WO2007029310A1 - Brake device for elevator - Google Patents

Brake device for elevator Download PDF

Info

Publication number
WO2007029310A1
WO2007029310A1 PCT/JP2005/016308 JP2005016308W WO2007029310A1 WO 2007029310 A1 WO2007029310 A1 WO 2007029310A1 JP 2005016308 W JP2005016308 W JP 2005016308W WO 2007029310 A1 WO2007029310 A1 WO 2007029310A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic coil
braking
brake
electromagnetic
control device
Prior art date
Application number
PCT/JP2005/016308
Other languages
French (fr)
Japanese (ja)
Inventor
Masunori Shibata
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37835447&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007029310(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to JP2006523465A priority Critical patent/JP4925105B2/en
Priority to EP05781944.3A priority patent/EP1923345B1/en
Priority to PCT/JP2005/016308 priority patent/WO2007029310A1/en
Priority to CN200580041133.2A priority patent/CN100562476C/en
Publication of WO2007029310A1 publication Critical patent/WO2007029310A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/32Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on braking devices, e.g. acting on electrically controlled brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/16Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well
    • B66B5/18Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well and applying frictional retarding forces
    • B66B5/185Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well and applying frictional retarding forces by acting on main ropes or main cables

Definitions

  • the present invention relates to an elevator brake device for braking raising and lowering of a car and a counterweight.
  • an elevator brake device has been proposed in which a disk rotating integrally with a motor shaft is clamped between a plate and an armature to brake the rotation of the disk.
  • a cushioning material for reducing impact noise during braking is provided on the plate and armature (see Patent Document 1).
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-184919
  • the conventional elevator brake device requires a cushioning material for reducing the impact noise, which increases the manufacturing cost.
  • the present invention has been made to solve the above-described problems, and is an elevator that can reduce noise generated during braking and can reduce manufacturing costs.
  • the purpose is to obtain a braking device.
  • the elevator braking device includes a rotating body, a braking body that can be displaced between a braking position that contacts the rotating body, and an open position where the rotating body force is released, and the braking body is displaced to the braking position.
  • a first electromagnetic coil and a second electromagnetic coil that generate an electromagnetic attraction force when energized, respectively.
  • an electromagnetic magnet for displacing the brake body to the open position and a brake control device for controlling energization of each of the first electromagnetic coil and the second electromagnetic coil are provided.
  • different energization controls are performed on the first electromagnetic coil and the second electromagnetic coil.
  • FIG. 1 is a schematic configuration diagram showing an elevator according to Embodiment 1 of the present invention.
  • FIG. 2 is a side sectional view showing the brake device main body of FIG.
  • FIG. 3 is a configuration diagram schematically showing the electromagnetic magnet of FIG. 2.
  • FIG. 4 is a schematic configuration diagram showing a brake device main body when the first and second braking bodies in FIG. 2 are in a braking position.
  • FIG. 5 is a schematic configuration diagram showing a brake device body when the first and second braking bodies of FIG. 4 are in an open position.
  • FIG. 6 is a graph for explaining the operation of the brake device of FIG.
  • FIG. 7 is a schematic configuration diagram showing a brake device body when the first braking body of FIG. 5 is cramped.
  • FIG. 8 is a graph for explaining the operation of the brake device according to the second embodiment of the present invention.
  • FIG. 9 is a graph for explaining the operation of the brake device according to the third embodiment of the present invention.
  • FIG. 10 is a graph for explaining the operation of the brake device according to the fourth embodiment of the present invention.
  • FIG. 11 is a graph for explaining the operation of the brake device according to the fifth embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram showing an elevator according to Embodiment 1 of the present invention.
  • a lift 2 and a counterweight 3 are provided in the hoistway 1 so as to be lifted and lowered.
  • a lifting machine (driving device) 4 for raising and lowering the force 2 and the counterweight 3 is provided at the upper part of the hoistway 1.
  • the lifting machine 4 includes a lifting machine body 5 and a drive sheave 6 that is rotated by the lifting machine body 5.
  • a plurality of main ropes 7 are wound around the drive sheave 6.
  • the force 2 and the counterweight 3 are suspended in the hoistway 1 by the main ropes 7.
  • the go 2 and the counterweight 3 are raised and lowered in the hoistway 1 by the rotation of the drive sheave 6.
  • the rotation of the drive sheave 6 is braked by the brake device 8.
  • the brake device 8 has a brake device body 9 mounted on the lifting machine body 5 and a brake control device 10 for controlling the operation of the brake device body 9.
  • FIG. 2 is a side sectional view showing the brake device body 9 of FIG.
  • the upper machine body 5 has a motor 11.
  • the motor 11 has a motor shaft 12 that rotates together with the drive sheave 6.
  • a cover plate 13 is fixed to the motor 11 via a plurality of rods 14 arranged in parallel with the motor shaft 12. Thus, the cover plate 13 is arranged away from the motor 11 in the axial direction of the motor shaft 12.
  • the brake device body 9 is arranged between the motor 11 and the cover plate 13!
  • the brake device body 9 includes a first brake disk (rotating body) 15 and a second brake disk (rotating body) 16 that can rotate integrally with the motor shaft 12, and first and second brake disks 15, 16
  • the first brake body 17 and the second brake body 18 that are displaceable between the brake position that contacts at least one of the first brake disk 15 and the first brake disk 15 and the open position where the force is released, 2 Plural springs (biasing bodies) 19 that bias the braking bodies 17, 18 to the braking position, and the first and second braking bodies 17, 18 are displaced to the open position against the biasing force of each spring 19.
  • the first and second brake disks 15, 16 are provided on the motor shaft 12 via the spline hub 21.
  • the first and second brake discs 15 and 16 can be displaced with respect to the motor shaft 12 in the axial direction of the motor shaft 12, and can be displaced to the motor shaft 12 in the rotational direction. It is fixed against.
  • the first and second brake discs 15 and 16 are spaced apart from each other in the axial direction of the motor shaft 12, and in this example, the first brake disc 15 is more cover plate than the second brake disc 16. It is located on the side away from 13.
  • the first and second braking bodies 17, 18 are arranged at intervals in the axial direction of the motor shaft 12.
  • the first braking body 17 is disposed on the side farther from the cover plate 13 than the second braking body 18.
  • the first braking body 17 A brake disk 15 is disposed, and a second brake disk 16 is disposed between the second brake body 18 and the cover plate 13.
  • first and second brake bodies 17, 18 When the first and second brake bodies 17, 18 are displaced to the open position force braking position, the first and second brake bodies 17, 18 are displaced toward the cover plate 13 while pressing the first and second brake discs 15, 16. Is done. Further, the first and second braking bodies 17 and 18 are displaced away from the cover plate 13 by being displaced to the braking position force releasing position, and are opened from the first and second brake disks 15 and 16. Be released.
  • the first braking body 17 is provided on the armature 22 with a disk-like armature slidably supported by each rod 14, and the first brake disc 17 when the first braking body 17 is in the braking position. And a sliding member 23 in contact with 15.
  • the second braking body 18 is provided on the movable plate 24 and a disc-like movable plate 24 supported by each rod 14 so as to be slidable. When the second braking body 18 is in the braking position, the first and first braking bodies 18 are provided. 2Sliding members 25 and 26 that contact the brake discs 15 and 16, respectively.
  • the cover plate 13 is provided with a sliding member 27 that contacts the second brake disk 16 when the first and second braking bodies 17 and 18 are in the braking position.
  • the electromagnetic magnet 20 is fixed to the motor 11.
  • Each spring 19 is disposed between the electromagnetic magnet 20 and the armature 22 in a contracted state. Thereby, the first braking body 17 is urged by the springs 19 in the direction away from the electromagnetic magnet 20.
  • FIG. 3 is a configuration diagram schematically showing the electromagnetic magnet 20 of FIG.
  • the electromagnetic magnet 20 includes a cylindrical fixed core 28 (FIG. 2) fixed to the motor 11, a pair of first electromagnetic coils 29 that generate an electromagnetic attractive force that attracts the armature 22 by energization, and It has a pair of second electromagnetic coils 30! /.
  • the first electromagnetic coil 29 and the second electromagnetic coil 30 are arranged on a plane perpendicular to the direction in which the first braking body 17 is displaced. Further, the first electromagnetic coil 29 and the second electromagnetic coil 30 are alternately arranged at equal intervals in the circumferential direction of the fixed core 28. Further, each first electromagnetic coil 29 is arranged symmetrically with respect to the axis of the motor shaft 12, and each second electromagnetic coil 30 is arranged symmetrically with respect to the axis of the motor shaft 12.
  • Each first electromagnetic coil 29 is supplied with electric power from the first power source 31, and is supplied to each electromagnetic coil 30.
  • the power from the second power source 32 is supplied.
  • the energization amount from the first power source 31 to each first electromagnetic coil 29 is measured by the first current detector (CT) 33, and the energization amount from the second power source 32 to each second electromagnetic coil 30 is the second current amount. It is now measured by the current detector (CT) 34.
  • CT current detector
  • the brake control device 10 is electrically connected to an operation control device (not shown) that controls the operation of the elevator.
  • the brake control device 10 receives information from each of the first current detector 33, the second current detector 34, and the operation control device. In addition, the brake control device 10 controls energization of the first and second electromagnetic coils 29 and 30 based on information from the first current detector 33, the second current detector 34, and the operation control device. It is like that.
  • the brake control device 10 outputs a voltage command for the first electromagnetic coil 29 to the first power supply 31 and outputs a voltage command for the second electromagnetic coil 30 to the second power supply 32.
  • the first power source 31 applies a voltage corresponding to the voltage command value for the first electromagnetic coil 29 to the first electromagnetic coil 29, and the second power source 32 is a voltage corresponding to the voltage command value for the second electromagnetic coil 30. Is applied to the second electromagnetic coil 30. That is, the brake control device 10 controls the energization of the first and second electromagnetic coils 29 and 30 by outputting voltage commands to the first and second electromagnetic coils 29 and 30, respectively. ing.
  • the brake control device 10 controls the energization of the first electromagnetic coil 29 and the second electromagnetic coil 30 different from each other when the brake device main body 9 is operated. That is, when operating the brake device body 9, the brake control device 10 determines the amount of energization to the first electromagnetic coil 29 and the amount of energization to the second electromagnetic coil 30 so that the electromagnetic attractive force is unbalanced. It comes to control.
  • the brake control device 10 uses the urging force of each spring 19 and the electromagnetic attractive force generated from the first and second electromagnetic coils 29 and 30 when operating the brake device main body 9 to The first electromagnetic coil 29 and the second electromagnetic coil 30 are controlled to be energized differently so that the first braking body 17 is contained.
  • FIG. 4 is a schematic configuration diagram showing the brake device body 9 when the first and second braking bodies 17 and 18 of FIG. 2 are in the braking position.
  • the first braking body 17 and the first The brake disc 15, the second brake body 18, and the second brake disc 16 are pressed against the cover plate 13 in a state where they overlap with each other in the axial direction of the motor shaft 12.
  • the sliding members 23 and 25 are in contact with the first brake disc 15, and the sliding members 26 and 27 are in contact with the second brake disc 16.
  • the first and second brake discs 15, 16 The rotation of is braked.
  • FIG. 5 is a schematic configuration diagram showing the brake device main body 9 when the first and second braking bodies 17 and 18 of FIG. 4 are in the open position.
  • the first brake body 17 is attracted by the electromagnetic magnet 20 and displaced in a direction away from the cover plate 13. Yes.
  • braking on the first and second brake discs 15, 16 is released.
  • Fig. 6 is a graph for explaining the operation of the brake device 8 of Fig. 3.
  • Fig. 6 (a) is a graph showing the relationship between the brake release command of the operation control device and time
  • Fig. 6 (b) Is a graph showing the relationship between the voltage command for the first electromagnetic coil 29 and time
  • Fig. 6 (c) is a graph showing the relationship between the voltage command for the second electromagnetic coil 30 and time
  • Fig. 6 (d) is the first graph.
  • FIG. 6E is a graph showing the relationship between the energization amount to the electromagnetic coil 29 and time
  • FIG. 6E is a graph showing the relationship between the energization amount to the second electromagnetic coil 30 and time.
  • FIG. 7 is a schematic configuration diagram showing the brake device body 9 when the first braking body 17 of FIG.
  • the distance between the first braking body 17 and the first brake disc 15 is such that the portion where the slack of the first braking body 17 is larger. It ’s getting smaller. That is, the distance between the first braking body 17 and the brake disc 15 is partially reduced.
  • the electromagnetic attractive forces of the first and second electromagnetic coils 29 and 30 when the first braking body 17 is displaced can be made different from each other. Accordingly, the first braking body 17 can be partially separated from the electromagnetic magnet 20 by the urging force of each spring 19, and then the first braking body 17 can be started to be displaced to the braking position. . Therefore, the speed of the first braking body 17 when reaching the braking position can be reduced, and the impact sound generated during the braking operation of the brake device body 9 can be reduced. In addition, since a shock absorbing material for absorbing the shock is not necessary, the manufacturing cost can be reduced.
  • control of energization by the brake control device 10 is such that the timing of stopping energization of the first and second electromagnetic coils 29 and 30 is different from each other.
  • the suction force and the electromagnetic arch I force of the second electromagnetic coil 30 can be easily made different in strength, and the impact sound generated during the braking operation of the brake device body 9 can be reduced.
