て形成した後、第二の保護膜を大気圧環境下で形成することを特徴とする有機エレ タトロルミネッセンス素子の製造方法。  [1] In the method for manufacturing an organic electroluminescent element in which a protective film is formed on an organic electroluminescent element formed on a substrate, the second protective film is formed after the first protective film is formed in a vacuum environment. Is formed under an atmospheric pressure environment, and a method for producing an organic electroluminescent element.
[2] 前記第一の保護膜の形成は、電子ビーム法、スパッタリング法、プラズマ CVD法、ィ オンプレーティング法のいずれ力を用いることを特徴とする請求の範囲第 1項に記載 の有機エレクト口ルミネッセンス素子の製造方法。  [2] The organic electrification opening according to claim 1, wherein the first protective film is formed using any one of an electron beam method, a sputtering method, a plasma CVD method, and an ion plating method. Manufacturing method of luminescence element.
[3] 前記第一の保護膜は、窒化酸化シリコンまたは窒化シリコンのいずれかであることを 特徴とする請求の範囲第 1項または請求の範囲第 2項に記載の有機エレクトロルミネ ッセンス素子の製造方法。 [3] The manufacturing of the organic electroluminescent element according to claim 1 or 2, wherein the first protective film is either silicon nitride oxide or silicon nitride. Method.
[4] 前記第二の保護膜の形成は、大気圧環境下、露点温度が一 10°C以下の環境下で 実施することを特徴とする請求の範囲第 1項〜請求の範囲第 3項のいずれ力 4項に 記載の有機エレクト口ルミネッセンス素子の製造方法。 [4] The formation of the second protective film is carried out under an atmospheric pressure environment and an environment with a dew point temperature of 10 ° C. or lower. The manufacturing method of the organic electoluminescence device of any one of 4.
[5] 前記第二の保護膜は、樹脂フィルムであることを特徴とする請求の範囲第 1項〜請求 の範囲第 4項のいずれか 1項に記載の有機エレクト口ルミネッセンス素子の製造方法 [5] The method for producing an organic electoluminescence device according to any one of claims 1 to 4, wherein the second protective film is a resin film.
[6] 前記樹脂フィルムには、予め保護膜が形成されていることを特徴とする請求の範囲 第 1項〜請求の範囲第 5項のいずれ力 1項に記載の有機エレクト口ルミネッセンス素 子の製造方法。 [6] The protective film is formed in advance on the resin film. The power of the organic electoluminescence device according to any one of claims 1 to 5, Production method.
[7] 前記第一の保護膜と、前記第二の保護膜との間に、中間層を、大気圧環境下で設け ることを特徴とする請求の範囲第 1項〜請求の範囲第 6項のいずれ力 1項に記載の 有機エレクト口ルミネッセンス素子の製造方法。  [7] An intermediate layer is provided between the first protective film and the second protective film under an atmospheric pressure environment. The manufacturing method of the organic electoluminescence device of any one term.
PCT/JP2006/317168 2005-09-08 2006-08-31 Method for manufacturing organic electroluminescent device WO2007029586A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007534360A JPWO2007029586A1 (en) 2005-09-08 2006-08-31 Method for manufacturing organic electroluminescence element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005260430 2005-09-08
JP2005-260430 2005-09-08

Publications (1)

Publication Number Publication Date
WO2007029586A1 true WO2007029586A1 (en) 2007-03-15

Family

ID=37835705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317168 WO2007029586A1 (en) 2005-09-08 2006-08-31 Method for manufacturing organic electroluminescent device

Country Status (2)

Country Link
JP (1) JPWO2007029586A1 (en)
WO (1) WO2007029586A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221911A (en) * 2001-01-24 2002-08-09 Sony Corp Display device and its manufacturing method
JP2003051382A (en) * 2001-08-06 2003-02-21 Hitachi Ltd Film for el element
JP2004022359A (en) * 2002-06-17 2004-01-22 Toyota Central Res & Dev Lab Inc Organic electroluminescent element and organic electronic device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000123971A (en) * 1998-10-15 2000-04-28 Futaba Corp Manufacture of organic el
JP2005063927A (en) * 2003-07-30 2005-03-10 Asahi Glass Co Ltd Simple matrix type organic el display element and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221911A (en) * 2001-01-24 2002-08-09 Sony Corp Display device and its manufacturing method
JP2003051382A (en) * 2001-08-06 2003-02-21 Hitachi Ltd Film for el element
JP2004022359A (en) * 2002-06-17 2004-01-22 Toyota Central Res & Dev Lab Inc Organic electroluminescent element and organic electronic device

Also Published As

Publication number Publication date
JPWO2007029586A1 (en) 2009-03-19

Similar Documents

Publication Publication Date Title
KR100751513B1 (en) Apparatus for forming a film
TWI552407B (en) Organic electronic device and method for producing of organic electronic device
JP4425438B2 (en) Method for manufacturing EL display device
JP2007179783A (en) Manufacturing method of organic electroluminescent element
KR101572114B1 (en) Method for producing an optoelectronic component, and optoelectronic component
JP6648752B2 (en) Sealed structure
US9045822B2 (en) Deposition source, deposition apparatus, and method of manufacturing organic light-emitting display apparatus
US20040043525A1 (en) Method of forming protection film for covering electronic component and electronic device having protection film
US20080268567A1 (en) Method for fabricating organic light emitting display
JP6142363B2 (en) Method for manufacturing organic electroluminescent device
KR20140108110A (en) Method of manufacturing organic el element
JP2010170776A (en) Organic electroluminescent element and its manufacturing method
JP2009199902A (en) Organic light-emitting device and electron equipment
JP4696832B2 (en) Method for manufacturing organic electroluminescence panel
WO2007029586A1 (en) Method for manufacturing organic electroluminescent device
JP2015135781A (en) Method of manufacturing organic electroluminescent element
JP2007149482A (en) Manufacturing method of organic el element
JP2020117787A (en) Film deposition apparatus by magnetron sputtering method and film deposition method
JP5003491B2 (en) Method and apparatus for manufacturing organic electroluminescence element
JP2007305332A (en) Manufacturing method of organic electroluminescent element
JP2003338367A (en) El element sealing plate, el display device, and manufacturing method therefor
JP2003109753A (en) Manufacturing method of electroluminescent element
JP2004055452A (en) Manufacturing method of organic light emitting device
JP2000006299A (en) Transparent conductive laminate
JP2013089561A (en) Organic el device and method of manufacturing organic el device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007534360

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06797128

Country of ref document: EP

Kind code of ref document: A1