  • the first braking body 17 When the first braking body 17 is also displaced to the braking position, the first braking body 17 is driven by the electromagnetic attractive force of the first and second electromagnetic coils 29, 30 and the biasing force of each spring 19. Therefore, it is possible to reduce the impact sound generated during the braking operation of the brake device main body 9 and to make the deformation of the first braking body 17 symmetrical. Thus, a more stable braking operation can be performed.
  • FIG. 8 is a diagram for explaining the operation of the brake device according to Embodiment 2 of the present invention. It is a graph of. Fig. 8 (a) is a graph showing the relationship between the brake release command of the operation control device and time, Fig. 8 (b) is a graph showing the relationship between the voltage command for the first electromagnetic coil 29 and time, and Fig. 8 ( c) is a graph showing the relationship between the voltage command for the second electromagnetic coil 30 and time, Fig. 8 (d) is a graph showing the relationship between the amount of current supplied to the first electromagnetic coil 29 and time, and Fig. 8 (e) is 4 is a graph showing the relationship between the amount of current applied to the second electromagnetic coil 30 and time.
  • Fig. 8 (a) is a graph showing the relationship between the brake release command of the operation control device and time
  • Fig. 8 (b) is a graph showing the relationship between the voltage command for the first electromagnetic coil 29 and time
  • Fig. 8 ( c) is a graph showing the relationship between the voltage
  • the brake control device 10 starts the stop of the voltage command for each of the first and second electromagnetic coils 29, 30 simultaneously at time T3 (FIG. 8 ( b), Figure 8 (c)).
  • the brake control device 10 controls the voltage command for the first electromagnetic coil 29 so that it immediately becomes 0 after the stop of the voltage command is started. Then, the voltage command is stopped and the force is continuously reduced at a constant rate so that it is controlled to zero when a predetermined time has elapsed. That is, the brake control device 10 controls the voltage command for each of the first and second electromagnetic coils 29 and 30 so that the time from when the stop of the voltage command is started until the force becomes zero is different from each other. Become.
  • Other configurations are the same as those in the first embodiment.
  • the opening operation of the brake device main body 9, that is, the operation when the first and second braking bodies 17 and 18 are also displaced to the opening position is the same as that in the first embodiment.
  • the energization amounts to the first and second electromagnetic coils 29 and 30 are different from each other (Fig. 8 (d), Fig. 8 (e)).
  • the first braking body 17 is swollen.
  • the subsequent operation is the same as in the first embodiment.
  • the brake control device 10 controls each of the first and second electromagnetic coils 29, 30. Since the time from the start of the voltage command to be stopped until the force becomes zero is different, the first braking body 17 is partially separated from the electromagnetic magnet 20 as in the first embodiment. After that, the displacement of the entire first braking body 17 to the braking position can be started. Therefore, it is possible to reduce the impact sound generated during the braking operation of the brake device body 9.
  • the voltage applied to the second electromagnetic coil 30 is continuously reduced at a constant rate during the braking operation of the brake device main body 9.
  • the second electromagnetic coil 30 Even if the voltage applied to is instantaneously reduced to a preset value, it may be continuously reduced at a constant rate.
  • FIG. 9 is a graph for explaining the operation of the brake device according to Embodiment 3 of the present invention.
  • Fig. 9 (a) is a graph showing the relationship between the brake release command of the operation control device and time
  • Fig. 9 (b) is a graph showing the relationship between the voltage command for the first electromagnetic coil 29 and time
  • Fig. 9 ( c) is a graph showing the relationship between the voltage command for the second electromagnetic coil 30 and time
  • Fig. 9 (d) is a graph showing the relationship between the energization amount to the first electromagnetic coil 29 and time
  • Fig. 9 (e) is 4 is a graph showing the relationship between the amount of current applied to the second electromagnetic coil 30 and time.
  • the brake control device 10 is configured to simultaneously start stopping the voltage command for each of the first and second electromagnetic coils 29, 30 at time T3 (FIG. 9 ( b), Figure 9 (c)).
  • the brake control device 10 controls the voltage command for the first electromagnetic coil 29 so that it immediately becomes 0 after the stop of the voltage command is started. After starting to stop the voltage command, reduce it to the set value that was set by force and then reduce it continuously at a constant rate so that it will become 0 when a predetermined time has passed. It comes to control.
  • the set value is a value between 0 and the maximum value (predetermined value) of the voltage command for the second electromagnetic coil 30.
  • Other configurations are the same as those in the first embodiment.
  • the opening operation of the brake device main body 9, that is, the operation when the first and second braking bodies 17 and 18 are also displaced to the opening position is the same as that in the first embodiment.
  • the first and second electromagnetics are controlled by the control of the brake control device 10.
  • the voltage command for each of the coils 29 and 30 is stopped simultaneously at time T3. Thereafter, the voltage command to the first electromagnetic coil 29 is instantaneously zero by the control of the brake control device 10 (FIG. 9 (b)).
  • the voltage command for the second electromagnetic coil 30 decreases to the set value instantaneously, then decreases continuously at a constant rate, and becomes 0 when a predetermined time has passed (Fig. 8 (c )).
  • the energization amounts to the first and second electromagnetic coils 29 and 30 are different from each other (Fig. 9 (d), Fig. 9 (e)).
  • the first braking body 17 is swollen.
  • the subsequent operation is the same as in the first embodiment.
  • the voltage command for the second electromagnetic coil 30 is continuously reduced at a constant rate after being instantaneously reduced to the set value during the braking operation of the brake device body 9, so that the first braking body 17
  • the voltage command for the second electromagnetic coil 30 can be instantaneously reduced to the lowest voltage command value that can hold the brake position at the braking position, and the operation time of the brake device body 9 can be shortened. .
  • the impact sound during the braking operation of the brake device body 9 is reduced by changing the timing of stopping the energization of the first and second electromagnetic coils 29 and 30 to each other. As shown in the figure, the start of energization of the first and second electromagnetic coils 29, 30 is made different from each other, so that the impact sound can be reduced even when the brake device body 9 is opened. May be.
  • FIG. 10 is a graph for explaining the operation of the brake device according to Embodiment 4 of the present invention.
  • Fig. 10 (a) is a graph showing the relationship between the brake release command of the operation control device and time
  • Fig. 10 (b) shows the relationship between the voltage command for the first electromagnetic coil 29 and time
  • Fig. 10 (c) is a graph showing the relationship between the voltage command for the second electromagnetic coil 30 and time
  • Fig. 10 (d) is a graph showing the relationship between the energization amount to the first electromagnetic coil 29 and time
  • FIG. 10 (e) is a graph showing the relationship between the energization amount to the second electromagnetic coil 30 and time.
  • the brake control device 10 when the brake control device 10 receives the brake release command of the operation control device force, the brake control device 10 starts outputting the voltage command to the first electromagnetic coil 29 and then delays by the time T. 2 Output of voltage command to electromagnetic coil 30 is started.
  • Other configurations are the same as those in the first embodiment.
  • the first and second electromagnetic coils 29, 30 are different from each other so that the timing of starting energization of the first electromagnetic coil 29 and the timing of starting energization of the second electromagnetic coil 30 are different from each other.
  • the energization of each of these is controlled by the brake control device 10.
  • the energization amount to each of the first and second electromagnetic coils 29, 30 increases, and the first braking body 17 first sets the portion attracted by the second electromagnetic coil 30 to the braking position. While remaining, only the portion attracted by the first electromagnetic coil 29 is displaced in a direction to overcome the biasing force of each spring 19 and approach the electromagnetic magnet 20. As a result, the first braking body 17 is retracted.
  • the start of energization of each of the first and second electromagnetic coils 29 and 30 is different from each other by the control of the brake control device 10, so that the brake Even when the main unit 9 is opened, the electromagnetic attractive force of the first electromagnetic coil 29 and the electromagnetic arch I force of the second electromagnetic coil 30 can easily be set to different strengths. In addition, it is possible to reduce the impact sound due to the operation of the brake device body 9.
  • the voltage command for each of the first and second electromagnetic coils 29 and 30 is such that the output from the brake control device 10 is started and the maximum value (predetermined value) is reached instantaneously. It is possible to reduce the impact sound even when the brake device body 9 is released by varying the time from when the output of the voltage command is started until the force reaches the maximum value. .
  • FIG. 11 is a graph for explaining the operation of the brake device according to the fifth embodiment of the present invention.
  • Fig. 11 (a) is a graph showing the relationship between the brake release command of the operation control device and time
  • Fig. 11 (b) is a graph showing the relationship between the voltage command for the first electromagnetic coil 29 and time
  • Fig. 11 (c) is a graph showing the relationship between the voltage command for the second electromagnetic coil 30 and time
  • FIG. 11 (d) is a graph showing the relationship between the amount of current supplied to the first electromagnetic coil 29 and time
  • FIG. 11 (e). 4 is a graph showing the relationship between the amount of current supplied to the second electromagnetic coil 30 and time.
  • the brake control device 10 when the brake control device 10 receives the brake release command of the operation control device force, the brake control device 10 starts to output voltage commands to the first and second electromagnetic coils 29 and 30 simultaneously. It has become.
  • the brake control device 10 controls the voltage command for the first electromagnetic coil 29 so that the output of the voltage command starts to reach the maximum value instantaneously, and the voltage command for the second electromagnetic coil 30 Then, the voltage is continuously increased at a constant rate after the output of the voltage command is started, and control is performed so that the maximum value is reached when a predetermined time has elapsed.
  • the brake control device 10 controls the voltage command for each of the first and second electromagnetic coils 29 and 30 so that the time from when the output of the voltage command is started until the force reaches the maximum value is different from each other. It has become.
  • Other configurations are the same as those in the second embodiment.
  • the brake control device 10 When the brake control device 10 receives a brake release command from the operation control device, the brake control device 10 starts outputting voltage commands to the first and second electromagnetic coils 29 and 30 simultaneously. Thereafter, the voltage command for the first electromagnetic coil 29 instantaneously reaches the maximum value (Fig. 11 (b)), and the voltage command for the second electromagnetic coil 30 continuously increases at a constant rate, and reaches a predetermined value. After the time of The value is reached ( Figure ll (c)). That is, in this example, the first time so that the time until the voltage command for the first electromagnetic coil 29 reaches the maximum value is different from the time until the voltage command for the second electromagnetic coil 30 reaches the maximum value. The voltage command for each of the second electromagnetic coils 29 and 30 is controlled by the brake control device 10.
  • the first braking body 17 is attached to each spring 19 only by the portion attracted by the first electromagnetic coil 29 while leaving the portion attracted by the second electromagnetic coil 30 in the braking position. Displaced in a direction to overcome the force and approach the electromagnetic magnet 20. As a result, the first braking body 17 crawls.
  • the control of the brake control device 10 causes the start force of the output of the brake control device 10 to be a predetermined value for the voltage command to each of the first and second electromagnetic coils 29, 30. Since the time to reach them is different from each other, the electromagnetic attraction force of the first electromagnetic coil 29 and the electromagnetic arching I force of the second electromagnetic coil 30 can be obtained even when the brake device body 9 is opened. Different strengths can be easily obtained, and the impact sound due to the operation of the brake device body 9 can be reduced.
  • first electromagnetic coils 29 is two, and the number of second electromagnetic coils 30 is also two.
  • first and second electromagnetic coils 29, 30 The number of can be 1 or 3 or more!
  • the brake control device 10 controls the voltage applied to each of the first and second electromagnetic coils 29 and 30 according to a predetermined pattern, so that the first and second (2) The energization amount to the electromagnetic coils 29, 30 is changed, but based on the information from the first and second current detectors 33, 34, the first and second electromagnetic coils 29, 30 are The voltage applied to each of the first and second electromagnetic coils 29 and 30 may be controlled so that the energization amount of the coil changes according to a predetermined pattern.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Braking Arrangements (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)
  • Elevator Control (AREA)

Abstract

A brake device for an elevator, having a rotating body, a braking body displaceable between a braking position at which the braking body is in contact with the rotating body and a release position at which the braking body is separated from the rotating body, an urging body for urging the braking body in a direction in which the braking body is displaced to the braking position, an electromagnet having a first electromagnet coil and a second electromagnet coil individually producing electromagnetic attraction force when supplied with electricity and displacing the braking body to the release position against the urging force by the urging body, and a brake control device for controlling the supply of electricity to each of the first electromagnet coil and the second electromagnet coil. To displace the braking body, the brake control device performs different electricity supply control for the first electromagnet coil and the second electromagnet coil. When the braking body is displaced between the opening position and the release position, it is deflected by the electromagnetic attraction force of the first and second electromagnetic coils and by the urging force of the urging body. The construction reduces impact noise by displacement of the braking body.

Description

明 細 書  Specification
エレベータのブレーキ装置  Elevator brake equipment
技術分野  Technical field
[0001] この発明は、かご及び釣合おもりの昇降を制動するためのエレベータのブレーキ装 置に関するものである。  TECHNICAL FIELD [0001] The present invention relates to an elevator brake device for braking raising and lowering of a car and a counterweight.
背景技術  Background art
[0002] 従来、モータ軸と一体に回転するディスクをプレートとァーマチュアとの間で挟圧し てディスクの回転を制動するエレベータのブレーキ装置が提案されている。このような 従来のブレーキ装置では、制動時の衝撃音を低減するための緩衝材がプレート及び ァーマチュアに設けられて 、る (特許文献 1参照)。  Conventionally, an elevator brake device has been proposed in which a disk rotating integrally with a motor shaft is clamped between a plate and an armature to brake the rotation of the disk. In such a conventional brake device, a cushioning material for reducing impact noise during braking is provided on the plate and armature (see Patent Document 1).
[0003] 特許文献 1 :特開 2003— 184919号公報  [0003] Patent Document 1: Japanese Unexamined Patent Publication No. 2003-184919
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] しかし、従来のエレベータのブレーキ装置では、衝撃音を低減するための緩衝材が 必要になるので、製造コストの増大を招いてしまう。 [0004] However, the conventional elevator brake device requires a cushioning material for reducing the impact noise, which increases the manufacturing cost.
[0005] この発明は、上記のような課題を解決するためになされたものであり、ブレーキ動作 時に発生する音の低減を図ることができるとともに、製造コストの低減を図ることがで きるエレベータのブレーキ装置を得ることを目的とする。 課題を解決するための手段 [0005] The present invention has been made to solve the above-described problems, and is an elevator that can reduce noise generated during braking and can reduce manufacturing costs. The purpose is to obtain a braking device. Means for solving the problem
[0006] この発明によるエレベータのブレーキ装置は、回転体、回転体に接触する制動位 置と、回転体力 開離される開放位置との間で変位可能な制動体、制動体が制動位 置に変位される方向へ制動体を付勢する付勢体、通電により電磁吸引力をそれぞれ 発生する第 1電磁コイル及び第 2電磁コイルを有し、電磁吸引力の発生により、付勢 体による付勢力に逆らって、開離位置へ制動体を変位させる電磁マグネット、及び第 1電磁コイル及び第 2電磁コイルのそれぞれへの通電を制御するブレーキ制御装置 を備え、ブレーキ制御装置は、制動体を変位させるときに、第 1電磁コイル及び第 2 電磁コイルに対して互いに異なる通電の制御を行うようになって 、る。 図面の簡単な説明 [0006] The elevator braking device according to the present invention includes a rotating body, a braking body that can be displaced between a braking position that contacts the rotating body, and an open position where the rotating body force is released, and the braking body is displaced to the braking position. A first electromagnetic coil and a second electromagnetic coil that generate an electromagnetic attraction force when energized, respectively. On the other hand, an electromagnetic magnet for displacing the brake body to the open position and a brake control device for controlling energization of each of the first electromagnetic coil and the second electromagnetic coil are provided. In addition, different energization controls are performed on the first electromagnetic coil and the second electromagnetic coil. Brief Description of Drawings
[0007] [図 1]この発明の実施の形態 1によるエレベータを示す模式的な構成図である。  FIG. 1 is a schematic configuration diagram showing an elevator according to Embodiment 1 of the present invention.
[図 2]図 1のブレーキ装置本体を示す側断面図である。  2 is a side sectional view showing the brake device main body of FIG.
[図 3]図 2の電磁マグネットを模式的に示す構成図である。  FIG. 3 is a configuration diagram schematically showing the electromagnetic magnet of FIG. 2.
[図 4]図 2の第 1及び第 2制動体が制動位置にあるときのブレーキ装置本体を示す模 式的な構成図である。  4 is a schematic configuration diagram showing a brake device main body when the first and second braking bodies in FIG. 2 are in a braking position.
[図 5]図 4の第 1及び第 2制動体が開放位置にあるときのブレーキ装置本体を示す模 式的な構成図である。  FIG. 5 is a schematic configuration diagram showing a brake device body when the first and second braking bodies of FIG. 4 are in an open position.
[図 6]図 3のブレーキ装置の動作を説明するためのグラフである。  FIG. 6 is a graph for explaining the operation of the brake device of FIG.
[図 7]図 5の第 1制動体が橈んでいるときのブレーキ装置本体を示す模式的な構成図 である。  FIG. 7 is a schematic configuration diagram showing a brake device body when the first braking body of FIG. 5 is cramped.
[図 8]この発明の実施の形態 2によるブレーキ装置の動作を説明するためのグラフで ある。  FIG. 8 is a graph for explaining the operation of the brake device according to the second embodiment of the present invention.
[図 9]この発明の実施の形態 3によるブレーキ装置の動作を説明するためのグラフで ある。  FIG. 9 is a graph for explaining the operation of the brake device according to the third embodiment of the present invention.
[図 10]この発明の実施の形態 4によるブレーキ装置の動作を説明するためのグラフで ある。  FIG. 10 is a graph for explaining the operation of the brake device according to the fourth embodiment of the present invention.
[図 11]この発明の実施の形態 5によるブレーキ装置の動作を説明するためのグラフで ある。  FIG. 11 is a graph for explaining the operation of the brake device according to the fifth embodiment of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0008] 以下、この発明の好適な実施の形態について図面を参照して説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
実施の形態 1.  Embodiment 1.
図 1は、この発明の実施の形態 1によるエレベータを示す模式的な構成図である。 図において、昇降路 1内には、力ご 2及び釣合おもり 3が昇降可能に設けられている 。昇降路 1の上部には、力ご 2及び釣合おもり 3を昇降させるための卷上機 (駆動装 置) 4が設けられている。卷上機 4は、卷上機本体 5と、卷上機本体 5により回転される 駆動シーブ 6とを有している。駆動シーブ 6には、複数本の主索 7が巻き掛けられて いる。力ご 2及び釣合おもり 3は、各主索 7により昇降路 1内に吊り下げられている。か ご 2及び釣合おもり 3は、駆動シーブ 6の回転により昇降路 1内を昇降される。 FIG. 1 is a schematic configuration diagram showing an elevator according to Embodiment 1 of the present invention. In the figure, a lift 2 and a counterweight 3 are provided in the hoistway 1 so as to be lifted and lowered. At the upper part of the hoistway 1, a lifting machine (driving device) 4 for raising and lowering the force 2 and the counterweight 3 is provided. The lifting machine 4 includes a lifting machine body 5 and a drive sheave 6 that is rotated by the lifting machine body 5. A plurality of main ropes 7 are wound around the drive sheave 6. The force 2 and the counterweight 3 are suspended in the hoistway 1 by the main ropes 7. Or The go 2 and the counterweight 3 are raised and lowered in the hoistway 1 by the rotation of the drive sheave 6.
[0009] 駆動シーブ 6の回転は、ブレーキ装置 8により制動される。ブレーキ装置 8は、卷上 機本体 5に搭載されたブレーキ装置本体 9と、ブレーキ装置本体 9の動作を制御する ためのブレーキ制御装置 10とを有している。  The rotation of the drive sheave 6 is braked by the brake device 8. The brake device 8 has a brake device body 9 mounted on the lifting machine body 5 and a brake control device 10 for controlling the operation of the brake device body 9.
[0010] ここで、図 2は、図 1のブレーキ装置本体 9を示す側断面図である。図において、卷 上機本体 5は、モータ 11を有している。モータ 11は、駆動シーブ 6と一体に回転され るモータ軸 12を有している。  Here, FIG. 2 is a side sectional view showing the brake device body 9 of FIG. In the figure, the upper machine body 5 has a motor 11. The motor 11 has a motor shaft 12 that rotates together with the drive sheave 6.
[0011] モータ 11には、モータ軸 12と平行に配置された複数本のロッド 14を介してカバー プレート 13が固定されている。これにより、カバープレート 13は、モータ軸 12の軸線 方向について、モータ 11から離されて配置されている。ブレーキ装置本体 9は、モー タ 11とカバープレート 13との間に配置されて!、る。  A cover plate 13 is fixed to the motor 11 via a plurality of rods 14 arranged in parallel with the motor shaft 12. Thus, the cover plate 13 is arranged away from the motor 11 in the axial direction of the motor shaft 12. The brake device body 9 is arranged between the motor 11 and the cover plate 13!
[0012] ブレーキ装置本体 9は、モータ軸 12と一体に回転可能な第 1ブレーキディスク(回 転体) 15及び第 2ブレーキディスク(回転体) 16と、第 1及び第 2ブレーキディスク 15, 16の少なくともいずれかに接触する制動位置と第 1及び第 2ブレーキディスク 15, 16 力 開離される開放位置との間で変位可能な第 1制動体 17及び第 2制動体 18と、第 1及び第 2制動体 17, 18を制動位置へ付勢する複数のばね (付勢体) 19と、各ばね 19の付勢力に逆らって、第 1及び第 2制動体 17, 18を開放位置へ変位させるための 電磁マグネット 20とを有して!/、る。  [0012] The brake device body 9 includes a first brake disk (rotating body) 15 and a second brake disk (rotating body) 16 that can rotate integrally with the motor shaft 12, and first and second brake disks 15, 16 The first brake body 17 and the second brake body 18 that are displaceable between the brake position that contacts at least one of the first brake disk 15 and the first brake disk 15 and the open position where the force is released, 2 Plural springs (biasing bodies) 19 that bias the braking bodies 17, 18 to the braking position, and the first and second braking bodies 17, 18 are displaced to the open position against the biasing force of each spring 19. For having an electromagnetic magnet 20!
[0013] 第 1及び第 2ブレーキディスク 15, 16は、スプラインハブ 21を介してモータ軸 12に 設けられている。これにより、第 1及び第 2ブレーキディスク 15, 16は、モータ軸 12の 軸線方向にっ 、てはモータ軸 12に対して変位可能とされ、回転方向にっ 、てはモ ータ軸 12に対して固定される。また、第 1及び第 2ブレーキディスク 15, 16は、モータ 軸 12の軸線方向へ互いに間隔を置いて配置されており、この例では、第 1ブレーキ ディスク 15が第 2ブレーキディスク 16よりもカバープレート 13から離れた側に配置さ れている。  The first and second brake disks 15, 16 are provided on the motor shaft 12 via the spline hub 21. As a result, the first and second brake discs 15 and 16 can be displaced with respect to the motor shaft 12 in the axial direction of the motor shaft 12, and can be displaced to the motor shaft 12 in the rotational direction. It is fixed against. The first and second brake discs 15 and 16 are spaced apart from each other in the axial direction of the motor shaft 12, and in this example, the first brake disc 15 is more cover plate than the second brake disc 16. It is located on the side away from 13.
[0014] 第 1及び第 2制動体 17, 18は、モータ軸 12の軸線方向へ互いに間隔を置いて配 置されている。この例では、第 1制動体 17が第 2制動体 18よりもカバープレート 13か ら離れた側に配置されている。また、第 1制動体 17と第 2制動体 18との間には、第 1 ブレーキディスク 15が配置され、第 2制動体 18とカバープレート 13との間には、第 2 ブレーキディスク 16が配置されている。 [0014] The first and second braking bodies 17, 18 are arranged at intervals in the axial direction of the motor shaft 12. In this example, the first braking body 17 is disposed on the side farther from the cover plate 13 than the second braking body 18. In addition, between the first braking body 17 and the second braking body 18, the first braking body 17 A brake disk 15 is disposed, and a second brake disk 16 is disposed between the second brake body 18 and the cover plate 13.
[0015] 第 1及び第 2制動体 17, 18は、開放位置力 制動位置へ変位されるときに、第 1及 び第 2ブレーキディスク 15, 16を押しながら、カバープレート 13に近づく方向へ変位 される。また、第 1及び第 2制動体 17, 18は、制動位置力 開放位置へ変位されるこ とにより、カバープレート 13から離れる方向へ変位され、第 1及び第 2ブレーキデイス ク 15, 16から開離される。  [0015] When the first and second brake bodies 17, 18 are displaced to the open position force braking position, the first and second brake bodies 17, 18 are displaced toward the cover plate 13 while pressing the first and second brake discs 15, 16. Is done. Further, the first and second braking bodies 17 and 18 are displaced away from the cover plate 13 by being displaced to the braking position force releasing position, and are opened from the first and second brake disks 15 and 16. Be released.
[0016] 第 1制動体 17は、各ロッド 14にスライド可能に支持された円板状のァーマチュア 22 と、ァーマチュア 22に設けられ、第 1制動体 17が制動位置にあるときに第 1ブレーキ ディスク 15に接触する摺動材 23とを有している。第 2制動体 18は、各ロッド 14にスラ イド可能に支持された円板状の可動プレート 24と、可動プレート 24に設けられ、第 2 制動体 18が制動位置にあるときに第 1及び第 2ブレーキディスク 15, 16にそれぞれ 接触する摺動材 25, 26とを有している。また、カバープレート 13には、第 1及び第 2 制動体 17, 18が制動位置にあるときに第 2ブレーキディスク 16に接触する摺動材 27 が設けられている。  [0016] The first braking body 17 is provided on the armature 22 with a disk-like armature slidably supported by each rod 14, and the first brake disc 17 when the first braking body 17 is in the braking position. And a sliding member 23 in contact with 15. The second braking body 18 is provided on the movable plate 24 and a disc-like movable plate 24 supported by each rod 14 so as to be slidable. When the second braking body 18 is in the braking position, the first and first braking bodies 18 are provided. 2Sliding members 25 and 26 that contact the brake discs 15 and 16, respectively. The cover plate 13 is provided with a sliding member 27 that contacts the second brake disk 16 when the first and second braking bodies 17 and 18 are in the braking position.
[0017] 電磁マグネット 20は、モータ 11に固定されている。各ばね 19は、縮められた状態 で電磁マグネット 20とァーマチュア 22との間に配置されている。これにより、第 1制動 体 17は、電磁マグネット 20から離れる方向へ各ばね 19により付勢されている。  The electromagnetic magnet 20 is fixed to the motor 11. Each spring 19 is disposed between the electromagnetic magnet 20 and the armature 22 in a contracted state. Thereby, the first braking body 17 is urged by the springs 19 in the direction away from the electromagnetic magnet 20.
[0018] ここで、図 3は、図 2の電磁マグネット 20を模式的に示す構成図である。図において 、電磁マグネット 20は、モータ 11に固定された円柱状の固定鉄心 28 (図 2)と、ァー マチュア 22を吸引する電磁吸引力を通電により発生する一対の第 1電磁コイル 29及 び一対の第 2電磁コイル 30とを有して!/、る。  Here, FIG. 3 is a configuration diagram schematically showing the electromagnetic magnet 20 of FIG. In the figure, the electromagnetic magnet 20 includes a cylindrical fixed core 28 (FIG. 2) fixed to the motor 11, a pair of first electromagnetic coils 29 that generate an electromagnetic attractive force that attracts the armature 22 by energization, and It has a pair of second electromagnetic coils 30! /.
[0019] 第 1電磁コイル 29及び第 2電磁コイル 30は、第 1制動体 17が変位される方向に対 して垂直な平面上に配置されている。また、第 1電磁コイル 29及び第 2電磁コイル 30 は、固定鉄心 28の周方向へ等間隔にかつ交互に配置されている。さらに、各第 1電 磁コイル 29はモータ軸 12の軸線に関して対称に配置され、各第 2電磁コイル 30は モータ軸 12の軸線に関して対称に配置されている。  [0019] The first electromagnetic coil 29 and the second electromagnetic coil 30 are arranged on a plane perpendicular to the direction in which the first braking body 17 is displaced. Further, the first electromagnetic coil 29 and the second electromagnetic coil 30 are alternately arranged at equal intervals in the circumferential direction of the fixed core 28. Further, each first electromagnetic coil 29 is arranged symmetrically with respect to the axis of the motor shaft 12, and each second electromagnetic coil 30 is arranged symmetrically with respect to the axis of the motor shaft 12.
[0020] 各第 1電磁コイル 29には、第 1電源 31からの電力が供給され、各電磁コイル 30に は、第 2電源 32からの電力が供給されるようになっている。また、第 1電源 31から各 第 1電磁コイル 29への通電量は第 1電流検出器 (CT) 33により計測され、第 2電源 3 2から各第 2電磁コイル 30への通電量は第 2電流検出器 (CT) 34により計測されるよ うになつている。さらに、ブレーキ制御装置 10には、エレベータの運転を制御する運 転制御装置(図示せず)が電気的に接続されている。 [0020] Each first electromagnetic coil 29 is supplied with electric power from the first power source 31, and is supplied to each electromagnetic coil 30. The power from the second power source 32 is supplied. The energization amount from the first power source 31 to each first electromagnetic coil 29 is measured by the first current detector (CT) 33, and the energization amount from the second power source 32 to each second electromagnetic coil 30 is the second current amount. It is now measured by the current detector (CT) 34. Further, the brake control device 10 is electrically connected to an operation control device (not shown) that controls the operation of the elevator.
[0021] ブレーキ制御装置 10には、第 1電流検出器 33、第 2電流検出器 34及び運転制御 装置のそれぞれからの情報が入力される。また、ブレーキ制御装置 10は、第 1電流 検出器 33、第 2電流検出器 34及び運転制御装置のそれぞれからの情報に基づい て、第 1及び第 2電磁コイル 29, 30への通電を制御するようになっている。  The brake control device 10 receives information from each of the first current detector 33, the second current detector 34, and the operation control device. In addition, the brake control device 10 controls energization of the first and second electromagnetic coils 29 and 30 based on information from the first current detector 33, the second current detector 34, and the operation control device. It is like that.
[0022] ブレーキ制御装置 10は、第 1電磁コイル 29に対する電圧指令を第 1電源 31に出 力し、第 2電磁コイル 30に対する電圧指令を第 2電源 32に出力するようになっている 。第 1電源 31は、第 1電磁コイル 29に対する電圧指令の値に応じた電圧を第 1電磁 コイル 29に印加し、第 2電源 32は、第 2電磁コイル 30に対する電圧指令の値に応じ た電圧を第 2電磁コイル 30に印加するようになっている。即ち、ブレーキ制御装置 10 は、第 1及び第 2電磁コイル 29, 30のそれぞれに対する電圧指令を出力することによ り、第 1及び第 2電磁コイル 29, 30への通電を制御するようになっている。  The brake control device 10 outputs a voltage command for the first electromagnetic coil 29 to the first power supply 31 and outputs a voltage command for the second electromagnetic coil 30 to the second power supply 32. The first power source 31 applies a voltage corresponding to the voltage command value for the first electromagnetic coil 29 to the first electromagnetic coil 29, and the second power source 32 is a voltage corresponding to the voltage command value for the second electromagnetic coil 30. Is applied to the second electromagnetic coil 30. That is, the brake control device 10 controls the energization of the first and second electromagnetic coils 29 and 30 by outputting voltage commands to the first and second electromagnetic coils 29 and 30, respectively. ing.
[0023] ブレーキ制御装置 10は、ブレーキ装置本体 9を動作させるときに、第 1電磁コイル 2 9及び第 2電磁コイル 30に対して互いに異なる通電の制御を行うようになって 、る。 即ち、ブレーキ制御装置 10は、ブレーキ装置本体 9を動作させるときに、電磁吸引力 にアンバランスを生じさせるように、第 1電磁コイル 29への通電量と第 2電磁コイル 30 への通電量とを制御するようになって 、る。  The brake control device 10 controls the energization of the first electromagnetic coil 29 and the second electromagnetic coil 30 different from each other when the brake device main body 9 is operated. That is, when operating the brake device body 9, the brake control device 10 determines the amount of energization to the first electromagnetic coil 29 and the amount of energization to the second electromagnetic coil 30 so that the electromagnetic attractive force is unbalanced. It comes to control.
[0024] この例では、ブレーキ制御装置 10は、ブレーキ装置本体 9を動作させるときに、各 ばね 19による付勢力と、第 1及び第 2電磁コイル 29, 30から発生する電磁吸引力と によって、第 1制動体 17が橈むように、第 1電磁コイル 29及び第 2電磁コイル 30に対 して互いに異なる通電の制御を行うようになって!/、る。  In this example, the brake control device 10 uses the urging force of each spring 19 and the electromagnetic attractive force generated from the first and second electromagnetic coils 29 and 30 when operating the brake device main body 9 to The first electromagnetic coil 29 and the second electromagnetic coil 30 are controlled to be energized differently so that the first braking body 17 is contained.
[0025] 図 4は、図 2の第 1及び第 2制動体 17, 18が制動位置にあるときのブレーキ装置本 体 9を示す模式的な構成図である。図に示すように、第 1及び第 2電磁コイル 29, 30 への通電が停止されているときには、各ばね 19の付勢力により、第 1制動体 17、第 1 ブレーキディスク 15、第 2制動体 18及び第 2ブレーキディスク 16がモータ軸 12の軸 線方向へ重なった状態でカバープレート 13に押圧されている。このとき、第 1ブレー キディスク 15には摺動材 23, 25が接触し、第 2ブレーキディスク 16には摺動材 26, 27が接触しており、第 1及び第 2ブレーキディスク 15, 16の回転は制動される。 FIG. 4 is a schematic configuration diagram showing the brake device body 9 when the first and second braking bodies 17 and 18 of FIG. 2 are in the braking position. As shown in the figure, when the energization of the first and second electromagnetic coils 29 and 30 is stopped, the first braking body 17 and the first The brake disc 15, the second brake body 18, and the second brake disc 16 are pressed against the cover plate 13 in a state where they overlap with each other in the axial direction of the motor shaft 12. At this time, the sliding members 23 and 25 are in contact with the first brake disc 15, and the sliding members 26 and 27 are in contact with the second brake disc 16. The first and second brake discs 15, 16 The rotation of is braked.
[0026] 図 5は、図 4の第 1及び第 2制動体 17, 18が開放位置にあるときのブレーキ装置本 体 9を示す模式的な構成図である。図に示すように、第 1及び第 2電磁コイル 29, 30 への通電が行われているときには、第 1制動体 17は、電磁マグネット 20に吸引されて カバープレート 13から離れる方向へ変位されている。これにより、第 1及び第 2ブレー キディスク 15, 16に対する制動は解除される。  FIG. 5 is a schematic configuration diagram showing the brake device main body 9 when the first and second braking bodies 17 and 18 of FIG. 4 are in the open position. As shown in the figure, when the first and second electromagnetic coils 29, 30 are energized, the first brake body 17 is attracted by the electromagnetic magnet 20 and displaced in a direction away from the cover plate 13. Yes. As a result, braking on the first and second brake discs 15, 16 is released.
[0027] 次に、動作について説明する。図 6は、図 3のブレーキ装置 8の動作を説明するた めのグラフであり、図 6 (a)は運転制御装置のブレーキ開放指令と時間との関係を示 すグラフ、図 6 (b)は第 1電磁コイル 29に対する電圧指令と時間との関係を示すダラ フ、図 6 (c)は第 2電磁コイル 30に対する電圧指令と時間との関係を示すグラフ、図 6 (d)は第 1電磁コイル 29への通電量と時間との関係を示すグラフ、図 6 (e)は第 2電 磁コイル 30への通電量と時間との関係を示すグラフである。  Next, the operation will be described. Fig. 6 is a graph for explaining the operation of the brake device 8 of Fig. 3. Fig. 6 (a) is a graph showing the relationship between the brake release command of the operation control device and time, and Fig. 6 (b). Is a graph showing the relationship between the voltage command for the first electromagnetic coil 29 and time, Fig. 6 (c) is a graph showing the relationship between the voltage command for the second electromagnetic coil 30 and time, and Fig. 6 (d) is the first graph. FIG. 6E is a graph showing the relationship between the energization amount to the electromagnetic coil 29 and time, and FIG. 6E is a graph showing the relationship between the energization amount to the second electromagnetic coil 30 and time.
[0028] 図に示すように、力ご 2が階床に停止しているとき(時刻 TO)には、運転制御装置か らブレーキ制御装置 10へのブレーキ開放指令の出力は停止されている(図 6 (a) )。 このときには、第 1及び第 2電磁コイル 29, 30への電力の供給が停止され(図 6 (b)、 図 6 (c) )、各ばね 19の付勢力により、第 1及び第 2制動体 17, 18が制動位置に変位 されている(図 4)。これにより、第 1及び第 2ブレーキディスク 15, 16の回転が制動さ れ、力ご 2の停止位置が保持されている。  [0028] As shown in the figure, when the force 2 is stopped on the floor (time TO), the output of the brake release command from the operation control device to the brake control device 10 is stopped ( Figure 6 (a)). At this time, the supply of electric power to the first and second electromagnetic coils 29, 30 is stopped (FIGS. 6 (b) and 6 (c)), and the first and second braking bodies are urged by the urging force of each spring 19. 17 and 18 are displaced to the braking position (Fig. 4). As a result, the rotation of the first and second brake discs 15 and 16 is braked, and the stop position of the force 2 is maintained.
[0029] 力ご 2の移動が開始されるとき(時刻 T1)には、ブレーキ開放指令が運転制御装置 力もブレーキ制御装置 10へ出力される(図 6 (a) )。これにより、第 1及び第 2電磁コィ ル 29, 30のそれぞれに対する電圧指令がブレーキ制御装置 10から第 1及び第 2電 源 31 , 32へ同時に出力され(図 6 (b)、図 6 (c) )、第 1及び第 2電磁コイル 29, 30に 電力が供給される。この後、第 1及び第 2電磁コイル 29, 30への通電量が増大して 時刻 T2になったときに(図 6 (d)、図 6 (e) )、第 1及び第 2制動体 17, 18が開放位置 へ変位され (図 5)、第 1及び第 2ブレーキディスク 15, 16に対する制動が解除される [0030] この後、力ご 2が移動され、力ご 2が別の階床に再度停止されると、運転制御装置か らのブレーキ開放指令の出力が停止される(図 6 (a) )。これにより、ブレーキ制御装 置 10からの電圧指令は、第 1電磁コイル 29に対する出力のみがまず停止される(図 6 (b) )。この後、時間 Tだけ遅れて時刻 T4になったときに、第 2電磁コイル 30に対す る出力が停止される(図 6 (c) )。即ち、第 1電磁コイル 29への通電の停止の時期と、 第 2電磁コイル 30への通電の停止の時期とが互いに異なるように、第 1及び第 2電磁 コイル 29, 30のそれぞれへの通電がブレーキ制御装置 10により制御される。これに より、第 1電磁コイル 29への通電量が低下し始めてから時間 T後に、第 2電磁コイル 3 0への通電量が低下し始める(図 6 (d)、図 6 (e) )。 [0029] When the movement of the force 2 is started (time T1), the brake release command is also output to the operation control device force to the brake control device 10 (Fig. 6 (a)). As a result, voltage commands for the first and second electromagnetic coils 29 and 30 are simultaneously output from the brake control device 10 to the first and second power sources 31 and 32 (FIGS. 6B and 6C). )), Electric power is supplied to the first and second electromagnetic coils 29, 30. Thereafter, when the energization amount to the first and second electromagnetic coils 29, 30 increases and time T2 is reached (FIG. 6 (d), FIG. 6 (e)), the first and second braking bodies 17 , 18 are displaced to the open position (Fig. 5) and braking on the first and second brake discs 15, 16 is released. [0030] After that, when the force 2 is moved and the force 2 is stopped again on another floor, the output of the brake release command from the operation control device is stopped (Fig. 6 (a)). . As a result, only the output to the first electromagnetic coil 29 of the voltage command from the brake control device 10 is stopped first (FIG. 6 (b)). Thereafter, when the time T4 is delayed by the time T, the output to the second electromagnetic coil 30 is stopped (FIG. 6 (c)). That is, the energization of each of the first and second electromagnetic coils 29, 30 is different so that the timing of the energization of the first electromagnetic coil 29 is different from the timing of the energization of the second electromagnetic coil 30. Is controlled by the brake control device 10. As a result, the energization amount to the second electromagnetic coil 30 begins to decrease after a time T from when the energization amount to the first electromagnetic coil 29 begins to decrease (FIGS. 6 (d) and 6 (e)).
[0031] この後、第 1及び第 2電磁コイル 29, 30のそれぞれへの通電量が低下し続けて時 刻 T5になったときに(図 6 (d)、図 6 (e) )、第 1制動体 17は、第 2電磁コイル 30によつ て吸引されたまま、第 1電磁コイル 29によって吸引されている部分のみが各ばね 19 の付勢力により電磁マグネット 20から離れる。即ち、通電量が先に低下し始めた第 1 電磁コイル 29の電磁吸引力が第 2電磁コイル 30の電磁吸引力よりも弱くなつている ので、第 1電磁コイル 29によって吸引されている第 1制動体 17の部分が先に電磁マ グネット 20から離れる。これにより、第 1制動体 17が橈む。  [0031] After this, when the energization amount to each of the first and second electromagnetic coils 29, 30 continues to decrease and reaches time T5 (Fig. 6 (d), Fig. 6 (e)), 1 While the braking body 17 is attracted by the second electromagnetic coil 30, only the portion attracted by the first electromagnetic coil 29 is separated from the electromagnetic magnet 20 by the urging force of each spring 19. That is, since the electromagnetic attraction force of the first electromagnetic coil 29 whose energization amount has started to decrease first is weaker than the electromagnetic attraction force of the second electromagnetic coil 30, the first electromagnetic coil 29 being attracted by the first electromagnetic coil 29 The part of the braking body 17 moves away from the electromagnetic magnet 20 first. As a result, the first braking body 17 crawls.
[0032] ここで、図 7は、図 5の第 1制動体 17が橈んでいるときのブレーキ装置本体 9を示す 模式的な構成図である。図に示すように、第 1制動体 17が橈んでいるときには、第 1 制動体 17と第 1ブレーキディスク 15との間の間隔は、第 1制動体 17の橈みが大きく なっている部分ほど、小さくなつている。即ち、第 1制動体 17とブレーキディスク 15と の間の間隔は、部分的に小さくなつている。  Here, FIG. 7 is a schematic configuration diagram showing the brake device body 9 when the first braking body 17 of FIG. As shown in the figure, when the first braking body 17 is stagnant, the distance between the first braking body 17 and the first brake disc 15 is such that the portion where the slack of the first braking body 17 is larger. It ’s getting smaller. That is, the distance between the first braking body 17 and the brake disc 15 is partially reduced.
[0033] この後、第 1及び第 2電磁コイル 29, 30への通電量がさらに低下して 0に近づくと、 各ばね 19の付勢力が第 2電磁コイル 30の電磁吸引力にも打ち勝ち、第 1及び第 2制 動体 17, 18が制動位置へ変位される。即ち、第 1制動体 17と第 1ブレーキディスク 1 5との間の間隔が部分的に小さくなつた状態から、第 1制動体 17の制動位置への変 位が開始され、第 1及び第 2制動体 17, 18が制動位置へ変位される。これにより、第 1及び第 2ブレーキディスク 15, 16の回転が制動される。 [0034] このようなエレベータのブレーキ装置 8では、ブレーキ制御装置 10が、第 1制動体 1 7を変位させるときに、第 1電磁コイル 29及び第 2電磁コイル 30に対して互 ヽに異な る通電の制御を行うようになっているので、第 1制動体 17を変位させるときの第 1及び 第 2電磁コイル 29, 30のそれぞれの電磁吸引力を互いに異なる強さにすることがで きる。これにより、各ばね 19の付勢力によって、第 1制動体 17を部分的に電磁マグネ ット 20から開離させてから、第 1制動体 17全体の制動位置への変位を開始させること ができる。従って、制動位置に達するときの第 1制動体 17の速度を小さくすることがで き、ブレーキ装置本体 9の制動動作時に発生する衝撃音の低減を図ることができる。 また、衝撃を吸収するための緩衝材が不要となるので、製造コストの低減も図ることが できる。 [0033] Thereafter, when the energization amount to the first and second electromagnetic coils 29, 30 further decreases and approaches 0, the urging force of each spring 19 overcomes the electromagnetic attraction force of the second electromagnetic coil 30, The first and second control bodies 17, 18 are displaced to the braking position. That is, when the distance between the first brake body 17 and the first brake disk 15 is partially reduced, the first brake body 17 starts to shift to the braking position. The brake bodies 17, 18 are displaced to the brake position. As a result, the rotation of the first and second brake disks 15, 16 is braked. In such an elevator brake device 8, the brake control device 10 is different from the first electromagnetic coil 29 and the second electromagnetic coil 30 when the first braking body 17 is displaced. Since energization is controlled, the electromagnetic attractive forces of the first and second electromagnetic coils 29 and 30 when the first braking body 17 is displaced can be made different from each other. Accordingly, the first braking body 17 can be partially separated from the electromagnetic magnet 20 by the urging force of each spring 19, and then the first braking body 17 can be started to be displaced to the braking position. . Therefore, the speed of the first braking body 17 when reaching the braking position can be reduced, and the impact sound generated during the braking operation of the brake device body 9 can be reduced. In addition, since a shock absorbing material for absorbing the shock is not necessary, the manufacturing cost can be reduced.
[0035] また、ブレーキ制御装置 10による通電の制御は、第 1及び第 2電磁コイル 29, 30 への通電の停止の時期が互いに異なるようにされて 、るので、第 1電磁コイル 29の 電磁吸引力と、第 2電磁コイル 30の電磁吸弓 I力とを容易に異なる強さにすることがで き、ブレーキ装置本体 9の制動動作時に発生する衝撃音の低減を図ることができる。  In addition, the control of energization by the brake control device 10 is such that the timing of stopping energization of the first and second electromagnetic coils 29 and 30 is different from each other. The suction force and the electromagnetic arch I force of the second electromagnetic coil 30 can be easily made different in strength, and the impact sound generated during the braking operation of the brake device body 9 can be reduced.
[0036] また、第 1制動体 17が開放位置力も制動位置へ変位されるときに、第 1及び第 2電 磁コイル 29, 30の電磁吸引力及び各ばね 19の付勢力によって第 1制動体 17が橈 むようになって!/、るので、ブレーキ装置本体 9の制動動作時に発生する衝撃音の低 減を図ることができるとともに、第 1制動体 17の変形を左右対称にすることもできるの で、より安定した制動動作を行うことができる。  [0036] When the first braking body 17 is also displaced to the braking position, the first braking body 17 is driven by the electromagnetic attractive force of the first and second electromagnetic coils 29, 30 and the biasing force of each spring 19. Therefore, it is possible to reduce the impact sound generated during the braking operation of the brake device main body 9 and to make the deformation of the first braking body 17 symmetrical. Thus, a more stable braking operation can be performed.
[0037] 実施の形態 2.  [0037] Embodiment 2.
なお、実施の形態 1では、第 1及び第 2電磁コイル 29, 30への通電の停止の時期 を異ならせることにより、ブレーキ装置本体 9の制動動作時に、互いに異なる強さの電 磁吸引力を第 1及び第 2電磁コイル 29, 30にそれぞれ発生させるようになっているが 、第 1及び第 2電磁コイル 29, 30のそれぞれに対する電圧指令の停止を開始してか ら 0になるまでの時間を互いに異ならせることにより、ブレーキ装置本体 9の制動動作 時に、互いに異なる強さの電磁吸引力を第 1及び第 2電磁コイル 29, 30にそれぞれ 発生させるようにしてもよい。  In the first embodiment, by varying the timing of stopping energization of the first and second electromagnetic coils 29, 30, different electromagnetic attraction forces with different strengths are applied during the braking operation of the brake device body 9. It is generated in the first and second electromagnetic coils 29 and 30 respectively, but the time from the start of voltage command stop to each of the first and second electromagnetic coils 29 and 30 to 0 By making the different from each other, electromagnetic attraction forces having different strengths may be generated in the first and second electromagnetic coils 29 and 30 respectively during the braking operation of the brake device body 9.
[0038] 即ち、図 8は、この発明の実施の形態 2によるブレーキ装置の動作を説明するため のグラフである。また、図 8 (a)は運転制御装置のブレーキ開放指令と時間との関係 を示すグラフ、図 8 (b)は第 1電磁コイル 29に対する電圧指令と時間との関係を示す グラフ、図 8 (c)は第 2電磁コイル 30に対する電圧指令と時間との関係を示すグラフ、 図 8 (d)は第 1電磁コイル 29への通電量と時間との関係を示すグラフ、図 8 (e)は第 2 電磁コイル 30への通電量と時間との関係を示すグラフである。 That is, FIG. 8 is a diagram for explaining the operation of the brake device according to Embodiment 2 of the present invention. It is a graph of. Fig. 8 (a) is a graph showing the relationship between the brake release command of the operation control device and time, Fig. 8 (b) is a graph showing the relationship between the voltage command for the first electromagnetic coil 29 and time, and Fig. 8 ( c) is a graph showing the relationship between the voltage command for the second electromagnetic coil 30 and time, Fig. 8 (d) is a graph showing the relationship between the amount of current supplied to the first electromagnetic coil 29 and time, and Fig. 8 (e) is 4 is a graph showing the relationship between the amount of current applied to the second electromagnetic coil 30 and time.
[0039] 図に示すように、ブレーキ制御装置 10は、第 1及び第 2電磁コイル 29, 30のそれぞ れに対する電圧指令の停止を時刻 T3で同時に開始するようになっている(図 8 (b)、 図 8 (c) )。また、ブレーキ制御装置 10は、第 1電磁コイル 29に対する電圧指令につ いては、電圧指令の停止を開始してから瞬時に 0になるように制御し、第 2電磁コイル 30に対する電圧指令については、電圧指令の停止を開始して力 一定の割合で連 続的に低下させて所定の時間が経過したときに 0になるように制御するようになって いる。即ち、ブレーキ制御装置 10は、電圧指令の停止を開始して力も 0になるまでの 時間が互いに異なるように、第 1及び第 2電磁コイル 29, 30のそれぞれに対する電 圧指令を制御するようになって 、る。他の構成は実施の形態 1と同様である。  [0039] As shown in the figure, the brake control device 10 starts the stop of the voltage command for each of the first and second electromagnetic coils 29, 30 simultaneously at time T3 (FIG. 8 ( b), Figure 8 (c)). The brake control device 10 controls the voltage command for the first electromagnetic coil 29 so that it immediately becomes 0 after the stop of the voltage command is started. Then, the voltage command is stopped and the force is continuously reduced at a constant rate so that it is controlled to zero when a predetermined time has elapsed. That is, the brake control device 10 controls the voltage command for each of the first and second electromagnetic coils 29 and 30 so that the time from when the stop of the voltage command is started until the force becomes zero is different from each other. Become. Other configurations are the same as those in the first embodiment.
[0040] 次に、動作について説明する。ブレーキ装置本体 9の開放動作、即ち第 1及び第 2 制動体 17, 18が制動位置力も開放位置へ変位されるときの動作は、実施の形態 1と 同様である。  [0040] Next, the operation will be described. The opening operation of the brake device main body 9, that is, the operation when the first and second braking bodies 17 and 18 are also displaced to the opening position is the same as that in the first embodiment.
[0041] 運転制御装置からのブレーキ開放指令の出力が停止され(図 8 (a) )、ブレーキ装 置本体 9が制動動作を行うときには、ブレーキ制御装置 10の制御により、第 1及び第 2電磁コイル 29, 30のそれぞれに対する電圧指令の出力の停止が時刻 T3で同時に 開始される。この後、ブレーキ制御装置 10の制御により、第 1電磁コイル 29に対する 電圧指令は瞬時に 0になり(図 8 (b) )、第 2電磁コイル 30に対する電圧指令は連続 的に低下して所定の時間が経過したときに 0になる(図 8 (c) )。  [0041] When the brake release command output from the operation control device is stopped (Fig. 8 (a)) and the brake device main body 9 performs a braking operation, the first and second electromagnetics are controlled by the brake control device 10. The output of the voltage command to each of the coils 29 and 30 is stopped simultaneously at time T3. Thereafter, under the control of the brake control device 10, the voltage command for the first electromagnetic coil 29 instantaneously becomes 0 (FIG. 8 (b)), and the voltage command for the second electromagnetic coil 30 continuously decreases to a predetermined value. It will be 0 when the time has elapsed (Fig. 8 (c)).
[0042] これにより、時刻 T3が経過した後には、第 1及び第 2電磁コイル 29, 30への通電量 が互いに異なる量になり(図 8 (d)、図 8 (e) )、実施の形態 1と同様に、第 1制動体 17 が橈む。この後の動作は、実施の形態 1と同様である。  [0042] Thus, after the time T3 has elapsed, the energization amounts to the first and second electromagnetic coils 29 and 30 are different from each other (Fig. 8 (d), Fig. 8 (e)). As in the first mode, the first braking body 17 is swollen. The subsequent operation is the same as in the first embodiment.
[0043] このようなエレベータのブレーキ装置では、ブレーキ装置本体 9の制動動作時に、 ブレーキ制御装置 10の制御により、第 1及び第 2電磁コイル 29, 30のそれぞれに対 する電圧指令の停止を開始して力 0になるまでの時間が互いに異なるようになって いるので、実施の形態 1と同様に、第 1制動体 17を部分的に電磁マグネット 20から開 離させてから、第 1制動体 17全体の制動位置への変位を開始させることができる。従 つて、ブレーキ装置本体 9の制動動作時に発生する衝撃音の低減を図ることができる [0043] In such an elevator brake device, during braking operation of the brake device body 9, the brake control device 10 controls each of the first and second electromagnetic coils 29, 30. Since the time from the start of the voltage command to be stopped until the force becomes zero is different, the first braking body 17 is partially separated from the electromagnetic magnet 20 as in the first embodiment. After that, the displacement of the entire first braking body 17 to the braking position can be started. Therefore, it is possible to reduce the impact sound generated during the braking operation of the brake device body 9.
[0044] 実施の形態 3. [0044] Embodiment 3.
なお、実施の形態 2では、ブレーキ装置本体 9の制動動作時に、第 2電磁コイル 30 に印加する電圧を一定の割合で連続的に低下させるようになっているが、第 2電磁コ ィル 30に印加する電圧を、あら力じめ設定された設定値まで瞬時に低下させた後に 、一定の割合で連続的に低下させるようにしてもょ 、。  In the second embodiment, the voltage applied to the second electromagnetic coil 30 is continuously reduced at a constant rate during the braking operation of the brake device main body 9. However, the second electromagnetic coil 30 Even if the voltage applied to is instantaneously reduced to a preset value, it may be continuously reduced at a constant rate.
[0045] 即ち、図 9は、この発明の実施の形態 3によるブレーキ装置の動作を説明するため のグラフである。また、図 9 (a)は運転制御装置のブレーキ開放指令と時間との関係 を示すグラフ、図 9 (b)は第 1電磁コイル 29に対する電圧指令と時間との関係を示す グラフ、図 9 (c)は第 2電磁コイル 30に対する電圧指令と時間との関係を示すグラフ、 図 9 (d)は第 1電磁コイル 29への通電量と時間との関係を示すグラフ、図 9 (e)は第 2 電磁コイル 30への通電量と時間との関係を示すグラフである。  That is, FIG. 9 is a graph for explaining the operation of the brake device according to Embodiment 3 of the present invention. Fig. 9 (a) is a graph showing the relationship between the brake release command of the operation control device and time, Fig. 9 (b) is a graph showing the relationship between the voltage command for the first electromagnetic coil 29 and time, and Fig. 9 ( c) is a graph showing the relationship between the voltage command for the second electromagnetic coil 30 and time, Fig. 9 (d) is a graph showing the relationship between the energization amount to the first electromagnetic coil 29 and time, and Fig. 9 (e) is 4 is a graph showing the relationship between the amount of current applied to the second electromagnetic coil 30 and time.
[0046] 図に示すように、ブレーキ制御装置 10は、第 1及び第 2電磁コイル 29, 30のそれぞ れに対する電圧指令の停止を時刻 T3で同時に開始するようになっている(図 9 (b)、 図 9 (c) )。また、ブレーキ制御装置 10は、第 1電磁コイル 29に対する電圧指令につ いては、電圧指令の停止を開始してから瞬時に 0になるように制御し、第 2電磁コイル 30に対する電圧指令については、電圧指令の停止を開始してから、あら力じめ設定 された設定値まで瞬時に低下させた後に一定の割合で連続的に低下させ、所定の 時間が経過したときに 0になるように制御するようになっている。設定値は、第 2電磁コ ィル 30に対する電圧指令の最大値 (所定値)と 0との間の値とされている。他の構成 は実施の形態 1と同様である。  [0046] As shown in the figure, the brake control device 10 is configured to simultaneously start stopping the voltage command for each of the first and second electromagnetic coils 29, 30 at time T3 (FIG. 9 ( b), Figure 9 (c)). The brake control device 10 controls the voltage command for the first electromagnetic coil 29 so that it immediately becomes 0 after the stop of the voltage command is started. After starting to stop the voltage command, reduce it to the set value that was set by force and then reduce it continuously at a constant rate so that it will become 0 when a predetermined time has passed. It comes to control. The set value is a value between 0 and the maximum value (predetermined value) of the voltage command for the second electromagnetic coil 30. Other configurations are the same as those in the first embodiment.
[0047] 次に、動作について説明する。ブレーキ装置本体 9の開放動作、即ち第 1及び第 2 制動体 17, 18が制動位置力も開放位置へ変位されるときの動作は、実施の形態 1と 同様である。 [0048] 運転制御装置からのブレーキ開放指令の出力が停止され(図 9 (a) )、ブレーキ装 置本体 9が制動動作を行うときには、ブレーキ制御装置 10の制御により、第 1及び第 2電磁コイル 29, 30のそれぞれに対する電圧指令の停止が時刻 T3で同時に開始さ れる。この後、ブレーキ制御装置 10の制御により、第 1電磁コイル 29に対する電圧指 令は、瞬時に 0になる(図 9 (b) )。これに対し、第 2電磁コイル 30に対する電圧指令は 、設定値まで瞬時に低下した後、一定の割合で連続的に低下して所定の時間が経 過したときに 0になる(図 8 (c) )。 Next, the operation will be described. The opening operation of the brake device main body 9, that is, the operation when the first and second braking bodies 17 and 18 are also displaced to the opening position is the same as that in the first embodiment. [0048] When the brake release command output from the operation control device is stopped (Fig. 9 (a)) and the brake device main body 9 performs a braking operation, the first and second electromagnetics are controlled by the control of the brake control device 10. The voltage command for each of the coils 29 and 30 is stopped simultaneously at time T3. Thereafter, the voltage command to the first electromagnetic coil 29 is instantaneously zero by the control of the brake control device 10 (FIG. 9 (b)). On the other hand, the voltage command for the second electromagnetic coil 30 decreases to the set value instantaneously, then decreases continuously at a constant rate, and becomes 0 when a predetermined time has passed (Fig. 8 (c )).
[0049] これにより、時刻 T3が経過した後には、第 1及び第 2電磁コイル 29, 30への通電量 が互いに異なる量になり(図 9 (d)、図 9 (e) )、実施の形態 1と同様に、第 1制動体 17 が橈む。この後の動作は、実施の形態 1と同様である。  [0049] Thus, after the time T3 has elapsed, the energization amounts to the first and second electromagnetic coils 29 and 30 are different from each other (Fig. 9 (d), Fig. 9 (e)). As in the first mode, the first braking body 17 is swollen. The subsequent operation is the same as in the first embodiment.
[0050] このようなエレベータのブレーキ装置であっても、ブレーキ装置本体 9の制動動作 時に、ブレーキ制御装置 10の制御により、第 1及び第 2電磁コイル 29, 30のそれぞ れに対する電圧指令の停止を開始して力 0になるまでの時間が互いに異なるように なっているので、実施の形態 2と同様に、ブレーキ装置本体 9の制動動作時に発生 する衝撃音の低減を図ることができる。また、第 2電磁コイル 30に対する電圧指令は 、ブレーキ装置本体 9の制動動作時に、設定値まで瞬時に低下した後に一定の割合 で連続的に低下するようになっているので、第 1制動体 17を制動位置に保持すること ができる電圧指令の最低値にまで第 2電磁コイル 30に対する電圧指令を瞬時に低 下させることができ、ブレーキ装置本体 9の動作時間の短縮ィ匕を図ることもできる。  [0050] Even in such an elevator brake device, during the braking operation of the brake device main body 9, the command of the voltage command to each of the first and second electromagnetic coils 29, 30 is controlled by the control of the brake control device 10. Since the time from when the stop is started until the force becomes zero is different from each other, the impact sound generated during the braking operation of the brake device body 9 can be reduced as in the second embodiment. In addition, the voltage command for the second electromagnetic coil 30 is continuously reduced at a constant rate after being instantaneously reduced to the set value during the braking operation of the brake device body 9, so that the first braking body 17 The voltage command for the second electromagnetic coil 30 can be instantaneously reduced to the lowest voltage command value that can hold the brake position at the braking position, and the operation time of the brake device body 9 can be shortened. .
[0051] 実施の形態 4.  [0051] Embodiment 4.
また、実施の形態 1では、第 1及び第 2電磁コイル 29, 30への通電の停止の時期の みを互 ヽに異なるようにして、ブレーキ装置本体 9の制動動作時の衝撃音の低減を 図っているが、第 1及び第 2電磁コイル 29, 30への通電の開始の時期を互いに異な るようにすることにより、ブレーキ装置本体 9の開放動作時にも、衝撃音の低減を図る ようにしてもよい。  Further, in the first embodiment, the impact sound during the braking operation of the brake device body 9 is reduced by changing the timing of stopping the energization of the first and second electromagnetic coils 29 and 30 to each other. As shown in the figure, the start of energization of the first and second electromagnetic coils 29, 30 is made different from each other, so that the impact sound can be reduced even when the brake device body 9 is opened. May be.
[0052] 即ち、図 10は、この発明の実施の形態 4によるブレーキ装置の動作を説明するた めのグラフである。また、図 10 (a)は運転制御装置のブレーキ開放指令と時間との関 係を示すグラフ、図 10 (b)は第 1電磁コイル 29に対する電圧指令と時間との関係を 示すグラフ、図 10 (c)は第 2電磁コイル 30に対する電圧指令と時間との関係を示す グラフ、図 10 (d)は第 1電磁コイル 29への通電量と時間との関係を示すグラフ、図 10 (e)は第 2電磁コイル 30への通電量と時間との関係を示すグラフである。 That is, FIG. 10 is a graph for explaining the operation of the brake device according to Embodiment 4 of the present invention. Fig. 10 (a) is a graph showing the relationship between the brake release command of the operation control device and time, and Fig. 10 (b) shows the relationship between the voltage command for the first electromagnetic coil 29 and time. Fig. 10 (c) is a graph showing the relationship between the voltage command for the second electromagnetic coil 30 and time, and Fig. 10 (d) is a graph showing the relationship between the energization amount to the first electromagnetic coil 29 and time, FIG. 10 (e) is a graph showing the relationship between the energization amount to the second electromagnetic coil 30 and time.
[0053] 図に示すように、ブレーキ制御装置 10は、運転制御装置力 のブレーキ開放指令 を受けると、第 1電磁コイル 29に対する電圧指令の出力を開始した後、時間 Tだけ遅 れて、第 2電磁コイル 30に対する電圧指令の出力を開始するようになっている。他の 構成は実施の形態 1と同様である。  [0053] As shown in the figure, when the brake control device 10 receives the brake release command of the operation control device force, the brake control device 10 starts outputting the voltage command to the first electromagnetic coil 29 and then delays by the time T. 2 Output of voltage command to electromagnetic coil 30 is started. Other configurations are the same as those in the first embodiment.
[0054] 次に、動作について説明する。運転制御装置からのブレーキ開放指令をブレーキ 制御装置 10が受けると、ブレーキ制御装置 10からは、第 1電磁コイル 29に対する電 圧指令のみがまず出力される(図 10 (b) )。この後、時間 Tだけ遅れて時刻 T6になつ たときに、第 2電磁コイル 30に対する電圧指令が出力される(図 10 (c) )。これにより、 第 1電磁コイル 29への通電が開始されてから時間 T後に、第 2電磁コイル 30への通 電が開始される(図 10 (d)、図 10 (e) )。即ち、この例では、第 1電磁コイル 29への通 電の開始の時期と、第 2電磁コイル 30への通電の開始の時期とが互いに異なるよう に、第 1及び第 2電磁コイル 29, 30のそれぞれへの通電がブレーキ制御装置 10によ り制御される。  Next, the operation will be described. When the brake control device 10 receives a brake release command from the operation control device, only the voltage command for the first electromagnetic coil 29 is first output from the brake control device 10 (FIG. 10 (b)). After this, when the time T6 is delayed and the time T6 is reached, a voltage command for the second electromagnetic coil 30 is output (FIG. 10 (c)). As a result, energization to the second electromagnetic coil 30 is started after time T from the start of energization to the first electromagnetic coil 29 (FIG. 10 (d), FIG. 10 (e)). That is, in this example, the first and second electromagnetic coils 29, 30 are different from each other so that the timing of starting energization of the first electromagnetic coil 29 and the timing of starting energization of the second electromagnetic coil 30 are different from each other. The energization of each of these is controlled by the brake control device 10.
[0055] この後、第 1及び第 2電磁コイル 29, 30のそれぞれへの通電量が増加し、第 1制動 体 17は、まず、第 2電磁コイル 30によって吸引されている部分を制動位置に残したま ま、第 1電磁コイル 29によって吸引されている部分のみが各ばね 19の付勢力に打ち 勝って電磁マグネット 20に近づく方向へ変位される。これにより、第 1制動体 17が橈 む。  [0055] Thereafter, the energization amount to each of the first and second electromagnetic coils 29, 30 increases, and the first braking body 17 first sets the portion attracted by the second electromagnetic coil 30 to the braking position. While remaining, only the portion attracted by the first electromagnetic coil 29 is displaced in a direction to overcome the biasing force of each spring 19 and approach the electromagnetic magnet 20. As a result, the first braking body 17 is retracted.
[0056] この後、第 2電磁コイル 30によって吸引されている部分も各ばね 19の付勢力に打 ち勝ち、第 1制動体 17全体が開放位置へ変位される。この後の動作は、実施の形態 1と同様である。  [0056] Thereafter, the portion attracted by the second electromagnetic coil 30 also overcomes the urging force of each spring 19, and the entire first braking body 17 is displaced to the open position. The subsequent operation is the same as in the first embodiment.
[0057] このようなエレベータのブレーキ装置では、ブレーキ制御装置 10の制御により、第 1 及び第 2電磁コイル 29, 30のそれぞれへの通電の開始の時期が互いに異なるように なっているので、ブレーキ装置本体 9の開放動作時においても、第 1電磁コイル 29の 電磁吸引力と、第 2電磁コイル 30の電磁吸弓 I力とを容易に異なる強さにすることがで き、ブレーキ装置本体 9の動作による衝撃音の低減を図ることができる。 [0057] In such an elevator brake device, the start of energization of each of the first and second electromagnetic coils 29 and 30 is different from each other by the control of the brake control device 10, so that the brake Even when the main unit 9 is opened, the electromagnetic attractive force of the first electromagnetic coil 29 and the electromagnetic arch I force of the second electromagnetic coil 30 can easily be set to different strengths. In addition, it is possible to reduce the impact sound due to the operation of the brake device body 9.
[0058] 実施の形態 5.  [0058] Embodiment 5.
また、実施の形態 2では、第 1及び第 2電磁コイル 29, 30のそれぞれに対する電圧 指令は、いずれもブレーキ制御装置 10からの出力が開始されて力 瞬時に最大値( 所定値)に達するようになつている力 電圧指令の出力が開始されて力 最大値に達 するまでの時間を異ならせて、ブレーキ装置本体 9の開放動作時にも、衝撃音の低 減を図るようにしてもよ 、。  In the second embodiment, the voltage command for each of the first and second electromagnetic coils 29 and 30 is such that the output from the brake control device 10 is started and the maximum value (predetermined value) is reached instantaneously. It is possible to reduce the impact sound even when the brake device body 9 is released by varying the time from when the output of the voltage command is started until the force reaches the maximum value. .
[0059] 即ち、図 11は、この発明の実施の形態 5によるブレーキ装置の動作を説明するた めのグラフである。また、図 11 (a)は運転制御装置のブレーキ開放指令と時間との関 係を示すグラフ、図 11 (b)は第 1電磁コイル 29に対する電圧指令と時間との関係を 示すグラフ、図 11 (c)は第 2電磁コイル 30に対する電圧指令と時間との関係を示す グラフ、図 11 (d)は第 1電磁コイル 29への通電量と時間との関係を示すグラフ、図 11 (e)は第 2電磁コイル 30への通電量と時間との関係を示すグラフである。  That is, FIG. 11 is a graph for explaining the operation of the brake device according to the fifth embodiment of the present invention. Fig. 11 (a) is a graph showing the relationship between the brake release command of the operation control device and time, Fig. 11 (b) is a graph showing the relationship between the voltage command for the first electromagnetic coil 29 and time, and Fig. 11 (c) is a graph showing the relationship between the voltage command for the second electromagnetic coil 30 and time, FIG. 11 (d) is a graph showing the relationship between the amount of current supplied to the first electromagnetic coil 29 and time, and FIG. 11 (e). 4 is a graph showing the relationship between the amount of current supplied to the second electromagnetic coil 30 and time.
[0060] 図に示すように、ブレーキ制御装置 10は、運転制御装置力 のブレーキ開放指令 を受けると、第 1及び第 2電磁コイル 29, 30のそれぞれに対する電圧指令の出力を 同時に開始するようになっている。また、ブレーキ制御装置 10は、第 1電磁コイル 29 に対する電圧指令については、電圧指令の出力を開始して力 瞬時に最大値に達 するように制御し、第 2電磁コイル 30に対する電圧指令については、電圧指令の出 力を開始してから一定の割合で連続的に上昇させて所定の時間が経過したときに最 大値になるように制御するようになっている。即ち、ブレーキ制御装置 10は、電圧指 令の出力を開始して力も最大値になるまでの時間が互いに異なるように、第 1及び第 2電磁コイル 29, 30のそれぞれに対する電圧指令を制御するようになっている。他の 構成は実施の形態 2と同様である。  [0060] As shown in the figure, when the brake control device 10 receives the brake release command of the operation control device force, the brake control device 10 starts to output voltage commands to the first and second electromagnetic coils 29 and 30 simultaneously. It has become. The brake control device 10 controls the voltage command for the first electromagnetic coil 29 so that the output of the voltage command starts to reach the maximum value instantaneously, and the voltage command for the second electromagnetic coil 30 Then, the voltage is continuously increased at a constant rate after the output of the voltage command is started, and control is performed so that the maximum value is reached when a predetermined time has elapsed. That is, the brake control device 10 controls the voltage command for each of the first and second electromagnetic coils 29 and 30 so that the time from when the output of the voltage command is started until the force reaches the maximum value is different from each other. It has become. Other configurations are the same as those in the second embodiment.
[0061] 次に、動作について説明する。運転制御装置からのブレーキ開放指令をブレーキ 制御装置 10が受けると、ブレーキ制御装置 10からは、第 1及び第 2電磁コイル 29, 3 0のそれぞれに対する電圧指令の出力が同時に開始される。この後、第 1電磁コイル 29に対する電圧指令は、瞬時に最大値に達し(図 11 (b) )、第 2電磁コイル 30に対 する電圧指令は、一定の割合で連続的に上昇し、所定の時間が経過した後に最大 値に達する(図 l l (c) )。即ち、この例では、第 1電磁コイル 29に対する電圧指令が 最大値に達するまでの時間と、第 2電磁コイル 30に対する電圧指令が最大値に達す るまでの時間とが互いに異なるように、第 1及び第 2電磁コイル 29, 30のそれぞれに 対する電圧指令がブレーキ制御装置 10により制御される。 Next, the operation will be described. When the brake control device 10 receives a brake release command from the operation control device, the brake control device 10 starts outputting voltage commands to the first and second electromagnetic coils 29 and 30 simultaneously. Thereafter, the voltage command for the first electromagnetic coil 29 instantaneously reaches the maximum value (Fig. 11 (b)), and the voltage command for the second electromagnetic coil 30 continuously increases at a constant rate, and reaches a predetermined value. After the time of The value is reached (Figure ll (c)). That is, in this example, the first time so that the time until the voltage command for the first electromagnetic coil 29 reaches the maximum value is different from the time until the voltage command for the second electromagnetic coil 30 reaches the maximum value. The voltage command for each of the second electromagnetic coils 29 and 30 is controlled by the brake control device 10.
[0062] このとき、第 1制動体 17は、第 2電磁コイル 30によって吸引されている部分を制動 位置に残したまま、第 1電磁コイル 29によって吸引されている部分のみが各ばね 19 の付勢力に打ち勝って電磁マグネット 20に近づく方向へ変位される。これにより、第 1制動体 17が橈む。 [0062] At this time, the first braking body 17 is attached to each spring 19 only by the portion attracted by the first electromagnetic coil 29 while leaving the portion attracted by the second electromagnetic coil 30 in the braking position. Displaced in a direction to overcome the force and approach the electromagnetic magnet 20. As a result, the first braking body 17 crawls.
[0063] この後、第 2電磁コイル 30によって吸引されている部分も各ばね 19の付勢力に打 ち勝ち、第 1制動体 17全体が開放位置へ変位される。この後の動作は、実施の形態 2と同様である。  [0063] Thereafter, the portion attracted by the second electromagnetic coil 30 also overcomes the urging force of each spring 19, and the entire first braking body 17 is displaced to the open position. The subsequent operation is the same as that of the second embodiment.
[0064] このようなエレベータのブレーキ装置では、ブレーキ制御装置 10の制御により、第 1 及び第 2電磁コイル 29, 30のそれぞれに対する電圧指令について、ブレーキ制御 装置 10力もの出力の開始力も所定値に達するまでの時間が互いに異なるようになつ ているので、ブレーキ装置本体 9の開放動作時においても、第 1電磁コイル 29の電 磁吸引力と、第 2電磁コイル 30の電磁吸弓 I力とを容易に異なる強さにすることができ 、ブレーキ装置本体 9の動作による衝撃音の低減を図ることができる。  [0064] In such an elevator brake device, the control of the brake control device 10 causes the start force of the output of the brake control device 10 to be a predetermined value for the voltage command to each of the first and second electromagnetic coils 29, 30. Since the time to reach them is different from each other, the electromagnetic attraction force of the first electromagnetic coil 29 and the electromagnetic arching I force of the second electromagnetic coil 30 can be obtained even when the brake device body 9 is opened. Different strengths can be easily obtained, and the impact sound due to the operation of the brake device body 9 can be reduced.
[0065] なお、各上記実施の形態では、第 1電磁コイル 29の数が 2つとされ、第 2電磁コイル 30の数も 2つとされている力 第 1及び第 2電磁コイル 29, 30のそれぞれの数を 1つ あるいは 3つ以上としてもよ!/、。  In each of the above embodiments, the number of first electromagnetic coils 29 is two, and the number of second electromagnetic coils 30 is also two. Each of first and second electromagnetic coils 29, 30 The number of can be 1 or 3 or more!
[0066] また、各上記実施の形態では、ブレーキ制御装置 10は、第 1及び第 2電磁コイル 2 9, 30のそれぞれに印加される電圧を所定のパターンに従って制御することにより、 第 1及び第 2電磁コイル 29, 30への通電量を変化させるようになっているが、第 1及 び第 2電流検出器 33, 34からの情報に基づいて、第 1及び第 2電磁コイル 29, 30へ の通電量が所定のパターンに従って変化するように、第 1及び第 2電磁コイル 29, 30 のそれぞれに印加する電圧を制御するようにしてもょ 、。  In each of the above embodiments, the brake control device 10 controls the voltage applied to each of the first and second electromagnetic coils 29 and 30 according to a predetermined pattern, so that the first and second (2) The energization amount to the electromagnetic coils 29, 30 is changed, but based on the information from the first and second current detectors 33, 34, the first and second electromagnetic coils 29, 30 are The voltage applied to each of the first and second electromagnetic coils 29 and 30 may be controlled so that the energization amount of the coil changes according to a predetermined pattern.

Claims

請求の範囲 The scope of the claims
[1] 回転体、  [1] rotating body,
上記回転体に接触する制動位置と、上記回転体力 開離される開放位置との間で 変位可能な制動体、  A braking body that is displaceable between a braking position that contacts the rotating body and an open position where the rotating body force is released;
上記制動体が上記制動位置に変位される方向へ上記制動体を付勢する付勢体、 通電により電磁吸引力をそれぞれ発生する第 1電磁コイル及び第 2電磁コイルを有 し、上記電磁吸引力の発生により、上記付勢体による付勢力に逆らって、上記開離 位置へ上記制動体を変位させる電磁マグネット、及び  There is provided an urging body that urges the braking body in a direction in which the braking body is displaced to the braking position, a first electromagnetic coil and a second electromagnetic coil that generate an electromagnetic attractive force when energized. An electromagnetic magnet that displaces the braking body to the open position against the urging force of the urging body, and
上記第 1電磁コイル及び上記第 2電磁コイルのそれぞれへの通電を制御するブレ ーキ制御装置  Brake control device for controlling energization to each of the first electromagnetic coil and the second electromagnetic coil
を備え、  With
上記ブレーキ制御装置は、上記制動体を変位させるときに、上記第 1電磁コイル及 び上記第 2電磁コイルに対して互いに異なる通電の制御を行うようになって 、ることを 特徴とするエレベータのブレーキ装置。  The brake control device controls the energization of the first electromagnetic coil and the second electromagnetic coil different from each other when the braking body is displaced. Brake device.
[2] 上記ブレーキ制御装置は、上記第 1電磁コイル及び上記第 2電磁コイルへの通電 の開始及び停止の少なくとも 、ずれかの時期が互いに異なるように、上記第 1電磁コ ィル及び上記第 2電磁コイルのそれぞれへの通電を制御するようになって ヽることを 特徴とする請求項 1に記載のエレベータのブレーキ装置。  [2] The brake control device includes the first electromagnetic coil and the second electromagnetic coil so that the first electromagnetic coil and the second electromagnetic coil start and stop at least at different timings. 2. The elevator brake device according to claim 1, wherein energization of each of the two electromagnetic coils is controlled.
[3] 上記ブレーキ制御装置は、上記第 1電磁コイル及び上記第 2電磁コイルへの通電 を開始するときに、上記第 1電磁コイルに印加する電圧を 0から所定値にするまでの 時間が、上記第 2電磁コイルに印加する電圧を 0から上記所定値にするまでの時間よ りも短くなるように、上記第 1電磁コイル及び上記第 2電磁コイルのそれぞれに印加す る電圧を制御するようになって 、ることを特徴とする請求項 1に記載のエレベータの ブレーキ装置。  [3] When the brake control device starts energization of the first electromagnetic coil and the second electromagnetic coil, the time until the voltage applied to the first electromagnetic coil is changed from 0 to a predetermined value is The voltage applied to each of the first electromagnetic coil and the second electromagnetic coil is controlled so that the voltage applied to the second electromagnetic coil is shorter than the time from 0 to the predetermined value. The elevator braking device according to claim 1, wherein
[4] 上記ブレーキ制御装置は、上記第 1電磁コイル及び上記第 2電磁コイルへの通電 を停止するときに、上記第 1電磁コイルに印加する電圧を所定値力も 0にするまでの 時間が、上記第 2電磁コイルに印加する電圧を上記所定値力 0にするまでの時間よ りも短くなるように、上記第 1電磁コイル及び上記第 2電磁コイルのそれぞれに印加す る電圧を制御するようになって 、ることを特徴とする請求項 1に記載のエレベータの ブレーキ装置。 [4] When the brake control device stops energizing the first electromagnetic coil and the second electromagnetic coil, the time required for the voltage applied to the first electromagnetic coil to become a predetermined value force of 0 is The voltage applied to the second electromagnetic coil is applied to each of the first electromagnetic coil and the second electromagnetic coil so as to be shorter than the time until the predetermined value force becomes zero. 2. The elevator brake device according to claim 1, wherein a voltage to be controlled is controlled.
[5] 上記ブレーキ制御装置は、上記第 2電磁コイルへの通電を停止するときに、上記第 2電磁コイルに印加する電圧を、所定値から、上記所定値よりも小さな設定値まで瞬 時に低下させてから、所定の時間をかけて上記設定値力 0へ低下させるようになつ ていることを特徴とする請求項 4に記載のエレベータのブレーキ装置。  [5] When the brake control device stops energizing the second electromagnetic coil, the voltage applied to the second electromagnetic coil is instantaneously reduced from a predetermined value to a set value smaller than the predetermined value. 5. The elevator braking device according to claim 4, wherein the braking force is reduced to the set value force 0 over a predetermined period of time.
[6] 上記制動体は、上記ブレーキ制御装置が上記第 1電磁コイル及び上記第 2電磁コ ィルに対して互 、に異なる通電の制御を行うことにより、上記電磁吸弓 I力及び上記付 勢力によって撓むようになって!/、ることを特徴とする請求項 1に記載のエレベータの ブレーキ装置。  [6] The braking body is configured so that the brake control device controls the energization of the first electromagnetic coil and the second electromagnetic coil to be different from each other, whereby the electromagnetic arch I force and the additional force are applied. 2. The brake device for an elevator according to claim 1, wherein the brake device is bent by a force! /.
PCT/JP2005/016308 2005-09-06 2005-09-06 Brake device for elevator WO2007029310A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006523465A JP4925105B2 (en) 2005-09-06 2005-09-06 Elevator brake equipment
EP05781944.3A EP1923345B1 (en) 2005-09-06 2005-09-06 Brake device for elevator
PCT/JP2005/016308 WO2007029310A1 (en) 2005-09-06 2005-09-06 Brake device for elevator
CN200580041133.2A CN100562476C (en) 2005-09-06 2005-09-06 Brake device for elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/016308 WO2007029310A1 (en) 2005-09-06 2005-09-06 Brake device for elevator

Publications (1)

Publication Number Publication Date
WO2007029310A1 true WO2007029310A1 (en) 2007-03-15

Family

ID=37835447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016308 WO2007029310A1 (en) 2005-09-06 2005-09-06 Brake device for elevator

Country Status (4)

Country Link
EP (1) EP1923345B1 (en)
JP (1) JP4925105B2 (en)
CN (1) CN100562476C (en)
WO (1) WO2007029310A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014513781A (en) * 2011-05-12 2014-06-05 コネ コーポレイション Brake and how to create a brake
US10822215B2 (en) 2018-11-26 2020-11-03 Otis Elevator Company Fail safe bar for clutch type brake adjustment
CN113998557A (en) * 2022-01-05 2022-02-01 心力电梯科技有限公司 Elevator safety brake

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2458165T3 (en) 2008-06-03 2014-04-30 Otis Elevator Company Test (electric) of individual brake shoe for elevators
US9637349B2 (en) 2010-11-04 2017-05-02 Otis Elevator Company Elevator brake including coaxially aligned first and second brake members
CN113165828B (en) * 2018-12-20 2023-05-26 因温特奥股份公司 Method for controlling a brake of an elevator installation and brake control
CN111517197B (en) * 2020-04-29 2021-07-06 佛山市顺德区龙江镇建筑工程有限公司 Elevator for construction machinery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001146366A (en) * 1999-11-19 2001-05-29 Mitsubishi Electric Corp Braking device of elevator
JP2003083372A (en) * 2001-09-11 2003-03-19 Mitsubishi Electric Corp Braking system and braking device
JP2003184919A (en) 2001-12-19 2003-07-03 Hitachi Ltd Disc type electromagnetic brake
EP1431226A1 (en) 2001-09-28 2004-06-23 Mitsubishi Denki Kabushiki Kaisha Brake controller of elevator
JP2005126183A (en) 2003-10-23 2005-05-19 Mitsubishi Electric Corp Brake control device for elevator
JP7080650B2 (en) * 2017-01-25 2022-06-06 バイオセンス・ウエブスター・(イスラエル)・リミテッド Analysis and mapping of ECG signals to eliminate Brugada syndrome and determination of ablation points

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0780650B2 (en) * 1990-08-13 1995-08-30 日本オーチス・エレベータ株式会社 Brake control system of elevator controller
JP4102362B2 (en) * 2002-09-27 2008-06-18 三菱電機株式会社 Elevator brake control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001146366A (en) * 1999-11-19 2001-05-29 Mitsubishi Electric Corp Braking device of elevator
JP2003083372A (en) * 2001-09-11 2003-03-19 Mitsubishi Electric Corp Braking system and braking device
EP1431226A1 (en) 2001-09-28 2004-06-23 Mitsubishi Denki Kabushiki Kaisha Brake controller of elevator
JP2003184919A (en) 2001-12-19 2003-07-03 Hitachi Ltd Disc type electromagnetic brake
JP2005126183A (en) 2003-10-23 2005-05-19 Mitsubishi Electric Corp Brake control device for elevator
JP7080650B2 (en) * 2017-01-25 2022-06-06 バイオセンス・ウエブスター・(イスラエル)・リミテッド Analysis and mapping of ECG signals to eliminate Brugada syndrome and determination of ablation points

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014513781A (en) * 2011-05-12 2014-06-05 コネ コーポレイション Brake and how to create a brake
US10822215B2 (en) 2018-11-26 2020-11-03 Otis Elevator Company Fail safe bar for clutch type brake adjustment
CN113998557A (en) * 2022-01-05 2022-02-01 心力电梯科技有限公司 Elevator safety brake
CN113998557B (en) * 2022-01-05 2022-03-04 心力电梯科技有限公司 Elevator safety brake

Also Published As

Publication number Publication date
CN101068737A (en) 2007-11-07
JPWO2007029310A1 (en) 2009-03-12
EP1923345B1 (en) 2013-11-13
JP4925105B2 (en) 2012-04-25
CN100562476C (en) 2009-11-25
EP1923345A4 (en) 2012-03-07
EP1923345A1 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
JP4607631B2 (en) Brake control device for elevator
JP5070280B2 (en) Permanent magnet type elevator disc brake
JP5422566B2 (en) Elevator brake device having permanent magnet bias for applying braking force
JP4574636B2 (en) Elevator equipment
JPH07149487A (en) Rail brake gear for linear motor type elevator
EP3157852B1 (en) System, machinery brake and method for controlling the machinery brake
WO2007029310A1 (en) Brake device for elevator
JP5064239B2 (en) Elevator brake actuator with shape change material for brake adjustment
JP4292202B2 (en) Actuator operation inspection method and actuator operation inspection apparatus
JPWO2010143298A1 (en) Brake device for elevator hoisting machine
JP2008081226A (en) Brake controller for elevator
JP5191720B2 (en) Braking device for elevator hoisting machine
JP6704533B1 (en) Electromagnetic braking device and hoisting machine
JP6449806B2 (en) Elevator apparatus and operation control method thereof
JP2016156414A (en) Electromagnetic brake device and elevator
JP2012041168A (en) Elevator
KR20070085663A (en) Brake device for elevator
US772005A (en) Hoisting apparatus.
JP6293069B2 (en) Electromagnetic brake device and elevator device using the same
JP2016060604A (en) Lifting equipment, elevator and adjustment method of electromagnetic brake device
JP5315107B2 (en) Brake device for elevator
JP2011032049A (en) Elevator device
JP5465112B2 (en) Elevator brake equipment
JP6382155B2 (en) Electromagnetic brake device for elevator and elevator device
JPH03288027A (en) Electromagnetic brake system and elevator using same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006523465

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005781944

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580041133.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020077012467

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005781944

Country of ref document: EP